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Abstract. We present an efficient quantum algorithm for solving the semidirect discrete logarithm
problem (SDLP) in any finite group. The believed hardness of the semidirect discrete logarithm problem
underlies more than a decade of works constructing candidate post-quantum cryptographic algorithms
from nonabelian groups. We use a series of reduction results to show that it suffices to consider SDLP
in finite simple groups. We then apply the celebrated Classification of Finite Simple Groups to consider
each family. The infinite families of finite simple groups admit, in a fairly general setting, linear algebraic
attacks providing a reduction to the classical discrete logarithm problem. For the sporadic simple
groups, we show that their inherent properties render them unsuitable for cryptographically hard SDLP
instances, which we illustrate via a Baby-Step Giant-Step style attack against SDLP in the Monster
Group.
Our quantum SDLP algorithm is fully constructive for all but three remaining cases that appear to
be gaps in the literature on constructive recognition of groups; for these cases SDLP is no harder
than finding a linear representation. We conclude that SDLP is not a suitable post-quantum hardness
assumption for any choice of finite group.
Keywords:Group-Based Cryptography, Semidirect Discrete Logarithm Problem, Post-Quantum Cryp-
tography

1 Introduction

There has been a significant amount of research on semidirect product cryptography within the post-quantum
community [Hab+13; KS16; RS22; RS21; GS19] since its introduction in 2013 by Habeeb et al. [Hab+13].
This approach aims to use the group-theoretic notion of the semidirect product to generalize the discrete
logarithm problem (DLP) in a manner that resists quantum attacks. The resulting problem is called the
Semidirect Discrete Logarithm Problem (SDLP), and is the subject of this paper.

The NIST Post-Quantum Standardization process [NIS17] has motivated work on a wide variety of
computational problems and candidate constructions for post-quantum cryptographic algorithms. While
lattice-based cryptography may currently be the most well represented among post-quantum schemes, there
is a desire to have a diverse collection of candidates, computational hardness assumptions and algorithms.
This would provide a hedge against cryptanalytic surprises (such as the late-breaking attacks against Rainbow
and SIKE) and allow for different performance tradeoffs, as well as advanced functionalities.

In this light, SDLP is an appealing generalization of DLP over cyclic groups that can be used to define
analogues of discrete logarithm-based cryptography over non-commutative (semi-)groups. SDLP offers an
unusual degree of flexibility; almost all of the cryptosystems are defined for any finite group, and several are
defined for finite semigroups. Battarbee et al. [Bat+23b; Bat+23a] showed that the machinery of SDLP gives



rise to a group action and suggests that this might allow efficiency improvements over other candidates for
group-action based cryptography, especially in the realm of digital signature schemes.

Historically, cryptanalysis of SDLP-based schemes has been specific to a particular choice of group. For
example, there have been several proposals of groups to be used with Semidirect Product Key Exchange
(SDPKE), which is the analogue of Diffie-Hellman Key Exchange (DHKE) for SDLP [Hab+13; KS16; RS22;
RS21; GS19]. Each of these proposals was later shown to be insecure due to some feature of the selected
platform group [MR15; Rom15; BKL22; MM20; Mon21]. However, analogously to the relationship between
DHKE and the Diffie-Hellman problems, a break of SDPKE for some group does not demonstrate that SDLP
is easy in that group. More recently, Imran and Ivanyos [II24] showed that SDLP in a solvable group admits
a reduction to standard quantum-vulnerable problems. While this work has eliminated some candidate
constructions, it leaves unresolved the question motivating our work: is there any choice of finite group G
such that SDLP in G is post-quantum secure?

This question has remained unanswered for over a decade of active research in the area. In this work, we
prove that the answer is negative. Our result makes use of the famous Classification of Finite Simple Groups
and develops a generalization of the “decomposition” methods of [II24]. In particular, we will repeatedly use
the “recursion tool” of [II24] to reduce an instance of SDLP in an arbitrary finite group to several instances
of SDLP in finite simple groups. Since there is a relatively short and known list of all possible finite simple
groups, we then devise quantum and classical algorithms for solving SDLP or reducing it to the problem
of finding a linear representation of the group, that we can solve (up to some technical detail concerning
constructive recognition of groups) in each family of finite simple groups.

Our contributions are highlighted below.

– We develop a more sophisticated method of decomposition into “smaller” instances of SDLP, based on
the ideas of [II24]. In particular we show that, for SDLP in an arbitrary finite group G, one can always
generate logarithmically-many instances of SDLP in simple groups; moreover, solving these instances of
SDLP suffices to solve SDLP in the group G.

– We solve SDLP in non-sporadic simple groups by studying their representations and, building on another
idea of [II24], give a reduction to the classical DLP after some linear algebra calculations of polylogarith-
mic complexity.

– We propose an adaptation of Shanks’ Baby-Step-Giant-Step algorithm which efficiently (and classically)
solves SDLP in sporadic groups, exploiting the relatively low orders of their elements. This completes
our claim that one can solve SDLP in a practical manner in an arbitrary finite group G.

While our work eliminates hope for quantum-secure SDLP-based cryptography over finite groups, the
corresponding problem for semigroups, which is featured in some previous proposals [Hab+13], remains an
interesting open problem. Indeed, evidence suggests that some group-theoretic problems may be harder to
solve on semigroups than on groups. For example, Childs and Ivanyos [CI14] prove an exponential lower
bound on the number of quantum queries required to solve the constructive semigroup membership problem
on a black-box semigroup, whereas the corresponding problem for black-box groups is known to be quantum
polynomial time since it simply reduces to the DLP.

1.1 Paper Organization and Contributions

We demonstrate the following main results.

Theorem 1.1. Let G be a finite black-box group. In order to solve SDLP in G, it suffices to solve SDLP in
at most log |G| many simple groups. We can compute the information defining these instances of SDLP in
simple groups in quantum polynomial time in log |G|.

Theorem 1.2. Let G be a finite black-box group and suppose there is an efficient linear (or projective)
representation of G of dimension n. One can solve SDLP in G in quantum polynomial time in n and log |G|.
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Corollary 1.3. Let S be a finite simple black-box group, that is not one of the groups 2F4(2
2n+1) or 3D4(2

e).
One can solve SDLP in S in quantum polynomial time in log |S|.

We will explicitly discuss SDLP in the two groups omitted by Corollary 1.3. The rest of our paper is
organized as follows (which also gives a guide to the structure of our results). Section 2 gives some background
on group theory and some of the computational problems that arise in this work. This section also summarizes
the main results of [II24] that we generalize in this work. In Section 3, we go into more detail on the main
decomposition tool, and generalize it in several steps to simple groups. In Section 4, we give a generic method
to solve SDLP for any group using its linear representation. Combining the results in these two sections gives
an efficient reduction of SDLP in any group to SDLP in simple groups, and an algorithm solving SDLP with
running time dependent on the faithful dimension in simple groups. In Section 5, we use the classification
of finite simple groups to iterate through each of the families of finite simple groups in turn. Given the
previous computational reductions, the main question for each of these families is to construct an efficient
linear representation from a black-box group; this is known to be in probabilistic quantum polynomial time
for all but two minor special cases. Finally, the sporadic groups can be easily dispensed with via brute-force
search or an adapted baby-step giant-step algorithm. We conclude in Section 6 that SDLP on finite groups
is not a reliable candidate for quantum-resistant cryptography.

2 Preliminaries

The semidirect discrete logarithm problem arises from the study of the semidirect product of a finite group
G by its own automorphism group. Let us briefly recall the definition:

Definition 2.1 (Holomorph). Let G be a finite group with automorphism group Aut(G). The semidirect
product of G by Aut(G), written G ⋊ Aut(G), is the set of ordered pairs from G × Aut(G) equipped with
multiplication defined by

(g, ϕ)(g′, ψ) := (gϕ(g′), ϕ ◦ ψ)
where ◦ denotes function composition. We call this structure the holomorph of G and denote it by Hol(G).

