
Monotone-Policy Aggregate Signatures

Maya Farber Brodsky1, Arka Rai Choudhuri2, Abhishek Jain3, and Omer Paneth1

1Tel Aviv University
2NTT Research

3NTT Research and JHU

Abstract

The notion of aggregate signatures allows for combining signatures from different parties into a
short certificate that attests that all parties signed a message. In this work, we lift this notion to capture
different, more expressive signing policies. For example, we can certify that a message was signed by a
(weighted) threshold of signers.

We present the first constructions of aggregate signatures for monotone policies based on standard
polynomial-time cryptographic assumptions. The aggregate signatures in our schemes are succinct, i.e.,
their size is independent of the number of signers. Moreover, verification is also succinct if all parties
sign the same message (or if the messages have a succinct representation). All prior work requires either
interaction between the parties or non-standard assumptions (that imply SNARKs for NP).

Our signature schemes are based on non-interactive batch arguments (BARGs) for monotone
policies [Brakerski-Brodsky-Kalai-Lombardi-Paneth, Crypto’23]. In contrast to previous constructions,
our BARGs satisfy a new notion of adaptive security which is instrumental to our application. Our new
BARGs for monotone policies can be constructed from standard BARGs and other standard assumptions.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 5

2 Technical Overview 6
2.1 Aggregate Signatures for Bounded-Space Monotone Policies 9
2.2 Weakly Unforgeable Aggregate Signatures for Polynomial-Size Monotone Policies 14

3 Preliminaries 16
3.1 Digital Signatures . 16
3.2 Hash Family with Local Opening . 17
3.3 Somewhere Extractable Batch Arguments (seBARGs) . 18

4 Aggregate Signatures for Monotone Policies 19
4.1 Fast Aggregation . 21

5 Batch Arguments for Monotone Policies 22
5.1 Batch Arguments with Adaptive Subset Extraction . 22
5.2 Batch Arguments with Functional Subset Extraction . 23
5.3 From Adaptive Subset Extraction to Aggregate Signatures 25
5.4 From Functional Subset Extraction to Weakly Unforgeable Aggregate Signatures 29

5.4.1 Signature with Trapdoor Keys . 29
5.4.2 Construction . 30

6 Composable Verifiable Private Information Retrieval for Policies 34
6.1 Definition . 35
6.2 Construction . 37
6.3 Analysis . 37

7 BARGs with Adaptive Subset Extraction for Bounded-Space Policies 44
7.1 Adaptive Subset Extraction for Bounded-Space Policies . 45

7.1.1 Construction. 45
7.1.2 Analysis. 45

7.2 Adaptive Subset Extraction with Sublinear Prover for Threshold Policies 48
7.2.1 Construction. 50
7.2.2 Analysis. 50

8 BARGs with Functional Subset Extraction for Monotone Circuit Policies 53
8.1 Construction and Proof Sketch . 53

8.1.1 Predicate Extractable Hash (PEHash) . 54
8.1.2 Functional Subset Extraction from Functional PEHash 56

A BARGs with Adaptive Subset Extraction for Low-Depth Policies 63

B Verifiable Private Information Retrieval (vPIR) 68

3

1 Introduction

Suppose that a group of parties wish to jointly sign a message 𝑚 such that anyone can verify that a
majority of the parties signed 𝑚. Such a scenario is commonplace in applications such as byzantine
agreement [Tou84], crypto wallets [sep21] and many other settings involving decentralization of trust
[DFI, Chi, EJN17, dra17, Pol20].

Consider the following notion of digital signatures that captures several properties desirable for such
applications: each of the 𝑘 parties locally computes and publishes a verification key for its preferred
signature scheme and uses the corresponding secret key to sign messages. Later, an untrusted party called
the “aggregator” can combine the signatures of multiple parties into a joint signature 𝜎 to certify that at
least 𝑡 out of 𝑘 parties signed a message. The combined signature 𝜎 can be verified given a digest of all 𝑘
verification keys and the vector of messages signed (but without knowing the identity of the 𝑡 signers). The
key requirement is succinctness:

• The size of the aggregate signature should be sublinear in 𝑘 and even 𝑡 , and ideally only depend on
the security parameter.

• If all parties sign the same message (or, more generally, if the vector of messages has some succinct
representation), the verification time should also be sublinear in 𝑡 .

• Ideally, the aggregation time should grow with the number of signatures 𝑡 as opposed to the number
of parties 𝑘 .

The security requirement is that no polynomial-time adversary that corrupts less than 𝑡 parties in an
adaptive manner should be able to create valid signatures.

This notion combines the best features of two central notions of multiparty signatures: threshold
signatures [Des88, DF90] and aggregate signatures [BGLS03, IN83].1 Threshold signatures, widely used
in the blockchain ecosystem, support threshold signing with succinct verification but require interactive
protocols for key setup and (in most cases) signing. Aggregate signatures dispense with the necessity of
interaction but can only attest that all 𝑘 parties signed (i.e., they do not support threshold signing). Therefore,
the above notion can be viewed as a threshold variant of aggregate signatures or as an ad-hoc variant of
threshold signatures. To see the appeal of this notion, consider decentralized autonomous organizations
(DAO) where members vote on proposals to make joint decisions on governance of assets. Threshold
signatures are a natural cryptographic tool for implementing such voting; however, running an interactive
key setup between all members is unrealistic. Our notion eliminates this barrier.

Monotone-Policy Aggregate Signatures. We can generalize the above notion to capture more expres-
sive signing policies. For example, consider weighted thresholds, where each party has a different weight
and the signing policy is defined with respect to the sum of the party weights. Such a policy is useful in
proof-of-stake blockchains [NHN+19]. Another example is threshold of thresholds capturing users with
some hierarchical structure. In general, the signing policy might be described by a monotone function
that takes as input a list of signers and decides whether they are authorized. We refer to this primitive as
monotone-policy aggregate signatures.

1In the literature, there are two distinct notions of signature schemes that support signature aggregation: multisignatures [IN83],
where all parties sign the same message, and aggregate signatures [BGLS03], where parties may sign distinct messages. For
simplicity of exposition, we use the terminology of aggregate signatures to refer to both settings.

1

It is not difficult to see that this primitive can be realized by combining standard signature schemes with
(adaptively sound) succinct non-interactive arguments of knowledge (SNARKs) for NP [Mic94, BCC+17].
The aggregate signature on a message𝑚 simply consists of a SNARK that proves the existence of valid
signatures on𝑚 from an authorized set of signers. The succinctness property of the SNARK translates to
the succinctness of aggregate signature. Sublinear verification time can be achieved by additionally relying
on collision-resistant hash functions to compute verification key digests.

SNARKs for NP are currently only known based on heuristics or non-standard assumptions [Mic94,
BCCT13]. Moreover, SNARK constructions with an explicit knowledge extractor are not known and are
subject to strong barriers [BCPR16]. We ask:

Can we realize monotone-policy aggregate signatures from standard assumptions?

Signatures from Batch Arguments. Non-interactive batch arguments (BARGs) [BHK17, KPY20, CJJ21]
allow an efficient prover to compute a publicly verifiable proof of the validity of multiple NP statements,
with size sublinear in the total witness length. If at least one statement is false, no polynomial-time adversary
should be able to compute an accepting proof.

A recent sequence of works [CJJ21, CJJ22, WW22, CGJ+23, KLVW23] provided constructions of BARGs
for NP in the common reference string (CRS) model from various standard assumptions including learning
with errors (LWE), decisional linear assumption (DLIN) over pairing groups, and sub-exponential decisional
Diffie Hellman (DDH). Notably, these works achieve a somewhere extraction property that guarantees (given
a CRS “trapdoor”) efficient extraction of the witness of one statement in the batch from any accepting
proof. This guarantee holds in the adaptive setting where the adversary can choose the NP statements
as a function of the CRS. Using this property, recent works obtained the first constructions of aggregate
signatures from standard assumptions [WW22, DGKV22, CJJ21].

It is easy to see that there is a direct correspondence between the 𝑘-out-of-𝑘 (i.e., conjunction) policies
supported by BARGs and aggregate signatures. In light of this connection, and towards answering the
above question, we ask whether there exist batch arguments that support more expressive policies of the
following form: given a batch of statements (𝑥1, . . . , 𝑥𝑘) and a monotone policy 𝑓 : {0, 1}𝑘 → {0, 1}, a valid
proof should attest whether 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1, where 𝑏𝑖 indicates the veracity of 𝑥𝑖 .

A very recent work [BBK+23] investigates this problem for the setting where the policy 𝑓 is described
by a polynomial-size monotone circuit. They achieve an extraction property that extends the prior notion
of somewhere extraction to general monotone policies. However, as we discuss in Section 2, this guarantee
turns out to be inadequate for achieving monotone-policy aggregate signatures.

1.1 Our Results

We present the first constructions of aggregate signatures from standard assumptions that support expressive
monotone policies and achieve poly-logarithmic signature size and verification time. Our constructions are
in the common reference string (CRS) model where the size of the CRS grows only poly-logarithmically in
the number of signers.

Before we state our results, we elaborate on our notion of aggregate signatures for monotone policies.

