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Abstract. One of the main issues to deal with for fully homomorphic encryption is the
noise growth when operating on ciphertexts. To some extent, this can be controlled
thanks to a so-called gadget decomposition. A gadget decomposition typically relies
on radix- or CRT-based representations to split elements as vectors of smaller chunks
whose inner products with the corresponding gadget vector rebuilds (an approximation
of) the original elements. Radix-based gadget decompositions present the advantage
of also supporting the approximate setting: for most homomorphic operations, this
has a minor impact on the noise propagation but leads to substantial savings in
bandwidth, memory requirements and computational costs. A typical use-case is the
blind rotation as used for example in the bootstrapping of the TFHE scheme. On the
other hand, CRT-based representations are convenient when machine words are too
small for directly accommodating the arithmetic on large operands. This arises in
two typical cases: (i) in the hardware case with multipliers of restricted size, e.g., 17
bits; (ii) in the software case for ciphertext moduli above, e.g., 128 bits.
This paper presents new CRT-based gadget decompositions for the approximate setting,
which combines the advantages of non-exact decompositions with those of CRT-based
decompositions. Significantly, it enables certain hardware or software realizations
otherwise hardly supported like the two aforementioned cases. In particular, we show
that our new gadget decompositions provide implementations of the (programmable)
bootstrapping in TFHE relying solely on native arithmetic and offering extra degrees
of parallelism.
Keywords: Lattice-based cryptography · Gadget decomposition · Fully homomor-
phic encryption (FHE) · Blind rotation · Chinese remainder theorem (CRT) ·
Number-theoretic transform (NTT)

1 Introduction
Fully homomorphic encryption (in short, FHE) [RAD78, Gen10] is often referred to as
the ‘holy grail of cryptography.’ Contrary to traditional encryption technologies, FHE
encryption allows anyone to directly perform operations on encrypted data, without the
need of decrypting them beforehand from their processing. The result of the computation
is encrypted. We refer the reader to [Hal17, CCC+21] for surveys on fully homomorphic
encryption.

In turn, FHE gives rise to the paradigm of end-to-end encryption. Let Enc be an
homomorphic encryption scheme. In the common setting of a client and a server, the client
encrypts some private data x1, . . . , xu under its key sk and sends the corresponding cipher-
texts C1 ← Encsk(x1), . . . , Cu ← Encsk(xu) to the server. The server homomorphically
processes C1, . . . , Cu on a circuit representing some functionality f and gets as a result
Ĉ ← Encsk(f(x1, . . . , xu)). Ciphertext Ĉ is returned to the client which can then decrypt
it using sk to get f(x1, . . . , xu). It is worth observing that the server learnt nothing on
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private inputs x1, . . . , xu, nor on the output result f(x1 . . . , xu). In the medium-to-long
term, one could imagine Internet traffic being FHE-encrypted through an httpz protocol,
thereby preserving the privacy of users accessing websites, when their data is in transit as
currently offered by https (SSL/TLS)—but also when it is processed! Think for example
of your favorite search engine operating on encrypted keywords and obtaining encrypted
URLs of relevant web-pages.

Apart from a few exceptions, most known instantiations for FHE rely on lattices, basing
their security on the learning with errors (LWE) problem [Reg09] or variants thereof. As a
consequence, for security reasons, the corresponding ciphertexts must be noisy. While this
is in general not an issue for regular encryption, this must be dealt with care in the case
of fully homomorphic encryption. The problem is that the noise present in the ciphertexts
tends to grow when noisy ciphertexts are homomorphically processed. If the noise grows
above a certain threshold, ciphertexts can no longer be decrypted. There are basically
two ways to address this problem: (i) bootstrapping ciphertexts and (ii) controlling the
noise growth in ciphertexts. The approach of bootstrapping was introduced in Gentry’s
seminal work in 2009 [Gen09]. It consists in homomorphically evaluating the decryption
circuit on input an encryption of a ciphertext and of the decryption key, yielding another
ciphertext that encrypts the same plaintext—this is also known as recryption. Since the
decryption removes noise, the noise in a bootstrapped ciphertext is reset to a nominal
level; i.e., the output ciphertext only contains the noise resulting from the bootstrapping
process. A complementary approach for dealing with the noise is to ensure that the
noise does not grow too quickly so that a larger number of homomorphic operations
can be performed before the need of bootstrapping. A well-known trick is the gadget
decomposition [MP12, BGV14]: for multiplying a noisy ciphertext by a scalar, the scalar
is first decomposed with respect to a small radix B. Specifically, if Enc denotes an
homomorphic encryption algorithm, the ciphertext C ← Enc(k · x) is obtained by writing
k =

∑ℓ
j=1 kj Bj−1 with −⌊B/2⌋ ≤ kj ≤ ⌊B/2⌋ and then evaluating

∑ℓ
j=1 kj Enc(Bj−1 x)

from the ℓ ciphertexts Enc(x), Enc(Bx), . . . , Enc(Bℓ−1x). The vector (k1, . . . , kℓ) is called
the gadget decomposition of k. A quick analysis shows that, compared to the direct
approach of getting Enc(k · x) as k Enc(x), the noise better behaves using the gadget
decomposition. Assuming that the noise in the input ciphertexts follows a Gaussian error
distribution N (0, σ2), the variance of the noise in the output ciphertexts C ← k Enc(x)
and C ←

∑ℓ
j=1 kj Enc(Bj−1 x) is respectively of k2σ and of

(∑ℓ
j=1 k2

j

)
σ—observe that as

ℓ increases,
∑ℓ

j=1 k2
j ≪ k2.

The gadget decomposition is not restricted to managing the noise in the scalar multipli-
cation of ciphertexts, it is also central in the design of most FHE schemes as an auxiliary tool
for certain FHE procedures; e.g., [BGV14, MP12, Bra12, GSW13, AP14, DM15, GINX16,
CKKS17, CGGI20, BIP+22]. Of special importance is the gadget decomposition when
applied to improve bootstrapping procedures. In particular, similarly to [AP14, DM15],
the bootstrapping in the TFHE scheme, building on [GINX16], makes use of an accumulator
that is updated in a for-loop according to encryptions of the secret key bits. This operation
is referred to as blind rotation in [CGGI20]. It consists of a succession of external products
which comprise polynomial multiplications and gadget decompositions. The technique
equally applies to the programmable version of the bootstrapping [CJP21]. On input an
encryption of x, the output is an encryption of f(x)—with a nominal level of noise as
it is the output of a bootstrapping procedure. The regular bootstrapping corresponds
to function f being the identity function. A detailed description of the programmable
bootstrapping with companion algorithms can be found in [Joy22].

An essential ingredient to efficiency of TFHE and its variants is to perform only a
radix-based gadget decomposition up to a certain precision; i.e., the least significant digits
in the decomposition are dropped. This has two immediate benefits: (i) the performance
of the (programmable) bootstrapping is greatly improved as each external product within
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the blind rotation involves ℓ-dimensional polynomial vectors and (ii) the overall size of the
bootstrapping keys is significantly reduced as it is proportional to ℓ (namely, the number
of digits in the radix-based gadget decomposition). Such an optimization seems however
inherently limited to radix or mixed-radix based decompositions [HHSS17, Section 4.2].

Alternative gadget decompositions have been considered, including representations rely-
ing on the Chinese Remainder Theorem (CRT) [BDF18, Section B.4]. Operations modulo
the small factors can also be grouped in a two-level way, as demonstrated in [KLSS23].
This is mostly useful for large ciphertext moduli as in CKKS-like schemes [CKKS17]; see
also [BCG+23] for an extension using a bivariate polynomials formalism.

