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Abstract. A popular way to build post-quantum signature schemes is by first constructing an
identification scheme (IDS) and applying the Fiat-Shamir transform to it. In this work we tackle
two open questions related to the general applicability of techniques around this approach that
together allow for efficient post-quantum signatures with optimal security bounds in the QROM.
First we consider a recent work by Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue
(Asiacrypt’23) that showed that an optimal bound for three-round commit & open IDS by Don,
Fehr, Majenz, and Schaffner (Crypto’22) can be applied to the five-round Syndrome-Decoding in
the Head (SDitH) IDS. For this, they first applied a transform that replaced the first three rounds
by one. They left it as an open problem if the same approach applies to other schemes beyond
SDitH. We answer this question in the affirmative, generalizing their round-elimination technique
and giving a generic security proof for it. Our result applies to any IDS with 2n + 1 rounds for
n > 1. However, a scheme has to be suitable for the resulting bound to not be trivial. We find that
IDS are suitable when they have a certain form of special-soundness which many commit & open
IDS have.
Second, we consider the hypercube technique by Aguilar-Melchor, Gama, Howe, Hülsing, Joseph,
and Yue (Eurocrypt’23). An optimization that was proposed in the context of SDitH and is now used
by several of the contenders in the NIST signature on-ramp. It was conjectured that the technique
applies generically for the MPC-in-the-Head (MPCitH) technique that is used in the design of many
post-quantum IDS if they use an additive secret sharing scheme but this was never proven. In this
work we show that the technique generalizes to MPCitH IDS that use an additively homomorphic
MPC protocol, and we prove that security is preserved.
We demonstrate the application of our results to the identification scheme of RYDE, a contender
in the recent NIST signature on-ramp. While RYDE was already specified with the hypercube
technique applied, this gives the first QROM proof for RYDE with an optimally tight bound.

1 Introduction
Digital signatures are one of the two main primitives in public key cryptography. Digital signa-
tures have numerous applications. Among the most important ones are likely guaranteeing the
authenticity of software updates, authenticating communication partners, and non-repudiation
for electronic documents. The relevance of digital signatures is also demonstrated by the Na-
tional Institute of Standards and Technology (NIST) picking signatures as one of the two first
primitives for which to run a competition for post-quantum secure systems [NIS16].

One of the most common ways to construct digital signatures is to design an (interactive)
identification scheme (IDS) and turn this into a signature scheme via the Fiat-Shamir (FS)
transform [FS87]. This is not only the way DSA and ECDSA are designed, but also a wide-
spread approach to design post-quantum signature schemes, including Dilithium [Duc+18], the
scheme that NIST picked as general purpose winner of the competition, as well as at least eight
of the proposals [Bet+23; Ara+23c; Adj+23; FR23; Aar+23; Ara+23a; Kim+23; Agu+23a]) in
the recent NIST signature on-ramp [NIS22]. While we are blessed with beautiful three-round
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IDS with nice security properties in the case of (EC)DSA, the situation for post-quantum IDS
is not as great and poses significant challenges to the cryptographic community.

The first challenge is the tightness of security proofs which determines the size of parameters
for which formal security guarantees can be given. In general, the requirement of considering
quantum adversaries does not simplify the situation around tightness. Given that the security of
FS requires a random oracle model argument, the analysis of the necessary variations of FS has
to be done in the quantum-accessible random oracle model (QROM). This is already challenging
for plain three-round IDS, with loose bounds for the generic case being the result.

The IDS underlying Dilithium is three round, but makes use of rejection sampling which
significantly complicates the analysis of the required FS variant [Bar+23; Dev+23]. However,
because the IDS can be made lossy, there exists a relatively tight security bound. Many other
post-quantum IDS are five or more round IDS. For these IDS the known generic Fiat-Shamir
transforms in the QROM lead to extremely non-tight security bounds. However, many of these
schemes are so-called commit & open schemes. For the Fiat-Shamir transform of this class
of schemes, a recent work [Don+22a] gave an optimal security bound even in the QROM, al-
though limited to three-round IDS. A follow-up work [AM+23] demonstrated that for the SDitH
IDS [FJR22], a five-round commit & open IDS, one can apply the result of [Don+22a] by first
merging the first three rounds into one. While this round-elimination works like FS (replace the
challenge with the hash of the prover message), the security analysis is a lot simpler than for FS
as no extraction is required. This leads to an optimal bound matching a straight-forward brute-
force search attack. Thereby, this approach bears the potential of providing optimal security
bounds for IDS-based signature schemes. The authors of [AM+23] left it as an open problem to
analyze the applicability of this round-reduction step to other IDS.

Another problem is general performance. Most of the multi-round IDS have significantly
worse performance than the classical three round schemes in terms of size as well as speed. While
this is partially inherent as it is due to the bigger description size of the used hard problems, some
of it seems to be caused by the specific design. Therefore, optimization techniques frequently
pop-up. A recent optimization technique is the hypercube technique [Agu+23b] for MPC-in-the-
head (MPCitH) based IDS. This technique has been used in [Agu+23b] to increase the speed
of SDitH signing and verification by factors ranging from 4 to 12 while preserving security and
sizes. For practical applications this is a massive improvement. For comparison, the difference
between a Dilithium signature and a SPHINCS+ signature [Hül+22] is about a factor 5, and
for many scenarios, people consider SPHINCS+ too big, but Dilithium acceptable. Again, while
the applicability of the technique to a certain class of schemes was conjectured by the authors,
a formal analysis was left as an open problem.

Our contribution. In this work we are tackling these two open problems: The applicability
of round-elimination to general IDS, and the applicability of the hypercube technique to other
MPCitH-based IDS. We apply our results to the IDS underlying RYDE [Ara+23a], a contender
in the recent NIST signature on-ramp [NIS22] to demonstrate the application.

For the round-elimination we demonstrate that the technique of [AM+23] can be applied
to a wide range of (2n + 1)-round IDS for n > 1. We actually give a security bound for a
computational version of S-soundness [Don+22a] which can be viewed as a generalization of
query-bounded special soundness [AM+23] to arbitrary challenge patterns, for any such trans-
formed protocol. However, the bound becomes trivial for schemes that are not suitable (e.g.,
MQ-DSS [Sam+19]). Intuitively, we can merge the first three rounds of an IDS as long as the
remaining interactive protocol has some form of special soundness with overwhelming probabil-
ity when the first message is adversarially chosen and the first challenge is sampled afterwards
from the uniform distribution. This process can be iterated until the above condition does not
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apply anymore. We also prove honest-verifier zero-knowledge of the resulting scheme by an ap-
plication of the adaptive reprogramming lemma from [Gri+21]. While we only demonstrate the
application of our result to RYDE, a high level analysis suggests that all other MPCitH-based
signature schemes in the ongoing NIST signature on-ramp are suitable (i.e., [Bet+23; Ara+23c;
Adj+23; FR23; Aar+23; Kim+23]).

With regard to the hypercube technique, we first introduce an abstraction for MPCitH-
based identification schemes. We prove that for a scheme which fits the abstraction and is
additively homomorphic, the hypercube technique can be applied and security with regard to
soundness and honest-verifier zero-knowledge is preserved. More precisely, we require that the
MPC computation is additively homomorphic with regards to all party-specific inputs and all
communications it generates. Moreover, we define a final predicate that takes all communications
and decides about acceptance of the computation. This predicate also has to be constant when
replacing any two input communications by their sum. Again, we demonstrate the application
of our approach for RYDE (RYDE already applied the hypercube technique, but we discuss
how one would start from the flat scheme). However, the technique should be applicable to any
MPCitH IDS that builds on the BN approach [BN20] or follow-up work [KZ22].

We demonstrate the full sequence of steps on the example of the flat version of the RYDE
IDS. We first apply the round-elimination to the parallel-composed version of the RYDE IDS,
providing the resulting security bounds. Next, we discuss how a single instance of the resulting
three-round IDS fits the required abstraction of MPCitH-based IDS and argue that it is addi-
tively homomorphic in the above sense. Finally, we apply the result of [Don+22a] in a slightly
adapted version of [AM+23] to obtain a security bound for the UF-CMA-security of the signature
scheme that results from FS-transforming the three-round hypercube IDS. This blueprint can
be followed by designers of similar schemes to easily get a security proof in the QROM for their
signature scheme. Especially, we conjecture that our technique applies to all remaining MPCitH
schemes in the NIST signature on-ramp. The main steps are to prove a fine-grained soundness
statement for the plain IDS (something that is required for the security analysis of the IDS in
any case), and matching the steps in the round-eliminated IDS to the MPCitH abstraction. We
note here that the hypercube technique can also be skipped, e.g., in case it is not applicable. This
is relevant as the round-elimination has much wider applicability than the hypercube technique.

Organization. We discuss round-elimination in Sec. 2. In Sec. 3, we discuss the hypercube
technique. We finally present an application of our results to RYDE in Sec. 4. To be self-contained,
we provide the required results on the FS-transform for three-round commit & open IDS in
Appendix A.

2 Round Elimination
In this section, we devise a round elimination technique in the QROM for special-sound multi-
round identification schemes. In fact, our results hold in the more demanding eQROM [HHM22,
Sec. 4], which we briefly discuss in the Appendix A. In essence, the eQROM is a strong model
that gives the adversary adaptive access to an additional extraction interface during the interac-
tion. Looking ahead to the next sections, we will reduce a 5-round protocol to a 3-round protocol
and then apply the hypercube aggregation formalism to construct a secure, efficient signature
scheme. The round elimination results from this section will justify this 5 to 3 round reduction,
by quantifying the security of the resulting 3-round protocol. The hypercube aggregation then
preserves this security. But our round elimination applies in much greater generality than needed
for optimized MPCitH signatures. In particular, it applies to identification schemes with many
rounds that fulfill a certain variant of special soundness and is likely to find use in various set-
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tings. To this end, we identify and characterize properties of multi-round identification schemes
that suffice for our round elimination in wide generality, accompanied by security proofs in the
eQROM.

We begin with preliminaries recalling definitions used in [AM+23] where round elimination
is already applied to a specific case. Then we generalize the notation to identification schemes
of an arbitrary odd number of rounds. Later, we generalize the notion of special soundness to
S-soundness, closely following [Don+22b]. Finally, in Sec. 2.2, we analyze eliminating one round
of verifier interaction. We define fine-grained round-by-round notions of soundness to aid our
analysis and characterize eQROM security guarantees.

2.1 Preliminaries
In the following we provide the definitions for commitments, and identification schemes. We
closely follow [AM+23] in these as we later make use of results from that work when transforming
identification schemes to signature schemes. In the below, we require that all honest algorithms
are efficiently computable.

Com. In this work we consider only hash-based commitments. Hence, we define commitment
scheme as an algorithm Com that given an input x and randomness ρ ∈ {0, 1}r produces a
commitment com = Com(x; ρ) ∈ {0, 1}c. We make the randomness explicit as given (com, x, ρ)
everybody can check that indeed com = Com(x; ρ). From our commitment schemes we require
two properties: We want them to be binding and hiding.

We define the advantage of a possibly quantum adversary A against the computational
bindingness of Com as

AdvbindCom (A) := Pr[((x1, ρ1), (x2, ρ2))← A : x1 6= x2 ∧ Com(x1; ρ1) = Com(x2; ρ2)].

We define the advantage of a possibly quantum adversary A against the computational
hidingness of Com as

AdvhideCom (A) :=
∣∣∣Pr[(x1, x2)← A; ρ← {0, 1}k : 1← A(Com(x1; ρ))]

− Pr[(x1, x2)← A; ρ← {0, 1}k : 1← A(Com(x2; ρ))]
∣∣∣ .

In the analysis, Com may be recast with a random oracle, to prove security in the eQROM.

2.1.1 Identification Schemes, zero-knowledge, and soundness

We next discuss identification schemes (IDS), a variant of honest-verifier zero-knowledge (HVZK)
and several (successively refined) variants of soundness. We start with canonical three-round IDS.

Three round identification schemes. Three round, public coin, commit and open identifi-
cation schemes, which we abbreviate as IDS, will be rudimentary building blocks upon which our
longer more intricate schemes are built and analyzed. An IDS is an interactive protocol between a
prover P and a verifier V. It is defined by a tuple of algorithms IDS = (Keygen,Commit,Resp,Vrf)
and a challenge space C. Prior to any interaction, Keygen is run and outputs a key pair (pk, sk).
A protocol run starts with P running (st,w)← Commit(sk). The commitment message w is sent
to V which samples a challenge c from the uniform distribution over C and sends it to P. Upon
receiving c, the prover P runs z ← Resp(st, c) and sends z back to V. The verifier accepts if
Vrf(pk,w, c, z) = 1 and rejects otherwise.
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The transcript of a run of IDS is the tuple (w, c, z) of messages exchanged. We are only
interested in IDS that are correct, i.e., for any key pair output by Keygen, we want that the
execution of IDS between honest P and V always accepts. A property that can be handy when
turning IDS into signatures is that of commitment-recoverable IDS. An IDS is commitment
recoverable if there exists an algorithm Rcvr, such that for any valid transcript (w, c, z), w ←
Rcvr(c, z).

