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Abstract SPHINCS+ is a post-quantum signature scheme that, at the
time of writing, is being standardized as SLH-DSA. It is the most conser-
vative option for post-quantum signatures, but the original tight proofs
of security were flawed — as reported by Kudinov, Kiktenko and Fe-
dorov in 2020. In this work, we formally prove a tight security bound
for SPHINCS+ using the EasyCrypt proof assistant, establishing greater
confidence in the general security of the scheme and that of the param-
eter sets considered for standardization. To this end, we reconstruct the
tight security proof presented by Hülsing and Kudinov (in 2022) in a
modular way. A small but important part of this effort involves a com-
plex argument relating four different games at once, of a form not yet
formalized in EasyCrypt (to the best of our knowledge). We describe
our approach to overcoming this major challenge, and develop a general
formal verification technique aimed at this type of reasoning.
Enhancing the set of reusable EasyCrypt artifacts previously produced
in the formal verification of stateful hash-based cryptographic construc-
tions, we (1) improve and extend the existing libraries for hash func-
tions and (2) develop new libraries for fundamental concepts related to
hash-based cryptographic constructions, including Merkle trees. These
enhancements, along with the formal verification technique we develop,
further ease future formal verification endeavors in EasyCrypt, especially
those concerning hash-based cryptographic constructions.

Keywords: SPHINCS+ · Post-Quantum Cryptography · EasyCrypt·
Formal Verification · Machine-Checked Proofs · Computer-Aided Cryp-
tography

1 Introduction

The advent of sufficiently powerful quantum computers would jeopardize essen-
tially all of the currently deployed public-key cryptography [BL17]. Albeit it
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is still uncertain if and when such computers will be practically realized, on-
going advancements and current prospects in the field lead many experts to
believe that the likelihood of this happening in the near future is quite substan-
tial [GH19,MP23]. Together with the potentially disastrous ramifications, this
suggests that adequate preparation is paramount and urgent. Therefore, in 2016,
the National Institute of Standards and Technology (NIST) started a process
aimed at the standardization of post-quantum cryptography — cryptography
that is executable on classical computers but provides security against attacks
from both classical and quantum computers [BL17,NIS16]. In 2022, NIST an-
nounced the initial four cryptographic constructions to be standardized as a
result of this process: CRYSTALS-Kyber for key encapsulation, together with
CRYSTALS-Dilithium, Falcon, and SPHINCS+ for digital signatures [NIS22].
Interestingly, two years prior, NIST already standardized two post-quantum digi-
tal signature schemes — XMSS and LMS (as well as their multi-tree variants) —
independently from the ongoing standardization process [CAD+20]. Although
their maturity justified the standardization, these schemes are challenging to de-
ploy in many contexts due to the required state management [CAD+20,MKF+16].
Hence, they do not suffice to fully replace contemporary digital signature schemes,
which is the rationale for additionally standardizing the schemes from the stan-
dardization process.

During the above-mentioned standardization process, Kudinov, Kiktenko and
Fedorov discovered an error in the tight security proof for a variant of the Win-
ternitz One-Time Signature (WOTS) scheme, WOTS+ [FKK20,KKF20]. As this
scheme is (implicitly) a fundamental component of XMSS and SPHINCS+, the
tight security proofs for the latter two schemes used similar erroneous reasoning
and, hence, were invalid as well [BHK+19,HRS16]. Following this discovery, Hüls-
ing and Kudinov remediated the error for the case of SPHINCS+ by explicitly
specifying the employed variant of WOTS —called WOTS-TW — defining (and
proving) a specific security notion for this variant, and proving the tight security
of SPHINCS+ using this security notion [HK22]. Sadly, this approach did not di-
rectly translate to the case of XMSS due to the data processed by WOTS-TW be-
ing adversarially controlled (while it is user controlled in SPHINCS+) [BDG+23].
Nevertheless, building on the work by Hülsing and Kudinov [HK22], Barbosa,
Dupressoir, Grégoire, Hülsing, Meijers, and Strub later constructed a novel tight
security proof for XMSS; moreover, they formally verified this security proof us-
ing the EasyCrypt proof assistant [BDG+23]. Unfortunately, in that work, the
formal verification of the security proof for SPHINCS+ in [HK22] was consid-
ered out of scope and left as future work. Given that the error in the origi-
nal SPHINCS+ security proof was only detected after several years of intense
scrutiny, an increase in confidence regarding the novel security proof and its
guarantees — as could be accomplished by, e.g., the formal verification of the
proof — is no frivolous luxury.

As it is referred to above, formal verification (of cryptography) is an en-
deavor belonging to the field of computer-aided cryptography. This field aims
to address the ever-increasing complexity of constructing and evaluating cryp-
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tography by employing computers to make these processes more rigorous and
streamlined [BBB+21]. Certainly, this is especially valuable in the context of
complex cryptography that is still relatively novel, such as most of the post-
quantum cryptography considered for standardization today. Over time, many
tools and frameworks have been developed and proven effective in the construc-
tion and evaluation of progressively involved and significant cryptographic ap-
plications. For instance, as discussed before, EasyCrypt has been used to for-
mally verify the novel security proof for XMSS [BDG+23], but also to formally
verify the correctness and security of Saber’s Public-Key Encryption (PKE)
scheme [HMS22]. Moreover, in combination with Jasmin, EasyCrypt has been
used to construct and verify functionally correct, constant-time and efficient
implementations of ChaCha20-Poly1305 [ABB+20], SHA-3 [ABB+19], and the
aforementioned CRYSTALS-Kyber [ABB+23]. Further examples using different
tools include the formal verification of Hybrid Public-Key Encryption (HPKE)
using CryptoVerif [ABH+21], as well as the formal verification of Transport
Layer Security (TLS) 1.3 [CHH+17] and (the key establishment of) Signal using
Tamarin [CCD+20]. A more thorough and systematic overview of computer-
aided cryptography with additional examples and success stories is provided
in [BBB+21].

Our Contribution. In this work, we aim to renew or boost the confidence in
the security of (the parameter sets considered for) SPHINCS+. Crudely put,
we achieve this goal by formally verifying the novel tight security proof for
SPHINCS+ from [HK22]. However, we commence this endeavor by reconstruct-
ing the entire proof, essentially obtaining a modular version that is significantly
more detailed. This reconstruction allows us to somewhat manage the com-
plexity of the formal verification, and reuse some of the artifacts produced in
the formal verification of the new tight security proof for XMSS [BDG+23].
Nevertheless, the formal verification poses significant, novel challenges that we
overcome, including the formal analysis of the considered few-time signature
scheme and hypertree structure. Furthermore, one of the modular components
we formally verify constitutes a generic relation between variants of the multi-
target PREimage resistance (PRE), Target Collision Resistance (TCR), and
Decisional Second-Preimage Resistance (DSPR) properties. This statement is
comparable to Theorem 38 in [BH19], the proof of which employs non-standard
reasoning. Correspondingly, the proof for the statement we consider is similarly
non-standard. Loosely speaking, instead of utilizing a standard approach such
as (a sequence of) reductions between pairs of games, this proof simultaneously
compares four games through an extremely granular case analysis on the asso-
ciated success probabilities. In the process of understanding and developing a
proof technique aimed at this kind of reasoning, we formally verify the simpler
of the fundamental theorems in [BH19], Theorem 25, that relates the (standard)
PRE, SPR, and DSPR properties — allowing us to try out the arguments in a
simpler context.

Due to the nature of the considered proof and the artifacts we build on,
we opt to employ EasyCrypt — a powerful and expressive tool primarily aimed
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at the formal verification of code-based, game-playing security proofs in the
computational model [BGHZ11] — for this work. As part of this work’s contri-
bution, we facilitate future formal verification endeavors in two ways. First, we
extend EasyCrypt by creating and enhancing libraries based on the features
required in this work. Specifically, we construct libraries containing (generic)
definitions and properties for binary trees and Merkle trees; furthermore, we
enhance the libraries for hash functions — originally produced in [BDG+23] —
by adding new properties and adjusting some of the definitions to be easier to
use in different scenarios. Second, we develop a general formal verification tech-
nique targeting the type of non-standard reasoning required for the proof of
the aforementioned relation between (variants of) the PRE, TCR, and DSPR
properties. To the best of our knowledge, this is a novelty in the context of
EasyCrypt. Although this paper only covers some of these artifacts in more de-
tail, all of them can be found repository associated with this work, located at
https://github.com/MM45/FV-SPHINCSPLUS-EC, or in the standard library of
EasyCrypt.

Overview. The remainder of this paper is organized as follows. First, Section 2
introduces the fundamental concepts underlying SPHINCS+ and its formal ver-
ification. Section 3 provides an overview of the formal verification. Lastly, Sec-
tion 4, 5, and 6 discuss several aspects of the formal verification in detail.

2 Preliminaries

In the ensuing, we introduce the concepts used throughout the paper. Most of the
fundamentals directly coincide with those of previous works [BDG+23,BHK+19];
however, we still provide them here for completeness.

Keyed Hash Functions. A Keyed Hash Function (KHF) is a function KHF :
K×M → Y where key space K, message space M, and digest space Y respectively
denote sets of keys, messages, and digests. In practice, these spaces are essentially
all sets of bitstrings. However, in specifications, each of these spaces may also be
left abstract or be instantiated with any set relevant in the considered context —
e.g., the set of integers within a certain range. Occasionally, we interpret and
refer to a KHF as a family of hash functions indexed by keys from the key space.

For KHFs, we consider the Interleaved Target Subset Resilience (ITSR) and
Pseudo-Random Function family (PRF) properties. Intuitively, a KHF is a PRF
if querying an unknown, randomly selected hash function from the family de-
fined by the KHF is computationally indistinguishable from querying an actual
random function.6 Formally, the ITSR and PRF properties for KHFs are respec-
tively defined as the games in Figures 1 and 3; the oracles employed in these
games are specified in Figures 2 and 4. In the ITSR game, IBMAP

KHF is a predicate
validating whether its arguments constitute an ITSR break; more precisely, this

6Unlike the PRF property, the ITSR property is specifically designed for SPHINCS+

and does not admit as much of an intuitive interpretation out of context.

https://github.com/MM45/FV-SPHINCSPLUS-EC
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GameITSR
A,KHF,MAP

1 : OITSRKHF.Init()
2 : (k, x)← AOITSR.Query.Find()
3 : return IBMAP

KHF (k, x, OITSRKHF.T)

OITSR

vars T

Init()

1 : T ← [ ]

Query(x)

1 : k ←$ U(K)
2 : T ← T || (k, x)
3 : return k

Figure 1. ITSR game. Figure 2. Oracle employed in ITSR game.

