
Breaktooth: Breaking Bluetooth Sessions

Abusing Power-Saving Mode

Keiichiro Kimura
Kobe University

k kimura@stu.kobe-u.ac.jp

Hiroki Kuzuno
Kobe University

kuzuno@port.kobe-u.ac.jp

Yoshiaki Shiraishi
Kobe University

zenmei@port.kobe-u.ac.jp

Masakatu Morii
Kobe University

mmorii@kobe-u.ac.jp

June 6, 2024

Abstract

With the increasing demand for Bluetooth devices, various Bluetooth devices support a
power-saving mode to reduce power consumption. One of the features of the power-saving
mode is that the Bluetooth sessions among devices are temporarily disconnected or close to
being disconnected. Prior works have analyzed that the power-saving mode is vulnerable
to denial of sleep (DoSL) attacks that interfere with the transition to the power-saving
mode of Bluetooth devices, thereby increasing its power consumption. However, to the best
of our knowledge, no prior work has analyzed vulnerabilities or attacks on the state after
transitioning to the power-saving mode.

To address this issue, we present an attack that abuses two novel vulnerabilities in sleep
mode, which is one of the Bluetooth power-saving modes, to break Bluetooth sessions. We
name the attack Breaktooth. The attack is the first to abuse the vulnerabilities as an
entry point to hijack Bluetooth sessions between victims. The attack also allows overwriting
the link key between the victims using the hijacked session, enabling arbitrary command
injection on the victims. Furthermore, while many prior attacks assume that attackers can
forcibly disconnect the Bluetooth session using methods such as jamming to launch their
attacks, our attack does not require such assumptions, making it more realistic.

In this paper, we present the root causes of the Breaktooth attack and their impact.
We also provide the technical details of how attackers can secretly detect the sleep mode of
their victims. The attackers can easily recognize the state of the victim’s Bluetooth session
remotely using a standard Linux command. Additionally, we develop a low-cost toolkit to
perform our attack and confirm the effectiveness of our attack. Then, we evaluate the attack
on 13 types of commodity Bluetooth keyboards and mice that support the sleep mode and
show that the attack poses a serious threat to Bluetooth devices supporting the sleep mode.
To fix our attack, we present defenses and its proof-of-concept. We responsibly disclosed our
findings to the Bluetooth SIG.

Bluetooth, power-saving mode, session hijack, spoofing, defenses

1 Introduction

Bluetooth is a pervasive technology for low-power, short-range wireless communication. It pro-
vides two specifications: Bluetooth Classic and Bluetooth Low Energy (BLE). We focus on
Bluetooth Classic, from now indicated as Bluetooth. Bluetooth is globally adopted as a technol-
ogy for connecting devices, such as wireless headphones, keyboards, mice, and speakers, to PCs
and mobile phones. Bluetooth-equipped devices are becoming increasingly popular [32, 35].

1



With the increasing demand for Bluetooth devices, many of them support a power-saving
mode. This mode is designed to limit background operations of the devices, reducing power
consumption. There have been discussions about attacks that abuse Bluetooth power-saving
modes [39, 22]. Specifically, the DoSL attacks against devices that implement the power-saving
mode have been discussed. The DoSL attacks involve attackers preventing the victim’s Bluetooth
device from transitioning to the power-saving mode, thereby increasing the power consumption
of the device. However, no prior work has discussed vulnerabilities or attacks on the state after
the transition to the power-saving mode.

In this paper, we present the Breaktooth attack, a novel attack that breaks Bluetooth
sessions between victims supporting Bluetooth sleep mode, one of the power-saving modes.
The attack abuses two novel vulnerabilities of the sleep mode we uncover; the first is that the
transition to the sleep mode causes the Bluetooth between victims to be silently disconnected
without the victim’s interactions. The second is that the victim’s master transitions to a state in
which it accepts connection requests from the victim’s slave after the transition to sleep mode.
In our attack, the attacker hijacks the Bluetooth session between the victims, aiming at the
moment when the victim’s slave transitions to sleep mode.

Our attack strategy consists of four steps: (1) impersonate a victim’s slave device, (2) hijack
the Bluetooth session between the victim master device and the slave abusing the sleep mode
vulnerabilities and establish connections with the master, (3) overwrite a link key that is already
shared between the two victims and generate a new link key with the master by downgrading the
security level, and (4) inject arbitrary commands into the master using the link key generated
in (3). Furthermore, we detail the root causes and its impact, as well as the technical details of
how attackers can remotely detect the sleep mode between the victims.

We develop a low-cost toolkit to perform our attack and evaluate the attack against com-
modity Bluetooth devices using the toolkit. We evaluate our attack on 13 unique commodity
Bluetooth devices (e.g., keyboards and mice) as the slave and three unique devices (e.g., laptops
and smartphones) as the master. We successfully exploited a broad set of operating systems
(e.g., Windows, iOS, and Android) and vendors (e.g., Ewin, ELECOM, Buffalo, iClever, and
Ancker). From our evaluation results, we discuss the threat of the Breaktooth attack and its
comparison with prior attacks. Moreover, we discuss defenses against our attack.

We summarize our main contributions as follows:

• We uncover two novel vulnerabilities of Bluetooth sleep mode and present the Breaktooth
attack that abuses these vulnerabilities. The vulnerabilities allow attackers to hijack the
Bluetooth session between the victim’s master and slave without special privileges or tools.
Our attack is the first to hijack a Bluetooth session while the victim is in sleep mode.

• We present the details of the Breaktooth attack root causes and its impact. Owing to the
root causes, we discuss the impact of the attack, making many prior attacks even more
realistic. We describe the technical details of how attackers secretly detect the sleep mode
between the victims.

• We release a low-cost toolkit to reproduce our attack. The toolkit supports functions to
reproduce our attack, such as spoofing, sleep mode detection, overwriting a pre-shared link
key between the victims, and injecting arbitrary commands to the victims. Our toolkit
complements the state-of-the-art of Bluetooth security testing, such as [7, 4, 24].

• We evaluate our attack on 13 unique commodity devices, including keyboards and mice
supporting the sleep mode. The attack is successful against all 13 devices and demonstrates
that our attack enables attackers to hijack Bluetooth sessions, overwrite the victim’s link
key, and inject arbitrary commands into the victims. From the evaluation results, we
confirm that the Breaktooth attack is practical, and we discuss its threats and defenses.

2



Ethical Considerations and Responsible Disclosure This work investigates unknown
threats to widespread technologies and proposes defenses. All experiments were conducted in-
house; no external devices were attacked. We responsibly disclosed our findings to the Bluetooth
SIG in May 2024. We also proposed the patch for the findings. We are waiting for their responses,
as of May 28th, 2024.

The remainder of this paper is organized as follows: In Section 2, we briefly introduce
Bluetooth and Bluetooth power-saving mode. In Section 3, we present our system and attacker
model. In Section 4, we describe the Breaktooth attack. Section 5 presents the implementation
of our attack. In Section 6, we evaluate the impact and effectiveness of our attack. In Section
7, we discuss the attack and our proposed defenses. Related work is presented in Section 8.
Conclusions are presented in Section 9.

2 Background

2.1 Bluetooth

Bluetooth, a wireless communication technology established by the Bluetooth SIG, is widely
used for low-power, short-range wireless communications [34]. Bluetooth operates in the 2.4
GHz Industrial Scientific and Medical band (ISM), with 79 channels spaced 1 MHz apart, and
employs Frequency-Hopping Spread Spectrum (FHSS) as its channel access method [34].FHSS
is adopted to provide more reliable communication (e.g., avoiding interference with Wi-Fi). The
Bluetooth network, known as piconet, consists of one master device providing a reference CLK
clock signal [5] and up to seven slave devices synchronized with the master to form a piconet.

The Bluetooth architecture is divided into the Bluetooth controller and the Bluetooth host
[24, 17, 7]. The controller implements the physical layer and link manager in the Bluetooth chip,
whereas the host implements Logical Link Control and Adaptation Protocol (L2CAP), Radio
Frequency Communication (RFCOMM), and the application layer in the device operation system
(OS). The controller and host communicate via the Host Controller Interface (HCI). Bluetooth
devices use the Service Discovery Protocol (SDP) to broadcast their service information to other
devices [1].