Monotone-Policy Aggregate Signatures. In an aggregate signature scheme for a monotone policy
𝑓 , each party P𝑖 publishes its own verification key vk𝑖 , and there is a deterministic public algorithm that
aggregates the verification keys of all 𝑘 parties into a single aggregated verification key v̂k. Given a
collection of signatures {𝜎𝑖}𝑖∈𝐼 on a message𝑚, an aggregator can produce an aggregated signature 𝜎 on𝑚.

2

The signature 𝜎 verifies with respect to v̂k if 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1, where 𝑏 𝑗 = 1 for every 𝑗 such that signature
𝜎 𝑗 verifies with respect to vk𝑗 .

In terms of security, we require that no efficient adversary can win the following game with non-
negligible probability. The adversary may ask the challenger for the verification key of any party, and it can
ask for a signature on any message under any of these verification keys. These queries can be completely
adaptive. Finally, the adversary produces a sequence of verification keys vk1, . . . , vk𝑘 that may include keys
that were not generated by the challenger. Intuitively, we think of the keys generated by the challenger as
belonging to honest parties while the other keys come from parties corrupted by the adversary. Together
with the verification keys, the adversary also produces a target message𝑚 and a signature 𝜎 . The adversary
wins if 𝜎 verifies with respect to 𝑚 and the key v̂k aggregated from vk1, . . . , vk𝑘 , and if the forgery is
non-trivial. Intuitively, the forgery is non-trivial if the set of honest parties that signed𝑚 together with
all corrupted parties does not satisfy the policy. That is, 𝑓 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏 𝑗 = 1 for every 𝑗 such
that either the adversary asked for signature on𝑚 with respect to vk𝑗 , or vk𝑗 was not generated by the
challenger.

Aggregate Signatures for Bounded-Space Monotone Policies. Our first construction supports read-
once, bounded-space monotone policies. Such policies are given by a monotone function 𝑓 : {0, 1}𝑘 → {0, 1}
that is computable by an algorithm that reads each bit of the input once, and maintains a state of size 𝑆
that is updated after reading each bit. This class of monotone policies includes, for example: the 𝑡-out-of-𝑘
threshold function with state of size 𝑆 = log𝑘 , or the weighted threshold function for weights in [𝐵] with
state of size 𝑆 = log𝑘𝐵.

Theorem 1.1 (Informal). Assuming the existence of somewhere extractable BARGs with 2𝑆 -security, there
exists an aggregate signature scheme for all read-once 𝑂(𝑆) space polynomial-time monotone policies. The size
of the CRS, the size of the aggregated signature, and the verification time are poly(log𝑘, 𝑆, _) where _ denotes
the security parameter.

In particular, for 𝑘 = poly(_) and 𝑆 = log(𝑘) the theorem only requires BARGs with polynomial security.
Under the same assumptions as in Theorem 1.1, we can also construct aggregate signatures for monotone

policies 𝑓 that are computable by monotone circuits of fan-in two and log(_)-depth (or more generally,
𝑑-depth under 2𝑑 -secure BARGs). This result is incomparable to Theorem 1.1. We refer the reader to
Appendix A for further details.

Fast Aggregator. For threshold policies, our result in Theorem 1.1 can be extended to achieve a more
efficient aggregator whose running time only depends on the number of signatures 𝑡 as opposed to the
total number of parties 𝑘 .

Theorem 1.2 (Informal). Assuming the existence of somewhere extractable BARGs, there exist aggregate
signature schemes for threshold policies such that the size of the CRS, the size of an aggregated signature and
the verification time are poly(log𝑘, _), and the aggregation time is poly(𝑡, _) for threshold 𝑡 .

Weakly Unforgeable Aggregate Signatures for Polynomial-Size Monotone Policies. Our last
construction of aggregate signatures supports any policy computable by polynomial-size monotone circuits.
It achieves the same (poly-logarithmic) CRS size, signature size and verification time as in Theorem 1.1
but satisfies a weaker notion of security. Intuitively, this notion only guarantees that the adversary cannot
forge signatures on messages that were not signed by any honest party. This definition relaxes the fully

3

adaptive definition discussed above as follows: in the security game, signing queries on the challenge
message 𝑚 under any verification key generated by the challenger are not allowed. (The adversary is
still free to output its own verification keys.) A similar relaxation was studied in the context of threshold
signatures [Sho00, BTZ22] where the stronger notion of full-security has proven to be more useful, but also
more challenging to achieve.2

Theorem 1.3 (Informal). Assuming fully homomorphic encryption and somewhere extractable BARGs, there
exist weakly unforgeable aggregate signature schemes for all polynomial-size monotone circuits. The size of
the CRS, the size of an aggregated signature and the verification time is poly(log𝑘, _).

Universal Aggregation and Updatability. We now highlight some additional properties of our con-
structions of aggregate signatures. First, our scheme supports universal aggregation [HKW15]: we allow
each user to use a different signature without modifying the way that individual verification keys or
signatures are generated.3 As a result, a signature issued by a party 𝑖 can be reused for computing aggregate
signatures with respect to different aggregate verification keys for different set of parties (that include 𝑖).
Second, our schemes allow new users to dynamically join the system without the need to rerun system
setup. The aggregate verification key defined for any subset of users can be efficiently updated to add new
users. (The aggregated verification key in our scheme is simply a root of a hash tree computed over the
individual verification keys.)

On Multi-hop Aggregation. Recently, [DGKV22] used rate-1 BARGs to construct multi-hop 𝑛-out-of-𝑛
aggregate signatures, where signatures can be aggregate incrementally. While, our schemes are only
presented for the single-hop setting, we follow the same BARG based approach as [DGKV22]. Therefore, it
is plausible that similar ideas could be applied to our schemes to support multi-hop aggregation; we leave
further exploration of this topic to future work.

Monotone-Policy Aggregate Signatures from Batch Arguments. Our aggregate signatures con-
structions are based on new notions of monotone-policy BARGs. To realize Theorem 1.1 we rely on
monotone-policy BARGs with a new notion of security that we called adaptive subset extraction. Our
definition models an adaptive adversary that given the CRS outputs a batch of 𝑘 statements, a proof 𝜋 and
a necessary subset 𝐽 for the monotone policy 𝑓 . Here, we say that a subset 𝐽 ⊂ [𝑘] is necessary for 𝑓 if
for every input 𝑏1, . . . , 𝑏𝑘 such that 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1, there exists a 𝑗 ∈ 𝐽 such that 𝑏 𝑗 = 1. Our definition
requires an efficient extractor algorithm that extracts from 𝜋 a witness𝑤 such that conditioned on 𝜋 being
an accepting proof and 𝐽 being a necessary subset, the extractor outputs a valid witness𝑤 𝑗 for an index
𝑗 ∈ 𝐽 with probability at least 1

𝑘
. Since the extractor outputs a witness without knowing the set 𝐽 , hitting 𝐽

with probability 1
𝑘

is optimal.4
This notion is incomparable to the notion of subset extraction for monotone-policy BARGs from

[BBK+23]. In their definition, the necessary subset 𝐽 is chosen non-adaptively and programmed into
the CRS, but the extraction algorithm is required to succeed with probability negligibly close to 1. Our
construction of monotone-policy aggregate signatures crucially relies on the adaptive nature of our new
security definition.

We construct BARGs with adaptive subset extraction for read-once bounded-space monotone policies.
2See single- vs. dual-parameter threshold scheme in [Sho00] and TS-UF-0 vs. TS-UF-1 in [BTZ22].
3For Theorem 1.3 the verification keys of the base signature are required to satisfy some natural property. See Section 5.4 for

further details.
4For example in the case of 𝑘-out-of-𝑘 threshold, each singleton set { 𝑗} for 𝑗 ∈ [𝑘] is necessary.

4

Theorem 1.4 (Informal). Assuming the existence of somewhere extractable BARGs with 2𝑆 -security, there
exist BARGs with adaptive subset extraction for all read-once 𝑂(𝑆) space polynomial-time monotone policies.
The proofs are of size |𝑤 |·poly(log𝑘, 𝑆, _) and the CRS is of size poly(log𝑘, _), where _ denotes the security
parameter and |𝑤 | is the length of a single witness.

We also give a variant of the BARGs in Theorem 1.4 where the running time of the prover grows with
the number of witnesses it is given instead of the total number of statements 𝑘 . This gives Theorem 1.2.

Finally, we realize Theorem 1.3 based on BARGs for monotone policies with a new notion of security
called functional subset extraction which generalizes the notion of subset extraction from [BBK+23]. In
BARGs with subset extraction, we program a necessary subset 𝐽 into the CRS. In contrast, in functional
subset extraction, we program a function 𝑔 into the CRS. We also add a tag 𝑦 that is given as an additional
input to the BARG prover and verifier. The requirement is that given any proof 𝜋 that is accepted with
respect to a tag 𝑦, if 𝐽 = 𝑔(𝑦) is a necessary subset then we can extract from 𝜋 a valid witness 𝑤 𝑗 for an
index 𝑗 ∈ 𝐽 with probability negligibly close to 1.

Based on the construction of [BBK+23], we obtain BARGs with functional subset extraction for all
policies computable by polynomial-size monotone circuits. The proof is of size |𝑤 |·poly(log𝑘, _) where |𝑤 |
is the size of a witness, and the CRS is of size 𝐵 · poly(log𝑘, _), where 𝐵 is a bound on the description size
of a function that can be programmed into the CRS.