Chinese remaindering is a natural method for handling large integers using small
arithmetic chunks but it oughts to be exact. Indeed, CRT-based gadget decomposition are
extremely sensitive to errors, as these are getting spread by the inverse CRT isomorphism.
It is therefore no longer possible to drop “digits” in the decomposition. This has unfortunate
consequences both in terms of computational costs and of key sizes. In practice, that
outweighs the benefits of using a CRT-based decomposition in the first place.

Our contributions CRT-based gadget decomposition and approximate setting seem to
be inherently incompatible. This work shows that this common belief is unfounded. We
propose and develop methods for approximate gadget decompositions in a CRT-like manner.
The proposed methods are generic and rely only on efficient arithmetic on “arithmetic-unit
words.” Being agnostic to the selected parameters, they smoothly fit with the various
flavors of the number-theoretic transform (NTT) for polynomial multiplication.

As a concrete illustration, we demonstrate how plugging our approximate CRT-based
gadget decompositions allows performing the whole Blind Rotation using only arithmetic
modulo small moduli. An application to the programmable bootstrapping of TFHE-like
ciphertexts leads to a number of significant advantages:

1. All arithmetic units can work completely independently in parallel, provided they
synchronize for the gadget decomposition itself, but only for this step.

2. The NTT/iNTT transforms modulo the ciphertext modulus q are replaced by several
transforms modulo smaller moduli, ideally that fit into a single machine word. This
is interesting since (i) the computational complexity of these NTT/iNTT transforms
also depends on M(q), i.e., on the word size of q, and (ii) there is no need to lift
everything up modulo q.

3. Including the twisting factors in the CRT encodings of the bootstrapping keys and test
polynomial (used to program the bootstrapping) further simplifies the computation
of the gadget decomposition itself, hence incurring minimal cost.

Furthermore, in addition to important complexity benefits/improvements, the resulting
implementation also saves in both bandwidth and storage. In particular, being in the
approximate setting, the bootstrapping keys are much more compact.

Applications of our approximate CRT-based gadget decompositions to the use-cases of
machine learning and of threshold FHE decryption are also examined.

Outline of the paper The rest of this paper is organized as follows. The next section
abstracts the notion of gadget decomposition and the different flavors of gadget decompo-
sition. It also introduces relevant building blocks towards applications to TFHE and the
likes. Section 3 is the core of the paper. It proposes and specifies approximate CRT-based
gadget decompositions. The gadget decompositions are applied to the blind rotation in
Section 4, at the heart of the programmable bootstrapping procedure. Other applications
are also discussed. Finally, Section 5 concludes the paper.
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2 Preliminaries
Throughout the paper, elements in Z

/
qZ, the ring of integers modulo q, are viewed as

integers in the range
q
−
⌊

q
2
⌋
,
⌊

q
2
⌋y

, where
⌊
·
⌋

denotes the flooring function. For example,
for q = 5,

⌊ 5
2
⌋

= 2 and elements of Z
/

5Z are represented by the set
{
−2,−1, 0, 1, 2

}
. When

integers modulo q are seen as integers, or more precisely by their integer representatives,
this is indicated by the lifting function; for an integer a ∈ Z

/
qZ, this is written as (a

mod q)Z or sometimes, more simply, as (a)Z. Vectors are given in row representation
and denoted by bold letters v. Polynomials, as well as algebraic integers, are denoted by
cursive letters a. If S is a set, a

$← S indicates that a is sampled uniformly at random
in S. If χ is a probability distribution, a← χ indicates that a is sampled according to χ.

2.1 Gadget Decomposition
Gadgets decompose elements as vectors of small pieces whose inner product with a so-
called gadget vector reconstructs (an approximation of) the original elements. In the
FHE context, these gadget decompositions allow controlling the noise growth e.g., for the
multiplication of a ciphertext by a scalar. The gadget is called exact when the recomposing
retrieves completely the original element. As aforementioned, one important characteristic
of the TFHE scheme is to rely on an approximate gadget decomposition, where only an
approximation of the original element is retrieved. This results in smaller bootstrapping
keys and improved bootstrapping performance.

We give here a formal generic definition to gadget-decompose elements. For the sake
of clarity, we address the case of number field elements, which covers most instantiations
of FHE schemes. It is useful to introduce some notation. A number field K is a finite
extension of the field Q of rational numbers. The ring of integers R of K is the set of all
algebraic integers contained in K. For an integer q, the residue ring R

/
qR of R modulo

q is denoted Rq. This general setting encompasses two important sub-cases for FHE
applications:

• K = Q, in which case R = Z and Rq = Z
/

qZ;

• K = Q(ζm) ∼= Q[x]
/〈

Φm(x)
〉
, the m-th cyclotomic field, in which case R = Z[ζm] ∼=

Z[x]
/〈

Φm(x)
〉

and Rq = (Z
/

qZ)[ζm] ∼= (Z
/

qZ)[x]
/〈

Φm(x)
〉

where ζm is any prim-
itive m-th root of unity (e.g., ζm = exp(2πi/m)) and Φm is the m-th cyclotomic
polynomial.

Definition 1 (Adapted from [CGGI20, Definition 3.6]). Using the previous notations, a
gadget decomposition on Rq of level ℓ, quality β, and precision ε is given by:

1. a gadget vector g = (g1, . . . , gℓ) ∈ Rℓ
q;

2. an efficient algorithm ∇ := ∇β,ε
g : Rq → Rℓ such that for any a ∈ Rq:∥∥∇a

∥∥
∞ ≤ β and

∥∥a− 〈∇a, g
〉∥∥

∞ ≤ ε ,

where the infinity norms are always taken component-wise.

Gadget sub- or super-scripts are generally omitted for readability.

The definition naturally extends to other mathematical structures like the real dis-
cretized torus Tq := 1

qZ
/
Z ⊂ T := R

/
Z by identifying Tq with Z

/
qZ or, more generally,

like its polynomial variant Tq[x]
/〈

Φm(x)
〉

by identifying it with (Z
/

qZ)[x]
/〈

Φm(x)
〉
;

cf. [Joy22, Remark 3]. Alternatively, the gadget algorithm with parameters (ℓ, β, ε) can
be directly defined as ∇β,ε

g : Tq[x]
/〈

Φm(x)
〉
→
(
Z[x]

/〈
Φm(x)

〉)ℓ for some gadget vector
g ∈

(
Tq[x]

/〈
Φm(x)

〉)ℓ, viewing T[x]
/〈

Φm(x)
〉

as a Z[x]
/〈

Φm(x)
〉
-module.



Olivier Bernard and Marc Joye 5

2.1.1 Radix-based gadget decomposition

Let q be a modulus such that Bℓ divides q for some integers B > 1 and 1 ≤ ℓ ≤
⌊
logB q

⌋
.

A radix-based gadget decomposition of quality β and level ℓ is given by the gadget vector
g =

(
q
B , . . . , q

Bℓ

)
.

For any a ∈ Z
/

qZ, the decomposition algorithm returns the ℓ most significant digits
of a in radix B, where a is viewed as an integer in

q
−
⌊

q
2
⌋
,
⌊

q
2
⌋y

. Each digit is selected
so that its amplitude is bounded by β = B

2 ; specifically, we write a ≡
∑ℓ

j=1 aj
q

Bj + R

(mod q) with −B/2 ≤ aj ≤ B/2 and |R| < q/(2Bℓ). Such a decomposition is always
possible. Letting ∇a = (a1, . . . , aℓ), the corresponding precision is then of ε =

⌊
q

2Bℓ

⌋
.