By induction, one can verify that for (g, ϕ) ∈ Hol(G) and x ∈ N, we have

(g, ϕ)x = (gϕ(g) . . . ϕx−1(g)︸ ︷︷ ︸
=:sg,ϕ(x)

, ϕx),

and we can think of this as a function sg,ϕ : Z → G, mapping the exponent x to the projection onto
the G-component of (g, ϕ)x. For finite groups G, the order of elements in Hol(G) is bounded above by |G|
(see [Bor15]), so we may, without loss of generality, choose to restrict the domain of sg,ϕ to a finite set.

Definition 2.2 (Semidirect Discrete Logarithm Problem). Let G be a finite group and fix (g, ϕ) ∈
Hol(G). Given an image h := sg,ϕ(x), the Semidirect Discrete Logarithm Problem (SDLP) is to recover an
x′ such that sg,ϕ(x

′) = h. Given the group G and automorphism ϕ, we denote this problem by SDLP(G,ϕ).

Since sg,ϕ(x) is the projection of a holomorph element onto one of its coordinates, the SDLP setup does not
directly expose an element of G or Aut(G). The problem is therefore not trivially equivalent to a standard
DLP. Thinking of sg,ϕ in terms of a projection also tells us how to efficiently compute it: we can compute
exponentiation in the holomorph using standard square-and-multiply techniques, and then project the result
to obtain the desired value.

2.1 Essential Group Theory Notions

Let G be a finite group. A subgroup N ≤ G is said to be normal if for all g ∈ G and n ∈ N , gng−1 ∈ N . We
use N ◁ G to denote that N is a normal subgroup of G. We can then define the quotient group G/N to be
the set of left cosets of N in G. In other words,

G/N = {gN | g ∈ G}.

3



The group operation on G/N is induced by the group operation on G in the obvious way. A group G is
simple if it has no nontrivial proper normal subgroups.

A subgroup H of a group G is called characteristic if ϕ(H) = H for every automorphism ϕ ∈ Aut(G).
The group G is said to be characteristically simple if it has no nontrivial proper characteristic subgroups.
This is a strictly weaker property than being simple.

For technical reasons we require that any computational representation of a group G comes with an
attribute CSFLag, which is by default set to 0 (i.e., G.CSFlag = 0). One of our algorithms later on may
update this value if it detects that the group is characteristically simple.

A linear representation [Ser77] of a group G on a finite-dimensional vector space V is a group homomor-
phism

ψ : G→ GL(V ).

Here, GL(V ) denotes the general linear group on V . We also consider projective linear representations, i.e.,
an injective homomorphism G → PGL(V ), where PGL(V ) are the invertible linear maps acting on P(V ).
It is immediate to identify these maps as GL(V )/Z(V ), where Z(V ) is the (normal) subgroup of scalar
matrices in GL(V ), since scalar multiplication acts as the identity on P(V ). If A ∈ GL(V ) we write [A] for
the corresponding class in PGL(V ).

Black-Box Groups. The introduction of black-box groups can be traced back to Babai and Szemeredi [BS84]
as a useful abstraction of computations in groups.

Definition 2.3 (Black-Box Group). A black-box group G ⊂ {0, 1}n is a group whose elements are bit
strings of length n, endowed with an oracle that performs the group operations, multiplication and inversion,
and can check if one element is the identity or not (this is equivalent to check if two elements are equal or
not).

The use of black-box oracles for groups is not new to cryptography. As an example, Shoup proved
lower bounds for generic algorithms solving the DLPusing black-box groups [Sho97]. This is a conservative
computational model for cryptanalysis of SDLP-based cryptography, since any construction instantiated on
a particular group will need to be able to perform operations on the base group G (and Aut(G)) and test
the equality of the resulting operations.

The Black-Box Group model is also of interest for computational group theorists as a tool to investigate
the complexity of several group related problems such as the Hidden-Subgroup Problem [IMS01], or in
relation to “The computational matrix group project” [Lee01; OBr11].

Of particular relevance is theConstructive Recognition Problem, proposed by Babai and Beals [BB99,
Section 9.2], in which one is asked to find a computationally efficient isomorphism between a simple black-
box group and an explicitly defined simple group. Observe that for the case of cyclic groups of prime order
this problem reduces exactly to the DLP since, given ϕ : G

∼−→ Z/pZ, we can easily compute logarithms
(divisions) in Z/pZ.

Several works [Bro08; Bro03; BBS09; Jam+13; KM13; KM15; BB99] have investigated the constructive
recognition problem for other families of simple groups; this is commonly done by reducing it to the case
of PSL(2, q) using so-called number theory oracles, i.e., oracles for solving discrete logarithm and factoring,
to handle large finite-field computations [CL01; BBS09]. These algorithms thus run in quantum polynomial
time [Sho94].

2.2 Related Work and Known Results

Broadly speaking, there are two main categories of literature on SDLP: cryptographic constructions based
on the Semidirect Product Key Exchange (SDPKE) and their associated cryptanalyses, and algorithmic
analysis of the underlying SDLP problem itself.
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The first category of literature encompasses a decades-long cat-and-mouse game between papers suggest-
ing parameters and choices of groups to instantiate SDPKE [Hab+13; KS16; RS22; RS21; GS19], and their
respective cryptanalyses [MR15; Rom15; BKL22; MM20; Mon21]. These papers occur as responses to each
other, in the sense that new proposals are patches to avoid the attacks of prior works. For a detailed review
of the chronology see [BKS23].

In the same way that the security of DHKE is not precisely equivalent to DLP, the security of SDPKE
is not precisely equivalent to SDLP. The works mentioned above do not address the complexity of solving
SDLP; the first result in this direction dates to 2022. This and subsequent such results form the second
category of literature mentioned above, which also includes the present paper. Battarbee et al. [Bat+23a]
pointed out a connection to group actions and later exploited it [Bat+23b] to give a subexponential quantum
algorithm for SDLP.

Mendelsohn et al. [MDL23] found faster methods for some small parameters. Most recently, Imran and
Ivanyos [II24] gave an efficient polynomial-time quantum algorithm to solve SDLP for solvable groups and
matrix groups with certain associated endomorphisms. Our work is a generalization of this paper to all finite
groups.

Imran and Ivanyos introduce two important notions, which we sketch here. The first is that for a group
G and a normal subgroup N , to solve SDLP in G it suffices to solve SDLP in N and G/N . The second is that
if G is a matrix group, we can show that SDLP reduces to an instance of DLP after the application of some
linear algebraic methods.11 Suppose we can compute a composition series of an arbitrary group G; then,
provided the composition factors are suitable matrix groups (or elementary abelian groups, in which SDLP
is predictably easy), we can use the decomposition algorithm inductively to solve SDLP in the composition
factors and to recover a solution of SDLP in the group that we started in. This breaks, among other things,
all the finite solvable groups (which includes every group proposed for use with SDLP-based cryptography).

Our work can be seen as a more sophisticated version of this method. By refining the method of computing
the appropriate subgroups we can compute simple groups such that solving appropriate instances of SDLP
in these simple groups suffices to derive a solution for the group we started in. In addition, we construct
a generalization of the reduction in a matrix group that turns out to be particularly effective for simple
groups. Indeed, because we know that only the simple groups listed by the classification of simple groups
can appear in this decomposition, and since we can show that each of these is vulnerable to some method of
solving SDLP, we can show that SDLP is easy for any finite group, resolving a loose conjecture of [II24].

For the purpose of describing our algorithms let us recall some of the known results relating to the
structure of SDLP.

Prior Results. One of the main ideas of [II24] is to reframe SDLP as an orbit problem. For each pair (g, ϕ)
in the holomorph of G consider the function ρ(g,ϕ) defined by ρ(g,ϕ)(h) = gϕ(h). It is not difficult to check
by induction that ρx(g,ϕ)(h) = gϕ(g) · · ·ϕx−1(g)ϕx(h). We therefore get the following equivalent definition of
SDLP.

Definition 2.4 (SDLP(G,ϕ)). For each g, h, determine an integer x for which

h = ρx(g,ϕ)(1G).