We expect IDS to provide two security properties which are defined below.

Honest-verifier zero-knowledge (HVZK). The most commonly used variant of HVZK is
the statistical one which has the advantage that it nicely composes and directly leads bounds
for parallel repetition. This does not hold for the computational variant as previously pointed
out in [Gri+21]. Hence, when considering computational HVZK, one directly has to prove multi-
transcript HVZK to cover parallel composition. This approach was taken in [AM+23] as for hash-
based commitments, statistical HVZK requires 2.5 times more commitment randomness [Lei18],
which, in turn, impacts signature size. The below definition makes use of an honest transcript
generator Trans and an HVZK simulator Sim. It closely follows [Gri+21].

Definition 1 (HVZK simulator and honest transcript generator). An HVZK simulator
for IDS is an algorithm Sim that takes as input the public key pk and outputs a transcript (w, c, z).
An honest transcript generator for IDS is an algorithm Trans that takes as input the secret key
sk and outputs a transcript (w, c, z) by means of an honest execution of IDS.

Based on this we define computational t-HVZK of an IDS as follows:

Definition 2 (Computational t-HVZK). We define the advantage of a possibly quantum
adversary A against the computational t-HVZK of IDS with simulator Sim, making no more than
t queries to its (transcript-)oracle as

Advt−HVZK
IDS,Sim (A) :=

∣∣∣Pr[(pk, sk)← Keygen() : 1← ASim(pk)(pk)]

− Pr[(pk, sk)← Keygen() : 1← ATrans(sk)(pk)]
∣∣∣ .

Special Soundness. Conventionally, special soundness is a notion that requires the existence
of an extractor Ext, which, given a set of transcripts that fulfills some requirements, will always
output a secret key for the public key associated with these transcripts. In [AM+23], the au-
thors only consider a notion of soundness for the three round IDS and give a direct proof for
that. They use a computational version of special soundness (spS) which takes into account the
computational effort of the algorithm A that produces the transcript set and consider extractors
Ext which succeed with a probability that can be less than 1. Their definition links the success
probability of Ext to the runtime of A. Moreover, their definition is tailored to τ -fold parallel-
composition of some basic IDS′. As an abstraction of this parallel composition, they say IDS has
a splittable challenge if the challenge of IDS can be split into τ challenges of IDS′. They introduce
the notion of distance between two IDS challenges Dist(c, ĉ) as the number of IDS′ challenges on
which they disagree, i.e., the number of indices 1 ≤ j ≤ τ for which (c)(j) 6= (ĉ)(j), where (c)(j)

(resp. (ĉ)(j)) is the j-th IDS′ challenge in c (resp. ĉ).

Definition 3 ((Query-bounded) distance-d special soundness for IDS with splittable
challenge). We define the advantage of a possibly quantum adversary A against the query
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bounded special soundness of a composed IDS with respect to extractor Ext in the (quantum-
accessible) random oracle model as follows

Advd−spSIDS,Ext (A) :=Pr[(sk, pk)← Keygen(); ((w, c, z)), (ŵ, ĉ, ẑ))← ARO(pk);

sk′ ← ExtRO((w, c, z)), (ŵ, ĉ, ẑ)) :

(Vrf(pk, (w, c, z))) = Vrf(pk, (ŵ, ĉ, ẑ)) = 1)

∧ (w = ŵ) ∧ (d = Dist(c, ĉ)) ∧
(
(sk′, pk) 6∈ Keygen()

)
],

where q is the maximum number of queries that A makes to RO and we consider it understood
that in this case all IDS algorithms may depend on RO.

In contexts where it helps to clarify the number of splits τ underlying the protocol, we will
write the adversary advantage Advd−spSIDS,Ext (A) as Advd−spSIDSτ ,Ext

(A).

(2ℓ + 1)-round identification schemes. Our round elimination technique applies in much
greater generality than required by our MPCitH example. In particular, it works for identification
schemes with an arbitrary odd number 2ℓ+1 of rounds,4 as long as there is a soundness structure
that splits or factorizes in a certain way. We describe our results in this greater generality, since
they are interesting beyond MPCitH constructions.

A (2ℓ+1)-round identification scheme Π is an interactive protocol between a prover P and a
verifier V. It is defined by a tuple of algorithms (KeygenΠ , {CommitΠ,i}ℓi=0, RespΠ ,VrfΠ) and a
finite challenge space CΠ . When the Π being referred to is clear from context, we will drop the
subscript Π and write (Keygen, {Commiti}ℓi=0,Resp,Vrf) and C. The challenge space is a product
C = C1×C2× . . .×Cℓ. Prior to any interaction, Keygen is run and outputs a key pair (pk, sk). A
protocol run starts with P running (w1)← Commit1(sk). The commitment message w1 is sent to
V which samples a challenge c1 from the uniform distribution over C1 and sends it to P. Upon
receiving c1, the prover P runs w2 ← Commit2(sk, c1) and sends w2 to V. Then V independently
samples a challenge c2 from the uniform distribution over C2 and sends it to P. Then P sends w3 ←
Commit3(sk, c1, c2), and so on. On receiving the final challenge cℓ, P runs z← Resp(sk, c1, . . . , cℓ)
and sends z to V. The commitment functions can also take a state as part of the input, with
each commitment function updating the state after a round of interaction, to be fed as the input
of the successive commitment function. We suppress the state updates from the notation for
readability. At the end of the interaction, V accepts if Vrf(pk,w1, c1, . . . ,wℓ, cℓ, z) = 1 and rejects
otherwise. The prover’s commitment/response sequence (w1,w2, . . . ,wℓ, z) is constrained to a
fixed finite product space W1 ×W2 × . . .×Wℓ ×Z. The transcript of the interaction is denoted
by

t := (w1, c1,w2, c2, . . . ,wℓ, cℓ, z)

and its projection to the commitment and challenge sequences respectively by

w(t) := (w1,w2, . . . ,wℓ) and c(t) := (c1, c2, . . . , cℓ) ∈ C.

For m < ℓ, let t<m := (w1, c1,w2, c2, . . . ,wm), t≤m := (w1, c1,w2, c2, . . . ,wm, cm), t>m :=
(wm+1, cm+1,wm+2, cm+2, . . . , cℓ, z), T≤m := W1×C1×W2×C2 . . .×Cm, w(t)≤m := (w1,w2, . . . ,wm),
C>m := Cm+1 × Cm+2 × . . .× Cℓ, and c(t)>m := (cm+1, cm+2, . . . , cℓ).

4 For public-coin protocols, a first or last message from the verifier is useless. Thus, only odd numbers of rounds
make sense.
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Parallel repetition. The r-fold parallel repetition Π∨r of Π is defined as follows. An index
(j) in the superscript will indicate the (j)-th component in the repetition. The key generation
algorithms are identical, KeygenΠ∨r = Keygen. The challenge space CΠ∨r := Cr1 × Cr2 × . . . × Crℓ .
The commitment and response algorithms are merely r-fold copies, CommitΠ∨r,i := Commitri
and RespΠ∨r,i := Respr. That is, for i ≤ ℓ,

CommitΠ∨r,i

(
sk, (c

(j)
1 , c

(j)
2 , . . . , c

(j)
i−1)

r
j=1

)
=

(
Commiti(sk, c

(j)
1 , c

(j)
2 , . . . , c

(j)
i−1)

)r

j=1
,

RespΠ∨r

(
sk, (c

(j)
1 , c

(j)
2 , . . . , c

(j)
ℓ )rj=1

)
=

(
Resp(sk, c

(j)
1 , c

(j)
2 , . . . , c

(j)
ℓ )

)r

j=1
.

The verifier predicate is the conjunction VrfΠ∨r(t(1), t(2), . . . , t(r)) :=
∧r

j=1 Vrf(t
(j)), where t(j)

is the transcript of the j-th repetition.

S-soundness and naive cheating probabilities. Following [Don+22b], we define a notion
of soundness (and corresponding extractors) that generalizes special soundness. Sets of tran-
scripts whose acceptance by the verifier suffice for extracting a witness will qualify the soundness
structure of the protocol, through the structure of their challenge sequences. If an extractor is
presented with more accepting transcripts than necessary, this does not obstruct witness extrac-
tion. Therefore, the following notion of an increasing set of challenge sequence sets aids us in
defining the soundness structure. Call a (possibly empty) set S ⊆ 2C of subsets of C “increasing”
if and only if (S ∈ S) ∧ (S ⊆ S′ ⊆ C) ⇒ S′ ∈ S. An increasing set S is a subset of the
power set 2C of challenge sequences C. An element S ∈ S is hence a subset S ⊂ C of challenge
sequences.

Definition 4 (S-soundness ([Don+22b](Def. 5.2))). Let S ⊆ 2C be increasing. For a non
empty S, a (2ℓ+1)-round identification protocol Π is called S-sound if there exists a probabilistic
polynomial time algorithm ExtS that takes as input

– a public key pk generated by Keygen, and
– a set T of transcripts whose

– first messages are the same, that is, ∀t, t′ ∈ T , t<1 = t′<1,

– challenge sequences c(t), t ∈ T form a set {c(t), t ∈ T } ∈ S,

– transcripts pass verification, that is, ∀t̂ ∈ T , VrfΠ(pk, t̂) = 1,

and outputs a secret key sk such that (sk, pk) ∈ Keygen. We say S is an extraction structure for
Π.

Remark 1. When demanding that ExtS be probabilistic polynomial time, we follow the usual
convention that the expected run time is bounded by a polynomial in the size of the input.
The set T of transcripts is part of the input, and in our contexts will be presented to ExtS
by a polynomial time classical/quantum adversary. Therefore, in the cryptographic contexts we
consider, ExtS will be probabilistic polynomial time in the security parameter. In particular,
we do not have to worry about a set {c(t), t ∈ T } of challenge tuples whose description is of
exponential size in the security parameter.

Remark 2. To clarify, the empty set case S = ∅ corresponds to there being no extraction guar-
antee. By default, every (2ℓ + 1)-round identification protocol Π is deemed to be ∅-sound and
the corresponding extraction algorithm Ext∅ is not required to output a valid secret key sk.
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Example: Special soundness of Σ-protocols. As an illustrative first example, let us ex-
press the familiar notion of special soundness of Σ-protocols in the language of Def. 4. The
special case ℓ = 1 corresponds to Σ-protocols. Special soundness of Σ-protocols is realized as a
special case of Def. 4 by setting ℓ = 1 and S = {S ⊆ C1 | |S| ≥ 2}. In essence, two transcripts
with the same first message and distinct challenges suffice for extraction. That is, a Σ-protocol
Π with key generation Keygen is {S ⊆ C1 | |S| ≥ 2}-sound if there exists an efficient algorithm
that

– given a public key pk generated by Keygen,
– and a set {(w, c, zc)c} of at least two transcripts, indexed by distinct challenges c, but with

the same first message w,
– such that for all input transcripts Vrf(pk, (w, c, zc)) = 1,

outputs a sk such that (sk, pk) ∈ Keygen.

Example: Parallel repetition. The soundness of an r-fold parallel repetition of a (S-sound
2ℓ+ 1-round) protocol (with challenge space C) is also captured within the scope of Def. 4. To
illustrate this structure, define

S∨r := {S ⊆ Cr | ∃ j ∈ {1, 2, . . . , r} : S(j) ∈ S} ,

where S(j) := {c ∈ C | ∃ (c(1), c(2), . . . , c(r)) ∈ S : c(j) = c} is the projection onto the j-th
repetition. The r-fold parallel repetition of a S-sound protocol is S∨r-sound, as seen by the
extractor that searches for a repetition with an extractable set of transcripts and applies the
extractor of the atomic protocol.

S-soundness implies soundness for an IDS Π if key recovery for that scheme is hard. Indeed,
any classical (non-quantum) adversary that will be successful for all challenges from a set S ∈ S
can be converted into a key recovery algorithm via rewinding and the S-soundness extractor.
In the quantum setting, a similar reduction is possible via Unruh rewinding [Unr12]. We thus
define a number we call the naive cheating bound, as the maximal success probability of any
classical adversary that cannot be used for key recovery in this way,

Definition 5. For an increasing S, define pSnaive :=
1
|C| maxŜ⊆C,Ŝ ̸∈S |Ŝ|.

In particular, p∅naive = 1. By definition, pSnaive ∈ [0, 1]. This naive cheating probability is
multiplicative with respect to parallel repetition [Don+19, Lem. 3.5]. That is,

pS
∨r

naive =
(
pSnaive

)r
. (1)

The naive cheating bound pSnaive has additional significance in the post-quantum context due to
the extraction technique developed in [Don+22a], where a bound on the extraction error as a
function of pSnaive is obtained.