Indeed, we have a−
〈
∇a, g

〉
≡ a−

∑ℓ
j=1 aj

q
Bj ≡ R (mod q) and |R| ≤

⌊
q/(2Bℓ)

⌋
. It is

worth remarking that ε = 0 when q = Bℓ.
Example 1. Take q = 232, B = 64, and ℓ = 4. Suppose a = 3141592653 and g =
(226, 220, 214, 28). Then ∇a = (−17,−12, 4,−26) and |R| = 17 ≤ ε = 27.

The radix-B gadget decomposition extends to Rq by applying ∇ to each coefficient of
a polynomial a ∈ Rq; in this particular case, the components of the above g are simply
embedded in Rq, i.e., as scalars in Z

/
qZ ⊂ Rq, but in general those could be any gj ∈ Rq.

Mixed-radix gadget decompositions generalize radix-B decompositions to modulus q
such that Q :=

∏ℓ
j=1 qj divides q, for (non-necessarily distinct) factors qj . The gadget

vector is defined as g =
(

q
q1

, q
q1q2

. . . , q
q1q2···qℓ

)
. The quality is of β =

⌊
maxj qj/2

⌋
and the

precision is of ε =
⌊

q
2Q

⌋
. Radix-B gadget decompositions correspond to the special case

q1 = q2 = · · · = qℓ = B.

2.1.2 CRT-based gadget decomposition

Instead of the radix-B representation, the CRT-based gadget decomposition considers the
Chinese Remainder Theorem (CRT) isomorphism as the decomposition algorithm. Let
q1, . . . , qℓ be pairwise co-prime integers and let q =

∏
qj . The gadget vector is defined as

z = (z1, . . . , zℓ) where zj = q̃j ·
(
q̃−1

j mod qj

)
Z

for q̃j =
∏

1≤k≤ℓ
k ̸=j

qk.

The CRT maps any element a ∈ Z
/

qZ to

∇za := (a mod q1︸ ︷︷ ︸
=a1

, . . . , a mod qℓ︸ ︷︷ ︸
=aℓ

) ,

and the inverse isomorphism is explicitly written as the following inner product modulo q:

a ≡
〈
∇za, z

〉
≡
(∑ℓ

j=1 aj · zj

)
(mod q) .

The correctness is easily verified by checking that zj ≡ 1 (mod qj) and that for k ≠ j,
zk ≡ 0 (mod qj).

Therefore, for the CRT-based gadget decomposition, the gadget vector is z as defined
above, and the decomposition algorithm∇z simply consists in the ℓ modulo operations. This
yields an exact (ε = 0) gadget decomposition on Z

/
qZ of level ℓ and quality β = maxi

⌊
qi

2
⌋
.

By nature, the CRT-based decomposition is intrinsically incompatible with approximate
decompositions. Indeed, dropping any CRT “digit” results in a big error of order zi ≈ q/β.
Example 2. Take q1 = 28 − 1, q2 = 28, q3 = 28 + 1, q4 = 28 + 3, and q = q1q2q3q4 =
4345232640. This gives rise to z = (545284096, 1442753025,−1082081280,−905955840).
For a = 3141592653, one gets ∇za = (48, 77,−19, 94) and a−

〈
∇za, z

〉
≡ 0 (mod q).

Suppose now a faulty gadget decomposition ∇′
za = (48, 77,−19, 93) on the last compo-

nent. Then a−
〈
∇′

za, z
〉
≡ z4 ≡ −905955840 (mod q).
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The CRT-based gadget decomposition readily extends to Rq. Consider an algebraic
integer f∈ Rq written as the polynomial f=

∑N−1
i=0 fi xi with fi ∈ Z

/
qZ. Each polynomial

coefficient of f is replaced with

fi 7−→ ∇zfi :=
(
fi mod q1︸ ︷︷ ︸

=fi,1

, . . . , fi mod qℓ︸ ︷︷ ︸
=fi,ℓ

)
and the ℓ polynomials 

f1 = f mod q1 =
∑N−1

i=0 fi,1 xi

...
fℓ = f mod qℓ =

∑N−1
i=0 fi,ℓ xi

.

are formed. The vector ∇zf =
(
f1, . . . ,fℓ

)
∈ Rℓ represents the CRT-based gadget

decomposition of f. The corresponding gadget vector z ∈ Rℓ
q is defined with the same

coefficients zi as in the integer case, but now viewed as constant polynomials in Rq. It is
easy to verify that f−

〈
∇zf, z

〉
≡ 0 (mod q), and thus ε = 0. Further, if β = maxi

⌊
qi

2
⌋

then
∥∥∇zf

∥∥
∞ ≤ β, where the infinity norm of a polynomial is defined as the infinity norm

of the vector of its coefficients.

2.2 Fully Homomorphic Encryption
2.2.1 Generalized LWE samples

Let R denote the ring of integers of some number field and let Rq = R
/

qR. Let also χ
denote some error distribution over R. Given a private vector s ∈ Rk, a generalized LWE
sample is a vector of the form(

a = (a1, . . . , ak), r
)
∈ Rk+1

q where r = ⟨a,s⟩+ e

with a
$← Rk

q and e← χ. The generalized LWE assumption posits that such a sample is
indistinguishable from a uniformly random vector in Rk+1

q . This complexity assumption
can serve as a basis to build semantically secure ciphertexts. Vector s plays the role of the
encryption key and r is used as an additive one-time to conceal the message to encrypt.
Specifically, given a fresh sample (a, r) ∈ Rk+1

q , (the encoding of) a message µ in Rq,
called plaintext, is encrypted under key s to form the ciphertext

C← GLWEs(µ) := (a, r + µ) ∈ Rk+1
q .

Two specialized instances are typically used:

1. Rq
∼= Z[x]

/〈
xN + 1

〉
with N a power of 2 and k = 1: this is referred to as the

Ring-LWE (or RLWE) assumption;

2. Rq = Z
/

qZ and k > 1: this is the original LWE assumption.

The matching samples are respectively called LWE samples and RLWE samples.

Remark 1. In the RLWE setting, we write C← RLWEs(µ) ∈
(
Z[x]

/〈
xN + 1

〉)2 to denote
the encryption of µ ∈ Z[x]

/〈
xN + 1

〉
under key s. Likewise, in the LWE setting, letting

s = s and n = k, we write C ← LWEs(µ) ∈ (Z
/

qZ)n+1 for the encryption of µ ∈ Z
/

qZ
under key s.
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2.2.2 Related homomorphic operations

Once a gadget decomposition ∇ := ∇β,ε
g has been fixed relatively to some gadget vector

g = (g1, . . . , gℓ) ∈ Rℓ
q, it induces an associated leveled encryption of a message m ∈ R, as

GLevg
s(m) =

(
GLWEs(gj ·m)

)
1≤j≤ℓ

,

and its GGSW expansion

GGSWs(m) =
(
GLevg

s(−s1 ·m), . . . , GLevg
s(−sk ·m), GLevg

s(m)
)

.

Following [MP21], this allows defining certain homomorphic operations. These opera-
tions do not depend, formula-wise, on the particular gadget decomposition. Only their
noise analysis may differ, depending on ℓ, β, ε and on the distribution of ∇(·).

Scalar product The gadget decomposition gives rise to the definition of a scalar product:

⊙ : Rq ×Rℓ
q → Rq,

(
f,h

)
7→ f⊙h :=

〈
∇gf,h

〉
.

