
Nopenena Untraceable Payments:
Defeating Graph Analysis with Small Decoy Sets

Jayamine Alupotha

University of Bern

Mathieu Gestin

Inria - IRISA - CNRS - Université de Rennes

Christian Cachin

University of Bern

ABSTRACT
Decentralized payments have evolved from using pseudonymous

identifiers to much more elaborate mechanisms to ensure privacy.

They can shield the amounts in payments and achieve untraceabil-

ity, e.g., decoy-based untraceable payments use decoys to obfuscate

the actual asset sender or asset receiver. There are two types of

decoy-based payments: full decoy set payments that use all other
available users as decoys, e.g., Zerocoin, Zerocash, and ZCash, and

user-defined decoy set payments where the users select small decoy

sets from available users, e.g., Monero, Zether, and QuisQuis.

Existing decoy-based payments face at least two of the follow-

ing problems: (1) degrading untraceability due to the possibility of

payment-graph analysis in user-defined decoy payments, (2) trusted
setup, (3) availability issues due to expiring transactions in full de-

coy sets and epochs, and (4) an ever-growing set of unspent outputs
since transactions keep generating outputs without saying which

ones are spent. QuisQuis is the first one to solve all these problems;

however, QuisQuis requires large cryptographic proofs for validity.

We introduce Nopenena (means “cannot see”): account-based,

confidential, and user-defined decoy set payment protocol, that

has short proofs and also avoids these four issues. Additionally,

Nopenena can be integrated with zero-knowledge contracts like
Zether’s Σ−Bullets and Confidential Integer Processing (CIP) to

build decentralized applications. Nopenena payments are about

80% smaller than QuisQuis payments due to Nopenena’s novel

cryptographic protocol. Therefore, decentralized systems benefit

from Nopenena’s untraceability and efficiency.

1 INTRODUCTION
Decentralized direct payments like Bitcoin [44] or Ethereum [58]

use pseudonymous identifiers like public keys to state the owner-

ship. Still, they reveal potentially harmful information about users

due to the readable monetary values and traces to previous owners

[3, 20, 28, 43, 47, 53]. The simplest example is insider tracing, i.e.,
a user with known pseudonymous identifiers (possibly because

the user received assets from them) can trace these identifiers’

payments to see how assets were transferred. Therefore, many

decentralized payments are equipped with:

(1) untraceability - hiding or obfuscating asset senders’ and/or

asset receivers’ identifiers from blockchain validators,

(2) special sender anonymity - hiding or obfuscating senders’

identifiers from the receivers of the same payment, and

(3) confidentiality - hiding transferred amounts from validators.

Decoy-based Untraceable Payments A decoy of a payment is

an existing asset in the payment system, but its owner does not

actively participate in creating the payment. Decoy-based untrace-

able payments use decoys to obfuscate the real senders and real

receivers. Decoy-based payment systems can be categorized accord-

ing to their asset type: (1) unspent transaction outputs or (2) accounts.
Unspent output-based payments only reveal that 𝑛 out of 𝑁 (> 𝑛)
outputs actually sent their coins to a new unspent output(s) without

revealing which 𝑛 outputs, e.g., Monero [45, 46], Zerocoin [42], and

ZCash [29]. Account-based payments, like Zether [9] and QuisQuis

[19], are different from output-based payments since they reveal

that 𝑛 accounts out of 𝑁 accounts exchanged coins, without reveal-

ing which 𝑛 accounts. Fascinatingly, these payments’ cryptographic

protocols do not need (𝑁 − 𝑛) decoy accounts’ or decoy outputs’

owners to actively participate in creating the cryptographic proofs,

e.g., decoys’ secret keys are not required.

Advantages of Account-based Untraceable Payments For se-

curity, output-based payments must ensure (1) theft-resistance, i.e.,
actual sending outputs’ owners agreed to the payment, (2) bal-
ance proofs, i.e., the sending coin amount is equal to the receiving

coin amount, (3) non-negative coin amounts in outputs, and (4) no-
double spending, i.e., outputs were only spent once. An advantage of

account-based payments is that they only ensure theft-resistance,

balance proofs, and non-negative account balances since preventing

double-spending is not applicable for accounts.

Account-based untraceable payments moreover solve the ever-

growing output set problem in output-based payments. For example,

Monero’s and ZCash’s payments add unspent outputs to the ledger

but do not remove any outputs since they do not reveal which

outputs are actually spent. Hence, the output set keeps growing

monotonically with the number of transactions, and users and

validators must store this large output set to create and verify pay-

ments. However, users and validators of account-based payments

only need to store the most recent account state set to create and

verify payments, which does not grow linearly with transactions.

Another advantage of account-based payments is that they are

more compatible with smart contracts than output-based payments

due to the long-term ownership of accounts. For example, account-

based payments can be integrated with zero-knowledge contracts

that hide balances or other contract variables but prove that actual

sending and receiving accounts satisfy the contract conditions.

Due to these advantages, decentralized systems benefit from

account-based untraceable payments greatly, and it is important to

explore novel cryptographic protocols to improve their efficiency.

Types of Decoy-based Payments Decoy-based payments can

also be categorized according to how they select the decoys. Full
decoy set payments, like Zerocoin and ZCash, use all available out-

puts/accounts as decoys; thus, (𝑁−𝑛), i.e., decoys of a payment, is at

its maximum. User-defined decoy set payments allow users to select

a small set of (𝑁 − 𝑛) decoys from the available outputs/accounts.

While full decoy set payments benefit from themaximal untraceabil-

ity, they suffer from expiring transactions since adding transactions



Protocol Untraceable Confidential

Expiring

Probability

No Trusted

Setup

DoS Attack

Resistance

Graph Analysis

Resistance

Non-monotonic

Set of Assets

Contract

Support

Zerocoin [42] Maximal # High # #   #
ZCash [29] Maximal  High # #  # #
Lelantus [31] Maximal  High  #  # #

Mimblewimble [30] No  Zero  - -  #
Monero [46], [34, 60] Degrading  Zero   # # #
Ring CT v.2 [54] Degrading  Zero #  # # #
Zether [9, 15] Degrading (epoch)  High  # H#   
QuisQuis [19] Non-degrading  Low  #   #
PriDe CT [26] Degrading (epoch)  High  # H#   
PriFHEte [39] Maximal  High  #   #

Nopenena (this paper) Non-degrading  Low      
Table 1: A Comparison of Related Work. Here, expiring probability means the probability of a transaction expiring due to epochs or updated assets. We use

H# to denote DM-decomposition limited to epochs.

changes the asset set and expires the awaiting transactions, e.g.,

ZCash transactions expire only after 50 mins. Also, current full

decoy set payments either require ceremonial-type trusted setup

(ZCash) or large cryptographic proofs due to the large decoy set

(Zerocoin). On the other hand, user-defined decoy payments miti-

gate (Monero and Zether) or prevent (QuisQuis) tracing and achieve

higher availability, e.g., Monero and QuisQuis.

Degrading Untraceability Ring Confidential Transactions (Ring

CTs) like Monero [45, 54, 60] and Zether [9, 15] mitigate tracing

real senders and receivers but do not prevent tracing [13, 17]. The

reason is that these systems are vulnerable to graph analysis: the

Dulmage-Mendelsohn (DM) decomposition [16] may deanonymize

spent outputs or sending and receiving accounts by solvingmaximal

matching problems on the payment graph. Ring CTs are vulnerable

to DM decomposition since their unspent outputs can be only spent

once, i.e., no-double spending property (see [13, 17] for more details).

Zether is also vulnerable to DM decomposition since an account

can be only used once during an epoch (see Appendix F).

Ring CTs and Zether have degrading untraceability since this

probability of deanonymization increases per payment. [13, 17]

show that deanonymizing probability is negligible if the decoy set

is large enough; about 𝑁 = 128 unspent outputs would be required

for two spending outputs (𝑛 = 2). Thus, Monero’s 𝑁 being 16 [46]

is not sufficient to achieve untraceability in the payment graph.

QuisQuis[19] The first untraceable payment protocol to solve

degrading untraceability with user-defined decoys is QuisQuis, i.e.,

QuisQuis payments obtain non-degrading untraceability evenwhen

𝑁=16 and any 𝑛<𝑁 . However, QuisQuis does not support contracts.

Also, QuisQuis payments shuffle all accounts (uses a verifiable

shuffle algorithm), including decoys, so that updated account states

are unlinkable to their previous states. This shuffling creates a

searching problem for decoys and receivers since the only way

to find the recent account state is to try the secret key and the

balance for all possible accounts, which is not ideal for a payment

system. Nevertheless, this cryptographic shuffling is essential in

QuisQuis to obtain a proof system for non-negative balances with

untraceability.

Moreover, QuisQuis transactions are impractically large, i.e.,

24KB for 16 accounts, due to this verifiable shuffling and its update

proofs that prove the soundness of updated account states.

N
Tr

an
sa

ct
io

n 
S

iz
e 

 (K
B

)

2

4

6

8
10

20

4 8 16

Nopenena QuisQuis
Zether

Figure 1: Sizes of untraceable account-based payments for 𝑛 = 2.

Our research question is “can we build a more efficient account-

based payment system with non-degrading untraceability?”.

Our Contribution
We introduce Nopenena1, account-based confidential payments with
a novel cryptographic protocol. Nopenena provides the followings:

(1) Untraceability of senders/receivers with sender anonymity,

(2) Non-monotonic set of accounts,
(3) Nondegrading untraceability even with small decoy sets,

(4) No trusted setup, and
(5) High availability with DoS-resistance and no epochs.

Moreover, payments in Nopenena are smaller than Anonymous

Zether [15] and QuisQuis [19], e.g., Nopenena payments are ∼ 80%

smaller than QuisQuis’s, as shown in Figure 1.

Overview Nopenena payments work as follows. First, users reg-

ister their accounts in the ledger with a zero balance. Each ac-

count has a public key 𝑝𝑘 , a secret key 𝑘 and a confidential asset

𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘, 𝑟, 𝑣) that hides the coin balance 𝑣 with a blinding key 𝑟 .

These assets are verifiably rerandomizable, meaning that any-
one can update the asset’s blinding key into 𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘, 𝑟 + 𝑟 ′, 𝑣) with
some 𝑟 ′ and can create an update proof 𝜎 for the correctness of

the update without knowing (𝑘, 𝑟 ). The account’s balance is also
modifiable if 𝑘 is known, i.e., the asset can be rerandomized into

𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘, 𝑟 +𝑟 ′′, 𝑣 ±𝑣 ′) with some 𝑟 ′′ and create an update proof 𝜎 ′

if they know 𝑘 ; still, 𝑟 is not needed. This rerandomization provides:

1Nopenena means “cannot see” in a secret language.

2



(1) theft-resistance: Only owners who know account secret

keys can modify balances and create update proofs.

(2) indistinguishability: Given these accounts, updated assets,
and proofs: (𝑝𝑘0, 𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘0, 𝑟0, 𝑣0), 𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘0, 𝑟0+𝑟 ′, 𝑣0), 𝜎0)
and (𝑝𝑘1, 𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘1, 𝑟1, 𝑣1), 𝑎𝑠𝑠𝑒𝑡 (𝑝𝑘1, 𝑟1+𝑟 ′, 𝑣1±𝑣 ′), 𝜎 ′

1
), no

one can distinguish which account updated the balance if 𝑟 ′

is chosen at random.

To create a Nopenena payment, the sender selects 𝑁 accounts:

[𝑝𝑘𝑖 , 𝑎𝑠𝑠𝑒𝑡𝑖 ]𝑁𝑖=0
such that 𝑛 < 𝑁 accounts with indexes [ 𝑗𝑙 ]𝑛𝑙=0

are

the sending and receiving accounts. Here, each 𝑗𝑙 is in [0, 𝑁 ). First,
the sender chooses a random 𝑟 ′, rerandomizes decoy accounts with

𝑟 ′, and creates their update proofs. Then, the sender rerandomizes

the sending and receiving accounts with new balances using 𝑟 ′.
After that, the sender creates update proofs for sending accounts

since the sender knows their secret keys. However, the sender does

not know the secret keys of the receiving accounts to create update

proofs and cannot share 𝑟 ′ with the receivers since the receivers

can identify sending accounts from decoys using 𝑟 ′. Therefore, we
provide a multi-party update proof protocol where the sender and
receiver create an update proof for a receiving account. However,

the sender does not share 𝑟 ′, and the receiver does not share the se-
cret key. Still, these multi-party update proofs are indistinguishable

from normal update proofs to hide that they are from receiving

accounts. Finally, the sender has rerandomized all accounts, and

the receiver does not learn which accounts belong to the sender.

Let [𝑎𝑠𝑠𝑒𝑡 ′
𝑗
, 𝜎𝑖 ]𝑁𝑖=0

be the rerandomized assets and update proofs.

We provide a special balance proof protocol for:

(3) balance proof: A balance proof 𝜋𝑏𝑎𝑙𝑎𝑛𝑐𝑒 can be only cre-

ated if the total coins

∑𝑁
𝑖=0

𝑣𝑖 in [𝑎𝑠𝑠𝑒𝑡𝑖 ]𝑁𝑖=0
and

∑𝑁
𝑖=0

𝑣 ′
𝑖
in

[𝑎𝑠𝑠𝑒𝑡 ′
𝑖
]𝑁
𝑖=0

are

∑𝑁
𝑖=0

𝑣𝑖 + 𝑓 =
∑𝑁
𝑖=0

𝑣 ′
𝑖
+ 𝑓 ′ for a transaction

reward 𝑓 and transaction fee 𝑓 ′.
We still need one more property, i.e., non-negative account bal-

ances. Typically, we could use zero-knowledge range proofs [10]

to prove that hidden account balances are non-negative without

revealing the account balance. However, these range proofs need

the account’s secret key, and the sender cannot ask decoys to create

range proofs for decoy accounts. As a solution, we propose a novel

cryptographic primitive called anonymous forced openings.
The forced opening protocol works as follows. First, the sender

and receivers create Pedersen commitments [𝐶𝑙=𝑐𝑜𝑚𝑚𝑖𝑡 (𝛼𝑙 , 𝑣 ′𝑗𝑙 )]
𝑛
𝑙=0

with random blinding keys [𝛼𝑙 ]𝑛𝑙=0
to hide new account balances

[𝑣 ′
𝑗𝑙
]𝑛
𝑙=0

. Then, the sender and receivers run a multi-party forced

opening protocol and create a proof 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 to prove that [𝐶𝑙 ]𝑛𝑙=0

commit all updated account balances, i.e., all 𝑣 ′
𝑖
≠ 𝑣𝑖 for 𝑖 in [0, 𝑁 ).

The protocol is (1) “anonymous” since the proof does not reveal

which accounts have changed the balances, and (2) “forced open-

ings” since all accounts that modified the balance must include a

commitment in [𝐶𝑙 ]𝑛𝑙=0
. Then, the sender and receivers create range

proofs for these commitments [𝐶𝑙 ]𝑛𝑙=0
to prove that all updated bal-

ances are non-negative. Due to our anonymous forced opening

protocol, malicious provers cannot hide negative account balances,

and honest provers obtain untraceability without asking decoys to

create range proofs. Therefore, we obtain:

(4) non-negative account balances: Any new account bal-

ances after the rerandomization must be non-negative.

Due to the rerandomized accounts and anonymous forced open-

ings, our payments achieve the followings:

(5) untraceability: Payments do not reveal sending accounts

and receiving accounts to blockchain validators, and

(6) sender anonymity: Receivers do not learn which accounts

belong to the sender; hence, insider-tracing can be prevented.

We compare Nopenena and related work in Table 1. More details

of related work are given in Section 10.

2 MODEL
This section presents the model. First, it is assumed that a trusted

append-only, secure, and totally ordered ledger Λ exists, and it

maintains two lists: Accounts∈Λ and Withheld∈Λ for accounts

and contracts, respectively. The ledger supports two operations: (1)

Append for transactions and (2) Read to read the current ledger.

Also, Nopenena provides two functions: CreateTx and VerifyTx,
which are described in the rest of the paper. CreateTx(Λ, ·) : 𝑡𝑥 is a

multi-party protocol of a (coin-)sender and (coin-)receivers
2
that

creates a valid transaction 𝑡𝑥 for Λ such that VerifyTx(Λ, tx) = 1.

Here, the sender acts as the leader or the combiner of the protocol.

We assume that they can communicate and create transactions

or proofs together through a point-to-point, authenticated, and

tamper-resistant link. However, it is important to note that neither
the sender nor the receiver is assumed to be honest. Once a transaction
is created, the sender submits it to the ledger. We assume that the

ledger’s operations align with Nopenena’s functions as follows:

(1) Security: The ledger only appends valid transactions, and

Read operation only outputs a ledger of valid transactions.

(2) Liveness: Append operation always appends valid transac-

tions, and Read always outputs all appended transactions.

(3) Append-only: No transaction can be removed from the ledger.

(4) Total-order : Read operations are consistent, i.e., a reader

obtains a prefix of the ledger that all other readers also obtain.

The way transactions are appended and ordered in the ledger

depends on its implementation and is out of the scope of this paper.

3 PRELIMINARIES

Notation. We use “:=” and “=:” for assignments, e.g., 𝑎 =: 𝑏 means

that 𝑏 was assigned from 𝑎. 𝐴 \ 𝐵 is the set minus of 𝐴 by 𝐵. 𝜙 is an

empty set.⇔ indicates double implication. For a cyclic groupG, we
reserve (𝑔, ℎ, `) to denote Nothing-Up-My-Sleeve (NUMS) genera-

tors ofG (Definition 3.1). Z𝑞 = Z/𝑞Z is a ring of modular integers in

[0, 𝑞−1] for modulus 𝑞. We use 𝑎𝑖 to denote 𝑖th element of an array.

𝑠
$←𝒮 denotes that 𝑠 is drawn uniformly at random from a set 𝒮 . We

use _ for the security level and 𝒜 for a probabilistic polynomial-

time (p.p.t.) adversary of _. We use 𝒜(𝑠) to imply that 𝒜 is given 𝑠 .

Also, 𝜖 (_)=1/𝑜 (_𝑐 ) is a negligible function ∀𝑐 ∈ N. Sometimes, we

casually use “negligble” to denote 𝜖 (_). Hash:{0, 1}∗→Z𝑞 denotes a

collision-resistant hash function family. We use “non-interactive” to

mean that there are no interactions between the prover(s) and the

verifiers; however, they could be multi-party protocols of provers.

2
These coin senders and coin receivers should not be confused with message senders

or receivers in broadcasts since coin-receivers can also be message senders in payment

systems. We casually use “sender” and “receiver” to denote coin senders and coin

receivers, respectively.

3



Definition 3.1 (Nothing-Up-My-Sleeve (NUMS) Generators). A
NUMS generator is generator of G chosen uniformly at random.

Definition 3.2. [Discrete Logarithmic (DL) Problem] The advan-

tage Adv𝐷𝐿
G

of 𝒜 is 𝑃𝑟 [𝑌 ?

=𝑔𝑥 | 𝑌 $←−G, 𝑥 $←−𝒜(𝑔;𝑌 )] for any NUMS

generator 𝑔. The DL problem is (𝜏, 𝑒)-hard if𝒜(𝜏, 𝑒) runs it at most

𝜏 times and Adv𝐷𝐿
G,𝒜 ≤ 𝜖 (_).

Definition 3.3. [Decisional Diffie-Hellman (DDH) Problem] 𝒜’s

advantage Adv𝐷𝐷𝐻
G

is 𝑃𝑟 [𝑏 ?

=𝑏 ′ | (𝑥,𝑦, 𝑐) $←−Z𝑞, 𝑌0:=𝑔𝑐 , 𝑌1:=𝑔𝑥𝑦, 𝑏
$←−[0,

1], 𝑏 ′ $←−𝒜(𝑔;𝑔𝑥 , 𝑔𝑦, 𝑌𝑏 )] for any NUMS 𝑔. The DDH problem is

(𝜏, 𝑒)-hard if𝒜(𝜏, 𝑒) runs it at most 𝜏 times and Adv𝐷𝐷𝐻
G,𝒜 ≤1/2+𝜖 (_).

3.1 Pedersen Commitments
We use Commitℎ,` (𝛼, 𝑣) = ℎ𝛼 `𝑣 ∈ G to denote a Pedersen commit-

ment of blinding key 𝛼
$←Z𝑞 and value 𝑣 ∈ V ⊆ Z𝑞 .

Theorem 3.4. Pedersen commitments provide the followings:
• (Hiding) Upon receiving (𝑣0, 𝑣1) ∈ V from 𝒜, the challenger
shares 𝐶 = Commitℎ,` (𝛼

$←−Z𝑞, 𝑣𝑏 ) from a random choice of

𝑏
$←−[0, 1]. The probability of 𝒜 finding 𝑏 is ≤ 1/2 + 𝜖 (_).

• (Computational binding) The probability of𝒜 finding two dif-
ferent, (𝛼0, 𝑣0), (𝛼1, 𝑣1) ∈ (Z𝑞,V) such thatCommitℎ,` (𝛼0, 𝑣0)
= Commitℎ,` (𝛼1, 𝑣1) and (𝛼0, 𝑣0) ≠ (𝛼1, 𝑣1) is negligible.

3.2 Zero-Knowledge Argument (ZKA)
Let there be a polynomial time decidable relationℛ and three p.p.t.

entities; a Common Reference String (CRS) generator Set, a prover
𝒫 , and verifier 𝒱 . Here, 𝒫 wants to prove some relation ℛ of a

witness𝑤 for a statement𝑢 without revealing anything else about𝑤 .

We denote relationℛ for the generated CRS 𝑝𝑝 as (𝑝𝑝,𝑢,𝑤) ∈ ℛ.

We call all statements that have witness(s) for 𝑝𝑝 a CRS-dependent

language ℒ𝑝𝑝 = {𝑥 |∃𝑤 : (𝑝𝑝, 𝑥,𝑤) ∈ ℛ}. A proving algorithm

may take multiple interactions between 𝒫 and 𝒱 . We denote an

interaction’s transcript, 𝑡𝑟 ← ⟨𝒫 (𝑝𝑝,𝑢,𝑤),𝒱 (𝑝𝑝,𝑢)⟩. If 𝒱 accepts

𝑡𝑟 , 𝒱 (𝑡𝑟 ) = 1. We define ZKA similar to [10, 23, 38] except that we

define an adversary 𝒜 with some insider-knowledge Z such that

(𝑤 \ Z )≠𝜙 since some of our protocols are multi-party protocols of

senders and receivers, and 𝒜 may control all or some receivers.

Definition 3.5. (Zero-Knowledge Argument) (Set,𝒫,𝒱) is a ZKA
if they satisfy the following properties:

(Completeness) Let𝒜𝒢
be a p.p.t. adversary who generates the

witness𝑤 and statement 𝑢. (Set,𝒫,𝒱) is complete if:

𝑃𝑟

[
(𝑝𝑝,𝑢, 𝑤) ?

∉ℛ ∨ 𝒱 ( ⟨𝒫 (𝑝𝑝,𝑢, 𝑤),𝒱 (𝑝𝑝,𝑢) ⟩) ?

=1 | (𝑢, 𝑤)←𝒜𝒢 (𝑝𝑝)
]
=1

(Computational Witness-Extended Emulation (WEE)) Let
there be two p.p.t. adversaries: WEE adversary 𝒜 with insider-

knowledge Z and 𝒜𝒢
who generates the initial witness 𝑠 and state-

ment 𝑢. Also, 𝒫∗ is a deterministic p.p.t. prover, and ℰ𝒲
is a p.p.t.

emulator that generates an emulated transcript (𝑡𝑟,𝑤) ← ℰ𝒲 (𝑢)

with a witness𝑤 such that 𝒱 (𝑡𝑟 ) = 1. (Set,𝒫,𝒱) has WEE if:�������������

𝑃𝑟

[
𝒜(𝑡𝑟 ; Z ) ?

=1

��𝑝𝑝 :=Set(_), (𝑢, 𝑠)←𝐴𝒢 (𝑝𝑝)
𝑡𝑟←⟨𝒫∗ (𝑝𝑝,𝑢, 𝑠),𝒱 (𝑝𝑝,𝑢) ⟩

]
−

𝑃𝑟


𝒜(𝑡𝑟 ; Z ) ?