Example. We next discuss distance-d special soundness of an IDS (call Π) that is a τ -parallel
repetition of another IDS (call Π ′) that has special soundness. Let C′ be the challenge space of
Π ′, which implies (C′)τ is the challenge space of Π. The notion of distance-d special soundness
of Π is captured by

SIDSτ,d :=
{
S ⊆

(
C′
)r ∣∣|{j ∈ {1, 2, . . . , τ} : |S(j)| ≥ 2}| ≥ d

}
,
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where, as before, S(j) = {c′ ∈ C′ | ∃ (c′(1), c′(2), . . . , c′(τ)) ∈ S : c′(j) = c′} is the projection on to
the j-th repetition. To compute the naive cheating probability, observe that maxŜ⊆C,Ŝ ̸∈S |Ŝ| is
attained by {

(c′(1), c′(2), . . . , c′(τ)) ∈ (C′)τ
∣∣|{j ∈ {1, 2, . . . , τ} : c′(j) 6= ĉ′(j)}| < d

}
,

for every choice of (ĉ′(1), ĉ′(2), . . . , ĉ′(τ)) ∈ (C′)τ . The reader may recognize the set attaining the
maximum as a Hamming ball of radius d − 1. The centre (ĉ′(1), ĉ′(2), . . . , ĉ′(τ)) ∈ (C′)τ of the
Hamming ball chosen does not matter, as every radius d−1 Hamming ball attains the maximum.
The naive cheating probability is therefore

p
SIDSτ,d

naive =

∑d−1
j=1

(
τ
j

)
(|C′| − 1)j−1

|C′|τ
, (2)

where the numerator is the volume of the radius d− 1 Hamming ball.

Fine-grained soundness. In the following Def. 6 to 8, we define fine grained soundness
and extraction structures as well as a new notion of computational special soundness. These
notions will later help analyze the protocols with early rounds eliminated. We begin with the
notion of (t≤m,S>m)-soundness and a corresponding extractor Ext(t≤m,S>m), parameterized by
a transcript prefix t≤m (up to the m-th challenge) and an increasing set S>m of subsets of
challenge sequence suffixes starting from the (m+1)-th challenge. Informally, this extractor can
extract from a set of transcripts satisfying the following. Each transcript has prefix t≤m and the
collection of transcript suffixes falls into the prescribed soundness family S>m.

Definition 6 ((t≤m,S>m)-soundness and Ext(t≤m,S>m) extractor). Let Π be a (2ℓ + 1)-
round identification protocol with challenge space C =

∏ℓ
i=1 Ci. Fix an m ∈ {1, 2, . . . , ℓ− 1}. Let

t≤m ∈ T≤m be a transcript prefix and S>m ⊆ 2C>m be increasing. An extractor Ext(t≤m,S>m) is
a probabilistic polynomial time algorithm that

– given a public key pk generated by Keygen, and
– a set T of transcripts whose

– prefixes up to the m-th challenge match t≤m, i.e., ∀t̂ ∈ T , t̂≤m = t≤m,

– challenge sequence suffixes starting with the (m+ 1)-th challenge satisfy

{c(t̂)>m | t̂ ∈ T } ∈ S>m,

– such that all transcripts pass verification, that is, ∀t̂ ∈ T , VrfΠ(pk, t̂) = 1,

outputs a secret key sk such that (sk, pk) ∈ Keygen. Define Π to be (t≤m,S>m)-sound if there
exists such an extractor Ext(t≤m,S>m).

Our next soundness notion is parameterized by a function mapping transcript prefixes up to
the m-th challenge to extraction structures for the remainder of the protocol. This parameteri-
zation function encodes all the information about the identification protocol that we exploit in
the round elimination soundness proofs. In particular, it is allowed to map certain prefix sets to
the empty set, modelling scenarios where there is no extraction guarantee.

Definition 7 (prefix-conditioned s-soundness). Let Π be a (2ℓ + 1)-round identification
protocol and m < ℓ. Define Π to be s-sound with prefix-conditioned-soundness function s :
T≤m → 2(2

C>m ), if for all transcript prefixes t≤m ∈ T≤m, the protocol Π is (t≤m, s(t≤m))-sound.
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To such a function s, we associate an extractor Exts defined as follows. It takes as input a
public key pk generated by Keygen, and a set T of transcripts whose prefixes up to the m-th
challenge agree. Then Exts(pk, T ) := Ext(t≤m,s(t≤m))(pk, T ), where t≤m is the common prefix of
T and Ext(t≤m,s(t≤m)) is as in Def. 6.

Def. 4 to 7 are statistical in nature. Just like in [AM+23], our general round reduction
technique will yield protocols that only enjoy a computational (or query-) bounded flavor of
special soundness. To formalize computational security, we use the the expected naive cheating
bound that is achievable by an adversary. The motivation for this is Theorem 4.2 in [Don+22a].
It provides an extractor for protocols with a particular structure (so-called commit-and-open
IDS), and proves an extraction error bound that is linear in the naive cheating bound.

Definition 8 (Computational and query-bounded prefix-conditioned s-soundness).
Let Π be a (2ℓ + 1)-round IDS and let s′ : T<m+1 → 2(2

C≥m+1 ) a soundness function.5For an
adversary A, define the s-shaping advantage

AdvΠs−shaping (A) = Et←⟨A,Vrf⟩[p
s(t<m+1)
naive ].

Here, we slightly abuse notation by writing t ← A to mean that A produces the transcript t by
interacting with the (honest) verifier. We say Π is computationally (query-bounded) s-sound if
the shaping advantage AdvΠs−shaping (A) is negligible for all polynomial-time (polynomial-query)
adversaries A.

We note that a computationally bounded A is query-bounded by definition. Looking ahead,
we will use this notion for partially Fiat-Shamir-transformed, or round-eliminated, protocols.
Here, the challenges for a number of initial rounds have already been replaced by random
oracle outputs (and are therefore absorbed in the first commitment message. The remainder
of the protocol is still interactive. In this case, the adversary can in principle choose a first
commitment such that the hashes yield unlikely challenges which map to much lower levels
of special soundness under s. The extreme case is where s maps to ∅ and extraction becomes
impossible. Such first commitments can, however, only be found by completing an infeasible
search problem with respect to the random oracle. It follows that query-bounded adversaries
can only produce such a bad first commitment with small probability.

We next define a function ps : T<m −→ [0, 1] to capture this expected naive cheating proba-
bility associated with s. It will later allow us to conveniently collect all prefixes t<m that map
to the same expected naive cheating probability. For a (2ℓ+ 1)-round identification protocol Π
with prefix-conditioned s-soundness function s : T≤m → 2(2

C>m ), define

ps : T<m −→ [0, 1] (3)

t<m 7−→ Ecm∈Cm

[
p
s(t<m,cm)
naive

]
.

We also define the corresponding variance

vs : T<m −→ [0, 1] (4)

t<m 7−→ Varcm∈Cm

[
p
s(t<m,cm)
naive

]
.

Like the soundness function s′ in Def. 8, this function maps transcripts ending with the m-th
commitment, unlike s which maps transcripts ending with the m-th challenge. In Lemma 1, they

5 As we regard the (m+1)−th commitment as a form of set-up for this definition, the soundness function reflects
a slightly different partition of the protocol rounds compared to the soundness function in Def. 7
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play a role in bounding the adversary success probability for protocols with the first m-challenge
rounds eliminated.

Our techniques apply to MPCitH protocols, eliminating the first challenge round to reduce a
5-round MPCitH protocol to a 3-round Σ-protocol. In this context, the transcript prefix consists
of only the initial commitment which can be chosen freely by the adversary. The expected naive
cheating bound for the optimal choice is therefore

max
w1∈W1

Ec1∈C1

[
p
s(w1,c1)
naive

]
. (5)

This quantity is estimated carefully in many MPCitH protocols, sometimes under the name
”false positive probability”, to facilitate ad-hoc security proofs. These estimates of false positive
probability from MPCitH design are readily translated by our technique to quantify soundness
of the round-eliminated 3-round protocol.

2.2 Eliminating verifier challenge interactions in the eQROM.
We next describe the syntax of recursively eliminating one round of verifier interaction at a time,
where one of the challenges is determined by a random oracle (instead of the verifier drawing it).
The most important case in our context is when the first challenge is determined by a random
oracle, as follows.
Definition 9 (First round elimination Π1). Let Π be a (2ℓ+1)-round protocol with commit-
ment and challenge spaces W1×W2× . . .×Wℓ and C1×C2× . . .×Cℓ. The first round elimination
Π1 of Π is the (2ℓ− 1)-round protocol whose commit, respond and verify functions are defined
as follows. Let RO : W1 −→ C1 be a random oracle. The first commitment CommitΠ1,1 of Π1 is
defined as:
CommitΠ1,1(sk) :

1. w′1,1 ← CommitΠ,1(sk)
2. c̃ = RO(w′1,1)
3. w′1,2 ← CommitΠ,2(sk, c̃))
4. Output w′1 := (w′1,1,w

′
1,2).

The remainder (that is, i > 2) of the commitment functions are advanced as

CommitΠ1,i−1(sk, c
′
1, c
′
2, . . . , c

′
i−2) := CommitΠ,i(sk, c̃, c

′
1, c
′
2, . . . , c

′
i−2),

RespΠ1
(sk, c′1, c

′
2, . . . , c

′
ℓ−1) := RespΠ(sk, c̃, c′1, c

′
2, . . . , c

′
ℓ−1).

To verify a transcript t′ = (w′1, c
′
1,w

′
2, . . . ,w

′
ℓ−1, c

′
ℓ−1, z

′) of Π1, VrfΠ1 checks (using VrfΠ and
access to RO) the predicate

VrfΠ(pk,w′1,1,RO(w
′
1,1),w

′
1,2, c

′
1,w

′
2, c
′
2, . . . ,w

′
ℓ−1, c

′
ℓ−1, z

′).

Here w′1 = (w′1,1,w
′
1,2) ∈ W1 ×W2 is the partitioning of the first commitment, as apparent from

the definition of the first commitment function.
We can recurse this process to eliminate up to a chosen m-th challenge round. We next

define notation to describe the resulting protocol. When eliminating more than one round, the
security proofs require the use of a new random oracle (denoted ROi in Def. 10) per elimination.
In practice, these can be instantiated with a single hash function and domain separation.

From here on, it helps to distinguish the transcripts of Π from those of its round-eliminated
version Πm. To this end, as in Def. 10, the transcripts of Πm will be denoted (using a superscript
′) as t′ = (w′1, c

′
1,w

′
2, c
′
2, . . . ,w

′
ℓ−m, c′ℓ−m, z′). We remind the reader that we assume all prover

functions to implicitly share state which is necessary for the following definition to be meaningful.
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Definition 10 (Multiple round elimination Πm). Let Π be a (2ℓ+ 1)-round protocol with
commitment and challenge spaces W1×W2×. . .×Wℓ and C1×C2×. . .×Cℓ. For an m ∈ {1, 2, . . . , ℓ},
the m-th challenge round elimination Πm of Π is the (2(ℓ−m)+1)-round protocol with commit,
respond and verify functions defined as follows. Let RO = (ROi : W1 ×W2 × . . .×Wi −→ Ci)mi=1

be a sequence of independent random oracles. The first commitment of Πm is defined as
CommitΠm,1(sk) :

1. w′1,1 ← CommitΠ,1(sk)

2. c̃1 = RO1(w
′
1,1)

3. w1,2 ← CommitΠ,2(sk, c̃1))

4. c̃2 = RO2(w
′
1,1,w

′
1,2)

...
2m-1. c̃m = ROm(w′1,1,w

′
1,2, . . . ,w

′
1,m)

2m. w′1,m ← CommitΠm(sk, c̃1, c̃2, . . . , c̃m)

2m+1. Output w′1 := (w′1,1,w
′
1,2, . . . ,w

′
1,m+1)

This defines the expanded transcript prefix

w′1<m
:= (w′1,1,RO1(w

′
1,1),w

′
1,2,RO2(w

′
1,1,w

′
1,2), . . . ,

ROm(w′1,1,w
′
1,2, . . . ,w

′
1,m)).

The remainder of the protocol Πm is the same as Π, except that the expanded transcript is used,
i.e.,

CommitΠm,i−m(sk, c′1, c
′
2, . . . , c

′
i−1) := CommitΠ,i(sk, c

(
w′1<m

)
, c′1, c

′
2, . . . , c

′
i−1),

RespΠm
(sk, c′1, c

′
2, . . . , c

′
ℓ−m) := RespΠ(sk, c

(
w′1<m

)
, c′1, . . . , c

′
ℓ−m), and

VrfΠm(pk, c
(
w′1<m

)
,w′1,m+1, c

′
1,w

′
2, c
′
2, . . . , c

′
ℓ−m, z′).

Here w′1 = (w′1,1,w
′
1,2, . . . ,w

′
1,m+1) ∈ W1 × W2 × . . . × Wm+1 is the partitioning of the first

commitment, as apparent in the first commitment function definition, and we recall that

c
(
w′1<m

)
= (RO1(w

′
1,1),RO2(w

′
1,1,w

′
1,2), . . . ,ROm(w′1,1,w

′
1,2, . . . ,w

′
1,m)).