In particular, if the polynomial vector h is the gadget vector, we have f⊙ g ≈ f.
Typically, this is extended to compute the product of a known element α ∈ Rq with

an encryption of a message m to get an encryption of α ·m. Letting ∇α = (α1, . . . , αℓ),
it can be seen that

α⊙ GLevg
s(m) :=

〈
∇α, GLevg

s(m)
〉

=
∑ℓ

j=1 αj · GLWEs(gj ·m) = GLWEs

((∑ℓ
j=1 αj · gj

)
·m
)

= GLWEs

(〈
∇gα, g

〉
·m
)

= GLWEs

(
(α⊙ g) ·m

)
= GLWEs(α ·m) .

One so gets GLevg
s(α ·m) as an output by evaluating

(
(α · gj)⊙ GLevg

s(m)
)

1≤j≤ℓ
.

External product The external product allows computing the GLWE encryption of the
product of two encrypted messages, as

GLWEs(µ1) ⊛ GGSWs(m2) :=
(∑k

j=1 aj ⊙ GLevg
s(−sj ·m2)

)
+ b⊙ GLevg

s(m2)

=
(∑k

j=1
〈
∇aj , GLevg

s(−sj ·m2)
〉)

+
〈
∇b, GLevg

s(m2)
〉

=
(∑k

j=1 GLWEs

(
−aj · sj ·m2

))
+ GLWEs

(
b ·m2

)
= GLWEs

((
b−

∑k
j=1 aj · sj

)
·m2

)
= GLWEs(µ1 ·m2 + e ·m2)

where
(
a1, . . . , ak, b =

∑k
j=1 aj · sj + µ1 + e

)
expands the input GLWEs(µ1). The result

is a GLWE encryption of µ1 ·m2 if message m2 is small so that ∥e ·m2∥∞ ≈ ∥e∥∞. The
external product is asymmetric in the sense that one of its operand is a GLWE ciphertext
whereas the other is a GGSW ciphertext with (k + 1)ℓ components.

3 An Approximate CRT-Based Gadget Decomposition
In this section, we propose to realize an approximate CRT-based gadget decomposition
via a decomposition which is half-way between CRT-based and mixed-radix-based gadget
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decompositions. It relies on a two-congruence Chinese Remainder Algorithm, as described
in [PSD96, Section 2.2], and on a classical CRT decomposition. At high level, the modulus
is decomposed into a high part and a low part, which serve as a basis for the mixed-radix
decomposition, wherein the low part will be dropped. The low and high parts are further
decomposed using the CRT representation. Intuitively, the size of the low part controls the
precision ε of the decomposition, whilst the size of the CRT moduli controls its quality β.

3.1 Motivation
Using the CRT gadget decomposition outlined in Section 2.1.2, any f ∈ Rq may be
expressed exactly as f =

〈
∇zf, z

〉
mod q. However, some applications only require an

approximate expression f̃ for f, provided that f̃ satisfies
∥∥f− f̃

∥∥
∞ ≤ ε for some given

bound ε.
A typical example is when a ciphertext is gadget-decomposed. The lower part contains

noise; a full gadget decomposition boils down at some point to uselessly decompose noise.
We illustrate this in the case of LWE ciphertexts for simplicity but the same carries over
e.g., RLWE ciphertexts or other types of ciphertexts. Consider an LWE-type ciphertext
C =

(
a = (a1, . . . , an), b = ⟨a, s⟩ + µ + e

)
∈ (Z

/
qZ)n+1 where µ =

⌊
q/t
⌉
m encodes a

message m ∈ Z
/

tZ, s ∈ {0, 1}n is the secret key, and noise e ∈ Z is sampled according
to Gaussian distribution N (0, σ2). The phase and error functions of C are respectively
defined by φs(C) = b− ⟨a, s⟩ mod q and Err(C) =

(
φs(C)− µ

)
Z.

Let C̃ :=
〈
∇gC, g

〉
mod q = (ã, b̃). Noting that

φs(C̃) ≡ φs(C̃ −C) + φs(C) ≡ b̃− b− ⟨ã− a, s⟩+ φs(C)
≡ b− ⟨a, s⟩+ φs(C) (mod q)

for some variables a ∈ J−ε, εKn and b ∈ J−ε, εK and assuming that a and b are uniformly
distributed, the variance of the noise error in the recomposed ciphertext C̃ verifies

Var
(
Err(C̃)

)
= Var

((
φs(C̃ − µ

)
Z

)
= Var

(
b− ⟨a, s⟩

)
+ Var

(
Err(C)

)
= Var(b) + n

(
Var(aj) Var(sj) + Var(aj)E[sj ]2 + Var(sj)E[aj ]2

)
+ σ2

= 1
6 (n + 2)ε(ε + 1) + σ2 ≤ n+2

3 ε2 + σ2

since Var(b) = Var(aj) = 1
12
(
(2ε + 1)2 − 1

)
= 1

3 ε(ε + 1), Var(sj) = 1
4 , E[sj ] = 1

2 , and
E[aj ] = 0.

As a result, if the bound ε on the approximation error ∥C̃ −C∥∞ is for example set
such that ε ≤ σ

√
3/(n + 2) then Var

(
Err(C̃)

)
≤ 2σ2; i.e., the impact on the noise error is

very low. Regarding the performance, the impact can however be substantial as will be
apparent in Section 4.

3.2 Description
Formally, let q = Q · Qlow with gcd

(
Q, Qlow

)
= 1, where the high part Q =

∏ℓ
j=1 qj

(resp. low part Qlow =
∏k

j=1 q′
j) is a product of ℓ (resp. k) pairwise co-prime integers

q1, . . . , qℓ (resp. q′
1, . . . , q′

k).
The definition of the gadget vector for our approximate CRT-based gadget decompo-

sition is similar to what it would be for an exact CRT reconstruction, but omitting the
coefficients corresponding to the divisors of Qlow, i.e.,

w =
(
w1, . . . , wℓ

)
∈ Rℓ

q ,

where
wj = QlowQ̃j ·

((
QlowQ̃j

)−1 mod qj

)
Z

and Q̃j = Q

qj
. (1)
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The approximate CRT-based gadget decomposition of a polynomial f=
∑N−1

i=0 fi xi ∈ Rq

is then given by the ℓ-tuple
∇wf=

(
f1, . . . ,fℓ

)
∈ Rℓ,

where, for 1 ≤ j ≤ ℓ, fj =
∑N−1

i=0 fij xi for fij ∈ Z
/

qjZ defined by the congruence

fij ≡ fi −
k∑

u=1

Qlow
q′

u
·
((

Qlow
q′

u

)−1 · fi mod q′
u

)
Z

mod qj . (2)

We stress that computing ∇w never involves arithmetic operations modulo integers
bigger than the chosen divisors of Qlow and Q. Indeed, the sum indexed by u in Equation (2)
has no dependency in j: for all divisors q′

u of Qlow, the part modulo q′
u of each term can be

computed beforehand by units working solely modulo q′
u. Once these values are disclosed

to units working modulo divisors qj of Q, the products with the precomputed twisting
terms

{
Qlow
q′

1
mod qj , . . . , Qlow

q′
k

mod qj

}
can be directly performed modulo qj .

Proposition 1. The gadget vector w given by Equation (1) and the associated decomposi-
tion algorithm ∇w given by Equation (2), define a level-ℓ gadget decomposition on Rq of
quality and precision given by the following bounds, for all f∈ Rq:∥∥∇wf

∥∥
∞ ≤ β = max1≤j≤ℓ

⌊ qj

2
⌋

and ∥∥f− 〈∇wf, w
〉∥∥

∞ ≤ ε = k ·
⌊

Qlow
2
⌋

,

where the infinity norms are understood coefficient-wise.