=1∧

(𝒱 (𝑡𝑟 ) ?⇒

(𝑝𝑝,𝑢, 𝑤) ∈ℛ)

���� 𝑝𝑝 :=Set(_), (𝑢, 𝑠)←𝐴𝒢 (𝑝𝑝)

(𝑡𝑟, 𝑤)←ℰ𝒲 (⟨𝒫∗ (𝑝𝑝,𝑢,𝑠 ),𝒱 (𝑝𝑝,𝑢)⟩) (𝑝𝑝,𝑢)



�������������
≤ 𝜖 (_)

If𝒜 cannot identify emulated transcripts over genuine transcripts,

i.e., 𝒜 accepts emulated transcripts 𝒜(𝑡𝑟 ; Z ) = 1 even with knowl-

edge Z , it implies that 𝒜 learns nothing about (𝑤 \ Z ), exceptℛ.

(Knowledge Soundness) Let 𝒫∗ be a rewindable prover and
𝒲 be a p.p.t. extractor which extracts witnesses by rewinding 𝒫∗
to a certain iteration of witness 𝑠 and resuming with fresh verifier

randomness, i.e.,𝑤 ←𝒲 (⟨𝒫∗ (𝑝𝑝,𝑢, 𝑠), 𝒱 (𝑝𝑝,𝑢)⟩). The previous
negligible function of WEE also provides knowledge soundness

if 𝒫∗ cannot generate valid transcripts that do not align with the

relation, i.e., (𝒱 (𝑡𝑟 ) ?

=1 ∧ (𝑝𝑝,𝑢,𝑤) ?

∉ℛ).

Definition 3.6 (Special Honest Verifier Zero-Knowledge Argument).
Let 𝒱 ’s challenges be chosen from a public coin randomness 𝜌

(created from tossing an unbiased public coin) which is independent

of provers’ messages. (Set,𝒫,𝒱) is a special honest verifier ZKA if

it is ZKA in Definition 3.5 for a special honest verifier 𝒱 (𝑝𝑝,𝑢; 𝜌).

Non-Interactive Zero-Knowledge Range ProofsA range proof

shows that the hidden value of a commitment is in some specific

range without revealing the value. In this paper, we are interested

in ranges like [0, 2𝐿) for 𝐿∈N since coin values should be non-

negative. Let (RangeProve,RangeVerify) be a range proof scheme

such that the RangeProve(𝐶, 𝑣, 𝛼, 𝐿) creates a range proof 𝜋 and

RangeVerify(𝐶, 𝜋, 𝐿) outputs 1 if 𝑣∈[0, 2𝐿), otherwise 0.

Definition 3.7. Range proofs are zero-knowledge if they are ZKA

for verifier 𝒱 (𝑝𝑝,𝑢)=RangeVerify(𝐶, 𝜋, 𝐿), Z=𝜙 , and a relation:

(𝑝𝑝,𝑢 = (𝐶, 𝜋), (𝛼, 𝑣)) ∈ ℛ𝑟𝑎𝑛𝑔𝑒 ⇔(
(ℎ, `, 𝐿) ?∈𝑝𝑝 ∧ 𝑣 ?∈[0, 2𝐿) ∧𝐶 ?

=Commitℎ,` (𝛼, 𝑣)

∧𝜋 ?

=RangeProve(𝐶, 𝑣, 𝛼, 𝐿)

)
One-of-Many Proofs for Zero-Value Commitments A zero-

value commitment is a commitment to value 0 ∈ Z𝑞 . Assume

that (ZeroComProve,ZeroComVerify) is a one-of-many proof pro-

tocol for zero-value commitments. It proves that the 𝑗th com-

mitment is a zero-value commitment without revealing 𝑗 . For-

mally, ZeroComProve( [𝐶]𝑁
𝑖=0
, 𝑗, 𝛼) creates a proof 𝜋 which will

result 1 from ZeroComVerify( [𝐶]𝑁
𝑖=0
, 𝜋) if 0 ≤ 𝑗 < 𝑁 and 𝐶 𝑗 =

Commitℎ,` (𝛼, 0). Otherwise, it outputs 0.

Definition 3.8. One-of-many proofs for zero-value commitments

provide zero-knowledge if they are ZKA for verifier 𝒱 (𝑝𝑝,𝑢) =
ZeroComVerify( [𝐶]𝑁

𝑖=0
, 𝜋), Z=𝜙 , and relationℛ𝑧𝑒𝑟𝑜 :

(𝑝𝑝,𝑢 = ( [𝐶𝑖 ]𝑁𝑖=0
, 𝜋, 𝑁 ), (𝛼, 𝑗)) ∈ ℛ𝑧𝑒𝑟𝑜 ⇔(

(ℎ, `) ?∈𝑝𝑝 ∧ 0

?

≤ 𝑗
?

<𝑁 ∧𝐶 𝑗 ?

=Commitℎ,` (𝛼, 0)

∧𝜋 ?

=ZeroComProve( [𝐶]𝑁𝑖=0
, 𝑗, 𝛼)

)

4



Zero-Knowledge Contracts of Pedersen Commitments We

define a generic zero-knowledge contract scheme that takes Peder-

sen commitments as variables. We define a contract protocol that

takes inputs from some set V as follows:

• Compile(ℱ) : (ℱ𝑧𝑘 ;𝑏𝑙𝑖𝑛𝑑𝑠)� compiles a functionℱ : V∗ →
1/0 into a zero-knowledge function ℱ𝑧𝑘 and outputs the se-

cret information 𝑏𝑙𝑖𝑛𝑑𝑠 required to prove its validity. This

ℱ𝑧𝑘 is basically a customized zero-knowledge verification

function for ℱ but hides ℱ ’s variables using 𝑏𝑙𝑖𝑛𝑑𝑠 .

• ContractProve(ℱ ,ℱ𝑧𝑘 , [𝐶𝑙 , 𝑣𝑙 , 𝛼𝑙 ]∗𝑙=0
, 𝑏𝑙𝑖𝑛𝑑𝑠) : 𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 �

Ifℱ ( [𝑣𝑙 ]∗𝑙=0
)=1, it generates a zero-knowledge proof 𝜋 when

[𝑣𝑙 ]∗𝑙=0
∈V∗ is committed in [𝐶𝑙 ]∗𝑙=0

. If ℱ ( [𝑣𝑙 ]∗𝑙=0
) = 0, re-

turns error ⊥. This proving could be a multi-party protocol.

• ℱ𝑧𝑘 ( [𝐶𝑙 ]∗𝑙=0
, 𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ) : 1/0 � verifies the contract.

Definition 3.9. A contract ℱ𝑧𝑘 provides zero-knowledge if it is

ZKA for 𝒱 (𝑝𝑝,𝑢) = ℱ𝑧𝑘 ( [𝐶𝑙 ]∗𝑙=0
, 𝜋), Z=𝜙 , and relation:(

𝑝𝑝,𝑢=(ℱ𝑧𝑘 , [𝐶𝑖 ]∗𝑖=0
, 𝜋), (ℱ , [𝑣𝑙 , 𝛼𝑙 ]∗𝑙=0

, 𝑏𝑙𝑖𝑛𝑑𝑠)) ∈ ℛ𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ⇔(
(ℎ, `) ?∈𝑝𝑝 ∧ ℱ ( [𝑣𝑙 ]∗𝑙=0

) ?

=1∧

Compile(ℱ) ?

=(ℱ𝑧𝑘 ;𝑏𝑙𝑖𝑛𝑑𝑠) ∧ [𝐶𝑙 ?

=Commitℎ,` (𝛼𝑙 , 𝑣𝑙 )]∗𝑙=0

)
4 NOPENENA OVERVIEW
In this section, we define Nopenena functions for a ledger Λ :

(Accounts, Withheld). We assume that the ledger Λ holds a set

of accounts Accounts ∈ Λ. Moreover, we assume that accounts

can release coins into a Pedersen commitment with an attached

zero-knowledge contract. If a transaction contains a valid proof for

the attached contract, the ledger allows to get these coins from the

commitment to the accounts. We use Withheld ∈ Λ to denote a set

of these contract-commitment pairs that have not released their

coins. This untraceable payment system provides the following

functionalities:

(1) 𝑆𝑒𝑡𝑢𝑝 (_) : 𝑝𝑝 ▶ creates public parameters. We assume that

𝑝𝑝 is public and consistent such that all users can access 𝑝𝑝 .

(2) CreateTx(Λ, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ,𝐶𝑙 ]

𝑛
𝑙=0
, [ℱ𝑧𝑘 ,𝐶, 𝜋𝑧𝑘 , 𝛼𝑐 , 𝑐],

[ℱ ′
𝑧𝑘
,𝐶 ′, 𝛼𝑐′, 𝑐 ′], 𝑓 , 𝑓 ′; [𝑘𝑙 ]𝑛𝑙=0

) :𝑡𝑥 :=( [𝑎𝑠𝑠𝑒𝑡 ′
𝑖
]𝑁
𝑖=0
, 𝜋)▶This pro-

tocol is conducted by senders and receivers to create a trans-

action. The transaction contains rerandomized assets [𝑎𝑠𝑠𝑒𝑡 ′
𝑖
]𝑁
𝑖=0

of accounts [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
when only𝑛 accounts in indexes [ 𝑗𝑙 ]𝑛𝑙=0

∈
[0, 𝑁 )𝑛 are the actual sending/receiving accounts. Other ac-

counts are decoys, and decoys do not participate in creating

the transaction. The current account balances are [𝑣𝑙 ]𝑛𝑙=0
,

and new balances are [𝑣 ′
𝑙
]𝑛
𝑙=0

in sending/receiving accounts.

Here, [𝐶𝑙 ]𝑛𝑙=0
are the Pedersen commitments of updated bal-

ances such that [𝐶𝑙 = Commitℎ,` (𝛼𝑙 , 𝑣 ′𝑙 )]
𝑛
𝑙=0

.

[ℱ𝑧𝑘 ,𝐶] ∈ Withheld is the contract-commitment pair that

will be proven and released by the transaction when 𝜋𝑧𝑘
is the contract proof such that ℱ𝑧𝑘 (𝐶 ∥𝐶 ′∥ [𝐶𝑙 ]∗𝑙=0

, 𝜋𝑧𝑘 ) = 1.

Also, 𝑐 is the coin value stored in 𝐶 , and 𝛼𝑐 is the blinding

key of 𝐶 . [ℱ ′
𝑧𝑘
,𝐶 ′] is the new pair that will be added to

Withheld when 𝐶 ′ is the commitment of (𝛼𝑐′, 𝑐 ′).
Also, the coin reward for the transaction is 𝑓 , and the trans-

action fee is 𝑓 ′, such that 𝑓 + 𝑐 +∑𝑛
𝑙=0

𝑣𝑙 = 𝑓
′ + 𝑐 ′ +∑𝑛

𝑙=0
𝑣 ′
𝑙
.

In this multi-party protocol, the participants, i.e., sender and

receivers, do not share their secret keys [𝑘𝑙 ]𝑛𝑙=0
with others.

(3) VerifyTx(Λ, 𝑡𝑥) :1/0 ▶ This function verifies the transaction.

(4) OpenAsset(𝑘, 𝑣, 𝑎𝑐𝑐) :1/0 ▶ verifies whether the secret key

and account balance are (𝑘, 𝑣) or not.
When the ledger appends 𝑡𝑥 , it removes current assets of [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0

from Accounts and adds [𝑎𝑠𝑠𝑒𝑡 ′
𝑖
]𝑁
𝑖=0

to Accounts. Also, the ledger
removes [ℱ𝑧𝑘 ,𝐶] from Withheld and adds [ℱ ′

𝑧𝑘
,𝐶 ′] to Withheld.

5 NOPENENA PAYMENTS’ BUILDING
BLOCKS

This section explains the novel protocols used in Nopenena: reran-

domizable accounts, anonymous forced openings, and balance-

proofs.

5.1 Rerandomizable Accounts
We define a rerandomizable account scheme below. Each account

of secret key 𝑘 , blinding key 𝑟 , and balance 𝑣 is:

𝑎𝑐𝑐 : (pk, asset) := (𝐾 = 𝑔𝑘 ,𝐺 = 𝑔𝑟 ,𝑉 = 𝑔𝑘𝑟 `𝑣) and has a fixed

pk = 𝐾 and an updatable asset = (𝐺,𝑉 ). When the account is

created the asset is empty. i.e., 𝐺 = 1G and 𝑉 = 1G.

1: CreateAccounts(𝑘): ⊲ create a new account of G3

2: return 𝑎𝑐𝑐=(pk:=(𝐾=𝑔𝑘 ), asset=(𝐺 :=1G,𝑉 :=1G))
Anyone can update an asset without the current blinding key.

1: UpdateAsset(𝑟 ′, 𝑜𝑝𝑡𝑖𝑜𝑛𝑎𝑙 = (𝑣, 𝑣 ′), 𝑎𝑐𝑐 = (𝐾,𝐺,𝑉 )):
2: If 𝑣 and 𝑣 ′ are not given:
3: return (𝐺 ′ = 𝐺𝑔𝑟 ′,𝑉 ′ = 𝑉𝐾𝑟 ′) ∈ G2

,

4: Otherwise, return (𝐺 ′ = 𝐺𝑔𝑟 ′,𝑉 ′ = 𝑉𝐾𝑟 ′`𝑣′−𝑣) ∈ G2

Anyone who knows 𝑘 can verify the account balance as follows.

1: OpenAsset(𝑘, 𝑣, (𝐺,𝑉 )): return `𝑣 ?

=𝑉 (𝐺−𝑘 )∈G
First, we explain how to convince a verifier 𝒱 that an asset reran-

domization was correctly performed if the balance was updated. In

addition to the secret key 𝑘 and 𝑟 ′, this function takes a challenge

message𝑊 and a random key ^ . However, note that update proofs

do not require the current blinding key.

1: UpdateValueProve(𝑟 ′, 𝑘, 𝑣, 𝑣 ′, 𝑎𝑐𝑐, asset′;^,𝑊 ):
2: (𝐾,𝐺,𝑉 ) := 𝑎𝑐𝑐 and (𝐺 ′,𝑉 ′) := asset′

3: 𝑇1 := 𝑔𝑡 , 𝑇2 := 𝐾𝑡 `𝜏 , and 𝑇3 := 𝐾𝜏𝑔^ ∈ G for (𝑡, 𝜏) $←− Z𝑞
4: 𝑇1,𝑇2,𝑇3 → 𝒱 ⊲ send to the verifier

5: 𝑥 ∈ Z𝑞 ← 𝒱 ⊲ receive from the verifier

6: ⊲ 𝑥 :=Hash(𝑊,𝑇1,𝑇2,𝑇3, 𝑎𝑐𝑐, asset
′) in non-interactive setup

7: 𝑠1 := 𝑡 + 𝑥 (𝑟 ′) ∈ Z𝑞 and 𝑠2 := 𝜏 + 𝑥 (𝑣 ′ − 𝑣) ∈ Z𝑞
8: 𝑠3:= − ^ + 𝑥 (𝑣 ′ − 𝑣)𝑘 ∈ Z𝑞 ⊲ needs the key 𝑘 if (𝑣 ′ − 𝑣)≠0

9: return 𝜎 := (𝑥, 𝑠1, 𝑠2, 𝑠3)
We do not want 𝑘 in UpdateValueProve when (𝑣 ′−𝑣)=0 since

𝑥 (𝑣 ′−𝑣)𝑘=0 in Step 8. Hence, we use the following for decoys:

UpdateProve(𝑟 ′, 𝑎𝑐𝑐, asset′;^,𝑤):
return UpdateValueProve(𝑟 ′,−, 0, 0, 𝑎𝑐𝑐, asset′;^,𝑤)
In payments, we want to update all accounts with the same 𝑟 ′,

chosen by the sender. Hence, the sender can update all sending ac-

counts and decoys accounts with 𝑟 ′ by himself or herself. However,

the sender cannot share 𝑟 ′ with the receivers to update the receiv-

ing accounts since the receivers can identify sending accounts from

5



decoys if 𝑟 ′ is known. Also, receivers cannot share the account

secret key with the sender. Hence, we turn UpdateValueProve
into a multi-party protocol where the sender does not reveal 𝑟 ′, and
the receiver does not reveal the secret key 𝑘 and ^, as follows:

1: UpdateValueMProve(𝑟 ′, 𝑘, 𝑣, 𝑣 ′, 𝑎𝑐𝑐, asset′;^,𝑊 ):
2: (𝐾,𝐺,𝑉 ) := 𝑎𝑐𝑐 and (𝐺 ′,𝑉 ′) := asset′

3: The sender computes: 𝑡
$←−Z𝑞 , 𝑇1:=𝑔𝑡 , and 𝑇 :=𝐾𝑡 ∈ G

4: The receiver gets 𝑇 from the sender and computes:

5: 𝜏
$←−Z𝑞 , 𝑇2 := 𝑇 `𝜏 , and 𝑇3 := 𝐾𝜏𝑔^ ∈ G

6: (𝑇1,𝑇2,𝑇3) → 𝒱 and 𝑥
$←−𝒱

7: ⊲ Non-interactive: 𝑥 :=Hash(𝑊,𝑇1,𝑇2,𝑇3, 𝑎𝑐𝑐, asset
′)∈Z𝑞

8: The sender computes: 𝑠1 := 𝑡 + 𝑥 (𝑟 ′) ∈ Z𝑞
9: The owner computes and shares (𝑠2, 𝑠3) with the sender:

10: 𝑠2 := 𝜏 + 𝑥 (𝑣 ′ − 𝑣) and 𝑠3 := −^ + 𝑥 (𝑣 ′ − 𝑣)𝑘 ∈ Z𝑞
11: The sender combines: return 𝜎 := (𝑥, 𝑠1, 𝑠2, 𝑠3) ∈ Z4

𝑞

We define the verification function for any update proof below:

1: VerifyUpdate(𝑎𝑐𝑐, asset′, 𝜎 = (𝑥, 𝑠1, 𝑠2, 𝑠3);𝑊 ): ⊲ 𝒱 has

𝑇1,𝑇2,𝑇3 in the interactive version

2: (𝐾,𝐺,𝑉 ) := 𝑎𝑐𝑐 and (𝐺 ′,𝑉 ′) := asset′

3: return𝑇1=𝑔
𝑠1 ((𝐺 ′)−1𝐺)𝑥∧𝑇2=𝐾

𝑠1`𝑠2 ((𝑉 ′)−1𝑉 )𝑥∧𝑇3 = 𝐾𝑠2𝑔−𝑠3

In the non-interactive setup, the verification function recomputes

(𝑇1,𝑇2,𝑇3) from the given𝑥 and checks if𝑥 is equal to Hash(𝑊,𝑇1,𝑇2,

𝑇3, 𝑎𝑐𝑐, asset
′). Therefore, the non-interactive proof only contains

four elements of Z𝑞 , and we do not share (𝑇1,𝑇2,𝑇3) with verifiers.

Security Definitions. Rerandomizable accounts provide ZKA, in-

sider ZKA, and strong theft-resistance as defined below.

Definition 5.1 (ZKA of Rerandomized Accounts). Rerandomized

accounts are zero-knowledge if they are ZKA for the verifier𝒱 (𝑝𝑝,𝑢)
=UpdateVerify(𝑎𝑐𝑐, 𝑎𝑠𝑠𝑒𝑡 ′, 𝜎 ;𝑊 ), Z=𝜙 , and relation:(

𝑝𝑝,𝑢 =

(
𝑊,𝑎𝑐𝑐=(𝐾,𝐺,𝑉 ),
𝑎𝑠𝑠𝑒𝑡 ′=(𝐺 ′,𝑉 ′), 𝜎

)
,
(
𝑟 ′, 𝑘, 𝑣, 𝑣 ′, ^

))
∈ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 ⇔

©«

(𝑔, `) ?∈𝑝𝑝 ∧ 𝐾 ?

=𝑔𝑘 ∧OpenAsset(𝑘, 𝑣, (𝐺,𝑉 )) ?

=1∧

𝑎𝑠𝑠𝑒𝑡 ′ ?

=UpdateAsset(𝑟 ′, 𝑣, 𝑣 ′, 𝑎𝑐𝑐) ∧ OpenAsset(𝑘, 𝑣 ′, 𝑎𝑠𝑠𝑒𝑡 ′) ?

=1∧

©«
(
(𝑣 ′ ?

≠𝑣) ∧ (𝜎 ?

=UpdateValueProve(𝑟 ′, 𝑘, 𝑣, 𝑣 ′, 𝑎𝑠𝑠𝑒𝑡 ′;^,𝑊 )∨

𝜎
?

=UpdateValueMProve(𝑟 ′, 𝑘, 𝑣, 𝑣 ′, 𝑎𝑠𝑠𝑒𝑡 ′;^,𝑊 ))

)
∨

(
(𝑣 ′ ?

=𝑣) ∧ 𝜎 ?

=UpdateUpdate(𝑟 ′, 𝑎𝑠𝑠𝑒𝑡 ′;^,𝑊 )
)
ª®®®®¬

ª®®®®®®®®®®¬
This relation ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 implies that given accounts and their

update proofs, no one learns anything else about (𝑟 ′, 𝑘, 𝑣, 𝑣 ′, ^).
We also want to obtain zero-knowledge for multiple account

updates with the same 𝑟 ′ when the accounts belong to the sender,

receivers, and decoys. In this case, the adversary may controls all

or some of the receivers, and can see the transcripts between the

sender and these receivers, not only the transcripts between the

sender and the verifiers. Therefore, we define insider ZKA for the

following relation ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 against an adversary who controls

𝑅𝒜 receiving accounts in indexes 𝐽𝒜=[ 𝑗𝜌 ]𝑅𝒜
𝜌=0
⊂ [ 𝑗𝑙 ]𝑛𝑙=0

.

Definition 5.2 (Insider ZKA of Rerandomized Accounts). Reran-
domized accounts are insider zero-knowledge if they provide zero-

knowledge argument for 0≤𝑅𝒜<𝑛 < 𝑁 ,

verifier: 𝒱 (𝑝𝑝,𝑢)= ∧𝑁𝑖=0
UpdateVerify(𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ;𝑊 ),

insider knowledge: Z = (𝐽𝒜=[ 𝑗𝜌 ]𝑅𝒜
𝜌=0

, [𝑘 𝑗𝜌 , 𝑣 𝑗𝜌 , 𝑣 ′𝑗𝜌 , ^ 𝑗𝜌 ]
𝑅𝒜
𝜌=0
),

and

(
𝑝𝑝,𝑢=

(
[𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 ,

𝜎𝑖 ]𝑁𝑖=0
,𝑊

)
,𝑤=

(
𝑟 ′, [ 𝑗𝑙 ]𝑛𝑙=0

[𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0

))
∈ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠

𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 ⇔
∧𝑁
𝑖=0

(
(𝑝𝑝, 𝐿),

(
𝑊,𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡

′
𝑖 , 𝜎𝑖

)
,
(
𝑟 ′, 𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖

) )
?∈ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠∧∧𝑅𝒜

𝜌=0
𝜎 𝑗𝜌

?

=UpdateValueMProve(𝑟 ′,𝑘 𝑗𝜌 , 𝑣 𝑗𝜌 , 𝑣 ′𝑗𝜌 ,𝑎𝑠𝑠𝑒𝑡
′
𝑗𝜌

;̂ 𝑗𝜌 ,𝑊 )


It is important to note thatℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠

𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 is equivalent toℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠

of 𝑁 accounts when 𝑅𝒜 = 0, i.e., the adversary does not control any

insiders and only sees the transcripts of the sender and verifiers.

ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 implies that the adversary who controls all or a set

of the receivers does not learn anything about the other witnesses,

i.e., (𝑤 \ Z ) = (𝑟 ′, [ 𝑗𝑙 ]𝑁𝑙=0
\ 𝐽𝒜, [𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]

𝑁
𝑖=0,𝑖∉𝐽𝒜

) even if all ac-

counts are updated from the same 𝑟 ′, and the adversary knows

insider knowledge Z . Hence, indistinguishability is included in

ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 such that given an account with a new balance and an-

other account without a balance update, the adversary cannot iden-

tify which account has updated the balance.Moreover,ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 in-

fers accounts’ sender-anonymity, i.e., the receivers cannot iden-
tify the sending accounts’ indexes even if the same 𝑟 ′ is used for

all account updates. We state indistinguishability in Definition B.1

and sender-anonymity in Definition B.2 (Appendix B) for the read-

ers interested in singular definitions even if they are implied in

ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

Rerandomized accounts are theft-resistant if an account balance

can be only modified during the rerandomization if and only if the

prover knows the account secret key 𝑘 . However, we need these

accounts to provide strong theft-resistance, i.e., the theft-resistance
property must hold even if the adversary has access to the previous

update proofs. This strong theft-resistance property is necessary

because an adversary can see correct proofs of previous transactions

by observing the ledger.

Definition 5.3 (Theft-Resistance of Rerandomized Accounts). Let
there be an account 𝑎𝑐𝑐 = (pk, a0:=assetpk (𝑣0, 𝑟0)) of key 𝑘 and

an oracle𝒪𝑘,𝑎𝑐𝑐,Q (𝑟𝑖 , 𝑣𝑖−1, 𝑣𝑖 ) that outputs 𝑖th updated asset a𝑖 and
its update proof 𝜎𝑖 as defined below.

𝒪𝑘,𝑎𝑐𝑐,Q (𝑟, 𝑑,𝑊 ) :

𝑖 := |Q| and 𝑣𝑖 = 𝑣𝑖−1 + 𝑑 when (𝑖 − 1, 𝑣𝑖−1, a𝑖−1) ∈ Q
a𝑖 :=UpdateAsset(𝑟, 𝑘, 𝑣𝑖−1, 𝑣𝑖 , pk, a𝑖−1) and ^

$←−Z𝑞
if 𝑑≠0 : 𝜎𝑖 :=UpdateValueProve(𝑟, 𝑘, 𝑣𝑖−1, 𝑣𝑖 , pk, a𝑖−1, a𝑖 ;^,𝑊 )
else: 𝜎𝑖 :=UpdateProve(𝑟, pk, a𝑖−1, a𝑖 ;^

$←−Z𝑞,𝑊 )
Q := Q ∪ (𝑖, 𝑣𝑖 , a𝑖 ) and return (a𝑖 , 𝜎𝑖 )

The oracle saves all of its outputs in Q. We say that the accounts

are strong theft resistance if the following probability is negligible.

𝑃𝑟

[
(𝑖 ′, 𝑣 ′, a′)∉Q ∧OpenAsset(𝑘, 𝑣 ′, a′)∧

UpdateVerify(pk, a𝑖′−1, a
′, 𝜎) ∧ 𝑣𝑖′−1≠𝑣

′

���𝒜𝒪 ( ·) (𝑣0, 𝑝𝑘, a0)
→

(
𝑖 ′, 𝑣 ′, a′, 𝜎

) ]

6



Theorem 5.4. Rerandomized accounts provide ZKA, insider ZKA,
and strong theft resistance if the DL and DDH problems are hard, and
Pedersen commitments are hiding and binding.

Proof: We prove that Theorem 5.4 is true from Lemma C.1-C.4.

5.2 Anonymous Forced Openings
As we explained before, when an account is updated, the fact that

the coin balance was modified or not is hidden. However, we must

also verify that all updated accounts have non-negative balances.

Therefore, we introduce a novel primitive called anonymous forced

opening protocol, which forces to anonymously create commit-

ments of all sending and receiving accounts’ new account balances.

Our protocol works as follows. First, the participants create𝑊

including commitments of all new balances and other metadata

according to ForcedOutCreate. Then, they use𝑊 as the challenge

message in account updates (see UpdateValueProve). After that,
they anonymously prove that they have opened all updated values’

commitment by creating 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ← ForcedOutProve. Later, veri-
fiers check 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 by running the verification ForcedOutVerify.

First, we explain ForcedOutCreate, which creates the commit-

ments [𝐶𝑙 ]𝑛𝑙=0
of new balances of [𝑣 ′

𝑙
]𝑛
𝑙=0

. Here, [ 𝑗𝑙 ]𝑛𝑙=0
are the sorted

indexes of sending and receiving accounts in ascending order.

1: ForcedOutCreate( [asset′
𝑖
=(𝐺 ′

𝑖
,𝑉 ′
𝑖
)]𝑁
𝑖=0
, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ,𝐶𝑙 ]

𝑛
𝑙=0
)

2: if 𝑣𝑙 ∉ [0, 2𝐿) or 𝑣 ′𝑙 ∉ [0, 2
𝐿): return ⊥

3: Each real participant 𝑙 ∈ [0, 𝑛) with 𝑘𝑙 of asset′𝑗𝑙 creates:
4: (𝑎𝑙 , 𝑎′𝑙 , 𝑏𝑙 )

$←−Z𝑞 � Here, 𝐶𝑙 := Commitℎ,` (𝛼𝑙 , 𝑣 ′𝑙 ) for key 𝛼𝑙
5: 𝐴𝑙 := 𝐶

𝑎𝑙
𝑙
∈ G, 𝐴′

𝑙
:= ℎ𝑎

′
𝑙 ∈ G, 𝐵𝑙 := (𝐺 ′

𝑗𝑙
)𝑏𝑙 ∈ G

6: ⊲ shares (𝐴𝑙 , 𝐴′𝑙 , 𝐵𝑙 ) with the sender

7: ⊲ The sender shares 𝐴′ :=
∏𝑛
𝑙=0

𝐴′
𝑙
∈ G with others

8: ( [𝐺 ′
𝑖
,𝑉 ′
𝑖
)]𝑁
𝑖=0
,𝐶𝑙 , 𝐴𝑙 , 𝐴

′, 𝐵𝑙 )) → 𝒱 and 𝑦𝑎,𝑙
$←−𝒱

9: ⊲ Non-interactive: 𝑦𝑎,𝑙 :=Hash( [𝐺 ′𝑖 ,𝑉
′
𝑖
)]𝑁
𝑖=0
,𝐶𝑙 , 𝐴𝑙 , 𝐴

′, 𝐵𝑙 )
10: When 𝑘𝑙 is the secret key of asset′

𝑗𝑙
’s account:

11: 𝑓𝑙 := 𝑘𝑙 (𝑣 ′𝑙 − 𝑣𝑙 ) − 𝑦𝑎,𝑙𝑎𝑙 ∈ Z𝑞
12: 𝑓𝑙 → 𝒱
13: 𝑦𝑏,𝑙

$←−𝒱 ⊲ Non-interactive: 𝑦𝑏,𝑙 := Hash(𝑦𝑎,𝑙 , 𝑓𝑙 ) ∈ Z𝑞
14: 𝑧𝑙 := 𝑘2

𝑙
(𝑣 ′
𝑙
− 𝑣𝑙 ) − 𝑦𝑏,𝑙𝑏𝑙 ∈ Z𝑞

15: 𝐷 𝑗𝑙 := (𝑉 ′
𝑗𝑙
)^ 𝑗𝑙 for ^ 𝑗𝑙

$←−Z𝑞 ⊲ keeps ^ 𝑗𝑙 a secret
16: The sender computes for 𝑖 ∈ [0, 𝑁 ), 𝑖 ∉ [ 𝑗𝑙 ]𝑛𝑙=0

:

17: 𝐷𝑖 := (𝑉 ′
𝑖
)^𝑖 for ^𝑖

$←−Z𝑞
18: The sender aggregates: 𝐷 :=

∏𝑁
𝑖=0

𝐷𝑖 ∈ G
19: return𝑊 := ( [𝐶𝑙 , 𝜋𝑙 , 𝐴𝑙 , 𝐵𝑙 , 𝑓𝑙 , 𝑧𝑙 ]𝑛𝑙=0

, 𝐷,𝐴′); 𝑠𝑒𝑐𝑟𝑒𝑡𝑠 : [^𝑖 ]𝑁𝑖=0

Once all accounts have been updated with𝑊 and [^𝑖 ]𝑁𝑖=0
, the

participants prove that all updated balances are committed in com-

mitments. Here, [𝜎𝑖 ]𝑁𝑖=0
are the set of the update proofs of accounts.

1: ForcedOutProve( [(𝐺 ′
𝑖
,𝑉 ′
𝑖
), 𝜎𝑖 ]𝑁𝑖=0

, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ]
𝑛
𝑙=0
,𝑊 ):

2: ( [𝐶𝑙 , 𝜋𝑙 , 𝐴𝑙 , 𝐴′𝑙 , 𝐵𝑙 , 𝑓𝑙 , 𝑧𝑙 ]
𝑛
𝑙=0
, 𝐷) :=𝑊 ⊲ Challenge message

3: [(𝑥𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 , 𝑠3,𝑖 ) := 𝜎𝑖 ]𝑁𝑖=0
⊲ Update proofs

4: sender: 𝑉 := 𝐷
∏𝑁
𝑖=0
(𝑉 ′
𝑖
)𝑠3,𝑖 ⊲ 𝑉 =

∏𝑛
𝑙=0
(𝑉 ′
𝑗𝑙
)𝑥 𝑗𝑙 𝑘𝑙 (𝑣

′
𝑙
−𝑣𝑙 )

5: ( [𝑠3,𝑖 , 𝑥𝑖 ]𝑁𝑖=0
,𝑉 ) → 𝒱

6: 𝑦
$←− 𝒱 ⊲ Non-interactive:𝑦 := Hash(𝑊, [𝑠3,𝑖 , 𝑥𝑖 ]𝑁𝑖=0

,𝑉 )
7: �̄� := 𝑉 (𝐴′)𝑦 ∈ G

8: [𝐶𝑙 := 𝐵
𝑦𝑏,𝑙
𝑙

𝐶
𝑓𝑙
𝑙
𝐴
𝑦𝑎,𝑙
𝑙
]𝑛
𝑙=0
∈ G𝑛

9: Each participant 𝑗𝑙 computes: b𝑙 := 𝛼𝑙𝑥 𝑗𝑙𝑘𝑙 (𝑣 ′𝑙 − 𝑣𝑙 ) + 𝑦𝑎
′
𝑙
and

shares b𝑙 with the sender.

10: The sender creates ascending-order𝑀 index sets of all 𝑛 combi-

nations of 𝑁 when𝑀= 𝑁 !

(𝑛)!(𝑁−𝑛)! . Let [[𝑖𝑚,𝑙 ]
𝑛
𝑙=0
]𝑀
𝑚=0

be these

𝑀 combinations, and combination 𝑗 be the sending/receiving

accounts’ index set such that [𝑖 𝑗,𝑙 ]𝑛𝑙=0
= [ 𝑗𝑙 ]𝑛𝑙=0

.

11: for𝑚∈[0, 𝑀) : 𝐻𝑚 :=�̄�
∏𝑛
𝑙=0

(
(𝐺 ′
𝑖𝑚,𝑙
)𝑧𝑙𝐶𝑙

)−𝑥𝑖𝑚,𝑙 ∈G
12: ⊲ 𝐻 𝑗=`

0ℎ−
∑𝑛
𝑙=0
b𝑙
for combination 𝑗 of senders/receivers’

13: The sender computes the proof when 𝑗 is the group index

14: return 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 := ZeroComProve( [𝐻𝑚]𝑀𝑚=0
, 𝑗, b :=

∑𝑛
𝑙=0

b𝑙 )
The verification function checks if all new balances were opened

in commitments as follows.

1: ForcedOutVerify( [asset′
𝑖
=(𝐺 ′

𝑖
,𝑉 ′
𝑖
), 𝜎𝑖 ]𝑁𝑖=0

,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ):
2: ( [𝐶𝑙 , 𝜋𝑙 , 𝐴𝑙 , 𝐴′𝑙 , 𝐵𝑙 , 𝑓𝑙 , 𝑧𝑙 ]

𝑛
𝑙=0
, 𝐷) :=𝑊 ⊲ Challenge message

3: [(𝑥𝑖 , 𝑠1,𝑖 , 𝑠2,𝑖 , 𝑠3,𝑖 ) := 𝜎𝑖 ]𝑁𝑖=0
⊲ Update proofs

4: ⊲ Non-interactive: For 𝑙 ∈ [0, 𝑛): 𝑦𝑎,𝑙 := Hash( [𝐺 ′
𝑖
,𝑉 ′
𝑖
)]𝑁
𝑖=0
,

5: ⊲ 𝐶𝑙 , 𝐴𝑙 , 𝐴
′, 𝐵𝑙 ), 𝑦𝑏,𝑙 := Hash(𝑦𝑎,𝑙 , 𝑓𝑙 )

6: 𝑉 := 𝐷
∏𝑁
𝑖=0
(𝑉 ′
𝑖
)𝑠3,𝑖

7: ⊲ Non-interactive version: 𝑦 := Hash(𝑊, [𝑠3,𝑖 , 𝑥𝑖 ]𝑁𝑖=0
,𝑉 )

8: �̄� := 𝑉 (𝐴′)𝑦 ∈ G
9: [𝐶𝑙 := 𝐵

𝑦𝑏,𝑙
𝑙

𝐶
𝑓𝑙
𝑙
𝐴
𝑦𝑎,𝑙
𝑙
]𝑛
𝑙=0
∈ G𝑛

10: Let [[𝑖𝑚,𝑙 ]𝑛𝑙=0
]𝑀
𝑚=0

be all 𝑛 combinations of 𝑁 indexes.

11: for𝑚 ∈ [0, 𝑀) : 𝐻𝑚 := �̄�
∏𝑛
𝑙=0

(
(𝐺 ′
𝑖𝑚,𝑙
)𝑧𝑙𝐶𝑙

)−𝑥𝑖𝑚,𝑙 ∈ G
12: return ZeroComVerify( [𝐻𝑚]𝑀𝑚=0

, 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 )

Security Definitions. We define ZKA of anonymous forced open-

ings for relation ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 when the adversary controls 𝑅𝒜 ≥ 0

number of receiving accounts in indexes 𝐽𝒜 = [ 𝑗𝜌 ]𝑅𝒜
𝜌=0

as follows.

Definition 5.5 (Secure Anonymous Forced Openings). Anonymous

Forced Openings are zero-knowledge if they provide ZKA for

verifier: 𝒱 (𝑝𝑝,𝑢) = ForcedOutVerify( [asset′𝑖 , 𝜎𝑖 ]
𝑁
𝑖=0
,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ),

insider knowledge: Z = (𝐽𝒜=[ 𝑗𝜌 ]𝑅𝒜
𝜌=0

, [𝑘 𝑗𝜌 , 𝑣 𝑗𝜌 , 𝑣 ′𝑗𝜌 , ^ 𝑗𝜌 ]
𝑅𝒜
𝜌=0

,

[𝑣 ′′
𝑙
, 𝛼𝑙 ]𝑛𝑙=0, 𝑗𝑙 ∈𝐽𝒜 ) and the relationℛ𝑓 𝑜𝑟𝑐𝑒𝑑 :

©«𝑝𝑝,𝑢=
(
[𝑎𝑐𝑐𝑖 , asset′𝑖 , 𝜎𝑖 ]𝑁𝑖=0

𝑊,𝜋𝑓 𝑜𝑟𝑐𝑒𝑑

)
, 𝑤=

©«
𝑗, 𝑟 ′, b, [ 𝑗𝑙 ]𝑛𝑙=0

[𝑘𝑖 , 𝑣𝑖 , 𝑣′𝑖 , ^𝑖 ]𝑁𝑖=0

[𝑣′′
𝑙
, 𝛼𝑙 ]𝑛𝑙=0

ª®®®¬
ª®®®¬ ∈ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 ⇔

©«

(𝑔,ℎ, `) ?∈𝑝𝑝 ∧ [ 𝑗𝑙 ]𝑛𝑙=0

?∈ [0, 𝑁 )𝑛 ∧ 𝑗 ?∈ [0, 𝑀)∧( ∧𝑛
𝑙=0

𝑣′′
𝑙

?

=𝑣′
𝑗𝑙
∧∧𝑁

𝑖=0,𝑖∉[ 𝑗𝑙 ]𝑛𝑙=0

𝑣𝑖
?

=𝑣′
𝑖

)
∧ [𝐶𝑙 = Commitℎ,` (𝛼𝑙 , 𝑣′′𝑙 ) ]

𝑛
𝑙=0

?∈𝑊

∧
(
𝑊 ; [^𝑖 ]𝑁𝑖=0

)
?

=ForcedOutCreate

(
[𝑎𝑐𝑐𝑖 , asset′𝑖 ]𝑁𝑖=0

,

[ 𝑗𝑙 , 𝑣𝑗𝑙 , 𝑣
′
𝑗𝑙
, 𝛼𝑙 ,𝐶𝑙 ]𝑛𝑙=0

]

)
∧(

𝑝𝑝,

(
[𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]𝑁𝑖=0

𝑊

)
,

(
𝑟 ′, [ 𝑗𝑙 ]𝑛𝑙=0

[𝑘𝑖 , 𝑣𝑖 , 𝑣′𝑖 , ^𝑖 ]𝑁𝑖=0

))
?∈ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠

𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠∧

𝜋𝑓 𝑜𝑟𝑐𝑒𝑑
?

=ForcedOutProve

(
[asset′𝑖 , 𝜎𝑖 ]𝑁𝑖=0

, [ 𝑗𝑙 , 𝑣𝑗𝑙 , 𝑣
′
𝑗𝑙
, 𝛼𝑙 ]𝑛𝑙=0

,

𝑊 ; [^𝑖 ]𝑁𝑖=0
, [𝑘 𝑗𝑙 ]

𝑛
𝑙=0
]

)
∧

𝑀
?

=
𝑁 !

(𝑛)!(𝑁−𝑛)! ∧ (𝑝𝑝, ( [𝐻𝑚 ]
𝑀
𝑚=0

, 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 , 𝑁 ), (b, 𝑗))
?∈ℛ𝑧𝑒𝑟𝑜

ª®®®®®®®®®®®®®®®®®®®®®®®¬
7



when 0≤𝑅𝒜<𝑛 < 𝑁 and [𝐻𝑚]𝑀𝑚=0
is created according to Step 11

of ForcedOutCreate and Step 11 of ForcedOutVerify such that[
𝐻𝑚 = 𝐷

𝑁∏
𝑖=0

(𝑉 ′𝑖 )
𝑠3,𝑖 (𝐴′)𝑦𝑎′

𝑛∏
𝑙=0

(
(𝐺 ′𝑗𝑙 )

𝑧𝑙𝐵
𝑦𝑏,𝑙
𝑙

𝐶
𝑓𝑙
𝑙
𝐴
𝑦𝑎,𝑙
𝑙

)−𝑥 𝑗𝑙 ]𝑀
𝑚=0

.

Here, ZKA implies that the adversary learns nothing about (𝑤 \
Z ) = ( 𝑗, 𝑟 ′, [ 𝑗𝑙 ]𝑁𝑙=0

\ 𝐽𝒜, [𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0,𝑖∉𝐽𝒜

, [𝑣 ′′
𝑙
, 𝛼𝑙 ]𝑛𝑙=0, 𝑗𝑙∉𝐽𝒜

) ex-
ceptℛ𝑓 𝑜𝑟𝑐𝑒𝑑 even with insider knowledge Z .

Theorem 5.6. The anonymous forced opening protocol is ZKA
for relation ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 under the assumptions that Pedersen commit-
ments are hiding and binding, rerandomized accounts provide ZKA
forℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠

𝑎𝑐𝑐𝑜𝑢𝑛𝑡 , and one-of-many proofs are ZKA forℛ𝑧𝑒𝑟𝑜 .

Proof: We claim the validity of Theorem 5.6 from Lemma D.1 and

Lemma D.2 (see Appendix D).

5.3 Balance Proofs
A decentralized transaction may contain rewards and transaction

fee as an incentive to add the transaction to a block. To prevent

illegal coin generation, we ensure that the total input balance, re-

leasing withheld coins, and rewards are equal to the total output

balance, new withheld coins, and transaction fee. We propose the

following balance proof protocol for rerandomizable accounts. The

sender who updated accounts by some 𝑟 ′ creates proofs as follows.

1: BalanceProve(𝑓 , 𝑓 ′,𝐶, 𝑐, 𝛼𝑐 ,𝐶 ′, 𝑐 ′, 𝛼𝑐′, [𝑎𝑐𝑐𝑖 , asset′𝑖 ]
𝑁
𝑖=0

; 𝑟 ′):
2: if 𝑓 ∉[0, 2𝐿) ∨ 𝑓 ′∉[0, 2𝐿): return ⊥
3: (𝑅𝑖 , 𝐾𝑖 ,𝐺𝑖 ,𝑉𝑖 ) := 𝑎𝑐𝑐𝑖 and (𝐺 ′𝑖 ,𝑉

′
𝑖
) := asset′

𝑖

4: 𝐸 := 𝐶 ′𝐶−1
∏𝑁
𝑖=0

𝑉 ′
𝑖
×𝑉 −1

𝑖
∈ G

5: 𝑈 = ℎ𝑢
′ (∏𝑁

𝑖=0
𝐾𝑖 )𝑢 ∈ G for (𝑢,𝑢 ′) $←− Z𝑞

6: (𝑓 , 𝑓 ′,𝐶,𝐶 ′,𝑈 , 𝐸) → 𝒱 ⊲ to the verifier

7: 𝑦
$←− 𝒱 ⊲ Non-interactive: 𝑦 := Hash(𝑓 , 𝑓 ′,𝐶,𝐶 ′,𝑈 , 𝐸) ∈ Z𝑞

8: 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 := (𝑈 , 𝑠 := 𝑟 ′ − 𝑦𝑢, 𝑠 ′ := (𝛼𝑐′ − 𝛼𝑐 ) − 𝑦𝑢 ′)

9: BalanceVerify(𝑓 , 𝑓 ′,𝐶,𝐶 ′, [𝑎𝑐𝑐𝑖 , asset′𝑖 ]
𝑁
𝑖=0
, 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ):

10: 𝐸 := 𝐶 ′𝐶−1
∏𝑁
𝑖=0

𝑉 ′
𝑖
×𝑉 −1

𝑖
∈ G

11: ⊲ Non-interactive: 𝑦 := Hash(𝑓 , 𝑓 ′,𝐶,𝐶 ′,𝑈 , 𝐸) ∈ Z𝑞
12: return (𝑓 , 𝑓 ′)∈[0, 2𝐿)2 ∧𝑈 𝑦ℎ𝑠′ (∏𝑁

𝑖=0
𝐾𝑖 )𝑠𝑖 = ` 𝑓

′−𝑓 𝐸 ∈ G
We define zero-knowledge of balance proofs below.

Definition 5.7 (Zero-Knowledge Balance Proofs). Balance proofs
are zero-knowledge if they are ZKA for 𝒱 (𝑝𝑝,𝑢) = BalanceVerify(
𝑓 , 𝑓 ′,𝐶,𝐶 ′, [𝑎𝑐𝑐𝑖 , asset′𝑖 ]

𝑁
𝑖=0
, 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ), Z=𝜙 , and relationℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒 :(

𝑝𝑝,𝑢=

(
[𝑎𝑐𝑐𝑖 , asset𝑖 , 𝜎𝑖 ]𝑁𝑖=0

,

𝑓 , 𝑓 ′,𝐶,𝐶 ′, 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒

)
,𝑤=

(
[𝑣𝑖 , 𝑣 ′𝑖 , 𝑘𝑖 , ^𝑖 ]

𝑁
𝑖=0

𝛼𝑐 , 𝑐, 𝛼𝑐′, 𝑐
′, 𝑟 ′

))
∈ℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒⇔

©«

(𝑔, ℎ, `, 𝐿) ?∈𝑝𝑝) ∧ 𝑛 ?

≤𝑁 ∧ [ 𝑗𝑙 ]𝑛𝑙=0

?∈[0, 𝑁 )𝑛∧

𝑓 + 𝑐 +∑𝑛
𝑙=0

𝑣𝑙
?

=𝑓 ′ + 𝑐 ′ +∑𝑛
𝑙=0

𝑣 ′
𝑙
∧∧𝑁

𝑖=0

(
(𝑝𝑝, 𝐿),

(
𝑊,𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡

′
𝑖 , 𝜎𝑖

)
,
(
𝑟 ′, 𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖

) )
?∈ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠∧

𝐶
?

