
Are Your Keys Protected? Time will Tell⋆

Yoav Ben Dov, Liron David, Moni Naor, and Elad Tzalik

Weizmann Institute of Science

Abstract. Side channel attacks, and in particular timing attacks, are a fundamental obstacle to obtain-
ing secure implementation of algorithms and cryptographic protocols, and have been widely researched
for decades. While cryptographic definitions for the security of cryptographic systems have been well
established for decades, none of these accepted definitions take into account the running time infor-
mation leaked from executing the system. In this work, we give the foundation of new cryptographic
definitions for cryptographic systems that take into account information about their leaked running
time, focusing mainly on keyed functions such as signature and encryption schemes. Specifically,
(1) We define several cryptographic properties to express the claim that the timing information does
not help an adversary to extract sensitive information, e.g. the key or the queries made. We highlight
the definition of key-obliviousness, which means that an adversary cannot tell whether it received the
timing of the queries with the actual key or the timing of the same queries with a random key.
(2) We present a construction of key-oblivious pseudorandom permutations on a small or medium-sized
domain. This construction is not “fixed-time,” and at the same time is secure against any number of
queries even in case the adversary knows the running time exactly. Our construction, which we call
Janus Sometimes Recurse, is a variant of the “Sometimes Recurse” shuffle by Morris and Rogaway.
(3) We suggest a new security notion for keyed functions, called noticeable security, and prove that
cryptographic schemes that have noticeable security remain secure even when the exact timings are
leaked, provided the implementation is key-oblivious. We show that our notion applies to cryptographic
signatures, private key encryption and PRPs.

1 Introduction

In any implementation of a cryptographic scheme there is a disparity between the mathematical specification
of its functionality and the actual implementation in a physical device and environment. By nature, a physical
implementation leaks more information than was intended and this leakage is known as a side-channel. In
this work we concentrate on the running time, the side channel that is perhaps the hardest to block (and
the easiest to exploit), since the time it took to perform a certain service is often known.

Consider the security of encryption and signature schemes (which we refer to as keyed cryptographic
functions). After much work, definitions of the security of such schemes have been well-established for
decades, and may be considered one of the crown achievements of the foundations of cryptography. But
none of these accepted definitions take into account the running time information leaked from executing the
system.

In this work, we give a foundation for defining the security of cryptographic systems that take into account
that their running time is leaked, focusing mainly on keyed functions such as signature and encryption
schemes. More specifically, we suggest several cryptographic definitions for scenarios where the leaked
information does not help an adversary to expose sensitive information, e.g. the key or the queries made.
The most interesting definition we propose is key-oblivious. For this notion we prove that for cryptographic
schemes such as digital signatures, private key encryption and pseudorandom permutations (PRPs), if their
implementation satisfies key-obliviousness, then they preserve their security even when the exact timing is
leaked. Finally, we construct a PRP called “Janus Sometimes Recurse (JSR)” that is not fixed-time, yet
provably secure against timing attacks (key-oblivious and other properties).

⋆ Research supported in part by grants from the Israel Science Foundation (no.2686/20), by the Simons Foundation
Collaboration on the Theory of Algorithmic Fairness and by the Israeli Council for Higher Education (CHE) via
the Weizmann Data Science Research Center.

For a motivating example of the JSR construction, consider the following question, taken more or less
verbatim from Stack Overflow1:“I am looking to enumerate a random permutation of the numbers 1 . . . N
in fixed space. I cannot store all numbers in a list, N can be very large, more than available memory. I still
want to be able to walk through such a permutation of numbers one at a time, visiting each number exactly
once.”

As we shall see, there are good cryptographically based solutions to the question, but they are susceptible
when the creator of the permutation leaks how long it took to choose the next value. In light of the work on
JSR in Section 4.1 we have a good solution that is immune even when the timing information is leaked. See
Appendix A.

1.1 A Brief History of Timing Attacks

There is a significant body of research about side-channel attacks and more specifically timing attacks, and
how to exploit them in order to break cryptographic protocols. An early work by Lipton and Naughton [24]
showed a way to exploit timing information to compromise the performance of dictionaries that employ
universal hash functions.

Kocher [23] showed how the running time of certain implementations of RSA and Diffie Hellman schemes
leaks information that can be used to recover the prime factors or find the discrete log, hence breaking
the systems. In more detail, Kocher showed that the running time of some implementations depends on the
exponent chosen in the protocol, and by carefully timing the running time on multiple outputs one can extract
information about the exponent, which can then be used to break the security of the protocol. Kocher’s work
brought widespread attention to the crucial importance of implementations of cryptographic protocols, such
as public-key encryption and signatures, and led to a considerable body of research on vulnerabilities to
side-channel attacks and spurring studies and advancements aimed at strengthening their security against
such attacks.

Brumley and Boneh [11] showed that timing attacks are practical on large systems and over the web.
In large systems, the response time suffers significantly from noise coming from latency, multi-threading,
communication bottlenecks and more. Brumley and Boneh showed that even under these conditions it is
possible to retrieve the private key with timing attacks on OpenSSL servers. More specifically, they showed
how to reconstruct the prime factors used in an RSA protocol by making about one million queries and
carefully inspecting the response times.

One of the most efficient lattice-based digital signature schemes is BLISS, suggested by Ducas, Dur-
mus, Lepoint and Lyubashevsky [14]. This scheme uses a bimodal Gaussian sampler and was shown to be
vulnerable to timing attacks, and, in particular, the sampling component that is not independent of the
secret-key [15,10], as well as other attacks.

All of these examples are but a drop in the ocean of the vast and rich research area of side-channel
attacks. New and more sophisticated and subtle attacks and vulnerabilities are found every once in a while,
a solution is suggested and implemented, and then another attack is found, in what feels like a never-ending
game of cat and mouse. For a more thorough (but still far from full) overview of the history and background
of side-channel attacks and timing attacks in particular see Crosby, Wallach and Riedi [13] and Biswas,
Ghosal and Nagaraja [8].

1.2 Prevention Techniques

The main approach to prevent timing attacks is to use fixed-time algorithms, often called in the literature
“constant time algorithms,” meaning algorithms that run the same amount of time on all inputs.

There are two main drawbacks to this solution. First, in order for the algorithm to run in fixed-time on
all the inputs, we need to know the worst-case running time, a task that is often challenging on its own. The
second one is that even if we do know the running time, in many cases there is a very large gap between
best case and worst case running time, or even average case and worst case running time, and by making

1 https://stackoverflow.com/questions/10054732/create-a-random-permutation-of-1-n-in-constant-space.

2

the algorithm run in the worst case time on all inputs, we create huge overheads. It is also worth mentioning
that the second caveat can make many protocols and algorithms impractical and not usable when efficiency
is critical.

In addition, the survey in Section 1.1 demonstrates that the task of making an algorithm run in fixed-time
is more subtle and challenging than meets the eye. Timing information might leak from the response times
of the server, from I/O calls, from reading RAM memory or cache memory, and many more possibilities.
For the implemented algorithm to be truly and fully fixed-time one must make sure to make everything
fixed-time, which is often very challenging and goes against hardware and software optimizations.

A common technique to thwart timing attacks in the public-key context is “blinding,” first suggested by
Chaum [12] in the context of signatures, where a value v is mapped into a random-looking one u prior to
the encryption or signature, in a manner that allows retrieving the desired signature or encryption from the
encryption or signature on u. Kocher [23] suggested using blinding to make RSA implementations secure
against timing attacks. The blinding works by multiplying the input x by a fresh random element r of the
group ZN

∗, i.e. a random element which is co-prime to N . To decode, multiplication by the group inverse
r−1 is done at the end of the computation. Note that simply using the same r for many inputs will not
work, as the attack suggested by Kocher can recover r over time, and even recover the exponent without
knowing r. Hence, fresh r needs to be chosen in each round. This example goes to show that using blinding
as a technique to protect against timing attacks is often a subtle task, and that if implemented naively or
incorrectly can lead to a false sense of security.

A general approach to preventing leakage is to employ techniques from secure multi-party computation,
and split the input into various parts where leaking almost all of the parts does not reveal the actual values.
It was first suggested in Ishai, Sahai and Waters [20] for thwarting probing attacks (see Kalai and Reyzin [21]
for a survey). This can be thought of as the “moral equivalent” of blinding for a general function. However,
in the case of timing, at the very least the sum of their running times is leaked (since they are all executed
on the same machine, what is leaked in the total time of all the emulated processors) and this is a function
of all parties. Hence this does not solve the problem, unless an argument is made that the sum of all the
execution times is not meaningful.

Another set of techniques is known as the bounded retrieval model (see [2] for a survey). In this model,
the adversary learns some arbitrary function of the secret key that is shorter than the key. An alternative is
the noisy leakage model, where the leakage is not of bounded length but it is guaranteed that the secret key
is still unpredictable given the leaked value [31]. But this is not the case in our setting, with a repeatedly
used keyed function: the adversary learns the timing of the keyed function on many inputs. Altogether this
leaked information may be much greater than the key size. There is also the continual-leakage model, which
is more appropriate for this case. The work of Goldwasser and Rothblum [18] considered leakage with an
unbounded number of executions, in the presence of an adversary who observes partial information on the
internal state of the computation during the executions. They showed that it is possible to obtain secure
computation in the sense that the adversary learns only input-output behavior if the leakage in any round
is bounded (following the ‘only computation leaks information’ maxim of Micali and Reyzin [28]). However,
this is not a silver bullet for timing attacks, as in this work the first step is to turn the program to be
computed into a circuit, i.e. into a fixed-time computation - and this carries over the various downsides of
this approach, for instance, that typical case becomes the worst case. Nevertheless, such an approach may
be useful for various critical sections when one wants to get fixed time. Our goal in this work is to relax fixed
time and allow information related to the key to leak, but specify what it means to say that it is not harmful.

Extending the Notion of Constant Time: There have been a number of proposals to extend the
notion of constant time implementations in order to argue that no meaningful information is leaked from
the timing. For instance, Benegas et al. [4] talk about the distribution of the running time being the same
for any key and any input. Similarly, Almeida et al. [1] define a program to be secure if all equivalent
programs in terms of inputs and outputs are indistinguishable given the leaked information, i.e. it “means
that any two executions whose input and output values differ only with respect to secret information must
leak exactly the same observation.” These extensions are not flexible enough to talk about protecting keyed

3

cryptographic functions, since the protection there is computational, and the inputs and outputs are not
going to be identical. For instance consider the case of signature schemes.

Note that we use the term ‘fixed-time’ since in the literature constant time sometimes does not refer to
operations that take the same amount of time no matter what the input is.

1.3 Comparing Our Work With the Existing Ones

At this point, the reader may be wondering whether enough theoretical work was already done in the area of
leakage and there is not much to add. The novel aspect of our work is proposing criteria for arguing that the
leakage is benign, that is, the presence of this benign leakage, although not being fixed, does not compromise
the original guaranteed security in many cases. Maintaining this criteria is, therefore, sufficient to argue
security even with the presence of the leakage in many cases. An illustrative example is the famous GGM
construction of pseudorandom functions (PRF) F from length-doubling pseudorandom generators (PRG)
G. What properties should we require of the PRG G in order to argue that F is secure? Recall that the
construction is defined by imagining a full binary tree of depth n where each node gets an n bit label. The
root is labeled with the key k and each parent induces a labeling of its two children by applying G to its
label; the left half of the result becomes the label of the left child and the right half the label of the right
child. Clearly, requiring that G be fixed time and making the rest of operations (deciding whether to branch
left or right based on the bit) fixed-time is sufficient. But can we get a weaker requirement from G and how
to express it? What happens when the construction is not applied a fixed number of times, but one that can
vary with the input? Could such a construction be secure?