Remark 2. Recall that the congruence classes fij ’s are typically represented as integers inq
−
⌊ qj

2
⌋
,
⌊ qj

2
⌋y

. Any reasonable choice of representatives is also possible, in which case the
bounds given in Proposition 1 might be slightly worse.

Proof. The only non-immediate statement is relative to the precision of the gadget decom-
position. Let f̃ :=

〈
∇wf, w

〉
=
∑ℓ

j=1 wj ·fj mod q. Extracting the Qlow factor from the
wj ’s yields that f̃ can be written as Qlow ·

(
Fmod Q

)
Z, where

F :=
ℓ∑

j=1
Q̃j ·

(
fj

Qlow
· Q̃−1

j mod qj

)
Z

mod Q .

Thus, by the CRT applied to the high part using gcd
(
Qlow, Q

)
= 1, for all j ∈ J1, ℓK we

have that F≡ fj

Qlow
(mod qj). Now, let S be the polynomial whose coefficients are given

by the inner sum indexed by u in Equation (2), i.e.,

S :=
k∑

u=1
Q̃′

u ·
((

Q̃′
u

)−1 ·f mod q′
u

)
Z

,

where Q̃′
u = Qlow

q′
u

for u ∈ J1, kK, so that fj ≡ f−S (mod qj) for all j ∈ J1, ℓK. The first key
observation about S is that, by the CRT applied to divisors of Qlow, S≡ f (mod Qlow).
Hence,

(
f− S

)
is actually divisible by Qlow, which in turn implies

f̃= Qlow ·
(
F mod Q

)
Z

= Qlow ·
(
f−S

Qlow
mod Q

)
Z

= f− S mod q .

The second key observation about S is that its coefficients have amplitude bounded
by ∥S∥∞ =

∥∥f− f̃
∥∥

∞ ≤ k ·
⌊

Qlow
2

⌋
, yielding the result.
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Remark 3. In order to give more intuition about the proof, it seems interesting to mention
that S is “almost” equal to

(
fmod Qlow

)
. In fact, S is congruent to

(
fmod Qlow

)
by

the CRT, but the reduction step modulo Qlow would not be computable directly modulo
another qj and would therefore involve arithmetic modulo Qlow. Skipping this reduction
modulo Qlow is precisely what induces an approximation error which scales linearly in k.
Example 3. Suppose β = 256 and modulus q is a 32-bit integer, which is divided in
q′

1 = 233, q′
2 = 239 for the low part (Qlow = 55687) and q1 = 241, q2 = 251 for the high

part (Q = 60491); hence q = 3368562317 and ℓ = 2. The corresponding gadget vector is
w =

(
1663315003, 952860257

)
∈ R2

q .

In Equation (2), we have that
((

Qlow
q′

u

)−1 mod q′
u

)
Z

is 39 for u = 1 (resp. −40 for u = 2).
If the input polynomial f is

f= 1618033988 x3 + 749894848 x2 − 1322693974 x + 656381177 ,

then ∇wf=
(
f1,f2

)
∈ R2 with

f1 =
(
fmod 241

)
+ 2 ·

(
39fmod 233

)
Z + 8 ·

(
−40fmod 239

)
Z mod 241

= 7 x3 + 2 x2 + 9 x− 111,

f2 =
(
fmod 251

)
+ 12 ·

(
39fmod 233

)
Z + 18 ·

(
−40fmod 239

)
Z mod 251

= 92 x3 + 68 x2 + 43 x + 99 .

The corresponding approximate polynomial f̃ :=
〈
∇wf, w

〉
is equal to

f̃= 1618041472 x3 + 749881142 x2 − 1322733311 x + 656382669 ,

whose distance from f in infinity-norm (coefficient-wise) is∥∥f− f̃
∥∥

∞ =
∥∥−7484 x3 + 13706 x2 + 39337 x− 1492

∥∥
∞

= 39337 ≤ 2 ·
⌊ 55687

2
⌋

= 55686 .

4 Application to the Blind Rotation
The blind rotation is the costliest part of the (programmable) bootstrapping phase of
TFHE-like schemes. Starting from a noisy LWE ciphertext, it consists in essence in applying
iteratively an encrypted CMux operation on an accumulator, controlled by extended
encryptions of the components of the initial LWE key, which constitute the bootstrapping
keys.

In this section, we specialize it to the case where LWE keys are binary and to 2N -th
cyclotomic rings of the form R ∼= Z[x]

/〈
xN +1

〉
. As the gadget decomposition is a low-level

primitive, our new approximate CRT-based gadget decomposition also applies to broader
settings, as other key distributions, e.g., ternary, other rings R, e.g., m-th cyclotomic rings
where m is a prime or is of the form 2a · 3b, or R-modules of rank greater than 1.

4.1 GINX Blind Rotation
Let q be the ciphertext modulus, let Rq = R

/
qR ∼= (Z

/
qZ)[x]

/〈
xN + 1

〉
be the 2N -th

cyclotomic ring modulo q and let t be the plaintext modulus. The Blind Rotation starts
from an LWE encryption of dimension n of an encoding of m ∈ Z

/
tZ, i.e., from

LWEs

(⌊ 2N
t

⌉
·m
)

=
(
a, b = ⟨a, s⟩+

⌊ 2N
t

⌉
·m + e

)
∈ (Z

/
2NZ)n+1 ,

where the noise e follows a sufficiently large Gaussian distribution and the key s is supposed
to be binary, i.e., s = (s1, . . . , sn) ∈ {0, 1}n. In particular, we consider that the Modulus
Switching from q to 2N has previously been done.
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Bootstrapping keys Suppose a gadget decomposition ∇ := ∇g of level ℓ has been fixed
relatively to a gadget vector g =

(
g1, . . . , gℓ

)
∈ Rℓ

q. The encrypted CMux operations are
enabled by RGSW encryptions associated to g of the bits of s under a key s ∈ Rq. More
precisely, the bootstrapping keys associated to g are hence defined, for i ∈ J1, nK, by

bsk[i] = RGSWs(si) =
((

RLWEs

(
gj · (−s · si)

))
1≤j≤ℓ

,
(

RLWEs

(
gj · si

))
1≤j≤ℓ

)
.

We let bsk[i]1 (resp. bsk[i]2) denote the leveled encryption of −ssi (resp. si), i.e., the
first (resp. second) part of bsk[i]. Further, each leveled part is also indexed by j, so that
e.g., bsk[i]2,j refers to RLWEs(gj · si).

Test polynomial The programmability of GINX bootstrapping comes from the so-called
test polynomial. Suppose for simplicity that t is even and that function f : Z

/
tZ→ Z

/
tZ

is negacyclic; i.e., f(x) = −f
(
x + t

2
)
. The test polynomial can be then defined as

v =
⌊

q
t

⌋
·

N−1∑
i=0

f
(⌊

i · t
2N

⌉)
· xi ∈ Rq .

For our purpose, it is sufficient to know that a suitable v ∈ Rq encoding f is given and
that the Blind Rotation eventually computes an RLWE encryption of v ·x−⌊2N/t⌉m−e, with
nominal noise, from the LWE encryption of an encoding of m. In particular, if e is not too
large, the constant coefficient of the output contains an encryption of an encoding of f(m).

Encrypted CMuxes The core operation in the loop of the Blind Rotation is the encrypted
CMux gate, which starts from a RLWE encryption C of some m and outputs a RLWE
encryption C′ of xsiai ·m. Concretely, this is achieved by computing

C′ ← C+
((

xai − 1
)
· C
)
⊛ RGSWs

(
si

)
,

noting that xsiai ·m is equal to m if si = 0, and to xai ·m if si = 1.
This works in particular because the multiplication of C by xai is actually a negacyclic

permutation of the coefficients of C that does not induce any noise growth.