GamePRF
A,KHF(b)

1 : OPRFKHF.Init(b)
2 : b′ ← AOPRFKHF.Query.Distinguish()
3 : return b′

OPRFKHF

vars b, k, m

Init(bi)

1 : b, m← bi, emptymap
2 : k ←$ U(K)

Query(x)

1 : if b then
2 : if m.[x] = ⊥ then
3 : y ←$ U(Y)
4 : m.[x]← y

5 : y ← m.[x]
6 : else
7 : y ← KHF(k, x)
8 : return y

Figure 3. PRF game. Figure 4. Oracle employed in PRF game.

predicate is defined as follows.

IBMAP
KHF (k, x,T) = (k, x) ̸∈ T ∧ MAP(KHF(k, x)) ∈

⋃|T|−1
i=0 MAP(KHF(T[i][0],T[i][1]))

Then, the advantage of any adversary A against ITSR is defined as given below.

AdvITSR
KHF,MAP(A) = Pr

[
GameITSR

A,KHF,MAP = 1
]

Moreover, the advantage of any adversary A against PRF is defined as follows.

AdvPRF
KHF (A) =

∣∣∣Pr
[
GamePRF

A,KHF(0) = 1
]

− Pr
[
GamePRF

A,KHF(1) = 1
]∣∣∣

Tweakable Hash Functions. A Tweakable Hash Function (THF) is a func-
tion THF : P × T × M → Y where (public) parameter space P, tweak space T ,
message space M, and digest space Y denote sets of (public) parameters, tweaks,
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messages, and digests, respectively. As for KHFs, in practice, these spaces are
essentially all sets of bitstrings. In specifications, they may also be left abstract
or be instantiated with any set relevant in the considered context. Nevertheless,
throughout this work, the message and digest space of any THF are, respec-
tively, the set of arbitrary-length bitstrings (i.e., {0, 1}∗) and a set of fixed-length
bitstrings (i.e., {0, 1}k for some k > 0). Conceptually, THFs extend KHFs by
explicitly considering contextual data in the form of tweaks, primarily serving
the purpose of mitigating multi-target attacks. At times, we view and refer to
a THF as a family of hash functions (mapping tweaks and messages to digests)
indexed by (public) parameters from the (public) parameter space.

Alongside individual THFs, we consider collections of such functions — a con-
cept introduced by the authors of SPHINCS+ [BHK+19] — containing a single
THF for each possible length of the input messages. Alternatively stated, a col-
lection of THFs constitutes a set THFC = {THFλ : P × T × M → Y}λ∈Λ where
Λ is the index set comprising the possible input lengths.7

For THFs, the properties we are concerned with in this work are the Single-
function, Multi-target, Distinct-Tweak variants of Target-Collision Resistance
(SM-DT-TCR), Decisional Second-Preimage Resistance (SM-DT-DSPR), and
Opening-Preimage Resistance (SM-DT-OpenPRE). Additionally, we consider an
extension of SM-DT-TCR, denoted by SM-DT-TCR-C, that takes the relevant
THF collection into account. As their names suggest, all of these properties
model a similar scenario where (1) a single, uniformly random (public) pa-
rameter is considered throughout (single-function); (2) the attack’s targets, of
which there may be multiple (multi-target), must be specified before the pa-
rameter is revealed; and (3) the tweaks used in the attack’s targets must be
distinct (distinct-tweak). Unsurprisingly, this scenario shares quite some similar-
ities with the manner in which SPHINCS+ operates; in particular, SPHINCS+

uses the same (public) parameter — which is sampled uniformly at random dur-
ing setup — and a unique tweak for each THF evaluation. For a more in-depth
discussion and analysis of these properties, see [BHK+19,HK22].

The considered THF properties are formalized through the games and oracles
in Figures 5, 6, and 7 (SM-DT-TCR(-C) game, challenge oracle, and collection
oracle); Figures 8 and 9 (SM-DT-DSPR games and challenge oracle); and Fig-
ures 10 and 11 (SM-DT-OpenPRE game and challenge oracle). In these games,
t denotes the upper bound on the number of targets, SPETHF is a predicate that
indicates whether there exists a second-preimage of the given message under THF
(when the first two arguments to THF are the given parameter and tweak), and
VQSt is a predicate that validates the adversary’s behavior by checking whether
(1) the number of targets is less than or equal to t, (2) the provided index i is a
valid index into the target list(s), and (3) the target tweaks are distinct from each
other and, in case the relevant collection is considered, from the tweaks issued to
the collection oracle. Moreover, for the (non-standard) advantage definition of
SM-DT-DSPR, we need to define SM-DT-SPprob, a game that essentially repre-

7Technically, we could restrict the message space of each THF in a collection to only
contain messages of the relevant length, but this does not yield significant advantages.
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GameSM-DT-TCR -C
A,THF, THFC ,t

1 : p←$ U(P)
2 : OTCRTHF.Init(p)
3 : OCTHFC.Init(p)

4 : AOTCRTHF.Query, OCTHFC.Query .Pick()
5 : i, x′ ← A.Find(p)
6 : tw, x← OTCR.T[i], OTCR.X[i]
7 : return x ̸= x′ ∧ THF(p, tw, x) = THF(p, tw, x′)

∧VQSt(i, OTCRTHF.T, OCTHFC.T )

Figure 5. SM-DT-TCR(-C) game. Outlined code is only considered in SM-DT-TCR-C.

OTCRTHF

vars p,T,X

Init(pi)

1 : p,T,X ← pi, [ ], [ ]

Query(tw, x)

1 : y ← THF(p, tw, x)
2 : T,X ← T || tw,X || x

3 : return y

OCTHFC

vars p,T

Init(pi)

1 : p,T ← pi, [ ]

Query(tw, x)

1 : y ← THFC|x|(p, tw, x)
2 : T ← T || tw
3 : return y

Figure 6. Challenge oracle employed in
SM-DT-TCR(-C) game.

Figure 7. Collection oracle employed in
games for tweakable hash functions.

sents the trivial attack against SM-DT-DSPR. Then, we define the advantage of
any adversary A against Prop ∈ {SM-DT-TCR, SM-DT-OpenPRE} as follows.

AdvProp
THF,t(A) = Pr

[
GameProp

A,THF,t = 1
]

For the remaining THF properties, the corresponding advantages are given be-
low, where p = Pr

[
GameSM-DT-DSPR

A,THF,t = 1
]

and q = Pr
[
GameSM-DT-SPprob

A,THF,t = 1
]
.

AdvSM-DT-DSPR
THF,t (A) = max(0, p − q)

AdvSM-DT-TCR-C
THF,THFC,t (A) = Pr

[
GameSM-DT-TCR-C

A,THF,THFC,t = 1
]

Hash Addresses. An instance of SPHINCS+ employs the same collection of
THFs throughout its entire execution; furthermore, it invariably uses the same
(public) parameter to index the THFs. Thus, to mitigate multi-target attacks,
SPHINCS+ uses a unique, fixed tweak in each THF evaluation. For the con-
struction of these tweaks, SPHINCS+ utilizes a specific addressing scheme. In
this scheme, an address essentially encodes (uniquely) identifying information for
the THF evaluation in which the address is used. More precisely, each address
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GameSM-DT -DSPR -SPprob
A,THF,t

1 : p←$ U(P)
2 : ODSPRTHF.Init(p)
3 : AODSPRTHF.Query.Pick()
4 : i, b← A.Find(p)
5 : tw, x← ODSPR.T[i], ODSPR.X[i]
6 : return SPETHF(p, tw, x) = b

∧VQSt(i, ODSPRTHF.T)

ODSPRTHF

vars p,T,X

Init(pi)

1 : p,T,X ← pi, [ ], [ ]

Query(tw, x)

1 : y ← THF(p, tw, x)
2 : T,X ← T || tw,X || x

3 : return y

Figure 8. SM-DT-DSPR (blue) and
SM-DT-SPprob (yellow) game. Non-
outlined code is considered in both games.

Figure 9. Challenge oracle employed
in SM-DT-DSPR and SM-DT-SPprob
game.

GameSM-DT-OpenPRE
A,THF,t

1 : p←$ U(P)
2 : tws← A.Pick()
3 : ys← OOPRETHF.Init(p, tws)
4 : i, x← AOOPRETHF.Open.Find(p, ys)
5 : tw, y ← tws[i], ys[i]
6 : return THF(p, tw, x) = y

∧ i ̸∈ OOPRETHF.O

∧VQSt(i, tws)

OOPRETHF

vars p,X, O

Init(pi, twsi)

1 : p,X, O, ys← pi, [ ], [ ], [ ]
2 : for tw in twsi do
3 : x←$ U(M)
4 : X ←X || x

5 : ys← ys || THF(p, tw, x)
6 : return ys

Open(i)

1 : O← O || i

2 : return X[i]

Figure 10. SM-DT-OpenPRE game for
tweakable hash functions.

Figure 11. Challenge oracle employed in
SM-DT-OpenPRE game.

constitutes a fixed-length sequence of nonnegative integers encoding the location
and purpose of a THF evaluation within the virtual structure of a SPHINCS+

instance. Naturally, not every (fixed-length) sequence of nonnegative integers
constitutes a valid address in this scheme. Furthermore, because we approach
the analysis of SPHINCS+ in a modular manner, parts of the addresses may
be irrelevant at certain points;8 in such cases, we disregard the irrelevant part
of the addresses. Throughout this paper, we use “address” to refer to a fixed-
length sequence of nonnegative integers that constitutes (the relevant part of) a
valid SPHINCS+ address in the considered context. Additional clarification on
address validity will be provided as necessary.

8For example, in a modular part that exclusively operates on a single layer of the
virtual structure, the part of the addresses that indicates this layer is irrelevant.
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3 Approach

The primary objective of this work is to renew or increase confidence in the
(parameter sets considered for) SPHINCS+, which we achieve via the formal
verification of a tight security proof. To this end, we initially reconstruct the
(handwritten) tight security proof for SPHINCS+ from [HK22] in a modular
manner, adding a significant amount of detail in the process. Utilizing this re-
constructed proof as a guideline for the subsequent formal verification facilitates
the overall process in several ways. First, the modularity reduces the complex-
ity (of the formal verification) of individual statements by limiting their scope.
Second, the modularity allows for the reuse of certain artifacts previously pro-
duced in the formal verification of the novel tight security proof for XMSS (which
shares components with SPHINCS+) [BDG+23]. Third, the additional granular-
ity serves as a foundation for the exceptional rigor and detail inevitably required
by the formal verification.