1.2 Related Work

Threshold Signatures. There is an extensive body of work dedicated to the study of threshold signatures
[Des88, DF90]. The de facto design of such schemes involves a distributed setup phase to compute a
verification key and a threshold secret sharing [Sha79] of the signing key. Subsequently, the parties can
jointly sign messages using their key shares, typically using an interactive signing protocol.

While any signature scheme can be “thresholdized” using secure multiparty computation [GMW87,
CCD88, BGW88], prior work has primarily focused on designing efficient thresholdizers for popular
signature schemes used in practice such as Schnorr [Sch90], ECDSA [CMRR23] and BLS [BLS01]. All such
solutions, however, require interactive protocols for key setup and (except for BLS) signature computation.
Furthermore, by their very design, such solutions do not support universal aggregation of signatures from
different signature schemes. Very recently, [GJM+23,DCX+23] overcame the former limitation by presenting
an efficient instantiation of the generic SNARK-based approach discussed earlier. The security of their
schemes is proven in idealized models.

Aggregate Signatures. Aggregate signatures [BGLS03] support aggregation of signatures from different
parties on possibly different messages. The key requirement is succinctness of the aggregated signature.
Most known schemes also support succinct verification given a digest of the verification key of all the
signers. A variation of aggregate signatures where all signers sign the same message is referred to as
multisignatures [IN83]. For simplicity of exposition, we use the common terminology of aggregate signatures
for both of these settings throughout this work.

Until recently, aggregate signatures were only known in (i) the Random Oracle model from pairing-
based assumptions [BGLS03]; or (ii) the standard model utilizing heavy tools such as multilinear maps
[FHPS13, RS09] or indistinguishability obfuscation [HKW15], or only achieved weaker properties (e.g.,
multisignatures or sequential aggregation) [LMRS04, LOS+06]. Recently, using non-interactive BARGs, new
constructions in the common reference string (CRS) model were obtained based on a variety of standard

5

assumptions including LWE [CJJ22, DGKV22, PP22], DLIN assumption over pairing groups [WW22], and
sub-exponential DDH [CGJ+23].

Batch Arguments. [KPY19] gave the first construction of BARGs for NP from a non-standard but
falsifiable assumption over bilinear maps. Recently, a sequence of works [CJJ21, CJJ22, HJKS22, WW22,
CGJ+23] constructed BARGs for NP from a variety of standard assumptions with proof sizes ranging from
slightly sublinear to poly-logarithmic in the number of statements. Two lines of work devised efficiency
boosting compilers for BARGs: [KLVW23] show how to achieve poly-logarithmic proof sizes generically
from sublinear-size proofs, and [PP22, DGKV22] construct rate-1 BARGs from BARGs with low rate. Very
recently, [BBK+23] constructed BARGs for monotone circuits from polynomial hardness of LWE.

SigmaProtocols. Sigma protocols are three-round public-coin zero-knowledge proof systems with special
soundness [Cra97]. They have many applications including efficient constructions of digital signatures
via the Fiat-Shamir heuristic [FS86]. Sigma protocols are known to be closed under different types of
composition such as monotone span programs [CDM00] and more. In the composition of sigma protocols,
the communication complexity typically grows with the number of instances and the primary emphasis is
on preserving the zero knowledge property. In contrast, our focus is on succinctness and our signatures do
not have any hiding property.

2 Technical Overview

In this section, we provide an overview of our definitions and constructions. Our starting point is a simple
template construction of aggregate signatures from BARGs. By instantiating this template with existing
BARG constructions, we get aggregate signatures for the 𝑘-out-of-𝑘 (i.e., conjunction) policy. In what
follows, we instantiate the template construction with more general notions of BARGs resulting in aggregate
signature for more expressive policies. We start by describing the template construction focusing on the
simple case of conjunctions.

Template Aggregate Signature from BARGs. The CRS of the aggregate signature scheme consists
of a CRS for the BARG and a description of a collision-resistant hash function H. Fix a base signature
scheme S that is used by each party to generate keys and sign/verify messages. To aggregate a sequence of
verification keys vk1, . . . , vk𝑘 we compute a hash tree over them using H and set the aggregate verification
key v̂k to its root. An aggregate signature 𝜎 on a message𝑚 under v̂k is a BARG proof that𝑚 has a signature
under each of the verification keys. In more detail, let L be the NP language that contains tuples (v̂k,𝑚, 𝑖)
if and only if there exists a verification key vk𝑖 , a path authenticating vk𝑖 as the 𝑖-th leaf of the hash tree
rooted at v̂k, and a valid signature 𝜎𝑖 on𝑚 under vk𝑖 using the base scheme S. Given verification keys
vk1, . . . , vk𝑘 , a message𝑚 and signatures 𝜎1, . . . , 𝜎𝑘 , we set the aggregate signature 𝜎 to be a BARG proof
for the 𝑘 statements (v̂k,𝑚, 𝑖) ∈ L for 𝑖 ∈ [𝑘]. To verify the aggregate signature we simply verify that the
BARG proof is accepting.

The succinctness of this construction follows from that of the hash tree and the BARG. The size of the
aggregate verification key (i.e. the root of the hash tree) is poly(_) where _ is the security parameter. By
the succinctness of the BARG, the size of the aggregate signature (i.e. the BARG proof) is polynomial in _
and the size of the witness for a single statement (v̂k,𝑚, 𝑖) ∈ L. The witness consists of a key and signature
of the base scheme S and an authentication path in the hash tree and it is, therefore, of size poly(_, log𝑘).

6

To get efficient verification we rely on BARGs with efficient verification known as BARGs for the index
language [CJJ22]. In such BARGs, verifying the 𝑘 statements that differ from each other only in the index
𝑖 ∈ [𝑘] takes time that is polynomial in the size of just one statement and the proof. Therefore, verifying
the 𝑘 statements (v̂k,𝑚, 𝑖) ∈ L for 𝑖 ∈ [𝑘], takes time poly(_, log𝑘).

To show the security of the construction, consider an adversary A that outputs verification keys
vk1, . . . , vk𝑘 , a message𝑚, and an aggregate signature 𝜎 such that 𝜎 is a valid signature on𝑚 under the
aggregate key v̂k and there exists at least one index 𝑗∗ ∈ [𝑘] such that the challenger generated the key
vk𝑗∗ and did not sign𝑚 under vk𝑗∗ . Our goal is to give a reduction that can extract from the aggregate
signature 𝜎 (i.e. the BARG proof) a forged signature on𝑚 under vk𝑗 (or, alternatively, a collision in 𝐻). This
seems to call for BARGs that are not only sound, but also extractable (i.e. BARGs of knowledge). Moreover,
the BARGs should be adaptively secure since the statements depend on v̂k,𝑚 which A may choose as a
function of the CRS.

Existing BARG constructions, however, are not known to satisfy full-fledged knowledge soundness in
the adaptive setting. Indeed, such BARGs would imply SNARKs for all of NP [BHK17]. Instead, existing
BARGs provide a weaker guarantee known as somewhere extractablilty [CJJ22]. In a somewhere extractable
BARG we can generate, for every index 𝑗 ∈ [𝑘], a CRS that is “programmed” at 𝑗 and is computationally
indistinguishable from an honestly generated CRS. Under the programmed CRS, we can extract a witness
for the 𝑗-th statement from any accepting BARG proof using a trapdoor. Using somewhere extractable
BARGs, the security reduction for the aggregate signature is as follows. The reduction generates a CRS for
the BARG that is programmed at a random index 𝑗 ∈ [𝑘]. If A produces a valid aggregate signature 𝜎 (i.e.
an accepting BARG proof) the reduction extracts a witness for the 𝑗-th statement (v̂k,𝑚, 𝑗) ∈ L. Such a
witness contains a verification key ṽk𝑗 , a path authenticating ṽk𝑗 under v̂k, and a valid signature 𝜎 𝑗 on𝑚
under ṽk𝑗 . If ṽk𝑗 ̸= vk𝑗 the reduction finds a collision in H. Otherwise, if 𝑗 = 𝑗∗, the reduction finds a forged
signature on𝑚 under vk𝑗∗ . It remains to show that indeed 𝑗 = 𝑗∗ with noticeable probability. This follows
from the fact that the programmed CRS hides the index 𝑗 . (Note that the reduction finds 𝑗∗ efficiently and
without the CRS trapdoor).

Towards More Expressive Policies. Going beyond conjunctions, we turn our attention to aggregate
signatures for more expressive monotone policies. Before describing our schemes, we start with a simple
construction of an aggregate signature scheme for general monotone policies, albeit, with weak succinctness.
The high-level idea is to use the aggregate signature scheme for conjunctions described above and restrict
it to the subset of the parties that signed the message. In more detail, given verification keys vk1, . . . , vk𝑘
we again set the aggregate verification key v̂k to be the root of the hash tree over the 𝑘 keys. Let {𝜎𝑖}𝑖∈𝐼 be
a collection of signatures on a message𝑚 by a subset of the parties 𝐼 ⊆ [𝑘] that satisfies the policy 𝑓 . We
aggregate {𝜎𝑖}𝑖∈𝐼 into a signature 𝜎 under v̂k as follows. First, we use the conjunction scheme to aggregate{
vk𝑖

}
𝑖∈𝐼 into an key v̂k𝐼 and aggregate {𝜎𝑖}𝑖∈𝐼 into a signature 𝜎𝐼 under v̂k𝐼 . The aggregate signature 𝜎

contains contains a description of the set 𝐼 , the keys
{
vk𝑖

}
𝑖∈𝐼 together with their authentication paths under

v̂k, and the signature 𝜎𝐼 . To verify 𝜎 under v̂k we first check that the set 𝐼 satisfies the policy and that all
the authentication paths are valid. Then we use the conjunction scheme to recompute the aggregate key
v̂k𝐼 and verify the signature 𝜎𝐼 . The main drawback of this approach is that size of the aggregate signature
𝜎 can grow with the size of the authorized subset 𝐼 . For example, for the 𝑡-out-of-𝑘 threshold policy, the
signature will grow with the threshold 𝑡 . In contrast, our results give succinct aggregate signatures of size
poly(log𝑘, _) even for policies where the authorized subsets may be much larger.