Computing the Blind Rotation loop At very high level, the Blind Rotation starts
from a trivial noiseless RLWE encryption Acc =

(
0, v · x−b

)
∈ R2

q, and then sequentially
applies n times the above-defined CMux gate, as depicted in Algorithm 1.

Algorithm 1 GINX Blind Rotation with binary keys (high level)
Require: LWEs

(
⌊ 2N

t ⌉m) =
(
a, b = ⟨a, s⟩+ ⌊ 2N

t ⌉m + e
)
, bootstrapping keys bsk[1 . . . n].

Ensure: A ciphertext in RLWEs

(
v · x−⌊2N/t⌉m−e

)
1: Acc←

(
0, v · x−b

)
∈ R2

q

2: for 1 ≤ i ≤ n do
3: Acc← Acc +

(
(xai − 1) · Acc

)
⊛ bsk[i]

4: end for
5: return Acc

In order to get a better understanding of our improvements, we have to dive further
into implementation details. Polynomial multiplications in (Z

/
qZ)[x]

/〈
xn + 1

〉
are carried

out with the number-theoretic transform (NTT); see e.g., [vzGG13, Chapter 8].
The external product ⊛ can be decomposed in two parts:
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1. a gadget decomposition∇g, applied to both mask and body of Acc, and corresponding
to the given bootstrapping keys, returning a vector of ℓ degree-N (small) polynomials;

2. for each of the two resulting vectors of polynomials, an inner product with the body
and mask of the appropriate leveled component of the bootstrapping key.

For all currently known gadget decompositions, the former must be performed in the
coefficient domain, whereas the multiplication of degree-N polynomials, where N is
relatively big, requires working in the Fourier or NTT domain. Hence, the vast majority
of the computational cost of the Blind Rotation is actually devoted to perform several
forward and backward NTTs modulo the ciphertext modulus q, at each loop iteration.

The detailed course of operations is given in Algorithm 2. It uses an accumulator Acc
and an auxiliary register Aux in the coefficient domain, both representing RLWE ciphertexts
and whose respective masks and bodies are indexed by 1 and 2 respectively. Variables that
live in the NTT domain are highlighted by hats, e.g., Âux1 = NTTq

(
Aux1

)
; this notation

is justified by the fact that these transforms can always be done in-place. In particular,
bootstrapping keys are given directly in the NTT domain as b̂sk[i]a,j = NTTq

(
bsk[i]a,j

)
.

The Hadamard product of two values in the NTT domain, aka. point-wise multiplication,
is written using ⋆. Finally, the operator Rotk

⊖ denotes a (right) negacyclic rotation by k

positions, i.e., for any m ∈ Rq and any integer k, we have Rotk
⊖ m = xk ·m (mod xN +1).

Algorithm 2 GINX Blind Rotation with binary keys (detailed)
Require: Test polynomial v encoding f , bootstrapping keys b̂sk[1 . . . n] in the NTT

domain modulo q, LWEs

(
⌊ 2N

t ⌉m) =
(
a, b = ⟨a, s⟩+ ⌊ 2N

t ⌉m + e
)
,

Ensure: A ciphertext in RLWEs

(
v · x−⌊2N/t⌉µ−e

)
1: Acc1, Acc2 ←

(
0, Rot−b

⊖ v
)
∈ R2

q ▷ Acc ∈ RLWEs

(
v · x−b

)
2: for 1 ≤ i ≤ n do
3: Aux1, Aux2 ←

(
Rotai

⊖ Acc1 − Acc1, Rotai
⊖ Acc2 − Acc2

)
▷ Aux =

(
xai − 1

)
· Acc

/* Gadget Decompositions */
4: ∇Aux1[1 . . . ℓ]← ∇g Aux1
5: ∇Aux2[1 . . . ℓ]← ∇g Aux2 ▷ ∇Aux = ∇gAux

/* Inner products of polynomial vectors */
6: ∇̂Aux1[j]← NTTq

(
∇Aux1[j]

)
for j = 1, . . . , ℓ

7: ∇̂Aux2[j]← NTTq

(
∇Aux2[j]

)
for j = 1, . . . , ℓ

8: Âux1, Âux2 ←
ℓ∑

j=1
∇̂Aux1[j] ⋆ b̂sk[i]1,j + ∇̂Aux2[j] ⋆ b̂sk[i]2,j

▷ Âux = NTTq

(
Aux ⊛ RGSWs(si)

)
9: Aux1, Aux2 ←

(
iNTTq(Âux1), iNTTq(Âux2)

)
/* Update accumulator */

10: Acc1, Acc2 ←
(
Acc1 + Aux1, Acc2 + Aux2

)
▷ Acc ∈ RLWEs

(
v · x−b+

∑
1≤t≤i

atst
)

11: end for
12: return Acc =

(
Acc1, Acc2

)
▷ Acc ∈ RLWEs

(
v · x−⌊2N/t⌉µ−e

)

Complexity and noise analysis From the detailed GINX Blind Rotation in Algorithm 2,
it is relatively easy to derive its computational complexity. Let M(q) be the complexity of
one modular multiplication in Z

/
qZ on a w-bit word machine. For each of the n iteration

of the loop, Algorithm 2 computes:

• two negacyclic rotations in Rq, i.e., at most 4N additions/subtractions modulo q;
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• 2N gadget decompositions of level ℓ of integers modulo q;

• 2ℓ forward NTTs and 2 backward iNTTs modulo q, each costing O
(
N log1+ϵ N ·M(q)

)
;

• 4ℓN ·M(q) for the point-wise multiplications, using that the bootstrapping keys are
given directly in the NTT domain, and 2(ℓ− 1)N additions modulo q.

Therefore, the most expensive operations are the NTT/iNTT transforms. Although, the
2ℓ NTTs (resp. the 2 iNTTs) can be done independently in parallel, thus the critical path
of the whole algorithm is n ·O

(
2N log1+ϵ N ·M(q)

)
.

As for the noise, we refer to the thorough analysis in [CGGI20, Theorem 4.3]. For our
purposes, it is sufficient to retain that for given fresh RGSW ciphertext parameters
(dimension and noise distribution) and a given level of gadget decomposition, the noise
distribution of the output mainly depends on the quality (β) of the considered gadget
decomposition.

4.2 Using the Approximate CRT-Based Gadget Decomposition
In Algorithm 2, the gadget decomposition computations, when instantiated with the
classical (mixed-)radix gadget decompositions, require the complete reconstruction of Acc
modulo q beforehand, which can be undesirable when q is several machine words long.
On the other hand, using an (exact) CRT-based gadget decomposition requires elevating
the level of the gadget decomposition, which implies an increased computational cost and
bootstrapping keys size.

We now show that thanks to our approximate CRT-based gadget decompositions,
the whole Blind Rotation can be performed using only arithmetic modulo small moduli,
effectively replacing all multi-words modular multiplications by several parallelizable
smaller ones. Those units can work independently in parallel, with the only requirement
that they synchronize data before and after the gadget decomposition step. We also present
a modified CRT encoding of the bootstrapping keys that simplify the computation of the
decomposition itself.

The resulting complete Blind Rotation algorithm is detailed in Algorithm 3 and
thoroughly explained in the following paragraphs.