We will use both variants interchangeably. Let us also recall some of the results on the set of solutions to
SDLP: the following is a synthesis of ideas found in [Bat+23a; Bat+23b]. In the following, the symbol 1
refers to the integer value 1, and 1G denotes the group identity; they are not the same.

Theorem 2.5. Consider SDLP(G,ϕ) for g, h ∈ G. There exists an integer n0 (dependent on g and ϕ) such
that ρn0

g,ϕ(1G) = sg,ϕ(n0) = 1G, and the set

{1G, s(g,ϕ)(1), ..., s(g,ϕ)(n0 − 1)} = {1G, ρ(g,ϕ)(1G), ..., ρn0−1
(g,ϕ) (1G)}

11 Interestingly, this method is somewhat similar to the “linear decomposition” attacks presented in the analysis of
SDPKE.
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has size n0, and is exactly the codomain of s(g,ϕ). We have that one can compute n0 in quantum polynomial
time with a Shor-like algorithm, and that the solutions of SDLP(G,ϕ) for g and h are of the form

{t0 + tn0 : t ∈ Z}

where 0 ≤ t0 < n0.

Finally, although some of the ideas of [II24] are given in detail in the main body of the present paper, we
will just quote the fact given as [II24, Theorem 6] that one can solve SDLP in an elementary abelian group
in time polynomial in the input size of the group. This will be necessary since several of the results on simple
groups will require that the simple group is non-abelian, and finite cyclic groups of prime order are the only
abelian simple groups. Note also that although our more general ideas capture the result of [II24] for solving
SDLP in solvable groups, their specific methods may be slightly more efficient in practice for this particular
case.

3 The Main Reduction

Recall from the discussion in the previous section that Imran and Ivanyos [II24] provide a solution for
SDLP in solvable groups by descending a composition series (using Theorem 3 in their paper), at each
step encountering an easy variant of SDLP in an elementary abelian group. In this section, we significantly
generalize the results of [II24], by using their method to completely reduce an arbitrary instance of SDLP to
several instances of SDLP in a simple group. In particular, Theorem 3.5 demonstrates that in order to solve
some instance of SDLP(G,ϕ), it suffices to solve at most log |G| instances of SDLP in a simple group. The
data describing each of these instances of SDLP can be obtained in time quantum polynomial in log |G|.

We will defer the proof of this result to the end of the section. We begin by developing more sophisticated
techniques for computing the subgroups required for [II24, Theorem 3], and devise a contingency for the case
in which no such subgroups exist.

3.1 Reduction to SDLP in Simple Groups

Let us review the central “recursion tool” of Imran-Ivanyos [II24, Theorem 3]. The main idea of the recursion
tool is to notice that if we can find a normal subgroup N of G that is invariant under our automorphism,
any solution of SDLP(G,ϕ) must also be a solution of SDLP(G/N, ϕ̄) for some automorphism ϕ̄. From this,
we can infer certain information about the form of the solutions of SDLP(G,ϕ). The remaining information
required to give a complete description of these solutions can be obtained by solving SDLP in the quotient.

We will state and prove the result in full, in order to review ideas from its proof that are important in
our reduction algorithms.

Theorem 3.1 (Recursion tool, [II24]). For a finite group G, consider an automorphism ϕ of G and
suppose we have a ϕ-invariant normal subgroup N of G. In order to solve SDLP(G,ϕ) it is sufficient to solve
SDLP(G/N, ϕ̄) and SDLP(N,ϕn0), for suitable choices of G/N , automorphism ϕ̄, and integer n0.

Proof. Let ψ be the quotient map from G to G/N . By the first isomorphism theorem, we know Im(ψ) ∼=
G/N (and as such we may write these two groups interchangeably). Suppose we know a map ϕ̄ satisfying
ψ ◦ϕ = ϕ̄ ◦ψ. An easy induction shows that one must also have ψ ◦ϕi = ϕ̄i ◦ψ. It follows that every solution
of SDLP(G,ϕ) for g, h must also be a solution of SDLP(G/N, ϕ̄) for ψ(g), ψ(h), for if one has

gϕ(g) . . . ϕx−1(g) = h

for some integer x, then

ψ(h) = ψ(gϕ(g) . . . ϕt−1(g))

= ψ(g)ψ(ϕ(g)) . . . ψ(ϕt−1(g))

= ψ(g)ϕ̄(ψ(g)) . . . ϕ̄t−1(ψ(g)).
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Now, we know that the solutions of SDLP(G/N, ϕ̄) for ψ(g), ψ(h) form the set {t0 + tn0 : t ∈ Z}, for some
0 ≤ t0 < n0, where

n0 = |{ρi(ψ(g),1)(1G/N ) : i ∈ Z}|.

In other words, every solution of SDLP(G,ϕ) for g, h is of the form t0 + tn0 for some t ∈ Z. However, we
cannot conclude that every t ∈ Z gives rise to a solution of SDLP(G,ϕ) for g, h.

We claim that to find the integers that do yield a solution of SDLP(G,ϕ) for g, h, it suffices to solve
SDLP(N,ϕn0) for suitably chosen values of g′, h′ ∈ N .

To prove this claim, let us first verify that ρn0

(g,ϕ)(N) ⊂ N .; that is, for every m ∈ N , ρn0

(g,ϕ)(m) ∈ N . It

turns out (see [Bat+23b, Theorem 2]) that one has ρn0

(ψ(g),ϕ̄)
(1G/N ) = 1G/N , and so

ψ(g)ϕ̄(ψ(g))...ϕ̄n0−1(ψ(g)) = 1G/N .

Following a similar argument to the computation of ψ(h) above, it follows that ψ(gϕ(g) · · ·ϕn0−1(g)) = 1G/N .

By definition of the quotient map we must therefore have ρn0−1
(g,ϕ) (1G) ∈ N . Since for any m ∈ N it holds that

ρn0

(g,ϕ)(m) = ρn0−1
(g,ϕ) (1G)ϕ

n0(m), and because ϕ is N -invariant, we have that ρn0

(g,ϕ)(m) ∈ N , demonstrating

the claim.

In fact, for any t ∈ Z we have ρtn0

(g,ϕ)(N) ⊂ N . Given our argument above, this follows by induction:

suppose ρ
(t−1)n0

(g,ϕ) (N) ⊂ N , then clearly

ρtn0

(g,ϕ)(N) = ρn0

(g,ϕ)(ρ
(t−1)n0

(g,ϕ) (N)) ⊂ N.

Consider now an integer t such that t0 + tn0 is a solution to SDLP(G,ϕ) for g, h. We have

h′ = ρ−t0(g,ϕ)(h)

= ρ−t0(g,ϕ)(ρ
t0+tn0

(g,ϕ) (1G)))

= ρtn0

(g,ϕ)(1G).

This equality demonstrates that h′ ∈ N . Moreover, it is not too hard to see that ρtn0

(g,ϕ)(1G) with respect to

the semidirect product G ⋊ϕ Z is the same12 as writing ρt(g′,1)(1N ) with respect to the semidirect product

N ⋊ϕn0 Z, where g′ = ρn0

(g,ϕ)(1G) (with respect to G ⋊ϕ Z). In other words, every t such that t0 + tn0 is a

solution of SDLP(N,ϕn0) for the described g′, h′. The claim of the theorem follows. □

We can now use this tool to provide a reduction of the general case of SDLP to the case of SDLP in
simple groups. Intuitively, since every finite group is “composed” of simple groups13, we can imagine taking
an instance of SDLP and outputting two instances of SDLP in its composition factors. Iterating this process
will eventually output several instances of SDLP in a simple group such that solving these instances of SDLP
gives a solution to the input problem.

This strategy works provided we can compute the various objects used in the proof of Theorem 3.1. In
particular, given SDLP(G,ϕ) for g, h ∈ G we need to be able to compute: a ϕ-invariant normal subgroup
N of G; the quotient G/N , and the evaluation of the quotient map ψ; the induced map ϕ̄ on the quotient;
and the integer n0. We assume that given the normal subgroup computing the quotient and evaluating the
quotient map can be done efficiently. Moreover, [II24] describe a general method of evaluating the induced

12 Note that every subgroup contains the group identity, so 1N = 1G.
13 The precise sense in which this is true is unimportant for our purposes, though the interested reader is advised to

recall the famous Jordan-Hölder theorem.
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map ϕ̄, so we consider this matter resolved also. The computation of the integer n0 can be done with a
Shor-like algorithm, as discussed in Section 2.2.