2.2 Bluetooth Security

In Bluetooth, a common key called the link key is utilized for the authentication and encryp-
tion of communication between master and slave devices. The link key is generated and shared
between the master and the slave during pairing, which takes place over the Link Manager
Protocol (LMP) [7, 9]. If the information necessary to identify the link key is leaked to attack-
ers during pairing, the link key can be compromised, leading to potential eavesdropping and
communication tampering.

Secure Simple Pairing (SSP) is the most secure and widely used pairing mechanism that
prevents link key leakage during pairing [20, 26]. In SSP, the link key is derived from an ECDH
shared secret key, which is not transmitted over the communication path, making it difficult for
attackers to determine the link key [8, 36].

2.3 Bluetooth Power-Saving Mode

Bluetooth power-saving modes can be broadly categorized into two types: those established by
the Bluetooth SIG, namely sniff mode, hold mode, and park mode [33, 10, 41, 29], and the one
not established by the Bluetooth SIG, which is sleep mode [39].

Sniff Mode In this mode, the device increases its listening interval. The slave device tran-
sitions into sniff mode upon receiving a sniff command message from either a master device or

3



another slave device. The sniff interval can range from a few seconds to longer periods and is
suitable for situations with a long communication lag. However, there is no guarantee that the
device will receive maintenance, such as maintaining or checking the Bluetooth connection at
each sniff interval. The power efficiency of the device in the sniff mode is lower than that in the
hold or park modes [18].

Hold Mode Hold mode enhances power efficiency by transitioning the device into a short-
term inactive state. Only an internal timer called ‘holdTO’ operates in this mode, and data
transfer resumes once it expires. The device can independently transition into hold mode either
through the master or by requesting the master as a slave. The inactive duration is agreed upon
by the master and slave beforehand. The hold mode’s power efficiency is higher than that of
sniff mode but lower than that of park mode [18].

Park Mode When a slave device maintains an inactive state within a piconet for a relatively
longer period compared to the sniff or hold mode, it transitions to the park mode. The slave
in park mode maintains synchronization with the piconet while remaining uninvolved in traffic.
To return from the park mode, the slave must request and be granted a transition to the active
mode by the master. The power efficiency of the device in the park mode is higher than that in
both the sniff and hold modes [18]. Park mode has been deprecated since Bluetooth version 5.0
[30, 31].

Sleep Mode This mode minimizes power consumption by completely shutting down most or
all its communication and other functionalities for devices. The Radio Frequency (RF) module
is entirely turned off or operated at a low-power consumption level. Therefore, resynchronization
with the piconet may take some time when a Bluetooth device returns from sleep mode. The
sleep mode is suitable for long periods of inactivity and is employed in situations where a
maximum reduction in power consumption is required. It is implemented in devices such as
Bluetooth keyboards and mice, which are battery-powered and operate via Bluetooth.

3 Threat Model

In this section, we define our system and attacker models, as well as the notation we use in the
rest of the paper.

3.1 System Model

We consider Alice and Bob (i.e., the victims), who securely communicate via Bluetooth. Alice
and Bob represent arbitrary devices (e.g., laptops, smartphones, keyboards, and mice) and can
employ any Bluetooth profile (e.g., Human Interface Device Profile (HID), Hands-Free Profile
(HFP), and Headset Profile (HSP)). We assume the victims have already paired using their
strongest security capabilities (e.g., SSP and secure connections) and shared a link key.

Without loss of generality, we assume that Alice is a Bluetooth master device (e.g., laptops
and smartphones), and Bob is a Bluetooth slave device (e.g., keyboards and mice). The paired
victims establish secure connections using the shared link key. Furthermore, we assume Bob
supports the sleep mode.

3.2 Attacker Model

We assume that Mallory is an attacker. Mallory aims to impersonate Bob, establish secure
connections with Alice, and hijack Alice’s operations using advanced privileges (e.g., keyboard
input) obtained from sensitive profiles (e.g., HID).

4



Mallory must be physically in the victim Bluetooth range. Mallory does not observe a
secure pairing process between Alice and Bob, nor does she recognize the link key. Mallory can
capture unencrypted Bluetooth packets and recognize public information of the victims such as
Bluetooth names and addresses [2, 9, 6]. Mallory monitors the state of the victim Bluetooth
session (Section 4.2 for technical details) and waits until the session is disconnected.

3.3 Notation

In this paper, we use the following notation. We indicate the link key shared between Alice and
Bob as LKAB and the link key shared between Mallory and Alice as LKMA. Furthermore, we
abbreviate Alice’s Bluetooth name as BTNAME A and her Bluetooth address as BTADDR A.
Similarly, we abbreviate Bob’s Bluetooth name as BTNAME B and his Bluetooth address as
BTADDR B.

4 The Breaktooth Attack

In this section, we introduce the Breaktooth attack, which targets any device supporting Blue-
tooth sleep mode. The Breaktooth attack detects the sleep mode of the victim’s slave and hijacks
the Bluetooth session between Alice and Bob. Then, the attack abuses the hijacked Bluetooth
session as a starting point for overwriting link keys between the victims and injecting arbitrary
commands to the victims with advanced privileges. In this section, we first present the root
causes of Breaktooth and its impact. Then, we present the technical details of how Mallory
detects the sleep mode of the victims and the strategy of our attack.

4.1 Root Causes

4.1.1 Sleep Mode Vulnerabilities

The root causes of Breaktooth are the following two novel vulnerabilities (Vuln. #1 and #2 )
in the Bluetooth sleep mode.

Vuln. #1: Silent Bluetooth disconnection without the victim’s interactions If the
Bluetooth session between Alice and Bob is inactive for more than a certain period, Bob sends a
disconnection request to Alice. Alice accepts the request and disconnects the Bluetooth between
them temporarily. The disconnection is performed silently, without user (victim) interaction,
and without notification to the user. Therefore, recognizing the disconnection is difficult for the
user.

Vuln. #2: Alice’s transition to an acceptance state for connection requests from
Bob after the sleep mode After the disconnection between Alice and Bob due to the sleep
mode (Vuln. #1 ), Alice will accept connection requests from Bob. If Mallory impersonates
Bob, but Alice and Bob have established a Bluetooth session and are communicating, Alice will
not accept the connection request from Mallory. However, if the Bluetooth session between the
victims is temporarily disconnected due to the sleep mode, Alice assumes that Bob will return
from the sleep mode and transitions to a state where she accepts Bluetooth connection requests
from Bob. Therefore, Mallory, as Bob, can establish a Bluetooth connection with Alice.

By abusing these vulnerabilities, Mallory can easily hijack the Bluetooth session between
Alice and Bob. Figure 1 illustrates a scenario in which Mallory hijacks the Bluetooth session
between the victims by abusing the vulnerabilities in sleep mode.

Alice and Bob are communicating via Bluetooth. However, if Bob remains inactive for
more than a certain period, he sends a disconnection request to Alice to transition to sleep
mode. Alice accepts this request, and the Bluetooth between Alice and Bob is temporarily

5



disconnected (Vuln. #1 ). After the disconnection, Alice transitions to the state that accepts
connection requests from Bob (Vuln. #2 ).

Abusing the vulnerabilities, Mallory impersonates Bob and sends a connection request to
Alice. Mistaking Mallory for Bob, Alice accepts the request, temporarily establishing a connec-
tion with Mallory. As a result, the legitimate Bob can not restore the Bluetooth connection
with Alice, as it has been hijacked by Mallory.

Figure 1: The Breaktooth attack root causes and session hijack scenario abusing
them: Assume that Alice and Bob have already paired and share LKAB. If Bob
remains inactive for a certain period, Bob transitions to the sleep mode and the ses-
sion between Alice and Bob is silently disconnected (Vuln. #1), and Alice becomes
ready to accept a connection from Bob (Vuln. #2). After Vuln. #2, Mallory im-
personates Bob and sends a connection request to Alice. Alice accepts the request,
and Mallory temporarily establishes a connection with Alice. Because Mallory has
hijacked Bob’s connection with Alice, Bob cannot restore the connection with Alice.

6



4.1.2 Root Causes Impact

The root causes make prior attacks on Bluetooth (e.g., [2, 4, 38, 5, 3], and [44]) even more
realistic and have a severe impact on Bluetooth security.