7

Aggregate Signatures from Monotone-Policy BARGs. Our aggregate signature constructions follow
a different approach: starting from the template construction of aggregate signature, we replace the BARGs
with the stronger notion of BARGs for monotone policies. Intuitively, a BARG for a monotone policy 𝑓 , can
prove that a batch of statements 𝑥1, . . . , 𝑥𝑘 satisfies 𝑓 . That is, 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1, where𝑏𝑖 indicates the veracity
of 𝑥𝑖 . Recall that in our template aggregate signature construction, a valid statement 𝑥𝑖 corresponds to a
signature under the 𝑖-th party’s verification key. BARGs for all policies given by polynomial-size monotone
circuits were constructed by a recent work of Brakerski, Brodsky, Kalai, Lombardi and Paneth [BBK+23],
however, the security notion guaranteed by their BARGs seems insufficient to prove the security of the
aggregate signatures. Instead, our results are based on new monotone-policy BARG constructions that
satisfy different security notions. Before expanding on these contributions, we start by reviewing the
security notion of [BBK+23] and explain why it is insufficient.

The work of [BBK+23] puts forward a generalization of the somewhere extractability property of [CJJ22]
to the settings of monotone-policy BARGs: Instead of programming the CRS on a single index 𝑗 ∈ [𝑘],
we can program the CRS on any necessary subset of indices 𝐽 ⊆ [𝑘] and the programmed CRS hides 𝐽 . A
subset 𝐽 ⊆ [𝑘] is necessary if any other subset 𝐽 ′ that satisfies the policy intersects 𝐽 . Or, equivalently, 𝐽
is necessary if its complement [𝑘] \ 𝐽 does not satisfy the policy.5 Using the programmed CRS, we can
extract from any accepting BARG proof, a witness for the 𝑗-th statement for some 𝑗 ∈ 𝐽 . This holds even if
the adversary can choose the BARG statements 𝑥1, . . . , 𝑥𝑘 ∈ L adaptively, as a function of the CRS. For
example, for the conjunction policy, every singleton set { 𝑗} for 𝑗 ∈ [𝑘] is necessary, and thus, we recover
the original notion of somewhere extractability for BARGs.

We can instantiate the template aggregate signature construction with somewhere extractable monotone-
policy BARGs, but we do not know how to argue the security of the resulting scheme.6 Going back to the
aggregate signatures security game, consider an adversary A that is given a CRS, and, after interacting with
the challenger, outputs verification keys vk1, . . . , vk𝑘 , a target message𝑚 and an aggregate signature 𝜎 on
𝑚 that verifies under the aggregate key v̂k. Let 𝐽 ⊆ [𝑘] be the subset of indices of honest parties that did
not sign𝑚. That is, 𝐽 contains every index 𝑗 such that the challenger generated vk𝑗 but did not sign𝑚
under it. Recall that A’s forgery is considered non-trivial if the set of honest parties that signed𝑚 together
with all corrupted parties does not satisfy the policy. In other words, if A wins the game then 𝐽 must be a
necessary subset. Therefore, if we had programmed the CRS on the set 𝐽 , we could have extracted from 𝜎

(i.e. the BARG proof) a witness for the 𝑗-th BARG statement (v̂k,𝑚, 𝑗) ∈ L for some 𝑗 ∈ 𝐽 . Such a witness
must contain a forged signature 𝜎 𝑗 on𝑚 under vk𝑗 (or, a collision in the hash H) and, since 𝑗 ∈ 𝐽 , this is a
non-trivial forgery of the base signature scheme S.

This argument already implies aggregate signatures with static security, where the adversary is required
to declare the subset of parties that may sign the challenge message before receiving the CRS. In the adaptive
setting, however, the necessary subset 𝐽 is defined by A’s queries and output which may depend the CRS.7
To get around this hurdle we introduce new notions of security of monotone-policy BARGs where the
extraction guarantee holds for necessary subsets that can be chosen adaptively, after the CRS is fixed. The
BARGs behind Theorems 1.1 and 1.3 are described in Sections 2.1 and 2.2 respectively.

5We assume that the policy is not a constant function.
6Another issue is that in the construction of [BBK+23] the CRS size grows linearly with 𝑘 , while we are aiming for CRS of size

poly(_, log𝑘).
7Note that if the policy has necessary subsets that are sufficiently large, then guessing the set 𝐽 may result in security loss that

is exponential in 𝑘 . Tolerating such loss would mean losing succinctness.

8

2.1 Aggregate Signatures for Bounded-Space Monotone Policies

In this section we first describe our new notion of monotone-policy BARGs with adaptive subset extraction
which is the main tool behind Theorem 1.1. Then we overview our construction of monotone-policy BARGs
with adaptive subset extraction for the class of read-once, bounded-space monotone policies based on
somewhere-extractable BARGs. A monotone policy 𝑓 : {0, 1}𝑘 → {0, 1} is read-once, space 𝑆 if there exists
a polynomial time Turing machine Γ and a pair of states 𝑠0, 𝑠𝑘 ∈ {0, 1}𝑆 such that 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1 if and
only if there exist states 𝑠1, . . . , 𝑠𝑘−1 ∈ {0, 1}𝑆 such that 𝑠𝑖 = Γ(𝑠𝑖−1, 𝑏𝑖) for every 𝑖 ∈ [𝑘].

Monotone-Policy BARGswithAdaptive Subset Extraction. In BARGs with adaptive subset extraction
the CRS is generated together with an extraction trapdoor. However, in contrast to the notion of somewhere
extractability, the CRS is not programmed on any particular subset. Instead, the adversary outputs a
description of a subset 𝐽 ∗ ⊆ [𝑘] together with the statements 𝑥1, . . . , 𝑥𝑘 ∈ L and the proof, after receiving
the CRS. Ideally, we would like to require that whenever 𝐽 ∗ is necessary and the proof is accepting, we
can extract a witness for the 𝑗-th statement for some 𝑗 ∈ 𝐽 ∗ using a trapdoor. However, this requirement
seems too strong since it implies full-fledged knowledge soundness. (I.e. we can extract witnesses for 𝑖-th
statement for any 𝑖 ∈ 𝐼 for some subset 𝐼 that satisfies the policy.8) Instead, we only require that if the
adversary outputs a necessary subset 𝐽 ∗ and an accepting proof with some probability 𝛼 , then we can
extract a witness for the 𝑗-th statement for some 𝑗 ∈ 𝐽 ∗ with probability that is at most negligibly smaller
than 𝛼/𝑘 . We note that as long as we only extract a single witness from each proof, losing a factor of
𝑘 in the extraction probability is inherent. Taking, for example, the conjunction policy, if the adversary
outputs a necessary subset { 𝑗} for a random 𝑗 ∈ [𝑘], then the extracted witness fits the 𝑗-th statement with
probability at most 1/𝑘 .9

By instantiating the template aggregate signature construction with monotone-policy BARGs that
satisfy adaptive subset extraction (instead of somewhere extraction), we can fix the flawed analysis above:
Consider an adversary A that wins the aggregate signatures security game with some noticeable probability
𝛼 . As before, we let 𝐽 ∗ be the subset that contains every index 𝑗 such that the challenger generated vk𝑗 but
did not sign𝑚 under it. If A wins the game then the aggregate signature 𝜎 is valid (i.e. the BARG proof
is accepting) and the set 𝐽 ∗ is necessary. Therefore, we are guaranteed to extract a witness for the 𝑗-th
BARG statement (v̂k,𝑚, 𝑗) ∈ L for some 𝑗 ∈ 𝐽 ∗ with noticeable probability 𝛼/𝑘 − negl. Such a witness must
contain a non-trivial forged signature 𝜎 𝑗 under vk𝑗 (or, a collision in the hash H).

BARGs with Adaptive Subset Extraction For Low-depth Policies. Our first construction of BARGs
with adaptive subset extraction is based on any somewhere extractable BARG, and it supports policies that
are computable by monotone circuits of fan-in two and log(_)-depth (or, more generally, 𝑑-depth under
2𝑑 -secure BARGs). The work of [BBK+23] gives a simple construction of BARGs for such policies. We
observe that their analysis naturally extends to achieve adaptive subset extraction. For completeness, we
describe this construction and its analysis in Appendix A. We note, however, that the main construction
from [BBK+23] that supports more expressive policies does not guarantee adaptive subset extraction out of
the box. Next, we discuss the main challenges in achieving adaptive subset extraction for more expressive
policies.

