
Reducing the Number of Qubits in Quantum
Information Set Decoding

Clémence Chevignard, Pierre-Alain Fouque, and André Schrottenloher

Univ Rennes, Inria, CNRS, IRISA
firstname.lastname@inria.fr

Abstract. This paper presents an optimization of the memory cost of
the quantum Information Set Decoding (ISD) algorithm proposed by
Bernstein (PQCrypto 2010), obtained by combining Prange’s ISD with
Grover’s quantum search.
When the code has constant rate and length n, this algorithm essentially
performs a quantum search which, at each iterate, solves a linear sys-
tem of dimension O(n). The typical code lengths used in post-quantum
public-key cryptosystems range from 103 to 105. Gaussian elimination,
which was used in previous works, needsO(n2) space to represent the ma-
trix, resulting in millions or billions of (logical) qubits for these schemes.
In this paper, we propose instead to use the algorithm for sparse matrix
inversion of Wiedemann (IEEE Trans. inf. theory 1986). The interest
of Wiedemann’s method is that one relies only on the implementation
of a matrix-vector product, where the matrix can be represented in an
implicit way. This is the case here.
We propose two main trade-offs, which we have fully implemented, tested
on small instances, and benchmarked for larger instances. The first one
is a quantum circuit using O(n) qubits, O(n3) Toffoli gates like Gaussian
elimination, and depth O(n2 logn). The second one is a quantum circuit
using O(n log2 n) qubits, O(n3) gates in total but only O(n2 log2 n) Tof-
foli gates, which relies on a different representation of the search space.
As an example, for the smallest Classic McEliece parameters we estimate
that the Quantum Prange’s algorithm can run with 18098 qubits, while
previous works would have required at least half a million qubits.

Keywords: Prange’s Algorithm, Quantum Search, Information Set Decoding,
Quantum Cryptanalysis.

1 Introduction

Since the start of the NIST’s post quantum cryptography standardization pro-
cess [42], several cryptosystems based on error correcting codes came to light.
The remaining key-encapsulation candidates Classic McEliece [13], HQC [40]
and BIKE [2] are currently in the fourth round [43].

Cryptographic algorithms based on codes usually rely on the hardness of the
Syndrome Decoding Problem (SDP). This problem essentially consists in finding

a solution to an undetermined linear system, which is constrained under a given
metric. In the cases considered on this paper, the Hamming metric is used, which
counts the number of non-zero positions.

The most efficient algorithms to solve the SDP are the family of Informa-
tion Set Decoding algorithms, starting with Prange’s algorithm [46], which have
been gradually improved over time with list-merging subroutines [51,36,38,6],
nearest-neighbor techniques [39,16] and more recently sieving techniques [33,25].
However, all these optimizations essentially improve the time complexity at the
detriment of the memory complexity. In short, the original ISD algorithm of
Prange uses only polynomial memory, and in order to reduce the asymptotic
complexity of ISD, all these variants have to increase the memory to an expo-
nential amount.

Principle. Let H be the parity-check matrix of the code, which has n columns
and n− k rows, for the length n of the code and its dimension k (the codewords
forming its kernel). The goal of SDP is to find a vector s such that Hs has some
prescribed Hamming weight.

Prange’s algorithm selects at random a subset I of n−k columns of H, which
defines a square submatrix HI , and inverts the subsystem defined by HI . If the
nonzero coefficients of the vector solution to SDP correspond to columns of H
that are all in HI , then inverting the subsystem defined by HI will allow to
retrieve this solution. And since HI is square, Gaussian elimination can be used
to invert the system, which will have few solutions on average. This procedure
is repeated for random choices of columns I until a solution is found.

Quantum ISD. In the quantum setting, one can speedup this algorithm using
Grover’s quantum search, as proposed by Bernstein [11] (an algorithm that we
will call “quantum Prange” in what follows). Indeed, the subsets of columns
I form a well-defined search space, and solving the subsystem HI allows to
test if I is solution to our problem. Using Grover’s search, the number of iter-
ates decreases to a square root of its classical value. Despite this promise of a
“quadratic speedup”, we should note that in practice, the cost of solving HI ,
though a polynomial factor, is far from negligible.

Similarly to the classical setting, improved quantum ISD algorithms were
introduced later on. Kachigar and Tillich [35] presented quantum versions of
the MMT [38] and BJMM [6] algorithms using quantum walks in addition to
Grover’s search, to solve the underlying k-list problem. Their design reduces
the time complexity of the ISD’s algorithm they study, but uses exponential
quantum memory. Chailloux et al. [20] extended the scope of quantum Prange
by adapting it to other metrics than the Hamming one, specifically detailing the
Lee metric case. Since we are particularly targeting the memory complexity of
quantum ISD, and since we consider the Hamming case only, the improvements
of [35,20] will not be useful for us.

Improving Quantum Prange. Esser et al. [26,27] introduced several improve-
ments to quantum Prange, leading to polynomial runtime improvements: first,

2

an optimization using the Lee-Brickell algorithm [36] and an optimization based
on preprocessing the parity-check matrix to systematic form, which we will not
reuse here.

In [27], motivated by the large number of qubits required, they proposed
a hybrid quantum-classical trade-off. The idea is to guess a first part of the 0
coefficients’ positions in a precomputation on a classical computer, and then to
carry a smaller instance of the quantum Prange’s algorithm. Another possible
optimization, in the same fashion, is to not consider all of the equations in the
square systems we aim at solving. Concretely, one ignores some rows of the
system. The combination of these two optimizations reduces the qubit cost by a
constant, but increases the execution time exponentially.

More recently, Perriello et al. [45] performed complete quantum cost esti-
mates of quantum Prange, which we will compare to for the parameters of the
NIST code-based candidates.

Memory Complexity and Comparisons. Despite being only polynomial in n (the
length of the code), the memory complexity of Prange’s algorithm, classical or
quantum, is not negligible. This is because the parity-check matrix H itself,
and its sub-matrices that we try to invert, occupies a space O

(
n2
)
. In code-

based cryptosystems, n ranges between 103 and 105. For the same reason, the
polynomial factor in the complexity, of order O

(
n3
)

bit-operations, is far from
negligible.

Looking back at the optimizations of quantum ISD [26,27,45], the number of
qubits could never decrease below O

(
n2
)
, despite improvements in the constants.

This is simply because these quantum algorithms used Gaussian elimination to
invert the sub-matrices considered during the Grover search iterates.

Post-quantum cryptosystems are parametrized so that quantum Prange and
variants should remain infeasible, if only in terms of time complexity. Thus, the
number of qubits may not be the stronger constraint that weighs on the practical
realization of these algorithms. Still, the current state of the art requires millions
to billions of logical qubits, which will remain infeasible in the foreseeable future.
As a comparison, Shor’s algorithm should require only thousands of logical qubits
to factor large RSA semiprimes [31], which is a much more reasonable amount.

Contribution and Organization. In this paper, we optimize the qubit count
of quantum ISD. Our innovation lies in the way the sub-matrices considered
throughout the quantum search are represented, and how we can invert them.

We use Wiedemann’s matrix inversion algorithm [53]. Although the matrices
we are interested in are in general not sparse nor structured, this technique is
interesting because it reduces the inversion of a dimension-nmatrix to computing
a series of matrix-vector products, and using the Berlekamp-Massey algorithm on
linear recurrent sequences of size O(n). We show how to implement the matrix-
vector product by a sub-matrix HI given a compact representation of the choice
I of columns. Next, we give a quantum implementation of the Berkekamp-Massey
algorithm over F2 using O(n) space only. This gives us a first quantum circuit
for the Grover iterate in quantum Prange that uses O(n) qubits.

3

This implementation is optimized for space, but the resulting gate count
O
(
n3
)

and circuit depth O
(
n2 log n

)
suffer from large constant factors. This

motivates us to give another trade-off, by changing the representation of I in
the algorithm. In the first version, I is represented as a selection of columns
of the matrix H, i.e., a vector of length n and weight n − k, similarly to what
is commonly done in previous works. In the second version, I is represented
as a permutation of the columns (an idea that appeared in [44], but without
further details). This permutation is implemented using a switching network
with O

(
n log2 n

)
switches. The qubit count increases to O

(
n log2 n

)
, but this is

compensated by a significant improvement in gate count.
First of all, we reduce the depth to O

(
n2
)
, becoming asymptotically optimal,

and the Toffoli gate count to O
(
n2 log2 n

)
(while the total gate count remains

O
(
n3
)
), improving over circuits based on Gaussian elimination. This is particu-

larly interesting from an implementation standpoint, as Toffoli gates are much
harder to implement than NOT and CNOT gates. This also shows that there are
further advantages to Wiedemann inversion than just space. Finally, when the
parity-check matrix is structured, as in BIKE and HQC, we show that the total
gate count of the Grover iterate can be reduced to O

(
n2 log2 n

)
(Theorem 4),

though our current implementation achieves only a minor gain, at the expense
of circuit depth.

Inverting large sparse or implicit matrices is a building block of other quan-
tum algorithms, notably quantum algorithms for solving multivariate quadratic
systems [28,14]. The space complexity was not discussed in [28], and in [14],
the generic Bennett-Tompa reversibility trade-off is used [7], which leads to ad-
ditional subexponential factors in time and space. Our results could lead to
improvements in both cases, although this would require a dedicated analysis.

Organization of the paper. Section 2 describes Prange’s algorithm and Wiede-
mann’s inversion [53]. In Section 3 we detail the quantum version of Prange’s
algorithm, and explain how to replace the linear algebra part with Wiedemann’s
algorithm. Our main result is stated here, but its proof spans the following sec-
tions.

First, in Section 4, we give our implementation of Wiedemann inversion,
including a quantum reversible circuit for the Berlekamp-Massey algorithm [8].
This implementation uses as black-box a quantum algorithm for matrix-vector
product. Then, in Section 5, we propose two such implementations. The first
one (space-optimized) reduces the space to O(n). The second (based on sorting
networks) offers a trade-off with a space O

(
n log2 n

)
and a reduced Toffoli cost.

We give precise formulas for the costs of all these circuits.
Finally, in Section 6, we evaluate these costs for the parameters of code-based

cryptosystems.
We implemented the quantum circuits considered in this paper using the

Qiskit framework [47] and used Sagemath [52] to compute formulas for their
complexities. Our code is available at:

https://gitlab.inria.fr/capsule/quantum-isd-less-qubits

4

https://gitlab.inria.fr/capsule/quantum-isd-less-qubits

2 Preliminaries

Throughout this paper, n and k ≤ n are integers. We use bold notations for
vectors (e, s . . .) and uppercase letters for matrices (A,H, . . .). The transpose of
a matrix is denoted AT . Since we work only in F2, addition + will always denote
addition in F2 (binary XOR) or in a vector space over F2.

For q a prime, a linear code of length n and dimension k over Fq is a k-
dimensional vector subspace Fnq , which can be defined as the kernel of a parity-

check matrix H ∈ F(n−k)×n
q . In this paper we consider the case of binary codes,

i.e., q = 2. The Hamming weight hw is defined, for vectors of any length, by the
number of non-zero coordinates. We consider the Syndrome Decoding problem

SD(n, k, w): given as input H ∈ F(n−k)×n
2 and s ∈ Fn−k2 (the error syndrome),

find e ∈ Fn2 such that hw(e) = w.
While the decision version of this problem, i.e., the existence of such a solu-

tion, is well-known to be NP-complete [9], we consider the search version where
H is sampled uniformly at random, and the existence of the solution is guaran-
teed. With proper choice of the parameters n, k, w, this case is still believed to
be hard for classical and quantum computers alike.