Before discussing our approach to the proof and its formal verifications, we in-
troduce the structure and workings of SPHINCS+. On a high level, a SPHINCS+

instance consists of (1) an instance of a hypertree-based signature scheme akin to
XMSSMT [HBG+18,HRB13], and (2) an instance of a forest-based — i.e., consid-
ering a sequence of individual trees — signature scheme for each leaf of this hyper-
tree. This latter scheme is a few-time signature scheme called Forest of Random
Subsets (FORS) which was introduced together with SPHINCS+ [BHK+19]. In
the hypertree construction, each “node” constitutes a Merkle signature scheme
similar to XMSS, using WOTS-TW, a variant of WOTS introduced in [HK22]
as One-Time Signature (OTS) scheme. To sign an arbitrary-length message m
with SPHINCS+, the message is initially processed in a way that results in a
fixed-length message mc and an index i pointing to a leaf of the hypertree. Sub-
sequently, the FORS instance associated with the i-th leaf is used to sign mc;
in turn, the hypertree construction is used to sign the public key of this FORS
instance. Then, the SPHINCS+ signature on m consists of the information used
to obtain mc and i from m, the FORS signature on mc, and the hypertree sig-
nature on the public key of the employed FORS instance. Intuitively, the FORS
signature can be seen as the actual signature on the message, while the signature
of the hypertree construction can be seen as a proof that the FORS instance used
to sign the message is actually part of the considered SPHINCS+ instance.

Figure 12 presents a high-level overview of (the proofs underlying) our formal
verification. In this figure, each node represents a property of a cryptographic
construction, KHF, or THF; each edge indicates an implication between prop-
erties, i.e., from origin nodes to destination nodes.

The leftmost node in Figure 12 denotes the primary objective of this work:
The formal verification of the Existential UnForgeability under Chosen-Message
Attacks (EUF-CMA) security of SPHINCS+. As depicted in the diagram, we
show that this property is implied by (1) the PRF property of SKG and MKG,
KHFs used for the generation of secret keys and message compression keys,
respectively; (2) the EUF-CMA property of M-FORS$, a multi-instance vari-
ant of FORS that employs actual randomness instead of pseudorandomness;
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SPHINCS+

EUF-CMA

SKG
PRF

MKG
PRF

M-FORS$

EUF-CMA

MCO
ITSR

F
SM-DT-OpenPRE

F
SM-DT-DSPR

F
SM-DT-TCRTRH

SM-DT-TCR-C

TRCO
SM-DT-TCR-C

FL-SL-XMSSMT$

EUF-NAGCMA

WOTS-TW$

M-EUF-GCMA

F
SM-DT-UD-C

F
SM-DT-TCR-C

F
SM-DT-PRE-C

PKCO
SM-DT-TCR-C

TRH
SM-DT-TCR-C

Figure 12. High-level overview of (the proofs underlying) our formal verification.
Nodes represent properties of cryptographic constructions or functions: the text above
the line indicates the construction or function; the text below the line indicates the
property. Edges represent implications between properties: a property denoted by a
destination node is implied by the conjunction of properties denoted by origin nodes.

and (3) the EUF-NAGCMA property — a non-adaptive, generic version of the
EUF-CMA property — of FL-SL-XMSSMT$, a fixed-length, stateless variant of
XMSSMT that uses actual randomness instead of pseudorandomness. The rea-
son for considering variants of the cryptographic constructions that use actual
randomness is exactly because of the initial PRF-related reductions mentioned
above; indeed, these reductions replace pseudorandomness by actual randomness
throughout the entire construction (so also throughout all “sub-constructions”).

Proceeding in a modular fashion, we demonstrate that the EUF-CMA secu-
rity of M-FORS$ can be based on (1) the ITSR property of MCO, a KHF used
for the compression of (arbitrary-length) messages; (2) the SM-DT-OpenPRE
property of F, a THF employed to generate Merkle tree leaves from secret key
elements; and (3) the SM-DT-TCR-C property of TRH and TRCO, THFs used
for the construction of Merkle trees from their leaves and, respectively, the com-
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pression of Merkle tree roots. In turn, we establish that the SM-DT-OpenPRE
property of F is implied by its own SM-DT-DSPR and SM-DT-TCR properties.
Interestingly, this implication can be considered a THF analog of Theorem 38
in [BH19], which states a comparable implication for KHFs. Correspondingly, the
proofs require similar non-standard reasoning which, to the best of our knowl-
edge, is unprecedented in EasyCrypt. Employing Theorem 25 in [BH19] — the
proof of which only requires a relatively basic form of this reasoning — as an
initial case study, we develop a formal verification technique aimed at this kind
of reasoning. Building on this, we formally verify the implication required for
SPHINCS+.

Then, for FL-SL-XMSSMT$, we show that its EUF-NAGCMA security is
implied by (1) the M-EUF-GCMA property — a multi-instance, generic version
of EUF-CMA specifically devised for the purpose of recovering the SPHINCS+

proof [HK22] — of WOTS-TW$, a variant of WOTS-TW that employs actual
randomness instead of pseudorandomness; (2) the SM-DT-TCR-C property of
PKCO and TRH, THFs respectively employed for the compression of WOTS-TW$

public keys and the construction of Merkle trees from their leaves.9 At this
point, a single implication remains: The implication from several properties of
THF F to the M-EUF-GCMA security of WOTS-TW$. Fortunately, in previous
work, this implication has already been formally verified in a way that facilitates
reuse [BDG+23]. We capitalize on this and do not formally verify this implication
anew.

Finally, combining all modular parts, we formally verify that the EUF-CMA
security of SPHINCS+ can solely be based on the properties of the employed
KHFs and THFs, as desired. For convenience, we provide an overview of the
considered cryptographic constructions and functions in Appendix A.

In the ensuing sections, we discuss the formal verification process more ex-
tensively, going by the cryptographic (sub-)constructions. Specifically, in order,
we go over M-FORS$, FL-SL-XMSSMT$, and SPHINCS+. Throughout this dis-
cussion, we do not include any material directly from the produced formal veri-
fication artifacts in the interest of space. Instead, we cover the proofs underlying
the formal verification in a way that allows for a near-verbatim translation to
EasyCrypt, thus accurately representing the formally verified material.

4 M-FORS$

FORS was first introduced in [BHK+19] as the few-time signature scheme used
in SPHINCS+. In practice, FORS is used with pseudorandom keys. However,
our proof performs a PRF-related step on the level of SPHINCS+ that replaces
all the pseudorandom values with random values. Thus, when analyzing the
security of FORS, we actually analyze FORS$, a version of FORS that operates
using actual randomness. In fact, it turns out that considering a multi-instance
variant of FORS$, M-FORS$, is convenient for the proof as SPHINCS+ and the
ITSR property (inherently) consider multiple instances of FORS$.

9Indeed, TRH is the same function in both M-FORS$ and FL-SL-XMSSMT$.
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Intuitively, the (virtual) structure of a FORS$ instance is a sequence of
Merkle trees, the leaves of which are digests of secret key values. The public
key of such an instance is a single digest obtained by compressing the roots of
the Merkle trees. A FORS$ signature comprises, for each Merkle tree, a single
secret key value and the corresponding authentication path (defined below). The
selection of secret key values in the signature is derived from the message.

A FORS$ instance is defined with respect to parameters k, a, and n, re-
spectively denoting the number of Merkle trees, the height of each Merkle tree,
and the byte-length of the secret key elements, the public key, and the (values
associated with the) nodes of the Merkle trees. From a, we compute the number
of leaves for each Merkle tree as t = 2a. Furthermore, FORS$ employs the THFs
F, TRH, and TRCO. These functions have the same (public) parameter space
and tweak space — referred to as the public seed space PS and address space
AD — as well as the same message space {0, 1}∗ and digest space {0, 1}8·n.

An instance of M-FORS$ essentially manages multiple FORS$ instances di-
vided into sequences, where the number of sequences and the size of each se-
quence are respectively determined by parameters s and l′. M-FORS$ utilizes
the KHF MCO to process arbitrary-length messages, obtaining (1) a fixed-length
message — processable by a FORS$ instance — and (2) an index uniquely iden-
tifying a specific FORS$ instance. Moreover, it uses a random function MKG$ to
generate a fresh indexing key for each message compression. Lastly, to guarantee
a unique address for each THF evaluation in M-FORS$’s operations, we require
that addresses have a corresponding xtree index (xtri), keypair index (kpi), type
index (typei), ftree height index (ftrhi), and ftree breadth index (ftrbi). These
indices are nonnegative integers that indicate, in the given order, the sequence
of FORS$ instances, the FORS$ instance within the sequence, the type of op-
eration (tree hashing or tree root compression), the height of the node (in the
FORS$ instance), and the breadth of the node (in the FORS$ instance).10 Here,
the breadth and height indices are only relevant for tree hashing operations.

In essence, provided with a public seed ps and a address ad, the key pair
of a FORS$ instance is constructed as follows. Initially, a FORS$ secret key
sk = sk0 . . . skk·t−1 — ski ∈ {0, 1}8·n for 0 ≤ i < k · t — is sampled uniformly
at random. To obtain the corresponding public key, first, a sequence of k · t
Merkle tree leaves is computed from the secret key by processing each element
with F. The resulting sequence contains k non-overlapping subsequences of t
leaves, each uniquely defining a Merkle tree of height a. The roots of these trees
can be obtained by iteratively computing the layers of each tree. Specifically, in
the construction of the layer at height h in the j-th Merkle tree, the node at
breadth b can be computed from its children cl and cr as TRH(ps, adj,h,b, cl || cr),
where adj,h,b denotes the unique address for this evaluation of TRH (obtained
from appropriately adjusting ad based on j, h and b). Hereafter, we denote the
operator that performs this computation for Merkle trees of height h (i.e., for

10For the ftree breadth index, we do not consider a single tree, but rather the full
sequence of trees in a FORS$ instance. This way, addresses are unique even for nodes
indifferent trees but at the same height and breadth of their respective tree.
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Listing 1 FORS$ Primary
1: proc FORS$.KeyGen(ps, ad)
2: skF←$ U(({0, 1}8·n)k·t)
3: lvs← FORS$.SkFToLvs(skF, ps, ad)
4: rts← [ ]
5: ad.typei← ftrhType
6: for i = 0, . . . , k − 1 do
7: lvsst← lvs[i · t : (i + 1) · t]
8: rt← LvsToRta(ps, ad, lvsst, i)
9: rts← rts || rt