We are now ready to prove a bound on the shaping advantage of any q-query adversary ARO
q

against Πm, proving that Πm is query-bounded prefix-conditioned s-sound.

Lemma 1 (Shaping advantage bound for Πm). Let Π be a (2ℓ + 1)-round identification
protocol with prefix-conditioned s-soundness function s : T≤m → 2(2

C>m ) and the corresponding
ps-probability function ps : T<m −→ [0, 1]. Let Πm be the round-eliminated version of Π with the
first m-challenges eliminated using a random oracle RO = (RO1,RO2, . . . ,ROm), as in Def. 10.
Let C := 304, µs := maxt<m∈T<m ps(t<m) and σs := maxt<m∈T<m

√
vs(t<m). The s′-shaping

advantage of a quantum adversary ARO
q against Πm, making at most q queries to RO in the

eQROM is bounded as

AdvΠm
s′−shaping

(
ARO
q

)
≤ µs + 3

√
Cqσs + 2Cq2σ2

sµs log

(
1√
Cqσs

)
,

where s′RO : W1 ×W2 × . . .×Wm → 2(2
C>m ) is defined as s′RO(w′1) = s(w′1).
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Proof. Let ARO be a quantum adversary against Πm. We wish to bound the expectation value

AdvΠ
m

s−shaping (A) = Et←ARO [p
s′(t≤m)
naive ]

We can bound this maximum expectation by applying [HHM22, Cor. 4], which builds on the on-
line extractability in the QROM results of [Don+22b]. We begin by briefly paraphrasing [HHM22,
Cor. 4]. Let f : X × Y → [0, 1] be a function where X and Y are finite non-empty sets. Let
R̂O : X → Y be a random oracle. Consider the maximization problem for an adversary with
eQROM access, making at most q queries, to find an input x ∈ X such that f(x, R̂O(x)) is large.
The expected value of f(x, R̂O(x)) that such an adversary can achieve is at most

Exf(x, R̂O(x)) ≤ µ+ 3
√
Cqσ + 2Cq2σ2µ log

(
1√
Cqσ

)
,

where (µ, σ2) upper bound the mean Ey(f(x, y)) ≤ µ and variance Vary(f(x, y)) ≤ σ2 of the
function values taken over the uniform distribution on Y . Applying [HHM22, Cor. 4] to the
function

p̃s : T<m × Cm −→ [0, 1]

(t<m, cm) 7−→ p
s((t<m,cm))
naive

(from Eq. (3)) implies

Et←ARO [p
s′(t≤m)
naive ] =Et←ARO [p

s(w1)
naive]

=Et←ARO [ps(w1<m,ROm(w1,m))]

≤µs + 3
√
Cqσs + 2Cq2σ2

sµs log

(
1√
Cqσs

)
proving the lemma.

We now provide two corollaries for the special case of parallel repetition of 5-round IDS. The
corollaries do not exploit the full power of the framework, but are sufficient for our example
application to RYDE.
Corollary 1. Let Π be a 5-round identification protocol with τ -splittable challenges and sound-
ness function

s(t≤1) =

{
SIDSτ,d , t≤1 ∈ G

∅, t≤1 /∈ G

for some subset G ⊆ W1 × C1. Let cḠ := maxw1∈W1 |{c1 | (w1, c1) /∈ G}|/|C1|. Let Π1 be the
(Σ-protocol with τ -splittable challenges resulting from the) first challenge round elimination of
Π. The s′-shaping advantage of a quantum adversary ARO against the first challenge round
elimination Π1 of Π, making at most q queries to RO in the eQROM is bounded as

Advs′−shaping

(
ARO

)
≤ µs + 3

√
Cqσs + 2Cq2σ2

sµs log

(
1√
Cqσs

)
(6)

where C := 304,

σs =

√(
p
SIDSτ,d

naive

)2

(1− cḠ) + cḠ ≤ p
SIDSτ,d

naive +
√
cḠ,

µs = p
SIDSτ,d

naive (1− cḠ) + cḠ ≤ p
SIDSτ,d

naive + cḠ,

p
SIDSτ,d

naive was defined in Eq. (2), and s′ is defined in terms of s and RO as in Lemma 1.
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Proof. Specializing Lemma 1 to the (ℓ = 2,m = 1) case, the corollary holds with

µs := max
w1∈W1

Ec1∈C1

[
p
s((w1,c1))
naive

]
and σs := max

w1∈W1

√
Varc1∈C1

[
p
s((w1,c1))
naive

]
.

The expressions for µs and σs are derived using Eq. (2) and a straightforward optimization.

We can reverse-engineer the query-bounded distance-d special soundness defined in Def. 3.

Corollary 2. Let Π and Π1 be as in Cor. 1. Then Π1 has query-bounded distance-d special
soundness. More precisely, the advantage of any distance-d special soudness adversary A is
bounded as

Advd−spSIDS,Ext (A) ≤
Γ − p

SIDSτ,d

naive

1− p
SIDSτ,d

naive

(∗)
≤ Γ,

where Γ is the right hand side of Eq. (6) and the inequality (∗) holds if Γ < 1.

Proof. From any distance-d special soundness adversary A we can construct a shaping adversary
A′ as follows. A′ runs (t, t̂)← A and outputs t = (w, c, z). When A succeeds, the extractor fails
on two transcripts that should be extractable for the distance-d special soundness extractor, so
we can conclude that in this case s′(w) = ∅. It follows that

Advs′−shaping

(
A′RO

)
=Advd−spSIDS,Ext (A) + (1−Advd−spSIDS,Ext (A))p

SIDSτ,d

naive

=p
SIDSτ,d

naive +Advd−spSIDS,Ext (A)

(
1− p

SIDSτ,d

naive

)
Rearranging the equation and applying Cor. 1 yields the desired bound.

It remains to be shown that the HVZK property is preserved under round-elimination. The
argument for this is straightforward, following the blueprint of the UF-NMA to UF-CMA reduction
for Fiat-Shamir transformed identification schemes. The idea is that a transcript for the fully
interactive IDS can be turned into a valid transcript of IDS where some challenges are taken
as the output of a random oracle, by reprogramming the random oracle. Given that the proof
contains not much novelty, it can be found in Appendix B.

Lemma 2 (R-HVZK of round elimination). Let IDS−1 be the IDS that is obtained by applying
round elimination to IDS using random oracle RO. If IDS has first message entropy γw :=
Emaxw1 Pr[w1] Then it holds for any adversary A against the R−HVZK property of IDS−1 that
makes qH queries to RO, there exists an adversary B against R− HVZK of IDS with

AdvR−hvzkIDS−1
(A) ≤ AdvR−hvzkIDS (B) +

3R

2

√
(qH +R) · γw.

3 The Hypercube Technique
In [Agu+23b], the hypercube technique was introduced as an optimization for the SDitH code-
based signature scheme. It allowed to reduce the computational cost and communication size
of the MPCitH-based IDS of SDitH while preserving its security and especially its soundness
error. In this section we show that the hypercube technique can be applied to a more general
class of MPC in the Head (MPCitH) based identification schemes (and consequently the signa-
ture schemes derived of them) as long as the used MPC protocol fits our abstraction, and is
additively homomorphic, as defined below. We start with preliminaries and abstractions that we
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use. Afterwards, we describe the hypercube technique, and finally we prove when it applies. We
note that in this section we present the results for single instance IDS (in contrast to parallel
repetition IDS) for the sake of readability. However, all results can easily be extended to the
parallel repetition of IDS equivalently, applying the techniques per instance.

3.1 Preliminaries
We now provide the necessary background on MPC in the head (MPCitH), and the MPC
computation it uses. We start with the definition of pseudorandom generators and TreePRG
which are used in optimizations of MPCitH-based identification schemes also discussed below.
For the latter we focus on the functional properties as we do not make use of them in our security
proofs. Afterwards, we provide definitions and abstractions for MPC and MPCitH that we use
in this section. Many functions in this section work over sets {Xi}i∈[ND] with index set [ND].
Due to space constraints, we often omit the index set information for the case [ND] and write
{Xi} (or {Xi}i ̸=c for {Xi}i ̸=c

i∈[ND]
).

PRG. A pseudorandom generator (PRG) is an efficiently computable function PRG : {0, 1}n →
{0, 1}en where e is the expansion factor. Security of a PRG is defined in terms of a real-or-random
game. The advantage of a possibly quantum adversary A is defined as

AdvrorPRG (A) := |Pr[x← {0, 1}en : 1← A(x)]− Pr[x← {0, 1}n : 1← A(PRG(x))]| .

TreePRG. In this work we make use of the TreePRG construction initially proposed by Gol-
dreich, Goldwasser, and Micali [GGM84]. TreePRG makes use of a length-doubling PRG (e = 2)
to reach an expansion factor of e = 2λ building a binary tree of height λ. The root of the tree is
the input and the leaves are the outputs Out. To build the tree, every inner node Node is fed to
PRG to generate its two child nodes. One strength of TreePRG is that λ inner nodes are enough
to generate all but one leaf. Let Outi denote the ith leaf / output block of TreePRG. Then the
sibling path from the root to that leaf suffices to generate all Out but Outi. The interface of
TreePRG is captured by the following three routines:

GenLeaves(ρ)→ {Outi}i∈[2λ]: Given root ρ generates all leaves.
GenPath(ρ, c)→ path: Given the root, generates the sibling path for the cth leaf.
LeavesFromPath(path)→ {Outi}i∈[2λ−1]: Given a path for leaf c, generates the leaves for all but

the cth leaf.

It fulfills the correctness condition

LeavesFromPath(GenPath(ρ, c)) = GenLeaves(ρ) \ {Outc}

In general, we require that any Outi is pseudorandom even when given the output of GenLeaves(ρ, i).
In [AM+23] an even stronger security definition is given and proven: For a possibly quantum
adversary A we define the advantage against TreePRG as

AdvrorTreePRG (A) :=
∣∣∣Pr[{xj}j∈[λ] ← ({0, 1}n)λ+1 : 1← A({xj}j∈[λ])]

− Pr[x,Outi ← {0, 1}n : 1← A(GenPath(x, i),Outi))]| .

MPC. In this work we are working on tooling that builds an IDS from a MPC protocol. We
assume an N -party MPC protocol that is N − 1 private in the semi-honest model, i.e., if any
N − 1 parties collude, they cannot learn anything about the input of the last remaining party.
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Moreover, we assume perfect correctness: If all parties behave honestly, the correct result is
computed.

The MPC protocol is used to privately evaluate a function F on some secret input x. For that,
x is secret shared using an additively homomorphic secret sharing scheme which produces N
shares JxKi such that x =

∑N−1
i=0 JxKi. In addition to JxKi, the initial state of a party may contain

further inputs. All this is subsumed in the party input ini. Moreover, an MPC protocol might
take global auxiliary inputs like the random values used for multiplication triple verification
following [LN17].

To compute non-linear functions F , the MPC protocol requires communication. We consider
MPC with broadcast communication, i.e., every party broadcasts their messages to every other
party. Upon receipt the functions continue their computation. This can go in multiple rounds. In
the end, every party broadcasts their output share. As we are simulating the MPC computation,
we capture all this by a function MPCF ({ini}N−1i=0 , xtra) = {bci}N−1i=0 that takes as input the initial
state of every party ini, as well as potential auxiliary inputs xtra (e.g., masking values for product
verification), and returns the set of communications of all parties, i.e., bci is all communication
broadcasted by party i. We omit the subscript F indicating the function implemented by the
protocol where it is clear from the context. We overload notation, introducing as an alternative
interface MPC(j, {ini}N−1i ̸=j,i=0, bcj , xtra) = {bci}N−1i=0 where the state of a party is replaced by its
communications such that

MPC

(
j, {ini}N−1i=0;i ̸=j ,

(
MPC

(
{ini}N−1i=0

)
, xtra

)
j
, xtra

)
= MPC

(
{ini}N−1i=0 , xtra

)
.

In this work we are interested in a setting where x is a secret value such that F (x) fulfills some con-
ditions. (E.g., the common case is F (x) = 0.) We model this via a predicate Pred({bci}N−1i=0 ) = b
which takes as input all communication of the MPC computation and checks for the condition
(in the example case that the outputs of all parties form a secret sharing of 0 and therefore sum
up to 0).

Additively homomorphic MPC. We require the MPC protocol as well as the predicate to
be additively homomorphic on all its inputs. We capture this by the following definition.
Definition 11 (Additively homomorphic MPC). Let MPC denote the execution of an MPC
protocol as described above, with communications checking predicate Pred. We call MPC and Pred

additively homomorphic if they fulfill the following two properties.