=Commitℎ,` (𝛼𝑐 , 𝑐) ∧𝐶 ′ ?

=Commitℎ,` (𝛼𝑐′, 𝑐 ′)∧

𝜎
?

=BalanceProve(𝑓 , 𝑓 ′,𝐶, 𝑐, 𝛼𝑐 ,𝐶 ′, 𝑐 ′, 𝛼𝑐′, [𝑎𝑐𝑐𝑖 , asset′𝑖 ]
𝑁
𝑖=0

; 𝑟 ′)

ª®®®®®®®®®¬
Theorem 5.8. Nopenena balance proof protocol is ZKA forℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒

if the DL problem is hard, Pedersen commitments are binding, and
rerandomized accounts are ZKA forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

Proof: We claim the validity of Theorem 5.8 from Lemma E.1-E.2.

6 NOPENENA TRANSACTIONS
We present a Nopenena payment protocol in this section.

We explain the Nopenena protocol by taking a simple example,

where Alice sends coins from account 𝑎𝑐𝑐1 to Bob’s account 𝑎𝑐𝑐3 by

taking Charles’ account 𝑎𝑐𝑐2 as a decoy. We illustrate the example

in Figure 2. First, the sender, i.e., Alice, rerandomizes all accounts

with new coins balances using the function UpdateAsset. Then,
Alice creates a commitment 𝐶1 for her new account balance, and

Bob creates a commitment 𝐶2 for his new account balance. Then,

they run ForcedOutCreate to create the metadata of forced outputs

𝑊 . Alice and Bob create range proofs for 𝐶1 and 𝐶2, respectively,

to show the validity of new balances. After that, Alice proves the

validity of her account’s update by running UpdateValueProve and

the validity of the decoy account’s update by running UpdateProve.
Alice and Bob also prove his account’s update by running the multi-

party UpdateValueMProve. All these update proofs take𝑊 as the

challenge message. Once updates are proven, Alice and Bob prove

the validity of the commitments (𝐶1,𝐶2) from ForcedOutProve. Fi-
nally, Alice creates a balance proof to show that the input coin

amount is equal to the output coin amount. In this example, (1)

the verifiers only learn that two accounts exchanged coins out of

(𝑎𝑐𝑐1, 𝑎𝑐𝑐2, 𝑎𝑐𝑐3) but not exactly which two accounts, i.e., untrace-

ability, and (2), Bob only learns that either 𝑎𝑐𝑐1 or 𝑎𝑐𝑐2 belong to

Alice, but not exactly which account, i.e., sender anonymity.

We explain the protocol below. The steps related to contracts are

in blue-colored text; they can be ignored if contracts are not used.

1: CreateTx(Λ, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ,𝐶𝑙 ]

𝑛
𝑙=0
, [ℱ𝑧𝑘 ,𝐶, 𝜋𝑧𝑘 , 𝛼𝑐 , 𝑐],

2: [ℱ ′
𝑧𝑘
,𝐶 ′, 𝛼𝑐′, 𝑐 ′], 𝑓 , 𝑓 ′; [𝑘𝑙 ]𝑛𝑙=0

) :𝑡𝑥 :=( [𝑎𝑐𝑐 ′
𝑖
]𝑁
𝑖=0
, 𝜋)

3: if 𝑓 + 𝑐 +∑𝑛
𝑙=0

𝑣𝑙 ≠ 𝑓 ′ + 𝑐 ′ +∑𝑛
𝑙=0

𝑣 ′
𝑙

: return ⊥
4: if [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0

∉ Accounts ∈ Λ: return 0 ⊲ the accounts exist

5: if [ℱ𝑧𝑘 ,𝐶] ∉ Withheld ∈ Λ: return 0 ⊲ the coins exist

6: checks the correctness of the given contract data

7: if ℱ𝑧𝑘 (𝐶 ∥𝐶 ′∥ [𝐶𝑙 ]𝑛𝑙=0
, 𝜋𝑧𝑘 ) = 0: return ⊥

8: The sender gets 𝑟 ′
$←−Z𝑞 and updates all accounts.

9: ∀𝑙∈[0, 𝑛): asset′
𝑗𝑙

:=UpdateAsset(𝑟 ′, 𝑣𝑙 , 𝑣 ′𝑙 , 𝑎𝑐𝑐 𝑗𝑙 )
10: ∀𝑖 ∈ [0, 𝑁 ), 𝑖 ∉ [ 𝑗𝑙 ]𝑛𝑙=0

: asset′
𝑖

:= UpdateAsset(𝑟 ′, 𝑎𝑐𝑐𝑖 )
11: All participants run a multi-party protocol to open all value-

changed accounts, i.e., their balance has been changed.

12: (𝑊 ; [^𝑖 ]𝑁𝑖=0
):=ForcedOutCreate( [asset′

𝑖
]𝑁
𝑖=0
, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ,𝐶𝑙 ]

𝑛
𝑙=0
)

13: Each participant in [ 𝑗𝑙 ]𝑛𝑙=0
proves that the new balance ∈ [0, 2𝐿):

14: 𝜋𝑟𝑎𝑛𝑔𝑒,𝑙 := RangeProve(𝐶𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 , 𝐿)
15: The sender creates range proofs for new withheld coins

16: 𝜋𝐶′ := RangeProve(𝐶 ′, 𝑐 ′, 𝛼𝑐′, 𝐿)
17: Each participant creates the challenge message from𝑊

18: �̂� = (𝑊, [ℱ𝑧𝑘 ,𝐶], [ℱ ′𝑧𝑘 ,𝐶
′]) ⊲ challenge message

19: The sender in [ 𝑗𝑙 ]𝑛𝑙=0
proves the correctness of the update:

20: 𝜎 𝑗𝑙 :=UpdateValueProve(𝑟 ′, 𝑘𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝑎𝑐𝑐 𝑗𝑙 , asset
′
𝑗𝑙

;^ 𝑗𝑙 ,�̂� )
21: The sender and each receiver in [ 𝑗𝑙 ]𝑛𝑙=0

proves the update:

22: 𝜎 𝑗𝑙 := UpdateValueMProve(𝑟 ′, 𝑘𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝑎𝑐𝑐 𝑗𝑙 , asset
′
𝑗𝑙

;^ 𝑗𝑙 ,�̂� )
23: The sender proves the updates of decoy accounts.

24: for 𝑖 ∈ [0, 𝑁 ), 𝑖 ∉ [ 𝑗𝑙 ]𝑛𝑙=0
:

25: 𝜎𝑖 := UpdateProve(𝑟 ′, 𝑎𝑐𝑐𝑖 , asset′𝑖 ;^𝑖 ,�̂� )

8



Alice 
(Sender)

Bob 
(Receiver)

V1

V2

V3

v2

V1 - v

V3 + v

Charles
(Decoy)

k1, r1

k2, r2

k3, r3

k1, r’+r1 

k2, r’+r2 

k3, r’+r3 

1. Alice rerandomizes all accounts with r’ 
and new balances (UpdateAsset)

𝝈2𝝈1 𝝈3

4. Alice uses (k1, r’) 
for UpdateValueProve

Alice with r’ and Bob 
with k3 run 

UpdateValueMProve

Alice uses r’ for 
UpdateProve 3. Alice and Bob prove the ranges of 

new balances’ using RangeProve

V1 - v

C1

2. Alice runs ForcedOutCreate with Bob to anonymously 
open new balances’ commitments (C1,C2).

W

5. Alice runs ForcedOutProve 
with Bob to prove that they 

have committed all new 
balances’ commitments.

𝜋forced

𝜋range, 1 𝜋range, 2

V3 + v

C2

tx = 

V1 - vk1, r’+r1 v2k2, r’+r2 V3 + vk3, r’+r3 

𝝈1, 𝝈2, 𝝈3 
𝜋range, 1 
𝜋range, 2 

𝜋forced

C1 C2

W

Challenge 
message 
of update 
proofs

acc1

acc2

acc3
6. Alice runs 

BalanceProof to prove 
that input coin amount 
equals to output coin 

amount.

𝜋balance

𝜋balance

Figure 2: An examplary protocol flow of Nopenena. Here, Alice sends 𝑣 coins to Bob without revealing Alice’s account to Bob, i.e., Bob only learns that

either 𝑎𝑐𝑐1 or 𝑎𝑐𝑐2 belong to Alice. Also, Alice and Bob hide which accounts are transferring coins from verifiers, i.e., verifiers only see that two accounts

from (𝑎𝑐𝑐1, 𝑎𝑐𝑐2, 𝑎𝑐𝑐3) exchange coins. Note that Alice does not reveal her (𝑘1, 𝑟
′) to Bob, and Bob does not reveal his 𝑘3 to Alice.

26: Participants prove that all changed balances were committed:

27: 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 :=ForcedOutProve( [asset′
𝑖
, 𝜎𝑖 ]𝑁𝑖=0

, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ]
𝑛
𝑙=0
,𝑊 )

28: The sender proves that no new coins were generated:

29: 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 :=BalanceProve(𝑓 , 𝑓 ′,𝐶, 𝑐, 𝛼𝑐 ,𝐶 ′, 𝑐 ′, 𝛼𝑐′,
30: [𝑎𝑐𝑐𝑖 , asset′𝑖 ]

𝑁
𝑖=0

; 𝑟 ′)
31: The sender combines all proofs and creates the transaction:

32: return 𝑡𝑥 := (𝑓 , 𝑓 ′, [𝑎𝑐𝑐𝑖 , asset′𝑖 , 𝜎𝑖 ]
𝑁
𝑖=0
, (𝑊, 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ,

33: 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 , [𝜋𝑟𝑎𝑛𝑔𝑒,𝑙 ]𝑛𝑙=0
), [ℱ𝑧𝑘 ,𝐶], [ℱ ′𝑧𝑘 ,𝐶

′, 𝜋𝐶′])

1: VerifyTx(𝑡𝑥):
2: 𝑡𝑥 =: (𝑓 , 𝑓 ′, [𝑎𝑐𝑐𝑖 , asset′𝑖 , 𝜎𝑖 ]

𝑁
𝑖=0
, (𝑊, 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ,

3: 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , 𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 , [𝜋𝑟𝑎𝑛𝑔𝑒,𝑙 ]𝑛𝑙=0
), [ℱ𝑧𝑘 ,𝐶], [ℱ ′𝑧𝑘 ,𝐶

′, 𝜋𝐶′])
4: if [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0

∉ Accounts ∈ Λ: return 0 ⊲ the accounts exist

5: if [ℱ𝑧𝑘 ,𝐶] ∉ Withheld ∈ Λ: return 0 ⊲ the coins exist

6: �̂� = (𝑊, [ℱ𝑧𝑘 ,𝐶], [ℱ ′𝑧𝑘 ,𝐶
′]) ⊲ challenge message

7: for 𝑖∈[0, 𝑁 ): ⊲ verify updates

8: if ¬UpdateVerify(𝑎𝑐𝑐𝑖 , asset′𝑖 , 𝜎𝑖 ,�̂� ): return 0

9: if ¬ForcedOutVerify( [asset′
𝑖
, 𝜎𝑖 ]𝑁𝑖=0

,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ): return 0

10: for 𝑙∈[0, 𝑛): if ¬RangeVerify(𝐶𝑙 , 𝜋𝑟𝑎𝑛𝑔𝑒,𝑙 ) : return 0

11: if ℱ𝑧𝑘 (𝐶 ∥𝐶 ′∥ [𝐶𝑙 ]𝑛𝑙=0
, 𝜋𝑧𝑘 ) = 0: return 0

12: if ¬RangeVerify(𝐶 ′, 𝜋𝐶′): return 0 ⊲ valid withheld coins

13: return BalanceVerify(𝑓 , 𝑓 ′,𝐶,𝐶 ′,[𝑎𝑐𝑐𝑖 , asset′𝑖 ]
𝑁
𝑖=0
, 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 )

Once the transaction is accepted into the ledger, the accounts’

current assets [asset𝑖 ]𝑁𝑖=0
will be replaced with new [asset′

𝑖
]𝑁
𝑖=0

.

Moreover, the withheld coins, i.e., [ℱ𝑧𝑘 ,𝐶] will be removed, and

new withheld coins [ℱ ′
𝑧𝑘
, 𝑐 ′] will be added to Withheld. Therefore,

the sizes of Accounts and Withheld do not grow monotonically.

Nopenena Unexpiring Transactions Decentralized payments’

latency depends on many external factors like transaction fees,

and users can add time-sensitive transactions faster by paying a

satisfactory fee compared to others. However, it is better to have a

recovery mechanism like unexpiring transactions as a last resort

against targeted asset updates that prohibit an account owner from

conducting his/her transactions. Therefore, we introduce a protocol

for unexpiring transactions at the cost of untraceability.
Let there be 𝑛 number of accounts who want to exchange coins

where 𝑛− |𝑜𝑝𝑒𝑛 | accounts want to remain anonymous while |𝑜𝑝𝑒𝑛 |
accounts want to ensure that their exchange will not be affected by

other transactions’ intentional or unintentional asset updates. For

example, Bob, in 𝑜𝑝𝑒𝑛 accounts, wants to receive coins as soon as

possible, but Alice, who is in unopened 𝑛 − |𝑜𝑝𝑒𝑛 | accounts does
not want to send coins revealing her account.

First, 𝑜𝑝𝑒𝑛 accounts send an unexpiring conditional transaction,
instructing to temporarily lock their accounts because they want to

exchange coins with accounts [pk𝑖 ]𝑁𝑖=0
when the first |𝑜𝑝𝑒𝑛 | pub-

lic keys are theirs. In the conditional transaction, they agree to

a condition that they will only send coins to [pk𝑖 ]𝑁𝑖=0
and pay a

transaction fee 𝑓 in the second transaction. After stopping further

asset updates, they send the second transaction with 𝑓 to complete

the transaction and unlock open accounts. However, a locked ac-

count can be unlocked before the second transaction by paying

an unlock fee 𝑓𝑢 . Therefore, even if the second transaction does

not happen, users can unlock the accounts, and the miners receive

compensation for adding the conditional transaction. Also, these

additional fees prevent users from locking accounts all the time and

leaving a small unlocked account set for decoys. First, we explain

the conditional transaction protocol.

Here, we assume that each account pk𝑖 has been locked 𝑙𝑜𝑐𝑘𝑖
times in the past, which can be identified from looking at ledger Λ.

1: CreateConditionalTx(Λ, 𝑓 , 𝑓𝑢 , [pk𝑖 ]𝑁𝑖=0
; [𝑘𝑖 ] |𝑜𝑝𝑒𝑛 |𝑖=0

): ⊲ locks

2: �̂� := ( [pk𝑖 ]𝑁𝑖=0
, |𝑜𝑝𝑒𝑛 |, 𝑓 , 𝑓𝑢 ) ⊲ the condition and challenge

3: Each 𝑖∈[0, |𝑜𝑝𝑒𝑛 |) proves the knowledge of𝑘𝑖 via value-updates
4: �̂�𝑖 := {�̂� ∥𝑙𝑜𝑐𝑘𝑖 ∈ Λ} ⊲ personalize the challenge

5: 𝑎𝑐𝑐𝑖 := (pk𝑖 , assetpk𝑖 (0, 0)) and (𝑟𝑖 , ^𝑖 )
$←−Z2

𝑞

6: 𝜎𝑖 :=UpdateValueProve(𝑟 ′𝑖 , 𝑘𝑖 , 0, 1, 𝑎𝑐𝑐𝑖 , assetpk𝑖 (1, 0), ^𝑖 ,�̂�𝑖 )
7: return 𝑐𝑡𝑥 := ( |𝑜𝑝𝑒𝑛 |, [pk𝑖 ]𝑁𝑖=0

, [𝜎𝑖 ] |𝑜𝑝𝑒𝑛 |𝑖=0
, 𝑓 , 𝑓𝑢 )

Verifiers check the conditional transaction as follows.

1: VerifyConditionalTx(𝑐𝑡𝑥=( |𝑜𝑝𝑒𝑛 |, [pk𝑖 ]𝑁𝑖=0
, [𝜎𝑖 ] |𝑜𝑝𝑒𝑛 |𝑖=0

, 𝑓 , 𝑓𝑢 ))
2: �̂� := ( [pk𝑖 ]𝑁𝑖=0

, |𝑜𝑝𝑒𝑛 |, 𝑓 , 𝑓𝑢 ) ⊲ the condition and the challenge

3: ∀𝑖 ∈ [0, |𝑜𝑝𝑒𝑛 |): �̂�𝑖 := {�̂� ∥𝑙𝑜𝑐𝑘𝑖 ∈ Λ} ⊲ updated challenge

4: if ¬UpdateVerify(pk𝑖 , assetpk𝑖 (0, 0), assetpk𝑖 (1, 0), 𝜎𝑖 ,�̂�𝑖 ):
5: return 0

These conditional transactions do not expire if someone else updates

their accounts’ assets. Once the conditional transaction is added to

the ledger, (1) the ledgermarks 𝑜𝑝𝑒𝑛 accounts as “locked”; hence,

others cannot use locked accounts anymore as decoys, and (2) the

ledger updates the number of times that account 𝑖 was locked, i.e.,

𝑙𝑜𝑐𝑘𝑖 = 𝑙𝑜𝑐𝑘𝑖 + 1. We use 𝑙𝑜𝑐𝑘𝑖 to prevent replaying transactions

since previous 𝑙𝑜𝑐𝑘𝑖 is no longer valid.

After that, they collect last account states, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
from the

ledger and send the completing transaction. Here, [ 𝑗𝑙 ]
|𝑜𝑝𝑒𝑛 |
𝑙=0

=

9



[𝑙] |𝑜𝑝𝑒𝑛 |
𝑙=0

are the open accounts’ indexes. Other real participants’

indexes are in [ 𝑗𝑙 ]𝑛𝑙= |𝑜𝑝𝑒𝑛 | that could be any index in [|𝑜𝑝𝑒𝑛 |, 𝑁 ).

1: CreateCompletingTx(𝑓 , [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 ]

𝑛
𝑙=0

; 𝑟 ′):
2: return 𝑡𝑥 := CreateTx( [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0

, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 ]
𝑛
𝑙=0
, 𝑐, 𝑓 )

The verifiers check the condition and the transaction.

1: VerifyCompletingTx(𝑡𝑥, 𝑐𝑡𝑥):
2: ( |𝑜𝑝𝑒𝑛 |, [ ¯pk𝑖 ]𝑁𝑖=0

, [𝜎𝑖 ]𝑛𝑖=0
, ¯𝑓 , 𝑓𝑢 ) := 𝑐𝑡𝑥

3: (𝑐, 𝑓 , [𝑎𝑐𝑐𝑖 :=(pk𝑖 , asset𝑖 ), asset′𝑖 , 𝜎𝑖 ]
𝑁
𝑖=0
, txh):=𝑡𝑥

4: return [pk]𝑁
𝑖=0

= [ ¯pk]𝑁
𝑖=0

and 𝑓 = ¯𝑓 and VerifyTx(𝑡𝑥)
If an account 𝑎𝑐𝑐 decides to unlock before the second transac-

tion, the next transaction with 𝑎𝑐𝑐 must pay 𝑓𝑢 in addition to the

transaction fee, which will compensate the miners for locking 𝑎𝑐𝑐 .

Security Definitions. Nopenena payments provide the following

security properties: ZKA and strong theft-resistance.

We define the zero-knowledge argument of payments for a

relation ℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎 as follows when the adversary controls 𝑅𝒜
(0 ≤ 𝑅𝒜 < 𝑛) receiving accounts out of 𝑛 sending and receiving

accounts.

Definition 6.1. Nopenena payments are zero-knowledge if they

provide ZKA for the followings:

verifier: 𝒱 (𝑝𝑝, 𝑡𝑥) = VerifyTx(Λ, 𝑡𝑥),

insider knowledge: Z = (𝐽𝒜=[ 𝑗𝜌 ]𝑅𝒜
𝜌=0

, [𝑘 𝑗𝜌 , 𝑣 𝑗𝜌 , 𝑣 ′𝑗𝜌 , ^ 𝑗𝜌 ]
𝑅𝒜
𝜌=0

,

[𝛼𝑙 ]𝑛𝑙=0, 𝑗𝑙 ∈𝐽𝒜 ), and relationℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎 when 0≤𝑅𝒜<𝑛 < 𝑁 :(
𝑝𝑝, 𝑡𝑥,𝑤 =

(
𝑗, 𝑟 ′, b, [ 𝑗𝑙 ]𝑛𝑙=0

, [𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0

[𝛼𝑙 ]𝑛𝑙=0,
, 𝛼𝑐 , 𝑐, 𝛼𝑐′, 𝑐

′, 𝑏𝑙𝑖𝑛𝑑𝑠

))
∈ ℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎 ⇔

©«

(𝑔, ℎ, `, 𝐿) ?∈𝑝𝑝 ∧ [ 𝑗𝑙 ]𝑛𝑙=0

?∈[0, 𝑁 )𝑛∧

𝑡𝑥
?

=

(
𝑓 , 𝑓 ′, [𝑎𝑐𝑐𝑖 , asset′𝑖 , 𝜎𝑖 ]

𝑁
𝑖=0
,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 , 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒 ,

𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 , [𝜋𝑟𝑎𝑛𝑔𝑒,𝑙 ]𝑛𝑙=0
, [ℱ𝑧𝑘 ,𝐶], [ℱ ′𝑧𝑘 ,𝐶

′, 𝜋𝐶′]

)
∧(

𝑝𝑝,

(
[𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]

𝑁
𝑖=0

𝑊

)
,

(
𝑟 ′, [ 𝑗𝑙 ]𝑛𝑙=0

[𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0

))
?∈ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟𝑠

𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠∧

©«𝑝𝑝,
(
[𝑎𝑐𝑐𝑖 , asset′𝑖 , 𝜎𝑖 ]

𝑁
𝑖=0

𝑊, 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑

)
,

©«
𝑗, 𝑟 ′, b, [ 𝑗𝑙 ]𝑛𝑙=0

[𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0

[𝑣 ′′
𝑙
, 𝛼𝑙 ]𝑛𝑙=0

ª®®®¬
ª®®®¬

?∈ℛ𝑓 𝑜𝑟𝑐𝑒𝑑

∧
[
((𝑝𝑝, 𝐿), (𝐶𝑙 , 𝜋𝑟𝑎𝑛𝑔𝑒,𝑙 ), (𝛼𝑙 , 𝑣 ′𝑗𝑙 ))

?∈ℛ𝑟𝑎𝑛𝑔𝑒

]𝑛
𝑙=0

∧(
𝑝𝑝,

(
[𝑎𝑐𝑐𝑖 , asset𝑖 ]𝑁𝑖=0

,

𝐶,𝐶 ′, 𝜎𝑏𝑎𝑙𝑎𝑛𝑐𝑒

)
,

(
[ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 , 𝑘𝑙 ]

𝑛
𝑙=0

𝛼𝑐 , 𝑐, 𝛼𝑐′, 𝑐
′

))
?∈ℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒∧(

𝑝𝑝 (ℱ𝑧𝑘 , [𝐶𝑖 ]∗𝑖=0
, 𝜋) (ℱ , [𝑣𝑙 , 𝛼𝑙 ]∗𝑙=0

, 𝑏𝑙𝑖𝑛𝑑𝑠)) ?∈ℛ𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬
when (𝑤\Z )=( 𝑗, 𝑟 ′, b, [ 𝑗𝑙 ]𝑁𝑙=0

\𝐽𝒜, [𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0,𝑖∉𝐽𝒜

, [𝛼𝑙 ]𝑛𝑙=0, 𝑗𝑙∉𝐽𝒜
,

𝛼𝑐 , 𝑐, 𝛼𝑐′, 𝑐
′, 𝑏𝑙𝑖𝑛𝑑𝑠).

ℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎 implies untraceability since an adversary who only

sees transcripts between the sender and verifiers, i.e., 𝑅𝒜 = 0, does

not learn anything about the secret witnesses, which include the

indexes of sending and receiving accounts [ 𝑗𝑙 ]0𝑙=0
. Also,ℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎

implicates sender-anonymity since an adversary who controls

all receiving accounts, only learns that the sending accounts are in

[0, 𝑁 ) \ 𝐽𝒜. We define untraceability in Definition B.3 and sender-

anonymity in Definition B.3 inferred byℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎 for the inter-

ested readers.