The main remaining obstacle is the computation of the ϕ-invariant normal subgroup, which is the subject
of the next section.

Computing an invariant normal subgroup. First we note that by [IMS01, Theorem 4] it is possible to
compute a composition series of an arbitrary black box group G in time quantum polynomial in log |G|. For
our purposes we will take it for granted that it is possible to efficiently compute a maximal normal subgroup
of G, as well as the composition factors of G. However, for an arbitrary automorphism ϕ there is no reason
to believe that the subgroup yielded by this method of computing a composition series will be ϕ-invariant.
Indeed, we are not actually guaranteed that such a normal subgroup exists. Our method, then, is to show
that either we can compute a ϕ-invariant normal subgroup using a maximal normal subgroup obtained by
the method of [IMS01], or G is characteristically simple. It turns out that characteristically simple groups
have a nice classification, and we can apply a bespoke method of reduction to SDLP in simple groups in this
case.

A method of computing ϕ-invariant normal subgroups from an arbitrary maximal normal subgroup N is
given in [II24], and works as follows. Take N1 = N , N2 = N∩ϕ(N), and for i ≥ 3 define Ni = Ni−1∩ϕi−1(N).
This sequence must eventually stabilize, say for some integer j ∈ N: it is not difficult to show that Nj is
ϕ-invariant. However, we are not guaranteed that Nj is non-trivial. In the following let us see the implications
of this procedure of taking successive intersections terminating with the identity.

Theorem 3.2. Let G be a finite black-box group, and suppose ϕ is an automorphism of G. Algorithm 1
either computes a non-trivial ϕ-invariant subgroup of G, or detects that G is characteristically simple (and
outputs itself). In either case the algorithm finishes in time quantum polynomial in log |G|.

Proof. By [IMS01, Theorem 4] we may compute a maximal normal subgroup N of G in time quantum
polynomial in log |G|. Since the j for which the sequence of Nis stabilizes is bounded above by log |G|, if
Nj ̸= {1} we are done.

It is well-known (see [Wil09, Lemma 2.8]) that a group is characteristically simple if and only if it is
isomorphic to Sk, where S is a simple group. In other words, we can check if the composition factors of G
obtained from the method of [IMS01] are isomorphic copies of the same simple group—if this is so, we must
have started with a characteristically simple group, and we can set the CSFlag to 1 and return G itself as
the output of the algorithm.

We may now suppose that G has a characteristic subgroup C. If N∩C ̸= {1} then N∩C ⊂ ϕi(N) for each
i ∈ N, and the intersection procedure cannot terminate at the trivial group. Applying the contrapositive, if
we do obtain the trivial group, and the group is not characteristically simple, then there is a characteristic
subgroup C such that N ∩ C = {1}. Now, NC is certainly normal, since both N and C are normal, and
either NC = N or N ⊊ NC; but the former case implies that c ∈ N for each c ∈ C, contradicting the
triviality of the intersection of N and C. We must have that N ⊊ NC, but since NC is normal and N is
maximally normal, it follows that NC = G. In fact, it is standard that since N and C are both normal we
can conclude that G = N ×C, so to compute C we just have to take the quotient of N by G and apply the
canonical isomorphism. We have recovered C, which is certainly a ϕ-invariant normal subgroup. □

Before moving on to the full reduction let us see how to induce instances of SDLP in a simple group when
the input group is characteristically simple.

Lemma 3.3. Let G be a characteristically simple group. Then any instance of SDLP(G,ψ) can be solved
in polynomial time with polynomially many accesses to an oracle solving SDLP(S, ϕ) for some finite simple
group S.
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Algorithm 1 (Inv): Computing ϕ-invariant normal subgroups, or detecting characteristically simple groups.

Input: G,ϕ
Output: ϕ-invariant N ◁ G or G

1: N ← max normal subgroup obtained from [IMS01] algorithm
2: N1 ← N
3: N2 ← ϕ(N)
4: j ← 2
5: while Nj ̸= Nj−1 do
6: j ← j + 1
7: Nj+1 ← Nj ∩ ϕj−1(N)
8: end while
9: if Nj ̸= {1} then
10: return Nj

11: else
12: {Ci}i ← composition factors of G obtained from [IMS01] algorithm
13: if all composition factors isomorphic then
14: G.CSFlag← 1
15: return G
16: else
17: C ← isomorphic copy of G/N
18: return C
19: end if
20: end if

Proof. The classification of characteristically simple groups is known, see [Wil09, Lemma 2.8]. Specifically,
G is characteristically simple if and only if G is the direct product of k isomorphic copies of a finite simple
group S.

If G is abelian then G = Zkp for some prime p, and we are done by [II24, Theorem 6]. We may therefore
henceforth assume that G is non-abelian (and therefore composed of non-abelian, simple factors).

Suppose that G ≈ Sk and let V denote a linear representation of S of minimal representation dimension n.
Then G has a linear representation V n ≈

⊕k
i=1 V of dimension nk. We also note that Aut(G) ≈ Aut(S) ≀Sk,

the wreath product of Aut(S) and the symmetric group Sk. Note that k is logarithmic in the size of G.

We may now define a reduction for SDLP on Sk to SDLP on S. First, we have a linear bound in k on
both cycle length and the number of disjoint cycles for any element of Sk.

Let ψ ∈ Aut(S) ≀ Sk and let σ ∈ Sk be the permutation on the coordinates of Sk such that σ ◦ ψ acts
coordinate-wise on Sk. Further, let σ have the disjoint cycle decomposition σ = α1 · · ·αt and let ri = |αi|
denote the cycle length of αi. Then ψ

ri acts coordinate-wise in at least ri coordinates.

We now outline a process by which we can recover ri and make progress toward solving the SDLP instance.
Note that since ri is bounded by k, we may merely try all of the small values of ri at each step i, introducing
only a polynomial factor, specifically, no more than

(
ri+1
2

)
, in the total number of oracle calls required to

find ri and recover the step solution.

Let αi be one of the disjoint cycles in the decomposition of σ. We may consider the projection (sg,ψ(ri), ψ
ri) 7→

(sg,ψ(ri)j , ψ
ri
j ), where j is a symbol in αi, and this projection is onto the jth coordinate of Sk. Note that

given an instance SDLPG(G,ψ) for g and h = sg,ψ(x), that one among the instances SDLP(G,ψ) for sg,ψ(ri)
and sg,ψ(x), for sg,ψ(ri) and sg,ψ(x−1), . . ., or for sg,ψ(ri) and sg,ψ(x− ri+1), has a solution. In particular,
since the jth coordinate is stable under ρri(g,ϕ), there is a solution xj to the instance SDLP(S, ψri) for sg,ψ(ri)j
and sg,ψ(x)j among the instances SDLP(S, ψri) for sg,ψ(ri)j and sg,ψ(x)j , sg,ψ(ri)j and sg,ψ(x − 1)j , . . .,
and sg,ψ(ri)j and sg,ψ(x− ri + 1)j . Suppose without loss of generality that the instance with solution xj is
SDLP(S, ψri) for sg,ψ(ri)j and sg,ψ(x − tj)j ; call this solution the step solution. Since we have an instance
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of SDLP in one of the co-ordinates of Sk we have SDLP in the simple group S, so we may apply the oracle
to recover the step solution. Moreover, this step solution xj satisfies x = rixj + tj modulo the order of
(sg,ψ(ri)j , ψ

ri
j ) ∈ S ⋊ Aut(S). Here we use at most ri calls for the exponent ri, and thus a total of no more

than
(
ri+1
2

)
oracle calls to both recover ri and the step solution xj .