1. Order independent. For any permutation π of [0, . . . , N − 1] we have

MPC
({

inπ(i)
}N−1
i=0

, xtra
)
= π

(
MPC

(
{ini}N−1i=0 , xtra

))
, (7)

where we use the notation π({bci}N−1i=0 ) = {bcπ(i)}N−1i=0 .
2. Additively homomorphic. Let in = {ini}Ni=0 and in′ = {in′i}

N−1
i=0 such that ini = in′i for

0 ≤ i < N − 1 and inN−1 + inN = in′N−1 then we have(
MPC

({
in′i

}N−1
i=0

, xtra
))

N−1
=(

MPC
(
{ini}Ni=0 , xtra

))
N−1

+
(
MPC

(
{ini}Ni=0 , xtra

))
N
, and (8)

Pred
(
MPC

({
in′i

}N−1
i=0

, xtra
))

= Pred
(
MPC

(
{ini}Ni=0 , xtra

))
. (9)

We note that for additively homomorphic schemes, there exists a variant of MPC(j, {ini}N−1i ̸=j,i=0,
bcj , xtra) that takes bcΣ =

∑
i∈N bci in place of bcj . This works, for the following reason. The
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communications of a party bci are a vector of the communications send in different rounds of
the MPC protocol. Accordingly, bc is the vector of the sums of the communications of all par-
ties for these different rounds. Consequently, the implementation of MPC can, round-by-round,
compute the communications of all parties but party j and then compute that of party j as the
difference of the total sum and the sum of all the parties but j. To avoid additional notation,
we distinguish this variant only by the given input writing MPC(j, {ini}N−1i ̸=j,i=0, bcΣ , xtra).

MPC-in-the-Head. First proposed in [Ish+07], the idea of MPC-in-the-Head (MPCitH) is
to build a zero-knowledge proof for an arbitrary NP statement via the simulation of an N -
party-MPC protocol to compute the evaluation circuit for the relation. In our case we aim for a
slightly weaker goal of an identification scheme that provides HVZK and special soundness. The
approach remains mostly the same but we prove knowledge of an input to a one-way function
that produces a predetermined output. Here, the secret input becomes the secret key sk = x,
while the one-way function is defined by the public key pk. We first describe the high level
idea, before we discuss generic optimizations and implementation details considered in this work
by default. In MPCitH, the Prover P prepares the inputs for and simulates the execution of all
parties of the MPC protocol given secret x and randomness ρ. This follows the description of the
MPC protocol above. The prover generates the inputs {in}N−1i=0 (including the secret sharing of
x) for all parties and commits to each of them individually. In addition, the prover generates all
auxiliary inputs xtra necessary. We abstract this by a function GenXtra(x, ρ) that gets all inputs
of the P and thereby implicitly all values computed by the P so far. Then P runs the MPC
protocol MPCpk({ini}N−1i=0 , xtra) = {bci}N−1i=0 to obtain the communications of all parties. The
prover sends the commitments together with all communications {bci}N−1i=0 to the verifier V. In
response, V samples a random value c $← [0, . . . , N−1] and sends it as challenge to P. To complete
the protocol, P sends the opening information for all commitments except that for party c as
response z to V. This allows V to compute the inputs {in′i}N−1i=0;i ̸=c for all parties but party c as
part of verify. Then V can run MPCpk(c, {in′i}

N−1
i ̸=c,i=0, bcc, xtra) = {bc′i}N−1i=0 and check consistency

of all communications with the ones sent earlier, i.e., check that (∀0 ≤ i < N ; i 6= c)bc′i = bci.
Then V can evaluate Pred

(
{bc′i}

N−1
i=0

)
and accept whenever the consistency checks out and the

predicate is fulfilled.
We do not formally prove security here as we start with the assumption of a secure MPCitH

identification scheme but we provide a sketch. HVZK follows from the MPC protocol being
N − 1 private in the semi-honest model: If the commitment is hiding, the verifier does not learn
anything about the inputs of party c. In a proof this allows the simulator to pick the challenge
before everything else and then choose the communications of party c such that Pred is fulfilled.

Special soundness follows from the correctness of the MPC protocol (and the bindingness
of the commitments). If there are two valid transcripts for the same commitments and com-
munications, this means that all commitments get opened (to the same values in the different
transcripts due to bindingness). This means that all communication and computation gets veri-
fied and therefore the MPC protocol was honestly simulated if both transcripts accept. Moreover,
acceptance also implies that the result of the computation fulfills the required predicate. Hence,
the extractor can simply recombine the shares of x found in the inputs to recover an x such that
F (x) fulfills Pred.

Optimizations / Abstractions. We consider one optimization that we generally assume
to be used and hide a second one behind an abstraction. First, our proof requires that the
commitment is implemented via a hash function so that we can later model it as a random
oracle. To commit to a value yi, P computes com = H(yi‖r) using hash function H and a fresh
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Abstract functions

GenSds(x,N, ρ)→ ({(seedi, ri)}i∈[N ], aux) // Seed generation
ExpSd({seedi}i∈[N ], aux)→ {(ini)}i∈[N ] // Seed expansion
GenOpn(x,N, ρ, c)→ opnng // Generate opening information
Opn(opnng)→ ({(seedi, ri)}i 6=c,i∈[N ]) // Open from opening information
Com(x, ρ)→ com // Commitment function
GenXtra(x, ρ)→ xtra // Generate auxiliary MPC input
MPC({ini}i∈[N ], xtra)→ {bci}i∈[N ] // Run MPC protocol
MPC(j, {ini}i 6=j,i∈[N ], bcj , xtra)→ {bci}i∈[N ] // Run MPC protocol
MPC(j, {ini}i 6=j,i∈[N ], bcΣ , xtra)→ {bci}i∈[N ] // Run MPC protocol
Pred({bci}i∈[N ])→ b // Output predicate

Fig. 1: List of used abstractions

random value r. To open the commitment, P simply reveals yi, r. Note that opening in this case
requires V to actually recompute H(yi‖r) using the given values and comparing the result to
com to ensure that this was indeed the correct opening.

The second optimization is about compressing the transcript replacing random values by
the outcome of a PRG and only sending the used seeds. This considers the following sort of
optimizations: Given that commonly P generates the party inputs ini for the first N − 1 parties
at random and only picks the last party’s input such that the inputs form a valid secret sharing,
one can generate the first N − 1 in from one seed each. Because P always has to open all but
one party in the setting we consider, we can get down to logarithmic size opening information
using a structure like TreePRG (which can be viewed as punctured PRF). More precisely, we
use TreePRG to generate N seeds seed′i from each of which we generate a pair (seedi, ri) such
that seedi gets later expanded into ini and ri is used as commitment randomness to commit
to seedi (which has the same binding properties as committing to ini directly, while security
of the PRG guarantees hiding). Then we can open all but one commitment, using the sibling
path of the unopened seed. Given that our proofs bootstrap from the security of a basescheme
that already uses these routines, they are independent of the precise realization. Only for the
functional description do we need the following routines:

The function {(ini)}i∈[N−1] ← ExpSd({seedi}i∈[N−1], aux) is a deterministic function that takes
a set of values seedi as well as some optional auxiliary data (e.g., the delta of the last party
inputs from a random value) and maps each to the corresponding input value ini. (This can
be the identity function or a PRG which finally adds aux to inN−1.)

The function ({(seedi, ri)}i∈[N−1], aux)← GenSds(x,N, ρ) takes as input the secret x, the num-
ber of parties N , and randomness ρ, and generates a set of inputs to ExpSd together with the
corresponding commitment randomness per input. The function is deterministic as it takes
the required randomness as explicit input.

The pair of functions opnng← GenOpn(x,N, ρ, c) and ({(seedi, ri)}i ̸=c
i∈[N−1])← Opn(opnng) such

that

Opn(GenOpn(x,N, ρ, c)) = GenSds(x,N, ρ)1 \ {(seedc, rc)},

i.e., given the same inputs as GenSds, the sequence of GenOpn and Opn generates all seed,
randomness pairs except the one of party c.

A summary of all the abstractions we use can be found in Fig. 1.
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Agg (N, j, {Xi})

1 : Write i in radix N : (i0, . . . , iD−1)

2 : for k ∈ [N ] do

3 : Xj
k =

∑
i∈[ND ],ij=k

Xi=(i0,...,iD−1)

4 : return {Xj
k}k∈[N ]

Agg (N, j, {Xi}, c)

1 : Write i in radix N : (i0, . . . , iD−1)

2 : Write c in radix N : (c0, . . . , cD−1)

3 : for k ∈ [N ], k ̸= cj do

4 : Xj
k =

∑
i∈[ND ],ij=k

Xi=(i0,...,iD−1)

5 : return {Xj
k}

k 6=cj
k∈[N ]

Fig. 2: Aggregation routine to produce the main party inputs or communications for the parti-
tioning of parties according to dimension j. The right side gives the variant that aggregates all
but one main party for which the necessary information is missing.

3.2 From flat to hypercube

We now discuss how to apply the hypercube technique to any MPCitH-based IDS that follows
our abstraction above, and uses an additively homomorphic MPC protocol. From now on we
use IDS to refer to MPCitH-based IDS. An IDS that uses ND parties to achieve soundness
error (ND)−1 needs to simulate the computation of ND parties and send the communications
of all of these. Using the hypercube technique, the computation of only DN parties is required,
and consequently also only the communication of these. This is achieved by simulating several
instances of the MPC protocol with what [Agu+23b] called main parties. These main parties
are obtained by accumulating parties of the flat IDS which [Agu+23b] called leaf parties after
partitioning them.

This aggregation is at the heart of the hypercube technique and depicted in Fig. 2. The Agg

function is used in the hypercube IDS to aggregate the inputs and communications of parties.
One run of Agg generates the aggregated values for one run of the MPC protocol. The name
hypercube comes from how the partitioning for the aggregation is obtained. Starting from an IDS
that used ND parties, one may think of them as being arranged on a D dimensional hypercube.
The position of a party i can be obtained by writing its index i in radix N as (i0, . . . , iD−1) (see
line 1 of Fig. 2), e.g., for N = 2 this would refer to writing it in binary. Then ij is the coordinate
of i in dimension j. The hypercube technique runs the MPC protocol D times. For the jth
protocol run, parties are partitioned according to their coordinate in dimension j (line 3 of left
side of Fig. 2). The necessary aggregation for the j run is obtained by running Agg(N, j, ·).

A flat IDS with ND parties is turned into its hypercube version by applying the aggregation
and running the MPC protocol D times with the respective main parties. A side-by-side com-
parison of the two versions of an IDS is given in Fig. 3. We note that the protocols are identical
except for the hypercube running D MPC computations with aggregation before. Notably, this
means that the commitments are still on representatives of the leaf parties and we have ND

commitments in place of ND. While this is a disadvantage for the plain IDS described here,
it allows for later optimizations. Namely, in the signature scheme, all commitments that get
opened do not have to be sent. At the same time, using TreePRG to implement GenSds, the
opening information can be reduced to D log2N seeds, in place of DN − 1 when using random
main parties. Moreover, one of the parties in a secret sharing is not random and therefore cannot
be compressed. When using D independent runs with N parties each, D uncompressed parties
are necessary, of which at least half have to be opened and thereby communicated (there are
different ways how this last party is communicated but all require the transmition of the same
amount of uncompressed opening information).
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Flat MPCitH

P.Commit(x, ρ)

1 : ({(seedi, ri)}, aux)← GenSds(x,ND, ρ)

2 : {(ini)} ← ExpSd({seedi}, aux)
3 : for i ∈ [ND] do

4 : comi ← Com(seedi)

5 : w← {comi, ri}
6 : xtra← GenXtra(x, ρ)

7 : {bci} ← MPCpk({ini}, xtra)
8 : return w, {bci}, xtra, aux

V.Challenge(w, {bci}, xtra, aux)

1 : c
$← [ND]

2 : return c

P.Resp(x, ρ, c)

1 : z← GenOpn(x,ND, ρ, c)

2 : return z

Trans = (w, {bci}, xtra, aux, c, z)

Hypercube MPCitH

P.Commit(x, ρ)

1 : ({(seedi, ri)}, aux)← GenSds(x,ND, ρ)

2 : {(ini)} ← ExpSd({seedi}, aux)
3 : for i ∈ [ND] do

4 : comi ← Com(seedi)

5 : w← {comi, ri}
6 : xtra← GenXtra(x, ρ)

7 : for j ∈ [D] do

8 : {inji}i∈[N ] ← Agg(N, j, {ini})

9 : {bcji}i∈[N ] ← MPCpk({inji}i∈[N ], xtra)
10 : return w, {bcji}i,j∈[N ]×[D], xtra, aux

V.Challenge(w, {bcji}i,j∈[N ]×[D], xtra, aux)

1 : c
$← [ND]

2 : return c

P.Resp(x, ρ, c)

1 : z← GenOpn(x,ND, ρ, c)

2 : return z

Trans = (w, {bcji}i,j∈[N ]×[D], xtra, aux, c, z)

Fig. 3: Abstract three-round (flat) MPCitH IDS and hypercube version of the same IDS.

