
Practical Committing Attacks against Rocca-S

Ryunosuke Takeuchi, Yosuke Todo, and Tetsu Iwata

1 Nagoya University, Nagoya, Japan
takeuchi.ryunosuke.u2@s.mail.nagoya-u.ac.jp, tetsu.iwata@nagoya-u.jp

2 NTT Social Informatics Laboratories, Musashino, Japan
yosuke.todo@ntt.com

Abstract. This note shows practical committing attacks against Rocca-S, an authenticated encryption
with associated data scheme designed for 6G applications. Previously, the best complexity of the attack
was 264 by Derbez et al. in ToSC 2024(1)/FSE 2024. We show that the committing attack against Rocca
by Takeuchi et al. in ToSC 2024(2)/FSE 2025 can be applied to Rocca-S, where Rocca is an earlier
version of Rocca-S. We show a concrete test vector of our attack. We also point out a committing attack
that exploits equivalent keys.

Keywords: Rocca-S · Committing security · Equivalent keys · Practical attack.

1 Introduction

Rocca-S is a nonce-based authenticated encryption with associated data (AEAD) scheme designed for 6G
applications [ABC+23], and is currently considered for standardization [NFI24]. It is mentioned in an early
version of the Internet-Draft, draft-nakano-rocca-s-03, that Rocca-S provides 128-bit key-committing se-
curity [NFI23a], while this claim was withdrawn in latter versions without a reason [NFI23b,NFI24,ABC+23].
In ToSC 2024(1)/FSE 2024, Derbez et al. analyzed the security of Rocca-S in terms of committing secu-
rity [DFI+24]. They focused on the strong notion called the FROB (full robustness) setting [FOR17], and
showed a FROB attack with 264 complexity. The complexity is below the generic complexity of 2128, while
carrying out the attack in practice is a non-trivial goal. Rocca-S is based on an earlier AEAD scheme
called Rocca [SLN+21]. Hosoyamada et al. presented the security evaluation of Rocca in terms of key recov-
ery [HII+22] to break the security claim by the designers, and Takeuchi et al. extended the analysis to cover
committing attacks [TTI24] to show a practical FROB attack against Rocca.

In this note, we show that the FROB attack against Rocca in [TTI24] can be applied to Rocca-S. In
particular, we show an example test vector of the FROB attack against Rocca-S, thereby practically breaking
its committing security in the strongest security notion. We also point out the version of Rocca-S in the
Internet-Draft [NFI24] has a class of equivalent keys, allowing trivial FROB attacks.

In this note, to make it succinct, we follow exactly the same notation used in [TTI24], and we omit the
description of Rocca-S, which can be found in [NFI24,ABC+23].

2 Overview of the Attack

Let Enc be the encryption function of Rocca-S, and let (C, T) = EncK(N,A,M), where K is a 256-bit key,
N is a 128-bit nonce, A is associated data (AD), M is a message, C is a ciphertext, and T is a 256-bit tag.
Let Dec be the decryption function. We write DecK(N,A,C, T) = M or DecK(N,A,C, T) = ⊥, where ⊥
denotes rejection. The goal of the FROB attack is to output (K,N,A), (K ′, N ′, A′), and (C, T) such that
DecK(N,A,C, T) ̸= ⊥, DecK′(N ′, A′, C, T) ̸= ⊥, K ̸= K ′, and N = N ′.

We adopt the attack in [TTI24, Sect. 5.2] to Rocca-S, and our attack is presented in Algorithm 1. Given
any (K,K ′) and (N,N ′) with K ̸= K ′ and N = N ′, we have two internal states S0 and S′

0 after the
initialization of Rocca-S, where S0, S

′
0 ∈ ({0, 1}128)7. That is, S0 and S′

0 consist of 7 blocks, where one block
corresponds to 128 bits, and let us write S0 = S0[0] ∥ · · · ∥ S0[6], which we abbreviate to S0 = S0[0..6]. We

A A A A A A

AAAAAA

[0] [1] [2] [3] [4] [5] [6]A6

A8

A7

A9

S3

S4

S5

Fig. 1. The last two rounds of the attack

use the similar notation for S′
0 and other internal states as well. We also write, e.g., S3[0, 1, 4..6] to mean

S3[0] ∥ S3[1] ∥ S3[4] ∥ S3[5] ∥ S3[6], and S4[3, 5] to mean S4[3] ∥ S4[5].

We have two known internal states S0 and S′
0, and the overall approach is to absorb A = (A0, . . . , A9)

into S0 to have S5 and A′ = (A′
0, . . . , A

′
9) into S′

0 to have S′
5 so that S5 = S′

5 holds. Once this holds, for
any message M , the ciphertexts C and C ′ computed from S5 and S′

5 are the same, and the tags T and T ′

computed from S5, S
′
5, and M are also the same, giving the FROB attack.