Problem 1 (Random Decoding). Given as input H ∈ F(n−k)×n
2 sampled uni-

formly at random, and s = He where e is sampled uniformly at random from
vectors of weight w, find e.

2.1 Prange’s Algorithm

In [46], Prange introduced an algorithm for generic decoding (Algorithm 1) which
forms the basis of the family of Information Set Decoding (ISD) algorithms. We
use it to solve Problem 1. The idea of the algorithm is to select a random subset
of the columns of H. Let Sn,k be the set of all subsets of {0, . . . , n − 1} with
n− k elements.

Given I ∈ Sn,k, we define HI as the sub-matrix of H which keeps these
columns only. If all non-zero positions of the vector e are in I, the equation
system HIx = s admits a solution x of weight w, and extending this solution by
zeroes provides a solution to the SDP1.

Runtime. As a first remark, it is well known that a random square matrix in
F2 is invertible with probability at least 0.288 [21]. In order to bound easily the
runtime of Prange’s algorithm, we make the following heuristic assumption.

Heuristic 1. A matrix HI , where I leads to the solution, is invertible with prob-
ability 0.288.

Intuitively, the invertibility of the sub-matrix HI should be independent from
whether I is a solution or not. While we cannot exclude pathological values of
H and s, we can assume that such cases occur with negligible probability.

1 Note that we have considered here the binary case only; the case of a generic q
requires more care.

5

Algorithm 1 Prange’s algorithm, binary case [46].

Input: parity-check matrix H ∈ F(n−k)×n
2 , syndrome s ∈ Fn−k

2 , weight w ≤ n− k
Output: vector e such that He = s and hw(e) = w
repeat

Choose a random subset I ∈ Sn,k

If HI is not invertible, continue
Solve the linear system HIeI = s for eI

until hw(eI) = w
Return e = extension of eI with zeroes

Theorem 1. Under Heuristic 1, Algorithm 1 succeeds with 1
p iterates on aver-

age, where:

p = 0.288

(
n−k
w

)(
n
w

) , (1)

and has a time complexity O
(

1
p (n− k)ω

)
where ω is the matrix multiplication

exponent.

Proof. A first important remark is that the algorithm does succeed: this is be-
cause there are in general many solutions I, and by Heuristic 1, one of them will
lead to an invertible sub-matrix – so it will eventually be found.

Consider the columns Hi1 , . . . ,Hiw of H that correspond to the non-zero co-
efficients of the solution e. The loop succeeds whenever {i1, . . . , iw} ⊆ I and HI

is invertible. By Heuristic 1, the number of good choices for I is: 0.288
(
n−w

n−k−w
)
,

while the total number of possible I is
(
n

n−k
)
. This gives a probability of success

in the loop:

p = 0.288

(
n−w

n−k−w
)(

n
n−k
) = 0.288

(
n−k
w

)(
n
w

) .

The average number of iterates before achieving a success follows from this.
Each iterate requires to invert a linear system of dimension n−k, which requires
O((n− k)ω) elementary operations. ut

The subsequent improvements to Prange’s ISD [51,36,38,6,39,16,33,25] put
less constraints on I, which decreases the number of loop iterates; however they
increase the complexity of recovering e during the iterate. Importantly, any
improvement in the time complexity exponent comes at the expense of a larger
memory complexity, which is why we do not consider these variants in what
follows.

2.2 Wiedemann’s Inversion Algorithm

This section follows Wiedemann [53].

6

Finding Relations. The Berlekamp-Massey algorithm [8,37] takes as input a
sequence (s0, . . . , sN−1) ∈ FNq satisfying a linear recurrence relation over Fq:

∃` ≤ N, ∃c0 6= 0, c1, . . . , c`,∀i ≤ N, c0si + c1si−1 + . . .+ c`si−` = 0 . (2)

This relation is represented by a polynomial C(X) := c0 +c1X+ . . .+c`X
` ∈

Fq[X], of degree `. Assuming that 2` ≤ N , the Berlekamp-Massey algorithm
returns a polynomial C(X) with the smallest possible degree. We defer the details
of this algorithm to Section 4.2. It runs in O

(
N2
)

operations, using O(N) space.
Using its similarity to an extended Euclidean algorithm on polynomials [24], this

time can be reduced to Õ(N), but this will not be important for us as the time
complexity of Berlekamp-Massey will not be dominant in our algorithms.

Wiedemann’s Algorithm. Wiedemann [53] considers the problem to invert a
sparse matrix over Fq, or more generally, any matrix A for which only a black-
box matrix-vector product is provided. In the case of sparse matrices, this is
motivated by the efficiency of such products, and the low space complexity.

Given inputs A and s ∈ Fnq , the goal is to find the unique x such that Ax = s.
In the following, we assume that A is invertible. Wiedemann [53] provides further
analysis to deal with non-invertible matrices, but this will not be necessary for
us, as we will essentially need to succeed with constant probability for random
matrices (therefore, succeeding for invertible matrices is sufficient for us).

Let S be the space spanned by {Ais, i ∈ N} where A0 = I. We consider the
action of A on this space, defined by an operator AS with minimal polynomial
P (X) ∈ Fq[X]. The polynomial P is normalized to have its first coefficient equal
to 1. Let Q(X) = (1− P (X))/X ∈ Fq[X], which is of degree n− 1 at most. We
have:

P (A)s = 0 =⇒ A (Q(A)s) = s =⇒ x = Q(A)s . (3)

Given Q, evaluating Q(A)s can be done by a series of n matrix-vector prod-
ucts and O(n) temporary space, by Horner’s method. Therefore, the search for
x is reduced to the search for P .

The search for P can be reduced to finding linear recurrences, as follows.
Since evaluating Ais yields a sequence of vectors in Fnq , and not of scalars, one
selects a (random) vector u ∈ Fnq and computes the sequence of projections:(
uTAis, i ∈ N

)
. This sequence satisfies a linear recurrence, with a minimal poly-

nomial C(X) that divides P (X). Since P is of degree n, only 2n terms need to
be computed. In fact, after on expectation O(log n) tries with random vectors
u, one will obtain P (X). But it is possible to arrive at this result faster using a
slightly more technical algorithm which finds first a divisor C0 of P , then reduces
the problem to finding P/C0, etc. This is summarized in Algorithm 2.

The probability of success of this algorithm follows Lemma 1.

Lemma 1 (From [53], Section VI). For k > 1, the probability that after k
iterates in the main loop of Algorithm 2, one has t = 0 (and A(−y) = s), is
lower bounded by:

1− log

(
qk−1

qk−1 − 1

)
. (4)

7

Algorithm 2 Wiedemann’s algorithm for inversion.

Input: invertible matrix A accessed only by a black-box product operator: y 7→
Ay; vector s
Output: x = A−1s

1: t← s
2: y← 0
3: d← 0 . Current degree of the polynomial
4: repeat
5: Select u uniformly at random
6: Compute the first 2(n− d) terms of the sequence uTAit
7: Compute C(X), the minimal polynomial of this sequence
8: Let C′(X) = (C(X)− 1)/X
9: y← y + C′(A)t

10: t = s + Ay
11: d← d + deg(C)
12: until t = 0
13: Return −y

As a constant success probability will be enough for us, we can run Algo-
rithm 2 with a constant number of loops. In particular with q = 2, by using
k = 2 we ensure a probability of success bigger than 2−1.70. As proposed by
Wiedemann, we will also replace the selected vectors u by deterministic unit
vectors, which consist merely in selecting the first and second coordinates of Ais
(though it would not be much more difficult to take random vectors).

It should be noted that Wiedemann’s algorithm appeared previously in a
quantum context in the algorithms of [29,14] for multivariate quadratic equa-
tion systems. These algorithms construct large sparse matrices (Macaulay ma-
trices) which need to be inverted. However, neither of these works considered
a full reversible implementation of Wiedemann’s algorithm; instead they used
generic reversibilisation results. In [29] they noticed that the algorithm could be
implemented in a naive way, increasing the space complexity. In [14] they used
the generic Bennett-Tompa trade-off [7] which introduces subexponential factors
(which disappear in the asymptotic complexity estimates).

In order to get a satisfying space complexity for the quantum Prange’s al-
gorithm, we will need to implement Wiedemann’s algorithm in a reversible and
space-efficient way. This is the goal of Section 4.

3 Quantum Preliminaries

In this section we give the required preliminaries of quantum computing and
quantum ISD, including the formulation of our main result (Theorem 3) which
relies on all the building blocks studied in the remainder of the paper.

We refer to [41] for an introduction to the notions of quantum computing
(quantum states, amplitudes, ket notation |·〉). We describe quantum algorithms
in the quantum circuit model as a sequence of quantum gates applied to a set of

8

qubits. We stand only at the logical level, in which gates can be freely applied
to any qubit or pair of qubits without inducing any error.

Many advanced quantum cryptanalysis algorithms make use of quantum-
accessible memories (also known as qRAM) [35,20]. qRAM can be seen as an
abstraction of quantum hardware in which writing and / or reading in quan-
tum superposition from a large-scale memory could be an efficient operation.
However, it is almost certain that near-term quantum devices will not benefit
from such capabilities. Going back to the baseline quantum circuit model, in
which only fixed-arity gates can be used, these advanced algorithms lose their
advantage.

In this paper, we are interested in making conservative hardware assump-
tions, in which qRAM is not available and the number of logical qubits is lim-
ited. The new circuits that we design are entirely classical reversible circuits,
which contain only NOT (X), CNOT (controlled-X, or CX) and Toffoli (double-
controlled X, or CCX) gates. The other quantum gates required to run quantum
ISD algorithms are Hadamard gates (H) used in the iterates of Quantum Ampli-
tude Amplification, and rotation gates used in the construction of Dicke states [4]
(which we define later on).

From an implementation perspective, CCX gates are known to be much more
costly than X and CX gates, which is why they form the main target for opti-
mization (e.g., in [31]).

3.1 Quantum Search

Grover’s quantum search algorithm [32] provides a quadratic speedup for any
exhaustive search problem, which can be defined as the search of a preimage of
1 of a function f : {0, 1}n → {0, 1}, where {0, 1}n is the search space and f
distinguishes “good” elements (f(x) = 1) from “bad” ones (f(x) = 0).

Prange’s information set decoding algorithm can be rephrased as such a
search problem, which is why we use quantum search here [11]. However, for
this precise context it is better to rely on the generalization of Grover’s search
known as Quantum Amplitude Amplification (QAA) [17]. QAA can start from
any probabilistic algorithm (implemented as a quantum circuit) that succeeds
with probability p, and needs O

(
1/
√
p
)

iterates. Furthermore, it is quite robust
if the probability of success is not known exactly, and p is only a lower bound.
In that case an adapted procedure still succeeds in time O

(
1/
√
p
)
.

For the specific case of quantum ISD, we apply QAA in the following way.

Theorem 2 (Consequence of Theorem 2 and Theorem 3 of [17]). Let
U be a quantum circuit that, on input |0〉, produces a uniform superposition of
N basis states (a subset X ⊆ {0, 1}n):

U |0〉 =
1√
N

∑
x∈X
|x〉 . (5)

9

Let Of be a quantum circuit that realizes a phase oracle for a function f : X 7→
{0, 1}, where |f−1(1)| = M :

∀x ∈ X,Of |x〉 = (−1)f(x) |x〉 . (6)

Then, there exists a quantum algorithm that outputs an x ∈ f−1(1), and makes
an expected number of Θ(

√
N/M) calls to Of and U .