Many prior attacks require attackers to forcibly disconnect the Bluetooth session among
the victim’s devices to launch their attacks. For example, BIAS [4], Blacktooth [2], and Key
Negotiation Downgrade Attacks on Bluetooth BR/EDR and BLE [5] define their attacker models
that involve jamming the Bluetooth spectrum among the victims to disconnect their session.
However, these attacks do not discuss the methods and practicality of jamming to forcibly
disconnect Bluetooth sessions. The downgrade attacks, proposed by Zhang et al. [44], also needs
jamming to launching the attack. We argue that such assumptions are strong and impractical.

The sleep mode vulnerabilities lead to a temporary disconnection of the Bluetooth without
the attacker’s intervention and the victim’s interaction. This state provides attackers with a
starting point for launching attacks without the need to forcibly disconnect the Bluetooth session
among victims, such as by using jamming tools. By abusing these vulnerabilities, the prerequisite
for forcible disconnection is removed, making the prior attacks considerably more realistic.

4.2 How Attackers Detect the Sleep Mode

Mallory must secretly detect whether the Bluetooth session between Alice and Bob has transi-
tioned to the sleep mode. Mallory can easily detect this using l2ping. l2ping is a command
used in Linux systems that sends an L2CAP echo request to the Bluetooth address specified in
dotted hexadecimal notation [23, 43]. In this section, we first describe three patterns of response
behavior to l2ping echo requests. Subsequently, we present the technical details of how Mallory
uses the response behavior to detect the sleep mode.

4.2.1 L2ping Echo Response Behavior

We describe three patterns of echo response behavior that Mallory receives from Alice when
Mallory sends a l2ping echo request to Alice. For simplicity, we notate the states of Alice, Bob,
and Mallory as follows:

• C(A–B): Alice and Bob have established a Bluetooth session and are active.

• NC(A–B): The Bluetooth session between Alice and Bob is disconnected.

• M(B): Mallory impersonates Bob.

• M: Mallory does not impersonate Bob.

According to the above notation, we describe the behavior of the following three l2ping

echo response behavior, Behaviors #1, #2, and #3 (Figure 2).

Behavior #1: C(A–B) and M Even when Alice and Bob have established a Bluetooth
session, if Alice’s Bluetooth is active, Mallory sends a l2ping echo request to Alice, and Alice
sends an echo response to the request. This is standard l2ping behavior. Even if Alice and Bob
are not connected via Bluetooth, if Alice’s Bluetooth is active, Alice will respond to the echo
request from Mallory.

Behavior #2: C(A–B) and M(B) Consider the scenario where Alice and Bob have already
established a Bluetooth session, and Mallory impersonates Bob. In this scenario, even if Mallory
sends an l2ping echo request to Alice, Alice does not respond. The reason is that Alice and the
legitimate Bob have already established the session, and Alice recognizes the session with Bob.
Therefore, Mallory does not receive a response from Alice, and will get an error (e.g., “Host is
down” and “Operation in progress”).

7



Behavior #3: NC(A–B) and M(B) Consider the scenario where Alice and Bob have
disconnected their Bluetooth session, and Mallory impersonates Bob. In this scenario, if Mallory
sends a l2ping echo request to Alice, Alice responds. Compared with Behavior #2, Alice is
not connected to the legitimate Bob via Bluetooth, and she does not recognize the session with
Bob. Resultantly, Alice sends the echo response to Mallory, impersonating Bob.

Figure 2: Three patterns of l2ping echo response behavior

4.2.2 Technical Details to Detect the Sleep Mode

Figure 3 shows the technical details of how Mallory secretly detects that the Bluetooth session
between Alice and Bob has transitioned to the sleep mode. For detection, Behaviors #2 and
#3 described in Section 4.2.1 are used. Mallory sends l2ping echo requests intermittently (e.g.,
at one-second intervals) and checks the response from Alice to detect the state of the Bluetooth
session between Alice and Bob.

From Behavior #2, while Alice and Bob are communicating, Alice does not respond to
l2ping echo requests from Mallory, who is impersonating Bob. Even during periods when
Bob is inactive, or no data transmission occurs between Alice and Bob, the session between
Alice and Bob remains established, and thus, Alice does not respond to requests from Mallory
impersonating Bob.

From Behavior #3, after Bluetooth between Alice and Bob is disconnected due to the
sleep mode, Mallory, impersonating Bob, sends a l2ping echo request to Alice, to which Alice
responds. Thus, if Mallory sends l2ping requests intermittently and Mallory, impersonating
Bob, detects a response from Alice after a certain point, Mallory can recognize that the Bluetooth
session between Alice and Bob has been disconnected.

To the best of our knowledge, no prior works have investigated the effectiveness of using the
l2ping command as a method to secretly detect the sleep mode among victims remotely.

8



Figure 3: Technical details to detect Bluetooth sleep mode: If Alice and Bob have
established a Bluetooth session, when Mallory impersonates Bob and sends a l2ping

echo request to Alice, Alice does not respond to this request. However, if the session
between Alice and Bob is temporarily disconnected due to the sleep mode, when
Mallory impersonates Bob and sends a l2ping echo request to Alice, Alice responds
to it. In this way, Mallory can secretly detect the sleep mode between Alice and
Bob.

4.3 Attack Strategy

In our attack, Mallory aims to hijack the Bluetooth session between Alice and Bob, abusing
Vuln. #1 and #2, overwrite LKAB, and control Alice’s operations.

Our attack strategy consists of the following four steps.

Step #1. Spoofing Mallory changes her Bluetooth name and its address to impersonate Bob.

Step #2. Session Hijack Mallory, impersonating Bob in Step #1, detects the temporary
disconnection state of Bluetooth between Alice and Bob by the sleep mode, and at this

9



moment sends a connection request to Alice as Bob, hijacking the Bluetooth session be-
tween Alice and Bob.

Step #3. Link Key Hijack After Step #2, Mallory sends a pairing request to Alice while
impersonating Bob, generating a new link key between them (LKMA). This invalidates
LKAB. Mallory does this by bypassing the PIN code authentication.

Step #4. Command Injection Attack By abusing the hijacked link key in Step #3, Mal-
lory controls Alice’s operations using sensitive profiles. For example, Mallory uses the HID
profile to inject malicious commands into Alice.

4.3.1 Step #1. Spoofing

The first step for every Bluetooth session is inquiring about the device information [2]. Before
establishing a Bluetooth session, Alice requests information from Bob, such as his Bluetooth
name and capabilities. Mallory can easily change this information to the same as Bob’s. If
Mallory connects to Alice via Bluetooth using the same name as Bob, Alice will not recognize
the anomaly. Concurrently, Mallory changes her Bluetooth address to BTADDR B. Alice
identifies Mallory as Bob because Bluetooth identifies devices using their Bluetooth addresses.
The Bluetooth address can also be easily changed [2, 4].

4.3.2 Step #2. Session Hijack

After Step #1 , Mallory attempts to hijack the Bluetooth session between Alice and Bob. To
achieve this, Mallory abuses the sleep mode vulnerabilities (Vuln. #1 and #2 ) described in
Section 4.1, and the detection method for the sleep mode described in Section 4.2.2.

According to Blacktooth [2], some devices do not respond to new inquiry packets after
pairing. Assuming a laptop (master) that is paired with a Bluetooth keyboard (slave), if an
attacker impersonates the slave and requests the master to connect, the master will not respond
to this connection request. The opposite is also true; if an attacker impersonates and requests
the slave to connect, the slave will not respond. Therefore, it is unrealistic for the attacker to
hijack the Bluetooth session between the victim’s master and slave that is already paired and
communicating. Consequently, prior works [2, 4, 38, 5, 44, 3] have noted the need to forcibly
disconnect Bluetooth (e.g., by jamming) before launching their attack.

However, even if the pairing between the victim’s master and slave is completed, attackers can
still hijack the Bluetooth session between the victims. The hijacking process follows the same
flow as shown in Figures 1 and 3. While Alice and Bob communicate via Bluetooth, if Mallory
sends l2ping echo requests as Bob to Alice, Alice does not respond (Behavior #2 ). However,
when the Bluetooth session between the victims transitions to the sleep mode, the connection
between the victims is silently disconnected (Vuln. #1 ) and Alice changes her status to accept
connection requests from Bob (Vuln. #2 ). After transitioning to sleep mode, if Mallory sends
the echo requests as Bob to Alice, Alice responds (Behavior #3 ), and Mallory recognizes that
the Bluetooth session between the victims transitioned to sleep mode. After detecting the sleep
mode, Mallory sends a connection request as Bob to Alice, which Alice accepts, establishing a
new Bluetooth connection (Vuln. #2 ).