For given S0 and S′
0, Algorithm 1 returns A = (A0, . . . , A9) and A′ = (A′

0, . . . , A
′
9) such that S5 = S′

5

holds. We first fix A0, A6, A
′
6, A8, A

′
8, and A9 with A6 = A′

6 and A8 = A′
8 arbitrarily (line 1, 2). We then

choose A′
0 randomly (line 3), and compute A1, . . . , A5 and A′

1, . . . , A
′
5 so that S3[0, 1, 4..6] = S′

3[0, 1, 4..6]
holds (line 5), i.e., A0, . . . , A5 and A′

0, . . . , A
′
5 make 5 out of 7 blocks of S3 and S′

3 collide. This can be done
by following the equation (and the corresponding equations for A′

1, . . . , A
′
5) below:

A3 = A(A(S0[2])⊕ S0[6])⊕A−1(S3[5]⊕A(A(S0[1])⊕ S0[0])⊕A(S0[5])⊕ S0[4])

A1 = A(S0[3])⊕A−1(A(S0[2])⊕ S0[6]⊕A−1(S3[6]⊕A(A(S0[2])⊕ S0[6])⊕A3))

A2 = A(A(S0[4])⊕ S0[3])⊕A(S0[3])⊕A1 ⊕A(S0[6]⊕ S0[1])⊕ S3[0]

A4 = A(A(S0[5])⊕ S0[4]⊕A(S0[0])⊕A0)⊕ S3[1]

A5 = A(A(A(S0[1])⊕ S0[0])⊕A(S0[5])⊕ S0[4])⊕ S3[4]

Figure 1 shows the remaining part of the attack, where S3[2] and S3[3] have differences, and the other
5 blocks of S3 do not have differences. After one round, S4[3], S4[4], and S4[5] have differences. It is easy
to cancel out the difference in S5[4] by using A9 such that ∆A9 = A(S4[3])⊕A(S′

4[3]) (line 16). We aim to
cancel out the difference in S5[5] and S5[6] at the same time by choosing A7.

2

Algorithm 1 Collision from two different states

Input: S0, S
′
0

Output: A0, . . . , A9, A
′
0, . . . , A

′
9 such that S5 = S′

5

1: Choose arbitrary A0, A6, A8, and A9.
2: Set A′

6 ← A6 and A′
8 ← A8.

3: while S5 ̸= S′
5 do

4: Choose A′
0 randomly

5: Obtain A1, . . . , A5 and A′
1, . . . , A

′
5 satisfying S3[0, 1, 4..6] = S′

3[0, 1, 4..6]
6: Compute S4[3, 5] and S′

4[3, 5]
7: ∆I = A(S4[5])⊕A(S′

4[5])
8: ∆O = SR−1 ◦MC−1(S4[3]⊕ S′

4[3])
9: for (i, j) ∈ {0, 1, 2, 3} × {0, 1, 2, 3} do
10: if ∆Ii,j

Sb−→ ∆Oi,j is possible then
11: Pick an input x s.t. Sb(x)⊕ Sb(x⊕∆Ii,j) = ∆Oi,j

12: A7,i,j = A(S3[3])i,j ⊕ x
13: A′

7,i,j = A(S′
3[3])i,j ⊕ x⊕∆Ii,j

14: end if
15: end for
16: A′

9 = A9 ⊕A(S4[3])⊕A(S′
4[3])

17: Compute S5 and S′
5

18: end while

The condition to succeed in the attack is

S5[5] = A(S4[4])⊕ S4[3] = A(S′
4[4])⊕ S′

4[3] ,

S5[6] = A(S4[5])⊕ S4[4] = A(S′
4[5])⊕ S′

4[4] .

From the equations above, we have

S4[3]⊕ S′
4[3] = A(S4[4])⊕A(S′

4[4]) ,

S4[4]⊕ S′
4[4] = A(S4[5])⊕A(S′

4[5]) .

Note that S4[5] and S′
4[5] are fixed when we chose A0 and A′

0. Therefore, S4[4]⊕S′
4[4] is determined. Similarly,

S4[3]⊕ S′
4[3] is also determined. We succeed in the attack if

SB(S4[4])⊕ SB(S′
4[4]) = SR−1 ◦MC−1(S4[3]⊕ S′

4[3])

holds. We see that the input and output differences of the S-box are determined, but we can freely choose
S4[4] and S′

4[4] by controlling A7 and A′
7. Therefore, when the differential transition from∆I = S4[4]⊕S′

4[4] =
A(S4[5]) ⊕ A(S′

4[5]) (line 7) to ∆O = SR−1 ◦ MC−1(S4[3] ⊕ S′
4[3]) (line 8) is possible, we can choose such

S4[4] and S′
4[4] (line 9–15).