In this work we define a formal condition that is sufficient to argue security in the presence of leakage in
many cases. We call this condition “key-oblivious.” Namely, in order to prove that a construction is secure in
the presence of leakage, one only needs to prove that the construction is key-oblivious. The key-obliviousness
then implies security in the presence of leakage. We argue that this notion is easier to reason about than
directly proving that the leakage does not hurt security.

A possible comparison is to the definition of security of encryption. The “moral equivalent” of this
condition is the notion of indistinguishability of encryptions, which is, generally speaking, easier to prove
than semantic security. But we know that the two notions are equivalent in that context.

Note that the notion of key-oblivious is relevant to any type of leakage, not necessarily timing, but in case
of time we have various properties that make it particularly useful, e.g, the leakage of applying a function f
and then g is, under reasonable assumptions, the sum of the two leakages.

1.4 Our Contributions and Technical Overview

Our goal in this work is to investigate the landscape of algorithms and systems that can be implemented in
a manner resistant to timing attacks, but we wish to expand the ‘Procrustean bed’ of fixed-time algorithms.
We provide foundational treatment to the subject as well as many algorithms and separation results.

We propose several criteria for expressing the property that the timing information of an implementation
of an algorithm does not expose sensitive information in the context of keyed functions. The most interesting
one is key-oblivious (Definition. 1), which means that a polynomially bounded adversary cannot tell whether
it received the timing of the actual key or of a random unrelated key. Namely, suppose that Fk is a keyed
function with a key k and T (Fk(q)) is the time takes to execute Fk on the query q, then the key oblivious
definition means that a PPT adversary cannot distinguish the following two cases: whether the time it gets
is the real running time on the actual key k, or whether the running time is on an unrelated key k′:

Definition 1 We say a keyed function F is key-oblivious secure against timing attacks if any probabilistic
polynomial-time (PPT) adversary Adv has a winning probability at most 1

2 + negl(n) in the following game:

1. Two keys are sampled k0, k1.
2. A random bit b ∈ {0, 1} is sampled.
3. The adversary Adv makes ℓ = poly(n) adaptive queries q1, . . . , qℓ to Fk0

, and gets
Fk0

(q1), . . . ,Fk0
(qℓ), as well as T (Fkb

(q1)), . . . , T (Fkb
(qℓ)).

4

4. The adversary outputs b′, the guess of b, and wins if b′ = b.

How useful is this criterion? What does it imply? The notion of key obliviousness is most useful in cases
where the period where the adversary has access to the timing information is separated from when it actually
attacks; for instance, in the case of signatures schemes, where the adversary may know how long it takes to
produce a signature on a message, but where the adversary does not have access to the timing information
of the signing of the actual message it wants to forge. We then prove that if we have signature scheme Fk

that is existentially unforgeable secure against an adaptive chosen message attack and the signature function
Fk is key-oblivious, then even if the adversary in the forgery game has access to the running time it takes
to generate the signatures, then this adversary will not manage to forge a valid-looking signature on any
message it was not given a signature explicitly.

As mentioned above, the key-oblivious criteria is most relevant when the attack occurs after timing
information is not available anymore, e.g. as in the case of signature schemes. But there are scenarios where
this is not the case and the adversary does get timing information during a “challenge phase.” Consider, for
instance, the case of encryption, where the final goal of the adversary is to distinguish between the encryption
of two messages. The game has a “challenge phase” in which the adversary sends two messages and receives
an encryption of one of them and its goal is to guess which one it is. The encryption may not be time-secure,
even though the encryption implementation is key-oblivious.

To see this, consider the following example: suppose that the running time depends only on the least
significant bit (lsb) of the message and does not depend on the key or other bits of the message. Then given
two messages with different lsbs, the adversary who gets the running time of the actual message that was
chosen, can easily distinguish whether the encryption was of one message or the other.

A case where this may be significant is in voting machines where votes are encrypted and then shuffled.
If the timing of an encryption of a particular vote is known, then if the encryption is not query-oblivious in
the above sense then this yields information about the actual vote.

To guarantee time-security also in cryptographic games that have a “challenge phase” (as in the indis-
tinguishability game) we propose another security criteria called query-oblivious (Definition 3) whose aim is
to capture the property that the time to evaluate a query does not leak information about the query itself.
We then prove specifically for indistinguishability of encryptions (Theorem 16) that if the implementation is
query-oblivious, then it is time-secure.

A fundamental issue concerning any new security definition is what happens when a primitive satisfying
it is part of a larger structure and whether the new criterion is preserved under different constructions.
To this end, we investigate different constructions and explore whether they preserve key-obliviousness and
whether being query-oblivious as well is necessary for them to preserve key-obliviousness. We focus on the
following constructions:

– The famed Goldreich-Goldwasser-Micali (GGM) construction: we show that if G is a PRG implemented
in a key-oblivious manner, then applying GGM with G yields a PRF that is key oblivious.

– The cycle walking technique for format-preserving encryption: we show that if the permutation π is key
oblivious, then the result π′ is key oblivious.

– Domain extensions of PRFs: we show that even if the underlying PRFs are key-oblivious, then the
classical results do not necessarily imply that the result is key-oblivious. But we show that the cascading
construction of PRF extension preserves key obliviousness.

Main Application: In Section 4 we turn our attention to pseudorandom permutations (PRP) on small
domains (related to format-preserving encryption). The most efficient construction for small domain PRP is
the “Sometimes Recurse” (SR) shuffle by Morris and Rogaway [29], which runs in expected time of O(logN)
and is secure even when the adversary queries the whole domain (a more detailed exposition appears in
Section 4). The downside of SR is that its running time is fully determined by the number of leading 1’s
in the output. This makes the SR construction not secure against timing attacks, namely, SR is neither
key-oblivious (Claim 9) nor query-oblivious (Claim 10).

5

We suggest a new construction of a PRP on small domains which we call the Janus Sometimes Recurse
(JSR) that is not constant time, yet provably secure against timing attacks. Our construction is faster than
all previously known constructions that are secure against timing attacks. Specifically we prove that: (1)
JSR is key-oblivious (Claim 11), i.e., a PPT adversary cannot distinguish between the key that was used
and a random key even when the adversary gets the exact running time of the PRP; and (2) JSR is also
query-oblivious (Claim 13), i.e., a PPT adversary cannot infer from the computation time of the PRP on a
query q what q is.

Fig. 1. JSR construction on two PRPs

Generally speaking, JSR takes two independent (i.e. with two independent keys) copies of SR on the
same domain [N], where the permutations are denoted by π and σ and the keys by kπ and kσ, and composes
π with σ−1, see Figure 1. This is similar to the approach that Maurer and Pietrzak [26] used to move
from non-adaptive to adaptive PRPs. The term “Janus” in the name of our construction “Janus Sometimes
Recurse” (JSR) comes from the Roman god who was depicted as having two faces, since both the directions
(encryption and decryption) are forward-looking.

The intuition for this construction is that while the running time of the forward direction leaks information
about the output, the running time of the inverse is determined by the input, and so by composing the two
we get that the running time of the algorithm both in the forward direction and in the inverse, is determined
by the inner value which is almost independent of the input and output since π, σ are PRPs.

In Appendix A we show an application of the above claims to the low memory generation of a random
permutation of the numbers in a given range 1 . . . N .

Main Security Claim: To formally define the criteria in general, we consider a cryptographic game (Def-
inition 6) for a keyed function, which captures the security of many primitives including indistinguishability
of encryptions, digital signatures, and pseudo-random permutations (we denote for function F the security
game with GF). A game GF has noticeable security (Definition 6), if it is defined between an adversary and a
principal, and determining who wins the game can be done without direct access to the key, but simply based
on the queries and the state of the principal. We show that digital signatures, pseudo-random permutations,
and encryption (but for indistinguishability of encryption see caveat below and Section 5.4) have games with
noticeable security.

The main result (Theorem 1) shows that: For a keyed function Fk that is secure w.r.t. a game GF that
has “noticeable security,” if the implementation of Fk is key-oblivious then Fk is time-secure, that is, Fk is
secure w.r.t. GF even when the exact running timing of executing the oracle on the queries is leaked to the
adversary.

2 Keyed Functions Secure Against Timing Attacks

Our goal in this section is to present the definitions of timing-resistant keyed functions. In Section 2.1 we
provide three criteria and in Section 2.2 we look at a specific keyed function, the pseudo-random function
(PRF), and we show that if the implementation of PRF is key-oblivious then it is time-secure (later on, in
Section 5 we generalize this to any function with noticeable security).

6

2.1 Definitions of Timing Resistance of Keyed Functions

We now aim to formalize security against timing attacks for keyed cryptographic functions. Since the security
of keyed cryptographic functions is usually measured by the success of a PPT adversary in some game, we
would like the security notion to provide the keyed function security against such adversaries.

Let F be a keyed function, with key space {Kn}n, where keys are sampled from Kn have length poly(n).
Denote by Fk the keyed function with a chosen key k. To ease the notation we will use k ∼ K to denote
sampling k from Kn when n is understood from context.

We denote by q a query to the function. We do not state what type of query it is, since different types of
functions will have different queries. For example, if F is an encryption scheme, then it makes sense to allow
encryption queries as well as decryption queries. Denote by Fk(q) the answer to the query and by T (Fk(q))
the running time it took for the answer to return.

Assumption on Running Time Running time is implementation dependent, hence we stress that T (Fk(q))
depends on F , q, k as well as the implementation of F in the computational model. In many cases, once
a key is fixed, the running time on a query will be deterministic, but there are cases in which the running
time might be a distribution even with the same key and query. We therefore think of T as a distribution
(which may be a distribution supported on one element).
The crucial assumption which is running time specific that we assume is linearity of composition, meaning
that T (F ◦G(x)) = T (F(G(x)))+T (G(x)) where by F ◦G means running G on x, and sequentially F on
G(x). This assumption is not used in this section, as well as Section 5, since in these sections we study a
single function. On the other hand linearity of composition is a key for designing complex cryptographic
primitives from basic ones, e.g. in the JSR construction appearing in Section 4.
We, therefore, require that for some of the statements in the paper at certain points of the computation,
the model is inherently sequential and that many optimizations incorporated by modern computers to
speed running time (e.g. pipeline, multi-processing, branch prediction, etc.) are not allowed at those
points (hence the linearity assumption). As is well known, such optimizations can be exploited, with
Spectre being one of the notable examples.

We use the notation negl for any function negl : N → R+ satisfying that for every positive polynomial
p(·) there is an N such that for all integers n > N it holds that negl(n) < 1

p(n) . Such functions are called

negligible. We will also call a random variable with distribution Bernoulli(12) a random bit.
We state three definitions of security of keyed cryptographic function. The first two definitions concern

securing the key from a timing attack, while the third is designed to secure the result of queries.

Definition 1. We say a keyed function F is key-oblivious secure against timing attacks if any probabilistic
polynomial-time (PPT) adversary Adv has a winning probability at most 1

2 + negl(n) in the following game:

1. Two keys are sampled k0, k1 ∼ K.
2. A random bit b ∈ {0, 1} is sampled.
3. The adversary Adv makes ℓ = poly(n) adaptive queries q1, . . . , qℓ to Fk0

, and gets
Fk0

(q1), . . . ,Fk0
(qℓ), as well as T (Fkb

(q1)), . . . , T (Fkb
(qℓ)).

4. The adversary outputs b′, the guess of b, and wins if b′ = b.

Definition 1 means that the joint distribution of running times on a polynomial number of queries for
two keys T (Fkb

(q1)), . . . , T (Fkb
(qℓ)) are indistinguishable by a PPT adversary even when it sees the results

of the query on a specific key. We now strengthen Definition 1:

Definition 2. We say a keyed function F is key-switch secure against timing attacks if any PPT adversary
Adv has a winning probability at most 1

2 + negl(n) in the following game:

1. Two keys are sampled k0, k1 ∼ K.
2. The adversary Adv makes ℓ = poly(n) many queries q1, . . . , qℓ and gets Fk0

(q1), . . . ,Fk0
(qℓ) as well as

T (Fk0
(q1)), . . . , T (Fk0

(qℓ)).