Theft-resistance defines that an adversary who does not know

the secret key of an honest account cannot change account balances.

Here, “strong” theft resistance denotes that a p.p.t. adversary can

query transactions from the honest account owners yet cannot

create a fresh transaction that changes the account balance. This is

because, in decentralized payment systems, the adversary can see

previous payments of the honest owner in the ledger. Here, we give

an oracle 𝑂𝑘 to the adversary to create transactions on behalf of

the honest owner. The transactions created by 𝑂𝑘 are stored in TX.
Transactions are strongly theft-resistant if the adversary cannot

create a fresh transaction that is not in TX and changes the account

balance of the honest account.

Definition 6.2 (Strong Theft-resistance). Assume that the adver-

sary does not know the secret key𝑘 of𝑎𝑐𝑐 : (pk(𝑘), assetpk (∗, 𝑣)) ∈
Accounts. The transactions are strongly theft-resistant if

𝑃𝑟


VerifyTx(𝑡𝑥) ?

=1 ∧ 𝑎𝑐𝑐 ?∈𝑡𝑥∧

𝑡𝑥
?

∉TX ∧OpenAsset(𝑘, 𝑣, 𝑎𝑐𝑐 ′) ?

=0

�����𝑡𝑥←𝒜𝑂𝑘 ( ·) (Λ,
𝑎𝑐𝑐, 𝑣)

 ≤𝜖 (_)
when (1) oracle 𝑂𝑘 (·) creates transactions behalf of 𝑎𝑐𝑐 for the

adversary’s queries without revealing 𝑘 , and (2) TX are the trans-

actions created by 𝑂𝑘 (·). Here, 𝑎𝑐𝑐 ′ is the updated account of 𝑎𝑐𝑐 .

Theorem 6.3. Nopenena transactions provide zero-knowledge ar-
gument and strong theft-resistance if the rerandomizable accounts
are ZKA, insider-ZKA, and theft-resistant, and anonymous forced-
opening, balance proofs, range proofs, and contracts are zero-knowledge.

Proof: Proving the security of Nopenena transactions is straight-

forward since they directly integrate rerandomizable accounts,

anonymous forced openings, balance proofs, zero-knowledge con-

tracts, and zero-knowledge range proofs as shown in Definition

6.1. We conclude that Nopenena payments provide ZKA for rela-

tion ℛ𝑁𝑜𝑝𝑒𝑛𝑒𝑛𝑎 if subprotocols hold ZKA for relations: ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 ,

ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 , ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 , ℛ𝑟𝑎𝑛𝑔𝑒 , ℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒 , and ℛ𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑠 . Also, we

directly claim that Nopenena payments are theft resistant if reran-

domized accounts are theft-resistant. Therefore, we conclude that

Theorem 6.3 is true.

7 NOPENENA FOR ANONYMOUS
CONTRACTS

This section explains the workflow of the anonymous contracts

using an exemplary escrow and split transactions, i.e., splitting

a payment into sending and receiving transactions. Also, we em-

phasize that Nopenena payments can be used with any Peder-

sen commitment-based zero-knowledge contracts like Zethers’ Σ-
Bullets [9] or CIP.

7.1 Escrow for Anonymous Shopping
Assume that Alice buys pizza from Bob. However, after Alice sends

the money, Bob may not send the pizza or may delay the pizza until

it’s cold. To resolve disputes like this in online shopping, many

hire a trusted third party, e.g., UberEats, eBay or Amazon. Similarly,

10



escrows are essential for decentralized payments, which are usually

constructed as a smart contract where the escrow takes a smaller

commission to resolve conflicts. First, we explain the unblinded

contract ℱ of the escrow contract below.

1 contract escrow(inputs: c0, c1):

2 variable e; # prenagotiated escrow fee

3 variable cS; # seller 's coin amount

4 variable cB; # buyer's refund

5 if e == c1: # correct escrow fee

6 if cS == c0: # seller gets coins

7 return 1

8 if cB == c0: # buyer gets a refund

9 return 1

10 return 0

Listing 1: Unblinded escrow contract

However, at this stage, this contract is insecure because any

transaction with these coin values can receive the coins. To make

it theft-resistant and, moreover, confidential, we compile this con-

tract to ℱ𝑧𝑘 where each variable is committed into a Pedersen

commitment, and the blinding keys of the commitment are only

known to the expected owners of the coins. In that way, unless all

needed parties agree, i.e., escrow with the seller or the buyer, the

zero-knowledge proof for the contract cannot be computed. This

compiling works as follows:

• The escrow creates a commitment E for e with key 𝛼𝑒 .

• The seller computes a commitment CS for cS with key 𝛼𝑐𝑆 .

• The buyer computes CB for cB with key 𝛼𝑐𝐵 .

• The buyer collects CS and E and compiles the contract into

the following zero-knowledge function ℱ𝑧𝑘 .

1 contract escrow(inputs: C0, C1):

2 commitment E, CS, CB;

3 if zkEqual(E, C1):

4 if zkEqual(CS, C0): return 1

5 if zkEqual(CB, C0): return 1

6 return 0

Listing 2: Open-logic zero-knowledge escrow ℱ𝑧𝑘

Then, the buyer sends c = cB + e=cS + e coins to thewithheld
with ℱ𝑧𝑘 . Once the escrow decides to forward or refund the coins,

the escrow creates a transaction to get the withheld coins back

with the buyer or the seller. Assume that the escrow sends coins to

the seller. Then, the escrow and the sender create a transaction to

obtain these withheld coins back to some accounts of zero coins.

They first open commitments [C0, C1] = (𝐶0,𝐶1) ∈ 𝑊 of new

account balances anonymously such that escrows’ commitment is

𝐶1 (see Step 4 of ForceOutCreate). Then, they generate the proof

as follows:

(1) The escrow computes a single-party CIP equal proof 𝜋𝑒𝑞𝐸 =

EqProve(E,𝐶1, 𝛼𝑒 , 𝛼1) for zkEqual(E, C1).
(2) The seller computes a single-party CIP equal proof 𝜋𝑒𝑞𝐸 =

EqProve(CS,𝐶0, 𝛼𝑐𝑆 , 𝛼0) for zkEqual(CS, C0).
(3) The contract proof 𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 := (𝜋𝑒𝑞𝐸 , 𝜋𝑒𝑞𝑆 )

This contract and its proof satisfy the following relation:

(𝑝𝑝, (E, CS, CB, 𝜋𝑒𝑞𝐸 , 𝜋𝑒𝑞𝑆 ), (𝛼𝑒 , 𝛼𝑐𝑆 , 𝛼𝑐𝐵, cB, cS, e, c))ℛ𝑒𝑠𝑐𝑟𝑜𝑤 ⇔
E ×𝐶−1

1

?

= Commitℎ,` (𝛼𝑒 − 𝛼1, 0)(
𝐶−1

0
CS

?

=Commitℎ,` (𝛼𝑐𝑆−𝛼0, 0) ∨𝐶−1

0
CB

?

=Commitℎ,` (𝛼𝑐𝐵−𝛼0, 0)
)

The validators check if ℱ𝑧𝑘 ( [𝐶0,𝐶1], 𝜋𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 ) outputs 1 by veri-

fying zkEqual(E, C1) from EqVerify(E,𝐶1, 𝜋𝑒𝑞𝐸 ) ?

=1 and verifying

zkEqual(CS, C0) from EqVerify(CS,𝐶0, 𝜋𝑒𝑞𝑆 ) ?

=1 (see Appendix A).

Similarly, the escrow can refund the buyer by proving zkEqual(CB,
C0). However, only the seller or the buyer can obtain cS coins or cB
coins since one of (𝛼𝑐𝑆 , 𝛼𝑐𝐵) is required. Therefore, the contract is
secure even if the escrow is opportunistically malicious, i.e., given

an opportunity steals coins.

This contract is open-logic, i.e., the logic of the contract is vis-

ible to verifiers. Although, the logic can be obfuscated by adding

other random steps to the contract, these steps typically add a

computational cost to the contract.

Note: The decision criteria of escrow, i.e., how escrow decides to

whom to transfer coins, is out of scope of this paper, An interested

reader may refer to [1, 18] for more details.

7.2 Split Payments
Nopenena payments described in Section 6 are sender-receiver

transactions since not only the sender, but also the receiver actively

participates in creating the transaction. However, Nopenena also

facilitates sender-only transactions where the sender transfers coins

to a commitment in Withheld and shares the blinding key of the

commitment with the receiver. Later, the receiver claims these

coins to his/her account by submitting a receiver-only transaction.

Therefore, the receiver does not have to actively participate in the

sender’s transaction. We call these payments, split payments.
Split transactions work as follows: First, the sender creates a

transaction 𝑡𝑥𝑠𝑒𝑛𝑑𝑖𝑛𝑔 to withhold some 𝑐 coins in commitment

𝐶=Commit(𝛼𝑐 , 𝑐) with a blinding key 𝛼𝑐 as explained in CreateTx.
Also, these coins are attached to a contract that always outputs 1:

1 contract receiver(inputs: C0): return 1

Then, the sender submits this sender-only transaction 𝑡𝑥𝑠𝑒𝑛𝑑𝑖𝑛𝑔 to

the ledger, and the sender shares 𝛼𝑐 with the receiver. Upon receiv-

ing 𝛼𝑐 , the receiver creates a receiver-only transaction 𝑡𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔
using 𝛼𝑐 to receive the withheld coins in𝐶 . These two transactions

(𝑡𝑥𝑠𝑒𝑛𝑑𝑖𝑛𝑔 , 𝑡𝑥𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 ) can be sent at the same time by putting them
together, or the receiver can claim coins later. Anyway, the pay-

ment concludes when the receiver transfers the withheld 𝑐 coins

to his/her account. Here, security comes from the blinding key 𝛼𝑐
since only the sender and the receiver know 𝛼𝑐 .

Spilt payments moreover benefit from faster transaction verifi-

cation. As explained in Section 5.2, the verification time of forced

opening is
˜𝒪(𝑀) when𝑀= 𝑁 !

(𝑛)!(𝑁−𝑛)! . We get the smallest𝑀 for

any 𝑁 ∈ Nwhen 𝑛 = 1, i.e.,𝑀 = 𝑁 . Hence, even verifying two split

transactions are faster than verifying the unsplit sender-receiver

transaction when 𝑁 > 8 (see Figure 5). Moreover, this splitting

could be cost-effective if the expected transaction fees are linear to

the computation cost like Gas in Ethereum [58].

8 IMPLEMENTATION
We implement Nopenena as a C library from Libsecp256k1 C library

[22] such that elements of G and Z𝑞 are 33 bytes and 32 bytes,

respectively. We use SHA256 for the Hash function and aggregate

Bulletproofs [10] (used Mimblewimble Bulletproof construction

[22]) for range proofs when 𝐿 = 64, e.g., balances in [0, 264) are valid.

11



N (Total Accounts including decoys)

Tr
an

sa
ct

io
n 

G
en

er
at

io
n 

Ti
m

e 
(s

)

M

0.0

0.1

0.2

0.3

0.4

0

100

200

300

5 10 15 20 25

N (Total Accounts including decoys)

Tr
an

sa
ct

io
n 

V
er

ifi
ca

tio
n 

Ti
m

e 
(s

)

M

0.00

0.05

0.10

0.15

0

100

200

300

5 10 15 20 25

N (Total Accounts including decoys)

Tr
an

sa
ct

io
n 

S
iz

e 
(K

B
)

M

0

2

4

6

8

0

100

200

300

5 10 15 20

Groth

ShortZero 
(base = 2)

ShortZero 
(base = 3)

ShortZero 
(base = 4)

M

Figure 3: Transaction size and verification time vs. 𝑁 . Here, “ShortZero” is used for [7] and base (𝑑) is selected as𝑀 = ⌈base𝑚 ⌉ for some𝑚.𝑀 values are

shown on the right vertical axis.

G
en

er
at

io
n 

Ti
m

e 
(s

)

M

0.00

0.25

0.50

0.75

1.00

1.25

0

100

200

300

400

500

Grot
h 

Grot
h 

Sho
rt

Sho
rt

V
er

ifi
ca

tio
n 

Ti
m

e 
(s

)

M

0

200

400

600

800

0

100

200

300

400

500

Grot
h 

Grot
h 

Sho
rt

Sho
rt

Tr
an

sa
ct

io
n 

S
iz

e 
(K

B
)

M

0

2

4

6

8

0

100

200

300

400

500

Grot
h 

Grot
h 

Sho
rt

Sho
rt

2

4

8

2 (M)

4 (M)

8 (M)

Figure 4: Transaction size and verification time vs. 𝑛 ∈ [2, 4, 8]. Here, “Short” is used for [7] when the base is 𝑑 = 3.𝑀 values (lines) for 𝑛 ∈ [2, 4, 8] are
shown on the right vertical axis.

Also, due to the aggregation of Bulletproof range proofs, a range

proof is 739 bytes and 803 bytes for 2 and 4 outputs, respectively.

We provide two constructions of Nopenena payments with two

different one-of-many proofs for zero-value commitments: (1) Groth-

Kohlweis protocol [24] and (2) short one-of-many protocol [7]. We

implemented these two one-of-many protocols from Libsecp256k1

C library. [24] and [7] generate proofs of𝒪(log
2
𝑚) and𝒪(log𝑑𝑚),

respectively, when𝑀 = ⌈2𝑚⌉ [24] or𝑀 = ⌈𝑑𝑚⌉ [7] for some 𝑑 ∈ N
and𝑚 ∈ N. Also, their verification times are𝒪(𝑀). Our Nopenena
library makes it possible to customize these 𝑑 and𝑚. Moreover, we

implemented functionalities for the proposed escrow contract.

9 PERFORMANCE ANALYSIS
We analyze the following questions in this section.

(1) What is the correlation between (𝑁,𝑛) and transaction sizes,

generation times, and verification times?

(2) What is the performance difference between transactions

with and without escrow contracts?

(3) What is the performance difference between transactions

with and without splitting?

Workload and Benchmarks We implement benchmarks to mea-

sure transaction sizes and verification times. Also, we implement

micro-benchmarks for escrow contracts and forced openings. All

the presented verification times are measured on a single-thread

of 12th generation i7-1260P x 16 unless otherwise mentioned. We

selected 𝑁 to be in [2, 24], which was inspired by Monero of 𝑁 = 16

since our target is to build small decoy set payments that are resis-

tant to the DM-decomposition. Also, 𝑛 is chosen from [1, 8] since
statistics show that only 2-3 accounts participate in a payment [5].

Nopenena Transactions vs. (𝑁,𝑛)Wemeasure transaction sizes,

verification times, and generation times for various (𝑁,𝑛) as shown
in Figure 3 and Figure 4.

We observe that Nopenena transactions’ generation time and

verification time is proportional to 𝑀= 𝑁 !

(𝑛)!(𝑁−𝑛)! when 𝑛 is con-

stant, and 𝑁 increases from 4 to 24. That is due to the computation

of [𝐻𝑚]𝑀𝑚=0
in Step 11 of ForceOut. However, as shown in Figure

3, the transaction sizes are proportional to 𝑁 , not to 𝑀 because

the forced openings’ size complexities are logarithmic in 𝑀 , i.e.,

𝒪(log
2
𝑀) [24] or 𝒪(log𝑑 𝑀) [7].

Similarly, when 𝑛 ∈ [2, 4, 8] as shown in Figure 4, we observe

that transaction verification and generation times are proportional

to𝑀 instead of 𝑛. Moreover, we identify that the transaction size

increases with 𝑛. Till, the size increment is minimal (see Figure 4)

since (1) outputs’ commitments are only 32 bytes, (2) outputs’ range

proofs are computed from aggregate Bulletproofs, which are also

logarithmic-sized, and (3) forced-openings are logarithmic-sized.

Nopenena Transactions with Escrow Contracts We measure

transactions with and without escrow contracts. We measured the

escrow transactions that (2) withhold coins with a new compiled

escrow contract and (1) obtain withheld coins from proving that the

transaction satisfies an existing escrow contract. We observe that

additional time required for escrows and withholding is 3.34 ms,

and 293 bytes are required for escrow proofs (130 bytes), withheld

coins (33 bytes for each), and the compiled contract.

Performance of Nopenena Split Payments As discussed in

Section 7.2, a payment can be split into two transactions for sending

and receiving.We analyze the sizes and verification times for normal

payments (𝑛 = 2) and split payments submitted together (two

transactions of 𝑛 = 1) for 𝑁 ∈ [4, 24]. Our results are shown in

Figure 5. According to the results, split transactions’ verification

time is proportional to 𝑁 since𝑀 = 𝑁 , and are more efficient when

𝑁 > 8. However, transaction splitting increases the size because

two lists of new rerandomized assets must be provided.

12



N

Tr
an

sa
ct

io
n 

V
er

ifi
ca

tio
n 

(m
s)

0

50

100

150

5 10 15 20

N
Tr

an
sa

ct
io

n 
S

iz
e 

 (K
B

)
0

5

10

15

5 10 15 20

Normal(Groth) Normal(ShortZero) 
Split(Groth) Split(ShortZero)

Figure 5: Total transaction size and verification time vs. splitting. Here, a

split transaction is an aggregation of two𝑛 = 1 transactions, and “ShortZero”

is used for [7] with base of 𝑑 = 3.

10 RELATEDWORK
Untraceable payments are either decoy-based or tumblers. While

decoy-based payments use decoys to obfuscate the real sender/re-

ceiver, tumblers mix and aggregate irrelevant payments into one to

hide which output/account is used in which payment. These tum-

blers are either centralized, [4, 6, 27] or decentralized [12, 14, 41, 50,

51, 56]. Decoy-based payments do not need a (semi-)trusted mixer

like in centralized tumblers or do not have high latency in transac-

tion generation similar to decentralized tumblers, since decoys do

not participate in transaction generation actively.

Full decoy set untraceable payments obtain the maximum

anonymity that the ledger can offer. However, they either suffer

from large-sized transactions or need to rely on trusted setups. For

example, Lelantus [31, 32] that modified the idea of Zerocoin [42]

with Maxwell’s CT [40] and logarithmic balance proofs [42] still

produces large-sized transactions due to the large number of assets,

that could bemillions in a stable ledger. Some full decoy transactions

like Zerocash [49, 52], ZCash [29], and BlockMaze [25] reduced

the transaction size using zk-SNARK (Zero-Knowledge Succinct

Non-Interactive Argument of Knowledge) [48] but require trusted

ceremonies to generate the public parameters and rely on relatively

new knowledge of exponent assumption. More importantly, full

decoy set payments suffer from availability issues since transactions
frequently expire when other transactions update the ledger, e.g.,

ZCash has enforced epochs of 50 mins. We gear up Nopenena with

unexpiring transactions for high availability even though expiring

is not common in Nopenena (even in QuisQuis) compared to full

decoy set payments like ZCash.

Ring CTs [46, 54, 60] originated with CryptoNote [57] and be-

came popular withMonero [46]. Later, Ring CT v.2 [54] and Ring CT

v.3 [60] introduced more efficient protocols, e.g., Ring CT v.3 pro-

vides ∼ 98% size reduction for large-sized rings. They allow users to

select a smaller decoy set and do not expire like full decoy set pay-

ments. However, they suffer from ever-growing output problem and

DM-decomposition [13, 17], leading to degrading untraceability.

Zether [9] introduced the account-based untraceable payment

modules to solve the ever-growing UTXO problem. Zether of-

fers contracts built from Σ-bullets of Inner-product argument [8].

Anonymous zether [15] and PriDe CT [26] improve Zether’s idea

of untraceability with improved cryptographic protocols. However,

Zether and its variants use epoch-based one-time keys to prevent

front-running and replay attacks on contracts. These one-time keys

trigger DM decomposition for each epoch. By reducing the epoch

V
er

ifi
ca

tio
n 

Ti
m

e 
 (m

s)

1

10

100

1000

4 16

Nopenena (measured)
QuisQuis (quoted [17]) Zether (measured)

Figure 6: Verification times vs. 𝑁 in account-based untraceable payments

for 𝑛 = 2. Here, we tested Zether [15] in our local machine (12th Gen i7-

1260P x 16) and measured the time for “verifyTransfer”. As for QuisQuis,

we quoted data included in QuisQuis [19] since the implementation is not

public. We emphasize that Zether’s verification times may be inflated since

it is written in JavaScript/Solidity.

size, the impact of the attack can be reduced, but it increases the

probability of transaction expiration.

QuisQuis proposed the first untraceable payments that prevent

the graph analysis with smaller decoy sets. However, the senders

of QuisQuis transactions must shuffle the transactions’ accounts to
verify the non-negativity of account balances while protecting the

untraceability. This shuffling algorithm creates a time-consuming

account searching problem for decoys and receivers. Moreover,

QuisQuis transactions are extremely inefficient due to this shuffling

algorithm. Instead of a shuffling-based solution, Nopenena uses

a novel cryptographic primitive, anonymous forced openings, to

obtain untraceability.

Regulated currencies.Apart from these cryptocurrencies, Cen-

tral Bank Digital Currencies (CBDC) [33, 36, 55, 59] and auditable

currencies [11, 35, 37] also use some untraceability techniques.

However, they do not provide untraceability from all validators
due to unavoidable regulations like revealing the real sender to the

regulators or the senders’ banks [33, 59].

We compare related work in Table 1. Also, existing account-

based untraceable payments are compared in Figure 1 and Figure 6,

according to the measured data of [15] and reported data
3
of [19].

We observe that Nopenena provides shorter and faster transactions

compared to others as shown in Figure 1 and Figure 6.

11 CONCLUSION
This paper presented Nopenena, a new untraceable decentralized

payment protocol with a non-monotone-sized ledger. Nopenena

proposed novel update proofs and a forced opening protocol to

obtain theft resistance and untraceability, i.e., hiding the sender and

receiver of a transaction among a set of decoy accounts. This paper

presented a formal definition of Nopenena along with a concrete

instantiation that is proven secure under the Discrete logarithm

and the Decisional Diffie-Helman assumptions. Finally, Nopenena

was implemented and showed efficiency compared to the state

of the art. For example, Nopenena has reduced the payment size

by 80% compared to the previous small-decoy set payments with

graph-analysis resistance.

3
QuisQuis C library is not public and implementing it is out of the scope.

13



REFERENCES
[1] Ahamed Ali et al. 2022. Decentralised Escrow Protocol that Facilitates Secure

Transactions between Trustless Parties. In Proceedings of the International Con-
ference on Innovative Computing & Communication (ICICC).

[2] Jayamine Alupotha and Xavier Boyen. 2022. Practical UC-Secure Zero-Knowledge

Smart Contracts. IACR Cryptol. ePrint Arch. 2022 (2022), 670. https://api.

semanticscholar.org/CorpusID:249751945

[3] Elli Androulaki, Ghassan O Karame, Marc Roeschlin, Tobias Scherer, and Srdjan

Capkun. 2013. Evaluating user privacy in bitcoin. In International Conference on
Financial Cryptography and Data Security. Springer, 34–51.

[4] George Bissias, A Pinar Ozisik, Brian N Levine, and Marc Liberatore. 2014. Sybil-

resistant mixing for bitcoin. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society. 149–158.

[5] blockchain.com. 2023. Blockchain Charts. (2023). https://www.blockchain.com/

explorer/charts.

[6] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A.

Kroll, and Edward W. Felten. 2014. Mixcoin: Anonymity for Bitcoin with Ac-

countable Mixes. In Financial Cryptography and Data Security, Nicolas Christin
and Reihaneh Safavi-Naini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

486–504.

[7] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth,

and Christophe Petit. 2015. Short accountable ring signatures based on DDH.

In European Symposium on Research in Computer Security. Springer, Springer,
243–265.

[8] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe

Petit. 2016. Efficient zero-knowledge arguments for arithmetic circuits in the

discrete log setting. In Advances in Cryptology–EUROCRYPT 2016: 35th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35. Springer, 327–357.