We may now consider another disjoint cycle αℓ of length rℓ containing the symbol k. We repeat the
initial process to solve an instance of SDLP(G, sg,ψ(ri)) with a strategy similar to the above step, and
related to the subgroup of S ⋊ Aut(S) generated by (sg,ψ(rirℓ)j , ψ

rirℓ
j ). Since

〈
(sg,ψ(rirℓ)j , ψ

rirℓ
j )

〉
is a

subgroup of
〈
(sg,ψ(ri)j , ψ

ri
j )

〉
, and we have previously discovered which coset of

〈
(sg,ψ(ri)j , ψ

ri
j )

〉
contains an

element whose first coordinate is sg,ψ(x)j , we need only consider the rℓ simultaneous SDLP(S, ψrirℓ) instances
sg,ψ(rirℓ)t and sg,ψ(x− tj)t, sg,ψ(rirℓ)t and sg,ψ(x−ri− tj)t, . . ., and sg,ψ(rirℓ)t and sg,ψ(x−(rℓ−1)ri− tj)t
for t a symbol in αi or αℓ to recover a step solution xℓ satisfying the SDLP problem on all such coordinates
modulo the least common multiple of the orders of (sg,ψ(rirℓ)t, ψ

rirℓ
t ). This step requires at most rℓ calls to

the oracle at exponent rℓ, and thus at most
(
rℓ+1
2

)
iterations to recover rℓ and the step solution xℓ.

Since at each step we require a number of SDLP instances linear in the cycle length and each cycle length
is bounded by k the total number of oracle calls to recover a solution to SDLP(G,ψ) for g and h = sg,ψ(x)
is bounded by k3, and therefore the number of SDLP instances over the simple group S required to solve
the problem is polylogarithmic in |G|. Thus, given an oracle solving SDLP(S, ϕ), we may solve SDLP(Sk, ψ)
with polynomially many branches. □

The notation induced by the argument above is considerably cumbersome, to the point that presenting
it in pseudocode would not be not an exercise in demystification. Instead, we make the following definition:

Definition 3.4. Let G be a characteristically simple group. The algorithm
CharSimp assumes access to an SDLP oracle for simple groups Θ, and takes as input G,ϕ, g, h. The algo-
rithm outputs a solution of SDLP(G,ϕ) for g and h after applying the procedure described in the proof of
Lemma 3.3.

3.2 The Decomposition Algorithm

We are now ready to provide our reduction to simple groups.

Theorem 3.5. Consider SDLP(G,ϕ) for some finite group G, one of its automorphisms ϕ, and group ele-
ments g, h. Suppose we have an oracle Θ that, on input of the data S, ϕ, g, h for S a simple group, outputs a
solution of SDLP(S, ϕ) for g, h. There is an algorithm Solve() that has the following properties: the algorithm
terminates in time polynomial in log |G|, having made logarithmically many calls to Θ; and outputs a solution
of SDLP(G,ϕ). The algorithm Solve() is defined as in Algorithm 2, where ϕ, n0, g

′, h′, ϕ̄ and ψ have the
same meaning as in the proof of Theorem 3.1.

Proof. We first verify that the algorithm terminates. Start with G: if it is not simple, there are two cases. If
the group is characteristically simple, this is detected by the algorithm Inv defined in Algorithm 1; when N
is computed its CSFlag attribute is set to 1 by Inv, and we will output N = G. In this case we are done by
applying the CharSimp algorithm of Definition 3.4. If not, we compute a ϕ-invariant subgroup N and run
Solve() on the two induced problems defined in N and G/N . For these groups, if they are not simple, repeat
the procedure for an appropriate subgroup, and so on.

This gives rise to a tree graph defined inductively. Define the original node to be the group G; if G is simple
or characteristically simple we stop, otherwise there is a ϕ-invariant normal subgroup N and G/N that are
defined as children ofG. We can repeat this process forN andG/N . If the algorithm does not terminate, there
is an infinite sequence of groups in which the algorithm checks for simplicity and characteristic simplicity
and, having failed this test, runs itself on another instance of SDLP in another group. In other words, the
algorithm failing to terminate implies the presence of at least one infinite path in the graph defined above
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Algorithm 2 Solve(G,ϕ, g, h)

Input: (G,ϕ, g, h)
Output: {(Si, ϕi, gi, hi}i, where each Si is a simple group

1: Solutions ← {}
2: if G is simple then
3: y ← Θ(G,ϕ, g, h)
4: Solutions ← Solutions + y
5: else
6: N ← Inv(G,ϕ)
7: if N.CSFlag == 1 then
8: Solutions ← Solutions ∪ CharSimp(G,ϕ, g, h)
9: else
10: return Solve(G/N, ϕ̄, ψ(g), ψ(h)) and Solve(N,ϕn0 , g′, h′)
11: end if
12: end if
13: x← linear combination of elements of Solutions
14: return x

that never reaches a simple or characteristically simple group. The basic strategy of the proof is to consider
the graph above such that none of its nodes are simple or characteristically simple groups (so there are
infinitely many infinite paths). An infinite path corresponding to the algorithm failing to terminate would
be contained within this graph, so we can use its properties to extract a contradiction.

In this direction, let us recall the third isomorphism theorem, which we consider the source14 of the
following two facts: first, for a quotient group A/B, the proper normal subgroups of A/B are exactly the
subgroups of the form C/B, where C is a normal subgroup of A strictly containing B; and second, that for
these normal subgroups one has (A/B)/(C/B) ∼= A/C.

In other words, if we encounter a quotient group A/B on the graph, since it is not simple or characteris-
tically simple we can compute a ϕ-invariant normal subgroup. By the discussion above there exists C ⊂ G
such that B ⊊ C ⊊ A, and the children of A/B are C/B and A/C.

Call the “level” of a node the distance of a path from the node to G (which is unambiguously defined,
since clearly there is a unique path from each node to G). The set of nodes whose level is i for some i ∈ N
can be said to be “at level i”. At level 1 the process has generated the group N ⊊ G, and we have to solve
SDLP(G) and SDLP(G/N). Suppose at level i the process has generated 2i − 1 groups, say

N1 ⊊ N1 ⊊ . . . ⊊ N2i−1 ⊊ G

and the nodes are Nj/Nj−1 for j ∈ {0, . . . , 2i} (where G = N2i). At level i+1, then, there must be subgroups
N ′
i such that Ni ⊊ N ′i ⊊ Ni+1, and the nodes of the next level are N ′

i/Ni and Ni+1/N
′i. In other words we

have a chain of subsets of G
N1 ⊊ N ′

1 ⊊ N2 ⊊ . . . ⊊ N ′
2i−1 ⊊ G

It follows by induction that at level i we describe 2i−1 subgroups distinct from all the subgroups described
in the previous levels. Since an infinite path in the graph defined in the first paragraph would occur as a
subgraph of the graph containing no simple groups, and such a path would describe infinitely many distinct
subsets of G, we have a contradiction. The algorithm must therefore terminate.

We can refine this argument a little: supposing that no simple groups are encountered, reviewing the
argument above we must actually have that the 2i−1 subgroups described at level i of the graph are a chain
of subgroups; that is, one has N1 ◁ ... ◁ N2i−1 ◁ G. Since the order of the subgroup divides that of its parent
subgroup each Ni has size at most half of Ni+1, so we can describe at most log2 |G| subgroups in this way.

14 Some sources call the first part of this theorem the correspondence theorem.
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We therefore have to make at most log2 |G| calls to Ω. A similar argument shows that the level at which the
algorithm terminates does not exceed log2 |G|; since applications of Algorithm 1 and CharSimp run in time
quantum polynomial in log |G|, the complexity claim of theorem follows. Finally, it follows directly from the
proof of [II24, Theorem 3] (recorded in this paper as Theorem 3.1) that there is a linear combination of the
elements of the set Solutions that returns the solution of SDLP(G,ϕ). We eschew the details of the precise
form of such a linear combination. □

It now remains to develop methods for solving SDLP in simple groups. The rest of the paper will be given
over to this effort.