7

3. A random bit b ∈ {0, 1} is sampled.
4. The adversary Adv makes another ℓ′ = poly(n) many queries p1, . . . , pℓ′ and gets

Fk0
(p1), . . . ,Fk0

(pℓ′), as well as T (Fkb
(p1)), . . . , T (Fkb

(pℓ′)).
5. The adversary outputs b′, the guess of b, and wins if b′ = b.

Notice that if we skip step 2 we get back to Definition 1. The difference here is that the adversary gets
the running time of the function with the same key as the answers, until a bit is chosen, and only then the
adversary does not know if the timing comes from the same key or a different key. This essentially means
that the distribution of the running times T (Fkb

(p1)), . . . , T (Fkb
(pℓ′)) conditioning on the answers to the

queries and the running time on the original key are indistinguishable by a PPT adversary.
This definition could be useful to prevent denial-of-service attacks: if the adversary can find expensive

(time-wise) queries, then it can bunch expensive queries together and ask them so as to overload the system.
If, in addition, the system has the property that a priory it is not clear how long a query would take, then it
is not possible to find expensive queries (since then it would be possible to figure out whether a key-switch
occurred or not).

The third definition is of query-obliviousness and involves only a single key and aims to express that
the actual queries made are secure from a timing attack. This is desirable, for instance, in voting systems.
Consider a voting system that uses a keyed function (e.g. a PRP) as a subroutine to the actual vote cast.
The sensitive information that needs to be protected is the votes themselves and not necessarily the key.

Definition 3. We say a keyed function F is query-oblivious secure against timing attacks if any PPT
adversary Adv has a winning probability at most 1

2 + negl(n) in the following game:

1. A single key k ∼ K is sampled.
2. The adversary Adv makes ℓ = poly(n) adaptive queries q1, . . . , qℓ and gets

Fk(q1), . . . ,Fk(qℓ) and T (Fk(q1)), . . . , T (Fk(qℓ)) of all the queries.
3. The adversary Adv chooses two new distinct queries q′0 ̸= q′1 such that q′0, q

′
1 ̸∈ {q1, . . . , qℓ}.

4. A bit b ∈ {0, 1} is chosen at random.
5. The adversary Adv gets T (Fk(q

′
b)).

6. The adversary outputs b′, the guess of b, and wins if b′ = b.

In the game above, the adversary makes queries and gets their running time. Then the adversary chooses
two different queries and gets the running time of one of them. The challenge is to decide what is the query
whose running time was returned. There are two (non-mutually exclusive) variations on this:

Weakly vs. Strongly: If the function is also secure for general queries q′0, q
′
1 that are not necessarily new,

then we say that function is strongly query-oblivious, while the definition above is weakly query-oblivious.
With vs. Without Results We define a variant of query-oblivious, we call query-with-results-oblivious

which is the same as the above query-oblivious game but with one change: in step (5) the adversary Adv
gets both Fk(q

′
b) and T (Fk(q

′
b)) rather than only T (Fk(q

′
b)). As we shall see, this query-with-result-

oblivious will be useful, for example, for time-security of indistinguishability of encryption, while the
original query-oblivious definition will be useful, for example, for domain extension.

Remark 1. The definitions above are not equivalent to one another, see Appendix B for formal arguments.

2.2 Example: Pseudorandom Functions

We start by demonstrating the definition of key-oblivious for a specific primitive, that of pseudorandom
function. We prove that if the implementation of a PRF is key-oblivious then the PRF is time-secure, that
is, the PRF is secure w.r.t. the cryptographic game in which the adversary has access not only to the PRF
oracles but also to the time it takes the oracle to execute. The general security for all primitives with so-called
noticeable security is discussed in Section 5.

Recall the definition of PRF:

8

Definition 4. (Pseudo-random Function) Let F : {0, 1}m × {0, 1}n → {0, 1}n be a keyed function in which
the first input is called the key. We denote by Fk(x) := F(k, x) the keyed function with the key k ∈ {0, 1}m.
Let AdvPRF be a probabilistic polynomial-time adversary in the following game:

1. A key k ∈ {0, 1}m is sampled.
2. A random bit b is sampled.
3. AdvPRF chooses adaptively ℓ = poly(n) queries q1, . . . , qℓ. If b = 0 then it receives the values of Fk on

each query
y1 = Fk(q1), . . . , yℓ = Fk(qℓ),

If b = 1 then it receives the values of a random function f on each query

y1 = f(q1), . . . , yℓ = f(qℓ),

4. Adversary AdvPRF guesses b′ and wins if b′ = b.

The function Fk is a pseudo-random function if for all PPT adversaries AdvPRF as above there is a negligible
function negl such that, for all n,

Pr[b = b′] ≤ 1/2 + negl(n).

To define a time-secure implementation of a PRF we let the distinguisher receive the timing information
as well:

Definition 5. (Time-secure PRF) An implementation of a PRF is time-secure if the winning probability in
the cryptographic game in Definition 4 remains 0.5 + negl(n) even when the adversary gets, not only the
answers for the oracles queries (namely either Fk(qi) or f(qi)), but also the time it takes for the oracle Fk

to execute them, namely T (Fk(qi)). Note that in case the queries are answered by a random function, the
only output related to k is the running time T (Fk(qi)).

We prove that if the implementation of PRF is key-oblivious, then it is also time-secure.

Theorem 1. Let Fk be a PRF. If the implementation of Fk is key-oblivious, then the implementation of Fk

is time-secure.

Proof. Suppose that there exists an adversary AdvTS attacking the time-security of a PRF that is presumed
to be key-oblivious. Consider four games, similar to the original ones (with the exception that sometimes a
new key k′ is chosen) and the associated probabilities that the adversary outputs ’1’:

p1: The adversary AdvTS is given the value Fk(qi) on query qi and the timing of T (Fk(qi)).
p2: The adversary AdvTS is given the value of the random function at qi and the timing T (Fk(qi)).
p3: The adversary AdvTS is given the value Fk(qi) and the timing T (Fk′(qi)) for another key k′ chosen at

random.
p4: The adversary AdvTS is given the value of the random function at qi and the timing T (Fk′(qi)) of the

other key k′.

We know that p2 = p4, since from AdvTS’s point of view there is no difference between k and k′. If there is a
non-negligible difference between p1 and p3, then we can use it to break the key-oblivious assumption of F .
If there is a non-negligible difference between p2 = p4 and p3, then we can use it to mount an attack of the
pseudorandomness of F without timing information: choose a key k′ and whenever a query qi arrives add
the timing information of T (Fk′(qi)). ⊓⊔

On the other hand, we can show

Theorem 2. Let Fk be a PRF. If Fk implementation is not key-oblivious, then it is not time-secure.

Proof. Similarly to the proof above, suppose that there exists an adversary AdvKO attacking the key-
obliviousness of a PRF that is presumed to be time-secure. Consider four games, similar to the original
ones and the associated probabilities that the adversary outputs ’1’:

9

p1: The adversary AdvKO is given the value Fk(qi) on query qi and the timing of T (Fk(qi)).
p2: The adversary AdvKO is given the value Fk(qi) on query qi and the timing of T (Fk′(qi)) for another key

k′ chosen at random.
p3: The adversary AdvKO is given the value of the random function at qi and the timing T (Fk(qi)).
p4: The adversary AdvKO is given the value of the random function at qi and the timing T (Fk′(qi)) of the

other key k′.

We know that p3 = p4, since from AdvKO’s point of view there is no difference between k and k′. If there is a
non-negligible difference between p1 and p3, then we can use it to break the time-security assumption of F .
If there is a non-negligible difference between p3 = p4 and p2, then we can use it to mount an attack of the
pseudorandomness of F without timing information: choose a key k′ and whenever a query qi arrives add
the timing information of T (Fk′(qi)). ⊓⊔

Note that what we proved for pseudorandom functions (PRFs) is true also for pseudorandom permutations
(PRPs) and key-oblivious implies that they are secure even with timing information. As we mentioned, we
generalize this to many primitives such a signatures schemes in Section 5.

3 Constructions Preserving Key-Obliviousness

A natural question about the notion of key-oblivious is whether the key-oblivious is preserved when applying
it to several functions. In this section we investigate several well known constructions and check whether
the key-obliviousness is preserved under these constructions, given that the underlying building blocks are
key-oblivious. We start with the basic constructions of composition and concatenation. We then consider the
fundamental cryptographic constructions:

1. The GGM construction of pseudorandom functions, where we show that if the basic building block,
the PRG G, is key oblivious, then the result is key oblivious (Claim 3). However it is not necessarily
query-oblivious (Claim 4).

2. We consider the Cycle walking technique for constructing format-preserving encryption, which is not
fixed time by nature, yet we show that if the underlying permutation π is key oblivious, then the result
is key oblivious.

3. Finally we consider various domain extension techniques and show that while some of them do not
preserve key-obliviousness (e.g. using the Levin trick) it is possible to get key-obliviousness using either
an additional primitive such as UOWHF or using the cascading consturction.

Composition and concatenation: A basic issue when considering security definition is how they interact
as part of a larger system. The good news is that wrt concatenation key-obliviousness is preserved: Suppose
that we have two keyed functions f and g and suppose that their keys are independent. Then the natural
implementation of producing f(x)◦g(x), first compute f(x) and then g(x) is also key oblivious. Also suppose
that at each step either f or g are called, then the whole process is still key-oblivious. Furthermore, let h be
any function that is implemented in constant time (e.g. addition or Xor). Then the natural implementation
of h(f(x), g(x)) where f and g are key-oblivious and are computed in a sequential manner and where h is
fixed time is itself key oblivious.

On the other hand, as we shall see, for composition the case is different: even if f and g are key-oblivious
it is not necessarily true that f(g(x)) is key oblivious! This is shown in Claim 6.

3.1 The GGM Construction of PRFs

Consider the Goldreich-Goldwasser-Micali (GGM) construction of pseudorandom functions (PRF) from pseu-
dorandom generators [16]. The construction starts with a pseudorandom generator G : {0, 1}n 7→ {0, 1}2n
and the PRF Fk : {0, 1}n 7→ {0, 1}n with key k ∈ {0, 1}n is defined by imagining a full binary tree of depth
n where each node gets an n bit label. The root is labeled with the key k and each parent induces a labeling

10

of its two children by applying G to its label; the left half of the result becomes the label of the left child
and the right half the label of the right child. The value of Fk(x) for x ∈ {0, 1}n is the label of the leaf at
the end of the path defined by x.

Suppose that G is implemented in a key oblivious manner, meaning in this case, simply that given G(k)
for a uniform k ∈ {0, 1}n and T (G(k)) or T (G(k′)) for a uniform k′ ∈ {0, 1}n, it is hard for a poly-time
adversary to distinguish between the two cases. Now consider the straightforward implementation of the
GGM PRF Fk(x) from G, which consists of n applications of G given k and x (developing the required
labels). Assume that taking the left or right half of the output of G once it is computed is fixed-time and
that each application of G starts from scratch. Is the result key oblivious? Is it query-oblivious?

Claim 3 The key-obliviousness of G together with the requirement that it is a PRG imply that the GGM
construction is key-oblivious.

Proof. One possible way to prove the claim is to follow the same lines as the classical proof of pseudo-
randomness of the GGM construction. This proof is based on a hybrid argument. If it is possible to distinguish
between the construction and a truly random function using m queries, then there is a sequence of m′ ≤ m ·n
distributions, the first being the pseudorandom one, as described above and the last one being the truly
random one2. An alternative approach is to use induction on the depth on the tree. For the base case n = 1,
the property that G is assumed to have is sufficient to guarantee key obliviousness. To increase the number
of levels, we will think of the two branches from the root as two independent functions. In this case, the
whole process should still be key oblivious, as the discussion at the beginning of Section 3 shows. If the
actual implementation is no key-oblivious, then again, we have an attack of the key obliviousness of G.