10: ad.typei← ftrcType
11: pkF← TRCO(ps, ad, flatten(rts))
12: return (pkF, ps, ad), (skF, ps, ad)
13: proc FORS$.Sign(sk := (skF, ps, ad), m)
14: lvs← FORS$.SkFToLvs(skF, ps, ad)
15: sig← [ ]
16: ad.typei← ftrhType
17: for i = 0, . . . , k − 1 do
18: j ← toint(m[i · a : (i + 1) · a])
19: skele← skF[i · t + j]
20: lvsst← lvs[i · t : (i + 1) · t]
21: ap← ConsAPa(ps, ad, lvsst, j, i)
22: sig← sig || (skele, ap)
23: return sig
24: proc FORS$.Verify(pk := (pkF, ps, ad), m, sig)
25: pkF′ ← FORS$.SigToPkF(m, sig, ps, ad)
26: return pkF′ = pkF

Listing 2 FORS$ Auxiliary
1: proc FORS$.SkFToLvs(skF, ps, ad)
2: lvs← [ ]
3: ad.typei, ad.ftrhi← ftrhType, 0
4: for i = 0, . . . , k · t− 1 do
5: ad.ftrhb← i
6: lf ← F(ps, ad, skF[i])
7: lvs← lvs || lf
8: return lvs
9: proc FORS$.SigToPkF(m, sig, ps, ad)

10: rts← [ ]
11: ad.typei← ftrhType
12: for i = 0, . . . , k − 1 do
13: skele, ap← sig[i]
14: j ← toint(m[i · a : (i + 1) · a])
15: ad.ftrhi, ad.ftrbi← 0, i · t + j
16: lf ← F(ps, ad, skele)
17: rt← APToRta(ps, ad, ap, lf, j, i)
18: rts← rts || rt
19: pkF← TRCO(ps, ad, flatten(rts))
20: return pkF

lists of leaves of length 2h) by LvsToRth. Lastly, after computing the Merkle tree
roots, the FORS$ public key pk is obtained by compressing the concatenation
of these roots using TRCO. Since, for proper functioning, signing and verifying
requires the public seed and address that were used in key generation, we include
them in both the public and secret key for convenience.

Given a FORS$ key pair, a message m ∈ {0, 1}k·a is signed and verified in the
following manner. Initially, m is split into k bitstrings of length a, each of which
is interpreted as the big-endian binary representation of an integer in [0, 2a). This
gives rise to a k-tuple of integers (i0, . . . , ik−1). Next, for every ij , 0 ≤ j < k, a
so-called authentication path is constructed for the ij-th leaf of the j-th Merkle
tree in the FORS$ instance. This path is the sequence comprising, in order, the
sibling nodes along the path from the root of the considered Merkle tree to the
considered leaf. Indeed, this path can be computed from the list of leaves and
the index of the leaf. Throughout the remainder, we denote the operator that
constructs these paths for Merkle trees of height h by ConsAPh.Then, the FORS$

signature on m is a k-tuple of pairs (skij
, apij

), 0 ≤ j < k, where skij
and apij

are the secret key element and authentication path corresponding to the ij-th
leaf of the j-th Merkle tree. Verification of a signature on m is performed by,
initially, extracting the integers (i0, . . . , ik−1) from m in the same way as before.
Subsequently, the secret key elements in the signature are transformed into the



14 M. Barbosa, F. Dupressoir, A. Hülsing, M. Meijers, and P-Y. Strub

Listing 3 M-FORS$

1: proc M-FORS$.KeyGen(ps, ad)
2: pkMF, skMF← [ ], [ ]
3: for i = 0, . . . , s · l′ − 1 do
4: ad.xtri, ad.kpi← ⌊i/l′⌋, i mod l′

5: (pkF, _, _), (skF, _, _)← FORS$.KeyGen(ps, ad)
6: pkMF, skMF← pkMF || pkF, skMF || skF
7: return (pkMF, ps, ad), (skMF, ps, ad)
8: proc M-FORS$.Sign(sk := (skMF, ps, ad), m)
9: mk← MKG$(m)

10: mc, i← MCO(mk, m)
11: ad.xtri, ad.kpi← ⌊i/l′⌋, i mod l′

12: sigF← FORS$.Sign((skMF[i], ps, ad), mc)
13: return mk, sigF
14: proc M-FORS$.Verify(pk := (pkMF, ps, ad), m, sig := (mk, sigF))
15: mc, i← MCO(mk, m)
16: ad.xtri, ad.kpi← ⌊i/l′⌋, i mod l′

17: isValid← FORS$.Verify((pkMF[i], ps, ad), mc, sigF)
18: return isValid

corresponding leaves via F. Combining each of these leaves with the associated
authentication path in the signature, the root of each Merkle tree in the FORS$

instance is computed. This is achieved by iteratively reconstructing the path
from the leaf to the root using the sibling nodes in the authentication path. For
instance, if the ij-th leaf is a right child, the second node on the path is computed
as n1 = TRH(ps, adj,1,x, apij

[a−1] || lfij
), where x = ⌊ij/2⌋, adj,1,x is the unique

address for this evaluation of TRH, and lfij is the ij-th leaf; then, if n1 is a left
child, the third node on the path is equals TRH(ps, adj,2,y, n2 || apij

[a−2]), where
y = ⌊x/2⌋; and so forth.11 Henceforth, we denote the operator that performs this
computation for Merkle trees of height h (i.e., for authentication paths of length
log2 h) by ApToRth. Finally, the produced roots are compressed using TRCO to
obtain a candidate public key. If and only if this candidate public key matches
the original public key, verification succeeds.

Following the foregoing descriptions, Listing 1 provides the specification of
FORS$’s key generation, signing, and verification algorithm. These algorithms
employ auxiliary procedures for the computation of (1) a sequence of Merkle tree
leaves corresponding to a FORS$ secret key, and (2) a FORS$ public key corre-
sponding to a FORS$ signatures. For reuse purposes, we specify these auxiliary
procedures separately in Listing 2. In the specifications, l[i : j] denotes the slice
of list l from index i (including) up to index j (excluding), flatten(l) denotes the
sequential concatenation of all elements in list l, and toint(s) denotes the integer
corresponding to bitstring s (assuming big-endian binary representation).

At this point, it is rather straightforward to specify M-FORS$, as it es-
sentially constitutes a collection of FORS$ instances combined with a way to
compress messages and select which instance to use for signing and verification.
Listing 3 provides the specification of M-FORS$’s algorithms.

11Whether the nodes along the reconstructed path are left or right children can be
computed from the value of ij .



A Tight Security Proof for SPHINCS+, Formally Verified 15

Security Property. For M-FORS$, we effectively consider a slight variant
of the customary EUF-CMA security property that accounts for the fact that
M-FORS$ expects to be provided with a public seed and an address. Further-
more, for the usage of the THFs to be secure (with respect to their assumed
properties), this public seed should be sampled uniformly at random. The game
and oracle formalizing this security property are respectively provided in Fig-
ures 13 and 14. Here, adz denotes an arbitrary address used for initialization.

GameEUF-CMA
A,M-FORS$

1 : ad← adz

2 : ps←$ U(PS)

3 : (pk, sk)← M-FORS$.KeyGen(ps, ad)
4 : OM-FORS$ .Init(sk)
5 : m′, sig′ ← AOM-FORS$ .Query.Forge(pk)

6 : isValid← M-FORS$.Verify(pk, m, sig)
7 : isFresh← m′ ̸∈ OM-FORS$ .M

8 : return isValid ∧ isFresh

OM-FORS$

vars sk, M

Init(ski)

1 : sk, M ← ski, [ ]

Query(m)

1 : sig← M-FORS$.Sign(sk, m)
2 : M ←M || m

3 : return

Figure 13. EUF-CMA game for M-FORS$. Figure 14. Oracle employed in
EUF-CMA game for M-FORS$.

Formal Verification. As illustrated in Figure 12, we demonstrate that the
EUF-CMA security of M-FORS$ is implied by the ITSR property of MCO, the
SM-DT-OpenPRE property of F, and the SM-DT-TCR-C property of TRH and
TRCO. For the ITSR property of MCO, we instantiate MAP (see Figure 1) with
CM, a function that maps (mc, i) ∈ {0, 1}k·a×[0, s·l] — i.e., outputs from MCO —
to the set S = {(i, j, toint(mc[j · a : (j + 1) · a])) | 0 ≤ j < k}. Intuitively, a tuple
(x, y, z) from this set can be interpreted as an index pointing to the z-th leaf of
the y-th Merkle tree in the x-th FORS$ instance. Formally, the security theorem
we consider is the following.
Theorem 1 (EUF-CMA for M-FORS$). For any adversary A, there exist
adversaries B0, B1, B2, and B3 — each with approximately the same running
time as A — such that the following inequality holds.

AdvEUF-CMA
M-FORS$ (A) ≤ AdvITSR

MCO,CM(B0) + AdvSM-DT-OpenPRE
F,tf

(B1)

+ AdvSM-DT-TCR-C
TRH,THFC,ttrh

(B2)
+ AdvSM-DT-TCR-C

TRCO,THFC,ttrco
(B3)

Here, THFC denotes an arbitrary THF collection containing F, TRH, and TRCO.
Furthermore, tf = s · l′ · k · t, ttrh = s · l′ · k · (t − 1), and ttrco = s · l′.
In essence, the formal verification of Theorem 1 proceeds by an exhaustive case
analysis on the situation where A wins GameEUF-CMA

A,M-FORS$ . This case analysis com-
prises four distinct cases; for each of these cases, the probability is bounded
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by exactly one of the advantage terms on the right-hand side of the theorem’s
inequality. In the following, G⊤

A signifies the event GameEUF-CMA
A,M-FORS$ = 1.

Case Distinction for G⊤
A. First, note that a valid EUF-CMA forgery for M-FORS$

consists of a message m′ and a signature sig′ = (mk′, sigF′) such that m′

is fresh and sig′ is a valid signature on m′ under the considered public key
pk = (pkMF, ps, ad). Here, recall that sig′ is only valid if the FORS$ candi-
date public key pkF′, computed from (m′

c, i′) = MCO(mk′, m′) and sigF′, equals
pkF = pkMF[i′]. By the nature of the computations, validity of the forgery im-
plies that, at some point during the construction of pkF′, the considered values
must coincide with the corresponding values in the original construction of pkF.

Harnessing the above observation, the first case we distinguish is one where
the compression of m′ (using MCO indexed on mk′) results in the selection of a
set of secret key elements from a FORS$ instance such that all of these values
were already revealed as part of (the replies to) the issued signature queries.12

Alternatively stated, the set CM(m′
c, i′) is contained in the union of the analogous

sets for the key/message pairs corresponding to the issued signature queries. As
m′ is fresh, it follows that the pair (mk′, m′) can be used to break ITSR. In the
remaining, EM denotes the event that captures this case.