4.3.3 Step #3. Link Key Hijack

After Step #2 , Mallory overwrites LKAB with LKMA to communicate with Alice.
Mallory requests pairing with Alice. Because Alice misidentifies Mallory for Bob, she accepts

the pairing request from Mallory. Mallory sets the IO capability to NoInputNoOutput to avoid
the PIN authentication [9, 38] before requesting Alice to pair.

10



When the pairing between Alice and Mallory succeeds, a new link key (LKMA) is generated
and shared between them. Because Alice misidentifies Mallory as Bob, Alice overwrites LKAB

with LKMA. Therefore, LKAB is invalidated by Mallory, and even if Bob returns from sleep
mode to active mode, he cannot restore Bluetooth with Alice. Furthermore, even if either Bob
or Alice is rebooted, Bluetooth between Alice and Bob will not be restored.

4.3.4 Step #4. Command Injection Attack

After Step #3 , Mallory exploits Bob’s profile to which Alice has granted access. For example,
if Bob is a Bluetooth keyboard, Alice can connect to Bob’s HID profile after pairing. Therefore,
if Mallory connects to Alice as Bob and communicates using LKMA shared in Step #3 , Mallory
can exploit Bob’s HID profile to send arbitrary commands to Alice.

For example, if Mallory emulates as a Bluetooth keyboard and exploits Bob’s HID profile,
she can send keyboard commands to Alice. In addition, Mallory can use shortcut keys to
control Alice’s operations. For example, Windows defines several keyboard shortcuts, including
one that can launch PowerShell with administrative privileges. Mallory can use these shortcuts
to send arbitrary text, open arbitrary ports for backdoors, or inject malware. Users who can
launch PowerShell with administrative privileges can control most operations on the device via
PowerShell. Thus, if Mallory launches PowerShell with administrative privileges, she gets full
control over Alice’s operations.

5 Implementation

In this section, we describe the Breaktooth attack scenario, devices used for implementation,
and the implementation of our toolkit to perform the Breaktooth attack.

5.1 Attack Scenario

The Breaktooth attack scenario involves three devices: a device (e.g., laptop, desktop PC,
smartphone, or tablet) as Alice, a commercial Bluetooth keyboard or mouse as Bob, and a
Raspberry Pi as Mallory. The Raspberry Pi is connected to a wired keyboard or mouse via USB
for injecting commands into Alice. The Raspberry Pi not only serves as a spoofing device but
also hijacks Bluetooth sessions and LKAB and injects arbitrary commands. Alice and Bob have
paired and shared LKAB, which is unknown to Mallory.

5.2 Attack Device

Table 1 lists the specifications of Mallory. Mallory is a Raspberry Pi 4 Model B. The operating
system of the Raspberry Pi is the Raspberry Pi OS (11 Bullseye) with Linux OS kernel version
6.1 [27]. The Raspberry Pi OS (11 Bullseye) is preinstalled with BlueZ 5.55 [28]. We utilize
hciconfig [14] and hcitool [13] to command the necessary HCI configuration and the scan-
ning and enumeration of Bluetooth devices, respectively. These two commands are part of the
Bluetooth stack provided by BlueZ and are available by default upon installing the OS. Further-
more, the Raspberry Pi supports the Bluetooth adapter by default. Therefore, the hardware
and software costs for the Breaktooth attack are low.

5.3 Breaktooth Attack Toolkit

We develop the Breaktooth attack toolkit to perform our attack. In this section, we focus on
the technical details of Step #1 to #4 in Section 4.3, which are implemented in the toolkit.
We plan to release the toolkit as open-source.

11



Table 1: Specifications of a device used as Mallory

Device

Device Model Raspberry Pi 4 Model B
Operating System Raspberry Pi OS

System 32bit
Debian Version 11 Bullseye
Kernel Version 6.1

Bluetooth

BlueZ version 5.55
Bluetooth Manufacturer Cypress Semiconductor

Bluetooth Version 5.0

5.3.1 Bluetooth Spoofing (Step #1)

We describe how Mallory changes her Bluetooth name and address to impersonate Bob.
The method for changing the Bluetooth name is as follows: First, we create a file named

machine-info in /etc directory of Mallory’s Raspberry Pi. After creating the file, we define a
variable as PRETTY HOSTNAME and set BTNAME B to the variable. After setting the variable,
restart Bluetooth daemon to reflect the change.

We describe the method for changing Mallory’s Bluetooth address. We assume that her
Bluetooth address is represented in a hexadecimal format, split into six octets, each consisting
of eight bits (e.g., xx:xx:xx:xx:xx:xx:xx:xx). First, to read the Bluetooth address, we set
OpCode Group Field (OGF) [33] as 0x04 and OpCode Command Field (OCF) [33] as 0x009

using hcitool’s cmd option [13]. Subsequently, we execute the command using hcitool’s cmd

option [13] with OGF as 0x3f , OCF as 0x001, and specify the reversed address of Bob’s
Bluetooth address to set Mallory’s Bluetooth address as Bob’s. By executing these commands,
Mallory can set her Bluetooth address to the same as Bob’s. To ensure that the changes are
reflected, reset the Bluetooth device settings on the Linux system using hciconfig’s reset

option [14], and then restarting the Bluetooth service.

5.3.2 Implementation of a Sleep Mode Detector (Step #2)

In Section 4.3.2, before attempting to hijack the Bluetooth session between Alice and Bob,
Mallory must monitor the Bluetooth connection state between them to recognize whether the
connection state is in the sleep mode or not. Based on the technical details presented in Section
4.2.2, we implement a function to detect the sleep mode in Python. We name the function
sleep detector.

Listing 1 shows the source code of sleep detector. The function takes Alice’s Bluetooth
address as its argument. Mallory sends one l2ping echo request per second to Alice. If there is
a successful response from Alice to the l2ping echo request, the status code of the echo request
is zero. Therefore, if the status code of the l2ping echo request is non-zero, Mallory continues
to send an echo request to Alice. By contrast, if the status code is zero, Mallory recognizes
that Bluetooth between Alice and Bob is temporarily disconnected due to the sleep mode, exits
sleep detector and Mallory sends a connection request to Alice as Bob.

5.3.3 Pairing without PIN Code (Step #3)

Mallory sets her IO capability to NoInputNoOutput to pair Bluetooth with Alice without a
PIN code. NoInputNoOutput means no interaction with the connecting and pairing user. After
setting her IO capability, Mallory initiates a Bluetooth socket, and sets the socket type to
SOCK ROW and the socket protocol to L2CAP. Mallory sets the socket security level to High and

12



the socket’s destination to BTADDR A. With those settings, Mallory can pair with Alice
without the PIN code. We use the Python socket library [16] for those implementations.

Mallory can pair with Alice without PIN code authentication, but it is difficult to completely
avoid interaction with Alice during Bluetooth pairing. According to BLAP [9], if Alice’s (master)
Bluetooth version is 5.0 or higher, Alice is mandated to popup Yes/No confirmation on her screen
when Bluetooth pairing. However, the popup only asks whether users would accept the pairing
request or not. Therefore, there is no way for the users (Alice) to judge whether the pairing is
being performed with legitimate devices (Bob), and Alice will probably accept the pairing, and
Mallory can generate and share a link key with Alice.

5.3.4 Bluetooth Device Emulator (Step #4)

We implement Bluetooth device emulator to inject arbitrary commands to Alice. The emulator
operates after Step #1 to #3 are successfully completed. We implement the emulator by
leveraging the D-Bus feature, which can communicate with BlueZ [15].

We describe the details of the emulator implementation. As keyboard and mouse emulators
share the same technical specifics, we exclusively focus on the keyboard emulator for clarity.
The implementation procedures are outlined as follows: First, a D-Bus client running on the
Raspberry Pi captures commands entered through the physical keyboard connected to Mallory’s
Raspberry Pi via USB. Then, the D-Bus client sends the commands to a corresponding D-Bus
server, where they are injected to Alice via Bluetooth. We implement the emulator in Python
3.9.2.

D-Bus Service Definition For emulating Mallory as a Bluetooth keyboard, we define the
D-Bus service. In our implementation, we define the D-Bus service as org.mallory.btkbservice.
After the definition, we set the definition file in /etc/dbus-1/system.d, and restart the Blue-
tooth daemon.