Claim 4 The GGM construction is not query-oblivious, at least not if G is not fixed-time computable. This
is true even if we consider weakly query-without-result-oblivious.

Proof. Note that the time to compute Fk(x) is the sum of n applications of G on random-looking inputs.
Furthermore, the timings of Fk(x) and Fk(x

′) for x and x′ that differ only in the last bit are closely correlated
(since the sums are over the same summands, except the last one), compared to the timing of x and x′′ where
x′′ is, say, a random input. In the latter, there will be little correlation. So Definition 3 is not satisfied.

3.2 Format Preserving Encryption - the Cycle Walking Technique

A good example of a construction that is inherently non fixed-time, yet key oblivious and under some
conditions query-oblivious, is the cycle walking technique of Format Preserving Encryption (See Bellare et
al. [6]). Imagine that we have a construction of a pseudo-random permutation (PRP) on some domain, say
of size 2ℓ, and we want to build from it a PRP on a smaller domain S ⊂ [2ℓ]. A simple example is when S
is the set of numbers 0 through Q − 1 (where Q is not a power of 2), but the question is relevant for any
format of S.

What Black and Rogaway [9] analyzed is a simple cycle walking technique for constructing permutations
on smaller domains. Given a PRP π on the larger domain of size 2ℓ, to get a PRP on S define π′ by starting
with x ∈ S and repeatedly apply π to it until hitting a value in S. This is defined to be π′(x). The expected
number of applications of π is 2ℓ/|S|. It is clear that this construction is not fixed-time (if |S| < 2ℓ), even
if the original PRP is fixed-time. So which of the definitions of our framework does this technique satisfy?
We note that Bellare et al. wrote that it “Doesn’t Give Rise to Timing Attacks,”3 but we want to check in
what sense this is true and how it fits our definitions.

We claim that the exact properties of π′ depend on whether the original PRP is fixed-time or “merely” key
oblivious. For the former we get both key and query-obliviousness and for the latter just key obliviousness.

2 In our case, for the ith distribution, the first i − 1 timings are the application of G on one key (the real one, for
which the output values are also given) and the last m − i + 1 ones are the timings of another key, unrelated to
the real one. If it is possible to distinguish between the first and last distributions, then it is possible to distinguish
between some two neighboring distributions.

3 What they proved is that leaking the number of applications of π does not hurt the pseudorandomness of π′

11

We assume that the implementation is such that the timing of the various calls to π are independent of each
other, in the sense the time it takes to run π(x) does not depend on any sequence of operations done before
and in particular on whether we have just executed π(x1), π(x2), . . . , π(xm).

Claim 5 (i) If the permutation π is fixed-time, then the result π′ is both key oblivious and query-oblivious
in the weakly with results sense. (ii) If the permutation π is key oblivious, then the result π′ is key oblivious.

In order to see that (ii) is correct, think of simulating π′ through access to π. Now if there is an attack on π′

that distinguishes between true timing and timing of some random unrelated key, then we can apply it to π
itself and get the same distinguishing probability, thus violating the assumption that π is key oblivious.

In order to see that (i) is true, think of composing the permutation π with a random permutation σ. By
the definition of a PRP, this is indistinguishable from the plain π (since this is the case for a truly random
permutation). Now instead of a query x, the query is effectively σ(x), which makes it into a random unknown
value. Given that the implementation is of π is fixed-time, the only information gained from the timing is
the number of applications of π needed to evaluate π′(x). But given the randomness of σ this is useless
information to distinguish between two queries q′0 and q′1 that have not appeared so far and therefore the
construction is query-oblivious.

Note that the construction does not satisfy the key switch requirement of Definition 2, since once π
is fixed, then each element x has a very distinctive number of evaluations of π needed to compute π′(x).
Therefore it is possible to see if the time to compute π′(x) changes at the potential key switch time.

3.3 Key-oblivious Domain Extension

Pseudo-random functions are a major cryptographic primitive that can be used to efficiently obtain many
other primitives and is very useful in many protocols. One question that comes up is: given a function family
F where each function Fk ∈ F is, say, length preserving, i.e. Fk : {0, 1}n 7→ {0, 1}n, how does one come up
with constructions which are on larger domains, e.g. {0, 1}2n 7→ {0, 1}n.

The Levin Trick: A common and simple way of obtaining domain extension is to apply a universal hash
function from the larger domain to the smaller one and then apply the PRF. Namely, let Γ be family of
pair-wise independent hash functions s.t. g : {0, 1}2n 7→ {0, 1}n for g ∈ Γ and Fk be a PRF. Then the
extended function is defined as F ′

k,g(x1, x2) = Fk(g(x1, x2)).

Claim 6 Even if Fk is key-oblivious and even if g is fixed time, the resulting construction may not be
key-oblivious.

Proof. Consider the case that Fk is very much not query oblivious. That is, the time to compute Fk(x) is x.
Now suppose that h is defined by two values a1, a2 ∈ GF [2n] (chosen uniformly at random) and the function
is g(x1, x2) = a1x1+a2x2 where the computation is over GF [2n]. Given a few examples of pairs (xi

1, x
i
2) and

the corresponding values F ′
k,g(x

i
1, x

i
2) it is possible to reconstruct a1 and a2. Once this is done it is possible

to find collisions with g, i.e. two pairs (x1, x2) and (x′
1, x

′
2) s.t. g(x1, x2) = g(x′

1, x
′
2). For this pair we will

have that F ′
k,g(x1, x2) = F ′

k,g(x
′
1, x

′
2). Now if the timing of a random key is given, then this will not cause a

collision in F ′
k,g and therefore there is a way to distinguish correct and incorrect timings.

Note that this claim shows that key-obliviousness is not necessarily preserved under composition. In this
example both Fk and g are key-oblivious, yet the composition is not.

Corollary 1. There are keyed functions f and g such that given key-oblivious implementations of f and g
the resulting composition f(g(x)) is not key oblvious.

12

Using CRH and UOWHF: A way to remedy this problem is to use a Collision Resistant Hash (CRH)
function, instead of a combinatorial one used in the original proposal by Levin. Recall that a function h is a
CRH if it is hard to find two different values x and x′ that collide under h, that is, any collision is considered
a violation of the hardness assumption. But this approach (i) Requires another cryptographic assumption
or primitive. Recall that in terms of assumptions, PRFs can be built from one-way functions in a black-box
(BB) manner, whereas CRHs are BB separated from one-way functions. (ii) May not work with all range of
the parameters we are interested in, since a CRH requires a minimum range size. For instance, the range of
the CRH cannot be 80 bits.

The perhaps surprising observation is that we show that the CRH in the above construction can be
replaced with a Universal One-way Hash Function (UOWHF) [32]. UOWHF (or second pre-image resistant
hash function), are ones where the target x is chosen before the function is known and the collision should
be with the target x. UOWHF can be based on one-way functions [34,22]. The idea is to replace each xi

with its PRF value. Let h ∈ H where H is a UOWHF family. Consider the construction

F ′
k,k′,h(x1, x2) = Fk(h(Fk′(x1),Fk′(x2))).

Claim 7 If the implementation of F is key-oblivious, then for any implementation of the hash function h
chosen from a family of UOWHFs, the implementation of F ′ as defined above is key-oblivious.

The only case we need to worry is if the adversary finds collisions under h. The hardness properties of h
do not guarantee hardness of finding any arbitrary collision, but rather with one target specified in advance.
The idea is that an adversary may ask various queries, and since we do not assume that Fk is query oblivious
and we make no timing assumption regarding h, then the values of Fk′(x1) are known to the adversary (i.e.
they may leak through the computation of h).

Furthermore, the adversary can mix and match an xi
1 and xj

2 from different queries. Nevertheless, the
values Fk′(xi

b) look random to the adversary. Suppose an adversary makes m queries to the function Fk′ .

At the end of the attack it finds a collision with some pair (xi
1, x

j
2) as one of the inputs with a collision in

h (if the colliding pair was never queried this is even better). Then we can use this adversary as a second
pre-image finder: We select a random value (y1, y2) ∈ {0, 1}2n as the target and then guess i and j and when
xi
1 is given, we plug in y1 as the value of Fk′(xi

1) and similarly for xj
1 we give y2 as the value of Fk′(xi

2).
From the adversary’s point of view this looks like a ‘normal’ instance. Therefore the probability of selecting
i and j correctly is Ω(1/m2) times the probability that the adversary finds a collision.

Cascading: We show that the cascading domain extension, as analyzed by Bellare, Canetti and Krawczyk [5]
actually preserves key-obliviousness. The length-doubling construction is

F ′
k(x1, x2) = FFk(x1)(x2).

The straightforward implementation of F ′ is to first compute Fk(x1) then take the resulting value as the key
k2 to Fk2

(x2) where the time of the second is independent of the time is took compute the first one.

Claim 8 If the implementation of F is key-oblivious, then the “straightforward” implementation of F ′ is
key-oblivious.

Proof. (Sketch) The main issue is that in this construction it is always clear what the query is. The keys,
that keep changing, on the other hand, are not known. Therefore the Bellare et al. proof can be translated to
this setting. Consider the experiment where instead of using the value Fk(x

j
1) and random value is vj is used

for the next step (while making sure to use it consistently) but the timing produced is that of T (Fk(x
j
1))

and T (Fvj (x
j
2)) . If it is possible to distinguish between these two cases, then there is an attack on the key

obliviousness of F . If not, then note that we can view the new construction as a concatenation of many
functions, as argued at the beginning of this section.

Question 1. A major issue we did not resolve is how not to lose the birthday bound, as was done in Berman
et al. [7] for domain extension without timing. Is it possible to get a similar result when timing is leaked?

13

4 Key-Oblivious PRPs on Small Domains

The question of how to generate Pseudo Random Permutations (PRP) has been extensively investigated for
a few decades. Luby and Rackoff [25] (who defined the notion of PRP) showed how to get a PRP from a PRF.
Their construction uses a Feistel network and there are many variants of it. In their work the security of the
construction works provided the adversary makes at most O(N

1
4) queries, where N is the size of the domain.

When the domain is not very big, such a security guarantee might not be enough, as N
1
4 can be a feasible

amount of queries made. This is also true to refinements of the method, such as Naor and Reingold [30],

who get to N
1
2 . In such cases we might want the security to hold even if the adversary queries a constant

fraction of the domain or even all of the domain but a constant number of elements.
When the domain is very small, it is possible to generate a fully random permutation, rather than a

PRP. Yet this is undesirable in many cases, since the memory required to represent a random permutation is
Ω(N logN) bits. This memory requirement may be feasible for small enough N but is infeasible for medium-
sized N (e.g. all credit card numbers or SSNs). We are left with the intermediate case of small, but not too
small, domains, so that explicitly saving a permutation is infeasible, yet the security guarantees of Feistel
network constructions might not suffice. As a concrete example think of the domain of credit card numbers
(16 decimal digits). We refer to PRPs of this intermediate case as small-domain PRPs.

Small-domain PRPs are useful in a variety of application scenarios, e.g. cryptographic constructions,
as Oblivious RAMs [17,36], for randomly reordering (permuting) a list of items. They can also be used to
generate pseudorandom unique tokens (e.g., product serial numbers) in a specific format and to encrypt
data in a small domain, such as encrypting a 9-digit social security number into another 9-digit number.
Because of this, a small-domain PRP is also commonly referred to as a small-domain cipher or format-
preserving encryption (FPE).4 FPE has been a useful tool in encrypting financial and personal identification
information, and transparently encrypting information in legacy databases.