[9] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:

Towards Privacy in a Smart Contract World. In Financial Cryptography and Data
Security, Joseph Bonneau and Nadia Heninger (Eds.). Springer International

Publishing, Cham, 423–443.

[10] Benedikt Bunz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions

and More. In IEEE Symposium on Security and Privacy. 315–334. https://doi.org/
10.1109/SP.2018.00020

[11] Panagiotis Chatzigiannis and Foteini Baldimtsi. 2021. Miniledger: compact-sized

anonymous and auditable distributed payments. In European Symposium on
Research in Computer Security. Springer, 407–429.

[12] Alexander Chepurnoy and Amitabh Saxena. 2020. Zerojoin: Combining zerocoin

and coinjoin. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology: ESORICS 2020 International Workshops, DPM 2020 and CBT 2020,
Guildford, UK, September 17–18, 2020, Revised Selected Papers 15. Springer, 421–
436.

[13] Sherman SM Chow, Christoph Egger, Russell WF Lai, Viktoria Ronge, and Ivy KY

Woo. 2023. On sustainable ring-based anonymous systems. Cryptology ePrint
Archive (2023).

[14] Dominic Deuber and Dominique Schröder. 2021. CoinJoin in the Wild: An

Empirical Analysis in Dash. In Computer Security–ESORICS 2021: 26th European
Symposium on Research in Computer Security, Darmstadt, Germany, October 4–8,
2021, Proceedings, Part II 26. Springer, 461–480.

[15] Benjamin E Diamond. 2021. Many-out-of-many proofs and applications to

anonymous zether. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
1800–1817.

[16] Andrew L Dulmage and Nathan S Mendelsohn. 1958. Coverings of bipartite

graphs. Canadian Journal of Mathematics 10 (1958), 517–534.
[17] Christoph Egger, Russell WF Lai, Viktoria Ronge, Ivy KY Woo, and Hoover HF

Yin. 2022. On Defeating Graph Analysis of Anonymous Transactions. Proceedings
on Privacy Enhancing Technologies 3 (2022), 538–557.

[18] Anjaneyulu Endurthi and Akhil Khare. 2021. Cheat Proof Escrow System for

Blockchain. In 2021 5th International Conference on Intelligent Computing and
Control Systems (ICICCS). IEEE, 294–298.

[19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. 2019.

Quisquis: A new design for anonymous cryptocurrencies. In Advances in
Cryptology–ASIACRYPT 2019: 25th International Conference on the Theory and
Application of Cryptology and Information Security, Kobe, Japan, December 8–12,
2019, Proceedings, Part I 25. Springer, 649–678.

[20] Michael Fleder, Michael S Kester, and Sudeep Pillai. 2015. Bitcoin transaction

graph analysis. arXiv preprint arXiv:1502.01657 (2015).

[21] Oliver Giel and Ingo Wegener. 2003. Evolutionary algorithms and the maximum

matching problem. In Annual Symposium on Theoretical Aspects of Computer
Science. Springer, 415–426.

[22] Grin. 2017. Fork of secp256k1-zkp for the Grin/MimbleWimble project. (2017).

https://github.com/mimblewimble/secp256k1-zkp.

[23] Jens Groth and Yuval Ishai. 2008. Sub-linear zero-knowledge argument for

correctness of a shuffle. In Advances in Cryptology–EUROCRYPT 2008: 27th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings 27. Springer, 379–396.

[24] Jens Groth and Markulf Kohlweiss. 2015. One-out-of-many proofs: Or how to

leak a secret and spend a coin. In Advances in Cryptology-EUROCRYPT 2015: 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. Springer, 253–
280.

[25] Zhangshuang Guan, Zhiguo Wan, Yang Yang, Yan Zhou, and Butian Huang. 2020.

BlockMaze: An efficient privacy-preserving account-model blockchain based on

zk-SNARKs. IEEE Transactions on Dependable and Secure Computing 19, 3 (2020),

1446–1463.

[26] Yue Guo, Harish Karthikeyan, Antigoni Polychroniadou, and Chaddy Huussin.

2023. PriDe CT: Towards Public Consensus, Private Transactions, and Forward

Secrecy in Decentralized Payments. Cryptology ePrint Archive (2023).
[27] Ethan Heilman, Leen AlShenibr, Foteini Baldimtsi, Alessandra Scafuro, and

Sharon Goldberg. 2017. TumbleBit: an untrusted Bitcoin-compatible anonymous

payment hub. (2017). https://open.bu.edu/handle/2144/29224

[28] Jordi Herrera-Joancomartí. 2014. Research and challenges on bitcoin anonymity.

In Data Privacy Management, Autonomous Spontaneous Security, and Security
Assurance. Springer, 3–16.

[29] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2016. Zcash

protocol specification. Tech. rep. 2016–1.10. Zerocoin Electric Coin Company, Tech.
Rep. (2016).

[30] Tom Elvis Jedusor. 2016. Mimblewimble. (2016). https://docs.beam.mw/

Mimblewimble.pdf.

[31] Aram Jivanyan. 2019. Lelantus: A new design for anonymous and confidential

cryptocurrencies. Cryptology ePrint Archive (2019).
[32] Aram Jivanyan and Aaron Feickert. 2022. Lelantus Spark: Secure and flexible

private transactions. In International Conference on Financial Cryptography and
Data Security. Springer, 409–447.

[33] Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. 2022. Peredi:

Privacy-enhanced, regulated and distributed central bank digital currencies. In

Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 1739–1752.

[34] Russell WF Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Ar-

avinda Krishnan Thyagarajan, and Jiafan Wang. 2019. Omniring: Scaling private

payments without trusted setup. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. 31–48.

[35] Chao Lin, Debiao He, Xinyi Huang, Muhammad Khurram Khan, and Kim-

Kwang Raymond Choo. 2020. DCAP: A secure and efficient decentralized condi-

tional anonymous payment system based on blockchain. IEEE Transactions on
Information Forensics and Security 15 (2020), 2440–2452.

[36] Chao Lin, Debiao He, Xinyi Huang, Xiang Xie, and Kim-Kwang Raymond Choo.

2020. Ppchain: A privacy-preserving permissioned blockchain architecture for

cryptocurrency and other regulated applications. IEEE Systems Journal 15, 3
(2020), 4367–4378.

[37] Chao Lin, Xinyi Huang, Jianting Ning, and Debiao He. 2022. Aca: Anonymous,

confidential and auditable transaction systems for blockchain. IEEE Transactions
on Dependable and Secure Computing (2022).

[38] Lindell. 2003. Parallel coin-tossing and constant-round secure two-party compu-

tation. Journal of Cryptology 16 (2003), 143–184.

[39] Varun Madathil and Alessandra Scafuro. 2023. PriFHEte: Achieving Full-Privacy

in Account-based Cryptocurrencies is Possible. Cryptology ePrint Archive (2023).
[40] Greg Maxwell. 2015. Confidential transactions. (2015). https://people.xiph.org/

~{}greg/confidential_values.txt(Accessed09/01/2021).

[41] Sarah Meiklejohn and Rebekah Mercer. 2018. Möbius: Trustless tumbling for

transaction privacy. (2018).

[42] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. 2013. Zerocoin:

Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 397–411.

[43] Liam Morris. 2015. Anonymity analysis of cryptocurrencies. Rochester Institute

of Technology.

[44] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[45] Shen Noether, Adam Mackenzie, et al. 2016. Ring Confidential Transactions.

Ledger 1 (2016), 1–18.
[46] Shen Noether and Sarang Noether. 2014. Monero is not that

mysterious. Technical report (2014). Online available at:

https://web.getmonero.org/ru/resources/research-lab/pubs/MRL-0003.pdf.

[47] Fergal Reid and Martin Harrigan. 2013. An analysis of anonymity in the bitcoin

system. In Security and privacy in social networks. Springer, 197–223.
[48] Christian Reitwiessner. 2016. zkSNARKs in a nutshell. Ethereum blog 6 (2016),

1–15.

[49] Antoine Rondelet and Michal Zajac. 2019. Zeth: On integrating zerocash on

ethereum. arXiv preprint arXiv:1904.00905 (2019).

14

https://api.semanticscholar.org/CorpusID:249751945
https://api.semanticscholar.org/CorpusID:249751945
https://www.blockchain.com/explorer/charts
https://www.blockchain.com/explorer/charts
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://github.com/mimblewimble/secp256k1-zkp
https://open.bu.edu/handle/2144/29224
https://docs.beam.mw/Mimblewimble.pdf
https://docs.beam.mw/Mimblewimble.pdf
https://people. xiph. org/~{} greg/confidential_values. txt (Accessed 09/01/2021)
https://people. xiph. org/~{} greg/confidential_values. txt (Accessed 09/01/2021)


[50] Tim Ruffing and Pedro Moreno-Sanchez. 2017. Valueshuffle: Mixing confidential

transactions for comprehensive transaction privacy in bitcoin. In Financial Cryp-
tography and Data Security: FC 2017 International Workshops, WAHC, BITCOIN,
VOTING, WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers 21.
Springer, 133–154.

[51] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. 2014. Coinshuffle: Practi-

cal decentralized coin mixing for bitcoin. In Computer Security-ESORICS 2014:
19th European Symposium on Research in Computer Security, Wroclaw, Poland,
September 7-11, 2014. Proceedings, Part II 19. Springer, 345–364.

[52] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized anonymous

payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE,
459–474.

[53] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. 2014. Bitiodine: Ex-

tracting intelligence from the bitcoin network. In International Conference on
Financial Cryptography and Data Security. Springer, 457–468.

[54] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. 2017. RingCT 2.0: A

Compact Accumulator-based (Linkable Ring Signature) protocol for blockchain

cryptocurrencyMonero. In European Symposium on Research in Computer Security.
Springer, 456–474.

[55] Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,

Benny Pinkas, andAvishay Yanai. 2022. Utt: Decentralized ecashwith accountable

privacy. Cryptology ePrint Archive (2022).
[56] Luke Valenta and Brendan Rowan. 2015. Blindcoin: Blinded, accountable mixes

for bitcoin. In Financial Cryptography and Data Security: FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, January 30,
2015, Revised Selected Papers. Springer, 112–126.

[57] Nicolas Van Saberhagen. 2013. CryptoNote v 2.0. (2013).

[58] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151 (2014), 1–32.
[59] Karl Wüst, Kari Kostiainen, Noah Delius, and Srdjan Capkun. 2022. Platypus: A

central bank digital currencywith unlinkable transactions and privacy-preserving

regulation. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 2947–2960.

[60] Tsz Hon Yuen, Shi-feng Sun, Joseph K Liu, Man Ho Au, Muhammed F Esgin,

Qingzhao Zhang, and Dawu Gu. 2020. RingCT 3.0 for blockchain confidential

transaction: Shorter size and stronger security. In International Conference on
Financial Cryptography and Data Security. Springer, 464–483.

A CONTRACT PROOFS FOR EQUALITY
Let there be 𝐶1 = 𝑔𝑘1`𝑣 ∈ G and 𝐶2 = 𝑔𝑘2`𝑣 ∈ G. We want to

prove that they commit to the same value without revealing 𝑣 .

Let (EqProve, EqVerify) be the equal proof protocol that works as
follows:

EqProve(𝐶1,𝐶2, 𝑘1, 𝑘2) :

𝑦
$←− Z𝑞 ;𝑅 := 𝑔𝑦 ∈ G, 𝑥 := Hash(𝐶1,𝐶2, 𝑅)

𝑠 = 𝑦 + (𝑘1 − 𝑘2)𝑥 ∈ Z𝑞 return 𝜋𝑒𝑞 := (𝑠, 𝑅)

EqVerify(𝐶1,𝐶2, 𝜋𝑒𝑞 : (𝑠, 𝑅)) :

return 𝑔𝑠
?

= 𝑅(𝐶1𝐶
−1

2
)Hash(𝐶1,𝐶2,𝑅) ∈ G

Theorem A.1. (EqProve, EqVerify) provide ZKA for a statement
“hidden values are equal” when the DL problem is hard [2].

B DEFINITIONS IMPLIED BY
ZERO-KNOWLEDGE RELATIONS

Definition B.1 (Indistinguishability of Rerandomized Accounts).
The asset rerandomization is indistinguishable if

𝑃𝑟



𝑏 ′
?

= 𝑏

���
(𝑘0, 𝑘1, 𝑟0, 𝑟1, ^0, ^1, 𝑟

′) $←−Z𝑞, 𝑣 ′
$←−[0, 2𝐿),𝒜→ (𝑣0, 𝑣1,𝑊 )

𝑎𝑐𝑐0 := (𝑔𝑘0 , 𝑔𝑟0 , 𝑔𝑘0𝑟0`𝑣0 ), 𝑎𝑐𝑐1 := (𝑔𝑘1 , 𝑔𝑟1 , 𝑔𝑘1𝑟1`𝑣1 )

𝑏
$←−[0, 1], asset𝑏 :=UpdateAsset(𝑟 ′, 𝑣𝑏 , 𝑣 ′, 𝑎𝑐𝑐𝑏 )

ˆ𝑏 := ( [0, 1] \ 𝑏)∈[0, 1], asset
ˆ𝑏
:=UpdateAsset(𝑟 ′, 𝑎𝑐𝑐

ˆ𝑏
)

𝜎
ˆ𝑏

:= UpdateProve(𝑟 ′, 𝑎𝑐𝑐
ˆ𝑏
, asset

ˆ𝑏
;^

ˆ𝑏
,𝑊 )

𝜎𝑏 :=UpdateValueProve(𝑟 ′, 𝑘𝑏 , 𝑣𝑏 , 𝑣 ′, 𝑎𝑐𝑐𝑏 , asset𝑏 ;^𝑏 ,𝑊 )
𝒜(𝑎𝑐𝑐0, 𝑎𝑐𝑐1, asset0, asset1, 𝜎0, 𝜎1) → 𝑏 ′


Definition B.2 (Sender-Anonymity of Rerandomized Accounts).

The asset rerandomization is sender-anonymous if

𝑃𝑟



𝑏 ′
?

= 𝑏

���
(𝑘0, 𝑘1, 𝑟0, 𝑟1, ^0, ^1, 𝑟

′) $←−Z𝑞, 𝑣 ′
$←−[0, 2𝐿),𝒜→ (𝑣0, 𝑣1,𝑊 )

𝑎𝑐𝑐0 := (𝑔𝑘0 , 𝑔𝑟0 , 𝑔𝑘0𝑟0`𝑣0 ), 𝑎𝑐𝑐1 := (𝑔𝑘1 , 𝑔𝑟1 , 𝑔𝑘1𝑟1`𝑣1 )

𝑏
$←−[0, 1], asset𝑏 :=UpdateAsset(𝑟 ′, 𝑣𝑏 , 𝑣 ′, 𝑎𝑐𝑐𝑏 )

ˆ𝑏 := ( [0, 1] \ 𝑏)∈[0, 1], asset
ˆ𝑏
:=UpdateAsset(𝑟 ′, 𝑎𝑐𝑐

ˆ𝑏
)

𝜎
ˆ𝑏

:= UpdateProve(𝑟 ′, 𝑎𝑐𝑐
ˆ𝑏
, asset

ˆ𝑏
;^

ˆ𝑏
,𝑊 )

𝜎𝑏 :=UpdateValueProve(𝑟 ′, 𝑘𝑏 , 𝑣𝑏 , 𝑣 ′, 𝑎𝑐𝑐𝑏 , asset𝑏 ;^𝑏 ,𝑊 )

𝒜𝑂UpdateValueMProve(𝑟 ′,∗) ( [𝑎𝑐𝑐𝑖 , asset𝑖 , 𝜎𝑖 ]1𝑖−0
) → 𝑏 ′


when 𝑂UpdateValueMProve(𝑟 ′,∗) is an oracle which runs the multi-

partyUpdateValueMProvewith the adversary (simulates a receiver)

for the same 𝑟 ′.

Untraceability means that the verifiers cannot identify which

accounts are actual senders/receivers. We define untraceability

such that the adversary (simulates verifiers) selects two sets of

sending/receiving accounts’ indexes, [ 𝑗
0,𝑙 ]𝑛𝑙=0

and [ 𝑗
1,𝑙 ]𝑛𝑙=0

, yet the

adversary cannot win the following game of identifying which set

was used for the transaction with more than
1

2
+ 𝜖 (_) probability.

Definition B.3 (Untraceability). The payments are untraceable if

𝑃𝑟


𝑏

?

= 𝑏 ′
�����

𝑛 < 𝑁, ( [ 𝑗
0,𝑙 ]𝑛𝑙=0

, [ 𝑗
1,𝑙 ]𝑛𝑙=0

) ← 𝒜(𝑁,𝑛)

s.t.[ 𝑗
0,𝑙 ]𝑛𝑙=0

≠ [ 𝑗
1,𝑙 ]𝑛𝑙=0

; 𝑏
$← [0, 1]

𝑡𝑥𝑏 :=CreateTx
©«

Λ, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
, [ 𝑗𝑏,𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ,

𝐶𝑙 ]𝑛𝑙=0
, [ℱ𝑧𝑘 ,𝐶, 𝜋𝑧𝑘 , 𝛼𝑐 , 𝑐]

[ℱ ′
𝑧𝑘
,𝐶 ′, 𝛼𝑐′, 𝑐 ′], 𝑓 , 𝑓 ′; [𝑘𝑙 ]𝑛𝑙=0

ª®®®¬
𝑏 ′ ← 𝒜(𝑡𝑥𝑏 )


≤ 1

2

+𝜖 (_) .

Sender anonymity means that receivers cannot identify which

account is sending coins. We define the following game such that

the adversary (simulates receivers) tries to identify the sending

account’s index (could be 𝑗0,0 or 𝑗1,0). The payment system provides

sender anonymity if the adversary cannot win the following game

with more than
1

2
+ 𝜖 (_) probability.

15



Definition B.4 (Sender Anonymity). The payments provide sender

anonymity if

𝑃𝑟


𝑏

?

=𝑏 ′
�����

𝑛 < 𝑁, ( 𝑗0,0, 𝑗1,0, [ 𝑗𝑙 , 𝑘 𝑗𝑙 ]𝑛𝑙=1
) ← 𝒜(𝑁,𝑛) s.t.

𝑗
0,𝑙≠ 𝑗1,𝑙 ; 𝑏

$←[0, 1]; [ 𝑗 ′
𝑙
]𝑛
𝑙=0

:= 𝑗𝑏,0 ∪ [ 𝑗𝑙 ]𝑛𝑙=1

𝑡𝑥𝑏 :=CreateTx
©«

Λ, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0
, [ 𝑗 ′

𝑙
, 𝑣𝑙 , 𝑣

′
𝑙
, 𝛼𝑙 ,

𝐶𝑙 ]𝑛𝑙=0
, [ℱ𝑧𝑘 ,𝐶, 𝜋𝑧𝑘 , 𝛼𝑐 , 𝑐]

[ℱ ′
𝑧𝑘
,𝐶 ′, 𝛼𝑐′, 𝑐 ′], 𝑓 , 𝑓 ′; [𝑘𝑙 ]𝑛𝑙=0

ª®®®¬
𝑏 ′ ← 𝒜(𝑡𝑥𝑏 )


≤ 1

2

+𝜖 (_).

C SECURITY PROOFS OF NOPENENA
ACCOUNTS

We prove Theorem 5.4 in this section.

C.1 Zero-knowledge argument
We unfold the left hand sides of (𝑇1,𝑇2,𝑇3) to show the correctness

of update proofs as stated below.

𝑇1 = 𝑔𝑠1 ((𝐺 ′)−1𝐺)𝑥 = 𝑔𝑡+𝑥 (𝑟
′)𝑔−𝑟

′𝑥 = 𝑔𝑡

𝑇2 = 𝐾𝑠1`𝑠2 ((𝑉 ′)−1𝑉 )𝑥

= 𝐾𝑡+𝑥 (𝑟
′) `𝜏+𝑥 (𝑣

′−𝑣) (𝐾𝑟
′𝑥 ` (𝑣

′−𝑣)𝑥 )−1 = 𝐾𝑡 `𝜏

𝑇3 = 𝐾𝑠2𝑔−𝑠3 = 𝐾𝜏+𝑥 (𝑣
′−𝑣)𝑔^−𝑥 (𝑣

′−𝑣)𝑘

= 𝐾𝜏 (𝑔𝑘 )𝑥 (𝑣
′−𝑣)𝑔^−𝑥 (𝑣

′−𝑣)𝑘 = 𝐾𝜏𝑔^

C.2 Strong theft-resistance
Lemma C.1. Nopenena rerandomized accounts are theft-resistant

if the DL problem is hard, and Pedersen commitments are binding.

Proof: We prove theft-resistance by showing that if there is an

adversary 𝒜 who breaks the theft resistance then we can use 𝒜 to

break the DL problem in Definition 3.2.

1: input : (𝑔,𝑌 ) from DL challenger (Definition 3.2)

2: reduction: 𝑎𝑐𝑐 = (𝐾 = 𝑌,𝑔𝑟 , 𝐾𝑟 `𝑣0 ) for 𝑟 $←− Z𝑞
3: 𝑇1,𝑇2,𝑇3 ← 𝒜(𝑣0, 𝑎𝑐𝑐) ⊲ get the preinputs

4: (𝑖, 𝑣 ′, (𝐺 ′,𝑉 ′), 𝜎 ′=(𝑥, 𝑠1, 𝑠2, 𝑠3))←𝒜(𝑥 $←− Z𝑞) ⊲ from 𝒜 in

Definition 5.3

5: (𝑖, 𝑣 ′, (𝐺 ′,𝑉 ′), 𝜎 ′′=(𝑥 ′, 𝑠 ′
1
, 𝑠 ′

2
, 𝑠 ′

3
))←𝒜(𝑥 ′ $←− Z𝑞) ⊲ rewinds

𝒜 with a fresh verifier randomness

6: 𝑘 := (𝑠 ′
3
− 𝑠3)/((𝑥 − 𝑥 ′) (𝑣 ′ − 𝑣0)) ⊲ computes the secret key

7: output : 𝑘 to DL challenger (Definition 3.2)

Here, we assume that Pedersen commitments are binding such that

the adversary cannot find 𝑠 such that 𝐾𝑠 = 𝐾𝑟 `𝑣
′−𝑣0 = (𝑉 ′)−1𝑉

when 𝑣 ′ − 𝑣0 is not zero. Therefore, we conclude that Lemma C.1 is

true, i.e., Nopenena accounts has strong theft resistance if solving

the DL problem is hard, and Pedersen commitments are binding.

Lemma C.2 (Witness-extended emulation). Rerandomizable
accounts provide witness-extended emulation forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 if Pedersen
commitments are hiding, and the DDH problem is hard.

Proof: We assume that there exists an adversary𝒜𝑊𝐸𝐸 who breaks

the witness-extended emulation game with more than negligible

probability. Then, we reduce 𝒜𝑊𝐸𝐸 to break Pedersen commit-

ments’ hiding property and the DDH problem as follows.

1: premessage:𝑚𝑜𝑑𝑒 $←−[PC, DDH]
2: if 𝑚𝑜𝑑𝑒=‘PC’: send (𝑣0, 𝑣1)∈[0, 2𝐿) to Theorem 3.4’s chal-

lenger.

3: input:
4: if𝑚𝑜𝑑𝑒=‘PC’: get (𝑔, `,𝐶) from the challenger in Theorem

3.4.

5: if 𝑚𝑜𝑑𝑒=‘DDH’: get (𝑔,𝑋,𝑌,𝐶) from Definition 3.3’s chal-

lenger.