If the first case does not occur (¬EM ), the forgery contains at least one
secret key element skele′ not revealed during the game. Then, the second case we
distinguish concerns the leaf lf ′ produced from this secret key element equaling
the corresponding leaf lf in the computation of pkF. In this case, skele′ is a
preimage of lf under F and, hence, can be used to break SM-DT-OpenPRE (for
F). Hereafter, EF signifies the event capturing this case (within ¬EM ).

If both the first and second case do not happen (¬EM ∧ ¬EF ), the forgery
contains a secret key element skele′ that (1) was not revealed during the game
and (2) does not produce the same leaf lf ′ as the one in the original construction
of pkF. As such, the third case we distinguish regards the Merkle tree root
computed from lf ′ and the associated authentication path ap′ (from the same
pair in the forgery) equaling the corresponding Merkle tree root in the original
computation of pkF. Here, it must be the case that, at a certain point, the values
on the reconstructed path (using lf ′ and ap′) coincide with the corresponding
values in the original Merkle tree. So, because the initial node(s) on these paths
are not equal, the first node for which the paths converge must be obtained by
applying TRH on different inputs. These inputs form a collision for TRH and,
thus, can be used to break SM-DT-TCR-C (for TRH). Henceforth, we denote
the event that captures this case (within ¬EM ∧ ¬EF ) by ET .

Finally, if all of the foregoing cases do not transpire (¬EM ∧ ¬EF ∧ ¬ET ),
it must be the case that one of the Merkle tree roots provided as (part of the)
input to TRCO to produce pkF′ does not equal the corresponding root used
in the original computation of pkF. Therefore, in this case, the (concatenated)

12The values need not all be revealed in (the reply to) a single signature query. They
may have been revealed over (the replies to) any number of signature queries.
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Merkle tree roots used to compute pkF′ and pkF form a collision for TRCO and
can be used to break SM-DT-TCR-C (for TRCO).
Bound on Pr

[
G⊤

A ∧ EM

]
. If the compression of m′ (using mk′) indicates a set

of secret key elements already revealed in (the responses to) the issued signa-
ture queries, we construct a reduction adversary RA playing in GameITSR

A,MCO,CM
that straightforwardly simulates an execution of GameEUF-CMA

A,M-FORS$ but, instead of
sampling, uses OITSR to obtain message keys for the compression of messages
contained in queries by A. Upon receiving the forgery from A, RA directly ex-
tracts and returns (mk′, m′), winning its own game. As a result, we can bound
Pr
[
G⊤

A ∧ EM

]
by AdvITSR

MCO,CM(RA).

Bound on Pr
[
G⊤

A ∧ ¬EM ∧ EF

]
. In case the compression of m′ indicates an un-

precedented secret key element for which the image under F coincides with the
corresponding original Merkle tree leaf, we construct the following reduction ad-
versary playing in GameSM-DT-OpenPRE

RA,F,tf
. In its first stage, RA constructs and re-

turns a list containing every address used to create Merkle tree leaves from secret
key elements in M-FORS$. Then, in its second stage, RA utilizes the given public
seed and Merkle tree leaves to compute the corresponding M-FORS$ public key
and runs A with this public key, the public seed, and the initialization address.
During the execution of A, the reduction adversary answers signature queries
in accordance with M-FORS$.Sign, acquiring any necessary secret key elements
via OOPREF.Open. Upon receiving the forgery from A, RA finds the secret key
element not revealed in (responses to) the issued signature queries, and returns
this element together with the associated index. By construction, the reduction
adversary did not query any indices corresponding to secret key elements not in-
cluded in (responses to) the issued signature queries. Consequently, RA wins its
own game and we can bound Pr

[
G⊤

A ∧ ¬EM ∧ EF

]
by AdvSM-DT-OpenPRE

F,tf
(RA).

Bound on Pr
[
G⊤

A ∧ ¬EM ∧ ¬EF ∧ ET

]
. If the leaf obtained from the unprece-

dented secret key element in the forgery does not equal the corresponding leaf
in the original Merkle tree, but the root computed based on the associated au-
thentication path does coincide with the root of the original Merkle tree, we
construct the ensuing reduction adversary playing in GameSM-DT-TCR-C

RA,TRH,THFC,ttrh
. In

its first stage, RA constructs a key pair in line with M-FORS$.KeyGen by uti-
lizing the provided oracles. Specifically, for each FORS$ instance, the reduction
adversary samples the secret key, computes the Merkle tree leaves by query-
ing the collection oracle on the secret key elements, computes the Merkle tree
roots by querying the challenge oracle on the (concatenation of) sibling nodes —
specifying these as targets — and computes the FORS$ public keys by querying
the collection oracle on the (concatenation of) Merkle tree roots. Then, in its
second stage, RA runs A with the previously generated public key, the received
public seed, and the initialization address. Since RA constructed the considered
key pair itself, it can trivially simulate the signing oracle for A. Upon receiving
the forgery from A, RA computes the non-matching leaf from the unprecedented
secret key element; extracts the collision based on this leaf, the associated au-
thentication path, and the original Merkle tree; and returns the extracted col-
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lision and the associated index, winning its own game. As such, we can bound
Pr
[
G⊤

A ∧ ¬EM ∧ ¬EF ∧ ET

]
by AdvSM-DT-TCR-C

TRH,THFC,ttrh
(RA).

Bound on Pr
[
G⊤

A ∧ ¬EM ∧ ¬EF ∧ ¬ET

]
. Finally, if none of the previous cases

occurs, we construct a reduction adversary playing in GameSM-DT-TCR-C
RA,TRCO,THFC,ttrco

that, in essence, is extremely similar to the one considered in the preceding case.
Namely, in its first stage, RA constructs a M-FORS$ key pair in the same way as
the previous reduction adversary. However, in this case, RA employs the collec-
tion oracle for the construction of Merkle trees and the challenge oracle for the
compression of Merkle tree roots. In its second stage, RA also proceeds in the
same way as the previous reduction adversary, except that it now extracts and
returns a collision (and the associated index) based on the Merkle tree root com-
puted from the forgery. Following, we can bound Pr

[
G⊤

A ∧ ¬EM ∧ ¬EF ∧ ¬ET

]
by AdvSM-DT-TCR-C

TRCO,THFC,ttrco
(RA).

Final Result. At this point, Theorem 1 trivially follows from the established
bounds and the fact that the sum of the probabilities for the considered cases is
precisely equal to AdvEUF-CMA

M-FORS$ (A).

4.1 SM-DT-OpenPRE From SM-DT-TCR and SM-DT-DSPR

At this stage, we go over the formal verification of the aforementioned generic
relation between the SM-DT-OpenPRE, SM-DT-DSPR and SM-DT-TCR prop-
erties of a THF with a finite message space. By instantiating this relation with
F13 (and combining it with Theorem 1), we complete the modular part of the
formal verification rooted at M-FORS$ (see Figure 12). Formally, the security
statement we consider is the following.

Theorem 2 (SM-DT-OpenPRE for a THF). For any adversary A, there
exist adversaries B0 and B1 — each with approximately the same running time
as A — such that the following inequality holds.

AdvSM-DT-OpenPRE
THF,t (A) ≤ AdvSM-DT-DSPR

THF,t (B0) + 3 · AdvSM-DT-TCR
THF,t (B1)

Here, THF is an arbitrary THF with a finite message space M, and t ≥ 0.

In [BH19], the authors demonstrate generic relations between similar prop-
erties for KHFs. The proofs in [BH19] make use of non-standard techniques that
we also use for the proof of Theorem 2. As these techniques are unprecedented
in EasyCrypt, we elaborate on the formal verification and its challenges here.

Typical proofs considered in EasyCrypt compare, at each step, (the simulta-
neous execution of) two games. This encompasses usual proofs via direct reduc-
tion or game hopping. Namely, in these cases, the tool’s probabilistic relational
logic enables formal reasoning about the desired equivalences (potentially up to

13Although F technically has an infinite message space (see Section 2), we can replace
it in the context of M-FORS$/SPHINCS+ by an equivalent function with finite message
space {0, 1}8·n because F is only evaluated on messages from this space in this context.
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some failure event) between each pair of games. Unfortunately, it is not possible
to refer to any games beyond the two collated games, which would be needed to
formally verify our proof directly. Particularly, the proof for Theorem 2, which
closely resembles the proofs for Theorems 25 and 38 in [BH19], requires simul-
taneous reasoning about four games: GameSM-DT-OpenPRE

A,THF,t , GameSM-DT-DSPR
RA

D
,THF,t ,

GameSM-DT-SPprob
RA

D
,THF,t

, and GameSM-DT-TCR
RA

T
,THF,t . Here, the reduction adversaries RA

D

and RA
T are relatively straightforward. Specifically, in their first stage, both re-

duction adversaries run A’s first stage to obtain the list of tweaks; then, for each
tweak in this list, they query their own oracle on this tweak and a uniformly
random message (freshly sampled for each query), constructing a list of digests
from the responses. In their second stage, the reduction adversaries run A’s sec-
ond stage, providing it with the received public parameter and the previously
constructed digest list. Upon receiving (i′, x′) from A, RA

T returns (i′, x′) and
RA

D returns (i′, b), where b guesses that the message contained in the RA
D’s i′-th

query only has a single preimage if and only if x′ equals this message.
Using the above four games, the proof (and its formal verification) proceeds

by performing an extremely granular case analysis across multiple dimensions,
expressing the success probability associated with each game as a sum of proba-
bilities of fine-grained events. More precisely, these dimensions of analysis are (1)
the index j chosen by A, (2) the number of preimages for the digest pointed to
by j, and (3) the validity of A’s provided preimage. On a more technical level, we
perform this case analysis by defining F j

i and Sj
i , two auxiliary games parame-

terized on the number of preimages i and the index j. Intuitively, these games are
analogous to the similarly named auxiliary games in [BH19]: F j

i and Sj
i respec-

tively capture the failure and success cases for the considered SM-DT-OpenPRE
game. Utilizing these auxiliary games, the proof advances by performing the fol-
lowing for each game (of the four primary games): First, decompose the success
probability across the above-mentioned dimensions; second, show that, for some
cases, the probability equals that of F j

i and Sj
i ; third, show that, for some (other)

cases, the probability equals 0; fourth, show that, for the remaining cases —
corresponding to the adversary finding a preimage different from the original
one chosen by the reduction adversary (which is information-theoretically hid-
den in the preimage set of size i) — the probability can be expressed as i−1

i · Sj
i ;

and, lastly, combining the results into a closed formula. Subsequently, the re-
sulting closed formulas can be combined to derive Theorem 2. In the process
performed for each game, the second and third step constitute customary proofs
for EasyCrypt, while the first and fourth step are non-standard and technically
involved. For the non-standard steps, we develop and apply design patterns on
techniques aimed at the required reasoning. We elaborate on these below.