In this section we focus on the small domain and show an interesting construction of PRPs on which is
not fixed-time, yet is also secure under some of our definitions. A line of three works addressed this issue
and showed efficient constructions for PRPs on small domains N with strong security guarantees, based on
PRP or PRFs on large domains. The key observation in these works is one made by Moni Naor (see [35]),
that if a card shuffling algorithm is oblivious, meaning that one can trace the trajectory of a card without
attending to a lot of other cards in the deck, then it gives rise to a computationally feasible PRP. Therefore
we can think of [N] as a deck of cards of size N . All three works we describe start from this viewpoint on
PRPs. The dominant computational resource in these works is the calls to a PRF on a large domain.

The first work, called “Swap-or-Not Shuffle” (SN) by Hoang, Morris and Rogaway [19] consists of a
sequence of rounds that gradually shuffle the deck. In each round they consider a random matching of
the cards in the deck that matches card X with card X ⊕ K (the randomness is over the choice of K).
Additionally, for each matched pair X,X ⊕K there is a random and independent bit b that decides whether
to swap the matched pair of cards or not (these bits are also derived from the key). Hoang et al. [19] proved
that applying the swap-or-not procedure O(logN) times and picking the matching index K for each round
at random and independently suffices as long as at most (1 − ε)N queries were made for any fixed ε > 0
(notice that this ε affects multiplicatively the number of rounds of swap-or-not needed to achieve a PRP).

To implement this as a PRP the swap bits along the shuffle b, as well as the K of the matching should be
produced by a PRF (which can be derived from a PRP on large domain such as AES). This gives a PRP that
runs in a fixed time and remains secure as long as at most (1− ε)N queries were made for any fixed ε > 0
(notice that this ε affects by a multiplicative the number of rounds of swap-or-not needed to achieve a PRP).
This procedure is fixed-time provided that the PRFs and XOR operations are implemented in running time
independent on the inputs and keys.

The second work, called “Mix and Cut” by Ristenpart and Yilek [33], aimed to improve on the number
of queries that can be made while keeping the PRP secure. Ristenpart and Yilek introduced a construction
of PRP which runs in a fixed-time of O(log2 N) and achieves full security, meaning it remains secure even

4 Note that the cycle walking technique mentioned in Section 3 does not solve the problem of constructing a small
or medium size PRPs, since it needs a PRP of not much larger size to begin with.

14

if the entire domain is queried. The Mix and Cut shuffle works by mixing the deck, cutting it to two equal
parts, and mixing each of them recursively using the Mix and Cut shuffle. In the paper, they also proved
that if the shuffle before each cut mixes the cards well enough (which means the top half and bottom half is
approximately a random partition of the cards), then this procedure achieves full security. They explicitly
showed that the Swap-or-Not shuffle can be used with the ε from last paragraph being 1

2 to give a fully
secure PRP with the Mix and Cut construction.

The third work, called “Sometimes Recurse” (SR) shuffle by Morris and Rogaway [29], constructed a
PRP which runs in expected time of O(logN) and achieves full security. Morris and Rogaway observed that
when the Mix and Cut procedure is called, there is no need to mix both the top half and the bottom half
of the deck. Since the top half looks almost uniform, it is enough to mix only the bottom half, therefore
they suggested to only recurse on the bottom half of the deck, hence the name sometimes recurse. This
construction allows an improvement on the O(log2 N) of the Mix and Cut shuffle to an expected number of
rounds which is O(logN).

The downside of SR is that it is no longer fixed-time, and in fact the running time is fully determined
by the number of leading 1s in the output. Morris and Rogaway address this issue by stating that in a
very common use of SR an adversary sees the outputs anyway, and so the running time doesn’t give more
information. However it is also the case that keyed functions, and in particular PRPs, are employed as a
subroutine of a larger system (see for example [3]). In such cases the adversary no longer sees the output,
and so the running time might leak valuable information that can harm the security of the system.

Consider for example if the PRP is used for storing or transmitting some piece of sensitive information
like a vote or a credit card number in a way that should not reveal the correspondence between the customer
or voter and the ciphertext. In this case the adversary can only get the runtime of the transaction (purchase,
vote) which corresponds to the runtime of the PRP but does not have direct access to the results of the
queries. Suppose now that the adversary does get to see after some time a batch of such ciphertexts and
perhaps some other information about them (say their opening in case of votes, or whether the transaction
was declined for credit cards). If the adversary knows how long each transaction took, then it can connect
the ciphertext and the voter or customer and learn something it should not have learned. Moreover, the SR
scheme is vulnerable to a denial-of-service attack where the attacker can easily assemble without any query
many different ciphertexts that take a long time to decrypt (by picking those that have long prefixes of ’1’s).

Before analyzing the security of SR we need to specify what we mean by runtime of SR. We assume that
SR construction uses the Swap-or-Not (SN) PRF for each shuffle and that the Swap-or-Not is implemented in
a fixed-time manner. I.e. for any x ∈ {0, 1}logN we have that the running time of SNk(x) is independent of x
and k but is dependent on the input length logN . We denote this fixed running time of the the Swap-or-Not
on logN bit inputs by TlogN (SN) := T (SNk(x)) for any x, k. Consequently, by linearity of composition, the

running time of SR on the input x is T (SRk(x)) =
∑j

i=0 T(logN)−i(SN) where j is the number of leading
1’s in the output, i.e. we assume commands are executed one after the other on a single unit without branch
predictions. We show that the SR construction is not secure with respect to our definitions in Section 2.1.

Claim 9 The SR construction is not key-oblivious, i.e. does not satisfy Definition 1 and hence also is not
key-switch oblivious, i.e. does not satisfy Definition 2.

Proof. Recall that by definition of SR, an adversary can determine the number of leading 1s in the output,
from the running time and vice versa. This property of SR gives the following simple strategy:

1. Choose a single element x and query it to get: SRk0
(x) and T (SRkb

(x)).
2. Check the number of leading 1s in SRk0(x), which is T (SRk0(x)) and compare it to the running time

T (SRkb
(x)) (number of calls to SN by SR on x).

3. If T (SRk0
(x)) is equal to T (SRkb

(x)), return 0, else return 1.

Observe that the distribution of the number of leading 1s is a Geo(12) distribution truncated at n. Also
since the SR shuffle is a PRP, then with constant probability T (SRk0(x)) ̸= T (SRk1(x)). This gives the
adversary a constant advantage in the key-oblivious game (Definition 1), and therefore the SR PRP is not
key-oblivious. Note that by choosing a polynomial number of inputs x1, . . . , xℓ, the adversary can get a
winning advantage that is exponentially close to 1.

15

Corollary 2. By Theorem 2 SR is not (GPRP,
1
2)-time-secure.

Claim 10 The SR construction is not secure with respect to query-obliviousness (Definition 3) even in the
weakly without results sense.

Proof. Observe that in the definition there is no restriction on making queries in one direction, we assume
both forward and inverse queries. By the construction of SR, in the inverse direction the running time is
determined by the number of leading 1′s in the input. This gives an adversary a very simple attack. First,
make an inverse query on the string x which we define to be half 1′s in the beginning and then half 0′s. Now
for the challenge pick x0 to be the all 0′s string, and x1 the all 1′s string and make inverse queries. If the
running time is faster than that on x, return b = 0; else return b = 1. This gives the adversary a winning
probability of 1 in the game defined in Definition 3.

4.1 JSR: Constructing key-oblivious and query-oblivious PRPs

So far we have seen fixed-time constructions and a non fixed-time construction which is not secure under
our definitions. It begs the question: are there (interesting) constructions that are not fixed-time, yet are
also secure under some of our definitions? We now show a construction of “SR with a twist”, which: (1)
achieves the same expected run time of O(logN) up to a multiplicative factor of 2, (2) is not fixed-time, and
(3) is secure with respect to Definition 1 and with respect to Definition 3 (assuming we have a fixed-time
implementation of a PRF).

The Proposed Construction: Janus Sometimes Recurse The construction takes two independent
(i.e. with two independent keys) copies of SR on the same domain [N], where the permutations are denoted
by π and σ and the keys by kπ and kσ, and composes π with σ−1, see Figure 2. This is similar to the
approach that Maurer and Pietrzak [26] used to move from non-adaptive to adaptive PRPs. We call this
construction “Janus Sometimes Recurse” (JSR):

Algorithm 1 JSR(x) with keys kπ and kσ

1: return σ−1
(
π(x)

)

The term “Janus” comes from the Roman god who was depicted as having two faces, since both the
directions (encryption and decryption) are forward looking.

Fig. 2. Janus construction on two PRPs

The intuition for this construction is that while the running time of the forward direction leaks information
about the output, the running time of the inverse is determined by the input, and so by composing the two
we get that the running time of the algorithm both in the forward direction and in the inverse, is determined
by the inner value which is almost independent of the input and output since π, σ are PRPs.

16

We now turn to show that (1) JSR is secure with respect to Definition 1 as well as Definition 3 when
the two elements chosen are fresh (were not queried before), i.e., in the weakly sense, and (2) that it is not
secure under Definition 2 even in the relaxed version when queries cannot repeat after the switch.

We start with a lemma that will help us prove the security of the construction.

Lemma 1. Let π and σ be two PRPs on the same domain D, secure under q queries, and let (kπ0 , k
π
1) and

(kσ0 , k
σ
1) be two pairs of keys for π and σ respectively, then any PPT adversary Adv has a negligible advantage

over 1/2 in the following game:

1. A random bit b ∈R {0, 1} is chosen.
2. The adversary can make at most j ≤ q queries x1, . . . , xj to the composition of π with σ−1, either in the

forward direction σ−1
kσ
0
◦ πkπ

0
(xi) or in the inverse direction: π−1

kπ
0
◦ σkσ

0
(xi).

3. The adversary gets in addition to the result of each query, the inner result with respect to b. Namely in
the forward direction Adv gets πkπ

b
(xi) and in the inverse direction σkσ

b
(xi).

4. The adversary should output b′ such that b′ = b.

Proof. Consider the distribution where a truly random value that hasn’t appeared in previous queries is given
instead of the inner value either in the case b = 0 or b = 1. We claim that the truly random distribution is
indistinguishable from the distribution of inner values in both cases of b. Observe that the distribution of a
truly random value that hasn’t appeared in previous queries is the same distribution of the inner value of a
composition of two truly random permutations that agree on the values already seen. Since π and σ are both
PRPs, it follows that this distribution is indistinguishable from the inner value distribution both in b = 0
and b = 1. By a hybrid argument we get that the inner value distribution with b = 0 is indistinguishable
from the inner value distribution with b = 1 which completes the proof.

Claim 11 Assuming we have a fixed-time implementation of PRFs and the implementation of the JSR uses
it, then the JSR construction is key-oblivious, i.e. secure with respect to Definition 1.

Proof. The proof follows from Lemma 1 by observing that twice the number of leading 1’s in πk(x) is exactly
the running time for computing σ−1

k ◦ πk(x). Therefore the adversary can determine the running time of
Fk(x) from πk(x). This implies that the advantage of the adversary in the key-oblivious game is at most
the advantage of an adversary in the game defined in Lemma 1. Since we know that the advantage of an
adversary in Lemma 1 is negligible, we get that the construction is secure with respect to Definition 1.

Claim 12 The JSR construction is not key-switch secure. That is, it does not satisfy Definition 2 even in
the relaxed version.

Proof. Since we are interested in PRPs on small domains, this means that the adversary can query a large
fraction or even entire domain apart from a few elements. The main observation is that the

∑
x∈D T (SRk0

(x))
is a constant independent of k0, where the sum is over the running time of the JSR algorithm.

The strategy for the adversary is to query the entire domain up to a single element l (last element).
By the observation above, this gives the adversary full information about the timing distribution of the
last element. Now the switch happens and the adversary makes one last query on the remaining element. If
the running time the adversary receives is the running time it expected with respect to k0, then it returns
b = 0; otherwise, it returns b = 1. Since the running time of T (SRk1

(l)) is not constant (with non-negligible
probability), then with non-negligible probability T (SRk0(l)) ̸= T (SRk1(l)) and so this strategy gives the
adversary a non-negligible probability of winning.