Verification of both variants is depicted side-by-side in Fig. 4. Verification consists of com-
puting the openings, verifying the commitments, and afterwards checking the broadcast com-
munications, including a check that they fulfill the predicate Pred. We externalized the two
verification steps into functions VerCom and VerBC. Given that the only difference between flat
and hypercube version is in the MPC computations, the whole first part of verification, includ-
ing opening, commitment verification, and seed expansion is identical. Only verification of the
broadcast communication is different. While there is only communication of one MPC run in
the flat case, verification for the hypercube scheme has to aggregate the information to assemble
the right inputs for each of the D MPC runs and verify each individually.

Translation of a flat to a hypercube IDS is done by first matching the scheme to our abstrac-
tion and checking the necessary homomorphic properties. Afterwards, the hypercube version is
given by assembling the abstract functions according to the right-hand-side of Fig. 3. We provide
an example of the process applying to RYDE in Sec. 4.

3.3 Security of the Hypercube technique

In this section we prove that the security of the hypercube version H-IDS of a flat three-round
IDS IDS follows directly from the security IDS. More precisely we show that HVZK and sound-
ness are preserved. At the heart of the argument are two translation routines depicted in Fig. 5
which translate flat transcripts into hypercube transcripts and vice versa. Either translation only
corrects the broadcast communications, everything else remains the same. The translation from
flat to hypercube transcripts simply aggregates the communications according to the hypercube.
The translation from hypercube to flat transcripts is slightly more involved. This is the place
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Vrf(pk,w, {bci}, xtra, aux, c, z)

1 : Parse {comi} ← w

2 : ({(seedi, ri)}i 6=c)← Opn(z)

3 : a = VerCom(c, {seedi, ri}i 6=c, {comi})
4 : {ini}i 6=c ← ExpSd({seedi}, aux)
5 : b = VerBC(pk, c, {ini}i 6=c, {bci}, xtra)
6 : return a ∧ b

VrfHyp(pk,w, {bcji}i,j∈[N ]×[D], xtra, aux, c, z)

1 : Parse {comi} ← w

2 : ({(seedi, ri)}i 6=c)← Opn(z)

3 : a = VerCom(c, {seedi, ri}i 6=c, {comi})
4 : {ini}i 6=c ← ExpSd({seedi}, aux)
5 : Write c in radix N : (c0, . . . , cD−1)

6 : for j ∈ [D] do

7 : {inji}
i 6=cj
i∈[N ] ← Agg(N, j, {ini}i 6=c, c)

8 : {bcji}i∈[N ] ← Agg(N, j, {bci})

9 : bk = VerBC(pk, cj , {ini}
i 6=cj
i∈[N ],

{bcji}i∈[N ], xtra)
10 : return a ∧ b0 ∧ . . . ∧ bD−1

VerCom (c, {seedi, ri}i 6=c, {comi})

1 : for i ̸= c do

2 : com′
i ← Com(seedi, ri)

3 : if com′
i ̸= comi then return 0

4 : return 1

VerBC (pk, c, {ini}i 6=c
i∈[N ], {bci}i∈[N ], xtra)

1 : {bc′i}i∈[N ] ← MPCpk(c, {ini}i 6=c
i∈[N ], bcc, xtra)

2 : for i ̸= c do

3 : if bc
′
i ̸= bci then return 0

4 : return Pred({bc}i∈[N ])

Fig. 4: Verification of an MPCitH IDS, and the hypercube version of it including shared subrou-
tines.

TransH2F(w, {bcji}i,j∈[N ]×[D], xtra, aux, c, z)

1 : ({(seedi, ri)}i 6=c

i∈[ND ]
)← Opn(z)

2 : {ini}i 6=c ← ExpSd({seedi}, aux)

3 : Compute bcΣ =
∑
i∈N

bc
0
i

4 : {bci} ← MPCpk(c, {ini}i 6=c, bcΣ , xtra)
5 : return (w, {bci}, xtra, aux, c, z)

TransF2H(w, {bci}, xtra, aux, c, z)

1 : for j ∈ [D] do

2 : {bcji}i∈[N ] ← Agg(N, j, {bci})

3 : return (w, {bcji}i,j∈[N ]×[D], xtra, aux, c, z)

Fig. 5: Given a hypercube transcript, TransH2F describes the construction of a flat transcript,
and vice versa for TransF2H.

where we require that the partial MPC computation can be done with the sum of all communi-
cations in place of the communication of the missing party (c.f., Def. 11 and the note following
it). From the opening, we get the inputs for all but one party and again by the homomorphic
properties, we can take the communications of any of the D MPC runs to compute the sum
of the communications also for the flat scheme. With these, we can run MPCpk to compute all
communications for the flat transcript.

We begin with soundness. For soundness preservation, we show that we can use any extractor
for IDS to extract for H-IDS. This is done translating any given H-IDS transcripts using TransH2F

into IDS transcripts. For this work, TransH2F has to preserve validity of transcripts, which is
the first thing that we prove before giving the actual soundness proof:

Lemma 3. Let TransH2F be as in Fig. 5, tH = (w, {bcji}i,j∈[N ]×[D], xtra, aux, c, z) be a transcript
for the hypercube IDS, and t = (w, {bci}, xtra, aux, c, z) be a flat transcript derived from it running
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TransH2F(tH). Then
V.Vrf(tH) = 1⇒ V.VrfHyp(t) = 1.

Proof of Lemma 3. We give a proof by contradiction, showing that whenever verification of t
fails, also verification of tH will fail, and thereby the implication has to hold. Verification of the
flat transcript V.Vrf(t) is displayed in the left hand side of Fig. 4. The event that V.Vrf(t) = 0
only occurs if at least one of the two subroutines, VerCom and VerBC, returns 0. This can only
be triggered in line 3 of VerCom, or in lines 3 or 4 of VerBC. We now step through each of these
cases and argue that each will also cause V.VrfHyp(tH) = 0.

Failed commitment (VerCom, line 3): First the verification function checks the commitments
via a call to VerCom in line 3 of either verification routine. This step is identical for the flat and the
hypercube setting. Note that TransH2F leaves everything untouched except the communications.
Moreover, the first four lines of verification are identical for both cases. In consequence, the
inputs given to VerCom, prepared in lines 1 and 2 of either verification are identical. Hence the
result of the call must be too. So if there is a mismatch in line 3 of VerCom in one case, the same
mismatch occurs in the other case.

Failed communications - consistency (VerBC, line 3): Next the verification procedure expands
the seeds to obtain the inputs for all but the challenge party and runs VerBC. First VerBC

computes the communications bc′i for all parties from the information given (line 1), and then
checks consistency with the previously transmitted communication bci for i 6= c. We now argue
that by construction of t, this check never fails. The inputs to MPCpk used in VerBC are identical
to those used in TransH2F with one exception: In VerBC, bcc is used while TransH2F used bcΣ .
However, bcc is the output of that computation and therefore by definition consistent with it.
Hence, this step simply cannot cause verification to fail.

Failed communications - failed predicate (VerBC, line 4): Finally, VerBC applies the predicate
to the communication. It is crucial to note that by iterated application of Eq. (8), we get
that Pred{bci} = Predbcσ, where bcσ =

∑
i∈[ND] bci. But by construction we also have bcσ =∑

i∈[N ]bc0i
for the communications of the first set of main party communications of the hypercube

scheme, as the flat scheme communications where computed that way by TransH2F. And finally,
we may also iteratively apply Eq. (8) to conclude Pred{bc0i } = Predbcσ and thereby Pred{bci} =
Pred{bc0i }.

Hence, we have shown that in every case that makes V.Vrf(t) fail, also V.VrfHyp(tH) will fail
concluding the proof.

We now use this result to argue that query-bounded distance d special-soundness (Def. 3) of
the flat scheme implies query-bounded distance-d soundness of its hypercube version with the
same adversarial advantage. We do this showing that we can use the extractor of the flat scheme
to build an extractor for the hypercube version.

Lemma 4 (Soundness preservation). Let IDS be a flat MPCitH-based IDS as depicted
in Fig. 3 that uses an additively homomorphic MPC protocol as defined in Def. 11, and H-IDS
the hypercube version of IDS. For any extractor Ext for IDS, and any adversary A against the
query-bounded distance-d special soundness of H-IDS, there exist an extractor H-IDS and an
adversary B against the query-bounded distance-d special soundness of IDS such that

Advd−spSH-IDS,H-Ext (A) = Advd−spSIDS,Ext (B) ,

with TIME(B) = TIME(A) + TIME(TransH2F) ≈ TIME(A) and TIME(H-Ext) = TIME(Ext) +
TIME(TransH2F) ≈ TIME(Ext). Moreover, the number of queries that B makes to the random
oracle is that of A plus the number of queries made by an honest verification.
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Proof of Lemma 4. To prove the statement, we construct H-Ext using Ext. Our strategy is based
on the previous result. Extractor H-Ext takes any hypercube transcripts tH it is given, translates
them to flat transcripts t using TransH2F (Fig. 5), runs Ext on these, and outputs the result. For
this to work, three conditions have to hold: First, the translated transcripts have to still fulfill
the challenge pattern required for Ext to succeed. Second, the translated transcripts have to be
valid. Third, the translation has to be efficient. If these hold, the part of H-Ext that translates
the messages can be viewed as adversary B and therefore, the probability that Ext does not
successfully extract is exactly the claimed advantage.

The first condition trivially holds as both schemes have special soundness with respect to
the same challenge pattern and TransH2F does not touch c. The second condition holds ac-
cording to Lemma 3 which we just proved. The third condition can be verified by inspection.
Extractor H-Ext takes two transcripts. Therefore, the only overhead compared to Ext are two
calls to TransH2F. The translation has about the same complexity as Vrf without VerCom. After
computing the MPC inputs from z, it computes a sum over N communications and then runs
MPCpk. While it is a different variant of MPC than the one used by Vrf, the overhead is limited to
one sum per broadcast communication round of MPC which is negligible compared to any cryp-
tographically relevant attack effort. Given that the only difference to Vrf is that the role of the
sum of communications and the challenge party communications are switched, the translation
adds at most as many RO queries as Vrf makes.

In conclusion, whenever the inputs to H-Ext fulfill the requirements for extraction, also the
inputs that it feeds to Ext do. Therefore, H-Ext succeeds with the same success probability as
Ext.

Lemma 5 (HVZK preservation). Let IDS be a flat MPCitH-based IDS as depicted in Fig. 3
that uses an additively homomorphic MPC protocol as defined in Def. 11, and H-IDS the hypercube
version of IDS. Then it holds for any adversary A against the HVZK property of H-IDS that there
exists an adversary B against HVZK of IDS with

AdvhvzkH-IDS (A) = AdvhvzkIDS (B) .

Proof. Our proof strategy is similar to that for soundness. We show how to construct a simulator
H-Sim for the hypercube scheme using the simulator for IDS that has to exist by assumption.
For this we make use of TransF2H to translate the flat transcripts t to hypercube transcripts
tH . I.e., we use H-Sim := TransF2H ◦ Sim. For this to work, we have to show that any adversary
that can distinguish the outputs of H-Sim from honest transcripts, can be used to distinguish
the outputs of Sim from honest transcripts.

We give a proof by reduction. Given adversary A against HVZK of H-IDS, we construct
reduction B against HVZK of IDS as follows. On input the public key pk, B runs ATransF2H(t)(pk),
and outputs the result. Let Trans(sk), and H-Trans(sk) refer to algorithms that execute IDS and
H-IDS, respectively, and output the resulting transcript. By definition, we have

AdvhvzkIDS (B) = |Pr[1← BSim(pk)(pk)]− Pr[1← BTrans(sk)(pk)]|,

where the probabilities are taken over the randomness involved in generating (sk, pk)
$← Keygen(),

as well as the coins of A, Sim, and Trans. Plugging in the definition of B, this becomes

AdvhvzkIDS (B) = |Pr[1← ATransF2H(Sim(pk))(pk)]− Pr[1← ATransF2H(Trans(sk))(pk)]|.

By construction, we have that TransF2H(Sim(pk)) = H-Sim(pk). If we are able to show that
TransF2H(Trans(sk)) ≈ H-Trans(sk), i.e., the output distribution of TransF2H, given honest
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IDS transcripts, is identical to that of honest transcripts for H-IDS, then the above becomes
AdvhvzkH-IDS (A).

Note that when comparing the algorithms in Fig. 3, they are identical except for the way
the broadcast communications are computed in line 7 of the flat Commit and lines 7-9 of the
hypercube commit. At the same time, TransF2H only changes these broadcast communications.
Now, this means that H-Trans and TransF2H ◦ Trans start from the same MPC inputs ini.
For an honest hypercube run, H-Trans generates the bc

j
i by first aggregating the inputs and

then executing the MPC protocol for each hypercube dimension. In contrast, TransF2H ◦ Trans
first runs the full MPC protocol and then aggregates the generated communications for each
hypercube dimension to obtain bc

j
i . However, because MPC is additively homomorphic, these

computations give the identical result (one only has to iteratively apply Eq. (8)). Thereby, the
distribution of outputs in both cases is identical.