In the decomposition of the success probabilities, our objective is to express
the success probability of a game G (Pr

[
G⊤]) as follows. Here, G⊤

i,j denotes an
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event capturing a specific case of winning the game, parameterized by i and j.

Pr
[
G⊤] =

t−1∑
j=0

|M|∑
i=0

Pr
[
G⊤

i,j

]
We prove this equality by two applications of induction from the outside in —
i.e., first on j, then on i. So, we start with proving by induction that, for all z,
the following holds, where ti denotes the (adversarially chosen) target index.

Pr
[
G⊤ ∧ 0 ≤ ti < z

]
=

z−1∑
j=0

Pr
[
G⊤ ∧ ti = j

]
In this proof, the base case (0) is trivial, and the inductive step directly follows
from the fact that the events are disjoint. We obtain the desired summation in
the range [0, t) by showing that the adversary loses if it exceeds the number of
targets. Then, we continue the deconstruction by introducing the second sum-
mation. Specifically, we prove by induction that, for all z, the following holds,
where ntp denotes the number of preimages of the (adversarially chosen) target.

Pr
[
G⊤ ∧ 0 ≤ ti < t ∧ 0 ≤ ntp ≤ z

]
=

t−1∑
j=0

(
z∑

i=0
Pr
[
G⊤ ∧ ti = j ∧ ntp = i

])

This proof is similar to the previous one, except that the base case requires us to
argue that both probability expressions collapse to the case where the selected
target has no preimages. We acquire the intended summation by proving that the
number of preimages cannot exceed the (finite) number of messages |M|. The
resulting decomposition allows us to continue along the above proof outline.

Lastly, the most technically involved part of the formal verification concerns
the reasoning about information-theoretically hidden preimages, which is at the
heart of expressing the probability that the adversary finds a second preimage
in Sj

i as the probability of sampling an element uniformly at random from a
set of cardinality i and it not equaling a fixed element from this set. Proving
this in EasyCrypt is technically involved because there is no inherent mechanism
for reasoning about complex conditional probabilities (related to the execution
of games). In our case, it requires transforming Sj

i into a variant that initially
samples a digest y from the distribution induced by THF and, only in case y has
exactly i preimages, samples x from the set of y’s preimages after the adversary
returned x′. In actuality, this transformation requires several intermediate trans-
formations, each of which needs to guarantee that either the adversary’s view is
unaltered or the relevant event is not triggered. Loosely speaking, we alter the
original Sj

i in the following sequence of game hops. First, we use the sampled
message x only when the corresponding digest y has exactly i preimages, and
make the adversary’s view independent of it otherwise. Second, we invert the
order of the sampling by sampling y first and sampling x from the preimage set
of y. Third, we move the sampling of x to the end of the game. At this point,
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since x is sampled after the adversary returns its guess, the desired probabil-
ity claim is relatively straightforward to prove using EasyCrypt’s logic. For the
technically involved and novel (for EasyCrypt) part of this proof, we developed
several reusable results that permit reasoning about distributions over sets of
images and preimages in functions with finite domain.

5 FL-SL-XMSSMT$

XMSSMT is a stateful post-quantum digital signature scheme that is standard-
ized as a standalone construction, meaning that it is used to sign arbitrary-
length messages [CAD+20]. In effect, SPHINCS+ employs a stateless variant of
this scheme that is exclusively used to sign fixed-length messages, i.e., FORS
public keys, and therefore omits any initial message compression. We denote
this variant by FL-SL-XMSSMT. Within SPHINCS+, FL-SL-XMSSMT oper-
ates — akin to FORS/M-FORS — using pseudorandomness. As we perform an
all-encompassing PRF-related step on the level of SPHINCS+, we only consider
FL-SL-XMSSMT$, a variant of FL-SL-XMSSMT which operates using actual ran-
domness.

Intuitively, the (virtual) structure of a FL-SL-XMSSMT$ instance constitutes
a hypertree. Each “node” in this hypertree is an instance of a Merkle signature
scheme that uses WOTS-TW$ as its OTS scheme, essentially constituting a
variant of XMSS; we refer to these instances as “inner trees”. The inner trees
on the bottom layer of the hypertree are used to sign messages; all other inner
trees are used to sign the roots of the inner trees one layer below. An instance
of FL-SL-XMSSMT$ is defined with respect to parameters n, analogous to the
identically named parameter for FORS$; h′, the height of each inner tree; and d,
the number of layers in the hypertree. From h′ and d, we compute the number of
leaves of each inner tree as l′ = 2h′ , the height of the hypertree as h = 2h′·d, and
the number of leaves of the hypertree as l = 2h. Furthermore, FL-SL-XMSSMT$

employs, in addition to the previously introduced F and TRH, the THF PKCO
for the compression of WOTS-TW$ public keys to inner tree leaves. PKCO has
the same domain and range as the other THFs,14 which largely remain identical
to those used in FORS$. Here, the only difference concerns the (minimal) indices
associated with the addresses. Specifically, in this context, we require addresses
to have an associated layer index (li), xtree index (xtri), type index (typei),
key pair index (kpi), xtree height index (xtrhi), and xtree breadth index (xtrbi).
Respectively, these indices indicate the layer, the inner tree within the layer,
the type of operation (chaining, public key compression, or tree hashing), the
leaf (within the inner tree), and the height and breadth of the node (within the
inner tree). Lastly, as we reuse formal verification artifacts for WOTS-TW$, we
mostly abstract this scheme away, only providing details when needed. For more
information about this scheme and its formal verification, see [BDG+23].

Loosely speaking, given a public seed and an address, a FL-SL-XMSSMT$ key
pair is constructed as follows. First, a FL-SL-XMSSMT$ secret key is a uniformly

14Recall that we consider the same message space for each THF (i.e., {0, 1}∗).
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random sequence consisting of all WOTS-TW$ secret keys used throughout the
construction. Each of these WOTS-TW$ secret keys comprises len bitstrings of
length 8 · n and is associated with exactly one leaf of a single inner tree. The
corresponding FL-SL-XMSSMT$ public key is the root of the hypertree, which
is computed by (1) transforming the WOTS-TW$ secret keys associated with
the topmost inner tree into the corresponding public keys via F, (2) compressing
these public keys with PKCO to obtain the corresponding leaves, and (3) com-
puting the root of the topmost inner tree by iteratively constructing its layers
(from these leaves) using TRH. For the same reasons as in FORS$/M-FORS$,
we include the public seed and address in both the public and secret key.

A FL-SL-XMSSMT$ signature on a message m ∈ {0, 1}8· is a sequence of d

pairs, where the i-th pair consists of a WOTS-TW$ signature and an authenti-
cation path corresponding to (a particular leaf of) an inner tree on the i-th layer.
Here, the inner tree and leaf to be used on the bottom layer are provided as input,
completely determining the utilized inner trees and leaves from the upper lay-
ers. Naturally, the WOTS-TW$ signatures are produced with appropriate calls
to the signing procedure of WOTS-TW$; the associated authentication paths are
constructed analogously to the construction of such paths in FORS$, where the
considered leaf is obtained by compressing the corresponding WOTS-TW$ pub-
lic key via PKCO. Then, verification of a FL-SL-XMSSMT$ signature succeeds
if and only if the candidate root of the hypertree — constructed from the signa-
ture — equals the actual root of the hypertree contained in the public key. More
precisely, in a bottom-up manner, the roots of the inner trees corresponding to
the pairs in the signature are computed, where the message m serves as the ini-
tial root: First, the WOTS-TW$ public key is computed from the WOTS-TW$

signature (in the pair) and the considered root; second, the leaf corresponding to
the obtained public key is produced via PKCO; third, the root of the inner tree
is computed using the obtained leaf and the authentication path (in the pair),
again in a similar manner to the analogous computation in FORS$. Repeating
this process for each pair in the signature results in the candidate hypertree root.

In line with the preceding, the specification of FL-SL-XMSSMT$ is provided
in Listings 4 and 5; respectively, these listings specify the primary and auxiliary
algorithms, the latter of which are specified separately for reuse purposes. In
these specifications, the ConsAP, LvsToRt, and APToRt are the same operators
as in FORS$, yet parameterized on h′ instead of a.15 Furthermore, nrtrees(i)
denotes the number of inner trees in layer i (which equals 2h′·(d−i−1)), and —
preventing clutter due to indexing — skMXi,j denotes the subsequence (of length
l′) corresponding to the j-th inner tree on the i-th layer. Finally, although the
WOTS-TW$ procedures are not explicitly specified here, their names are pur-
posely indicative of their functioning; moreover, they are mostly analogous to
the similarly named procedures previously specified in this paper.

15The final argument to these operators is omitted as it was only used to determine
which Merkle tree in the FORS$ instance to consider.
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Listing 4 FL-SL-XMSSMT$ Primary
1: proc FL-SL-XMSSMT$.KeyGen(ps, ad)
2: skMX← [ ]
3: for i = 0, . . . , d− 1 do
4: for j = 0, . . . , nrtrees(i)− 1 do
5: skX←$ U((({0, 1}8·n)len)l′ )
6: skMX← skMX || skX
7: pkMX← FL-SL-XMSSMT$.SkMXToPkMX(skMX, ps, ad)
8: return (pkMX, ps, ad), (skMX, ps, ad)
9: proc FL-SL-XMSSMT$.Sign(sk := (skMX, ps, ad), m, i)

10: rt← m
11: ad.xtri← i
12: sig← [ ]
13: for j = 0, . . . , d− 1 do
14: ad.li, ad.xtri, ad.kti← j, ⌊ad.xtri/l′⌋, ad.xtri mod l′

15: skX← skMXad.li,ad.xtri
16: skW← skX[ad.kpi]
17: ad.typei← chType
18: sigW←WOTS-TW$.Sign((skW, ps, ad), rt)
19: lvsX← FL-SL-XMSSMT$.SkXToLvsX(skX, ps, ad)
20: ad.typei← xtrhType
21: apX← ConsAPh′ (ps, ad, lvsX, ad.kpi)
22: rt← LvsToRth′ (ps, ad, lvsX)
23: sig← sig || (sigW, apX)
24: return sig
25: proc FL-SL-XMSSMT$.Verify(pk := (pkMX, ps, ad), m, sig, i)
26: pkMX′ ← FL-SL-XMSSMT$.SigToPkMX(m, sig, i, ps, ad)
27: return pkMX′ = pkMX

Security Property. Regarding FL-SL-XMSSMT$, we consider a non-adaptive,
generic variant of the EUF-CMA security property denoted EUF-NAGCMA.
Here, “non-adaptive” refers to the fact that the selection of messages for which
the adversary receives signatures must happen at once; “generic” refers to the
fact that this selection happens without knowledge of the considered public key.
Akin to the EUF-CMA property for M-FORS$, this property accounts for the
fact that FL-XMSS-TW$ expects a public seed and an address, where the public
seed should be sampled uniformly at random. Furthermore, this property uses
an indexed version of the conventional freshness definition. Figure 15 provides
the game formalizing this property, where adz represents an arbitrary address.