Finally, we have:

Claim 13 The JSR construction is query-oblivious secure, in the weakly and with results sense.

Proof. The proof is similar to the proof of Claim 11. By a similar argument as the one in the proof of Lemma 1,
we know that given the inner result of either q′0 or q′1, the adversary cannot tell which query it came from.
Since given the inner result, the adversary can get the running time of the query, we conclude that given the
running time T (SRk(q

′
b)), the adversary cannot guess b.

17

We note that all claims above regarding the JSR construction hold to more general constructions. The
crucial property of SR, from which the claims follow, is that the running time of the algorithm was fully
determined by the output. We summarize:

Theorem 14. Let πk be a PRP for which the running time to compute πk on x is fully determined by x’s
image, i.e. T (πk(x)) = f(πk(x)) for some function f . If the permutation π is secure under q queries, then
the Janus PRP π−1

k0
◦ πk1

(x) is a key-oblivious and query-oblivious PRP secure under q queries.

For an application of the above theorem to the low memory generation of a random permutation of the
numbers in a given range 1 . . . N , see Appendix A.

5 Main Security Theorem, Noticeable Security and Games Defi-
nitions

5.1 Defining Noticeable Security and Cryptographic Games

Our goal is to prove that if the implementation of a keyed function is key-oblivious then the keyed function
is time-secure, that is, the keyed function is secure w.r.t. the cryptographic game in which the adversary
has access not only to the relevant oracles but also to the time it takes the oracle to execute. We show
this for cryptographic keyed functions that have what we call Noticeable Security. Many well-known and
useful keyed functions primitives have noticeable security, such as: (i) digital signatures, (ii) pseudo-random
permutations (PRP), and (iii) indistinguishability of encryptions (either symmetric or not).

We start with defining a cryptographic game. We formulate a cryptographic game as an interactive game
between a principal and an adversary. The principal maintains a state. In each round of an attack the
adversary sends a pair (ai, qi) where qi represents a query to the keyed function and ai some additional
information (for instance, ai could be a bit indicating whether the adversary wishes to receive the upper half
or the lower half of Fk(qi)). The principal responds with some function of its current state and the query.
At the end, the adversary issues a guess and a tester decides whether to accept or not based on the state of
the principal and the queries made (this determines who won the game).

Definition 6. A cryptographic game GF for a keyed function Fk(x) between a principal and an adversary
is a game defined by three PPT algorithms

(StateTransition,Answer,Tester),

where the first two define the actions of the principal and Tester produces outputs in {0, 1} and determines
who won the game. Specifically, at round i:

– Function StateTransition gets as input a state Si−1 and the current query pair issued by the adversary
(ai, qi) and the value of Fk of qi. The new state is Si. In other words Si is defined by:

Si := StateTransition(ai, qi,Si−1,Fk(qi)).

– Answer takes as input the current state (Si) and returns a response CAi to the adversary (e.g. this may
simply be Fk(qi) or some function of it). That is

CAi := Answer(Si).

– Tester gets as input all the queries pairs (qi, ai)
ℓ
i=1 and states (Si)

ℓ
i=1 as well the adversary’s response

guess and outputs either 0 or 1. If the output is 1 the adversary wins the game, otherwise it loses the
game.

For an adversary Adv, the game GF is the following:

18

1. A key k ∼ K is chosen randomly.
2. Learning Phase: for ℓ = poly(n) rounds where at round i:

(a) Adv chooses a query qi that depends on q1, . . . , qi−1 as well as CA1, . . . ,CAi−1.
(b) The principal generates Si := StateTransition(ai, qi,Si−1,Fk(qi)).
(c) The principal sends Adv an answer CAi which is a function of Si and i.

3. Guessing Phase: The adversary generates guess.
4. Testing Phase: If Tester((a1, q1), . . . , (aℓ, qℓ),S0,S1, . . . ,Sℓ, guess) = 1, then Adv wins the game and oth-

erwise it loses the game.

Note that Tester does not know the key k, nor does it have query access to Fk, hence the term noticeable
security. Let τ < 1 be a “benign” success probability. If the adversary cannot win the cryptographic game
of a keyed function with probability much better than τ , then we say that the keyed function is noticeable
secure. Specifically:

Definition 7. Let τ < 1, the “benign” success probability. A keyed function Fk(x) is (GF , τ)-noticeable-
secure if any PPT adversary Adv has probability at most τ + negl(n) to win the game GF .

As we shall see in Section 5.2, we can express in those terms many of the classical notions of security.

Adding Timing to the Game: Next, we define (GF , τ)-time-secure which intuitively says that the
winning probability in the game GF remains τ +negl(n) even when the adversary gets, not only the answers
for the oracles queries, but also the time it takes for the oracle to execute them. More formally:

Definition 8. Let τ < 1, the “benign” success probability. The implementation of a keyed function Fk(x) is
(GF , τ)-time-secure if any PPT adversary Adv has probability at most τ + negl(n) to win the game GF
with the following modification: in step 2.c of the game GF as in Definition 6, the principal sends both CAi

and the time it takes for the principal to execute Fk, that is T (Fk(qi)).

5.2 Classical Security Definitions are Noticeable Secure

We show a few examples of classical security definitions of keyed functions and show how they can be stated
in the form of Definition 6, namely we show they are noticeable secure. Specifically, we show for digital
signatures, pseudo-random permutations, and indistinguishability of encryptions.

Definition 9. (Digital signatures) Let Adv be an adversary in the following game:

1. The principal generates public and secret keys (pk, sk) and shares pk with adversary Adv.
2. Adversary Adv chooses adaptively ℓ = poly(n) messages m1, . . . ,mℓ and gives them to the principal,

receiving their signatures
σ1 = Signsk(m1), . . . , σℓ = Signsk(mℓ).

3. Adversary Adv chooses a new message m′ /∈ {m1, . . . ,mℓ}. Adversary Adv succeeds if and only if it can
generate σ′ = Signsk(m

′) s.t. Vrfypk(m
′, σ′) = 1.

A signature scheme Π = (Sign,Vrfy) is existentially unforgeable under an adaptive chosen-message attack,
or just secure, if for all probabilistic polynomial-time adversaries Adv, there is a negligible function negl such
that:

Pr[Adv success] ≤ negl(n).

It is relatively straightforward to phrase the security of digital signatures in the game framework of
Section 5.1. Let GDS be the following cryptographic game:

1. The principal generates public and secret keys (pk, sk) and shares pk with adversary Adv.

S0 = pk

19

2. Learning phase: For i ∈ [1, ℓ],
(a) Adv chooses adaptively a message mi and gives it to the principal.
(b) The principal is essentially stateless, i.e. its current state is simply the signature Signsk(mi) on mi.
(c) The answer function is simply to send the full state to the adversary, i.e.

CAi = Si = Signsk(mi).

3. Guessing phase: Adversary Adv chooses a new message m′ /∈ {m1, . . . ,mℓ} and calculates

guess = (m′,Signsk(m
′)).

4. Testing phase: Tester returns 1 iff m′ is not in {m1,m2, . . . ,mℓ} and Vrfypk(guess) = 1.

Proposition 1. A digital signature scheme is secure according to Definition 9 iff it is (GDS, 0)-noticeable-
secure.

Notice that when discussing key-obliviousness for digital signatures the adversary also knows the corre-
sponding public-key to k0 (but not the one corresponding to k1).

Definition 10. (Strong Pseudo-random Permutations) Let Adv be a probabilistic polynomial-time adversary
in the following game:

1. A key k ∼ K is sampled.
2. A random bit b is sampled.
3. Adv chooses adaptively ℓ = poly(n) queries (x1, s1), . . . , (xℓ, sℓ) where xi is a message and si ∈ {−1, 1}

is the oracle direction. If b = 0 then it receives the values of Ek on each query

y1 = Es1
k (x1), . . . , yℓ = Esℓ

k (xℓ).

If b = 1 then it receives the values of a random permutation f on each query

y1 = fs1(x1), . . . , yℓ = fsℓ(xℓ).

4. Adversary Adv guesses b′ and wins if b′ = b.

The function Ek is a pseudo-random permutation if for all PPT adversaries Adv as above there is a negligible
function negl such that, for all n,

Pr[b = b′] ≤ 1/2 + negl(n).

Note that a random permutation f can be simulated perfectly by always picking a random value that
has not appeared so far (while being consistent with the values that have appeared).

As before, it is relatively straightforward to phrase the security of a PRP in terms of a game of Definition 6.
Let the GPRP be:

1. A random key k ∼ K is chosen and the principal chooses a random bit b

S0 = b.

The bit b remains in the state of the principal throughout the game.
2. Learning Phase: For i ∈ [1, ℓ]:

(a) Adversary Adv chooses adaptively a query (xi, si) where xi is a message and si ∈ {−1, 1} is the
direction of the permutation (forward or background).

(b) The principal state includes the bit b and all the queries (x1, s1, y1), . . . , (xi−1, si−1, yi−1) values it
sent and received. The state transition gets in addition to the current state the value of Esi

k (xi). If
b = 0 then yi = Esi

k (xi) and if b = 1 then, if xi is equal to any of previous values xj or yj (with the
appropriate sj), then set yi as was the previous response. Else choose yi to be a random value that
has not appeared so far.

20

(c) The answer
CAi = yi.

3. Guessing Phase: Adversary Adv guesses guess := b′.
4. Testing phase: returns 1 and wins if guess = b.

Proposition 2. A strong pseudo-random permutation is secure iff it is (GPRP,
1
2)-noticeable-secure.

Our final example is indistinguishability of a private-key encryption scheme against chosen plaintext
attacks (the same also works in public-key setting):

Definition 11. (Indistinguishability of encryptions) Let Adv be a PPT adversary in the following game:

1. A random key k ∼ K is chosen.
2. Adversary Adv chooses adaptively ℓ = poly(n) messages m1, . . . ,mℓ and gives them to the principal,

receiving their encryption in the form of ciphertext

C1 = Ek(m1), C2 = Ek(m2), . . . , Cℓ = Ek(mℓ).

3. Adversary Adv then chooses two more messages m′
0 ̸= m′

1 such that |m′
0| = |m′

1| (not necessarily distinct
from the previous messages) and sends them to the principal.

4. The principal chooses randomly b ∈R {0, 1} and sends Ek(m
′
b) back to adversary Adv.

5. Adv chooses adaptively another collection of ℓ = poly(n) messages mℓ+1, . . . ,mℓ+ℓ and receives their
encryption in the form of ciphertexts

Cℓ+1 = Ek(mℓ+1), . . . , Cℓ+ℓ = Ek(mℓ+ℓ).

6. Adversary Adv guesses b′ and wins if b′ = b.

A private-key encryption scheme is said to have the property of indistinguishablity of encryptions under a
chosen-plaintext attack, if for all PPT adversaries Adv as above there is a negligible function negl such that
for all n

Pr[b = b′] ≤ 1/2 + negl(n).

It is relatively straightforward to phrase the security of indistinguishability of encryptions in the game
framework of Section 5.1. Let GIND be the following cryptographic game:

1. A random key k ∼ K is chosen and the principal chooses a random bit b.

S0 = b.

2. Learning Phase:
– For each i ∈ [1, ℓ− 1], adversary Adv chooses adaptively a message mi and gives it to the principal,

receiving its encryption in the form of ciphertext

CAi = Si = Ek(mi).

– Adversary Adv chooses two more messages mℓ−1 ̸= mℓ such that |mℓ−1| = |mℓ| and sends them to
the principal. The principal calculates

Sℓ−1 = Ek(mℓ−1) and Sℓ = (Ek(mℓ−1), Ek(mℓ), b).