Let q, Q =
∏ℓ

j=1 qj , Qlow =
∏k

j=1 q′
j be as in Section 3. We further assume that we have

(ℓ + k) arithmetic units, each of them performing arithmetic modulo its dedicated modulus.
Arithmetic units handling divisors q′

u | Qlow (resp. qj | Q) of the low part (resp. high) of q
are called low units (resp. high units). Notation (∥d|q:) means that the instruction can be
performed independently in parallel by all arithmetic units corresponding to the subscript;
conversely (Sync:) marks a synchronization point where units send and receive data.

The decomposition algorithm is also fixed to ∇ := ∇w, as defined by Equation (2), and
bootstrapping keys bsk[1 . . . n] are now the RGSW encryptions associated to w of the bits
of s under a key s ∈ Rq.

Test polynomial and bootstrapping keys encodings As done in Algorithm 2, the
bootstrapping keys can be given directly in the NTT domain modulo q. However, we can
further consider their modular reduction modulo each divisor of q, which commutes with
the NTT/iNTT transform, i.e., for any f∈ Rq, d ∈

{
q1, . . . , qℓ, q′

1, . . . , q′
k

}
,

NTTd

(
fmod d

)
= NTTq

(
f
)

mod d .

Hence, each of the arithmetic units only receives a fraction of the bootstrapping keys,
namely the part modulo its dedicated working modulus d, i.e., b̂sk[1 . . . n] (mod d).
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Algorithm 3 GINX Blind Rotation using approximate CRT-based gadget decomposition
Require: LWEs

(
⌊ 2N

t ⌉m) =
(
a, b = ⟨a, s⟩+⌊ 2N

t ⌉m+e
)
, and ∀d ∈

{
q′

u

}
u∈J1,kK∪

{
qj

}
j∈J1,ℓK:

• Test polynomial v(d) using the modified CRT encoding as in Equation (4),
• Bootstrapping keys b̂sk[1 . . . n](d) in the NTT domain modulo d using the modified

CRT encoding as in Equation (3).
Ensure: A CRT-encoded ciphertext C∈ RLWEs

(
v · x−⌊2N/t⌉m−e

)
/* Initialize accumulator in the modified CRT encoding (wCrt) */

1: ∥d|q: Acc(d)
1 , Acc(d)

2 ←
(
0, Rot−b

⊖ v(d)) ∈ Rd ▷ Acc ∈ wCrt
(
RLWEs

(
v · x−b

))
2: for 1 ≤ i ≤ n do
3: ∥d|q: Aux(d)

1 , Aux(d)
2 ←

(
Rotai

⊖ Acc(d)
1 − Acc(d)

1 , Rotai
⊖ Acc(d)

2 − Acc(d)
2
)

▷ Aux =
(
xai − 1

)
· Acc (in wCrt)

/* Synchronized Gadget Decompositions */
4: Sync: Low units send Aux(q′

u)
1 , Aux(q′

u)
2 , u ∈ J1, kK to every high units

5: ∥qj |Q: ∇Aux1[j]← Aux(qj)
1 −

∑
1≤u≤k

Qlow
q′

u
·
(
Aux(q′

u)
1
)
Z mod qj

6: ∥qj |Q: ∇Aux2[j]← Aux(qj)
2 −

∑
1≤u≤k

Qlow
q′

u
·
(
Aux(q′

u)
2
)
Z mod qj ▷ ∇Aux = ∇wAux

7: Sync: Broadcast ∇Aux[1 . . . ℓ] to obtain
(
∇Aux[1 . . . ℓ]

)
Z mod d, for all d | q.

/* Inner products of polynomial vectors: for all d dividing q */
8: ∥d|q: ∇̂Aux1[j](d) ← NTTd

(
∇Aux1[j] mod d

)
for j = 1, . . . , ℓ

9: ∥d|q: ∇̂Aux2[j](d) ← NTTd

(
∇Aux2[j] mod d

)
for j = 1, . . . , ℓ

10: ∥d|q: Âux
(d)
1 , Âux

(d)
2 ←

ℓ∑
j=1
∇̂Aux1[j](d) ⋆ b̂sk[i](d)

1,j + ∇̂Aux2[j](d) ⋆ b̂sk[i](d)
2,j

11: ∥d|q: Aux(d)
1 , Aux(d)

2 ←
(
iNTTq(Âux

(d)
1 ), iNTTq(Âux

(d)
2 )
)

▷ Aux← wCrt
(
Aux ⊛ RGSWs(si)

)
/* Update all CRT shares of the accumulator */

12: ∥d|q: Acc(d)
1 , Acc(d)

2 ←
(
Acc(d)

1 + Aux(d)
1 , Acc(d)

2 + Aux(d)
2
)

▷ Acc ∈ wCrt
(
RLWEs

(
v · x−b+

∑
1≤t≤i

atst
))

13: end for
14: ∥q′

u|Qlow : Acc(q′
u)

1 , Acc(q′
u)

2 ← (τ ′
u)−1 ·

(
Acc(d)

1 , Acc(d)
2
)

▷ from wCrt to Crt
15: return Acc =

(
Acc1, Acc2

)
▷ Acc ∈ RLWEs

(
v · x−⌊2N/t⌉µ−e

)
Remark 4. Since

∑
1≤j≤ℓ log qj +

∑
1≤u≤k log q′

u = log q, the total size of these modular
keys is equivalent to the size of the original keys, especially when the moduli dividing q
are specifically chosen so that their size fits one (or several) machine words.

A second transformation comes from a technique used in order to simplify the com-
putation of our new gadget decomposition, given in Equation (2). Indeed, we remark
that the twisting factors τ ′

u :=
((

Qlow
q′

u

)−1 mod q′
u

)
do not depend on the coefficient being

gadget decomposed, nor do they depend on a specific target qj . Further, for any constant
modular integer a ∈ Z

/
q′

uZ and any polynomial f∈ Rq′
u
, we have that

a ·NTTq′
u

(
f
)

= NTTq′
u

(
af
)

mod q′
u ,

Hence, we can include these factors straight into the CRT encodings of the bootstrapping
keys and test polynomial modulo q′

u | Qlow, so that when entering the gadget decomposition
itself, the multiplication by τ ′

u has already been taken care of by the previous steps.
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Therefore, the new bootstrapping keys for our approximate CRT-based gadget decom-
position are given by, for all i ∈ J1, nK,{

b̂sk[i](qj) = NTTqj

(
bsk[i] mod qj

)
for all qj dividing Q

b̂sk[i](q′
u) = NTTq′

u

(
τ ′

u · bsk[i] mod q′
u

)
for all q′

u dividing Qlow
. (3)

Remark 5. Due to the fact that the gadget decompositions always happen before in-
corporating the bootstrapping keys, the initialization of Acc also needs to include this
encoding. This can be added as an explicit initialization extra step, or by requiring the test
polynomial v to be given in this modified CRT encoding as done in Algorithm 3, i.e., as({

τ ′
u · v mod q′

u

}
u∈J1,kK,

{
v mod qj

}
j∈J1,ℓK

)
. (4)

Likewise, Acc comes out of the loop in this modified CRT encoding, so a correction step
removing the τ ′

u factors is needed before returning from Algorithm 3.

Computation of our approximate CRT-based gadget decomposition Though all arith-
metic units need to be synchronized for the computation of our approximate CRT-based
gadget decomposition, low and high arithmetic units have very different roles.

Using the modified CRT encoding described above, the input to the gadget decomposi-
tion is a polynomial f, shared across low and high arithmetic units as({

τ ′
u ·f mod q′

u

}
u∈J1,kK,

{
f mod qj

}
j∈J1,ℓK

)
.