More precisely, QAA is a procedure that runs with a fixed number of iterates,
which repeat the setup operation U and the test operation Of . A QAA iterate
is the unitary:

Q = −UO0U
−1Of (7)

where U and Of are defined in Theorem 2, and O0 is the unitary defined by:

O0 |x〉 = (−1)δ0x |x〉 , (8)

where δ0x is the Kronecker delta; that is, it flips the phase iff x = 0. One should
note that O0 is essentially an n-bit multi-controlled Z gate, which is equivalent
(up to a Hadamard transform) to a multi-controlled Toffoli gate, which can be
implemented with O(n) Toffoli gates [41]. As soon as U and / or Of use more
than O(n) depth, qubits and gates, the cost of this operation becomes negligible.

Let θ := arcsin
√

M
N . It can be shown [17] that starting from U |0〉 and

applying k iterates of QAA, one produces the state:

QkU |0〉 = sin ((2k + 1)θ)

 1√
M

∑
x∈f−1(1)

|x〉

+ cos ((2k + 1)θ)

 1√
N −M

∑
x∈f−1(0)

|x〉

 . (9)

This is why, knowingM (hence θ) in advance, we can succeed with probability
close to 1 by setting k =

⌊
π
4θ

⌋
. If we have only upper and lower bounds on M ,

we can use the following lemma.

Lemma 2. Assume that Ml ≤ M ≤ Mu. Run k =

⌊
π

4 arcsin(
√
Mu/N)

− 1
2

⌋
iter-

ates of QAA. The probability of success is:

psucc ≥ sin2

(
π

2

arcsin
√
Ml/N

arcsin
√
Mu/N

− 2 arcsin
√
Ml/N

)
. (10)

Proof. The choice of k ensures that (2k+1) arcsin
√

M
N ≤ (2k+1) arcsin

√
Mu

N ≤
π
2 , which means the sin remains an increasing function. We can use Equation 9

10

to bound the probability of measuring a good x:

psucc := sin2

(
(2k + 1) arcsin

√
M

N

)
≥ sin2

(
(2k + 1) arcsin

√
Ml

N

)

≥ sin2

((
π

2 arcsin(
√
Mu/N)

− 2

)
arcsin

√
Ml

N

)
. ut

In particular, if Ml and Mu are very close to M , then the success probability
will become negligibly close to 1 (as it is when M is known exactly). If they are
close up to a constant factor, then we ensure a constant probability of success.

3.2 Quantum ISD

Bernstein [11] noticed that Algorithm 1 is an exhaustive search for which one
can use Grover’s algorithm. Quantum ISD was subsequently improved in [35],
but not in a way that can be useful for us, since we refrain from using quantum
RAM and exponential space.

Adapting Prange’s algorithm to the QAA framework is easily done, by defin-
ing the operators U and Of :

• U produces a uniform superposition of subsets I ⊆ {0, . . . , n − 1} of size
n− k:

|I〉 =
1√
|Sn,k|

∑
I∈Sn,k

|I〉 , (11)

where I is simply represented as a bit-vector of length n, where “1” in
position i indicates that i ∈ I.
Such a quantum state is known in the literature as a Dicke state, and several
efficient methods exist to compute it [4]. The cost of these methods is always
significantly smaller than the cost of linear algebra in Of (see, e.g., [45]). For
example, the state can be constructed bit by bit, using controlled rotation
operators depending on the previous bit choices: as there are n such rotations
and they need to be controlled by ≤ n bits, the total gate count can be
bounded by O

(
n2
)
.

• Of is an oracle for the function f that takes as input I, and returns 1 if and
only if HI is invertible and H−1I s is of Hamming weight w.
Bernstein estimated that the evaluation of f would require O

(
n3
)

“bit op-
erations” [11]. This analysis was refined by further works [45]. However, to
date, all implementations of Of start by writing the matrix HI , then invert-
ing it using Gaussian elimination. This strategy obviously requires at least
(n− k)2 qubits.

Further Improvements. At PQCrypto 2022, Esser et al. [27] introduced a “hy-
brid” method to reduce the space requirement, at the expense of increasing the
total time complexity. Their strategy very roughly consists in reducing the size of
the linear system to invert, by getting rid of some lines and columns at random,

11

until one solution is satisfying. Their approach doesn’t modify the Gaussian
elimination part of the quantum ISD. However it only reduces the memory by
a constant factor, with a significant loss in the time complexity exponent. In
contrast, our approach is memory-efficient by design, and does not introduce
any asymptotic loss.

Another approach that reduces the time complexity is Decoding One Out of
Many (DOOM), which can be used for free for the quasi-cyclic variant of the
problem [49]. In short, the existence of a solution e guarantees the existence of
n−k solutions corresponding to shifted syndromes. When the oracle Of is based
on Gaussian elimination, it is easy to extend it to find any of these solutions:
instead of inverting the matrix HI and multiplying it to s, we multiply it to the
new matrix (s1|s2| . . . |sn−k) made by concatenating all error syndromes, and
look for a column having the correct Hamming weight. This reduces the number
of iterates of quantum search by a factor

√
n− k.

Intriguingly, we do not know how to use DOOM in the context of Wiedemann
inversion, because Wiedemann inverts the matrix on a single given vector. Doing
this for another vector essentially requires to re-run the whole algorithm, without
any gain. Therefore we will lose a factor

√
n− k in time complexity compared

to previous works [45] for the cases of BIKE and HQC.

3.3 Quantum Prange Using Wiedemann Inversion

We give a very abstract formulation of our main result, where the matrix is only
accessed via a black-box representation of I and HI . In particular, this allows
to consider alternative ways to represent the selection of a subset of columns.

From now on, we let J be a set of bit-strings of fixed size such that there
exists a surjective mapping F from J to Sn,k, and furthermore, each subset has
the same number of preimages. Consequently, sampling uniformly at random
from J allows to sample uniformly at random from Sn,k, even though J may
be a bigger set. Furthermore, given any J ∈ J , we can extend our notation for
sub-matrices by writing HJ instead of HF (J).

For our main result, we need a stronger heuristic than Heuristic 1, which
indicates that being a solution, being an invertible matrix, and being a matrix
on which Algorithm 2 succeeds with two iterates, are roughly independent events.

Heuristic 2. The proportion of matrices HI where I is a solution, which are
invertible, and which Algorithm 2 can invert with k = 2 on input s, is at least
0.288× 2−1.70 ' 2−3.50.

We now assume that we have the following:

• A quantum circuit Init that, on input |0〉, returns |J 〉 =
∑
J∈J |J〉

• A quantum circuit MultH that, on input |J〉 |x〉 |y〉, where x,y ∈ Fn−k2 ,
returns |J〉 |y + HJx〉 |x〉

By their “space” complexity, we shall mean their entire qubit count, including
ancillas. Our main result, building upon our implementation of Wiedemann’s

12

algorithm in the quantum setting, integrates these two components in quantum
ISD.

Theorem 3. Given a circuit for Init with S(Init) qubits and G(Init) gates, and a
circuit for MultH with S(MultH) qubits and G(MultH) gates, under Heuristic 2,
there exists a quantum algorithm that solves the SDP with constant probability,
using space: max(S(Init), S(MultH) +O(n)), and gates:

O

(√ (
n
w

)(
n−k
w

) × (G(Init) + (n− k)G(MultH) + (n− k)2
))

. (12)

Proof. The algorithm is simply an adaptation of quantum Prange using QAA.
Formally, our goal is not exactly to recover a subset I that yields the error vector
e, but a representation of it through J .

The operator U is simply Init. For the operator Of , we use our quantum
implementation of Wiedemann’s algorithm (Lemma 3), which has gate count
O
(
(n− k)G(MultH) + (n− k)2

)
and uses S(MultH) +O(n) space. Importantly,

in case of failure in Wiedemann’s algorithm, f will return 0. In case of success,
we obtain the vector x such that HJx = s. It remains to test if its Hamming
weight is equal to w: the cost of this step is negligible with respect to the other
components of the algorithm.

The number of iterates to perform depends on the probability that a given
J ∈ J satisfies f , i.e., that the corresponding subset is solution, that HJ is an
invertible matrix, and that Wiedemann’s algorithm with two iterates succeeds.

Under Heuristic 2, this probability can be lower bounded by: 2−3.50
(n−k

w)
(n
w)

. The

result follows from Lemma 2. ut

3.4 Quantum Circuit Components

In order to implement the Berlekamp-Massey and Wiedemann’s algorithms in
an efficient and reversible manner, we need quantum circuits for several basic
operations. These circuits are folklore and / or simple and / or borrowed from
previous works; they are constructed entirely from X, CX and CCX gates.

We summarize here the main results needed, and the interested reader can
find more details in Section A.

Fan-in. A fan-in circuit implements the operation:

|v0, . . . , vn−1, b〉 7→ |v0, . . . , vn−1, b+ (
∑
i

vi)〉 .

It can be done using O(n) CX gates and in depth O(log n).

Fan-out. A fan-out circuit implements the operation: |b, 0, . . . , 0〉 7→ |b, b, . . . , b〉.
It can be done using n CX gates and depth O(log n).

13

Controlled-shift. A controlled-shift by a constant k maps:{
|0, v0, . . . , vn−1〉 7→ |0, v0, . . . , vn−1〉
|1, v0, . . . , vn−1〉 7→ |1, vk, . . . , vn−1, v0, . . . , vk−1〉

(13)

The shift is controlled by the first qubit. It can be done using 4n CX gates, 3n
CCX gates, O(n) ancilla qubits and O(log n) depth.

Reversion. A reversion circuit maps a register of n bits of the form:

1, b0, . . . , bd−1, 1, 0, . . . , 0 to: 1, bd−1, . . . , b0, 1, 0, . . . , 0 ,

i.e., it reverts the order of bits without taking into account the trailing zeroes
(d being a variable), and assuming that the first bit is 1. It can be done using
O(n log n) gates, depth O(n) and using O(n) ancilla qubits.

(Constant) Matrix-vector Multiplication. The multiplication of an n-bit vector
x ∈ Fn2 by a constant matrix H ∈ Fm×n2 :

|x〉 |y〉 MultConstantH7−−−−−−−−−→ |x〉 |y + Hx〉 ,

can be implemented using ≤ mn CX gates (the exact number depends on the
matrix H), depth max(m,n) and no ancilla qubits.

Circulant Matrix-vector Multiplication. In Section 5.3 we will use a quantum
circuit for multiplication of a vector by a constant circulant matrix: we borrow
its principle from Gidney [30].

When H is a circulant matrix of dimension n× n, there exists an implemen-
tation for MultConstantH using O

(
nlog2 3

)
CX gates, depth O

(
nlog2 3

)
and O(n)

ancilla qubits.

4 Space-Optimized Reversible Wiedemann Inversion

In this section, we detail our reversible implementation of Wiedemann’s matrix
inversion, assuming that both the representation of column subsets (via the
set J) and the matrix-vector product are given as black-boxes, i.e., quantum
circuits: {

Init : |0〉 7→
∑
J∈J |J〉

MultH : |J〉 |x〉 |y〉 7→ |J〉 |y + HJx〉 |x〉 .
(14)

We emphasize that the implementation of both components is not trivial, and
that the time and space complexities of the iterate in Grover’s search depend in
majority on them. But these implementations are deferred to Section 5.