CAℓ−1 = NULL and CAℓ = (Ek(mℓ−1+b),

– For each i ∈ [ℓ+1, 2ℓ], adversary Adv chooses adaptively a message mi and gives it to the principal,
receiving its encryption in the form of ciphertext

CAi = Si = Ek(mi).

3. Guessing phase: Adversary Adv guesses guess = b′

4. Testing phase: returns 1 if guess = b.

Proposition 3. The indistinguishability of encryptions game GIND is secure iff it is (GIND, 0.5)-noticeable-
secure.

21

5.3 Main Theorem: Key Oblivious Implies Time-Security

We now prove the main theorem of this section:

Theorem 15. Let Fk be a keyed function that is (GF , τ)-noticeable-secure for τ < 1. If the implementation
of Fk is key-oblivious, then the implementation of Fk is (GF , τ)-time-secure.

Proof. Recall that GF is the cryptographic game of Fk. We prove the theorem in two steps. We first consider
a random-time game of GF , which we denote by GR

F . The random-time game GR
F is similar to GF , with the

following changes: (1) at the beginning of the game a random key k′ is generated (unrelated to the original
key k), and (2) besides receiving CAi from the principal, the adversary receives the timing information
T (Fk′(qi)), which is the running time it takes for Fk′ (namely, using the random key k′) to be executed
on qi. It is easy to see that the winning probability of GR

F is the same as the winning probability of GF .
To see that, assume adversary AdvGR attacks GR

F . We build adversary AdvG attacking GF . Adversary AdvG
works as follows: it first chooses a random key k′, then for every query qi from adversary AdvGR, it calculates
T (Fk′(qi)) and sends CAi together with T (Fk′(qi)) to adversary AdvGR. Finally, adversary AdvG returns the
guess of adversary AdvGR. From the description it holds that

Pr[AdvG wins GF] = Pr[AdvGR wins GR
F] ≤ τ + negl.

Now, let GT
F be the game defining the time-security of Fk, namely it is similar to GF but in addition to CAi,

the adversary also receives T (Fk(qi)) from the principal. Let AdvGT be adversary attacking the game GT
F .

We show that if the implementation of Fk is key-oblivious then

Pr[AdvGT wins GT
F]− Pr[AdvGR wins GR

F] ≤ negl (5.1)

and this will imply

Pr[AdvGT wins GT
F] ≤ τ + negl.

To prove Equation 5.1, we assume there exists adversary AdvGT attacking the game GT
F and we build

adversary AdvKO attacking the key-obliviousness of Fk. Adversary AdvKO works as follows:

– Adversary AdvKO receives polynomially many queries qi from adversary AdvGT and sends them to the
principal.

– Adversary AdvKO receives from the principal Fk0
(qi) and T (Fkb

(qi)) for a random bit b. Adversary AdvKO
sends these Fk0

(qi) and T (Fkb
(qi)) to adversary AdvGT.

– Adversary AdvGT returns its guess. Adversary AdvKO tests if the guess is correct using Tester and receives
w = Tester(guess). If w = 1, then AdvKO returns b′ = 0 since the queries were executed on Fk0

. If w = 0,
it returns b′ = 1.

Pr[AdvKO wins key-oblivious game] = Pr[b′ = 0|b = 0] · Pr[b = 0] + Pr[b′ = 1|b = 1] · Pr[b = 1]

= Pr[b′ = 0|b = 0] · Pr[b = 0] + (1− Pr[b′ = 0|b = 1]) · Pr[b = 1]

= Pr[AdvGT wins GT
F] · 0.5 + (1− Pr[AdvGR wins GR

F) · 0.5

Since Pr[AdvKO wins key-oblivious game] ≤ 0.5 + negl, we get Equation 5.1.

We can use the theorem above, in addition to Propositions 1, 2 and 3, in order to obtain the following
corollary:

Corollary 3. The cryptographic schemes: digital signature, pseudo-random permutation and encryption are
(GF , τ)-time-secure with the corresponding τ for each game, provided the implementation of each scheme is
key-oblivious.

22

5.4 Caveat on Key-Oblivious and an Application of Query-Oblivious

It is essential not to abuse Theorem 15 and Corollary 3 and apply them correctly. The point is that the
setting considered assumes that the timing information gained by the adversary follows the pattern of the
timing game (Definition 6). But this may not necessarily be the case and it could be that the adversary does
not know which query q is evaluated by the implementation of Fk at a given point and the time T (Fk(q))
it takes to compute Fk(q) may reveal information about q itself and compromise the security of the system.

A case in point is that of indistinguishably of encryption, where following a learning session an adversary
selects a pair of messages (m0,m1) and receives either Fk(m0) or Fk(m1) and has to make a guess about the
value of b where the ciphertext is of mb. We saw in Proposition 3 that it falls into the framework of noticeable
security. But this assumed that the principal computes both Fk(m0) and Fk(m1) before selecting which one
to send. But a natural version of it is to first select whether to encrypt m0 or m1 and evaluate F only on
the selected point. Thus the time to compute Fk(mb) may reveal which one was selected. Note that here we
have two games that are equivalent in the non-timed version (Definition 6), i.e. the adversary has exactly
the same probability of winning in these two games, but when considering the timed version (Definition 8)
these two games are not equivalent any more, since there function Fk is called after each query.

So given an implementation of a system, to argue that it is secure in terms of timing, one must argue
that the setting of Definition 6 is the relevant one to the given system. Requiring the implementation of
the encryption to be query-with-result-obliviousness solves the above situation in the indistinguishability of
encryption game. If the implementation is query-with-result-oblivious, then the two games are equivalent
also in the timed version:

Theorem 16. Suppose Fk is a keyed function which is (GIND, τ)-noticeable-secure. If the implementation of
Fk is query-with-results-oblivious, then Fk is also (GIND, τ)-time-secure.

Proof. This is straightforward since the query-with-results-oblivious game is the exact same game as indis-
tinguishability of encryptions with timing.

To conclude, arguing that the properties of key and query obliviousness are relevant to a given system
is a delicate matter. Key obliviousness is most relevant to systems where the timing information is exposed
for a certain period of time, but then when the attack is made, there is no leakage. Think of the definition
of semantic security of encryption. If the attacker chooses a distribution on which it is to be tested, the
encryption of the challenge message should be done after the leakage is over (note that it does not fall into
the game framework, since there at any point it is clear what call is made to the keyed function).

On the other hand query obliviousness is relevant when the timing information is leaked about the
message or challenge that is protected.

6 Future Work and Open Problems

In this paper we revisited issues arising from timing attacks and we investigated protecting keyed functions
in computationally based cryptography, from timing attacks. To this end, we suggested several definitions,
the most useful in the sense that implies much yet can be achieved is key-oblivious. We constructed small
domain PRPs that are resilient to key-oblivious attacks, the Janus Sometimes Recurse. One natural question
that comes up is:

Question 2. Can we lower the requirements from the underlying PRFs in the JSR construction? Can you
work with PRFs that are not fixed-time?

The general issue is to understand when it is possible to replace fixed-time with key-oblivious primitives:

Question 3. Suppose we have a construction using keyed functions and we prove that it is key-oblivious
assuming the keyed functions are fixed-time. When can we replace the keyed functions with key-oblivious
implementation and maintain the overall key-oblivious property of the construction?

23

Another question is

Question 4. Is it possible to construct permutations on very large domains, while using a fixed-time imple-
mentation of the primitive which works only on small blocks? Recall that [30] suggested such a construction,
but it loses a factor proportional to a birthday bound on the small domain.

Finally, can we get query-oblivious constructions from key-oblivious ones?

Question 5. Suppose we have a pseudo-random function that is key-oblivious. Can we use it in order to
obtain one that is query-oblivious?

Finally, what is composability power of primitives that are both key-oblivious and query-oblivious? specif-
ically PRFs?

Question 6. Suppose that we have a pseudo-random function that is both key and query-oblivious. Can we
argue that any ‘reasonable’ construction using such components will be both key and query-oblivious. In
particular, is this true for Feistel-based constructions, such as FF3?

References

1. José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. Verifying
constant-time implementations. In Thorsten Holz and Stefan Savage, editors, 25th USENIX Security Sympo-
sium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, pages 53–70. USENIX Association, 2016.

2. Joël Alwen, Yevgeniy Dodis, and Daniel Wichs. Survey: Leakage resilience and the bounded retrieval model. In
Kaoru Kurosawa, editor, Information Theoretic Security, 4th International Conference, ICITS 2009, Shizuoka,
Japan, December 3-6, 2009. Revised Selected Papers, volume 5973 of Lecture Notes in Computer Science, pages
1–18. Springer, 2009. doi:10.1007/978-3-642-14496-7_1.

3. Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard cuckoo hashing: Constant worst-case operations with a
succinct representation. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA, pages 787–796. IEEE Computer Society, 2010. doi:10.1109/

FOCS.2010.80.
4. Gustavo Banegas, Daniel J. Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael Meyer, Benjamin

Smith, and Jana Sotáková. CTIDH: faster constant-time CSIDH. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):351–387, 2021. URL: https://doi.org/10.46586/tches.v2021.i4.351-387, doi:10.46586/TCHES.

V2021.I4.351-387.
5. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cascade construction

and its concrete security. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 514–523. IEEE Computer Society, 1996. doi:10.1109/SFCS.1996.

548510.
6. Mihir Bellare, Thomas Ristenpart, Phillip Rogaway, and Till Stegers. Format-preserving encryption. In

Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptogra-
phy, 16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada, August 13-14, 2009, Re-
vised Selected Papers, volume 5867 of Lecture Notes in Computer Science, pages 295–312. Springer, 2009.
doi:10.1007/978-3-642-05445-7_19.

7. Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness-preserving reductions via cuckoo
hashing. J. Cryptol., 32(2):361–392, 2019. doi:10.1007/s00145-018-9293-0.

8. Arnab Kumar Biswas, Dipak Ghosal, and Shishir Nagaraja. A survey of timing channels and countermeasures.
ACM Comput. Surv., 50(1):6:1–6:39, 2017. doi:10.1145/3023872.

9. John Black and Phillip Rogaway. Ciphers with arbitrary finite domains. In Bart Preneel, editor, Topics in
Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002, San Jose, CA, USA,
February 18-22, 2002, Proceedings, volume 2271 of Lecture Notes in Computer Science, pages 114–130. Springer,
2002. doi:10.1007/3-540-45760-7_9.

10. Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque, and Mehdi Tibouchi. LWE without
modular reduction and improved side-channel attacks against BLISS. In Advances in Cryptology - ASIACRYPT
2018, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in
Computer Science, pages 494–524. Springer, 2018. doi:10.1007/978-3-030-03326-2_17.

24

https://doi.org/10.1007/978-3-642-14496-7_1
https://doi.org/10.1109/FOCS.2010.80
https://doi.org/10.1109/FOCS.2010.80
https://doi.org/10.46586/tches.v2021.i4.351-387
https://doi.org/10.46586/TCHES.V2021.I4.351-387
https://doi.org/10.46586/TCHES.V2021.I4.351-387
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1109/SFCS.1996.548510
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/s00145-018-9293-0
https://doi.org/10.1145/3023872
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/978-3-030-03326-2_17

11. David Brumley and Dan Boneh. Remote timing attacks are practical. In Proceedings of the 12th USENIX Security
Symposium, Washington, D.C., USA, August 4-8, 2003. USENIX Association, 2003.

12. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, Advances in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August
23-25, 1982, pages 199–203. Plenum Press, New York, 1982. doi:10.1007/978-1-4757-0602-4_18.

13. Scott A. Crosby, Dan S. Wallach, and Rudolf H. Riedi. Opportunities and limits of remote timing attacks. ACM
Trans. Inf. Syst. Secur., 12(3):17:1–17:29, 2009. doi:10.1145/1455526.1455530.

14. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013. Proceedings, Part I, volume
8042 of Lecture Notes in Computer Science, pages 40–56. Springer, 2013. doi:10.1007/978-3-642-40041-4_3.