8To extract, start from the necessary subset 𝐽 ∗ = [𝑘], run the extractor, and obtain a witness for the 𝑗-th statement for some
𝑗 ∈ 𝐽 ∗. Remove 𝑗 from 𝐽 ∗ and repeat until 𝐽 ∗ is no longer necessary.

9We can relax adaptive subset extraction by considering a different bound 𝛽 ≤ 1/𝑘 on the loss in the extraction probability. The
notion remains meaningful for any inverse polynomial 𝛽 and is still sufficient for constructing aggregate signatures.

9

On Adaptive Subset Extraction from Somewhere Extraction. A natural approach for constructing
monotone-policy BARGs with adaptive subset extraction would be to start from any somewhere-extractable
monotone-policy BARG and transform it into a BARG with adaptive subset extraction for the same policy.
Indeed, for the conjunction policy such a transformation exists: simply program the CRS on a necessary
subset { 𝑗} for a random 𝑗 ∈ [𝑘]. To argue that the resulting BARG satisfies adaptive subset extraction,
consider an adversary that outputs a necessary subset 𝐽 ∗ and an accepting proof for some batch of statements
with probability 𝛼 . The somewhere extraction property guarantees that we can extract a witness for the
𝑗-th statement from any accepting proof. Moreover, since the CRS hides the index 𝑗 , the probability of
extracting a witness for the 𝑗-th statement for 𝑗 ∈ 𝐽 ∗ is at least 𝛼/𝑘 − negl.

This transformation, however, does not seem to extend to other policies. Consider, for example, the
(𝑘 − 1)-out-of-𝑘 threshold policy where every set with more than one index is necessary. We focus on
transformations where the CRS is programmed with a subset 𝐽 sampled from some distribution over
necessary subsets. Let A be an adversary that outputs a random subset 𝐽 ∗ of size exactly 2 together with an
accepting proof. The somewhere extraction property guarantees that we can extract a witness for the 𝑗-th
statement for some 𝑗 ∈ 𝐽 with probability 1 − negl. Now, suppose that whenever 𝐽 \ 𝐽 ∗ is not empty, the
extracted index 𝑗 is in 𝐽 \ 𝐽 ∗. Indeed, we cannot rule out such an adversary since the extracted index 𝑗 may
depend both on the programmed set 𝐽 and on A’s proof (which may be correlated with 𝐽 ∗).10 Since 𝐽 is of
size at least 2 and 𝐽 ∗ is a set of size exactly 2 chosen at random after 𝐽 is already fixed, the probability that
𝐽 \ 𝐽 ∗ is empty is at most 2

𝑘(𝑘−1) . Therefore, 𝑗 ∈ 𝐽 ∗ with probability that is noticeably smaller than 1/𝑘 .11

Extracting at an Index Instead of a Subset. In the above attempt to transform somewhere extraction
into adaptive subset extraction, the high level idea was to guess some necessary subset 𝐽 and program it
into the CRS. The problem is that we had no control over the statement in 𝐽 for which we extract a witness.
As a result, we had to guess a subset 𝐽 that is entirely contained in the subset 𝐽 ∗ chosen by the adversary.
For some policies, however, this loss in the probability of extraction is too high.

We therefore follow a different approach: instead of guessing a necessary subset 𝐽 , we guess the
particular index 𝑗 ∈ [𝐾] of the statement 𝑥 𝑗 we wish to extract a witness for, and program 𝑗 into the CRS.
Indeed, since 𝑗 is hidden from the adversary, the probability that 𝑗 ∈ 𝐽 ∗ is at least 1/𝑘 − negl. However,
now we can no longer expect to extract a witness for the 𝑗-statement from any accepting proof. Unless the
subset { 𝑗} happens to be necessary, the adversary might output statements 𝑥1, . . . , 𝑥𝑘 ∈ L where the subset
𝐼 ⊆ [𝑘] of true statements satisfies the policy, but 𝑥 𝑗 /∈ L and so extraction must fail. Moreover, we cannot
rule out an adversary that outputs such statements with probability 1, even when 𝑗 is sampled randomly.
The issue is that the adversary may choose the statements adaptively, as a function of the CRS, without
knowing which of the statements are true.

A possible solution to this problem is to have the adversary prove that it knows the subset 𝐼 of true
statements. Indeed, if the adversary outputs a subset 𝐽 ∗ that is necessary, then 𝐽 ∗ and 𝐼 intersect. Therefore,
if the adversary knows 𝐼 (i.e. we can efficiently extract 𝐼 from the adversary) then we can use the fact that 𝑗
is hidden to argue that, conditioned on 𝐽 ∗ being necessary, 𝑗 ∈ 𝐽 ∗ ∩ 𝐼 with probability at least 1/𝑘 − negl.
The problem with this solution is without resorting to SNARKs for NP, we do not know how to prove
knowledge of 𝐼 without losing succinctness. Nonetheless, this approach turns out to be useful: instead of
requiring the prover to know the subset 𝐼 of true statements, in our solution we make a weaker requirement.

10We can even construct a contrived BARG for which this attack is feasible based on the scheme of [BBK+23].
11More generally, if a policy 𝑓 has exactly 𝑇 “minimal” necessary subsets (that do not contain smaller necessary subsets) then

we can transform any somewhere-extractable BARG for 𝑓 into a BARG for 𝑓 with adaptive subset extraction where the loss in
extraction probability is bounded by 𝛽 = 1/𝑇 . However for 𝛽 > 1/𝑇 we do not know of such a transformation.

10

Very roughly, we require that it is possible to simulate a subset 𝐼 that satisfies the policy and is, in some
useful sense, indistinguishable from the actual subset 𝐼 of true statements chose by the adversary. We show
how to enforce this weaker requirement using weaker machinery that can be based on BARGs.

Verifiable PIR. The main tool we use to construct monotone-policy BARGs with adaptive subset ex-
traction is verifiable private information retrieval (vPIR) recently introduced by Ben-David, Kalai, and
Paneth [BDKP22]. In a plain PIR protocol a server holds a database 𝐷 = (𝑟1, . . . , 𝑟𝑘) and a client can query a
row 𝑟𝑖 while keeping the index 𝑖 hidden from the server. Each party sends one message, and the size of the
server’s answer should be sublinear in 𝑘 . In vPIR, we additionally require the server to use a database that
satisfies some predicate 𝑃 . Otherwise, its answer should be rejected by the (public) verification algorithm.
This security requirement is formalized via the real-ideal paradigm: for every efficient malicious server A,
we require that there exists an efficient simulator Sim such that for every index 𝑖 the output of the following
two experiments are indistinguishable:12

Real: Query 𝐴 on index 𝑖 . If the answer verifies output the decrypted row 𝑟 . Otherwise output ⊥.

Ideal: Sim samples a database 𝐷 = (𝑟1, . . . , 𝑟𝑘). If 𝑃 (𝐷) = 1 output 𝑟𝑖 . Otherwise output ⊥.

One may consider a stronger secure computation style notion where Sim is required to simulate also the view
of A in the real experiment (i.e. the query). However, we do not know how to satisfy this stronger notion.
The work of [BDKP22] constructs vPIR for read-once, log-space predicates based on somewhere-extractable
BARGs. (More generally, they can handle read-once space 𝑆 predicates based on 2𝑆 -secure BARGs.) We say
that a predicate 𝑃 is read-once space 𝑆 if there exists a polynomial time Turing machine Γ and a pair of
states 𝑠0, 𝑠𝑘 ∈ {0, 1}𝑆 such that 𝑃 (𝑟1, . . . , 𝑟𝑘) = 1 if and only if there exist states 𝑠1, . . . , 𝑠𝑘−1 ∈ {0, 1}𝑆 such
that 𝑠𝑖 = Γ(𝑠𝑖−1, 𝑟𝑖) for every 𝑖 ∈ [𝑘].

Verifiable PIR for Policies. When constructing monotone-policy BARGs for a policy 𝑓 , we use vPIR for
particular predicates 𝑃𝑓 that evaluates the policy 𝑓 where the 𝑖-th input bit to the policy is computed by
some local polynomial-time predicate 𝐿 on the 𝑖-th database row. Moreover, it would be useful to allow the
local predicate to depend on some row-specific instance. That is, given instances 𝑥1, . . . , 𝑥𝑘 and a database
𝐷 = (𝑟1, . . . , 𝑟𝑘), we have 𝑃 (𝐷) = 𝑓 (𝑏1, . . . , 𝑏𝑘) where 𝑏𝑖 = 𝐿(𝑥𝑖 , 𝑟𝑖) for every 𝑖 ∈ [𝑘]. Observe that if 𝑓 is a
read-once space 𝑆 policy, then 𝑃𝑓 is also a read-once space 𝑆 predicate.

Looking ahead, the instances will correspond to the BARG statements 𝑥1, . . . , 𝑥𝑘 ∈ L and, therefore,
when defining security, we need to allow the adversary to choose these instances adaptively as a function
of CRS. While the analysis of [BDKP22] only supports predicates that are chosen non-adaptively, we extend
their construction and show that for predicates of form 𝑃𝑓 , it satisfies a useful notion of security in the
adaptive setting.13 For every efficient malicious server A we require that there exists an efficient simulator
Sim such that for every index 𝑖 the output of the following two experiments are indistinguishable:

Real: Query 𝐴 on index 𝑖 and obtain instances (𝑥1, . . . , 𝑥𝑘) and an answer 𝑎. If the answer verifies output
(𝑥𝑖 , 𝑟) where 𝑟 is the decryption of 𝑎. Otherwise output ⊥.