4 Reduction to Matrix Power Problem

In this section, we give a rather generic method of solving SDLP—indeed, it is defined for any group. We
build on the ideas of [II24, Theorem 8], which provides a reduction of SDLP(G,ϕ) to the matrix power
problem in the case that the group G is a matrix group over a field. Our observation is that, by looking
at the linear representations of an arbitrary group, there is a sense in which every group is a matrix group
over a field. Moreover, in the case where ϕ is inner, we are able to compute a linear map that “mimics” the
effect of ρ(g,ϕ), thereby allowing us to apply the same techniques given by [II24, Theorem 8]. It turns out
that simple groups are well-suited to the application of this method, because the outer automorphism group
of a simple group in general remains quite small.

Let us first outline the intuition behind the method: first, we know that every finite group G admits
a faithful linear representation; that is, an injective group homomorphism G → GLn(K) for some field K.
Now, GLn(K) lives in the ambient space Mn(K), the matrix algebra of all n×n matrices with entries in the
field K. We can think of this space as an n2-dimensional vector space equipped with the natural addition
and scalar multiplication, so we can imagine that we have a linear map T on this vector space. Suppose that
this map T is such that T ◦ψ = ψ ◦ ρ(g,ϕ); for free we have that T i ◦ψ = ψ ◦ ρi(g,ϕ). It follows that in order to

solve SDLP(G,ϕ) it suffices to find an integer x such that T x ·ψ(1G) = ψ(h), where ψ(1G) is a vector in the
n2-dimensional vector space, and · refers to the usual notion of multiplication of a matrix by a vector. We
have arrived at an instance of the so-called matrix power problem, from which there are standard techniques
of reduction to the hidden subgroup problem.

If instead we have a projective linear representation, i.e., an injective homomorphism G→ PGLn(K) we
show that the same reduction can be applied to projective matrices in PGLn2(K).

Before giving this reduction and discussing efficiency, let us see that it is possible to compute the crucial
matrix T. In order to do this we will have to re-introduce a small amount of technicality suppressed in the
outline above: in order to think of elements of Mn(K) as concrete n2-dimensional column vectors we have to
choose a basis in which to represent them. We just pick the basis defined by stacking the columns of an n×n
matrix to obtain an n2-dimensional vector; in other words there is a function vec :Mn(K) → Kn2

defined by

vec(M)in+j = Mj,i. If we are dealing with projective matrices we use instead Pvec : PGLn(K) → P
(
Kn2

)
that takes a representative of a projective class and associate the class of the image through vec. Since both
the classes are defined up to scalar multiplication of elements in K∗, the function is well defined.

Lemma 4.1. Let G be a finite group, and ψ : G → (P)GLn(K) a (projective) linear representation. Given
an instance of SDLP(G,ϕ), where ϕ is an inner automorphism, i.e., ϕ(g) = mgm−1 for some m ∈ G.
Define T := ψ(gm)t ⊗ ψ(m−1) ∈ (P)GLn2(K), then for any h ∈ G

T ◦ ((P)vec ◦ ψ) = ((P)vec ◦ ψ) ◦ ρ(g,ϕ) . (1)

Proof. Since ψ is a homomorphism we have:

ψ(ρ(g,ϕ)(h)) = ψ(g ·mhm−1) = ψ(gm) · ψ(h) · ψ(m−1) ;
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thus, by using a basic property of the Kronecker Product, we have:

vec
(
ψ(gm) · ψ(h) · ψ(m−1)

)
=

(
ψ(gm)t ⊗ ψ(m−1)

)
· vec (ψ(h)) .

By the property of Kronecker product rank(T) = rank(ψ(gm))rank(ψ(m−1)) = n · n, so T is also invertible.
To prove the projective case we just have to consider the representative in GLn(K) of the matrices during
the application of Pvec. □

We delay the discussion of the case in which the automorphism ϕ is outer. Armed with T, the reduction
to the matrix power problem works as follows.

Lemma 4.2. Given a finite group G with an efficiently computable (projective) linear representation ψ :
G → (P)GLn(K) if ϕ is an inner automorphism, we can render any SDLP(G,ϕ) instance to an instance of
the matrix power problem in time polynomial in n.

Proof. By Lemma 4.1 we can compute a (projective) linear map T such that T ◦ ((P)vec ◦ ψ) = ((P)vec ◦
ψ) ◦ ρ(g,ϕ). Notice that this implies that for all i ∈ N we have

Ti ◦ (P)vec ◦ ψ = (P)vec ◦ ψ ◦ ρi(g,ϕ) .

We are tasked with finding x ∈ N such that ρx(g,ϕ)(1G) = h, for some h ∈ G. Applying ψ to each side of this
equation we have to find x ∈ N such that

(P)vec(ψ(h)) = Tx · (P)vec(ψ(1G))

Let us rename the vectors in play here: define a = (P)vec(ψ(1G)) and b = (P)vec(ψ(h)).15

The reduction to the matrix power follows the proof of Theorem 8 of [II24] (that is an adaptation to
finite fields of [KL86, Theorem 1]), to then be adapted to projective matrices.

In the non-projective case consider the subspace W of the (vector space) Kn2

spanned by the vectors
{Tia | i ≥ 0}. First, check if {a,Ta} is linearly independent by means of Gaussian elimination. If not, check
if {a,Ta,T2a} is linearly independent - since the vector space is of dimension n2 eventually we arrive at
some k ≤ n2 such that {a, ...,Tk−1a} is linearly independent, but {a, ...,Tk−1x,Tkx} is not. In fact the
set {a, ...,Tk−1a} is a basis for W , which we can see by induction. Without loss of generality we may write

Tka =
∑k−1
i=0 λiT

ia with each λi ∈ K, so Tk+1 =
∑k−1
i=1 λiT

ia+Tka. But since we have seen that Tka has a
suitable linear decomposition, it follows that Tk+1 does too - and the rest of the claim follows by induction.

Consider the k × k matrices C and D whose columns are a, ...,Tk−1a and b, ...,Tk−1b, respectively. If
k = n2 these matrices are n2 × n2; otherwise, since b = Txa, we have b ∈ W , and indeed that Tib ∈ W
for each i ∈ N. We may therefore write the vectors a, ...,Tk−1a and b, ...,Tk−1b as height k column vectors
with respect to the basis of W we found (after computing the restriction of T to the subspace W ). In other
words the matrices we consider are all square. We have

TxC = Tx{a|Ta|...|Tk−1a}
= {(Txa)|T(Txa)|...|Tk−1(Txa)}
= {b|Tb|...|Tk−1b}
= D.

We have computed matrices T, C, and D such that in order to find the x ∈ N such that h = ρx(g,ϕ)(1G),

it suffices to find the x ∈ N such that Tx = CD−1. The result follows by noting that the complexity of

15 Notice that ψ(1G) is the identity matrix, which gets sent to some sparsely populated vector of 1s and 0s. In other
words vec(ψ(1G)) does not act as an “identity” element.
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this method is dominated by the Gaussian elimination required to compute the basis of the subspace W ,
requiring at least one computation of complexity O(n2k2). Since k is bounded above by n2, we are done.

In the projective case we have projective vectors [a] and [b] such that a projective matrix [T] is such that
[Tx · a] = [b]. We can therefore just pick representatives of the projective class; that is, there are vectors
a,b and a linear matrix T such that for some scalar λ in the underlying field we have

b = λTxa

This time we just have to compute a basis of the subspace W spanned by {λTia : i ∈ N}, which we can
do just by picking arbitrary representatives of the appropriate projective classes (since the span is the same
under scalar multiplication). The k × k matrices C and D as defined above are such that λTxC = D, so
Tx = λ−1CD−1. Projecting back down we have [T]x = [Tx] = [CD−1], thereby inducing a matrix power
problem in the projective space. □

Recall also that we did not have a method of computing the crucial map T should the automorphism
in question not be inner. However, by [II24, Proposition 2], we do have the option of taking the smallest
power of the automorphism that is inner, say y, and instead solving at most y instances of SDLP(G,ϕy). It
turns out, due to a result of Kohl [Koh03, Theorem 1] that for simple groups one can expect this power to
be small.