Formal Verification. As Figure 12 depicts, we show that the EUF-NAGCMA
security of FL-SL-XMSSMT$ can be based on the M-EUF-GCMA property of
WOTS-TW$, as well as the SM-DT-TCR-C property of PKCO and TRH. Here,
we impose some additional constraints on the adversary’s behavior in terms of its
collection oracle queries. Intuitively, this limited oracle access can be interpreted
as modeling that the scheme remains secure in a greater context where the same
collection of THFs is also evaluated on different addresses (e.g., SPHINCS+).
Formally, the security theorem we consider is stated below.

Theorem 3 (EUF-NAGCMA for FL-SL-XMSSMT$). For any adversary A
that does not query its collection oracle on addresses used in FL-SL-XMSSMT$,
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Listing 5 FL-SL-XMSSMT$ Auxiliary
1: proc FL-SL-XMSSMT$.SkXToLvsX(skX, ps, ad)
2: lvsX← [ ]
3: for i = 0, . . . , l′ − 1 do
4: ad.typei, ad.kpi← chType, i
5: pkW←WOTS-TW$.SkWToPkW(skX[i], ps, ad)
6: ad.typei← pkcoType
7: lf ← PKCO(ps, ad, flatten(pkW))
8: lvs← lvs || lf
9: return lvs

10: proc FL-SL-XMSSMT$.SkMXToPkMX(skMX, ps, ad)
11: ad.li, ad.xtri← d− 1, 0
12: skX← skMXd−1,0
13: lvsX← FL-SL-XMSSMT$.SkXToLvsX(skX, ps, ad)
14: ad.typei← xtrhType
15: pkMX← LvsToRth′ (ps, ad, lvsX)
16: return pkMX
17: proc FL-SL-XMSSMT$.SigToPkMX(m, sig, i, ps, ad)
18: rt← m
19: ad.xtri← i
20: for j = 0, . . . , d− 1 do
21: ad.li, ad.xtri, ad.kti← j, ⌊ad.xtri/l′⌋, ad.xtri mod l′

22: sigW, apX← sig[j]
23: ad.typei← chType
24: pkW←WOTS-TW$.SigToPkW(rt, sigW, ps, ad)
25: ad.typei← pkcoType
26: lf ← PKCO(ps, ad, flatten(pkW))
27: ad.typei← xtrhType
28: rt← APToRth′ (ps, ad, apX, lf, ad.kpi)
29: return rt

there exist adversaries B0, B1, and B2 — each with approximately the same run-
ning time as A — such that the following inequality holds.

AdvEUF-NAGCMA
FL-SL-XMSSMT$,THFC(A) ≤ AdvM-EUF-GCMA

WOTS-TW$,THFC,twtw
(B0) + AdvSM-DT-TCR-C

PKCO,THFC,tpkco
(B1)

+ AdvSM-DT-TCR-C
TRH,THFC,ttrh

(B2)

Here, THFC denotes an arbitrary THF collection containing F, PKCO, and
TRH. Furthermore, twtw =

∑d−1
i=0 nrtrees(i) · l′, tpkco =

∑d−1
i=0 nrtrees(i) · l′, and

ttrh =
∑d−1

i=0 nrtrees(i) · (l′ − 1).

Concerning the M-EUF-GCMA property for WOTS-TW$, it suffices to know
the following for the upcoming discussion. This property considers a two-stage
adversary that, only in its first stage, is given access to a WOTS-TW$ signing
oracle and OCTHFC. In this first stage, the adversary can issue queries consisting
of a message and an address to the signing oracle, receiving a WOTS-TW$ public
key and signature (on the query’s message) that were freshly constructed using
the query’s address in any THF evaluations. In its second stage, the adversary is
asked to produce a fresh and valid forgery under one of the public keys received
in the first stage. For further details about this property, see [BDG+23].

The formal verification of Theorem 3 proceeds by an exhaustive case analysis
on the scenario where A wins GameEUF-NAGCMA

A,FL-SL-XMSSMT$,THFC, bounding the proba-
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GameEUF-NAGCMA
A,FL-SL-XMSSMT$,THFC

1 : ad← adz

2 : ps←$ U(PS)
3 : OCTHFC.Init(ps)
4 : ml← AOCTHFC.Query.Choose()

5 : pk, sk← FL-SL-XMSSMT$.KeyGen(ps, ad)
6 : sigl← [ ]
7 : for i = 0 . . . min(|ml|, l)− 1 do

8 : sig← FL-SL-XMSSMT$.Sign(sk, ml[i], i)
9 : sigl← sigl || sig

10 : m′, sig′, i′ ← A.Forge(pk, sigl)

11 : isValid← FL-SL-XMSSMT$.Verify(pk, m′, sig′, i′)
12 : isFresh← m′ ̸= ml[i′]
13 : return isValid ∧ isFresh ∧ 0 ≤ i < |ml|

Figure 15. EUF-NAGCMA game for FL-SL-XMSSMT$.

bility of each of these cases by the relevant advantage term. Here, much of the
reasoning related to the nature of the computations and the behavior of the
reduction adversaries is analogous to the reasoning presented in the discussion
on the formal verification for M-FORS$. As such, we do not elaborate as much
here. In the ensuing, G⊤

A refers to the event GameEUF-NAGCMA
A,FL-SL-XMSSMT$,THFC = 1.

Case Distinction for G⊤
A and Corresponding Bounds. First, remark that a valid

EUF-NAGCMA forgery for FL-SL-XMSSMT$ comprises a message m′, a signa-
ture sig′, and an index i′ such that m′ is fresh — which, in this context, means
that m′ is different from the message at index i′ in the list of selected (and
signed) messages — and sig′ is a valid signature on m′ under the considered pub-
lic key pk = (pkMX, ps, ad) and i′. Recall that sig′ is only valid if the candidate
root pkMX′ computed from m′, sig′, and i′ equals the actual root pkMX. By the
verification procedure, validity of the forgery implies that the values considered
in the computation of pkMX′ must at some point coincide with the correspond-
ing values in the original computation of pkMX. As such, we can distinguish
the following three exhaustive cases in the verification of the FL-SL-XMSSMT$

forgery. In the first case, either (1) the initial WOTS-TW$ signature in the
forgery is valid on m′ or (2) we encounter an inner tree root that is different
from the corresponding original root, but the associated WOTS-TW$ signature
is valid. For this case, we denote the corresponding event and reduction adver-
sary by EW and RA

W . In the second case, we encounter a WOTS-TW$ public key
(computed from a WOTS-TW$ signature in the forgery) that does not match
the corresponding original public key, but the inner tree leaf resulting from the
compression of the public key equals to the corresponding original leaf. In the
last case, we encounter an inner tree leaf that does not equal the corresponding
original leaf, but the root computed with the associated authentication path is
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equal to the corresponding original root. Hereafter, in order, RA
W , RA

P , and RA
T

denote the reduction adversaries considered in each case. Furthermore, EW and
EP refer to the events capturing the first two cases, respectively.

On a high level, the constructed reduction adversaries all follow a similar
approach. Specifically, in their first stage, the reduction adversaries run A’s first
stage, answering collection oracle queries via their own collection oracle, and
obtain a list of messages to sign (ml). Then, the reduction adversaries construct
a hypertree structure in line with FL-SL-XMSSMT.KeyGen using the provided
oracles. Here, the primary difference between the reduction adversaries concerns
which oracle they employ to compute certain values: RA

W uses the signing oracle
to obtain WOTS-TW$ public keys and signatures on the messages and roots of
inner trees; RA

P uses the challenge oracle to compress the WOTS-TW$ public
keys to inner tree leaves; and RA

T uses the challenge oracle to compute the inner
tree nodes from their leaves. All reduction adversaries compute the (for them)
remaining values using the collection oracle. In their second stage, the reduc-
tion adversaries sign the messages in ml, conforming to FL-SL-XMSSMT.Sign,
using the (hypertree) values obtained in their first stage. Subsequently, they
run A’s second stage, giving it their public key (i.e., hypertree root), the re-
ceived public seed, the initialization address, and the list of signatures. Upon
receiving the forgery from A, the reduction adversaries find their forgery or col-
lision and return this together with the associated index, winning their game.
Importantly, as the reduction adversaries simulate the collection oracle for A
through their own collection oracle, the constraint on A’s queries guarantees
that no addresses between the reduction adversaries’ oracles overlap, which
is required to win their games. Concluding, we can bound Pr

[
G⊤

A ∧ EW

]
by

AdvM-EUF-GCMA
WOTS-TW$,THFC,twtw

(RA
W ), Pr

[
G⊤

A ∧ ¬EW ∧ EP

]
by AdvSM-DT-TCR-C

PKCO,THFC,tpkco
(RA

P ),
and Pr

[
G⊤

A ∧ ¬EW ∧ ¬EP

]
by AdvSM-DT-TCR-C

TRH,THFC,ttrh
(RA

T ).

Final Result. Combining these bounds and the fact that the sum of the consid-
ered probabilities equals AdvEUF-NAGCMA

FL-SL-XMSSMT$,THFC(A), Theorem 3 follows.