We must compute, for all j ∈ J1, ℓK, f−
∑k

u=1
Qlow
q′

u
·
(
τ ′

ufmod q′
u

)
Z mod qj , as described

by Equation (2). This implies the following steps:
• Low units send their polynomial f′

u = τ ′
u ·f (mod qu) to all high units;

• Consider j ∈ J1, ℓK; for the k incoming polynomials f′
u, compute Qlow

q′
u
·
(
f′

u

)
Z (mod qj)

(see Remark 6), and add them to the existing register containing f (mod qj);

• At this point, each of the high units contains one of the ℓ elements of ∇wf; it remains
to broadcast these ℓ polynomials to everyone, i.e., both to low and other high units.

We stress that, at the end of this process, every arithmetic unit contains a share of a plain
CRT encoding of ∇wf, i.e., without any additional factors τ ′

u on low moduli q′
u | Qlow.

Remark 6. Every time an integer a1 is sent from an arithmetic unit working modulo d1 and
received by an arithmetic unit working modulo d2, where d1, d2 | q, it involves an implicit
lift-and-reduce operation to obtain a2 =

(
a1
)
Z (mod d2). Assuming all chosen moduli are

equally-sized, this can be done efficiently by adding ±d2 whenever
∣∣a1
∣∣ ≥ ⌊d2

2
⌋
,
⌊

d2
d1

⌋
times

at most. Ideally, all such quotients should be kept below 2, and as close to 1 as possible.

Complexity and noise analysis Roughly speaking, using the approximate CRT-based
gadget decomposition allows trading operations in Z

/
qZ for operations in Z

/
dZ for all of

the (k + ℓ) chosen divisors of q. Assuming all moduli d ∈ {q′
u} ∪ {qj} have balanced size

around log q
k+ℓ , we therefore expect a gain in total bit complexity of magnitude at least

M(q)∑
d∈{q′

u}∪{qj} M(d) ≈ (k + ℓ)ω−1 , (5)

where M(d) =
⌈
log2w d

⌉ω is the complexity1 of a modular multiplication in Z
/

dZ on a w-bit
word machine. Likewise, the critical path is expected to shrink in similar proportions.

1As the number of words for q is relatively small, say less than 10 at the very most, it is not unreasonable
to instantiate this by ω = log2 3 ≈ 1.58 (neglecting modular reductions).
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It remains to estimate the complexity of computing the approximate CRT-based gadget
decomposition. There are 2 polynomials of degree N to gadget-decompose; to this end:

• each high unit, e.g., the one working modulo qj , performs k · (2N) (negligible)
lift-and-reduce operations q′

u → qj , u ∈ J1, kK;

• each incoming polynomial f′
u (mod qj) is multiplied by the same, precomputed,

constant Qlow
q′

u
(mod qj), i.e., k · (2N) modular multiplications in Z

/
qjZ, j ∈ J1, ℓK;

• broadcasting the resulting 2ℓ polynomials again involves (negligible) lift-and-reduce
operations, ℓ · 2(ℓ− 1)N (resp. k · 2ℓN) on the high units (resp. low units) side.

Thus, the approximate CRT-based gadget decomposition is computationally negligible
compared to the NTT/iNTT operations and inner point-wise multiplications.

Finally, the noise analysis in [CGGI20, Theorem 4.3] can be easily adapted to our gadget
decomposition, of quality β = max1≤j≤ℓ

⌊ qj

2
⌋

and precision ε ≤ k ·
⌊

Qlow
2
⌋

by Proposition 1.
Example 4. As a concrete example, letR be the 212-th cyclotomic ring of degree N = 2048,
and assume one wants to implement the Blind Rotation on an FPGA whose multipliers
are 17 bits long [Xil21]. The list of NTT-friendly primes p ≡ 1 (mod 2N), p < 217, is{

12 289, 40 961, 61 441, 65 537, 86 017, 114 689
}

.

A typical ciphertext modulus q in TFHE is approximately 64 bits and the (radix-based)
gadget decomposition typically has precision above 30 bits.Hence, we can instantiate our
approximate CRT-based gadget decomposition with ℓ = 2, q = q′

1 · q′
2 · q1 · q2 using

q′
1 = 114 689, q′

2 = 86 017, q1 = 65 537, q2 = 61 441 .

Note that q = 39723809512452587521 ≈ 265.1 and that qmax
qmin
≈ 1.87, ensuring efficient

lift-and-reduce operations with at most one conditional subtraction.
Emulating a non-native multiplication modulo a 64-bit (i.e., 4 words) integer is likely to

cost at least 9 multiplications of 17-bit operands with depth at least 2 or 3, plus modular
reduction costs. Meanwhile, Algorithm 3 allows replacing each such multiplication by 4
parallel multiplications of 17-bit operands, with depth exactly one. Therefore, in practice
it is expected to gain a factor 2.25 ≈ 40.58 in the total number of multiplications and
running time, for an hardware usage approximately halved.

4.3 Further Use-Cases
4.3.1 Homomorphic machine learning

A critical operation for machine learning on encrypted data consists in computing homo-
morphically many weighted sums of the form

M∑
t=1

ωt · Ct ,

which serve as inputs to a non-linear function; see e.g., [CJP21]. Each term of this
sum involves a scalar product between a (possibly small) weight ωt and a ciphertext Ct,
involving as much gadget decompositions. Those operations are to be accelerated on
dedicated, massively parallel, hardware such as GPUs, FPGAs or ASICs.

These architectures can have quite small arithmetic units. For example, FPGAs typically
contain multipliers ranging from 17 bits to 23 bits, depending on the model [Xil21]; on the
other hand, GPUs might take advantage of performing vectorized operations on several 16
bits or 32 bits operands for a few thousands of parallel threads.

Our approximate CRT-based gadget decompositions allow taking full advantage of
the intrinsic computational characteristics of these hardwares, with a simple and easily
parallelizable work-flow.
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4.3.2 Threshold decryption for TFHE

In the context of threshold decryption for FHE, and in particular for blockchain applications,
a standard technique to avoid leaking to the parties the shared secret key through the
noise is to inject some additional noise into the secret shares, a technique which is called
noise flooding.

For TFHE, where the ciphertext modulus is usually relatively small (say, 64 bits or less)
to enhance performance, this technique is not directly applicable as the noise gap is too
small to preserve the message from being destroyed during the noise flooding operation.
Therefore, a technique called Switch-n-Squash was proposed in [DDK+23], that embeds
ciphertexts into larger parameters during a bootstrapping operation; thereafter the regular
noise flooding operation can be safely applied.

As a consequence, costly bootstrapping operations, such as NTTs, or more generally
polynomial multiplications, now have to be computed on larger integers, e.g., 128 bits as
suggested in [DDK+23, Table 1]. In practice, optimized code for these sizes is not readily
available off the shelf and moving beyond the frontier of a single machine word incurs a
noticeable computational overhead.

Our approximate CRT-based gadget decompositions make it possible to reuse code that
is optimized for 64-bit words for the extended ciphertext moduli featured in [DDK+23,
Table 1]. This can be done in parallel, with no additional overhead apart from the
synchronization step when computing the gadget decomposition.

5 Conclusion
This paper introduced CRT-based gadget decompositions in the approximate setting.
Complete specifications and related parameters were provided and discussed, enabling
homomorphic operations otherwise hardly available in certain hardware/software config-
urations. In particular, dedicated implementations of the blind rotation as used in the
programmable bootstrapping were reported and thoroughly analyzed. Additional benefits
were also reported. Finally, further applications to homomorphic machine learning and
threshold FHE decryption were reviewed.
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