D-Bus Server We prepare an SDP record file with the settings for a Bluetooth keyboard to
emulate Mallory as a Bluetooth keyboard. Then, we register the SDP record file at the HCI
path used by Mallory for Bluetooth communication (e.g., /org/bluez/hci0). After the SDP
record is registered, Mallory is recognized by Alice as an input device by setting the Bluetooth
device class to 0x2c0540. After these settings, we register a method (e.g., send keys) in the
D-Bus service, org.mallory.btkbservice for transferring keyboard commands, received from the
D-Bus client, to Alice. After the method registration, Mallory initiates the D-Bus server and
connects to Alice via Bluetooth abusing LKMA. We use python3-dbus [11], python3-bluez
[21], and python3-gi [19] for implementation.

D-Bus Client The D-Bus client must convert the input keys from the wired keyboard into
the HID code [37] and send them to the D-Bus server. The client identifies and tracks events
with the ID INPUT KEY BOARD property from all input events observed on the Raspberry
Pi, which refer to events from the wired keyboard. The client also converts keyboard input
events into HID codes. After the conversion, the client calls the send keys method registered in
the D-Bus service org.mallory.btkbservice and specifies the converted HID codes as arguments
to send them to the D-Bus server. Subsequently, the D-Bus server transmits the HID codes
received from the client to Alice via Bluetooth. We use python3-evdev [40], in addition to
python3-dbus for implementation.

13



Table 2: Specifications of devices used as Bob: K = Keyboard, M = Mouse, BTV =
Bluetooth version, TSM = Time to the sleep mode

Manufacturer Model Type BTV TSM

Ewin EW-B009 K 5.1 10 min
Earto JP-B087-BK K 5.1 10 min
Buffalo BSKBB315BK K 3.0 10 min

SANWA SUPPLY 400-SKB062 K 3.0 10 min
Ajazz 308i K 3.0 15 min
iClever IC-BK22 K 5.1 30 min
Anker A7726 K 3.0 30 min

ELECOM TK-FBP101WH K 3.0 30 min
Logicool K380BK K 3.0 120 min
Buffalo BSMBB105BK M 3.0 10 min

EX-DASH WM1 M 3.0 10 min
SAMDVM SAMDVM-13 M 3.0 10 min

BUSINESS HARMONY Em23-S1 M 3.0 30 min

6 Evaluation

6.1 Setup

To evaluate our attack, we first pair Alice and Bob via Bluetooth and establish a Bluetooth
session between them. Subsequently, we configure Mallory’s Bluetooth name and address to
the same as Bob’s. With Alice and Bob’s Bluetooth session active, we leave Bob without
performing any operations. Furthermore, we execute the sleep detector from the Breaktooth
attack toolkit, and Mallory secretly monitors the connection status of Alice and Bob’s Bluetooth.
Finally, we maintain Mallory in the monitoring state until Alice and Bob’s connection transitions
to the sleep mode.

6.2 Results

We evaluate the Breaktooth attack on three different devices as Alice (Table 3) and 13 different
devices as Bob (Table 2). All devices shown in Table 2 support Bluetooth sleep mode.

Table 4 lists the evaluation results. A checkmark (✓) indicates that our attack succeeds,
and a white circle (◦) indicates that the attack succeeds only when the master device’s screen
is on the Bluetooth pairing screen. The Breaktooth attack succeeds on all of the 13 devices as
does Bob. In the case of the Logicool K380BK, although it is not practical as an attack scenario
since it takes two hours to transition to the sleep mode, we confirm that the attack succeeds
by making the sleep detector (Listing 1) wait for two hours. When Alice is the iPhone 11,
our attack succeeds only when the Alice’s screen is on the Bluetooth pairing screen. We also
confirm that all of 13 devices used as Bob have the sleep mode vulnerabilities (Vuln. #1 and
#2 ) by analyzing their Bluetooth packet (Figures 4 to 16).

In our evaluation, if our attack succeeds, we confirm damages, such as command injection
via a terminal launched on Alice with administrator rights. Additionally, if Alice is the Google
Pixel 2 or iPhone 11 shown in Table 3, we confirm that Mallory can make phone calls on Alice
to arbitrary numbers, not only inject commands. Furthermore, during our attack, Bob cannot
reconnect the Bluetooth with Alice, regardless of the operations performed.

14



Table 3: Specifications of devices used as Alice

Manufacturer Model Operation System Driver Bluetooth Version

Microsoft Surface Laptop 4 Windows 11 Home Intel(R) Wireless Bluetooth(R) 5.1
Google Pixel 2 Android OS 10 - 5.0
Apple iPhone 11 iOS 16.2 - 5.0

Table 4: Breaktooth attack evaluation results
Bob (Slave) Alice (Master)

Surface Laptop 4 Pixel 2 iPhone 11

EW-B009 ✓ ✓ ◦
JP-B087-BK ✓ ✓ ◦
BSKBB315BK ✓ ✓ ◦
400-SKB062 ✓ ✓ ◦

308i ✓ ✓ ◦
IC-BK22 ✓ ✓ ◦
A7726 ✓ ✓ ◦

TK-FBP101WH ✓ ✓ ◦
K380BK ✓ ✓ ◦

BSMBB105BK ✓ ✓ ◦
WM1 ✓ ✓ ◦

SAMDVM-13 ✓ ✓ ◦
Em23-S1 ✓ ✓ ◦

✓ The attack is successful and the operation of Alice is hijacked by Mallory.

◦ The attack only succeeds when Alice’s screen is in the Bluetooth settings.

7 Discussion

7.1 Threat Analysis

The Breaktooth attack poses serious threats to all the CIA (Confidentiality, Integrity, and
Availability) triad. The specific threats to each of the CIA triad posed by the attack are as
follows:

Confidentiality Access to a victim’s master device should be permitted only for the victim’s
slave device. However, the Breaktooth attack enables attackers to access the master device via
Bluetooth. Moreover, the attack has demonstrated that the attackers can illegitimately and
effortlessly gain administrative rights to the victim’s master device, without pre-existing access.
Therefore, the Breaktooth attack constitutes a grave threat to confidentiality.

Integrity If the Breaktooth attack succeeds, the victim’s slave device cannot transmit com-
mands via Bluetooth correctly to the victim’s master device. This incorrect transmission of com-
mands results from inconsistencies in the link key used for encrypting communication between
the victims. If the intended commands are not accurately transmitted, the attack compromises
integrity.

Availability Even if the victim’s slave device recovers from the sleep mode or is rebooted,
it cannot communicate normally with the victim’s master device via Bluetooth. This inability
to conduct normal Bluetooth communication arises from the attacker’s hijacking of Bluetooth
communication with the master device. The attack renders the services, normally accessible
through the slave device, unusable, posing threats to their availability.

15



Table 5: Threat comparison with prior attacks: The Breaktooth attack is the first to
abuse the sleep mode to hijack Bluetooth sessions between the victims. The attack
does not require jamming to forcibly disconnect Bluetooth between the victims. SC
= Secure Connection, J/FD = Jamming or Force to Disconnect

Attack

Year Paper Target Phase CIA SC J/FD

2016 Uher [39] BLE Power-Saving Mode (Sleep) −◦− NA Not required
2019 Antonioli. [7] Classic Active Mode (Pairing) ••◦ ✓ Not required
2020 Antonioli. [4] Classic Active Mode (Pairing) ••• ✓ Required
2020 Zhang [44] BLE Active Mode (Pairing) ••• ✓ Required
2021 Tsch. [38] BLE Active Mode (Pairing) ••• ✓ Required
2021 Antonioli. [5] Classic/BLE Active Mode (Pairing) ••◦ ✓ Required
2022 Ai [2] Classic Active Mode (Pairing) ••• ✓ Required

2024 Breaktooth Classic Power-Saving Mode (Sleep) ••• ✓ Not required

Parameters related to the CIA triad
(•): It poses a grave threat. (◦): It poses a partial threat. (−): It poses no threat.

Parameters for Secure Connection
(✓): The attack is possible regardless of the support for secure connections.

7.2 Threat Comparison with Prior Attacks

Table 5 shows that the Breaktooth attack is the first to abuse the Bluetooth sleep mode as a
starting point for hijacking Bluetooth session. In contrast to many prior attacks for which it is
assumed that attackers need to jam the Bluetooth channel or forcibly disconnect the Bluetooth
among victims [38, 5, 4], our attack does not require such an assumption. Furthermore, there
is no need to pre-install any malicious applications on the victims.