The input and output differences of the S-box (highlighted in red in Fig. 1) are determined once we choose
A0 and A′

0 (and A1, . . . , A5, A
′
1, . . . , A

′
5 are fixed so that S3[0, 1, 4..6] = S′

3[0, 1, 4..6] holds). The probability
that randomly chosen input/output differences are possible is about 1/2. Since there are 16 S-boxes, the
probability that we can construct such A7 and A′

7 is 2−16. In our attack, we construct such (S3, S
′
3), and if

it does not lead to a possible differential transition, we reconstruct different (S3, S
′
3) by randomly choosing

A′
0 (line 4) until we have a pair having a possible transition. Therefore, the attack complexity is 216. We

emphasize that the complexity is practical.

3 Test Vector

We present a test case for the FROB attack against Rocca-S by showing a concrete example of (K,N,A,M),
(K ′, N ′, A′,M ′), and (C, T) such that (C, T) = EncK(N,A,M) = EncK′(N ′, A′,M ′), with the constraint
that K ̸= K ′ and N = N ′.

3

We define K,K ′, N , and N ′ as follows (written in hex in an array):

K0 = {01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01}
K1 = {01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01, 01}
K ′

0 = {01, 23, 45, 67, 89, AB, CD, EF, 01, 23, 45, 67, 89, AB, CD, EF}
K ′

1 = {01, 23, 45, 67, 89, AB, CD, EF, 01, 23, 45, 67, 89, AB, CD, EF}
N = N ′ = {02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02, 02}

The state after the initialization of Rocca-S becomes S0 and S′
0 as follows:

S0[0] = {CE, 6C, C0, EE, 6D, 6E, 66, E5, CA, E1, FC, F9, 00, D7, 62, 73}
S0[1] = {B3, 3F, 7F, FE, B3, 90, 7B, 9D, F8, 51, 43, FD, 52, EE, CD, 03}
S0[2] = {36, FC, 93, FB, A3, 9D, FE, 04, 31, 2D, 63, 96, 9A, 5E, C9, 3D}
S0[3] = {A8, 33, A1, 83, 69, E4, 4B, 33, 60, C8, 9B, 18, 6B, 6A, 5A, DF}
S0[4] = {89, F5, D6, 8B, 9A, 75, 81, 0C, 2A, E6, B9, 37, 2B, BD, 1D, 00}
S0[5] = {ED, 41, E0, D9, CF, 08, 7C, 3D, 5A, 3D, 75, DA, 9C, 83, EE, 3B}
S0[6] = {EB, 6F, 33, 38, BF, D0, 36, 28, 2E, 9F, 8E, C0, D7, 79, A9, 2C}

S′
0[0] = {85, E6, 2C, 94, 39, B1, 22, D2, C0, 03, 9C, 9F, 67, 01, 22, 8E}

S′
0[1] = {98, 44, A4, 27, 01, 83, 22, 2F, 10, FA, 5D, 40, A9, FA, 00, 87}

S′
0[2] = {FA, F7, D0, 65, 08, DC, C7, A0, 56, F7, FB, F4, A0, 37, 6F, 74}

S′
0[3] = {51, 5A, 5F, 17, 75, 60, F4, 97, F4, BF, AF, 10, 27, 12, 7C, C9}

S′
0[4] = {DC, 9E, 4E, F6, 27, AC, EE, 70, 39, A9, 8B, FE, 96, EB, E6, 44}

S′
0[5] = {7A, 93, FE, 3A, E3, A1, 69, 21, 64, FB, 7F, 44, 51, 41, 45, C3}

S′
0[6] = {64, 4C, F7, 45, D5, DB, 7A, C7, D0, C4, D1, 26, 24, 4F, E6, DE}

Then, the associated data A and A′ to make S3[0, 1, 4..6] collide are as follows:

A0 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}
A1 = {35, 05, AF, 52, BD, 5D, 12, E1, 77, 7A, 43, D3, 77, 55, 4F, 64}
A2 = {15, D6, EE, 57, C9, CC, A8, B0, 5B, 8E, F0, 0E, 30, 38, E7, FA}
A3 = {22, 40, D5, D1, B3, CD, 12, 66, 80, 5B, E6, 77, 99, 9B, 68, 09}
A4 = {E7, F7, 08, 19, E4, 75, 1E, E2, FD, 64, 38, BB, 0D, 03, 3C, 7C}
A5 = {2F, A5, 9D, C6, 6B, 08, EF, 58, 62, 52, 1E, CA, 66, 6E, C9, 4E}
A6 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}
A7 = {08, 13, 8D, 6A, E8, 70, C5, 75, 97, 13, E2, 7C, BB, C4, C4, 73}
A8 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}
A9 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