Applying this to the above equation, we get

AdvhvzkIDS (B) = |Pr[1← AH-Sim(pk)(pk)]− Pr[1← AH-Trans(sk)(pk)]|
= AdvhvzkH-IDS (A) .

The runtime of H-Sim is essentially that of Sim, only adding D calls to Agg, each of which is
running N sums with D terms.

4 RYDE scheme
In this section we exemplify the application of our results on round reduction and the hypercube
technique, applying them to a five-round IDS using flat MPCitH that is similar to the RYDE
signature scheme [Ara+23b]. RYDE is a contender in the NIST on-ramp for signature schemes.
At its core is a five round identification scheme that follows the BN-style MPCitH approach. The
underlying one-way problem it is based on is Rank Syndrome Decoding. The signature scheme is
obtained by applying the Fiat-Shamir transform for five round identification schemes. We note
that in the NIST submission, the authors already introduce the hypercube optimization. Our
example shows how easily one can obtain a QROM proof for an optimized version of this class
of signature schemes.

Mapping the items in Algorithm 1 into the transcript items for the abstractions used in
the previous section, we show how to transform a flat RYDE-like IDS into a hypercube one
following Fig. 3. We present the basic five-round flat IDS that RYDE is built around, even
though in the specification [Ara+23b] only the Fiat Shamir-transformed hypercube signature
scheme running τ protocols in parallel is presented. Previously we used N as the side length of
the hypercube, but here we fix the side length as 2, which is optimal in almost all cases, and use
notation that is similar to the original description of RYDE for the purpose of the example, in
particular emulating the interactive version of Algorithm 1 in the RYDE specification. Firstly,
we let N , the number of parties in the flat scheme shown in Algorithm 1, be a power of 2, so
N = 2D.

Lines 1-6 generate the seeds and inputs for all N parties, and these are captured in our
abstractions by the functions ExpSd, GenSds as demonstrated in Fig. 3. Included in the setup
is the commitment to each party’s seeds after line 2 using commitment scheme Com. The first
message σ1 in line 7 of Algorithm 1 should also be the same as for the flat scheme.

4.1 Round collapse
Next comes the first challenge in the five-round setting, where V generates and sends to P a
challenge that defines masking points for Beaver triplets (ϵ) and evaluation points for a polyno-
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Algorithm 1 RYDE: Five round IDS from Rank Syndrome Decoding with flat MPCitH
Input: H,x,y,β : y = H(x) ∈ Fn−k

qm . Define xB as the last k coordinates of x.

Round 1 (Setup for MPC protocol):
1. ρ $←− {0, 1}2λ, root $←− {0, 1}λ
2. seed1, r1, . . . , seedN , rN ← GenLeaves(root)
for i ∈ [N ] doJxBKi, JβKi, JaKi, JcKi ← PRG(seedi, ri)

comi ← Com(seedi, ri)

4. ∆a← SampleFqmVector(seedN−1), a←
∑

iJaiKi∈[N ], ∆c← −⟨a,β⟩ −
∑N−2

i=0 JcKi
5. ∆xB ← xB −

∑N−2
i=0 xB ,∆β ← β −

∑N−2
i=0 JβKi

6. JxBKN−1 ← ∆xB , JβKN−1 ← ∆β, JcKN−1 ← ∆c ▷ aux = (∆xB ,∆β,∆c)
7. σ1 ← ({comi}i∈[N ], (∆xB ,∆β,∆c))
8. P : σ1 −→ V ▷ {ini} = (JxBKi, JβKi, JaKi, JcKi)i∈[N ]

Round 2 (First Challenge):
9. P $←− c1 = (γ, ϵ) : V ▷ xtra = (γ, ϵ)
Round 3 (Simulation of checking protocols):
10. (JαKi, JvKi)i∈[N ] ← MPCN ((JxBKi, JβKi, JaKi, JcKi)i∈[N ], c1, pk)
11. σ2 ← (JαKi, JvKi)i∈[N ]

12. P : σ2 −→ V ▷ {bci}i∈[N ] = (JαKi, JvKi)i∈[N ]

Round 4 (MPC party challenge):
13. P $←− c2 : V, where c2 ∈ [N ]
Round 5 (Openings):
14. path← GenPath(root, c2))
15. σ3 ← path
16. P : σ3 −→ V

Verification(σ1, c1, σ2, c2, σ3, pk = (H,y))
1. {comi}i∈[N ], (∆xB ,∆β,∆c)← σ1, (γ, ϵ)← c1,
(JαKi, JvKi)i∈[N ] ← σ2, c2 ← c2, path← σ3

2. {seedi, ri}i 6=c2 ← LeavesFromPath(path)
3. {com′

i}i 6=c2 ← {Com(seedi, ri)}i 6=c2

4. Check com′
i = comi for all i ̸= c2

5. (JxBKi, JβKi, JaKi, JcKi)← PRG(seedi, ri) for all i ̸= c2, i ̸= N − 1
6. (JxBKN−1, JβKN−1, JaKN−1, JcKN−1)← (∆xB ,∆β, SampleFqmVector(seedN−1),∆c)
7. (JαK′i, JvK′i)i∈[N ] ← MPCN (c2, (JxBKi, JβKi, JaKi, JcKi)i 6=c2

i∈[N ], (JαKc2 , JvKc2), c1, pk)
8. Check (JαK′i, JvK′i) = (JαKi, JvKi) for i ∈ [N ], i ̸= c2
return Pred({(JαKi, JvKi)i∈[N ]}, pk)

mial (γ). As the challenge is chosen with the uniform distribution from a given set, the results
of Sec. 2 can be applied to collapse this round of interaction6. Thus the challenge is computed
using a random oracle RO as c = RO(σ1). In the later abstraction for the hypercube, this is
hidden in GenXtra(s, ρ), and the challenge values are denoted as xtra.

The RYDE protocol is an IDS that proves knowledge of a solution to the Rank Syndrome
Decoding problem, i.e. that P knows some solution x ∈ Fn

qm with low rank weight. We refer
to [Bid+23] for details and reasoning and stick to the necessary funcitonal description here.
This is done simulating an MPC computation that verifies the correct evaluation of a certain
(secret-shared) polynomial over an extension field Fqmn. This check is done using the BN20
multiplication check protocol from [BN20]. In [Bid+23] it is argued that following [Fen22] a
prover that does not know a valid solution can remain undetected in this step with probability
pη = 2

qmη − 1
q2mη , known as the false positive rate. As common for MPCitH schemes, in RYDE

the MPC computation for all parties is simulated by the prover and the communications are
6 This can indeed always be done, it may only lead to trivial security bounds. We show that in this case we get

usable bounds.
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sent to the verifier. Afterwards, the verifier asks to open the commitments on the internal state
of all but one party.

A cheating P has two ways of remaining undetected. They can hope to simply pass the MPC
computation without being detected while using a wrong solution. In this case they will pass
the opening phase with certainty. Otherwise, they can falsify their communications {bci} for
one party i, and then hope that V selects that party as their challenge index c2 = i, leaving it
unopened. In this case, they will get caught in the opening phase with probability 1/N . Thus
the soundness of the five-round proof of knowledge is 1

N + pη(1 − 1
N ). We now determine the

query-bounded distance-d special soundness of the τ -times parallel repetition of the three-round
IDS obtained by eliminating the first round. We can apply Cor. 2 which makes use of Cor. 1
where G is the set of pairs of commitments and challenge points such that a cheating P does
not succeed at the first stage. Therefore, we get that cḠ ≤ (pη)

τ , and SIDSτ,d , the extraction
structure for the d-special soundness of the last three rounds, is p

SIDSτ,d

naive = 1
Nτ

∑d−1
j=1

(
τ
j

)
(N−1)j−1

following Eq. (2). Therefore, σs =

√(
p
SIDSτ,d

naive

)2

(1− cḠ) + cḠ, µs = p
SIDSτ,d

naive (1− cḠ) + cḠ, and

Advd−spSIDS,Ext (A) ≤ µs + 3
√
Cqσs + 2Cq2σ2

sµs log

(
1√
Cqσs

)
,

where C = 304, as long as the given bound is ≤ 1.
Next we apply our results on τ -HVZK. We consider the τ -fold parallel repetition. We see that

Advτ−hvzkIDS−1
(A) ≤ Advτ−hvzkIDS (B) + 3τ

2

√
(qH + τ) · 23λ, where A is an adversary against the round

collapsed IDS, and B against the preceding five-round IDS, and γw, the commitment entropy, is
23λ as RYDE uses 3λ random bits for the first message, λ for root and 2λ for ρ. The soundness
and HVZK properties are thus preserved tightly under the round collapse.

4.2 Hypercube transform

Only at this point does the protocol change under the hypercube transform. In the flat scheme, P
performs MPCpk({ini}, xtra) to obtain the per party broadcast communications which is captured
by line 10 in Algorithm 1. Instead, the P, for each of the D dimensions, aggregates the input
shares to form two main parties. Then the two-party protocol is run MPCpk({ini}, xtra) for each
of the D dimensions, to obtain the communications {bckj }k,j∈[D]×[2].

In the round-compressed setting, this is the point when the first message containing w, {bckj },
xtra, aux is sent to V, who responds with a challenge c ← V, as per Round 4 of Algorithm 1. P
finally opens the views of all leaf parties except the challenge party. Where a TreePRG is used,
this is done with the function GenPath(root, c2). In the case of RYDE, this returns a sibling path
allowing to reconstruct the seeds and party randomness for all 2D − 1 leaf parties except c.

We describe in Sec. 3.1 the abstractions GenSds, ExpSd to reflect the routines used for gener-
ating the openings and inputs into algorithms. We note that the cost of clean abstractions is that
in our descriptions, some work is duplicated. For example, GenSds returns aux in our abstraction,
even though in reality this requires calling expanding seeds internally. The security of the new,
hypercube-transformed scheme, follows from from straightforward application of Lemma 4 and
Lemma 5, with no loss.

Other optimizations are applied when switching from an IDS formulation to a signature
format. In signature schemes, for example, only the missing communications bcc are sent as the
verifier recomputes the other bci from {seedi, ri} which are committed to at an early stage.

The elements of the hypercube transcript, derived from Algorithm 1, are described in Fig 6.
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RYDE hypercube transcript components

w = {comi}i∈2D

{bcjk}(j,k)∈[2]×[D] = (JαKki , JvKki )i,k∈[2]×[D]

xtra = (γ, ϵ)

aux = (∆xB ,∆β,∆c)

c ∈ [2D]

z = {seedi, ri}i 6=c

i∈[2D ]

Fig. 6: Description of (hypercube) RYDE in terms of abstraction in this work.

Fiat-Shamir transformation into DSS. The last step is to turn the resulting three-round
IDS into a fully non-interactive digital signature scheme. This is canonically done by applying
the Fiat-Shamir transform to all interactive rounds. Applying the result from [AM+23] which we
provide in Cor. 4 the final DSS that results after applying the FS transform, is UF-CMA secure
in the eQROM with security bound:

SuccUF-CMA
FS[RYDE,RO] (A) ≤ ϵRSD +Advd−spSIDS,Ext (A) + (22 · 2D + 60)q32−2λ + 20q2

1

|C|τ−d

+ qs(Adv
τ−hvzk
IDS (B) +

3τ

2

√
(q + τ) · 23λ)

+
3qS
2

√
(qRO + qS + 1) · 23λ ,

where ϵRSD is the hardness of solving rank-based syndrome decoding, Advτ−hvzkIDS (B) is the
τ − hvzk bound for the flat, five-round IDS of RYDE, Advd−spSIDS,Ext (A) is the bound on distance-d
special soundness of the τ -times parallel repetition of the three-round IDS given above and C is
the second challenge space of the flat, five-round IDS of RYDE.
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A From IDS to Signature
In [AM+23] the authors showed how to go from a distance-d special sound commit-and-open
IDS like the IDS that we are constructing to a secure signature scheme. To be self-contained, we
recall this result, closely following the text in [AM+23], with minor adoptions to the notation
used in this work.

A.1 Preliminaries
We first define commitment recoverable IDS. Then, we recall definitions of syntax and security
of digital signature schemes as well as the Fiat-Shamir transform. We closely follow [Gri+21] for
these definitions as did [AM+23].

Definition 12 (Commitment-recoverable IDS). A three-round IDS with transcripts (w, c, z)
is called commitment-recoverable if there exists a function Rcvr that given the challenge and
response (c, z) for a transcript, outputs the commitment message.

Note that for the MPCitH-based IDS discussed in Sec. 3 (which also works for most other
commit & open IDS where the opening information for the commitment allows to recompute the
inputs) there exists a trivial transform to turn them into a commitment recoverable IDS′: We
replace w by w′ = H(w) using the same hash function that is used by the commitment function
Com. We also add all information from the original w that cannot be recovered from the original
z to the new z′, i.e., z′ = (z, comc, bcc, xtra, aux). This reduces the transcript size of the IDS
significantly as it removes ND − 1 commitments and at DN − 1 (ND − 1) communications in
the hypercube (flat) setting. One can view this as using an ND-ary tree commitment with ND

leaves, as considered by the security bounds below.