The algorithm that we implement in this section is Algorithm 3, which corre-
sponds to Wiedemann’s algorithm with two loop iterates. Notice that in case we
succeed in the first iterate, we will have t = 0 at Step 8, so the output value y will

14

Algorithm 3 Wiedemann’s algorithm, simplified.

Constant: matrix H, s
Input: J
Output: a Boolean Success, and if Success = True, a vector x such that HJx = s

1: t← s
2: y← 0
3: u← (1, 0, . . . , 0)
4: Compute the sequence S = (uTHi

Jt)0≤i≤2(n−k) . See Lemma 4
5: Compute the minimal polynomial C(X) of the sequence using Berlekamp-Massey

. See Algorithm 5
6: Let C′(X) = (C(X) + 1)/X
7: y← y + C′(HJ)t . See Lemma 5
8: t← t + HJy . If success at the first step, here t = 0
9: u← (0, 1, 0, . . . , 0)

10: Compute the sequence S = (uTHi
Jt)0≤i≤2(n−k)

11: Compute the minimal polynomial C(X) of the sequence and C′(X) = (C(X) +
1)/X

12: y← y + C′(HJ)t
13: If HJy = s, then set Success to True (False otherwise)
14: Return Success, y

remain unchanged. Therefore, whether the first or second loop iterate succeeds,
the algorithm succeeds. Otherwise, even if the matrix is actually invertible, the
Boolean flag Success will be set to False. This entire section proves the following
result.

Lemma 3. There exists a (classical) reversible circuit implementation of Algo-
rithm 3 which uses S(MultH)+O(n) qubits and O

(
(n− k)G(MultH) + (n− k)2

)
gates.

Proof. The remainder of this section proves that all steps of this algorithm can
be implemented reversibly and efficiently.

• The computation of each sequence (uTHi
Jt) is done with Lemma 4.

• The evaluation of polynomials is done with Lemma 5.
• The Berlekamp-Massey algorithm for a sequence of length O(n− k) can

be implemented with O
(
(n− k)2

)
gates and O((n− k) log(n− k)) depth

by Lemma 6.

All these individual steps occupy a total of O(n) space for their outputs, which
is erased by uncomputing them backwards once we have obtained the result. ut

4.1 Evaluation of Matrix Powers

We elaborate here on a sequence of orthogonal polynomials in F2[X]. These poly-
nomials arise from the fact that our MultH circuit, i.e., our matrix multiplication,
is performed out of place.

15

Indeed, if a matrix A is invertible, the operation y 7→ Ay is reversible. This
means that there exists a reversible circuit performing the computation in-place:
|y〉 7→ |Ay〉. However, the reverse of this circuit would implement |y〉 7→ |A−1y〉.
This means that if we knew how to multiply by A in place, we would essentially
also know how to invert A.

This is the reason why we start from an out-of-place matrix-vector multipli-
cation, which is much easier to implement:

|x〉 |y〉 MultA7−−−−→ |y + Ax〉 |x〉 (15)

where x,y are two vectors. This is essentially a round of a Feistel scheme. It is
easy to notice that MultA is a self-inverse operation followed by a swap, so it is
reversible.

Unfortunately, Wiedemann’s algorithm requires to compute iterates Aix
given a starting vector x. Since we are computing MultA out of place, naively
computing a sequence of length O(n) would have us store O(n) intermediate
vectors. We can do better than this through a family of orthogonal polynomials,
which arise naturally by iterating MultA.

Polynomials. We define the following polynomials:{
P−1(X) = 0, P0(X) = 1

∀i ≥ 1, Pi(X) = Pi−2(X) +XPi−1(X)
(16)

Then we have the following:

∀i ≥ 0,MultA
i(t,0) = Pi(A)t, Pi−1(A)t . (17)

The proof is an elementary induction over i. Indeed, for all i:

MultA
i+1(t,0) = MultA(MultA

i(t,0)) = MultA(Pi+1(A)t, Pi(A)t)

= Pi(A)t + APi+1(A)t, Pi+1(A)t = Pi+2(A)t, Pi+1(A)t . (18)

It can be noticed that for all i ≥ 0, Pi is of degree i. As a consequence, there
exists a binary, lower triangular (invertible) matrix M` such that:

M`

P0(X)
P1(X)

...
P`(X)

 =

1
X
...
X`

 . (19)

We can now explain how to perform two important steps in Wiedemann’s
algorithm:

• Evaluating a sequence uTAit
• Evaluating C(A)t for a polynomial C

16

both reversibly, and using only linear additional space.

Lemma 4. Let A be a matrix of dimension n − k. Given an implementation
of MultA with G gates, depth D and O(n− k) space, there exists a reversible
circuit to compute the sequence uTAit for i = 0, . . . , ` using O

(
`G+ `2

)
gates,

depth O(`D + ` log `) and O(n− k + `) space.

Proof. The idea is the following: we compute the uTAit as:
uTA0t
uTA1t

...
uTA`t

 = M`

uTP0(A)t
uTP1(A)t

...
uTP`(A)t

 . (20)

So, we only maintain two (n − k)-qubit registers for computing the successive
Pi(A)t in place, and ` qubits for the sequence. Each time we compute a new
Pi(A)t, we compute uTPi(A)t and then XOR it to the appropriate registers of
the sequence. This operation requires a fan-out of depth O(log `), which accounts
for the additional depth ` log `.

Overall there will be O
(
`2
)

CX operations performed. The complexity is
dominated by the MultA operations. Once we have constructed the entire se-
quence, we perform the MultAs in reverse to erase the intermediate registers.

ut

Lemma 5. Let A be a matrix of dimension n − k. Given an implementation
of MultA with G gates, depth D and O(n− k) space, there exists a reversible
circuit to compute C(A)t on an input polynomial C(X) of degree ≤ ` us-
ing O(`G+ ((n− k) + `)`) gates, depth O(`D + ` log(n− k)) and O(n− k + `)
space.

Proof. The technique is very similar, using the fact that each Ait is a linear
combination of the Pj(A)t with fixed coefficients.

Let us write M` = (mij)0≤i,j≤` and C(X) =
∑`
i=0 ciX

i, then:

C(A)t =
∑̀
i=0

ciA
it =

∑̀
i=0

∑̀
j=0

mijciPj(A)t =
∑̀
j=0

(∑̀
i=0

mijci

)
Pj(A)t . (21)

We start by computing the vector of all c′j :=
(∑`

i=0mijci

)
for 0 ≤ j ≤ `, and

storing this in `+ 1 qubits. Afterwards we compute the sequence of the Pj(A)t,
and depending on the stored coefficients, add this to our output register. The
additional depth ` log(n−k) comes from having to fan-out the current coefficient
to control the addition to the output. ut

4.2 Reversible Berlekamp-Massey

In order to explain our reversible implementation, we recall the Berlekamp-
Massey algorithm [8] in Algorithm 4. We use N do denote the length of the
input sequence, which will be O(n− k) in our case.

17

Algorithm 4 Classical Berlekamp-Massey algorithm

1: Input: sequence s0, . . . , sN−1 in Fq

2: Output: retroaction polynomial C(X) ∈ Fq[X]
3: C(X)← 1
4: B(X)← 1
5: L← 0;m← 1; b← 1
6: for all k = 1 . . . N − 1 do
7: d← sk +

∑L
i=1 cisk−i

8: if d = 0 then . Case 1
9: m← m + 1

10: else if 2L 6 k then . Case 2
11: B(X), C(X)← C(X), C(X)− d

b
XmB(X)

12: L← k + 1− L; b← d;m← 1
13: else . Case 3
14: C(X)← C(X)− d

b
XmB(X)

15: m← m + 1
16: end if
17: end for
18: Return Reversed(C(X))

Similar to the reversible version of Euclide’s algorithm [48], we run a sequence
of iterates where each one creates only O(1) bits of garbage, which can be stored.
In our case, there are two such Boolean values: d, and a value v which decides if
we enter case 2 or case 3 (leading to a modification of the polynomials, and of
L).

First of all, since we focus on the binary case, the coefficient b is always
1 in the algorithm. Second, we notice that we can remove the variable m, by
performing instead the operation B(X) ← XB(X) each time we would have
incremented m. This turns the algorithm into a less efficient version, but more
suitable for reversibility.

Finally, we reorder the operations in the loop, as we notice that the shift
B(X)← XB(X) is performed in all cases, and the operation C(X)← C(X) +
B(X) is performed in all cases where d = 1. We obtain Algorithm 5.

Lemma 6. Algorithm 5 can be implemented as a quantum circuit using O
(
N2
)

quantum gates, O(N) space and depth O(N logN).

Proof. First of all, it is clear that each of the N loop iterates applies reversibly
on the registers C,B,L, di, vi

After performing these iterates, we copy the output C(X). Then we compute
the reverse of the iterates to erase all intermediate registers. After, we still need
to reverse the polynomial C(X), which is done in place using the implementation
described in Lemma 12.

In order to simplify the implementation, L is represented in unary, i.e., as a
list of N bits (l1, . . . , lN) where li = 1 ⇐⇒ L ≤ i. This allows to perform the
computation of dk in O(N) gates (we perform the sum from i = 1 to N but use
Toffoli gates with li as inputs). The depth is O(logN) using a fan-in circuit.

18

Algorithm 5 Reversible Berlekamp-Massey algorithm for F2.

1: Input: sequence s0, . . . , sN−1 in F2

2: Output: retroaction polynomial C(X) ∈ F2[X]
3: Storage: register for C(X) (N bits), B(X) (N bits), L (N bits, in unary repre-

sentation)
4: Garbage: register for d1, . . . , dN , d0 := 1, register for v0, . . . , vN−1

5: C(X)← 1
6: B(X)← 1
7: L← 0
8: for all k = 0 . . . N − 1 do
9: dk ← sk +

∑L
i=1 cisk−i

10: vk ← (2L 6 k) . Boolean value deciding between case 2 and case 3
11: B(X)← XB(X)
12: Conditioned on dk = 1 do
13: C(X)← C(X) + B(X)
14: EndConditioned
15: Conditioned on dkvk = 1 do . Remaining operations of case 2
16: B(X)← B(X) + C(X)
17: L← k + 1− L . Can be done in place (k + 1 is a constant here)
18: EndConditioned
19: end for
20: Return Reversed(C(X))

Then, vk can be computed with O(1) operations since we can just access
lbk/2c.

The shift of B can be implemented by swaps (which are not counted in the
total number of gates, as they simply amount to renumbering the qubits). The
two conditional XORs costs O(N) gates and depth O(logN), needing again fan-
outs of the control. In order to update the unary representation of L, we only
need O(N) gates, as we will apply X gates on the bits at positions before k+ 1,
then swap the entire sub-list (though k varies during the loop, it is a constant
of the circuit). The depth is O(logN), since this is also controlled and we need
to fan-out the control.

Finally, the reversion of C costs O(N logN) gates and depth O(N). We use
no more than O(N) ancillas throughout the circuit. ut

4.3 Benchmarks

We denote by Q = QJ + 2(n − k) + A the total number of qubits used by the
MultH circuit, where A is the number of ancilla qubits and QJ the number of
qubits used to represent J . We also denote by GX, GCX and GCCX its respective
X, CX and CCX gate counts.

Using our implementation of Berlekamp-Massey and Wiedemann’s algorithms,
we obtain the following counts. We neglect terms of smaller magnitude, except
for the qubit count which is exact.