Theorem 4.3 (Kohl). If G is a non-abelian finite simple group, then

|Out(G)| < log2 |G|.

Since Out(G) ∼= Aut(G)/ Inn(G) it follows that for any outer automorphism ϕ of a non-abelian finite simple
group G there exists an integer x such that ϕx ∈ Inn(G); and crucially that this x is no larger than log2 |G|.
We conclude the following.

Corollary 4.4. Let G be a non-abelian finite simple group, and suppose we have an efficiently computable
non-trivial (projective) linear representation ψ : G → (P)GLn(K). Then we can solve SDLP(G,ϕ) for any
ϕ ∈ Aut(G) on a quantum computer in probabilistic polynomial time in log |G|.

Remark 4.5. Notice that we did not have to insist in the above that the linear representation was faithful.
Any non-trivial representation of a simple group is faithful, since if the map were not injective it would have
non-trivial kernel and therefore imply a proper normal subgroup of a simple group.

5 SDLP in Simple Groups

Now that we have an efficient reduction of the general case of SDLP to SDLP in simple groups, and a method
of solving SDLP in simple groups whose complexity is a function of the faithful dimension in simple groups,
let us review the known results in this area.

The key advantage of the reduction to the simple groups from Theorem 3.5 is that we have access to
the famous classification of finite simple groups. For this result we take as reference the book The Finite
Simple Groups of Robert Wilson [Wil09], and further insight on the topic can be found in The Atlas of
Finite Groups [CW98]. Summarizing the pivotal results, we know that any finite simple group is isomorphic
to one of the following:

1. A cyclic group of prime order p;

2. A group of even permutations of a finite set of cardinality n for n ≥ 5, also called an alternating group
An;
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3. A classical group of Lie Type:

Linear : PSLn(q), n ⩾ 2, except PSL2(2) and PSL2(3);
Unitary : PSUn(q), n ⩾ 3, except PSU3(2);
Symplectic: PSp2n(q), n ⩾ 2, except PSp4(2);
Orthogonal : P2n+1(q), n ⩾ 3, q odd;

PΩ+
2n(q), n ⩾ 4;

PΩ−
2n(q), n ⩾ 4

where q is a power pa of a prime p;

4. An exceptional group of Lie type:

G2(q), q ⩾ 3;F4(q);E6(q);
2E6(q);

3D4(q);E7(q);E8(q)

where q is a prime power, or

2B2

(
22n+1

)
, n ⩾ 1; 2G2

(
32n+1

)
, n ⩾ 1; 2F4

(
22n+1

)
, n ⩾ 1

or the Tits group 2F4(2)
′

5. One of 26 sporadic simple groups.

Because we have a complete (and quite short) list of what all the finite simple groups are, we can analyze
the hardness of solving SDLP separately for each of them.

For cyclic groups SDLP is known to be equivalent to classical DLP, so we need to focus on the other
families of groups. Our main tool for the infinite families is to show the existence of a linear representation
to use Corollary 4.4, while for the sporadic groups (and the Tits group) we have a separate discussion in
Section 5.2.

5.1 Infinite Families

For each of the nonsporadic groups, we show that they have a known efficient linear representation. So, if we
have them in their “natural representation” (the explicit representation used in their textbook definitions),
by Corollary 4.4 there is a quantum polynomial time algorithm to solve SDLP(G,ϕ).

However, it is possible that, even if we know the isomorphism class of a simple group, an isomorphism to
the natural representation of the simple group may still be unknown or hard to compute. A classical example
of this is elliptic curves of prime order, which are known to be cyclic groups but require difficult discrete
logarithm computations to actually map points to modular integers in a homomorphic way.

This is known in the group theory literature as the Constructive Recognition Problem [BB99,
Section 9.2], so for each family we will discuss how to pass from a simple black-box group G to an efficient
linear representation. By efficient we mean that the complexity is polynomial in the string length of the
black-box group elements and in the logarithm of the target group cardinality.

Alternating Groups An alternating group is the group of even permutations of a finite set of cardinality
n, since they are permutations they act on any n dimensional vector space by permuting the entries, so they
can be represented in GLn(K).

Also, thanks to [Jam+13, Theorem 1], there is a probabilistic algorithm in time O(n log2(n)N) to compute
an isomorphism from any black-box group to the permutation representation of An, where N is the string
length of the black-box group. So, as a consequence of Corollary 4.4 we have the following result.

Lemma 5.1. If G is a simple black-box group isomorphic to any alternating group An we can solve SDLP
for G in probabilistic polynomial time in n log |G| on a quantum computer.
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Classical Groups The classical groups of Lie Type are the groups of linear, unitary, symplectic and
orthogonal projective matrices, so they are all naturally described as well defined subgroups of PGLn(Fq),
i.e., we can use the inclusion as a projective linear representation. So, again, we can solve SDLP on them
using a quantum computer as a consequence of Corollary 4.4. Observe that here it is important to have a
reduction that also works for projective representations.

Sadly, in contrast to the case of alternating groups, there is no plain polynomial time algorithm to solve
the constructive recognition problem, even if extensive literature has been written on it. A series of works
of Brooksbank and Kantor have proven that for all the families of classical groups (linear [BK99], unitary
[Bro03], symplectic [Bro08] and orthogonal [BK06]), summarized in [DLO15], we can efficiently compute
isomorphisms to the natural representations of the groups under the availability of:

1. So called number theory oracles, computing discrete logarithms and factoring in polynomial time;
2. An oracle that, for any input black-box group G isomorphic either to SL(2, q) or PSL(2, q), produces in

time polynomial in log(q) an effective isomorphism SL(2, q) → G.

Since, thanks to Shor’s algorithm [Sho94], we know that quantum computers can implement efficient
number theory oracles we can combine the previous results in the following lemma.

Lemma 5.2. On a quantum computer, if G is a simple black-box group isomorphic to any classical group
of Lie Type of characteristic q and dimension n we can reduce SDLP for G in probabilistic polynomial time
in n and log(q) to the constructive recognition problem for the group SL(2, q).

We tackle this problem in a separate section after the discussion on exceptional groups.

Exceptional Groups As for the classical groups we start by showing that an efficient linear representation
is known, then we discuss the difficulty of computing an isomorphism starting from a black-box group. For
our cryptographic context the Tits group is more reasonable to be treated with the sporadic ones.

We start immediately from the groups of untwisted type, that thanks to the arguments in [Wil09, Section
4.12] we have a containment between the families

G2 < F4 < E6 < E7 < E8 ,

so, since E8(q) can be represented as automorphisms of a Lie algebra of dimension 248 (see again [Wil09,
Section 4.12]), we have an efficient representation for all of them.

The twisted group 3D4(q) is well known, thanks to its relation with the orthogonal family, to have a linear
representation in dimension 8, see [Wil09, Section 4.6]. Also, the twisted group of type 2E6(q) < E6(q

2)
[Wil09, Section 4.11] can be represented using the linear representation of E6(q

2).

For the more exceptional ones, with fields of characteristic 2 or 3, there are efficient representations known
in the literature:

– The Suzuki groups 2B2

(
22n+1

)
are defined in [Suz60] as subgroups of

SL4(F22n+1) ≤ GL4(F22n+1);
– The family of small Ree groups 2G2

(
32n+1

)
, are described in [Wil10b]

as groups of 7× 7 matrices over F32n+1 ;
– The family of large Ree groups 2F4

(
22n+1

)
is described in [Wil10a] as symmetries of a 26 dimensional

vector space over F22n+1 .

The Tits Group can also be represented as matrices, being a subgroup of 2F4

(
22n+1

)
, however being a

standalone group we leave the discussion on its utility to Section 5.2.