Ideal: Sim samples instances (𝑥1, . . . , 𝑥𝑘) and a database 𝐷 = (𝑟1, . . . , 𝑟𝑘). If 𝑃 (𝐷) = 1 output (𝑥𝑖 , 𝑟𝑖).
Otherwise output ⊥.

12The actual notion we work with is slightly weaker: for every polynomial 𝑞 there exists a simulator Sim such that the outputs
are 1/𝑞-indistinguishable.

13To get BARGs for the index language, our vPIR construction additionally supports fast verification for instances 𝑥1, . . . , 𝑥𝑘
that differ from each other only on the index 𝑖 ∈ [𝑘].

11

One may consider a stronger notion where Sim is required to simulate all the instances 𝑥1 . . . , 𝑥𝑘 chosen by
A in the real experiment instead of just 𝑥𝑖 . However, we do not know how to satisfy this stronger notion.
See Section 6 for further details on the notion and construction of vPIR for policies.

BARGs with Adaptive Subset Extraction from vPIR: First Attempt. We start with a simple con-
struction of monotone-policy BARGs from vPIR. (We will eventually need to modify this construction to
show adaptive subset extraction.)

To construct BARGs for a policy 𝑓 we will use vPIR for a related predicate 𝑃𝑓 over the database of
witnesses: for statements 𝑥1, . . . , 𝑥𝑘 , and database 𝐷 = (𝑤1, . . . ,𝑤𝑘), we have that 𝑃 (𝐷) = 𝑓 (𝑏1, . . . , 𝑏𝑘),
where 𝑏𝑖 = 1 if and only if 𝑤𝑖 is a valid witness for the 𝑖-th statement. The CRS of the BARG is a vPIR
query for a random index 𝑗 ∈ [𝑘]. The prover computes the vPIR answer using the database of witnesses
𝐷 = (𝑤1, . . . ,𝑤𝑘) (if the prover is not given a witness for 𝑥𝑖 it sets𝑤𝑖 = ⊥) and outputs it as the proof. The
verifier accepts the proof if the vPIR answer verifies. To extract a witness from the proof we decrypt the
vPIR answer.

To explain the difficulty in proving adaptive subset extraction, consider the following (flawed) argument.
Let A be an adversary that given a CRS (i.e. a vPIR query), outputs a statement 𝑥1, . . . , 𝑥𝑘 , an accepting
proof (i.e. a vPIR answer) and a necessary subset 𝐽 ∗ with probability 𝛼 . By vPIR security, there is a
simulator Sim that samples instances 𝑥1, . . . , 𝑥𝑘 and a database �̃� = (�̃�1, . . . , �̃�𝑘) such that 𝑃𝑓 (�̃�) = 1 with
probability 𝛼 − negl. Moreover, if 𝑗 is the random index queried in the CRS, then the output (𝑥 𝑗 , �̃� 𝑗) of
the ideal experiment is indistinguishable from the output (𝑥 𝑗 ,𝑤) of the real experiment where𝑤 denotes
the decrypted vPIR answer (this is conditioned on the outputs being different than ⊥). If 𝑃𝑓 (�̃�) = 1 then
any necessary subset 𝐽 ∗ must contain some index 𝑖 ∈ 𝐽 ∗ such that �̃�𝑖 is a valid witness for 𝑥𝑖 ∈ L. Since
�̃� is sampled independently of 𝑗 we have that 𝑖 = 𝑗 with probability 1/𝑘 . That is, with probability at
least 𝛼/𝑘 − negl, �̃� 𝑗 is a valid witness for 𝑥 𝑗 ∈ L and 𝑗 ∈ 𝐽 ∗. By vPIR security, it follows that also in the
real experiment, the extracted value, 𝑤 is a valid witness for 𝑥 𝑗 ∈ L and 𝑗 ∈ 𝐽 ∗ with probability at least
𝛼/𝑘 − negl. The problem is that while this argument holds for any fixed necessary subset 𝐽 ∗, it may fail
if A chooses 𝐽 ∗ adaptively, as a function of the CRS (i.e. the vPIR query). Indeed, vPIR security does not
guarantee simulation of both𝑤 and the view of A together.

A Simple Analysis for Threshold Policies. We start by describing an alternative analysis tailored to
the case of threshold policies. The solution for general policies is more complex and we discuss it next. For
the 𝑡-out-of-𝑘 threshold policy, if the simulated database �̃� = (�̃�1, . . . , �̃�𝑘) satisfies the predicate, then, since
the index 𝑗 is random and independent of �̃� , we have that �̃� 𝑗 is a valid witness for 𝑥 𝑗 ∈ L with probability
at least 𝛼 · 𝑡/𝑘 . By vPIR security, it follows that also in the real experiment,𝑤 is a valid witness for 𝑥 𝑗 ∈ L
with probability at least 𝛼 · 𝑡/𝑘 − negl. (Note that we can use vPIR security here since this event does not
depend on the set 𝐽 ∗ or the view of A.) For the 𝑡-out-of-𝑘 threshold policy, every necessary subset is of size
at least 𝑘 − 𝑡 + 1. Therefore, in the real experiment, since A outputs a necessary subset 𝐽 ∗ and since the index
𝑗 is random and hidden from A, we have that 𝑗 ∈ 𝐽 ∗ with probability at least 𝛼 · (𝑘 −𝑡 +1)/𝑘 −negl. Therefore,
by the Union bound,𝑤 is a valid witness for 𝑥 𝑗 ∈ L and 𝑗 ∈ 𝐽 ∗ with probability at least 𝛼/𝑘 − negl.

Going BeyondThreshold Policies via Composable vPIR. The analysis above crucially relies on the
symmetric structure of threshold policies and it does not seem to extend beyond that. As suggested by failed
attempt above, to support general read-once bounded space polices, it is sufficient to simulate the witness𝑤
extracted from the proof together with the subset 𝐽 ∗ chosen by A. While we do not know if such simulation
is possible, our new simulation strategy will take into account the subset 𝐽 ∗. Very roughly, the main idea

12

behind our simulation is to encode the set 𝐽 ∗ as another database, and simulate both databases together
using the machinery of vPIR. To this end, we introduce a stronger notion of vPIR that remains secure under
composition. Intuitively, in a 𝑡-composable vPIR protocol for predicates 𝑃1, . . . , 𝑃𝑡 , the same query can be
answered using 𝑡 different databases, where the 𝑖-th database is required to satisfy the predicate 𝑃𝑖 . To
capture this, we modify the real and ideal experiments as follows:

Real: Query𝐴 on index 𝑖 and obtain instances (𝑥1, . . . , 𝑥𝑘) and 𝑡 answers 𝑎1, . . . , 𝑎𝑡 . If all the answers verify
output (𝑥𝑖 , 𝑟 1, . . . , 𝑟 𝑡) where 𝑟 𝑗 is the decryption of 𝑎 𝑗 . Otherwise output ⊥.

Ideal: Sim samples instances (𝑥1, . . . , 𝑥𝑘) and 𝑡 databases 𝐷1, . . . , 𝐷𝑡 where 𝐷𝑖 = (𝑟 𝑗1 , . . . , 𝑟
𝑗

𝑘
). If 𝑃 𝑗 (𝐷 𝑗) = 1

for every 𝑗 ∈ [𝑡] output (𝑥𝑖 , 𝑟 1
𝑖 , . . . , 𝑟

𝑡
𝑖). Otherwise output ⊥.

We show that the vPIR construction of [BDKP22] is 𝑡-composable for any 𝑡 = 𝑂(1). Very roughly, what
enables such composition is that evaluating read-once 𝑆 space predicates over 𝑂(1) different databases can
be done by a singe read-once 𝑂(𝑆) space predicate operating over all the databases simultaneously. See
Section 6 for further details on our composition theorem.

BARGs with Adaptive Subset Extraction from Composable vPIR. Our final construction of BARGs
from vPIR remains unchanged, except that in the analysis we rely on the fact that the vPIR is 2-composable.
To argue adaptive subset extraction, consider an adversary A against the BARG that given a CRS (i.e. a
vPIR query) outputs statement 𝑥1, . . . , 𝑥𝑘 , a proof (i.e. a vPIR answer 𝑎) and a subset 𝐽 ∗. We turn A into a
2-composable vPIR adversary A′ that outputs the instances 𝑥1, . . . , 𝑥𝑘 , A’s vPIR answer 𝑎 and an additional
answer 𝑎′ that encodes 𝐽 ∗ as follows: Let 𝐷 ′ = (𝑏′1, . . . , 𝑏′𝑘) be the database such that 𝑏′𝑖 = 1 if and only if
𝑖 /∈ 𝐽 ∗. Let 𝑃 ′

𝑓
be the predicate such that 𝑃 ′

𝑓
(𝐷 ′) = 1 if and only if 𝑓 (𝐷 ′) = 0 (i.e. if and only if 𝐽 ∗ is necessary).

Using vPIR for the predicate 𝑃 ′
𝑓
, compute the answer 𝑎′ to the query in the CRS from the database 𝐷 ′.