19

Depth = 24D(n− k) + 152(n− k) log2(n− k)
Qubits = Q−A+ 7(n− k) + max(A+ 3(n− k) + 2, 10(n− k) + 11) + 7
CCX Gates = 24(n− k)GCCX + 116(n− k)2

CX Gates = 24(n− k)GCX + 356(n− k)2

X Gates = 24(n− k)GX

(22)
As our implementations of MultH will typically have quadratic gate count and

depth at least linear in (n− k), we can observe that this cost quickly dominates
over the rest of the algorithm, though the additional terms are not negligible.
The constant factors are also quite large, owing to the number of polynomial
sequences evaluated during Wiedemann’s algorithm and their size (twice n − k
to ensure success in the Berlekamp-Massey algorithm).

5 Implementing the Multiplication Circuit

In this section, we implement the multiplication circuit (with an implicit matrix).
We propose two main approaches, using different representations of the choice
of sub-matrix, i.e., different definitions of the set J .

The first one (Section 5.1) is the regular approach chosen in previous works [45],
where J is the set of n-bit strings of Hamming weight n−k. In that case, Init is a
unitary creating a so-called Dicke state, whose implementation can be borrowed
from these previous works. Using this representation, we are able to decrease the
space complexity of Wiedemann’s algorithm (hence, the entire iterate) to O(n).

The second one (Section 5.2) is based on permutations and sorting. In this
approach, J maps to a set of permutations of {0, . . . , n− 1}. Each permutation
π of {0, . . . , n − 1} naturally specifies a subset I = {π(0), . . . , π(n − k − 1)} ∈
Sn,k. To the best of our knowledge, this idea has appeared in [44] but was not
completely exploited. Our result shows a remarkable trade-off between qubit
and gate count, where the qubit count increases to O

(
n log2 n

)
, but remains

comparable in practice to the space-efficient approach; while the total gate count
remains at O

(
n3
)
, the constant factor is reduced, and the CCX gate count

becomes asymptotically lower.
Using this second approach, further optimizations are possible (Section 5.3),

although they do not perform well for practical parameters at the moment.

5.1 Space-Optimized Circuits

In this subsection, J is the set of n-bit strings of Hamming weight n− k, which
is identified with Sn,k.

Lemma 7. There exists a reversible circuit implementing the MultH operation:

|J〉 |x〉 |y〉 MultH7−−−−→ |J〉 |y + HJx〉 |x〉 (23)

which uses O(n) space, O(n(n− k)) gates and depth O(n log(n− k)).

20

Proof. The operation that we implement is basically the computation of HJx,
except that we will directly XOR the result to y.

Let x := (x0, . . . , xn−k−1). Furthermore, let a = (a0, a1, . . . , an−k−1) be a
vector of integers where a0 is the position of the first “1”, a1 the second one,
etc. We note the coefficients of H as (hij) and HJ = (h′ij), then by definition of
aj :

∀0 ≤ i ≤ n− k − 1,∀0 ≤ j ≤ n− k − 1, h′ij = hiaj =

n−1⊕
k=0

δajkhik . (24)

Thus, we can express HJx as follows:

∀0 ≤ i ≤ n− k − 1, (HJx)i =

n−k−1⊕
j=0

h′ijxj =
n−k−1⊕
j=0

n−1⊕
`=0

δaj`hi`xj

=

n−1⊕
`=0

n−k−1⊕
j=0

δaj`xj

hi` . (25)

Our strategy is to compute the vector v :=
(⊕n−k−1

j=0 δaj`xj

)
0≤`≤n−1

. This

vector simply places the coordinates of x at the positions marked by J , keeping
their order. As an example, if we have J = (0, 1, 0, 0, 1, 1, . . .), then v will start
with (0, x0, 0, 0, x1, x2, . . .).

In order to do so, we maintain a unary counter e, implemented as a register
with n − k bits, which remains of weight 1, and represents the number c such
that ec = 1. Updating this register is done by a controlled shift, using O(n− k)
gates and O(log(n− k)) depth.

For ` = 0 to n, we first set v` := i`e·x, which can be computed with O(n− k)
CCX gates and O(log(n− k)) depth (a fan-out circuit on i` is needed, then a
fan-in to aggregate the sum). Then, we update the counting register depending
on i`.

Once we have computed v`, we use another fan-out and update the output
HJx. Indeed, from Equation 25 we have:

∀0 ≤ i ≤ n− k − 1, (HJx)i =

n−1⊕
`=0

v`hi` . (26)

So we simply need to XOR v` at the right positions. This costs O(n− k) CXs.
We then uncompute the fan-out, erase v` and go to the next iterate. Since there
are n iterates, the overall gate count and depth are respectively O(n(n− k)) and
O(n log(n− k)). ut

Cost Formulas. We computed asymptotic formulas for this space-optimized
MultH circuit (left), and combined them with Equation 22 to obtain the cost of

21

the inversion circuit (right):
Depth = 4n log2(n− k)
Qubits = n+ 6(n− k) + 2
CCX Gates = 5n(n− k)
CX Gates = 9n(n− k)
X Gates = 2

Depth = 96n(n− k) log2(n− k)
Qubits = n+ 19(n− k) + 18
CCX Gates = 120n(n− k)2

CX Gates = 216n(n− k)2

X Gates = 48(n− k)
(27)

The multiplication of constants between the MultH circuit and the inversion
circuit creates even larger constants, which are far from negligible for actual
parameters.

5.2 Sorting-Based Approach

In this second approach, the set J is defined by means of a sorting network. Note
that [45] used similar tools to permute the columns of the matrix H within the
QAA iterate; our reasoning is different here since we directly implement MultH.

A sorting network with n entries is defined as a sequence of comparators and
switches, which respectively compare a pair of entries at fixed positions, and
swap them depending on the result of the comparison. While sorting networks
with O(n log n) comparators exist [1], one of the most efficient in practice is
Batcher’s odd-even mergesort [5], which has depth dlog2 ne (dlog2 ne+ 1)/2 and
contains n

4 dlog2 ne (dlog2 ne − 1) + n − 1 comparators. This is the one we use
here.

Let (A0, . . . , An−1) be an n-tuple of integers. Let us define the mapping N
from (A0, . . . , An−1) to bit-strings of length n

4 dlog2 ne (dlog2 ne − 1) + n − 1 =

O
(
n log2 n

)
which gives the results of all comparisons in the sorting network,

where the comparators are taken in a fixed, arbitrary order. While the sorting
network itself is not reversible, storing N (A0, . . . , An−1) is sufficient to make it
reversible. This increases the space usage of Batcher’s network to O

(
n log2 n

)
.

Definition of Init. Equipped with the mapping N above, we can now properly
define J as:

J =
{(

(A0, . . . , An−1),N (A0, . . . , An−1)
)
, A0, . . . , An−1 ∈ [0;n3 − 1]

}
. (28)

That is, we take an n-tuple of integers (A0, . . . , An−1) between 0 and n3,
append the result of all comparisons in the network, and identify this as a bit-
string.

The unitary Init, which creates the uniform superposition over J , essentially
consists in taking uniform superposition of such integers (which is efficient) and
computing a reversible sorting network. As a comparison of integers can be
performed without ancillas using a modified CDKM addition circuit [22], Init
uses almost no ancillas.

22

This definition has the obvious advantage that we do not need to construct
Dicke states anymore (which require to craft rotation operators). Second, the
multiplication circuit is less costly, as we will show later.

Mapping to a Subset of Columns. We explain here how an element J ∈ J
defines a subset Sn,k, and why all subsets have the same probability to appear.
This mapping is especially important for the definition of MultH.

First of all, an element J ∈ J defines a permutation πJ of {0, . . . , n − 1},
which is the permutation such that sorting A0, . . . , An−1 puts the integer Ai
in position πJ(i). This permutation can easily be implemented by a switching
network. This network has the same structure as the sorting network that defines
N , but it is made only of controlled swaps (the switches), which are controlled
on the bits of N (A0, . . . , An−1).

It is well-known that, if we sort n distinct entries chosen uniformly at ran-
dom, the permutation πJ is also uniformly random. By choosing entries with
sufficiently many bits, they will all be distinct with large probability.

Lemma 8. Let (A0, . . . , An−1) be drawn uniformly at random in [0;n3−1], then
they are all distinct with probability at least 1− 1

2n .

Proof. We simply lower bound the probability of all Ai to be distinct, as:(
1− 1

n3

)(
1− 2

n3

)
· · ·
(

1− n− 1

n3

)
≥ 1−

n−1∑
i=1

i

n3
≥ 1− 1

2n
. ut

In the case where the entries are not distinct, we do not know if the al-
gorithm will succeed. Luckily, our implementation of Wiedemann’s inversion
ensures that there are no false positives, so we can still use QAA (Theorem 3).
Indeed, we know that the oracle f returns 1 for the tuples (A0, . . . , An−1) for
which all the numbers are distinct, and the corresponding permutation returns
a solution, so the probability of success of the amplified algorithm is at least(
1− 1

2n

)
2−3.50

(n−k
w)

(n
w)

.

Finally, the permutation πJ defines a subset of columns from Sn,k as follows:
the positions of the columns are πJ(0), πJ(1), . . . , πJ(n − k − 1). As πJ is a
uniformly random permutation (when selecting J at random from J), the subset
{πJ(0), πJ(1), . . . , πJ(n− k − 1)} is also a uniformly random element of Sn,k.

Definition of the Multiplication Circuit. We make a small tweak to the
definition of the sub-matrix HJ . Since we defined a permutation of columns, it
makes sense to define HJ as:

(HJ)ij := (hiπJ (j)) (29)

This definition is slightly different from the one of Section 5.1, where the columns
were put in a fixed order. Here, the columns of HJ will also be permuted. This
has no incidence on the rest of the algorithm.

23

We can now implement our circuit for MultH, which takes as input an element
of J . In fact, this circuit does not need the integers (A0, . . . , An−1), which we
are keeping along only for the sake of reversibility. It only relies on the bit-string
N (A0, . . . , An−1) which defines the permutation πJ .

Lemma 9. There exists a reversible circuit implementing the MultH operation:

|J〉 |x〉 |y〉 MultH7−−−−→ |J〉 |y + HJx〉 |x〉 (30)

using O
(
n log2 n

)
space, O

(
n log2 n

)
CCX gates, O

(
n2
)

CX gates and depth
n+ o(n).

Proof. The idea of the circuit is very similar to Lemma 7. First, we compute
the vector v that places the input bits x at appropriate positions, i.e., bit xi in
position πJ(i). Then, we compute the fixed matrix-vector product Hv.

The first step is done using the switching network, i.e., a series of O
(
n log2 n

)
controlled swaps with depth O

(
log2 n

)
.

By Lemma 13, the second step is done in depth n and O
(
n2
)

CX gates. ut

Interestingly, the dominating operation becomes the product of v by the
constant matrix H. This is a linear quantum circuit, which can be implemented
with only CX gates. The depth is also asymptotically optimal. This appears
clearly on our asymptotic cost formulas for this alternative function:

Depth = n
Qubits = n+ (n− k) + n

4 dlog2 ne (dlog2 ne − 1) + n− 1 + 3n log2 n
CCX Gates = 1

2n(log2 n)2

CX Gates = n(n− k)
X Gates = O(1)

(31)

Having much lower constants than Equation 27, these counts yield much
more favorable results when we plug them in Equation 22:

Depth = 24n(n− k)
Qubits = n

4 dlog2 ne (dlog2 ne − 1) + n+ 19(n− k) + 17 + 3n log2 n
CCX Gates = 12n(n− k)(log2 n)2 + 116(n− k)2

CX Gates = 24n(n− k)2 + 356(n− k)2

X Gates = O(n− k)
(32)

In both these formulas, the term 3n log2 n in the qubit count comes from the
initial tuple of integers (A0, . . . , An−1). They actually do not intervene in the
definition of the circuits, but we need to keep them along in order to be able
to invert the Init circuit. This term is asymptotically negligible, but not entirely
when n ' 103.