With respect to the constructive recognition problem, in [KM13; KM15] the authors show how to compute,
in polynomial time, isomorphisms for groups of exceptional Lie type, with the exception of large Ree groups
2F4

(
22n+1

)
and even characteristic Steinberg triality groups of type 3D4(2

e), assuming the availability of
number theory oracles and SL(2, q) oracles, as for the classical groups of Lie type discussed above, so we have
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Lemma 5.3. On a quantum computer, if G is a simple black-box group isomorphic to any exceptional group
of Lie Type defined on the finite field K, with the exception of 2F4

(
22n+1

)
and 3D4(2

e), we can reduce SDLP
for G in probabilistic polynomial time in log |K| to the constructive recognition problem for the group SL(2, q).

We can finally enter the discussion for constructive recognition problem of the group SL(2, q).

Constructive Recognition of SL(2, q) Given its relevance for the general formulation of the problem,
several works have studied SL(2, q), for example in [CLO06] they show how to compute an efficient isomor-
phism when the black-box group is a subgroup of the general linear group GLd(q

i), given discrete logarithm
oracles.

In [BBS09, Lemma 2.10] they are able to generalize the result even further, for the much wider class of
black-box groups of quotients of matrix groups by recognizable normal subgroups, showing that SL(2, q) can
be constructively recognized in polynomial time having access to number theory oracles.

For general black-box groups the problem has been solved in [KK15] for even characteristic and [BY13]
for the case of small characteristic p ≡ 1 mod 4. For a general field the research is partially open: actually
in the preprint [BY20] the authors show how to compute an isomorphism in polynomial time between the
black-box group and SL2(K), where K is black-box field isomorphic to Fq, this last isomorphism can be
clearly computed via the solution of discrete logarithms over K. Although these last results would suffice
to solve the problem, we await further review of these results among the community before drawing this
conclusion definitively.

5.2 Sporadic groups

There are 26 finite simple groups that are not part of the infinite families discussed earlier, plus the Tits Group
2F4(2)

′. It is clear by the definition of semidirect product that instead of choosing x ∈ N in the definition of
the SDLP in G, we can restrict without loss of generality to x ≤ maxg∈G(ord(g)) ·maxϕ∈Aut(G)(ord(ϕ)).

The largest of the 26 sporadic groups is the Fischer-Griess monster M, which has no outer automor-
phisms [Lyo11], i. e., Aut(M) ≃ M. Consequently, the value of x is upper-bounded by 1192 < 214 [BSW22,
Table 14], placing the SDLP problem in M well in reach of an exhaustive search. With the exception of six
pariahs, all sporadic groups are part of the happy family, i. e., they are subquotients of M [Gri82]. Also, the
Tits group 2F4(2)

′ can be considered as part of this family since it is a maximal subgroup of the Fischer
Group Fi22 [Wil09, Section 5.7.2]. Moreover, for all sporadic groups G, the outer automorphism group has
order at most 2. Therefore, the order of an automorphism of a sporadic group in the happy family is upper-
bounded by 2 · 119, yielding an upper bound 2 · 1192 < 215 for x. Consequently, the SDLP problem over
members of the happy family is firmly within reach of an exhaustive search.

Using, for example, the computer algebra system GAP [GAP24], one can verify that the maximal element
order in the six pariahs and in their automorphism groups is upper-bounded by 67. So for the SDLP problems
in the pariahs we can upper bound x with 672 < 213, which is within reach of an exhaustive search, too. We
summarize this as follows.

Lemma 5.4. For any sporadic finite simple group G and automorphism ϕ ∈ Aut(G), there is a brute force
algorithm to solve SDLP(G,ϕ) with at most 214 multiplications in the holomorph of G.

5.3 Adapting Shanks’ Baby-Step Giant-Step algorithm

Adjusting Shanks’ Baby-Step Giant-Step (BSGS) algorithm [Sha71] to our setting is a reasonably simple
task. Knowing a modest-size upper bound N for the possible values of x, this can be a practical way to find x.
Algorithm 3 shows the SDLP variant of the BSGS algorithm, and it is easy to verify that the algorithm stores
O(

√
N) elements in the holomorph G⋊Aut(G) and recovers the secret exponent x in O(

√
N) operations in

G⋊Aut(G).
We illustrate the algorithm with the SDLP over M.
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Algorithm 3 Baby-step giant-step algorithm in G⋊Aut(G).

Input: (g, ϕ) ∈ G⋊Aut(G), h = (g, ϕ)x, N ∈ N with x ≤ N ;
Output: the solution of x of the input SDLP instance.

1: n←
⌈√

N
⌉

2: (s, t)← ((g, ϕ)n, (1, id))
3: T ← [(0, t)] ▷ Initialize table
4: for (j ← 1; j ≤ n; j ++)
5: t← t · s ▷ Giant step
6: Store (t, j) in T .
7: end for
8: (y, i)← (h, 0).
9: while (y, ) is not in T do
10: (y, i)← (y · (g, ϕ)−1, i+ 1) ▷ Baby step
11: end while
12: return jn− i where (y, j) is in T .

Example 5.5. We implemented our BSGS algorithm in approximately 30 lines of Python using the mmgroup
Python library [Sey24], which offers an efficient implementation of M. In all of our experiments, the running
time did not exceed 5 seconds on a 2022 Macbook Air with 16 GB of RAM.

6 Conclusion

We conclude by giving a comprehensive overview of our results, and discussing the consequences for SDLP.
We have also summarized the flow of our argument visually in Figure 1; one can take this diagram as a map
of the paper.

Consider a finite, black-box group G. Then, in quantum polynomial time (in log |G|) we can reduce any
SDLP in G instance to at most log |G| instances of SDLP in a simple group using Section 3.

As a corollary of the Classification of Finite Simple Groups we can efficiently study each possible instance
separately, employing two main attack tools: for infinite families, the results from Section 4; and for sporadic
groups an adapted version of the Baby-Step Giant-Step algorithm (Algorithm 3).

We see that if the groups are given in their natural representations we can find linear representations
and apply Corollary 4.4 to produce a solution to SDLP in the corresponding simple group S in quantum
polynomial time in log |S|, so SDLP on simple groups is no harder than the problem of computing an efficient
linear representation starting from a black-box group. Even if not conclusive, the extensive group theory
literature on the solution of the constructive recognition problem in probabilistic quantum polynomial time
is enough evidence to conclude that SDLP on finite groups is not a reliable candidate for the construction of
quantum resistant primitives.

We highlight that, from Figure 1, we could get also constructive quantum probabilistic polynomial time
algorithms for solving SDLP in a finite, black-box group G if we solve these last open questions:

1. Provide constructive recognition algorithms for large Ree groups 2F4

(
22n+1

)
and even characteristic

Steinberg triality groups of type 3D4(2
e);

2. Have a clean peer reviewed discussion of the Constructive Recognition problem for SL(2, q) on quantum
computers.

We close with some high-level remarks. It is perhaps not too surprising, given the existing rich theory
of finite group decomposition, that we could reduce an arbitrary instance of SDLP to SDLP in finite simple
groups. However, the fact that all of these finite simple groups admit efficient methods of solving SDLP—
in particular, the fact that all the infinite families of simple groups have low faithful dimension—is quite
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unexpected. Recalling that the method of decomposition into finite simple groups could only fail when no
characteristic subgroups were present, it is also rather unfortunate that this scenario coincides with the group
being a direct product of simple groups, from which a different method of reduction is possible. The insecurity
of SDLP in finite groups, in other words, does not appear to result from some error in cryptographic design,
but instead from fundamental properties of the finite groups themselves.

Is G solvable?

Use [II24] reduction. Use Algorithm 2.

What type of finite simple group is S (or Si)?

What type of non-sporadic group? See Lemma 5.4.

SDLP re-
duces to DLP.

See Lemma 5.1. See Lemma 5.2. See Lemma 5.3.

[BY20] with DLP

Yes No

If Algorithm 1 returns G, consider
S where G ∼= Sk. Else, consider
output S1, . . . , Sδ.

Non-Sporadic Sporadic

Cyclic Alternating Classical Exceptional

Fig. 1. Visual summary of a possible roadmap for a general SDLP instance over a finite group.
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[BY20] Alexandre Borovik and Şükrü Yalçınkaya. Natural representations of black box groups encrypting
SL2(Fq). 2020. arXiv: 2001.10292 [math.GR].
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