4

A′
0 = {DF, 64, 9F, EF, 0A, 74, 2B, 5C, 17, 20, 3A, 13, F6, CE, 40, DB}

A′
1 = {72, C3, 41, D3, B6, AA, 68, 6B, 48, 5B, 4C, A1, EF, E3, 02, F2}

A′
2 = {B4, 7B, 9F, F4, 08, 53, 8F, 28, 34, 9B, 79, FE, DE, 13, 00, D2}

A′
3 = {03, F8, 37, 3C, 37, 7E, 8A, 6F, E2, 74, 07, 4A, 43, E6, F4, 7E}

A′
4 = {F5, 91, F8, 33, 43, 99, 3F, 9C, F9, 52, 14, C8, A9, 3D, 6E, 77}

A′
5 = {8F, 0E, 72, 19, 8B, 64, F6, FD, FA, 77, 8C, 85, C9, AB, 50, FC}

A′
6 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

A′
7 = {D1, BF, 60, 56, 14, FD, 63, 15, A0, 5E, 33, 94, 1E, 6C, A6, CB}

A′
8 = {00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}

A′
9 = {B2, 94, 04, D1, 47, A0, 1A, 4F, EA, 89, 98, E9, 2A, 5C, F0, 69}

Let the messages M = (M0,M1) and M ′ = (M ′
0,M

′
1) be the following values:

M0 = M ′
0 = {FE, DC, BA, 98, 76, 54, 32, 10, FE, DC, BA, 98, 76, 54, 32, 10}

M1 = M ′
1 = {FE, DC, BA, 98, 76, 54, 32, 10, FE, DC, BA, 98, 76, 54, 32, 10}

Then, we have (C, T) = EncK(N,A,M) = EncK′(N ′, A′,M ′), where C = (C0, C1) and

C0 = {4C, F6, 03, 97, FE, 1B, 8E, 81, 20, AC, A3, 6A, AE, B7, 70, 21} ,
C1 = {0A, AF, 51, 71, C0, 78, EC, 8A, A1, D7, 16, D8, 72, 6D, F4, 7E} ,
T = {DA, 1B, 2D, 6F, 3D, 7F, FA, 7F, 16, 4F, DD, CA, 0A, 25, 5D, 66,

F1, 42, 20, 10, 05, 3A, D2, 84, 95, C4, 1F, C5, 33, B3, 3E, 11} .

4 FROB Attack from Equivalent Keys

We describe a committing attack that uses equivalent keys. The key length of the version of Rocca-S
in [ABC+23] is fixed to 256 bits, while in the version in the Internet-Draft [NFI24], the key length can
be 128, 192, or 256 bits. In [NFI24, Sect. 2.3.8], the key is padded before running the encryption/decryption
procedure, i.e., for key K ∈ {0, 1}128∪{0, 1}192∪{0, 1}256, the padding pad : {0, 1}128∪{0, 1}192∪{0, 1}256 →
{0, 1}256 is applied on K before it is used, and the encryption works as (C, T) = Encpad(K)(N,A,M), and
the decryption works as Decpad(K)(N,A,C, T) = M or Decpad(K)(N,A,C, T) = ⊥.

There are two methods of padding in [NFI24]. One is to use a zero padding and the other one is to use
a key derivation function (KDF). The zero padding works as

pad(K) =


K ∥ 0128 if |K| = 128 ,

K ∥ 064 if |K| = 192 ,

K if |K| = 256 .

This means that the encryption with a 128-bit key K is equivalent to that with a 192-bit key K ∥064, which is
also equivalent to that with a 256-bit keyK∥0128, since pad(K) = pad(K∥064) = pad(K∥0128) = K∥0128, and
the key length does not affect the encryption/decryption process after the padding. This forms a large set of
equivalent keys, and this also allows trivial FROB attacks. For instance, for any K ∈ {0, 1}128, (K,N,A,M),
(K ∥ 064, N,A,M), and (K ∥ 0128, N,A,M) all give the same output (C, T) for any nonce N , associated data
A, and message M .

The KDF padding uses a key derivation function KDF : {0, 1}∗ → {0, 1}256 and works as

pad(K) =


KDF(K) if |K| = 128 ,

KDF(K) if |K| = 192 ,

K if |K| = 256 .