24

5.3 Gate-Optimized Multiplication Circuit for Circulant Matrices

In the case of BIKE [2] and HQC [40], one has n = 2k and the parity-check
matrix H is made of two k × k circulant blocks. Therefore, we can replace the
multiplication by H by a more efficient circuit using Karatsuba multiplication
of polynomials (see Corollary 1 in Section A). While our benchmarks show a
noticeable improvement in total gate count, the downside is an increase in depth,
since the Karatsuba circuit that we use, based on Gidney [30], has asymptotically
worse depth.

Asymptotically, binary polynomial multiplication can be performed in Õ(n)
binary operations, for example using Cantor’s algorithm [19] in O

(
n(log n)1.585

)
.

This means that there exists a circuit for multiplication by a circulant matrix
using O

(
n(log n)1.585

)
gates and qubits, and consequently:

Theorem 4. If the parity-check matrix is block-circulant, there exists a quantum

algorithm solving SD for random codes using O
(
n2(log n)2 ×

√
(n
k)

(n−t
k)

)
gates and

O
(
n(log n)2

)
qubits.

This decrease of the gate count is specific to our “sorting-based” approach,
using the fact that H is structured and that Wiedemann’s algorithm can make
use of this. To the best of our knowledge, this is the first asymptotic improvement
over the O

(
n3
)

linear algebra factor in quantum ISD to date.
Unfortunately, while efficient classical software exists [18], corresponding

quantum circuits for circulant matrix-vector multiplication have not been stud-
ied as much. In particular, the constant factors, depth and qubit counts of this
method remain unknown.

6 Evaluation of Costs for Code-Based Cryptosystems

In this section we give resource estimates for the three inversion circuits detailed
in Section 5, and compare them.

6.1 Comparison of Circuits

We computed the number of gates, qubits and depth of our circuits for pa-
rameters of the three round 4 candidates for post-quantum key-exchange based
on codes at the NIST post-quantum standardization: Classic McEliece [13],
BIKE [2] and HQC [40], and compare them with those of [45] in Table 1.

We note that, while we compare here with [45], Bonnetain and Jaques also
designed a quantum circuit for binary Gaussian elimination for a matrix of di-
mension (n− k)× (n− k) with depth O((n− k) log(n− k)) [15]. This is better
than the depth O

(
(n− k)2

)
reported in [45], so we believe their counts could be

immediately improved by using the circuit of [15] as a replacement. Nevertheless,
our main focus in Table 1 is on the number of qubits.

25

Table 1. Quantum resource estimates for the QAA iterate. Counts are given in log2.
The number of CCX gates is not given in [45], but due to the structure of the Gaussian
elimination circuit, it is of the same order as the total number of gates.

Counts (in log2)
Implementation Scheme n k CCX Total gates Depth Qubits DW

[45]

BIKE L1 24646 12323 43 28 29 57
BIKE L3 49318 24659 46 31 31 62
BIKE L5 81946 40973 48 32 33 65
HQC L1 35338 17669 45 30 30 60
HQC L3 71702 35851 47 32 32 64
HQC L5 115274 57637 50 34 34 68
McEliece L1 3488 2720 30 20 22 42
McEliece L3 4608 3360 32 22 23 45
McEliece L5-1 6688 5024 34 23 24 47
McEliece L5-2 6960 5413 33 23 24 47
McEliece L5-3 8192 6528 34 23 24 47

Space-optimized
Section 5.1

BIKE L1 24646 12323 48.7 50.2 38.9 18.0 56.9
BIKE L3 49318 24659 51.7 53.2 41.0 19.0 60.0
BIKE L5 81946 40973 53.9 55.4 42.5 19.7 62.2
HQC L1 35338 17669 50.2 51.7 40.0 18.5 58.5
HQC L3 71702 35851 53.3 54.8 42.1 19.5 61.6
HQC L5 115274 57637 55.4 56.8 43.5 20.2 63.7
McEliece L1 3488 2720 37.8 39.3 31.7 14.1 45.8
McEliece L3 4608 3360 39.6 41.1 32.9 14.8 47.7
McEliece L5-1 6688 5024 41.0 42.5 33.9 15.2 49.1
McEliece L5-2 6960 5413 40.9 42.3 33.8 15.2 49.0
McEliece L5-3 8192 6528 41.3 42.8 34.1 15.3 49.4

Sorting-based
Section 5.2

BIKE L1 24646 12323 39.5 46.4 32.8 21.3 54.1
BIKE L3 49318 24659 41.7 49.4 34.8 22.5 57.3
BIKE L5 81946 40973 43.4 51.6 36.2 23.3 59.5
HQC L1 35338 17669 40.8 47.9 33.8 22.0 55.8
HQC L3 71702 35851 43.0 51.0 35.9 23.1 59.0
HQC L5 115274 57637 44.3 53.0 37.2 23.8 61.0
McEliece L1 3488 2720 32.0 35.9 26.2 18.0 44.2
McEliece L3 4608 3360 33.4 37.6 27.2 18.6 45.8
McEliece L5-1 6688 5024 34.3 38.9 28.1 19.1 47.2
McEliece L5-2 6960 5413 34.3 38.8 28.1 19.1 47.2
McEliece L5-3 8192 6528 34.6 39.2 28.4 19.4 47.8

Karatsuba
Section 5.3

BIKE L1 24646 12323 39.5 44.3 40.3 21.4 61.7
BIKE L3 49318 24659 41.7 46.8 42.9 22.5 65.4
BIKE L5 81946 40973 43.4 49.1 45.2 23.3 68.5
HQC L1 35338 17669 40.8 46.3 42.4 22.0 64.4
HQC L3 71702 35851 43.0 48.9 45.0 23.2 68.2
HQC L5 115274 57637 44.3 49.6 45.7 23.8 69.5

26

Let us consider the Classic McEliece parameters for NIST security level 1,
which are at least as secure as AES-128 against Grover’s exhaustive key search
(“McEliece L1” in Table 1). Using the space-optimized circuit, the total number
of qubits required for quantum Prange is 18 + n + 19(n − k) = 18 098, instead
of 222 ' 4 194 304 reported in [45]. Previously one would have needed at least
(n − k)2 = 589 824 qubits at best to store the matrix being inverted using
Gaussian elimination. Our improvement brings the number of logical qubits to
the same order as the one required in factoring large instances of RSA [31] via
Shor’s algorithm [50].

However, this optimization of space comes at the expense of gate count and
depth. Indeed, both increase a thousandfold, mostly due to the large constant
factors appearing in Equation 27. Overall, the product between depth and width
of the circuit (so-called “DW” metric) increases slightly.

The sorting-based approach has a much better trade-off. On the same exam-
ple, it will use 258 769 qubits, among which 115 104 are used to store the state of
switches, and 125 568 to store the initial numbers which are sorted. This increase
in the space complexity comes entirely from our representation of the column
choice, which could likely be improved. On this example, the total gate count
and depth are significantly reduced but remain a factor 26 above those of [45].
The difference is more favorable for larger code lengths as the Toffoli count is
asymptotically smaller.

With the same amount of qubits, the use of Karatsuba-based multiplication of
polynomials for the matrix-vector product reduces the gate count asymptotically.
The difference is already noticeable for the BIKE and HQC parameters. However,
our implementation is not optimized in depth. As a consequence the DW product
increases significantly.

6.2 Discussion

Our work does not threaten the security of the NIST code-based candidates
Classic McEliece, BIKE and HQC. In fact, it does not overall improve the cir-
cuit depth with respect to [45] and [15], and the gains in DW product that we
observed with respect to [45] come mostly from the reduction in qubits. Besides,
we lose the gain of DOOM that is exploitable with Gaussian elimination in the
case of BIKE and HQC. However, this gain is of order

√
n on the number of iter-

ates, while the gain in Toffoli gate count (and total gate count for block-circulant
matrices) is of order n

log2 n
.

While our space-optimized circuit reaches quite competitive qubit counts,
we have observed that the sorting-based approach offers a better trade-off in
practice, and can be combined with an improved matrix multiplication circuit
for block circulant matrices. There are several ways in which this approach can
be improved.

First of all, the bottleneck of the cost in Toffoli (CCX) gates is the switching
network that is used in MultH. Right now, this network contains O

(
n log2 n

)
controlled swaps. However, it is known that given a permutation π of {0, . . . , n−
1}, one can design a network with only O(n log n) swaps that implements π.

27

Such an algorithm is described in detail in [12], but the difficulty would be to
implement it as an efficient quantum circuit. We would use this circuit once in
the QAA iterate and store the network using O(n log n) qubits. The CCX gate
of the MultH operation would further decrease to O(n log n).

The bottleneck in the space complexity is the integers (A0, . . . , An−1) which
we use as intermediates to sample a random permutation, and the state of the
comparators which we use to represent it. Other ways to generate a random
permutation (e.g., the Fisher–Yates shuffle) did not seem competitive. However,
our approach right now is quite conservative, as we ensured that the permutation
was sampled uniformly at random. This requirement can be relaxed: we only
want to sample from a family of permutations that distribute well the subset of
n−k columns to be selected, so that the probability of finding a solution remains
high. It is known that switching networks with O(n log n) and depth O

(
log2 n

)
with good mixing properties can be constructed [23]. We believe that such a
construction could be used to reduce both the CCX gate count and number of
qubits, but leave this as future work.

7 Conclusion

In this paper, we achieved new trade-offs in the linear algebra circuit required
in the quantum Prange’s algorithm. In particular, we can bring the number
of qubits down to O(n), at a level similar to what Shor’s algorithm requires
for large RSA instances. The core idea is to use Wiedemann’s matrix inversion
algorithm, where the matrix to invert is only implicitly represented. Our main
contribution is a complete reversible and space-efficient implementation of this
algorithm with detailed gate counts.

While our new approach removes the limitation of the number of qubits, we
still expect quantum ISD to remain unrealizable for code-based cryptosystems,
even for large-scale quantum computers, due to its large circuit depth and gate
count requirements.

Nevertheless, our result greatly improves the known time-memory trade-
offs [27], and switches the focus towards the time complexity. In this context,
we also showed that Wiedemann inversion, combined with an appropriate rep-
resentation of column permutations in Prange’s algorithm, improves the Toffoli
(CCX) gate count with respect to Gaussian elimination. It can also improve
the overall gate count in the case of circulant matrices. Our estimations shows
that these improvements are observable for actual parameters of code-based
cryptosystems, but further dedicated circuit optimizations could significantly
enhance these results.

Finally, although this paper focused on the quantum Prange algorithm, our
implementation of Wiedemann’s algorithm is of independent interest, as there
are other quantum algorithms that need to inverse a sparse or implicit matrix,
for example solving multivariate polynomial equation systems [28,14].

28

Acknowledgments. This work has been supported by the French Agence Na-
tionale de la Recherche through the France 2030 program under grant agreement
No. ANR-22-PETQ-0008 PQ-TLS.