Say A outputs an accepting proof and a necessary subset 𝐽 ∗ with probability 𝛼 . When this occurs, A′
outputs two accepting vPIR answers. Therefore, by 2-composable vPIR security, there is a simulator Sim
that samples instances 𝑥1, . . . , 𝑥𝑘 and a pair of databases �̃� = (�̃�1, . . . , �̃�𝑘) and �̃� ′ = (𝑏′1, . . . , 𝑏′𝑘) such that
𝑃𝑓 (�̃�) = 1 and 𝑃 ′

𝑓
(�̃� ′) = 1 with probability 𝛼 − negl. Moreover, if 𝑗 is the random index queried in the CRS,

then the output (𝑥 𝑗 , �̃� 𝑗 , 𝑏
′
𝑗) of the ideal experiment is indistinguishable from the output (𝑥 𝑗 ,𝑤, 𝑏′) of the real

experiment where𝑤 and 𝑏′ denote the decryption of the answers 𝑎 and 𝑎′ respectively (this is conditioned
on the outputs being different than ⊥). If 𝑃𝑓 (�̃�) = 1 and 𝑃 ′

𝑓
(�̃� ′) = 1 then there must exist some index 𝑖 ∈ [𝑘]

such that �̃�𝑖 is a valid witness for 𝑥𝑖 ∈ L and 𝑏′𝑖 = 0. Since �̃�, �̃� ′ are sampled independently of 𝑗 we have
that 𝑖 = 𝑗 with probability 1/𝑘 . That is, with probability at least 𝛼/𝑘 − negl, �̃� 𝑗 is a valid witness for 𝑥 𝑗 ∈ L
and 𝑏′𝑗 = 0. By vPIR security, it follows that also in the real experiment, the extracted value, 𝑤 is a valid
witness for 𝑥 𝑗 ∈ L and 𝑏′ = 0 with probability at least 𝛼/𝑘 − negl. Finally, by the definition of 𝑎′ (which
was computed honestly) we have that 𝑏′ = 𝑏′𝑗 and, therefore, 𝑤 is a valid witness for 𝑥 𝑗 ∈ L and 𝑗 ∈ 𝐽 ∗
with probability at least 𝛼/𝑘 − negl.

Fast Prover/Aggregator. For general read-once bounded-space policies, the number of true statements
required to satisfy the policy may be large. Therefore, the running time of the honest prover must, in
general, grow with 𝑘 . When constructing aggregate signatures from BARGs this affects the time required
to aggregate signatures. However, for specific policies we can hope to do better. For example, for the
𝑡-out-of-𝑘 threshold policy, we construct a BARG with adaptive subset extraction where the prover time
grows with 𝑡 instead of 𝑘 . Plugging this BARG into the template aggregate signature construction gives

13

Theorem 1.2. Going beyond thresholds, the ideas behind our construction can be extended to give schemes
with fast prover/aggregator for other policies as well. We discuss such extensions in Section 7.2.

We modify our construction of BARG from vPIR to use a more efficient encoding of the database of
witnesses. In the scheme above, the prover constructs a database with 𝑘 rows where the witness for the
𝑖-th statement is stored in the 𝑖-th row, and the remaining rows contain ⊥. In the modified scheme, the
prover constructs a database 𝐷 with 𝑡 rows such that each row contains a witness𝑤 and an index 𝑗 ∈ [𝑘]
such that𝑤 is a valid witness for the 𝑗-th statement and, the sequence of 𝑡 indices stored in the database is
strictly increasing. Indeed, such a database exists if and only if at least 𝑡 out of the 𝑘 statements are true.
Checking that the database satisfies these two properties can be done by a read-once predicate 𝑃 using
log𝑘 + 1 bits of space.14

The analysis of the new construction is similar to that above, with some key modifications. We again
turn any adversary A against the BARG into a 2-composable vPIR adversary A′. When A outputs a vPIR
answer 𝑎 and a necessary subset 𝐽 ∗, A′ outputs an additional answer 𝑎′ as above, however, 𝑎′ is computed
in a different way: The answer 𝑎′ is computed from a database 𝐷 ′ using vPIR for a predicate 𝑃 ′ where 𝐷 ′, 𝑃 ′
are as follows: Let 𝐽 be a set of size 𝑡 − 1 such that 𝐽 ∗ ∪ 𝐽 = [𝑘] (such a set exists since 𝐽 ∗ is necessary). Let
𝑗1, . . . , 𝑗𝑡−1 be the indices in 𝐽 in increasing order. For 𝑖 ∈ [𝑡], the 𝑖-th row of 𝐷 ′ contains the pair of indices
(𝑗𝑖−1, 𝑗𝑖) where at the edges we set 𝑗0 = 0 and 𝑗𝑡 = 𝑘 + 1. We can think of the row (𝑗𝑖−1, 𝑗𝑖) as describing an
open interval. The predicate 𝑃 ′ checks that the intervals in 𝐷 ′ are indeed ordered and cover all indices
in [𝑘] except for the 𝑡 − 1 end points in 𝐽 . (Note that 𝑃 ′ is indeed a read-once log𝑘 + 1 space predicate.)
The key property that enables the analysis to go through is that in the ideal experiment, if the simulator
samples a pair of databases �̃�, �̃� ′ such that 𝑃 (�̃�) = 1 and 𝑃 ′(�̃� ′) = 1 then there must exist some index 𝑖 ∈ [𝑡]
such that if the 𝑖-th rows of �̃� and �̃� ′ are (�̃�, 𝑗) and (𝑗𝑖−1, 𝑗𝑖) respectively, then �̃� is a valid witness for the
𝑗-th statement and 𝑗𝑖−1 < 𝑗 < 𝑗𝑖 . Intuitively, the latter guarantees that in the real world, the extracted index
𝑗 is outside the set 𝐽 (and therefore, inside 𝐽 ∗) with sufficiently high probability. See Section 7 for further
details.

2.2 Weakly Unforgeable Aggregate Signatures for Polynomial-Size Monotone Policies

In this section we overview the proof of Theorem 1.3 for constructing aggregate signatures for all monotone
policies given by polynomial-size circuits with weakly unforgeable security. Recall that in the aggregate
signatures security game, the adversary outputs verification keys vk1, . . . , vk𝑘 , a target message𝑚 and a
signature 𝜎 . The adversary wins if 𝜎 is a valid signature on𝑚 under the aggregate key and if the forgery is
non-trivial. In the case of weakly unforgeable security, the forgery is considered non-trivial if the set of
corrupted parties, whose keys where not generated by the challenger, does not satisfy the policy, and if no
honest party signed𝑚. (This is in contrast to the fully adaptive notion where honest parties are allowed to
sign𝑚, but the set of honest parties that signed𝑚 together with all corrupted parties should not satisfy the
policy.)

Our construction is, once again, based on the template aggregate signature construction instantiated
with a new notion of monotone-policy BARGs. To motivate this new notion we briefly recall our previous
attempts: in a nutshell, our proof strategy was to define a necessary subset of indices 𝐽 ∗ based on the
adversary’s queries and then try to extract a witness for the 𝑗-th BARG statement for some 𝑗 ∈ 𝐽 ∗. Since 𝐽 ∗
was only fixed at the time the adversary outputs its forgery, we could not program 𝐽 ∗ into the CRS. Instead,
we relied on the stronger notion of adaptive subset extraction where the subset 𝐽 ∗ can be chosen by the

14The predicate can store the index of the last row read using log𝑘 bits and use another bit to remember if any of the previously
read rows violated the constraints.

14

adversary, as a function of the CRS. Our construction of BARGs with adaptive subset extraction, however,
is limited to read-once bounded space policies.

The main idea behind our construction in Theorem 1.3 is to fix the subset 𝐽 ∗ as a function of the BARG
statements. This will allow us to target 𝐽 ∗ not only during extraction, but already in the construction and
verification of the BARG proof. In more detail, in the weakly unforgeable aggregate signatures security
game, the subset 𝐽 ∗ contains the indices of all honest parties whose verification keys were generated by the
challenger. (This is in contrast to the fully adaptive notion where 𝐽 ∗ does not contain indices of honest
parties that signed𝑚.) Therefore, to recover the subset 𝐽 ∗ from the BARG statements (i.e. the verification
keys vk1, . . . , vk𝑘) it is sufficient to distinguish keys generated by the challenger from keys generated by
the adversary. To this end, we rely on an underlying signature scheme that supports trapdoor keys. In such
a signature scheme, it is possible to generate “marked” verification keys that can be recognized using a
trapdoor. Without the trapdoor, however, the adversary cannot distinguish the marked keys from honestly
generated keys, or generate new marked keys.15

To implement this idea, we instantiate the template aggregate signature construction with a new notion
of monotone-policy BARGs with functional subset extraction that generalise the somewhere extraction
property. A construction satisfying this notion is implicit in [BBK+23]. Recall that in BARGs with somewhere
extraction, if we program the CRS on a necessary subset 𝐽 , then, using a trapdoor, we can extract a witness
for the 𝑗-th statement for some 𝑗 ∈ 𝐽 from any accepting proof. In functional subset extraction, the subset
𝐽 depends both on the programmed CRS and on an additional input that is fixed together with the BARG
statements. In more detail, the CRS is programmed with a function 𝑔 and it is indistinguishable from an
honestly generated CRS.16 The BARG prover and verifier take an additional input 𝑦. The guarantee is that if
𝐽 = 𝑔(𝑦) is a necessary subset, then we can extract a witness for the 𝑗-th statement for some 𝑗 ∈ 𝐽 from any
accepting proof using a trapdoor. We additionally require that the verification time does not grow with the
running time of 𝑔. Moreover, in case the input 𝑦 is itself long, the verifier only requires a short digest of 𝑦
and its running time does not grow with |𝑦 |.