6: reduction: creates a looks-like account and proof for a precom-

puted (𝑘, 𝑟, 𝑟 ′, 𝑡, 𝜏, ^) $←− Z𝑞 and 𝑥 is taken from 𝒱
7: if𝑚𝑜𝑑𝑒 = ‘PC’:

8: 𝑎𝑐𝑐 = (𝐾 = 𝑔,𝐺 = 𝐶1/𝑘 ,𝑉 = 𝐶) ∈ G3

9: 𝑔 = 𝑔1/𝑘 ∈ G
10: 𝐺 ′ := 𝐺𝑔𝑟

′
, 𝑉 ′ := 𝐾𝑟

′
`𝑣0

11: 𝑠1 = 𝑡 + 𝑥 (𝑟 ′), 𝑠2 = 𝜏 + 𝑥𝑣0, 𝑠3 = −^ + 𝑥𝑣0𝑘 ⊲ in Z𝑞

12: 𝑇1=𝑔
𝑡𝐶𝑥/𝑘 ,𝑇2=𝐾

𝑡 `𝜏𝐶𝑥 ,𝑇3=𝐾
𝜏𝑔^ ⊲ in G

13: 𝑡𝑟=
(
(𝑔, `), 𝑢 = (𝑎𝑐𝑐, 𝑎𝑠𝑠𝑒𝑡 ′ = (𝐺 ′,𝑉 ′),

14: 𝜎=(𝑥, 𝑠1, 𝑠2, 𝑠3),𝑇1,𝑇2,𝑇3)
)

15: 𝑏 ← 𝒜𝑊𝐸𝐸 (𝑡𝑟 ; Z := 𝜙)
16: if𝑚𝑜𝑑𝑒 = ‘DDH’:

17: 𝑎𝑐𝑐 = (𝐾 = 𝑋,𝐺 = 𝑔𝑟 ,𝑉 = 𝐾𝑟 `𝑣0 ) ∈ G3

18: 𝑔 = 𝑋 1/𝑘 ∈ G
19: 𝐺 ′ := 𝐺𝑌 1/𝑘

, 𝑉 ′ := 𝑉𝐶

20: 𝑠1 = 𝑡 + 𝑥 (𝑟 ′), 𝑠2 = 𝜏 − 𝑥𝑣0, 𝑠3 = −^ − 𝑥𝑣0𝑘 ⊲ in Z𝑞

21: 𝑇1 = 𝑔𝑡𝑌𝑥/𝑘𝑔𝑥𝑟
′
,𝑇2 = 𝐾𝑡 `𝜏𝐶𝑥 ,𝑇3 = 𝐾𝜏𝑔^ ⊲ in G

22: 𝑡𝑟=
(
(𝑔, `), 𝑢 = (𝑎𝑐𝑐, 𝑎𝑠𝑠𝑒𝑡 ′ = (𝐺 ′,𝑉 ′)

23: 𝜎=(𝑥, 𝑠1, 𝑠2, 𝑠3),𝑇1,𝑇2,𝑇3)
)

24: 𝑏 ← 𝒜𝑊𝐸𝐸 (𝑡𝑟 ; Z := 𝜙)
25: output:
26: 𝑚𝑜𝑑𝑒 = ‘PC’: [0, 1] \ 𝑏 to the challenger of Theorem 3.4.

27: 𝑚𝑜𝑑𝑒 = ‘DDH’: [0, 1] \ 𝑏 to the challenger of Definition 3.3.

𝑚𝑜𝑑𝑒 = ‘PC’ . Here, if 𝐶 is a commitment to 𝑣0, then the transcript

𝑡𝑟 is a genuinely created. Hence,𝒜𝑊𝐸𝐸 accepts 𝑡𝑟 , i.e.,𝒜𝑊𝐸𝐸 (𝑡𝑟 ; Z ) =
1 with more than 1/2 + 𝜖 (_) probability. However, if 𝐶 is a com-

mitment to 𝑣1, then the transcript 𝑡𝑟 is emulated, i.e, looks-like

a valid transcript but actually commits an invalid value. Hence,

𝒜𝑊𝐸𝐸 rejects, i.e., 𝒜𝑊𝐸𝐸 (𝑡𝑟 ; Z ) = 0 with more than 1/2 + 𝜖 (_)
probability. Therefore, if 𝒜𝑊𝐸𝐸 distinguishes genuine transcripts

over emulated transcripts with more than 1/2 + 𝜖 (_) probability,
the hiding game of Definition 3.4 can be solved with more than

1/2 + 𝜖 (_) probability.

𝑚𝑜𝑑𝑒 = ‘DDH’ . From the DDH challenger, we get 𝐶 = 𝑔𝑥𝑦 or

𝐶 = 𝑔𝑐 for some unknown (𝑥,𝑦, 𝑐) with 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦 . Let the

exponent of 𝑌 be the randomness for the new asset. If 𝐶 = 𝑔𝑥𝑦 ,

the transcript 𝑡𝑟 is genuinely created, and 𝒜𝑊𝐸𝐸 outputs 1 with

more than 1/2 + 𝜖 (_) probability. If 𝐶 = 𝑔𝑐 for some 𝑐 ≠ 𝑥𝑦, then

the transcript 𝑡𝑟 is emulated, and 𝒜𝑊𝐸𝐸 outputs 0 with more than

1/2 + 𝜖 (_) probability. Hence, DDH problem is solvable if 𝒜𝑊𝐸𝐸

distinguishes genuine transcripts over emulated transcripts.

Therefore, we claim that Lemma C.2 is true.

Lemma C.3 (Knowledge Soundness). Rerandomizable accounts
provide knowledge soundness ofℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 if Pedersen commitments
are binding.

16



Proof: First, we prove that there exists a p.p.t. witness extractor
𝒲 given access to a rewindable prover𝒫∗

𝐾𝑆
, i.e., the prover outputs

(𝑠1, 𝑠2, 𝑠3) for the first round, (𝑠 ′
1
, 𝑠 ′

2
, 𝑠 ′

3
) and the rewinded round

for the same (𝑘, 𝑟 ′) and the verifier challenges (𝑥, 𝑥 ′). Then, the
extractor can extract 𝑘 = (𝑠 ′

3
− 𝑠3)/(𝑥 ′ − 𝑥) (𝑣 − 𝑣 ′). Likewise,

the extractor can extract all the witnesses. We assume that there

exists a rewindable prover𝒫∗
𝐾𝑆

whowins the knowledge soundness

game in Definition 3.5 with more than negligible probability for

𝒱 (𝑡𝑟 ) = 1 ∧ (𝑝𝑝,𝑢,𝑤) ∉ ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

Then, we reduce 𝒫∗
𝐾𝑆

to break Pedersen commitments’ binding

property as follows.

1: input:
2: get (𝑔, `) from the challenger in Theorem 3.4.

3: reduction:
4: initial witness 𝑠 = 𝑟 and 𝑝𝑝 = (𝑔, `)
5: extract (𝑡𝑟,𝑤) ← ℰ𝒲 ( ⟨𝒫∗

𝐾𝑆
(𝑝𝑝,𝑎𝑐𝑐,𝑠),𝒱 (𝑝𝑝,𝑎𝑐𝑐) ⟩)

6: such that 𝑡𝑟 =: (𝜎 = (𝑥, 𝑠1, 𝑠2, 𝑠3),𝐺 ′,𝑉 ′,𝑇1,𝑇2,𝑇3) :

7:

(
𝑎𝑐𝑐 = (𝐾 = 𝑔𝑘 ,𝐺 = 𝑔𝑟𝑘 ,𝑉 = 𝐺`𝑣) ∈ G3∧

8: 𝑇1 = 𝑔𝑠1 ((𝐺 ′)−1𝐺)𝑥 ∧𝑇2 = 𝐾𝑠1`𝑠2 ((𝑉 ′)−1𝑉 )𝑥∧
9: 𝑇3=𝐾

𝑠2𝑔−𝑠3 ∧𝐺 ′=𝐺𝑔𝑟 ′ ∧𝑉 ′=𝑉𝐾𝑟 ′`𝑣′−𝑣
)
=1 ⊲ 𝒱 (𝑡𝑟 )=1

10: and𝑤 =: (𝑟 ′, 𝑣 ′, 𝑡, 𝜏, ^): ⊲ since (𝑝𝑝,𝑢,𝑤) ∉ ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡

11:

(
𝑠1

?

≠𝑡 + 𝑥 (𝑟 ′) ∨ 𝑠2
?

≠𝜏+𝑥 (𝑣 ′−𝑣) ∨ 𝑠3
?

≠−^+𝑥 (𝑣 ′−𝑣)𝑘
)
= 1

12: if 𝑠1
?

≠𝑡 + 𝑥 (𝑟 ′):
13: 𝑜𝑢𝑡 =

(
(𝑟 ′, 0) ,

(
(𝑠1 − 𝑡)𝑥−1, 0

) )
⊲ for commitment 𝐺 ′𝐺−1

14: if 𝑠2
?

≠𝜏+𝑥 (𝑣 ′−𝑣):
15: 𝑜𝑢𝑡 =

(
(𝑟 ′𝑘, 𝑣 ′−𝑣) ,

(
𝑘 (𝑠1−𝑡)𝑥−1, (𝑠2−𝜏)𝑥−1

) )
⊲ 𝑉 ′𝑉 −1

16: if 𝑠3
?

≠−^+𝑥 (𝑣 ′−𝑣)𝑘):
17: 𝑜𝑢𝑡 =

(
(𝑘, 0) ,

(
(𝑠3 + ^) (𝑥 (𝑣 ′ − 𝑣))−1, 0

) )
⊲ for 𝐾

18: output:
19: 𝑜𝑢𝑡 to the challenger of Theorem 3.4.

Here, 𝒲 extracts witnesses from rewindable 𝒫∗
𝐾𝑆

such that

relation in Step 11 is 1. We can get at least one-pair of different

openings that create the same commitment, e.g., if 𝑠1
?

≠𝑡 +𝑥 (𝑟 ′) then
𝑔𝑟
′
= 𝑔 (𝑠1−𝑡 )𝑥−1

but 𝑟 ′ ≠ ((𝑠1−𝑡)𝑥−1). In other words, we can break
the binding property of Pedersen commitment if 𝒫∗

𝐾𝑆
exists.

Therefore, we claim that Lemma C.3 is true.

LemmaC.4. Nopenena rerandomized accounts hold zero-knowledge
argument for ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 if the DDH problem is hard, and Pedersen
commitments are hiding and binding.

Proof: We claim that Lemma C.4 is true due to the completeness,

Lemma C.2, and Lemma C.3.

C.3 Insider Zero-Knowledge Argument
Lemma C.5. Rerandomized accounts provide the insider ZKA if

the DDH problem is hard, and Pedersen commitments are hiding and
binding, and Rerandomized accounts are ZKA forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

Proof: Let there be an adversary 𝒜𝑊𝐸𝐸 with insider knowledge

Z = (𝐽𝒜=[ 𝑗𝜌 ]𝑅𝒜
𝜌=0

, [𝑘 𝑗𝜌 , 𝑣 𝑗𝜌 , 𝑣 ′𝑗𝜌 , ^ 𝑗𝜌 ]
𝑅𝒜
𝜌=0
) who wins the witness-

extended emulation game in Definition 3.5 for relation ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

We reduce 𝒜𝑊𝐸𝐸 to break the hiding property of Pedersen com-

mitments as follows. Let that 𝒜𝑊𝐸𝐸 controls all receivers, except

the sender and one decoy, i.e., 𝑅𝒜 + 1 = 𝑛 and 𝑅𝒜 + 2 = 𝑁 .

1: premessage:

2: get (𝑣0, 𝑣1) from 𝒜𝑊𝐸𝐸

3: send (𝑣0, 𝑣1)∈[0, 2𝐿) to Theorem 3.4’s challenger.

4: input:
5: get (𝑔, `,𝐶) from the challenger in Theorem 3.4.

6: reduction: creates a looks-like account and proof for (𝑘0, 𝑘1, ^0,

^1, 𝑟
′, 𝑡0, 𝑡1, 𝜏0, 𝜏1)

$←− Z𝑞 and (𝑥0, 𝑥1) from the verifier

7: 𝑊, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0,𝑖∈𝐽𝒜𝑊𝐸𝐸

← 𝒜𝑊𝐸𝐸

8: For 𝑖 ∈ 𝐽𝒜𝑊𝐸𝐸
:

9: 𝑎𝑠𝑠𝑒𝑡 ′
𝑖

:= UpdateAsset(𝑟 ′, 𝑣 ′
𝑖
, 𝑣𝑖 , 𝑎𝑐𝑐𝑖 )

10: 𝜎𝑖 := UpdateValueMProve(𝑟 ′, 𝑘𝑖 , 𝑣 ′𝑖 , 𝑣𝑖 , 𝑎𝑐𝑐𝑖 ;^𝑖 ,𝑊 ) ⊲ a

multi party protocol between the reducing algorithm (without

sharing 𝑟 ′) and 𝒜𝑊𝐸𝐸 with (𝑘𝑖 , ^𝑖 )
11: Let [ 𝑗0, 𝑗1] be [0, 𝑁 ) \ 𝐽𝒜𝑊𝐸𝐸

12: 𝑔 = 𝑔1/𝑘0

13: 𝑎𝑐𝑐 𝑗0 = (𝐾0 = 𝑔,𝐺0 = 𝐶1/𝑘0 ,𝑉0 = 𝐶) ∈ G3

14: 𝑎𝑠𝑠𝑒𝑡 ′
𝑗0
= (𝐺 ′

0
:= 𝐺0𝑔

𝑟 ′,𝑉 ′
0

:= 𝐾𝑟
′

0
`𝑣1 ) ∈ G2

15: 𝜎 𝑗0 = (𝑥0, 𝑡0 + 𝑥0 (𝑟 ′), 𝜏0 + 𝑥0𝑣1,−^0 + 𝑥0𝑣1𝑘0;𝑇1=𝑔
𝑡0𝐶𝑥0/𝑘0 ,

16: 𝑇2=𝐾
𝑡0
0
`𝜏0𝐶𝑥0 ,𝑇3=𝐾

𝜏0

0
𝑔^0 ) ∈ (Z4

𝑞,G
3)

17: 𝑎𝑐𝑐 𝑗1 = (𝐾1 = 𝑔𝑘1 ,𝐺1 = 𝐶𝑘1/𝑘0 ,𝑉1 = 𝐶𝑘1 ) ∈ G3

18: 𝑎𝑠𝑠𝑒𝑡 ′
𝑗1
= (𝐺 ′

1
:= 𝐺1𝑔

𝑟 ′,𝑉 ′
1

:= 𝐾𝑟
′

1
`𝑣0 ) ∈ G2

19: 𝜎 𝑗1 = (𝑥1, 𝑡1+𝑥1 (𝑟 ′), 𝜏1+𝑥1𝑣0,−^1+𝑥1𝑣0𝑘0/𝑘1;𝑇1=𝑔
𝑡1𝐶𝑥1𝑘1/𝑘0 ,

20: 𝑇2=𝐾
𝑡1
1
`𝜏1𝐶𝑥1𝑘1 ,𝑇3=𝐾

𝜏1

1
𝑔^1 ) ∈ (Z4

𝑞,G
3)

21: 𝑏 ← 𝒜𝑊𝐸𝐸 (((𝑔, `), [𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]
𝑁
𝑖=0
); Z )

22: output: send [0, 1] \ 𝑏 to Theorem 3.4’s challenger.

If 𝐶 has committed 𝑣0 then 𝑎𝑠𝑠𝑒𝑡
′
0
changes the balance from 𝑣0

to 𝑣1, and 𝒜𝑊𝐸𝐸 outputs 1 with more than 1/2 + 𝜖 (_) probability.
Similarly, if 𝐶 has committed 𝑣1 then 𝑎𝑠𝑠𝑒𝑡 ′

1
changes the balance

from 𝑣1 to 𝑣0, and 𝒜𝑊𝐸𝐸 outputs 0 with more than 1/2 + 𝜖 (_)
probability. Therefore, we can win the hiding game of Pedersen

commitments if𝒜𝑊𝐸𝐸 exists. If this reductionworks for𝑅𝒜+2 = 𝑁 ,

then it also can be extended for any 0 ≤ 𝑅𝒜 < 𝑛 < 𝑁 by increasing

the number of decoys and sending accounts.

Also, we can see that rerandomized accounts provide knowl-

edge soundness forℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 if rerandomized accounts has ZKA

forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 . Thus, rerandomized accounts provides knowledge

soundness for ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 if the DDH problem is hard and Pedersen

commitments are hiding and binding as shown in Lemma C.3.

Therefore, we conclude that Lemma C.5 is valid, i.e., Nopenena

accounts provide insider ZKA if Pedersen commitments are hiding

and binding, the DDH problem is hard, rerandomized accounts are

zero-knowledge forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

D SECURITY PROOFS OF ANONYMOUS
FORCED OPENINGS

We prove Theorem 5.6 in this section.

Completeness. We prove the completeness by showing that 𝐻 𝑗
(Step 11 of ForcedOutProve) is a zero-value commitment.

17



𝐻 𝑗 = �̄�

𝑛∏
𝑙=0

(
(𝐺 ′𝑖𝑚,𝑙 )

𝑧𝑙𝐶𝑙

)−𝑥𝑖𝑚,𝑙
= 𝐷

𝑁∏
𝑖=0

(𝑉 ′𝑖 )
𝑠3,𝑖 (𝐴′)𝑦𝑎′

𝑛∏
𝑙=0

(
(𝐺 ′𝑗𝑙 )

𝑧𝑙𝐵
𝑦𝑏,𝑙
𝑙

𝐶
𝑓𝑙
𝑙
𝐴
𝑦𝑎,𝑙
𝑙

)−𝑥 𝑗𝑙
=

𝑛∏
𝑙=0

ℎ𝑦𝑎′𝑎
′
𝑙 (𝐺 ′𝑗𝑙 )

𝑥 𝑗𝑙 𝑘
2

𝑙
(𝑣′
𝑙
−𝑣𝑙 ) `𝑣

′𝑥 𝑗𝑙 𝑘𝑙 (𝑣
′
𝑙
−𝑣𝑙 )

×
(
(𝐺 ′𝑗𝑙 )

𝑘2

𝑙
(𝑣′
𝑙
−𝑣𝑙 )𝐶𝑘𝑙 (𝑣

′
𝑙
−𝑣𝑙 )

)−𝑥 𝑗𝑙
=

𝑛∏
𝑙=0

ℎ𝑦𝑎′𝑎
′
𝑙 `
𝑣′𝑥 𝑗𝑙 𝑘𝑙 (𝑣

′
𝑙
−𝑣𝑙 )ℎ−𝑥 𝑗𝑙 𝛼𝑙𝑘𝑙 (𝑣

′
𝑙
−𝑣𝑙 ) `−𝑣

′
𝑙
𝑥 𝑗𝑙 𝑘𝑙 (𝑣

′
𝑙
−𝑣𝑙 )

= `0

𝑛∏
𝑙=0

ℎ
∑𝑛
𝑙=0
b𝑙

Therefore, if one-of-many proofs for zero-value commitments are

complete, we conclude that the protocol is complete.

Lemma D.1. Anonymous forced opening protocol provides witness-
extended emulation for relationℛ𝑓 𝑜𝑟𝑐𝑒𝑑 if Pedersen commitments are
hiding, one-of-many proofs for zero-value commitments holds ZKA
for relationℛ𝑧𝑒𝑟𝑜 , and rerandomized accounts provides (insider-)ZKA
for relationℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟

𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 .

Proof: Assume that there exists an adversary 𝒜𝑊𝐸𝐸 that wins

the witness-extended emulation game in Definition 3.5 for relation

ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 , and𝒜𝑊𝐸𝐸 controls 𝑅𝒜𝑊𝐸𝐸
accounts such that 𝑅𝒜𝑊𝐸𝐸

<

𝑛 and 𝑛 < 𝑁 . Therefore, the adversary has access to knowledge Z =

(𝐽𝒜𝑊𝐸𝐸
=[ 𝑗𝜌 ]

𝑅𝒜𝑊𝐸𝐸

𝜌=0
, [𝑘 𝑗𝜌 , 𝑣 𝑗𝜌 , 𝑣 ′𝑗𝜌 , ^ 𝑗𝜌 ]

𝑅𝒜𝑊𝐸𝐸

𝜌=0
, [𝑣 ′′

𝑙
, 𝛼𝑙 ]𝑛𝑙=0, 𝑗𝑙 ∈𝐽𝒜𝑊𝐸𝐸

).

When the ZKA of ℛ𝑧𝑒𝑟𝑜 and ℛ𝑖𝑛𝑠𝑖𝑑𝑒𝑟
𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 holds, we the reduce

𝒜𝑊𝐸𝐸 to break the Pedersen commitments’ hiding property as

follows:

1: premessage: send (𝑣0, 𝑣1)∈[0, 2𝐿) to Theorem 3.4’s challenger.

2: input: get (ℎ, `,𝐶) from the challenger in Theorem 3.4.

3: reduction: create accounts, update proofs, and looks-like/genuine

forced openings for ( [𝑘𝑖 , 𝑟𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0
, [𝛼𝑙 , 𝑎𝑙 , 𝑎′𝑙 , 𝑏𝑙 ]

𝑛
𝑙=0
, 𝑟 ′) $←−Z∗𝑞

4: 𝑣𝑖′ = 𝑣
′
𝑖′ = 𝑣0 when 𝑖 ′ ∈ [0, 𝑁 ) and 𝑗𝑙 ′ = 𝑖 ′ for 𝑙 ′ ∈ [0, 𝑛) and

𝑖 ′ ∉ 𝐽𝒜𝑊𝐸𝐸
⊲ the sending account’s index

5: get indexes [ 𝑗𝑙 ]𝑛𝑙=0
such that [𝑣 ′

𝑗𝑙
≠𝑣 𝑗𝑙 ]𝑛𝑙=0

∧[𝑣 ′
𝑖
= 𝑣𝑖 ]𝑁𝑖=0,𝑖∉[ 𝑗𝑙 ]𝑛𝑙=0

6: 𝑊, [𝑎𝑐𝑐𝑖 ]𝑁𝑖=0,𝑖∈𝐽𝒜𝑊𝐸𝐸

, [𝐶𝑙 ]𝑛𝑙=0, 𝑗𝑙 ∈𝐽𝒜𝑊𝐸𝐸

← 𝒜𝑊𝐸𝐸

7: For 𝑖 ∈ 𝐽𝒜𝑊𝐸𝐸
:

8: 𝑎𝑠𝑠𝑒𝑡 ′
𝑖

:= UpdateAsset(𝑟 ′, 𝑣 ′
𝑖
, 𝑣𝑖 , 𝑎𝑐𝑐𝑖 )

9: 𝜎𝑖 := UpdateValueMProve(𝑟 ′, 𝑘𝑖 , 𝑣 ′𝑖 , 𝑣𝑖 , 𝑎𝑐𝑐𝑖 ;^𝑖 ,𝑊 ) ⊲ a

multi party protocol between the reducing algorithm (without

sharing 𝑟 ′) and 𝒜𝑊𝐸𝐸 without sharing (𝑘𝑖 , ^𝑖 )
10: [𝑎𝑐𝑐𝑖 := (𝐾𝑖 = 𝑔𝑘𝑖 ,𝐺𝑖 = 𝑔𝑟𝑖 ,𝑉𝑖 = 𝐺𝑘𝑖𝑖 `

𝑣𝑖 )]𝑁
𝑖=0,𝑖∉𝐽𝒜𝑊𝐸𝐸

11: [𝑎𝑠𝑠𝑒𝑡 ′
𝑖

:= UpdateAsset(𝑟 ′, 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 )]
𝑁
𝑖=0

12: [𝜎𝑖 := UpdateValueProve(𝑟 ′, 𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡
′
𝑖
;^𝑖 ,𝑊 )]𝑁𝑖=0,𝑖∉𝐽𝒜𝑊𝐸𝐸

13: [𝐶𝑙 := ℎ𝛼𝑙 `
𝑣′𝑗𝑙 ]𝑛

𝑙=0,𝑙≠𝑙 ′,𝑙∉𝐽𝒜𝑊𝐸𝐸

and 𝐶𝑙 ′ = 𝐶

14: get ( [𝑦𝑎,𝑙 , 𝑦𝑏,𝑙 ]𝑛𝑙=0
, 𝑦) ∈ Z2𝑛+1

𝑞 from the verifier

15: for each 𝑙 ∈ [0, 𝑛) : 𝐴𝑙 := 𝐶
𝑎𝑙
𝑙
, 𝐴′
𝑙

:= ℎ𝑎
′
𝑙 , 𝐵𝑙 := (𝐺 ′

𝑗𝑙
)𝑏𝑙

16: 𝑓𝑙 := 𝑘 𝑗𝑙 (𝑣 ′𝑗𝑙 − 𝑣 𝑗𝑙 ) − 𝑦𝑎,𝑙𝑎𝑙 ∈ Z𝑞
17: 𝑧𝑙 := 𝑘 𝑗𝑙 (𝑣 ′𝑗𝑙 − 𝑣 𝑗𝑙 ) − 𝑦𝑏,𝑙𝑏𝑙 ∈ Z𝑞
18: for 𝑙 = 𝑙 ′:𝐴𝑙 := 𝐶−𝑓𝑙ℎ

(𝛼𝑙𝑘 𝑗𝑙 (𝑣
′
𝑗𝑙
−𝑣𝑗𝑙 ))/𝑦𝑎,𝑙 `

(𝑣′𝑗𝑙 𝑘 𝑗𝑙 (𝑣
′
𝑗𝑙
−𝑣𝑗𝑙 ))/𝑦𝑎,𝑙

19: 𝑊 = ( [𝐶𝑙 , 𝜋𝑙 , 𝐴𝑙 , 𝐵𝑙 , 𝑓𝑙 , 𝑧𝑙 ]𝑛𝑙=0
, 𝐷 =

∏𝑁
𝑖=0
(𝑉 ′
𝑖
)^𝑖 , 𝐴′ = ∏𝑛

𝑙=0
𝐴′
𝑙
)

20: 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 := ForcedOutProve( [𝑎𝑠𝑠𝑒𝑡 ′
𝑖
, 𝜎𝑖 ]𝑁𝑖=0

, [ 𝑗𝑙 , 𝑣𝑙 , 𝑣 ′𝑙 , 𝛼𝑙 ],𝑊 )
21: 𝑡𝑟=((𝑔, ℎ, `), [𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]

𝑁
𝑖=0
,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 )

22: 𝑏 ← 𝒜𝑊𝐸𝐸 (𝑡𝑟 ; Z )
23: output:
24: [0, 1] \ 𝑏 to the challenger of Theorem 3.4

Here, if 𝐶 has committed 𝑣0, 𝑡𝑟 is a genuine a transcript, and

𝒜𝑊𝐸𝐸 outputs 1 with more than 1/2 + 𝜖 (_) probability. Similarly,

𝒜𝑊𝐸𝐸 outputs 0 with more than 1/2+𝜖 (_) probability if𝐶 has com-

mitted 𝑣1 since 𝑡𝑟 is an emulated transcript created for 𝑣0. Therefore,

we win the game of Pedersen commitments’ binding property if

𝒜𝑊𝐸𝐸 exists. Hence, we conclude that Lemma D.1 is true.