7.3 Defense Against the Breaktooth Attack

We now discuss defenses against the Breaktooth attack.

7.3.1 Design

To prevent Breaktooth, we need to clearly define a sleep state and manage the state. From (1)
to (5), we propose the design of the sleep state.

1. Bob sends a disconnection request with a sleep flag to Alice.

2. Alice accepts the disconnect request, but in Alice’s adapter, Alice sets Bob’s state to sleep
(sleeped=TRUE) and manages Bob as still being in the connected state.

3. Alice notifies her user that Bob has transitioned to the sleep mode (patch for Vuln. #1 ).

4. Alice does not accept any connection or pairing requests from Bob while managing him in
a sleep state (patch for Vuln. #2 ).

5. Bob notifies Alice that he is waking up from the sleep mode. Alice confirms that Bob still
holds LKAB, and manages him as active (sleeped=FALSE). Subsequently, she accepts a
connection request from Bob.

The reason Alice and Bob confirm LKAB in (5) is that Alice can verify that Bob returning
from the sleep mode is truly the same device (Bob) that was connected before transitioning to
the sleep mode. LKAB does not change before and after transitioning to the sleep mode. If
the device confirmation using LKAB is not performed, Mallory can impersonate Bob and notify
Alice of the return from the sleep mode.

16



7.3.2 Proof-of-Concept

To verify the effectiveness of the proposed sleep state as the defense, we briefly implement a
proof-of-concept (PoC) mitigation for Linux. We select Linux because it is open-source and is
employed on multiple Bluetooth devices, such as Android smartphones, embedded devices, and
laptops.

Our PoC mitigation works as follows: We pair a Raspberry Pi (victim, Alice) with a Blue-
tooth keyboard supporting Bluetooth sleep mode (victim, Bob). When Bob sends a disconnect
request to Alice to transition to the sleep mode, Alice sets Bob’s state to sleep while keeping his
connection valid. Additionally, Alice is implemented such that if a device is in the connected and
sleep state when processing connection and pairing requests from other devices, these requests
are discarded. Subsequently, using a Raspberry Pi impersonating Bob (attacker, Mallory), we
execute the attack, but Mallory fails to hijack the Bluetooth session between Alice and Bob,
confirming the attack is mitigated.

In our PoC, we implement (1), (2), and (4) to partially verify the attack prevention. How-
ever, completely mitigating the attack and ensuring communication stability requires substantial
rewriting of the communication stack processing.

7.4 Limitations and Further Attack Scenarios

7.4.1 Extension to BLE

In the attack model shown in Figure 1, our attack fails if Bob employs BLE. Compared with
Bluetooth, which allows master/slave role switching, BLE restricts role changes between central
(master) and peripheral (slave). Thus, when Mallory, impersonating Bob, sends a connection
request to Alice, Alice would recognize Mallory as Bob in the central. However, Mallory fails
her spoofing attacks because the legitimate Bob is a peripheral.

The scope of the Breaktooth attack should not only encompass Bluetooth but also be ex-
tended to BLE. We believe the issue of spoofing failures can be mitigated by applying prior
attack strategies. BLESA [42], proposed by Wu et al., is a spoofing attack that exploits vulner-
abilities in the BLE reconnection process and has the potential to mitigate spoofing failures. As
further attack scenarios, we should apply BLESA in the Breaktooth attack, where Bob employs
BLE, to expand the range of our attack to BLE.

7.4.2 Extension to Man-in-the-Middle Attacks

In the attack model shown in Figure 1, Mallory impersonates Bob and establishes Bluetooth
sessions with Alice. However, a man-in-the-middle (MITM) attack model where additionally
Mallory impersonates Alice and connects to Bob has not been evaluated.

The Blacktooth attack [2] is based on the assumption that the victim’s master and slave
are in the Bluetooth connectable state, and the attacker performs a spoofing attack on both
the victim’s master and slave devices, successfully extending the Blacktooth attack to a MITM
attack as the MITM Blacktooth attack. On the other hand, in our evaluation, we find that the
device used as Bob (slave, Table 2) is no longer in the connectable state after pairing with Alice.
Moreover, once the Bluetooth connection with Alice is disconnected, Bob does not accept the
connection request from the legitimate Alice, and Bob needs to request a Bluetooth connection
himself to Alice to reconnect with Alice. Therefore, the Breaktooth attack is now difficult to
extend to a MITM attack such as the MITM Blacktooth attack for the Bob devices evaluated
in this paper.

As further attack scenarios, extending the Breaktooth attack to MITM attacks. We will
evaluate our attack by extending the types of Bluetooth devices utilized as Bobs and assess the
possibility of extending the Breaktooth attack to MITM attacks.

17



7.4.3 Regional Availability of Evaluation Devices

The Bluetooth devices used in Section 6 are limited to Bluetooth 3.0 and 5.1. This is because,
after investigating the available commodity devices supporting the sleep mode in the author’s
region, only Bluetooth 3.0 and 5.1 devices could be obtained. However, we believe that there may
be other devices available in regions outside the author’s area that support Bluetooth versions
other than 3.0 and 5.1. We acknowledge this limitation, share the limitation to the Bluetooth
SIG, and recognize the need for further investigation to address this issue. Additionally, we
reiterate that the Breaktooth attack does not depend on the Bluetooth version. The root causes
of the attack are the sleep mode vulnerabilities (Vuln. #1 and #2 ), and we believe that all
Bluetooth devices that support the sleep mode are affected by the attack.

8 Related Work

In January 2022, NIST published their latest guidelines on Bluetooth security [25], presenting
the security risks associated with Bluetooth, and defenses against them. However, the guidelines
do not mention the security risks associated with the Bluetooth power-saving mode. Moreover,
few related works have directly discussed the vulnerabilities of the power-saving mode. Research
on attacks that abuse the power-saving mode primarily proposes DoSL attacks, interfering with
the transition to the power-saving mode.

In 2016, Uher et al. studied DoSL attacks on the BLE protocol and their impacts [39]. BLE
sensor nodes adopt a machine-to-machine connection method using the Zero-interaction Authen-
tication (ZIA) model [12]. In the connection method, recognizing whether the connecting device
is friendly or hostile is difficult. Uher et al. proposed a DoSL attack that abuses the difficulty.
The DoSL attack repeatedly requests unnecessary connections from the BLE sensor devices,
reducing their sleep periods and increasing their active periods. As a result, the DoSL attack
successfully reduced the theoretical battery life by 93% when the sleep mode of the BLE sensor
device was completely eliminated. However, the DoSL attack does not affect confidentiality;
therefore, its threat is limited.

In 2018, Huang et al. discussed vulnerabilities of the sniff and park modes and DoS attacks
against these modes [22]. In the sniff mode, the master device can only send packets at specific
time slots to transition to the sniff mode. To transition to the sniff mode, the master must
send a sniff request through the LMP and negotiate parameters with the slave. However, if the
slave provides incorrect parameters during negotiation, the master cannot transition to the sniff
mode. In the park mode, when the master requests the slave to transition to the park mode, if
the slave refuses, neither can it transition to the park mode. Moreover, during the return process
from the park mode, if the appropriate response does not reach the master, park commands are
issued until the appropriate response returns from the slave. The transition to power-saving
mode is hindered if these park commands are disrupted by attackers. However, similar to the
work by Uher [39], the main threat is the increase in power consumption, and their threat is
limited.

Compared with prior attacks [39, 22], the Breaktooth attack waits for the victims to tran-
sition to the sleep mode. Then, it abuses the temporary disconnection between the victims
to hijack not just the Bluetooth session but most device operations. The attack threatens all
aspects of the CIA triad, posing far more serious threats than the prior attacks [39, 22].

9 Conclusion

This paper presents the Breaktooth attack against Bluetooth Classic. Our attack is the first
to abuse the sleep mode vulnerabilities to hijack sessions. It abuses two novel vulnerabilities
of Bluetooth sleep mode: (1) the silent disconnection of Bluetooth between the victim’s master

18



and slave, and (2) after the disconnection, the master becomes receptive to connection requests
from the slave. These vulnerabilities enable attackers to hijack Bluetooth sessions between the
two victims, without needing any preinstalled malicious agent, prior knowledge of the link key,
special privileges, and any specialized tool.