References

1. Ajtai, M., Komlós, J., Szemerédi, E.: An o(n log n) sorting network. In: STOC.
pp. 1–9. ACM (1983). https://doi.org/10.1145/800061.808726

2. Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C., Ga-
borit, P., Ghosh, S., Gueron, S., Güneysu, T., et al.: Bike: Bit flipping key encap-
sulation (2017), https://bikesuite.org/

3. Bardet, M., Faugère, J., Salvy, B., Spaenlehauer, P.: On the complexity of solving
quadratic boolean systems. J. Complex. 29(1), 53–75 (2013). https://doi.org/
10.1016/J.JCO.2012.07.001, https://doi.org/10.1016/j.jco.2012.07.001

4. Bärtschi, A., Eidenbenz, S.: Short-depth circuits for dicke state preparation. In:
2022 IEEE International Conference on Quantum Computing and Engineering
(QCE). pp. 87–96. IEEE (2022)

5. Batcher, K.E.: Sorting networks and their applications. In: AFIPS Spring Joint
Computing Conference. AFIPS Conference Proceedings, vol. 32, pp. 307–314.
Thomson Book Company, Washington D.C. (1968). https://doi.org/10.1145/
1468075.1468121

6. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: EUROCRYPT.
Lecture Notes in Computer Science, vol. 7237, pp. 520–536. Springer (2012). https:
//doi.org/10.1007/978-3-642-29011-4_31

7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

8. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill series in systems science,
McGraw-Hill (1968), https://www.worldcat.org/oclc/00256659

9. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–
386 (1978). https://doi.org/10.1109/TIT.1978.1055873, https://doi.org/10.
1109/TIT.1978.1055873

10. Bernstein, D.J.: Batch binary edwards. In: CRYPTO. Lecture Notes in Com-
puter Science, vol. 5677, pp. 317–336. Springer (2009). https://doi.org/10.1007/
978-3-642-03356-8_19

11. Bernstein, D.J.: Grover vs. mceliece. In: PQCrypto. Lecture Notes in Com-
puter Science, vol. 6061, pp. 73–80. Springer (2010). https://doi.org/10.1007/
978-3-642-12929-2_6

12. Bernstein, D.J.: Verified fast formulas for control bits for permutation networks.
IACR Cryptol. ePrint Arch. p. 1493 (2020), https://eprint.iacr.org/2020/1493

13. Bernstein, D.J., Chou, T., Lange, T., von Maurich, I., Misoczki, R., Niederhagen,
R., Persichetti, E., Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Wang, W.:
Classic mceliece: conservative code-based cryptography (2020), https://classic.
mceliece.org/nist/mceliece-20201010.pdf

14. Bernstein, D.J., Yang, B.: Asymptotically faster quantum algorithms to solve
multivariate quadratic equations. In: PQCrypto. Lecture Notes in Computer
Science, vol. 10786, pp. 487–506. Springer (2018). https://doi.org/10.1007/

978-3-319-79063-3_23

29

https://doi.org/10.1145/800061.808726
https://doi.org/10.1145/800061.808726
https://bikesuite.org/
https://doi.org/10.1016/J.JCO.2012.07.001
https://doi.org/10.1016/J.JCO.2012.07.001
https://doi.org/10.1016/J.JCO.2012.07.001
https://doi.org/10.1016/J.JCO.2012.07.001
https://doi.org/10.1016/j.jco.2012.07.001
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://doi.org/10.1007/978-3-642-29011-4_31
https://www.worldcat.org/oclc/00256659
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1109/TIT.1978.1055873
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://eprint.iacr.org/2020/1493
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://doi.org/10.1007/978-3-319-79063-3_23
https://doi.org/10.1007/978-3-319-79063-3_23
https://doi.org/10.1007/978-3-319-79063-3_23
https://doi.org/10.1007/978-3-319-79063-3_23

15. Bonnetain, X., Jaques, S.: Quantum period finding against symmetric prim-
itives in practice. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(1), 1–
27 (2022). https://doi.org/10.46586/TCHES.V2022.I1.1-27, https://doi.org/
10.46586/tches.v2022.i1.1-27

16. Both, L., May, A.: Decoding linear codes with high error rate and its impact for
LPN security. In: PQCrypto. Lecture Notes in Computer Science, vol. 10786, pp.
25–46. Springer (2018). https://doi.org/10.1007/978-3-319-79063-3_2

17. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002). https://doi.org/
10.1090/conm/305/05215

18. Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in gf
(2)[x]. In: Algorithmic Number Theory: 8th International Symposium, ANTS-VIII
Banff, Canada, May 17-22, 2008 Proceedings 8. pp. 153–166. Springer (2008)

19. Cantor, D.G.: On arithmetical algorithms over finite fields. J. Comb. Theory,
Ser. A 50(2), 285–300 (1989). https://doi.org/10.1016/0097-3165(89)90020-4,
https://doi.org/10.1016/0097-3165(89)90020-4

20. Chailloux, A., Debris-Alazard, T., Etinski, S.: Classical and quantum algorithms
for generic syndrome decoding problems and applications to the lee metric. In:
PQCrypto. Lecture Notes in Computer Science, vol. 12841, pp. 44–62. Springer
(2021). https://doi.org/10.1007/978-3-030-81293-5_3

21. Cooper, C.: On the distribution of rank of a random matrix over a finite field.
Random Struct. Algorithms 17(3-4), 197–212 (2000)

22. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit (2004)

23. Czumaj, A.: Random permutations using switching networks. In: STOC. pp. 703–
712. ACM (2015). https://doi.org/10.1145/2746539.2746629

24. Dornstetter, J.: On the equivalence between berlekamp’s and euclid’s algorithms
(corresp.). IEEE transactions on information theory 33(3), 428–431 (1987)

25. Ducas, L., Esser, A., Etinski, S., Kirshanova, E.: Asymptotics and improvements
of sieving for codes. In: EUROCRYPT. Lecture Notes in Computer Science (2024),
https://eprint.iacr.org/2023/1577, to appear

26. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: An optimized
quantum implementation of ISD on scalable quantum resources. IACR Cryptol.
ePrint Arch. p. 1608 (2021), https://eprint.iacr.org/2021/1608

27. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: Hybrid de-
coding - classical-quantum trade-offs for information set decoding. In: PQCrypto.
Lecture Notes in Computer Science, vol. 13512, pp. 3–23. Springer (2022)

28. Faugere, J.C., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.: Fast
quantum algorithm for solving multivariate quadratic equations. arXiv preprint
arXiv:1712.07211 (2017)

29. Faugère, J., Horan, K., Kahrobaei, D., Kaplan, M., Kashefi, E., Perret, L.:
Fast quantum algorithm for solving multivariate quadratic equations. CoRR
abs/1712.07211 (2017), http://arxiv.org/abs/1712.07211

30. Gidney, C.: Asymptotically efficient quantum karatsuba multiplication. arXiv
preprint arXiv:1904.07356 (2019)

31. Gidney, C., Eker̊a, M.: How to factor 2048 bit rsa integers in 8 hours using 20
million noisy qubits. Quantum 5, 433 (2021)

32. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC.
pp. 212–219. ACM (1996)

30

https://doi.org/10.46586/TCHES.V2022.I1.1-27
https://doi.org/10.46586/TCHES.V2022.I1.1-27
https://doi.org/10.46586/tches.v2022.i1.1-27
https://doi.org/10.46586/tches.v2022.i1.1-27
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1016/0097-3165(89)90020-4
https://doi.org/10.1016/0097-3165(89)90020-4
https://doi.org/10.1016/0097-3165(89)90020-4
https://doi.org/10.1007/978-3-030-81293-5_3
https://doi.org/10.1007/978-3-030-81293-5_3
https://doi.org/10.1145/2746539.2746629
https://doi.org/10.1145/2746539.2746629
https://eprint.iacr.org/2023/1577
https://eprint.iacr.org/2021/1608
http://arxiv.org/abs/1712.07211

33. Guo, Q., Johansson, T., Nguyen, V.: A new sieving-style information-set decoding
algorithm. IACR Cryptol. ePrint Arch. p. 247 (2023), https://eprint.iacr.org/
2023/247

34. van Hoof, I.: Space-efficient quantum multiplication of polynomials for binary finite
fields with sub-quadratic toffoli gate count. IACR Cryptol. ePrint Arch. p. 1170
(2019), https://eprint.iacr.org/2019/1170

35. Kachigar, G., Tillich, J.: Quantum information set decoding algorithms. In:
PQCrypto. Lecture Notes in Computer Science, vol. 10346, pp. 69–89. Springer
(2017). https://doi.org/10.1007/978-3-319-59879-6_5

36. Lee, P.J., Brickell, E.F.: An observation on the security of mceliece’s public-key
cryptosystem. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 330,
pp. 275–280. Springer (1988). https://doi.org/10.1007/3-540-45961-8_25

37. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory
15(1), 122–127 (1969). https://doi.org/10.1109/TIT.1969.1054260, https://
doi.org/10.1109/TIT.1969.1054260

38. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in O(20.054n). In:
ASIACRYPT. Lecture Notes in Computer Science, vol. 7073, pp. 107–124. Springer
(2011). https://doi.org/10.1007/978-3-642-25385-0_6

39. May, A., Ozerov, I.: On computing nearest neighbors with applications to de-
coding of binary linear codes. In: EUROCRYPT (1). Lecture Notes in Com-
puter Science, vol. 9056, pp. 203–228. Springer (2015). https://doi.org/10.1007/
978-3-662-46800-5_9

40. Melchor, C.A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.C.,
Gaborit, P., Persichetti, E., Zémor, G., Bourges, I.: Hamming quasi-cyclic (hqc)
(2018), https://pqc-hqc.org/

41. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
42. NIST: Submission requirements and evaluation criteria for the post-

quantum cryptography standardization process (2016), https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf
43. NIST: Round 4 standardisation results for the post-quantum cryptogra-

phy standardization process (2024), https://csrc.nist.gov/projects/

post-quantum-cryptography/round-4-submissions
44. Perriello, S.: Design and development of a quantum circuit to solve the information

set decoding problem (2017)
45. Perriello, S., Barenghi, A., Pelosi, G.: Improving the efficiency of quantum circuits

for information set decoding. ACM Transactions on Quantum Computing 4(4),
1–40 (2023)

46. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962). https://doi.org/10.1109/TIT.1962.1057777, https:
//doi.org/10.1109/TIT.1962.1057777

47. Qiskit contributors: Qiskit: An open-source framework for quantum computing
(2023). https://doi.org/10.5281/zenodo.2573505

48. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.E.: Quantum resource estimates
for computing elliptic curve discrete logarithms. In: ASIACRYPT (2). Lecture
Notes in Computer Science, vol. 10625, pp. 241–270. Springer (2017)

49. Sendrier, N.: Decoding one out of many. In: PQCrypto. Lecture Notes in Computer
Science, vol. 7071, pp. 51–67. Springer (2011)

50. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: FOCS. pp. 124–134. IEEE Computer Society (1994). https://doi.org/
10.1109/SFCS.1994.365700

31

https://eprint.iacr.org/2023/247
https://eprint.iacr.org/2023/247
https://eprint.iacr.org/2019/1170
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/978-3-319-59879-6_5
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1007/3-540-45961-8_25
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1109/TIT.1969.1054260
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-642-25385-0_6
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://doi.org/10.1007/978-3-662-46800-5_9
https://pqc-hqc.org/
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/ Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.1109/TIT.1962.1057777
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

51. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D.,
Wolfmann, J. (eds.) Coding Theory and Applications, 3rd International Collo-
quium, Toulon, France, November 2-4, 1988, Proceedings. Lecture Notes in Com-
puter Science, vol. 388, pp. 106–113. Springer (1988). https://doi.org/10.1007/
BFB0019850, https://doi.org/10.1007/BFb0019850

52. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.6) (2022), https://www.sagemath.org

53. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theory 32(1), 54–62 (1986). https://doi.org/10.1109/TIT.1986.1057137,
https://doi.org/10.1109/TIT.1986.1057137

A Quantum Circuit Components

The circuits that we construct in this paper are classical reversible circuits, con-
taining only Toffoli (CCX), CNOT (CX) and NOT (X) gates. In this section, we
introduce some useful building blocks for these circuits, and give their associated
cost. All of them have been implemented.