Lemma D.2. Anonymous forced opening protocol provides knowl-
edge soundness if rerandomized accounts provide ZKA forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠 ,
one-of-many proofs provide ZKA for ℛ𝑧𝑒𝑟𝑜 , and Pedersen commit-
ments are binding.

Proof: Let there be an extractor 𝒲 and rewindable prover 𝒫∗
𝐾𝑆

which wins the knowledge soundness in Definition 3.5 of for re-

lation ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 . We prove that we can reduce 𝒫∗
𝐾𝑆

to solve the

binding game of Pedersen commitment as follows, when rerandom-

ized accounts and one-of-many proofs provide ZKA for ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡𝑠

andℛ𝑧𝑒𝑟𝑜 , respectively.

Here, we prove the binding property for three generator com-

mitments, i.e., 𝐶 = Commit𝑔,ℎ,` (𝜏, 𝜏 ′, 𝜏 ′′) = 𝑔𝜏ℎ𝜏
′
`𝜏
′′ ∈ G

1: premessage: send (𝑣0, 𝑣1)∈[0, 2𝐿) to Theorem 3.4’s challenger.

2: input: get (𝑔, `, ℎ) from the challenger in Theorem 3.4

3: reduction: ( [𝑘𝑖 , 𝑟𝑖 , 𝑣𝑖 ]𝑁𝑖=0

$←− Z3𝑁
𝑞

4: public parameters 𝑝𝑝 = (𝑔, ℎ, `)
5: extract (𝑡𝑟,𝑤) ← ℰ𝒲 ( ⟨𝒫∗

𝐾𝑆
(𝑝𝑝,𝑢,𝑠),𝒱 (𝑝𝑝,𝑢) ⟩)

for

6: initial witness 𝑠 = ( [𝑘𝑖 , 𝑟𝑖 , 𝑣𝑖 ]𝑁𝑖=0
, 𝑟 ′)

7: such that 𝑡𝑟 = (𝑛, [𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]
𝑁
𝑖=0
,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ) :

8: and𝑤 =: ( [ 𝑗𝑙 , 𝛼𝑙 , 𝑎𝑙 , 𝑎′𝑙 , 𝑏𝑙 ]
𝑛
𝑙=0
, [𝑣 ′

𝑙
, ^𝑖 ]𝑁𝑖=0

, 𝑗, b)
9: (𝑊 =:( [𝐶𝑙 , 𝜋𝑙 , 𝐴𝑙 , 𝐵𝑙 , 𝑓𝑙 , 𝑧𝑙 ]𝑛𝑙=0

, 𝐷,𝐴′)) when
10:

(
[𝑎𝑠𝑠𝑒𝑡 ′

𝑖
:= UpdateAsset(𝑟 ′, 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 )]

𝑁
𝑖=0
∧

11: [𝜎𝑖 := UpdateVerify(𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎 ;𝑊 )]𝑁
𝑖=0
∧

12: [OpenAsset(𝑘𝑖 , 𝑣 ′𝑖 , asset
′
𝑖 )=1]𝑛

𝑙=0
∧

13: ForcedOutVerify( [𝑎𝑠𝑠𝑒𝑡 ′
𝑖
, 𝜎𝑖 ]𝑁𝑖=0

,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ) = 1∧
14: [𝐶𝑙 := ℎ𝛼𝑙 `𝑣

′′
𝑙 ]𝑛
𝑙=0

)
= 1 ⊲ since 𝒱 (𝑡𝑟 ) = 1

15: ⊲ since (𝑝𝑝, ( [𝑎𝑠𝑠𝑒𝑡 ′
𝑖
, 𝜎𝑖 ]𝑁𝑖=0

,𝑊 , 𝜋𝑓 𝑜𝑟𝑐𝑒𝑑 ),𝑤)∉ℛ𝑓 𝑜𝑟𝑐𝑒𝑑 :

16:

( ∨𝑛
𝑙=0

𝑣 ′′
𝑙

?

≠𝑣 ′
𝑗𝑙
∨∨𝑁

𝑖=0,𝑖∉[ 𝑗𝑙 ]𝑛𝑙=0

𝑣𝑖
?

≠𝑣 ′
𝑖

)
=1

17: 𝜏 := (∑𝑁
𝑖=0

𝑥𝑖𝑘
2

𝑖
(𝑣 ′
𝑖
−𝑣𝑖 )𝑟𝑖 −

∑𝑛
𝑙=0

𝑥 𝑗𝑙 𝑟 𝑗𝑙𝑘 𝑗𝑙 (𝑧𝑙 +𝑦𝑏,𝑙𝑏𝑙 ))∈Z𝑞
18: 𝜏 ′ :=

∑𝑛
𝑙=0

𝑥 𝑗𝑙 (𝛼𝑙 𝑓𝑙 + 𝛼𝑙𝑦𝑎,𝑙𝑎𝑙 )∈Z𝑞
19: 𝜏 ′′ := (∑𝑁

𝑖=0
𝑥𝑖𝑘𝑖𝑣

′
𝑖
(𝑣 ′
𝑖
−𝑣𝑖 )−

∑𝑛
𝑙=0
(𝑥 𝑗𝑙 𝑣 ′′𝑗𝑙 𝑓𝑙+𝑥 𝑗𝑙 𝑣

′′
𝑗𝑙
𝑦𝑎,𝑙𝑎𝑙 ))∈Z𝑞

20: 𝑜𝑢𝑡 = ((0, 0, b), (𝜏, 𝜏 ′, 𝜏 ′′))
21: output: 𝑜𝑢𝑡 to the challenger of Theorem 3.4

18



When (∨𝑛
𝑙=0
(𝑣 ′′
𝑙

?

≠𝑣 ′
𝑗𝑙
)∨∨𝑁

𝑖=0,𝑖∉[ 𝑗𝑙 ]𝑛𝑙=0

(𝑣𝑖
?

≠𝑣 ′
𝑖
))=1, in Step 11,

𝐻 𝑗 = 𝑔
0ℎb `0 = 𝐷

𝑁∏
𝑖=0

(𝑉 ′𝑖 )
𝑠3,𝑖 (𝐴′)𝑦𝑎′

𝑛∏
𝑙=0

(
(𝐺 ′𝑗𝑙 )

𝑧𝑙𝐵
𝑦𝑏,𝑙
𝑙

𝐶
𝑓𝑙
𝑙
𝐴
𝑦𝑎,𝑙
𝑙

)−𝑥 𝑗𝑙
since 𝒱 (𝑡𝑟 ) = 1. However, their exponents (𝜏, 𝜏 ′, 𝜏 ′′) are different
from (0, 0, b) sinceℛ𝑓 𝑜𝑟𝑐𝑒𝑑 does not hold but ZKA ofℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 and

ℛ𝑧𝑒𝑟𝑜 valid. This reduction wins the game of binding property if

𝒫∗
𝐾𝑆

exists. Hence, we claim the validity of Lemma D.2.

E SECURITY PROOFS OF BALANCE PROOFS
We prove the security of balance proofs in this section.

We show the completeness of balance proofs by proving the

correctness of Step 12. If

∑𝑁
𝑖=0

𝑣𝑖 + 𝑐 + 𝑓 =
∑𝑁
𝑖=0

𝑣 ′
𝑖
+ 𝑐 ′ + 𝑓 ′ then

Step 12 is valid as follows:

` 𝑓
′−𝑓 = 𝐸−1𝑈 𝑦ℎ𝑠

′
(
𝑁∏
𝑖=0

𝐾 ′)𝑠𝑖 ∈ G (1)

=

(
𝐶 ′𝐶−1

𝑁∏
𝑖=0

𝑉 ′𝑖 ×𝑉
−1

𝑖

)−1

𝑈 𝑦ℎ𝑠
′
(
𝑁∏
𝑖=0

𝐾 ′)𝑠𝑖 (2)

=

(
ℎ𝛼𝑐′ `𝑐

′
ℎ−𝛼𝑐 `−𝑐

𝑁∏
𝑖=0

𝐾𝑟
′
𝑖 `

𝑣′𝑖−𝑣𝑖
)−1 (

ℎ𝑢
′
(
𝑁∏
𝑖=0

𝐾𝑖 )𝑢
)𝑦

(3)

× ℎ (𝛼𝑐′−𝛼𝑐 )−𝑦𝑢
′
(
𝑁∏
𝑖=0

𝐾 ′)𝑟
′−𝑦𝑢
𝑖

(4)

= `
∑𝑁
𝑖=0
(𝑣′𝑖−𝑣𝑖 )+𝑐′−𝑐 (5)

Lemma E.1. Nopenena balance proof protocol has witness-extended
emulation for relation ℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒 if Pedersen commitments are hiding,
and rerandomized accounts provide ZKA forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 .

Proof: Let 𝒜𝑊𝐸𝐸 be an adversary who wins the game of witness-

extended emulation inDefinition 3.5 forℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒 .We reduce𝒜𝑊𝐸𝐸

to break Pedersen commitments’ hiding property as follows:

1: premessage: send (𝑐0, 𝑐1)∈[0, 2𝐿) to Theorem 3.4’s challenger.

2: input: get (ℎ, `,𝐶) from the challenger in Theorem 3.4.

3: reduction: create accounts, update proofs, and emulated and

genuine proofs for ( [𝑘𝑖 , 𝑟𝑖 , ^𝑖 ]𝑁𝑖=0
, 𝛼𝑐′, 𝛼𝑐 , 𝑐

′, 𝑐, 𝑟 ′, 𝑢,𝑢 ′) $←−Z∗𝑞 and
𝑓 + 𝑐0 +

∑𝑁
𝑖=0

𝑣𝑖 = 𝑓
′ + 𝑐 ′ +∑𝑁

𝑖=0
𝑣 ′
𝑖

4: [𝑎𝑐𝑐𝑖 := (𝐾𝑖 = 𝑔𝑘𝑖 ,𝐺𝑖 = 𝑔𝑟𝑖 ,𝑉𝑖 = 𝐺𝑘𝑖𝑖 `
𝑣𝑖 )]𝑖=𝑁

𝑖=0

5: [𝑎𝑠𝑠𝑒𝑡 ′
𝑖

: (𝐺 ′
𝑖
,𝑉 ′
𝑖
) := UpdateAsset(𝑟 ′, 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 )]

𝑁
𝑖=0

6: [𝜎𝑖 := UpdateValueProve(𝑟 ′, 𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡
′
𝑖
;^𝑖 ,𝑊 )]𝑁𝑖=0

7: 𝑦 ∈ Z𝑞 from the verifier

8: 𝐶 = 𝐶ℎ𝛼𝑐 and 𝐶 ′ = ℎ𝛼𝑐′`
𝑐′

9: 𝐸 = 𝐶 ′𝐶−1
∏𝑁
𝑖=0

𝑉 ′
𝑖
×𝑉 −1

𝑖
∈ G

10: 𝑈 = 𝑈 (𝐶`𝑐0ℎ𝛼𝑐 )−1/𝑦

11: 𝑠 = (𝑟 ′ − 𝑦𝑢) and 𝑠 ′ = (𝛼𝑐′ − 𝛼𝑐 ) − 𝑦𝑢 ∈ Z𝑞
12: 𝑢=( [𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]

𝑁
𝑖=0
,𝑊 , 𝑓 , 𝑓 ′,𝐶,𝐶 ′, 𝜋𝑏𝑎𝑙𝑎𝑛𝑐𝑒 = (𝑈 , 𝑠, 𝑠 ′))

13: 𝑏 ← 𝒜𝑊𝐸𝐸 (((𝑔, ℎ, `), 𝑢); Z := 𝜙)
14: output:
15: [0, 1] \ 𝑏 to the challenger of Theorem 3.4

If𝐶 is a commitment of 𝑐0, then𝒜𝑊𝐸𝐸 outputs 1 with non-neglible

probability since balance proof is created for the correct balance.

However,𝒜𝑊𝐸𝐸 outputs 0 if𝐶 is a commitment of 𝑐1 since balance

proof is created for 𝑓 +𝑐1+
∑𝑁
𝑖=0

𝑣𝑖 ≠ 𝑓 ′+𝑐 ′+∑𝑁
𝑖=0

𝑣 ′
𝑖
. Therefore, we

win the hiding game of Pedersen commitments if𝒜𝑊𝐸𝐸 exists even

when rerandomized accounts provide ZKA for ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 . Thus, we

conclude that Lemma E.1 is true.

Lemma E.2. Nopenena balance proof protocol provides knowledge
soundness for relationℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒 if Pedersen commitments are binding,
and rerandomized accounts provide ZKA forℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 .

Proof: We assume that there exist an extractor𝒲 and a rewindable

prover 𝒫∗
𝐾𝑆

who breaks the knowledge soundness of ℛ𝑏𝑎𝑙𝑎𝑛𝑐𝑒 .

We reduce 𝒫∗
𝐾𝑆

to break the binding property of three generator

Pedersen commitments such that

Commit𝑔,ℎ,` (𝜏, 𝜏 ′, 𝜏 ′′) = 𝑔𝜏ℎ𝜏
′
`𝜏
′′
∈ G.

1: input:
2: get (𝑔, ℎ, `) from the challenger in Theorem 3.4.

3: reduction:
4: 𝑝𝑝 = (𝑔, `) and initial witness 𝑠 = 𝜙

5: extract (𝑡𝑟,𝑤) ← ℰ𝒲 ( ⟨𝒫∗
𝐾𝑆
(𝑝𝑝,𝑎𝑐𝑐,𝑠),𝒱 (𝑝𝑝,𝑎𝑐𝑐) ⟩)

when

6: 𝑡𝑟=:( [𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡 ′𝑖 , 𝜎𝑖 ]
𝑁
𝑖=0
,𝑊 , 𝑓 , 𝑓 ′,𝐶,𝐶 ′, 𝜋𝑏𝑎𝑙𝑎𝑛𝑐𝑒=(𝑈 , 𝑠, 𝑠 ′), 𝑦)

7: and𝑤 =: ( [𝑘𝑖 , 𝑟𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , ^𝑖 ]
𝑁
𝑖=0
, 𝑟 ′, 𝑢,𝑢 ′, 𝛼𝑐′, 𝛼𝑐 , 𝑐 ′, 𝑐)

8: such that

(
[𝑎𝑐𝑐𝑖 := (𝐾𝑖 = 𝑔𝑘𝑖 ,𝐺𝑖 = 𝑔𝑟𝑖 ,𝑉𝑖 = 𝐺𝑘𝑖𝑖 `

𝑣𝑖 )]𝑖=𝑁
𝑖=0

9: [𝑎𝑠𝑠𝑒𝑡 ′
𝑖

: (𝐺 ′
𝑖
,𝑉 ′
𝑖
) := UpdateAsset(𝑟 ′, 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 )]

𝑁
𝑖=0

10: [𝜎𝑖=UpdateValueProve(𝑟 ′, 𝑘𝑖 , 𝑣𝑖 , 𝑣 ′𝑖 , 𝑎𝑐𝑐𝑖 , 𝑎𝑠𝑠𝑒𝑡
′
𝑖
;^𝑖 ,𝑊 )]𝑁𝑖=0

11: 𝑇3=𝐾
𝑠2𝑔−𝑠3 ∧𝐺 ′=𝐺𝑔𝑟 ′ ∧𝑉 ′=𝑉𝐾𝑟 ′`𝑣′−𝑣

)
=1 ⊲ 𝒱 (𝑡𝑟 )=1

12: and ⊲ since (𝑝𝑝,𝑢,𝑤) ∉ ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 in Equation 1

13:

(
(𝑓 ′ − 𝑓

?

≠
∑𝑁
𝑖=0

𝑣𝑖 −
∑𝑁
𝑖=0

𝑣 ′
𝑖
+ 𝑐 − 𝑐 ′)∨

14: (0
?

≠𝛼𝑐 − 𝛼𝑐′ − 𝑢 ′𝑦 − 𝑠 ′) ∨ (0
?

≠(𝑟 ′ − 𝑦𝑢) − 𝑠)
)
= 1

15: 𝑜𝑢𝑡 =

(
(𝑠, 𝑠 ′, 𝑓 ′ − 𝑓 ) ,

(
𝑟 ′ − 𝑦𝑢, 𝛼𝑐 − 𝛼𝑐′ − 𝑢 ′𝑦,

∑𝑁
𝑖=0

𝑣𝑖

16: −∑𝑁
𝑖=0

𝑣 ′
𝑖
+ 𝑐 − 𝑐 ′

) )
17: output:
18: 𝑜𝑢𝑡 to the challenger of Theorem 3.4.

Here, Commit𝑔,ℎ,` (𝑠, 𝑠 ′, 𝑓 ′ − 𝑓 ) = Commit𝑔,ℎ,` (𝑟 ′ − 𝑦𝑢, 𝛼𝑐 − 𝛼𝑐′ −
𝑢 ′𝑦,

∑𝑁
𝑖=0

𝑣𝑖 −
∑𝑁
𝑖=0

𝑣 ′
𝑖
+ 𝑐 − 𝑐 ′) but

(
(𝑠, 𝑠 ′, 𝑓 ′ − 𝑓 ) is not equal to

(𝑟 ′−𝑦𝑢, 𝛼𝑐−𝛼𝑐′−𝑢 ′𝑦,
∑𝑁
𝑖=0

𝑣𝑖−
∑𝑁
𝑖=0

𝑣 ′
𝑖
+𝑐−𝑐 ′) if

(
(𝑓 ′− 𝑓

?

≠
∑𝑁
𝑖=0

𝑣𝑖−∑𝑁
𝑖=0

𝑣 ′
𝑖
+ 𝑐 − 𝑐 ′). Therefore, the following reduction breaks the

binding property of Pedersen commitments even when rerandom-

ized accounts provide ZKA for ℛ𝑎𝑐𝑐𝑜𝑢𝑛𝑡 . Hence, we conclude that

Lemma E.2 is correct.

F EXAMPLE OF GRAPH ANALYSIS IN
ZETHER VS. NOPENENA/QUISQUIS

We use the following example to elaborate more on how to apply

graph analysis on Zether to discover more unintentional knowl-

edge and why the graph analysis does not work on Nopenena and

QuisQuis. We leave a more formal analysis for future work.

Assume that verifiers see three transactions (𝑡𝑥1, 𝑡𝑥2, 𝑡𝑥3) that

take the decoy sets: (𝐴, 𝐵), (𝐴, 𝐵), and (𝐴, 𝐵,𝐶), respectively, and
denote that there is only one sender in each transaction, e.g., send-

ing coins to a contract/withheld list. In Zether, we assume that all

19



A

B

C

tx1

tx2

tx3

S D

?/1

?/1

?/1

?/1

?/1

?/1

Maximal Matching Problem in Zether

A

B

C

tx1

tx2

tx3

S D

?/3

?/3

?/1

?/1

?/1

?/1

Maximal Matching Problem in Nopeni/QuisQuis

A

B

C

tx1

tx2

tx3

S D

1/1

1/1

1/1

1/1

1/1

1/1

Each        has capacity of 1

First solution for the problem in Zether

A

B

C

tx1

tx2

tx3

S D

3/3

0/3

0/1

1/1

1/1

1/1

Each        has capacity of 1 or 3

One of the possible solutions in Nopeni/QuisQuis 
that is impossible in Zether

Each  is a potential link between parties and transaction of capacity 1.

A

B

C

tx1

tx2

tx3

S D

1/1

1/1

1/1

1/1

1/1

1/1

Second solution for the problem in Zether

Figure 7: Maximal matching problem in Zether vs. Nopenena/QuisQuis.

Here, “S” is the source, and “D” is the drain. A solution(s) to this problem is

sending maximum flow units (3 units in this example) from the source to

the drain when each arrow (pipeline) has a maximum capacity.

three transactions happen in the same epoch. We can draw the max-

imal matching problem [21] for Zether, QuisQuis, and Nopenena as

shown in Figure 7. In Zether, the “yellow-colored arrows” have the

capacity of 1 since an account can be spent only once in each epoch.

However, in Nopenena and QuisQuis, the “blue-colored arrows”

have a maximum capacity of 1 for 𝐶 or 3 for 𝐴, 𝐵, i.e., the number

of times each account was used as decoys.

There are two solutions to Zether’s maximal matching problem,

as shown in Figure 7. In both solutions, 𝐶 must be connected to

𝑡𝑥3. Thus, we can deanonymize the sender of 𝑡𝑥3 as𝐶 . However, in

Nopenena and QuisQuis, 𝐶 is not connected to 𝑡𝑥3 in all solutions.

For example,𝐴may have spent coins three times as shown in Figure

7 since there is no limit on the number of times an account can

be used. Thus, graph analysis does not reveal any unintentional

knowledge in Nopenena and QuisQuis.

20


	Abstract
	1 Introduction
	2 Model
	3 Preliminaries
	3.1 Pedersen Commitments
	3.2 Zero-Knowledge Argument (ZKA)

	4 Nopenena Overview
	5 Nopenena Payments' Building Blocks
	5.1 Rerandomizable Accounts
	5.2 Anonymous Forced Openings
	5.3 Balance Proofs

	6 Nopenena Transactions
	7 Nopenena for Anonymous Contracts
	7.1 Escrow for Anonymous Shopping
	7.2 Split Payments

	8 Implementation
	9 Performance Analysis
	10 Related Work
	11 Conclusion
	References
	A Contract Proofs for Equality
	B Definitions Implied by Zero-Knowledge Relations
	C Security Proofs of Nopenena Accounts
	C.1 Zero-knowledge argument
	C.2 Strong theft-resistance
	C.3 Insider Zero-Knowledge Argument

	D Security Proofs of Anonymous Forced Openings
	E Security Proofs of Balance Proofs
	F Example of Graph Analysis in Zether vs. Nopenena/QuisQuis