The Breaktooth attack is practical because it removes the step of forcibly disconnecting the
Bluetooth session among the victims to launch attacks. Many prior attacks require this step to
launch their attack [2, 4, 38, 5, 44, 3]. Our attack exploits Bluetooth’s sleep mode to bypass
this step completely. The sleep mode has been implemented in many devices, especially battery-
operated devices such as keyboards and mice, adopting the sleep mode for power conservation.
By abusing this mode, the Breaktooth attack can target all Bluetooth devices that support the
sleep mode.

We develop a low-cost and reproducible toolkit to perform our attack to demonstrate the
feasibility of the Breaktooth attack. We use the toolkit to confirm that the Breaktooth attack is
effective and impactful. We exploit 13 unique devices, including keyboards and mice supporting
the sleep mode. We confirm that the attack succeeds on all the devices, allowing the attacker to
hijack the sessions and control most operations of the master (e.g., a laptop and a smartphone).
In addition, we present defenses against our attack. We propose a sleep state and its management
to fix the attack. We responsibly disclosed our findings to the Bluetooth SIG.

Acknowledgements

This work is in part conducted under the “Research and development on new generation cryptog-
raphy for secure wireless communication services” contract for the “Research and Development
for Expansion of Radio Wave Resources (JPJ000254)”, which is supported by the Ministry of
Internal Affairs and Communications, Japan.

References

[1] AEMIS. Blueborne white paper: The dangers of bluetooth implementations: Unveiling
zero day vulnerabilities and security flaws in modern bluetooth stacks. https://media.

armis.com/PDFs/wp-blueborne-bluetooth-vulnerabilities-en.pdf, 2023. Accessed:
2023-11-12.

[2] Mingrui Ai, Kaiping Xue, Bo Luo, Lutong Chen, Nenghai Yu, Qibin Sun, and Feng Wu.
Blacktooth: Breaking through the defense of bluetooth in silence. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security, CCS ’22,
page 55–68, New York, NY, USA, 2022. Association for Computing Machinery.

[3] Daniele Antonioli and Mathias Payer. On the insecurity of vehicles against protocol-level
bluetooth threats. In 2022 IEEE Security and Privacy Workshops (SPW), pages 353–362,
San Francisco, CA, USA, 2022. IEEE.

[4] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. Bias: Bluetooth imper-
sonation attacks. In 2020 IEEE Symposium on Security and Privacy (SP), pages 549–562,
San Francisco, CA, USA, 2020. IEEE.

[5] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. Key negotiation down-
grade attacks on bluetooth and bluetooth low energy. ACM Trans. Priv. Secur., 23(3), jul
2020.

[6] Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen, and Mathias Payer. Blur-
tooth: Exploiting cross-transport key derivation in bluetooth classic and bluetooth low

19

https://media.armis.com/PDFs/wp-blueborne-bluetooth-vulnerabilities-en.pdf
https://media.armis.com/PDFs/wp-blueborne-bluetooth-vulnerabilities-en.pdf


energy. In Proceedings of the 2022 ACM on Asia Conference on Computer and Communi-
cations Security, ASIA CCS ’22, page 196–207, New York, NY, USA, 2022. Association for
Computing Machinery.

[7] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B. Rasmussen. The KNOB is broken:
Exploiting low entropy in the encryption key negotiation of bluetooth BR/EDR. In 28th
USENIX Security Symposium (USENIX Security 19), pages 1047–1061, Santa Clara, CA,
August 2019. USENIX Association.

[8] Eli Biham and Lior Neumann. Breaking the bluetooth pairing – the fixed coordinate invalid
curve attack. In Selected Areas in Cryptography – SAC 2019: 26th International Conference,
Waterloo, ON, Canada, August 12–16, 2019, Revised Selected Papers, page 250–273, Berlin,
Heidelberg, 2019. Springer-Verlag.

[9] Junbeom Hur Changseok Koh, Jonghoon Kwon. Blap: Bluetooth link key extraction
and page blocking attacks. In 2022 52nd Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN), pages 227–238, Baltimore, Maryland,
2022. Dependable Systems and Networks. Available at https://www.computer.org/csdl/
proceedings-article/dsn/2022/169300a227/1Fixhx3vELC.

[10] M. Conti and D. Moretti. System level analysis of the bluetooth standard. In Design,
Automation and Test in Europe, pages 118–123 Vol. 3, Munich, Germany, 2005. IEEE.

[11] D-Bus contributors. dbus-python: Python bindings for d-bus. https://dbus.

freedesktop.org/doc/dbus-python/, 2018. Accessed: 2023-11-13.

[12] Mark D. Corner and Brian D. Noble. Zero-interaction authentication. In Proceedings of
the 8th Annual International Conference on Mobile Computing and Networking, MobiCom
’02, page 1–11, New York, NY, USA, 2002. Association for Computing Machinery.

[13] die.net. hcitool(1) - linux man page. https://linux.die.net/man/1/hcitool, 2012. Ac-
cessed: 2023-11-11.

[14] die.net. hciconfig(8) - linux man page. https://linux.die.net/man/8/hciconfig, 2013.
Accessed: 2023-11-11.

[15] Trevor Dunlap, William Enck, and Bradley Reaves. A study of application sandbox poli-
cies in linux. In Proceedings of the 27th ACM on Symposium on Access Control Models
and Technologies, SACMAT ’22, page 19–30, New York, NY, USA, 2022. Association for
Computing Machinery.

[16] Python Software Foundation. socket — low-level networking interface¶. https://docs.

python.org/3/library/socket.html, 2024. Accessed: 2024-04-16.

[17] Matheus E. Garbelini, Vaibhav Bedi, Sudipta Chattopadhyay, Sumei Sun, and Ernest Kur-
niawan. BrakTooth: Causing havoc on bluetooth link manager via directed fuzzing. In
31st USENIX Security Symposium (USENIX Security 22), pages 1025–1042, Boston, MA,
August 2022. USENIX Association.

[18] GeekdforGeeks. Modes of connection bluetooth. https://www.geeksforgeeks.org/

modes-of-connection-bluetooth/, 2023. Accessed: 2023-11-12.

[19] GNOME. Pygobject. https://pygobject.readthedocs.io/en/latest/, 2023. Accessed:
2023-11-13.

20

https://www.computer.org/csdl/proceedings-article/dsn/2022/169300a227/1Fixhx3vELC
https://www.computer.org/csdl/proceedings-article/dsn/2022/169300a227/1Fixhx3vELC
https://dbus.freedesktop.org/doc/dbus-python/
https://dbus.freedesktop.org/doc/dbus-python/
https://linux.die.net/man/1/hcitool
https://linux.die.net/man/8/hciconfig
https://docs.python.org/3/library/socket.html
https://docs.python.org/3/library/socket.html
https://www.geeksforgeeks.org/modes-of-connection-bluetooth/
https://www.geeksforgeeks.org/modes-of-connection-bluetooth/
https://pygobject.readthedocs.io/en/latest/


[20] Keijo Haataja and Pekka Toivanen. Two practical man-in-the-middle attacks on bluetooth
secure simple pairing and countermeasures. IEEE Transactions on Wireless Communica-
tions, 9(1):384–392, 2010.

[21] Albert Haung and contributors. Pybluez. https://pybluez.readthedocs.io/en/

latest/, 2019. Accessed: 2023-11-13.

[22] Yicai Huang, Pengcheng Hong, and Bin Yu. Design of bluetooth dos attacks detection
and defense mechanism. In 2018 IEEE 4th International Conference on Computer and
Communications (ICCC), pages 1382–1387, Chengdu, China, 2018. IEEE.

[23] Linux man page. l2ping(1). https://linux.die.net/man/1/l2ping, 2002-2024. Accessed:
2024-03-25.

[24] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. Internalblue - blue-
tooth binary patching and experimentation framework. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services, MobiSys ’19, page
79–90, New York, NY, USA, 2019. Association for Computing Machinery.

[25] NIST. Guide to bluetooth security. https://www.nist.gov/publications/

guide-bluetooth-security-2, 2022. Accessed: 2023-11-11.

[26] Ellisys Bluetooth Expert Notes. Secure simple pairing explained. https://www.ellisys.

com/technology/een_bt07.pdf, 2011. Accessed: 2023-11-12.

[27] Raspberry Pi. Operating system images: Raspberry pi os (legacy) with desktop. https:

//www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-legacy,
2023. Accessed: 2023-11-11.