A.1 Fan-in, Fan-out and Reverse

Lemma 10 (Fan-in / fan-out). For any n, there exists a fan-in circuit oper-
ating on n+ 1 bits which maps:

(v0, . . . , vn−1, b) 7→ (v0, . . . , vn−1, b+ (
∑
i

vi)) ,

and a fan-out circuit operating on n+ 1 bits which maps:

(b, 0, . . . , 0) 7→ (b, b, . . . , b) .

The fan-in circuit uses 2n − 1 CX gates and has depth ≤ 2 dlog2 ne + 1. The
fan-out circuit uses n CX gates and has depth ≤ dlog2 ne+ 1.

Proof. In the fan-out case, we first XOR b to the bit at position 0. Then for
i = 0 to dlog2 ne − 1, we XOR the bits at positions 0, . . . , 2i − 1 to the bits at
positions 2i, . . . , 2i+1−1, doubling the number of bits that have been seen. Each
new bit costs us one CX gate, so the total is n CX gates. Each new step has
depth one, so the total is dlog2 ne+ 1 depth.

The fan-in circuit is very similar, except that we first need to aggregate all
values in the bit vn−1, using a tree of depth dlog2 ne and n − 1 CXs, then we
XOR the result to b, and then we do the tree again to return v0, . . . , vn−1 to
their initial values. ut

Lemma 11. For any constant k, there exists a controlled-shift circuit on regis-
ters of length n:{

0, (v0, . . . , vn−1) 7→ 0, (v0, . . . , vn−1)

1, (v0, . . . , vn−1) 7→ 1, (vk, . . . , vn−1, v0, . . . , vk−1)
(33)

using 4n CX and 3n CCX gates, O(n) ancilla qubits and depth O(log n).

32

https://doi.org/10.1007/BFB0019850
https://doi.org/10.1007/BFB0019850
https://doi.org/10.1007/BFB0019850
https://doi.org/10.1007/BFB0019850
https://doi.org/10.1007/BFb0019850
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1109/TIT.1986.1057137

Proof. The circuit has the following steps:

• Fan-out the control bit (depth O(log n), n CX gates)
• Copy the bits vi into a new ancilla register, using Toffoli gates with the

copies of the control (depth 1, n Toffoli gates)
• Erase the input bits vi by performing the reverse operation (depth 1, n CCX

gates)
• Perform a controlled swap of the input and output bits. A controlled swap

between bit b and b′ is implemented as CX(b, b′), CCX(c, b′, b), CX(b, b′)
(depth 3, n CCX and 2n CX gates)

• Reverse the fan-out (depth O(log n), n CX gates)

In total we have used O(n) gates. The depth is dominated by the logarithmic
depth of the fan-out circuit. ut

The following is useful for manipulating the polynomials in the Berlekamp-
Massey algorithm. In an input list that represents the polynomial C(X) = c0 +
c1X+. . .+cdX

d, where c0 = 1, we want to obtain Reverse(C)(X) = cd+cd−1X+
. . .+ c0X

d. The main issue here is that d is variable.

Lemma 12 (Reversion circuit). There exists a reversible reversion circuit
that given a register of n bits, reverses the order of the bits without taking into
account the trailing zeroes. The circuit contains O(n log n) gates, uses O(n) an-
cilla qubits and has depth O(n).

Proof. Let x0, . . . , xn−1 be the input bits. We start by computing the degree
d ≤ n− 1. For this operation we start by negating all input bits. We initialize a
register of n bits to zero, and we will write down a sequence of bits b0, . . . , bn−1
starting from the position n − 1 downwards, with definition: bi = bi+1x̄i. That
is, bi indicates whether all x̄j for j ≥ i are one, i.e., all xj are zero. At this point
we have used O(n) depth and gates.

We have then: n+1−d =
∑
i bi. This sum can be computed in time O(n log n)

using a counter that iterates over the bi, and in better depth using multiple
counters and adding their results. This does not dominate the cost.

After obtaining the degree, we reverse the entire n-bit list using swaps with
fixed positions. Then, we shift the list by n + 1 − d positions left. This is done
using O(log n) successive controlled-shift circuits, so a total of O(n log n) gates
and O

(
log2 n

)
depth (the depth does not dominate).

Since a polynomial and its reverse have the same degree, we can uncompute
it. This completes the circuit definition. ut

A.2 Circulant Matrix-Vector Multiplication

Some of our circuits require the implementation of an out-of-place multiplication
of a binary vector x ∈ Fn2 by a constant matrix H ∈ Fm×n2 :

|x〉 |y〉 MultConstantH7−−−−−−−−−→ |x〉 |y + Hx〉 . ,

If the matrix has no particular structure, matrix-vector product can be com-
puted naively.

33

Lemma 13 (Matrix multiplication). There exists a reversible circuit for
MultConstantH using ≤ mn CX gates, depth max(m,n) and no ancilla qubits.

Proof. Let us note: x := (x0, . . . , xn−1)T , y := (y0, . . . , ym−1)T and H :=
(hij)0≤i≤m−1,0≤j≤n−1. Since the hij are binary and constant, we just need to
apply a CX over (xj , yi) for any pair (i, j) such that hij = 1. We can do this
efficiently in depth by considering disjoint pairs. Suppose that n ≥ m, then we
first loop over i ∈ {0, . . . , n− 1}, then over j ∈ {0, . . . ,m− 1}, and consider the
pair (j, (i + j mod n)). Clearly, for constant i, all the pairs (j, (i + j) mod n)
are disjoint, meaning that the CXs can be applied in a single layer. The full
circuit has n layers. If n > m, then we can exchange the roles of i and j. ut

Notice that we can expect the CX count to be twice as low if H is selected
uniformly at random.

Karatsuba Multiplication of Polynomials. It is well known that multiplying a
vector in Fn2 by a binary circulant matrix is equivalent to multiplying polynomials
in F2[X]. This operation is an important building block which has been very well-
studied classically, and its gate count has been optimized for large polynomials
of fixed degree [10]. However, the existing classical circuits are in essence non-
reversible. In the quantum setting, van Hoof [34] gave a method for Karatsuba
multiplication of such polynomials which decreased the CCX gate count but
with a O

(
n2
)

CX count asymptotically.
In our setting, the operation that we need to implement is a multiplication

by a constant polynomial P (X) = p0 + p1X + . . .+ pn−1X
n−1 ∈ Fn−12 [X]:{

Fn−12 [X]→ F2n−2
2 [X]

A(X), B(X)
PolMultP7−−−−−→ A(X), P (X)A(X) +B(X)

(34)

In particular, it can be noticed that PolMultP is a linear mapping over F2.
We would like to use as few nonlinear operations as necessary, and therefore, to
implement this circuit using CXs only. We use the approach of Gidney [30] for
space-efficient Karatsuba multiplication, which we adapt to our case as follows.

Lemma 14 (Adaptation of [30]). Given any polynomial P (X) ∈ Fn−12 [X],
there exists a linear circuit implementing PolMultP using O

(
nlog2 3

)
CX gates,

with depth O
(
nlog2 3

)
, without ancilla qubits.

Proof. We prove the lemma when n = 2k is a power of 2 by induction over k,
by constructing the circuit recursively.

For k small enough, e.g., k = 6 (n = 64), we use a naive multiplication
circuit. Consider a value k > 6 and let: P (X) := P1(X)+XnP2(X) and A(X) :=
A1(X) +XnA2(X) where A1, A2, P1, P2 are of degree n = 2k. We rewrite:

(A1(X) +XnA2(X))(P1(X) +XnP2(X))

= A1P1(1 +Xn) +XnA2P2(1 +Xn) +Xn((A1 +A2)(P1 + P2)) . (35)

34

In the following, we will use three multiplications by a constant degree-n
polynomial, and 12n additional CX gates. Let W1,W2,W3,W4 be the 4 n-bit
parts of the output register, which start by containing a polynomial B = B1 +
XnB2 +X2nB3 +X3nB4 which should not be modified.

We perform the following operations:

1. (W1,W2,W3)← (W1,W2,W3) +A1P1(1 +Xn)
We cannot first compute A1P1 and then multiply by 1 +Xn, as this would
modify the polynomial B. Multiplying by 1 + Xn is a sequence of n CX
gates. So, we first perform these n gates in reverse on (W1,W2,W3), then we
call the Karatsuba circuit for P1 and A1, and write the output in (W1,W2).
Then we perform the CX gates in order.

2. (W2,W3,W4)← (W2,W3,W4) +XnA2P2(1 +Xn)
Following the same principle, we first perform the n CX gates which are the
reverse of multiplying by 1 +Xn on (W2,W3). Then we call the Karatsuba
circuit for P2 and A2, write the output in (W2,W3). Then we perform the
CX gates in order.

3. (W2,W3,W4)← (W2,W3,W4) +Xn((A1 +A2)(P1 + P2))
We CX A2 to A1 using n gates, then we call the Karatsuba circuit for
(P1 + P2). Then we CX A2 to A1 again to restore its state.

The correctness follows from Equation 35. As for the complexity analysis, we
can see that no ancilla qubits are required throughout the algorithm. The gate
count and depth are respectively:{

G(2k) = 3G(2k−1) + 6 · 2k

D(2k) = 3D(2k−1) + 6
(36)

In practice, we consider polynomials of degree 2k · u and set a threshold
for naive multiplication at u for a constant u to optimize later. Like matrices,
multiplication of degree-u polynomials can be done using u2 CX gates and in
depth u. This makes these quantities bounded by:

G(2ku) = 3kG(u) + 6(2k + 3 · 2k−1 + . . .+ 3k−1 · 2)u

≤ 3ku2 + 6 · 3k · 2 = 3k(u2 + 12) .

D(2ku) = 3kD(u) + 6(1 + 3 + . . .+ 3k−1) ≤ 3k(u+ 3) .

Choosing u a constant, these formulas yield the expected asymptotic complexi-
ties. ut

As a corollary, we obtain a better circuit for multiplication by a constant
circulant matrix. The circuit is more efficient in CX count, but less efficient in
depth. A trade-off can be achieved by setting appropriately the level at which
one performs naive polynomial multiplication.

Corollary 1. For any k and u, there exists a circuit for multiplying a binary
vector of length 2ku by a constant circulant matrix of dimension 2ku, using
≤ 3k(2u2 + 24) + 2k+1u CNOT gates and depth ≤ 3k(u+ 3) + 2. It uses 2k+2u
qubits.

35

Proof. The circuit simply computes a polynomial multiplication, then XORs the
two halves of the output polynomial into the output vector, then uncomputes
the polynomial multiplication. ut

36

	Reducing the Number of Qubits in Quantum Information Set Decoding