6 SPHINCS+

SPHINCS+ is essentially a straightforward extension of the pseudorandom ver-
sions of the constructions considered hitherto. Namely, a SPHINCS+ instance
uses the KHFs MKG and SKG to generate pseudorandom values when necessary,
rather than sampling and maintaining all of these values throughout. To this end,
in addition to a public seed and address, it initializes and maintains a message
seed and a secret seed used to index MKG and SKG, respectively. Furthermore,
as alluded to above, it employs the pseudorandom versions of FORS$ (FORS),
M-FORS$ (M-FORS), and FL-SL-XMSSMT$ (FL-SL-XMSSMT). Although not
explicitly presented here, these pseudorandom versions are trivially obtained
from their counterparts by replacing (1) the sampled (sequence of) values in
the secret key by the message seed and secret seed, (2) evaluations of MKG$ by
MKG (indexed by the message seed), and (3) references to sampled secret key



A Tight Security Proof for SPHINCS+, Formally Verified 27

Listing 6 SPHINCS+

1: proc SPHINCS+.Keygen()
2: ad← adz

3: ms←$ U(MS)
4: ss←$ U(SS)
5: ps←$ U(PS)
6: pkS← FL-SL-XMSSMT.SkMXToPkMX(ss, ps, ad)
7: return (pkS, ps), (ms, ss, ps)
8: proc SPHINCS+.Sign(sk := (ms, ss, ps), m)
9: ad← adz

10: mk, sigF← M-FORS.Sign((ms, ss, ps, ad), m)
11: mc, i← MCO(mk, m)
12: ad.xtri, ad.kpi, ad.typei← ⌊i/l′⌋, i mod l′, ftrhtype
13: pkF← FORS.SigToPkF(mc, sigF, ps, ad)
14: sigMX← FL-SL-XMSSMT.Sign((ss, ps, ad), pkF, i)
15: return mk, sigF, sigMX
16: proc SPHINCS+.Verify(pk := (pkS, ps), m, sig := (mk, sigF, sigMX))
17: ad← adz

18: mc, i← MCO(mk, m)
19: ad.xtri, ad.kpi, ad.typei← ⌊i/l′⌋, i mod l′, ftrhtype
20: pkF′ ← FORS.SigToPkF(mc, sigF, ps, ad)
21: pkS′ ← FL-SL-XMSSMT.SigToPkMX(pkF′, sigMX, i, ps, ad)
22: return pkS′ = pkS

values by the generation of these values through SKG (indexed by the secret
seed and an appropriately adjusted address). Lastly, the set of valid addresses
for SPHINCS+ is the union of those for M-FORS and FL-SL-XMSSMT.

Following the preceding, Listing 6 specifies SPHINCS+’s algorithms. Here,
adz is an initialization address that, as per the official SPHINCS+ specification,
has every associated index set to 0 (and the type index set to chType).

Security Property. As is customary for standalone signature schemes, we con-
sider the conventional EUF-CMA security property for SPHINCS+. For com-
pleteness, this property and the corresponding oracle are given in Figures 16
and 17, respectively.

GameEUF-CMA
A,SPHINCS+

1 : (pk, sk)← SPHINCS+.Keygen()
2 : OSPHINCS+ .Init(sk)
3 : m′, sig′ ← AOSPHINCS+ .Query.Forge(pk)
4 : isValid← SPHINCS+.Verify(pk, m, sig)
5 : isFresh← m′ ̸∈ OSPHINCS+ .M

6 : return isValid ∧ isFresh

OSPHINCS+

vars sk, M

Init(ski)

1 : sk, M ← ski, [ ]

Query(m)

1 : sig← SPHINCS+.Sign(sk, m)
2 : M ←M || m

3 : return

Figure 16. EUF-CMA game for SPHINCS+. Figure 17. Oracle employed in
EUF-CMA game for SPHINCS+.



28 M. Barbosa, F. Dupressoir, A. Hülsing, M. Meijers, and P-Y. Strub

Formal Verification. As Figure 12 shows, we demonstrate that the EUF-CMA
security of SPHINCS+ can be based on the PRF property of MKG and SKG,
the EUF-CMA property of M-FORS$, and the EUF-NAGCMA property of
FL-SL-XMSSMT$. More formally, we consider the following security theorem.

Theorem 4 (EUF-CMA for SPHINCS+). For any adversary A, there exist
adversaries B0, B1, B2, and B3 — each with approximately the same running
time as A — such that the following inequality holds.

AdvEUF-CMA
SPHINCS+(A) ≤ AdvPRF

SKG (B0) + AdvPRF
MKG(B1) + AdvEUF-CMA

M-FORS$ (B2)
+ AdvEUF-NAGCMA

FL-SL-XMSSMT$,THFC(B3)

Here, THFC denotes an arbitrary THF collection containing F, PKCO, TRCO,
and TRH.

Conceptually, the formal verification of this security theorem performs two main
sequential steps: The substitution of all pseudorandomness by actual randomness
and, subsequently, the extraction of a forgery for one of the considered sub-
constructions. In essence, the former step replaces SPHINCS+ by SPHINCS+$,
a variant that uses M-FORS$ and FL-SL-XMSSMT$ instead of their deterministic
counterparts. The latter step essentially shows that a valid EUF-CMA forgery
for SPHINCS+$ contains a valid EUF-CMA forgery for M-FORS$ or a valid
EUF-NAGCMA forgery for FL-SL-XMSSMT$, thereafter relating each case to
the corresponding advantage. In the ensuing, G⊤

A denotes GameEUF-CMA
A,SPHINCS+$ = 1.

Bound on
∣∣∣AdvEUF-CMA

SPHINCS+(A) − AdvEUF-CMA
SPHINCS+$(A)

∣∣∣. Considering the differences
between SPHINCS+ and SPHINCS+$, the transition from the former to the
latter basically comes down to replacing SKG and MKG by actual random func-
tions with the appropriate domain and range, on top of some refactoring to
maintain functional correctness (e.g., moving all evaluations of SKG to the key
generation and storing the result in the secret key). In fact, for SKG, we can
replace each evaluation by a pure random sampling because each provided input
is unique. Thus, for both functions, we can straightforwardly construct a reduc-
tion adversary playing in the corresponding PRF game that perfectly simulates
an execution of the EUF-CMA game that A is playing in by substituting each
evaluation of the considered function by an appropriate query to the provided
PRF oracle. As such, we can bound

∣∣∣AdvEUF-CMA
SPHINCS+(A) − AdvEUF-CMA

SPHINCS+$(A)
∣∣∣ by

the sum of AdvPRF
SKG (RA

S ) and AdvPRF
MKG(RA

M ), where RA
S and RA

M are the relevant
reduction adversaries.

Case Distinction for G⊤
A and Corresponding Bounds. First, observe that a valid

EUF-CMA forgery for SPHINCS+$ consists of a message m′ and a signature
sig′ = (mk′, sigF′, sigMX′) such that m′ is fresh and sig′ is a valid signature for
m′ under the considered public key pk = (pkS, ps). Moreover, by the verifica-
tion procedure of SPHINCS+$, sig′ requires that sigMX′ is a valid signature on
the FORS$ public key pkF′ derived from sigF′. Thus, if pkF′ does not equal
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the corresponding original public key, it constitutes a different “message” than
the original one signed by FL-SL-XMSSMT$ in the considered SPHINCS+$ in-
stance. Otherwise, by definition, (mk′, sigF′) is a valid M-FORS$ signature on
m′, where m′ is fresh. Indeed, the former case allows for the extraction of an
EUF-NAGCMA forgery for FL-SL-XMSSMT$; the latter case allows for the ex-
traction of an EUF-CMA forgery for M-FORS$. In the imminent, EX and RA

X

denote the event and reduction adversary for the former case; RA
M denotes the

reduction adversary for the latter case (¬EX suffices to capture the latter case).
Loosely speaking, both reduction adversaries we construct follow a similar

approach. Namely, both reduction adversaries construct a key pair for the sub-
construction they are not an adversary for, using the provided collection oracle
(FL-SL-XMSSMT)16 or public seed and address (M-FORS$). Then, to simulate
the signing oracle for A, the reduction adversaries use the constructed key pair to
create signatures for the corresponding sub-construction, use either the provided
list of signatures (FL-SL-XMSSMT) or their own signing oracle (M-FORS$) to
obtain signatures for the other sub-construction, and combine the signatures to
construct the corresponding SPHINCS+ signature. Upon receiving the forgery
from A, they extract and return the relevant forgery, winning their own game.
As a result, we can bound Pr

[
G⊤

A ∧ EX

]
by AdvEUF-NAGCMA

FL-SL-XMSSMT$,THFC(RA
X) and

Pr
[
G⊤

A ∧ ¬EX

]
by AdvEUF-CMA

M-FORS$ (RA
M ).

Final Result. From the above results, Theorem 4 follows. At last, we can com-
bine the security theorem regarding WOTS-TW$ in [BDG+23] with the security
theorems considered in this work to acquire a bound on the EUF-CMA security
of SPHINCS+ that is entirely based on the properties of the employed KHFs
and THFs. This completes the formal verification of the security of SPHINCS+.
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16Crucially, this means that RA
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used in FL-SL-XMSSMT, as required for the application of Theorem 3.
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A Overview of Cryptographic Constructions and
Functions

Tables 1 and 2 respectively present an overview of all the cryptographic con-
structions and functions considered throughout this work, providing the relevant
security properties and a short description for each of them.

Table 1. Overview of Cryptographic Constructions.

Construction Property Description

SPHINCS+ EUF-CMA Main construction considered in this work.
FORS - Sub-construction of SPHINCS+. Multiple in-

stances in a SPHINCS+ instance (one per leaf of
hypertree).

M-FORS - Sub-construction of SPHINCS+. Single instance in
a SPHINCS+ instance. Represents collection of all
FORS instances in a SPHINCS+ instance.

FL-SL-XMSSMT - Sub-construction of SPHINCS+. Single instance in
a SPHINCS+ instance. Represents hypertree part
of SPHINCS+.

WOTS-TW - Sub-construction of FL-SL-XMSSMT. Multiple in-
stances in a FL-SL-XMSSMT instance (one per in-
ner tree leaf). Used to sign messages (SPHINCS+:
FORS public keys) and roots of inner trees.

SPHINCS+$ - Variant of SPHINCS+ using actual randomness in-
stead of pseudorandomness.

FORS$ - Variant of FORS using actual randomness instead
of pseudorandomness.

M-FORS$ EUF-CMA Variant of M-FORS using actual randomness in-
stead of pseudorandomness.

FL-SL-XMSSMT$ EUF-NAGCMA Variant of FL-SL-XMSSMT using actual random-
ness instead of pseudorandomness.

WOTS-TW$ M-EUF-GCMA Variant of WOTS-TW using actual randomness in-
stead of pseudorandomness.
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Table 2. Overview of Functions.

Function Property Description

SKG PRF Keyed hash function used for generating secret keys.
MKG PRF Keyed hash function used for generating keys used for mes-

sage compression (with MCO).
MCO ITSR Keyed hash function used for compressing messages.
F Several Tweakable hash function used for computing Merkle tree

leaves (in FORS and FORS$) and hash chaining (in
WOTS-TW and WOTS-TW$).

TRH SM-DT-TCR-C Tweakable hash function used for computing Merkle
tree nodes (in FORS, FORS$, FL-SL-XMSSMT, and
FL-SL-XMSSMT$).

TRCO SM-DT-TCR-C Tweakable hash function used for compressing (sequences
of) Merkle tree roots to public keys (in FORS and FORS$).

PKCO SM-DT-TCR-C Tweakable hash function used for compressing WOTS-TW$

public keys to Merkle tree leaves (in FL-SL-XMSSMT and
FL-SL-XMSSMT$).
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