Definition 13 (Signature scheme). A digital signature scheme DSS is defined as a triple of
algorithms DSS = (Keygen, Sign,Vrfy).
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Game UF-NMA

(pk, sk)← Keygen()

(m∗, σ∗)← A(pk)

return Vrfy(pk,m∗, σ∗)

Game UF-CMA

L ← {}
(pk, sk)← Keygen()

(m∗, σ∗)← ASign(sk,·)(pk)

if m∗ ∈ L return 0

return Vrfy(pk,m∗, σ∗)

Sign(sk,m)

L := L ∪ {m}
σ ← Sign(sk,m)

return σ

Fig. 7: Games UF-CMA and UF-NMA.

Sign(sk,m)

(w, st)← Commit(sk)

c← RO(w,m)

z← Resp(sk,w, c, st)

return σ := (c, z)

Vrfy(pk,m, σ = (c, z))

w← Rcvr(c, z)

a← (c = RO(w,m))

b← Vrf(pk,w, c, z)

return a ∧ b

Fig. 8: Signing and verification algorithms of DSS = FS[IDS,RO].

– The probabilistic key generation algorithm Keygen() returns a key pair (pk, sk). We assume
that pk defines the message space M.

– The possibly probabilistic signing algorithm Sign(sk,m) returns a signature σ.
– The deterministic verification algorithm Vrfy(pk,m, σ) returns 1 (accept) or 0 (reject).

UF-CMA, and UF-NMA security. We define unforgeability under chosen message attacks
(UF-CMA), and unforgeability under no message attacks, i.e., with no access to a signing oracle
(also known as UF-KOA, or UF-CMA0) success functions of a possibly quantum adversary A
against DSS as

SuccUF-X
DSS (A) := Pr[1← UF-XA

DSS] ,

where the games for X ∈ {CMA,NMA} are given in Fig. 7.

The Fiat-Shamir transform. Here we describe the Fiat-Shamir transform for commitment
recoverable IDS. From a security perspective it is equivalent to the standard Fiat-Shamir trans-
form, which can be shown by a straight-forward reduction. To a commitment-recoverable iden-
tification scheme IDS = (Keygen,Commit,Resp, Vrf,Rcvr) with commitment space COM, and
random oracle RO : COM×M→ C for some message space M, we associate

FS[IDS,RO] := DSS := (Keygen, Sign,Vrfy) ,

where algorithms Sign and Vrfy of DSS are defined in Fig. 8.
In [Gri+21] the following result was stated that relates the UF-NMA and UF-CMA security

of a Fiat-Shamir transformed IDS in the QROM, and the HVZK property of the IDS. The bound
makes use of what they call commitment entropy:

γw := Emax
w

Pr[w] ,

where the expectation is taken over (pk, sk)← Keygen, and the probability is taken over (w, st)←
Commit(sk).
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Theorem 1. [Gri+21, Theorem 3] For any (quantum) UF-CMA adversary A issuing at most qS
(classical) queries to the signing oracle sign and at most qH quantum queries to RO, there exists
a UF-NMA adversary B and a qS-HVZK adversary C such that

SuccUF-CMA
FS[IDS,RO] (A) ≤ SuccUF-NMA

FS[IDS,RO] (B) + AdvqS−HVZKIDS (C)

+
3qS
2

√
(qH + qS + 1) · γw , (10)

and the running time of B and C is about that of A, where γw is the maximum over the probability
that w takes any given value. The bound given in Eq. (10) also holds for the modified Fiat-Shamir
transform that defines challenges by letting c := RO(w,m, pk) instead of letting c := RO(w,m).

In [AM+23], the following result is proven, which is a variant of Theorem 5.2 in [Don+22a].
It relates the UF-NMA security of the Fiat-Shamir transformed IDS to its distance-d special
soundness in a relatively tight way.

Theorem 2 (Variant of Theorem 5.2 from [Don+22a]). Let IDSCom,G be a distance-d
special-sound commit-and-open identification scheme with ϕ-ary tree commitment with nc leaves
using a random oracle Com with output length c, splittable challenge, challenge space Cτ and an
additional random oracle G. Let further A be a UF-NMA-adversary against FS[IDS,RO] making
qRO, qCom and qG queries to RO, Com and G respectively. Then there exists a (qCom, qG)-query
QROM+ adversary B against the query-bounded distance-d special soundness of IDSCom,G with
respect to the special soundness extractor Extd of IDS such that

AdvUF-NMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()] + Advd−spSIDS,Ext (B)

+ (22nc logϕ nc + 60)q32−c + 20q2
1

|C|τ−d
,

where q = qCom+qRO. The runtime of B is bounded as TIME(B) ≤TIME(A)+ξ(q+qG)
2)), where

ξ is polynomial in the input and output lengths of the random oracles.

Combining the two theorems, we get as a corollary

Corollary 3 (UF-CMA security of FS (QROM+)). Let IDSCom,G be a distance-d special-
sound commit-and-open identification scheme that is honest-verifier zero-knowledge with ϕ-ary
tree commitment with nc leaves using a random oracle Com with output length c, splittable
challenge, challenge space Cτ and an additional random oracle G. Let further A be a UF-CMA
adversary against FS[IDS,RO] issuing at most qS (classical) queries to the signing oracle sign,
as well as making qRO, qCom, and qG queries to RO, Com, and G respectively. Then for every
d = 0, . . . τ there exists a (qCom, qG)-query QROM+ adversary B against the query-bounded
distance-d special soundness of IDSCom,G with respect to the special soundness extractor Extd of
IDS, and a qS-HVZK adversary C such that

SuccUF-CMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()] + Advd−spSIDS,Ext (B)

+ (22nc logϕ nc + 60)q32−c + 20q2
1

|C|τ−d

+AdvqS−HVZK
IDS (C) +

3qS
2

√
(qRO + qS + 1) · γw ,

where q = qCom + qRO + qS. The runtime of B is bounded as TIME(B) ≤TIME(A) + ξ(q + qG)
2)),

where ξ is polynomial in the input and output lengths of the random oracles.
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It should be noted that this result is based on a bound for the soundness in the QROM+
introduced in [AM+23]. In our case, the bound we obtain applying the round elimination is in the
eQROM [Don+22b]. The eQROM is a model that is intuitively even stronger than the QROM+
as it gives the adversary adaptive access to an extraction interface during the interaction, while
the QROM+ only provides access to the measured database after the interaction. Hence, the
proof for Theorem 2 can be adapted to use the eQROM in place of the QROM+ by making the
necessary extraction queries after all interaction. Thereby, we get the following corollary:

Corollary 4 (UF-CMA security of FS (eQROM)). Let IDSCom,G be a distance-d special-
sound commit-and-open identification scheme that is honest-verifier zero-knowledge with ϕ-ary
tree commitment with nc leaves using a random oracle Com with output length c, splittable
challenge, challenge space Cτ and an additional random oracle G. Let further A be a UF-CMA
adversary against FS[IDS,RO] issuing at most qS (classical) queries to the signing oracle sign,
as well as making qRO, qCom, and qG queries to RO, Com, and G respectively. Then for every
d = 0, . . . τ there exists a (qCom, qG)-query eQROM adversary B against the query-bounded
distance-d special soundness of IDSCom,G with respect to the special soundness extractor Extd of
IDS, and a qS-HVZK adversary C such that

SuccUF-CMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()] + Advd−spSIDS,Ext (B)

+ (22nc logϕ nc + 60)q32−c + 20q2
1

|C|τ−d

+AdvqS−HVZK
IDS (C) +

3qS
2

√
(qRO + qS + 1) · γw ,

where q = qCom + qRO + qS. The runtime of B is bounded as TIME(B) ≤TIME(A) + ξ(q + qG)
2)),

where ξ is polynomial in the input and output lengths of the random oracles.

B Proof of Lemma 2
Below we give a short proof of Lemma 2 which is as follows

Lemma 2 (R-HVZK of round elimination). Let IDS−1 be the IDS that is obtained by applying
round elimination to IDS using random oracle RO. If IDS has first message entropy γw :=
Emaxw1 Pr[w1] Then it holds for any adversary A against the R−HVZK property of IDS−1 that
makes qH queries to RO, there exists an adversary B against R− HVZK of IDS with

AdvR−hvzkIDS−1
(A) ≤ AdvR−hvzkIDS (B) +

3R

2

√
(qH +R) · γw.

The proof makes use of the adaptive reprogramming technique of [Gri+21]. Specifically of
the following proposition which makes use of the games defined in Fig. 9:

Proposition 1 ([Gri+21], Proposition 2). Let X1, X2, X ′ and Y be some finite sets, and
let p be a distribution on X1×X ′. Let A be any distinguisher, issuing q many (quantum) queries
to RO and R many reprogramming instructions such that each instruction consists of a value x2,
together with the fixed distribution p. Then

|Pr[ReproA1 ⇒ 1]− Pr[ReproA0 ⇒ 1]| ≤ 3R

2

√
qpmax ,

where pmax := maxx1 p(x1).

However, we only need the case where x2 is the empty string.
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GAME Reprob

1 : RO0
$← Y X

2 : RO1 := RO0

3 : b′ ← AROb,Reprogram

4 : return b′

Reprogram(p)

1 : (x, x′)← p

2 : y
$← Y

3 : RO1 := ROx 7→y
1

4 : return (x, x′)

Fig. 9: Adaptive reprogramming games Reprob for bit b ∈ {0, 1}. The adversary gets quantum
access to ROb but only classical access to Reprogram

Proof. Our proof strategy is similar to that for the hypercube transform. We show how to
construct a simulator Sim−1 for the round-eliminated scheme IDS−1 using the simulator for IDS.
For this we make use of adaptive programming. To implement Sim−1, we run t ← Sim(pk) to
obtain a transcript. Then we simply program c1 := RO(w1) and output t.

We give a proof by reduction. Given adversary A against R− HVZK of IDS−1, we construct
reduction B against R − HVZK of IDS as follows. On input the public key pk, and access to
transcript oracle O, B runs AR(O)(pk), and outputs the result. The algorithm R, implements
the reprogramming mentioned above, i.e., given a transcript t = (w1, c1, . . .) it programs c1 :=
RO(w1) and outputs t. Let Trans(sk), and Trans−1(sk) refer to algorithms that execute IDS and
IDS−1, respectively, and output the resulting transcript. By definition, we have

AdvR−hvzkIDS (B) = |Pr[1← BSim(pk)(pk)]− Pr[1← BTrans(sk)(pk)]|,

where the probabilities are taken over the randomness involved in generating (sk, pk)
$← Keygen(),

as well as the coins of A, Sim, and Trans. Plugging in the definition of B, this becomes

AdvR−hvzkIDS (B) = |Pr[1← AR(Sim(pk))(pk)]− Pr[1← AR(Trans(sk))(pk)]|.

By construction, we have that R(Sim(pk)) = Sim−1(pk). It remains to show that R(Trans(sk)) ≈c

Trans−1(sk), i.e., the output distribution of TransF2H, given honest IDS transcripts, is indistin-
guishable from that of honest transcripts for IDS−1, then the above becomes AdvR−hvzkIDS−1

(A).
Towards this end, we will show that any adversary A that can distinguish R(Trans(sk))

from Trans−1(sk) can be used to distinguish the reprogramming games for the distribution
p = (Commit(sk, X), X) which is the joint distribution of all the inputs to the Commit function
except sk and the resulting first message.

For this, we use an algorithm Trans’ which produces transcripts by querying Reprogram(p)→
(w1, x

′), using the distribution p outlined above, to obtain w1 and the inputs x′ used to compute
it. Afterwards it continues as usual, i.e., it queries RO(w1) to obtain c1, and so on. We build a
reduction C that runs A with Trans’ as oracle and the random oracle it is provided with by Repro
as RO. The reduction C outputs whatever A outputs. Note that whenever C plays in Repro0 the
view of A is identical to that when interacting with Trans−1 and an independent RO. Whenever
C plays in Repro1, the view is identical to that when interacting with R ◦Trans and the RO that
R reprograms. The number of queries that Trans’ makes on top of those by A are exactly R, one
per transcript. Hence

|Pr[1← AR(Trans(sk))(pk)]− Pr[1← ATrans−1(sk)(pk)]|
= |Pr[ReproC1 ⇒ 1]− Pr[ReproC0 ⇒ 1]|

≤ 3R

2

√
(qH +R) · γw
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Putting everything together, and using the triangle inequality, we get

AdvhvzkIDS (B)+
3

2

√
(qH + 1) · γw

≥ |Pr[1← ASim−1(pk)(pk)]− Pr[1← ATrans−1(sk)(pk)]|
= AdvhvzkIDS−1

(A) .

The runtime of Sim−1 is essentially that of Sim, only adding the reprogramming.
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