15. Thomas Espitau, Pierre-Alain Fouque, Benôıt Gérard, and Mehdi Tibouchi. Side-channel attacks on BLISS
lattice-based signatures: Exploiting branch tracing against strongswan and electromagnetic emanations in mi-
crocontrollers. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1857–1874. ACM, 2017. doi:

10.1145/3133956.3134028.

16. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM
(JACM), 33(4):792–807, 1986.

17. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431–473, 1996.

18. Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. SIAM J. Comput.,
44(5):1480–1549, 2015. doi:10.1137/130931461.

19. Viet Tung Hoang, Ben Morris, and Phillip Rogaway. An enciphering scheme based on a card shuffle. In Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 1–13. Springer, 2012. doi:

10.1007/978-3-642-32009-5_1.

20. Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware against probing attacks.
In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003 Proceedings, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003. doi:10.1007/978-3-540-45146-4_27.

21. Yael Tauman Kalai and Leonid Reyzin. A survey of leakage-resilient cryptography. In Oded Goldreich, editor,
Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 727–
794. ACM, 2019. doi:10.1145/3335741.3335768.

22. Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash functions from arbitrary one-way
functions. IACR Cryptol. ePrint Arch., page 328, 2005. URL: http://eprint.iacr.org/2005/328.

23. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In Advances
in Cryptology - CRYPTO ’96, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996. doi:10.1007/3-540-68697-5_9.

24. Richard J. Lipton and Jeffrey F. Naughton. Clocked adversaries for hashing. Algorithmica, 9(3):239–252, 1993.
doi:10.1007/BF01190898.

25. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput., 17(2):373–386, 1988. doi:10.1137/0217022.

26. Ueli M. Maurer and Krzysztof Pietrzak. Composition of random systems: When two weak make one strong. In
Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge,
MA, USA, February 19-21, 2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 410–427.
Springer, 2004. doi:10.1007/978-3-540-24638-1_23.

27. Boaz Menuhin and Moni Naor. Keep that card in mind: Card guessing with limited memory. In Mark Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3,
2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 107:1–107:28. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.107.

28. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Moni Naor, editor,
Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, February
19-21, 2004, Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.
doi:10.1007/978-3-540-24638-1_16.

29. Ben Morris and Phillip Rogaway. Sometimes-recurse shuffle - almost-random permutations in logarithmic ex-
pected time. In Advances in Cryptology - EUROCRYPT 2014, Copenhagen, Denmark, May 11-15, 2014. Pro-
ceedings, volume 8441 of Lecture Notes in Computer Science, pages 311–326. Springer, 2014. doi:10.1007/

978-3-642-55220-5_18.

25

https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1145/1455526.1455530
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1145/3133956.3134028
https://doi.org/10.1137/130931461
https://doi.org/10.1007/978-3-642-32009-5_1
https://doi.org/10.1007/978-3-642-32009-5_1
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1145/3335741.3335768
http://eprint.iacr.org/2005/328
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/BF01190898
https://doi.org/10.1137/0217022
https://doi.org/10.1007/978-3-540-24638-1_23
https://doi.org/10.4230/LIPIcs.ITCS.2022.107
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-642-55220-5_18
https://doi.org/10.1007/978-3-642-55220-5_18

30. Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-rackoff revisited. J.
Cryptol., 12(1):29–66, 1999. doi:10.1007/PL00003817.

31. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. SIAM J. Comput., 41(4):772–814,
2012. doi:10.1137/100813464.

32. Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applications. In David S.
Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989,
Seattle, Washington, USA, pages 33–43. ACM, 1989. doi:10.1145/73007.73011.

33. Thomas Ristenpart and Scott Yilek. The mix-and-cut shuffle: Small-domain encryption secure against N queries.
In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science, pages 392–409.
Springer, 2013. doi:10.1007/978-3-642-40041-4_22.

34. John Rompel. One-way functions are necessary and sufficient for secure signatures. In Harriet Ortiz, editor, Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,
USA, pages 387–394. ACM, 1990. doi:10.1145/100216.100269.

35. Steven Rudich. Limits on the provable consequences of one-way functions. PhD Thesis, University of California,
1988.

36. Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. arXiv preprint arXiv:1106.3652,
2011.

A Low Memory Generation of Permutations Resistant to Timing
Leakage

We now consider the motivating example given in the introduction. Recall that our goal is to generate a
random permutation of the numbers in 1 . . . N (i.e. enumerate all the numbers one by one in a random
order), while using very little memory.

While the way the question was posed in the introduction had no specific notion of randomness (of the
permutation), one possibility is that the generated permutation should be indistinguishable from a random
permutation, and a weaker version that it will be hard to guess the next value (again compared to a random
permutation). Therefore, the requirement we make is that a guesser, trying to guess sequentially π(1), π(2), ...
would succeed in guessing the output of π at the same success rate as if π was chosen to be a truly random
permutation (such a guesser should have ≈ lnN correct guesses w.h.p.). Compare that to the scenario
considered in [27], where a dealer generates some permutations of the value and a guesser has to guess them.
In that work, the dealer was all-powerful and the guesser had limited memory, but now the situation is the
other way around.

Definition 12. Let D be a distribution on random permutations on [N]. And let Guesser be a randomized
algorithm that gets an element of Nk (for some k) and returns an element of [N]. The success value of the
guesser in round k is defined by

Vk(Guesser) = Pr
f∼D

[Guesser (f(1), . . . , f(k)) = f(k + 1)] (A.1)

The total success value of Guess is:

V(Guesser) =
∑

Vk(Guesser)

It is immediate that the value of any guesser against a truly random permutation is
∑N

k=1
1
k ≈ lnN . A

possible answer to the original problem is to use a PRP π on a domain of size N that satisfies Definition 10.
This can be done assuming one has more standard primitives such as a pseudo-random function. At step i the
dealer outputs π(i). As described in Section 4, the best construction of PRPs on medium-sized domains is the
“Sometimes Recurse” due to Morris and Rogaway and uses Θ(logN) calls on average to the pseudo-random
function in expectation in order to evaluate π(i). I.e. the amount of memory needed is that of a key to a
pseudorandom function and the total time is O(N logN) calls to the underlying PRF. Any non-negligible
increase in the guessing expectation can be used to distinguish the permutation from random.

26

https://doi.org/10.1007/PL00003817
https://doi.org/10.1137/100813464
https://doi.org/10.1145/73007.73011
https://doi.org/10.1007/978-3-642-40041-4_22
https://doi.org/10.1145/100216.100269

But now, suppose that before each guess the guesser sees how long it took to generate the value π(i).
As discussed in Section 4.1, the time the Morris-Rogaway construction takes is proportional to the number
of leading ’0’s in the output of π(i). This suggests that the leaked running time may improve the guesser’s
performance.

Indeed, if the timing information is known to the guesser, then the guessing task is much easier and there
is a guesser Guesser with V(Guesser) = (ln 2)/2 ln2 N −O(lnN): The scheme essentially partitions the set of
numbers 1, . . . , N into logN bins depending on the prefix of 0’s. Each one of them can be considered as a
separate game (since we can find the possible output bin from the running time). In the jth the game there
are 2j numbers and the expected number of correct guesses is ln(2j) = j ln 2. Altogether we get that

V(Guesser) ≥
logN−1∑

j=1

j ln 2 = 1/2 · log2 N · ln 2−O(lnN).

By applying the JSR construction (Algorithm 1) we get the best of both worlds. The total number
of applications of the PRF when generating all N numbers will remain O(N logN) and the generated
permutation will be indistinguishable from truly random permutation. In particular, any PPT algorithm
Guesser will yield on expectation lnN correct guesses, even when the guesser gets the timing information. To
see this, suppose that we apply it as a test for key-obliviousness. Since without the timing information the
adversary cannot guess on expectation better than lnN in expectation, then given the timing information
of an independent key (from the real one) does not change the expectation.

B Separating the Definitions

We start by comparing the various the three notions suggested in the definitions of Section2.1 and their
general security. See Figure 3 for illustration. In order to show the separation we assume that fixed-time
PRPs exist.

Fig. 3. Separating the definitions

We start by showing that Definition 1 and Definition 3 are incomparable definitions. This will also show
that Definition 2 and Definition 3 are incomparable using the same constructions. To this end, we use
pseudo-random permutations (PRP), formally defined in Definition 10 below.

Claim 17 There exists a keyed function that is key-oblivious but not query-oblivious.

Proof. Let F be a PRP with inputs of length n running in fixed time. Let F ′ be the same permutation as F
only it runs for twice as long on the all 0s input. Clearly, F ′ is key-oblivious, since its running time on each
input is the same no matter what the key is. However, querying the all 0s input, and any other input, it is
easy to know which running time we got, which means it is not query-oblivious.

Claim 18 There exists a keyed function that is query-oblivious but not key-oblivious.

27

Proof. Let F be a PRP with inputs of length n running in fixed-time. Let F ′ be the same as F only it runs
for twice as long on keys k where Fk(0) starts with 1 (roughly half the keys). Clearly, F ′ is query-oblivious,
since its running time on each input is the same for the same key. However, to figure out with certain
probability whether one is given the correct timing (that of k0) or that of the other key k1, query with 0 and
see whether the result starts with 1 or 0 and whether the timing information is consistent with the result.
With probability 1/2 the keys k0 and k1 have different outputs on input the all 0 string, and in these cases
it is possible to distinguish the switch. Which means it is not key-oblivious.

Next, we show that Definition 2 is stronger than Definition 1 and we show the intersection of the three
definitions:

Claim 19 Any keyed function that is key-switch is also key-oblivious.

Proof. If there is an adversary Adv, that has a non-negligible advantage in the game described in Definition 1,
then there is an adversary Adv′ that wins the game in Definition 2 by making no queries in step 2 in the
key-switch game and simulating Adv′ in step 4 of the game. Therefore Adv′ has a non-negligible advantage
in the game described in Definition 2.

Claim 20 There exists a keyed function which is both key-oblivious and query-oblivious, but not key-switch.

Proof. Let F be a PRP and consider the keyed function F ′ on the key space K×K such that F ′
(k0,k1)

(q) =

Fk0(q) and T (F ′
(k0,k1)

(q)) = cFk1(q) for some c. Notice that F ′ is key-oblivious, as well as query-oblivious
since F is a secure PRP.

Also, F ′ is not key-switch oblivious. Consider an adversary that queries half the domain in Definition 2
and then queries the other half of the domain with the key it got in the game after the switch. As the∑

q T (F ′
(k0,k1)

(q)) =
∑

q cFk1
(q) is some constant S independent of (k0, k1) (since F is a PRP). The adversary

to the game of Definition 2 will compute the total computing time of F ′ before and after the switch, and
will check if it is S; in this case, it will return that no switch was done.

Let S 1
2
be the distribution of the total running time of the first half of the domain (with measure induced

by picking a random key from K × K). Let X1, X2 be two independent samples from S 1
2
, by construction

the success probability of the algorithm is:

P[X1 + (S −X2) = S] = P[X1 = X2]

Since F is a PRP, the min-entropy of S 1
2
is vanishing as the key size grows to ∞, thus the success

probability (i.e. the probability above) of the adversary in the game from Definition 2 goes to 1. See also the
description of JSR in Section 4.1 for another example with similar analysis.

Claim 21 There exists a keyed function that is both key-switch, key-oblivious, and query-oblivious.

Proof. Let F be a PRP running in fixed-time for any input and for any key. The running time doesn’t
depend on the key therefore it is both key-oblivious and key-switch. The running time also doesn’t depend
on the input, therefore it is query-oblivious.

We remark that the assumption of fixed-time PRP is not needed for separating the definitions above. All
proofs above hold under the assumption that F is fixed-time keyed function (not necessarily with crypto-
graphic properties) on inputs of length n.

28

	Are Your Keys Protected? Time will Tell