5

Note that it is reasonable to assume that KDF returns independent outputs for different input lengths. We
now observe that KDF is not used if the key is already 256 bits. This means that the encryption with a
128-bit key K is equivalent to that with a 256-bit key K ′ = KDF(K), since pad(K) = pad(K ′) = KDF(K).
There exists a large set of equivalent keys, allowing trivial FROB attacks. For instance, for any K ∈ {0, 1}128,
(K,N,A,M) and (K ′, N,A,M) with K ′ = KDF(K) give the same output (C, T) for any nonce N , associated
data A, and message M .

The issue is that the padding is non-injective and the key length is not involved in encryption/decryption
once the key is padded. This could be avoided by using an injective padding, and/or by including the key
length into the initialization and finalization steps.

5 Conclusions

This note shows that Rocca-S is practically committing insecure. The cipher should not be used in applica-
tions where committing security is expected, e.g., in those analyzed in [GLR17,DGRW18,LGR21,ADG+22].

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant Number JP24K07489.

References

[ABC+23] Ravi Anand, Subhadeep Banik, Andrea Caforio, Kazuhide Fukushima, Takanori Isobe, Shinsaku Kiy-
omoto, Fukang Liu, Yuto Nakano, Kosei Sakamoto, and Nobuyuki Takeuchi. An ultra-high throughput
AES-based authenticated encryption scheme for 6G: Design and implementation. In Gene Tsudik, Mauro
Conti, Kaitai Liang, and Georgios Smaragdakis, editors, Computer Security - ESORICS 2023 - 28th Eu-
ropean Symposium on Research in Computer Security, The Hague, The Netherlands, September 25-29,
2023, Proceedings, Part I, volume 14344 of Lecture Notes in Computer Science, pages 229–248. Springer,
2023.

[ADG+22] Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg. How to abuse
and fix authenticated encryption without key commitment. In Kevin R. B. Butler and Kurt Thomas,
editors, 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12,
2022, pages 3291–3308. USENIX Association, 2022.

[DFI+24] Patrick Derbez, Pierre-Alain Fouque, Takanori Isobe, Mostafizar Rahman, and André Schrottenloher. Key
committing attacks against AES-based AEAD schemes. IACR Trans. Symmetric Cryptol., 2024(1):135–
157, 2024.

[DGRW18] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. Fast message franking: From
invisible salamanders to encryptment. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in Computer Science, pages
155–186. Springer, 2018.

[FOR17] Pooya Farshim, Claudio Orlandi, and Razvan Rosie. Security of symmetric primitives under incorrect
usage of keys. IACR Trans. Symmetric Cryptol., 2017(1):449–473, 2017.

[GLR17] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message franking via committing authenticated en-
cryption. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part III, volume 10403 of Lecture Notes in Computer Science, pages 66–97. Springer, 2017.

[HII+22] Akinori Hosoyamada, Akiko Inoue, Ryoma Ito, Tetsu Iwata, Kazuhiko Mimematsu, Ferdinand Sibleyras,
and Yosuke Todo. Cryptanalysis of Rocca and feasibility of its security claim. IACR Trans. Symmetric
Cryptol., 2022(3):123–151, 2022.

[LGR21] Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle attacks. In Michael D. Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, pages 195–212. USENIX Association, 2021.

[NFI23a] Yuto Nakano, Kazuhide Fukushima, and Takanori Isobe. Encryption algorithm Rocca-S. Network Working
Group, Internet-Draft, https://datatracker.ietf.org/doc/draft-nakano-rocca-s/03/, 2023.

6

[NFI23b] Yuto Nakano, Kazuhide Fukushima, and Takanori Isobe. Encryption algorithm Rocca-S. Network Working
Group, Internet-Draft, https://datatracker.ietf.org/doc/draft-nakano-rocca-s/04/, 2023.

[NFI24] Yuto Nakano, Kazuhide Fukushima, and Takanori Isobe. Encryption algorithm Rocca-S. Network Working
Group, Internet-Draft, https://datatracker.ietf.org/doc/draft-nakano-rocca-s/05/, 2024.

[SLN+21] Kosei Sakamoto, Fukang Liu, Yuto Nakano, Shinsaku Kiyomoto, and Takanori Isobe. Rocca: An efficient
AES-based encryption scheme for beyond 5G. IACR Trans. Symmetric Cryptol., 2021(2):1–30, 2021.

[TTI24] Ryunosuke Takeuchi, Yosuke Todo, and Tetsu Iwata. Key recovery, universal forgery, and committing
attacks against revised Rocca: How finalization affects security. IACR Trans. Symmetric Cryptol., 2024(2),
2024.

7