[28] BlueZ: Official Linux Bluetooth protocol stack. Bluez 5.55. http://www.kernel.org/pub/
linux/bluetooth/bluez-5.55.tar.xz, 2016. Accessed: 2023-11-12.

[29] Shalaka Satam, Pratik Satam, and Salim Hariri. Multi-level bluetooth intrusion detection
system. In 2020 IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA), pages 1–8, Antalya, Turkey, 2020. IEEE.

[30] Bluetooth SIG. Bluetooth core specification v4.2. https://www.bluetooth.org/docman/

handlers/downloaddoc.ashx?doc_id=441541, 2014. Accessed: 2023-11-11.

[31] Bluetooth SIG. Bluetooth core specification v5.0. https://www.bluetooth.org/docman/

handlers/DownloadDoc.ashx?doc_id=421043, 2016. Accessed: 2023-11-11.

[32] Bluetooth SIG. 2023 bluetooth® market update. https://www.bluetooth.com/

2023-market-update/, 2023. Accessed: 2023-11-11.

[33] Bluetooth SIG. Bluetooth core specification v5.4. https://www.bluetooth.org/DocMan/

handlers/DownloadDoc.ashx?doc_id=556599, 2023. Accessed: 2023-11-11.

[34] Bluetooth SIG. Learn about bluetooth: Bluetooth technology overview. https://www.

bluetooth.com/learn-about-bluetooth/tech-overview/, 2023. Accessed: 2023-11-12.

[35] Bluetooth SIG. 2024 bluetooth® market update. https://www.bluetooth.com/

2024-market-update/, 2024. Accessed: 2024-04-20.

[36] Da-Zhi Sun, Yi Mu, and Willy Susilo. Man-in-the-middle attacks on secure simple pairing in
bluetooth standard v5.0 and its countermeasure. Personal Ubiquitous Comput., 22(1):55–67,
feb 2018.

21

https://pybluez.readthedocs.io/en/latest/
https://pybluez.readthedocs.io/en/latest/
https://linux.die.net/man/1/l2ping
https://www.nist.gov/publications/guide-bluetooth-security-2
https://www.nist.gov/publications/guide-bluetooth-security-2
https://www.ellisys.com/technology/een_bt07.pdf
https://www.ellisys.com/technology/een_bt07.pdf
https://www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-legacy
https://www.raspberrypi.com/software/operating-systems/#raspberry-pi-os-legacy
http://www.kernel.org/pub/linux/bluetooth/bluez-5.55.tar.xz
http://www.kernel.org/pub/linux/bluetooth/bluez-5.55.tar.xz
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=441541
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=421043
https://www.bluetooth.com/2023-market-update/
https://www.bluetooth.com/2023-market-update/
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556599
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=556599
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/2024-market-update/
https://www.bluetooth.com/2024-market-update/


[37] thanhlev. Bluetooth keyboard mouse emulator on raspberry pi. https:

//github.com/thanhlev/keyboard_mouse_emulate_on_raspberry/blob/master/

keyboard/keymap.py, 2020. Accessed: 2024-04-14.

[38] Maximilian Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens Grossklags. Method
confusion attack on bluetooth pairing. In IEEE Symposium on Security and Privacy (Oak-
land), pages 1332–1347, San Francisco, CA, USA, May 2021. IEEE.

[39] Jason Uher, Ryan G Mennecke, and Bassam S Farroha. Denial of sleep attacks in bluetooth
low energy wireless sensor networks. In MILCOM 2016 - 2016 IEEE Military Communi-
cations Conference, pages 1231–1236, Baltimore, Maryland, 2016. IEEE.

[40] Georgi Valkov. python-evdev. https://python-evdev.readthedocs.io/en/latest/,
2022. Accessed: 2023-11-13.

[41] Thomas Willingham, Cody Henderson, Blair Kiel, Md Shariful Haque, and Travis Atki-
son. Testing vulnerabilities in bluetooth low energy. In Proceedings of the ACMSE 2018
Conference, ACMSE ’18, New York, NY, USA, 2018. Association for Computing Machinery.

[42] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave (Jing) Tian, Antonio Bianchi, Mathias
Payer, and Dongyan Xu. BLESA: Spoofing attacks against reconnections in bluetooth low
energy. In 14th USENIX Workshop on Offensive Technologies (WOOT 20), Boston, MA,
August 2020. USENIX Association.

[43] Tuğrul Yüksel, Ömer Aydın, and Gökhan Dalkılıç. Performing dos attacks on bluetooth
devices paired with google home mini. SSRN Electronic Journal, 18:53–58, 01 2022.

[44] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. Breaking
secure pairing of bluetooth low energy using downgrade attacks. In 29th USENIX Secu-
rity Symposium (USENIX Security 20), pages 37–54, Boston, MA, August 2020. USENIX
Association.

A The toolkit source code

Listing 1: Mallory’s sleep detector function

import time
import subproces s

”””
b t addr : A l i ce ’ s B lue too th address (BTADDRA)
”””
def s l e e p d e t e c t o r ( bt addr ) :

cmd = [ ”sudo” , ” l 2p ing ” , ”−c” , ”1” , ”−f ” , bt addr ]
print ( f ”Send  a  l 2p ing  echo  r eque s t  to  {bt addr }

                        to  de t e c t  Bluetooth  s l e e p  mode . ” )

while True :
r e t = subproces s . run (cmd)
i f r e t . re turncode == 0 :

print ( ” Detect  the  s l e e p  mode  ! ! ” )
break

print ( f ”{bt addr }  i s  not  in  s l e ep ,  t ry  again . ” )
time . s l e e p (1 )

22

https://github.com/thanhlev/keyboard_mouse_emulate_on_raspberry/blob/master/keyboard/keymap.py
https://github.com/thanhlev/keyboard_mouse_emulate_on_raspberry/blob/master/keyboard/keymap.py
https://github.com/thanhlev/keyboard_mouse_emulate_on_raspberry/blob/master/keyboard/keymap.py
https://python-evdev.readthedocs.io/en/latest/


B Bluetooth Sleep Mode Packets

Figure 4: The Sleep Mode Packets of EW-B009 (Ewin)

Figure 5: The Sleep Mode Packets of JP-B087-BK (Earto)

Figure 6: The Sleep Mode Packets of BSKBB315BK (Buffalo)

23



Figure 7: The Sleep Mode Packets of 400-SKB602 (SANWA SUPPLY)

Figure 8: The Sleep Mode Packets of 308i (Ajazz)

Figure 9: The Sleep Mode Packets of IC-BK22 (iClever)

24



Figure 10: The Sleep Mode Packets of A7726 (Anker)

Figure 11: The Sleep Mode Packets of TK-FBP101WH (ELECOM)

Figure 12: The Sleep Mode Packets of K380BK (Logicool)

25



Figure 13: The Sleep Mode Packets of BSMBB105BK (Buffalo)

Figure 14: The Sleep Mode Packets of WM1 (EX-DASH)

Figure 15: The Sleep Mode Packets of SAMDVM-13 (SAMDVM)

26



Figure 16: The Sleep Mode Packets of Em23-S1 (BUSINESS HARMONY)

27


	Introduction
	Background
	Bluetooth
	Bluetooth Security
	Bluetooth Power-Saving Mode

	Threat Model
	System Model
	Attacker Model
	Notation

	The Breaktooth Attack
	Root Causes
	Sleep Mode Vulnerabilities
	Root Causes Impact

	How Attackers Detect the Sleep Mode
	L2ping Echo Response Behavior
	Technical Details to Detect the Sleep Mode

	Attack Strategy
	Step #1. Spoofing
	Step #2. Session Hijack
	Step #3. Link Key Hijack
	Step #4. Command Injection Attack


	Implementation
	Attack Scenario
	Attack Device
	Breaktooth Attack Toolkit
	Bluetooth Spoofing (Step #1)
	Implementation of a Sleep Mode Detector (Step #2)
	Pairing without PIN Code (Step #3)
	Bluetooth Device Emulator (Step #4)


	Evaluation
	Setup
	Results

	Discussion
	Threat Analysis
	Threat Comparison with Prior Attacks
	Defense Against the Breaktooth Attack
	Design
	Proof-of-Concept

	Limitations and Further Attack Scenarios
	Extension to BLE
	Extension to Man-in-the-Middle Attacks
	Regional Availability of Evaluation Devices


	Related Work
	Conclusion
	The toolkit source code
	Bluetooth Sleep Mode Packets