We plug in BARGs with functional subset extraction into the template aggregate signature construction.
To aggregate a signature under a sequence of verification keys vk1, . . . , vk𝑘 , we use this sequence as the
input 𝑦 to the BARG prover. We also include a short digest (a hash root) of 𝑦 in the aggregate verification
key, and the BARG verifier uses this digest to verify an aggregate signature. In the analysis, we consider
an alternative challenger that gives the adversary marked verification keys, and programs the CRS with a
function 𝑔 that is hard-coded with the trapdoor for the base signature. Given an input 𝑦 = (vk1, . . . , vk𝑘), 𝑔
uses the trapdoor to recognize the marked keys and outputs the subset 𝐽 containing their indices. We note
that this analysis does not extend beyond weak unforgeability. In the full-fledged unforgeability game, the
adversary can ask the challenger to sign the target message𝑚 under some of the marked verification keys.
In this case, the indices of these keys should not be included in the subset 𝐽 , or we may extract a trivial
forgery. In our weakly unforgeable construction, however, the subset 𝐽 is fixed only as a function of the
verification keys chosen by the adversary, regardless of its signing queries.

Our construction of monotone-policy BARGs with functional subset extraction is based on the some-
where extractable BARGs for monotone policies given by polynomial-size circuits from [BBK+23]. In their
construction, the CRS contains the programmed subset 𝐽 encrypted with a fully homomorphic encryption
scheme. Therefore, given an input 𝑦 and a CRS that contains an encryption of a function 𝑔, the prover
homomorphically evaluates a CRS that is programmed on 𝑔(𝑦) and computes its BRAG proof with respect

15Starting from any signature scheme, we can construct a scheme with trapdoor keys by adding a random string to each
verification key. To mark a key, we replace the random string with a PRF-based MAC.

16The length of the CRS grows with an upper bound on the description of 𝑔.

15

to the evaluated CRS. The verifier given the input 𝑦 can recompute the evaluated CRS itself and verify the
proof. To allow verification given only the hash of 𝑦 and to reduce the verification time to be independent
of the running time of 𝑔, we use a RAM SNARK for deterministic computation [CJJ22] to delegate the
computation of the evaluated CRS to the prover.

3 Preliminaries

Notations. We use PPT to denote probabilistic polynomial-time, and denote the set of all positive integers
up to 𝑛 as [𝑛] := {1, . . . , 𝑛}. For any 𝑥 ∈ {0, 1}𝑛 and any subset 𝐽 ⊂ [𝑛] we denote by 𝑥 𝐽 = (𝑥 𝑗)𝑗∈ 𝐽 . For any
finite set 𝑆 , 𝑥 ← 𝑆 denotes a uniformly random element 𝑥 from the set 𝑆 . Similarly, for any distribution D,
𝑥 ← D denotes an element 𝑥 drawn from the distribution D. We will also use the notation 1[𝑘]\𝐽 often to
denote a vector in {0, 1}𝑘 such that the 𝑖-th position is 0 if and only if 𝑖 ∈ 𝐽 .

The universal language. Let L𝑈 be the language of all triplets (Γ, 𝑥,𝑦,𝑇) such that Γ is a description
of a Turing machine that on input 𝑥 outputs 𝑦 in 𝑇 steps. We write (Γ, 𝑥,𝑇) ∈ L𝑈 as a shorthand for
(Γ, 𝑥, 1,𝑇) ∈ L𝑈 , i.e., Γ accepts 𝑥 in 𝑇 steps.

3.1 Digital Signatures

In this section we define (standard) digital signatures.

Syntax. A digital signature scheme consists of the following polynomial-time algorithms:

KeyGen(1_)→ (sk, vk). This is a probabilistic algorithm that takes as input the security parameter 1_ . It
outputs a signing key sk and a verification key vk.

Sign(sk,m)→ 𝜎 . This is a probabilistic algorithm that takes as input the signing key sk and a message
m ∈ {0, 1}_ . It outputs a signature 𝜎 .

Verify(vk,m, 𝜎)→ 0/1. This is a deterministic algorithm that takes as input the verification key vk, a
message m ∈ {0, 1}_ and a signature 𝜎 . It outputs a bit (1 to accept, 0 to reject).

Definition 3.1. A digital signature scheme (KeyGen, Sign,Verify) is required to satisfy the following properties:

Correctness. For any _ ∈ N and m ∈ {0, 1}_ ,

Pr
[
Verify(vk,m, 𝜎) = 1 : (sk, vk)← KeyGen(1_)

𝜎 ← Sign(sk,m)

]
= 1 .

Unforgeability. For any admissible poly-size adversary A, there exists a negligible function negl such that
for all _ ∈ N,

Pr
[
Verify(vk,m∗, 𝜎∗) = 1 : (sk, vk)← KeyGen(1_)

(m∗, 𝜎∗)← ASign(sk,·)(1_, vk)

]
≤ negl(_) ,

where we say that A is admissible if it did not query the Sign(sk, ·) oracle with m∗.

Remark 3.1 (Message space). We assume that the message space is {0, 1}_ . This is without loss of generality,
since we can sign arbitrary messages by first applying a hash function (that satisfies targeted collision
resistance), then signing the hashed message [NY89].

16

3.2 Hash Family with Local Opening

In this section we recall the definition of a hash family with local opening [Mer88].17

Syntax. A hash family (HT) with succinct local opening consists of the following algorithms:

Gen(1_)→ hk. This is a PPT algorithm that takes as input the security parameter 1_ in unary and outputs
a hash key hk.

Hash(hk, 𝑥)→ rt. This is a deterministic poly-time algorithm that takes as input a hash key hk and an
input 𝑥 ∈ {0, 1}𝑁 for 𝑁 ≤ 2_ , and outputs a hash value rt.

Open(hk, 𝑥, 𝑗)→ 𝜌 . This is a deterministic poly-time algorithm that takes as input a hash key hk, an input
𝑥 ∈ {0, 1}𝑁 for 𝑁 ≤ 2_ , and an index 𝑗 ∈ [𝑁], and outputs an opening 𝜌 .

Verify(hk, rt, 𝑗, 𝑏, 𝜌)→ 0/1. This is a deterministic poly-time algorithm that takes as input a hash key hk, a
hash value rt, an index 𝑗 ∈ [𝑁], a bit 𝑏 ∈ {0, 1} and an opening 𝜌 . It outputs a bit (1 to accept, 0 to
reject).

Definition 3.2. (Properties of HT) A HT family (Gen,Hash,Open,Verify) is required to satisfy the following
properties.

Opening completeness. For any _ ∈ N, any 𝑁 ≤ 2_ , any 𝑥 ∈ {0, 1}𝑁 , and any index 𝑗 ∈ [𝑁],

Pr
 Verify(hk, rt, 𝑗, 𝑥 𝑗 , 𝜌) = 1 :

hk← Gen(1_),
rt = Hash(hk, 𝑥),
𝜌 = Open(hk, 𝑥, 𝑗)

 = 1 − negl(_).

Succinctness. In the completeness experiment above, we have that |hk|+|rt|+|𝜌 |= poly(_).

Collision resistance w.r.t. opening. For any poly-size adversary A there exists a negligible function
negl(·) such that for every _ ∈ N,

Pr
[
Verify(hk, rt, 𝑗, 0, 𝜌0) = 1
∧ Verify(hk, rt, 𝑗, 1, 𝜌1) = 1 : hk← Gen(1_),

(rt, 𝑗, 𝜌0, 𝜌1)← A(hk)

]
= negl(_).

Remark 3.2. We say that a hash family with local opening is Λ-secure, for Λ = Λ(_), if the collision
resistance w.r.t. opening property holds against any poly(Λ)-size adversary (as opposed to poly(_)-size)
and the probability that the adversary finds a collision is negl(Λ) (as opposed to negl(_)). We refer to this
property as Λ-collision-resistance w.r.t. opening.

Theorem 3.3 ([Mer88]). Assuming the existence of a collision resistant hash family there exists a hash family
with local opening (according to Definition 3.2).

17In what follows we use the notation HT to denote a hash family with local opening, where HT symbolizes a Hash Tree
construction. We emphasize that we are not restricted to such a construction, and use this notation only to give the reader an
example to have in mind.

17

3.3 Somewhere Extractable Batch Arguments (seBARGs)

A batch argument system BARG for an NP language L enables proving that 𝑘 NP statements are true with
communication cost that is polylogarithmic in 𝑘 . There are many BARG variants which are known to be
existentially equivalent under mild computational assumptions (see, e.g., [CJJ22, KVZ21, KLVW23]). In this
work, for simplicity in our constructions, we make use of an argument system for “batch index Turing
machine SAT” (BatchTMSAT), defined in [BBK+23].

Definition 3.4. The language BatchIndexTMSAT consists of instances of the form 𝑥 = (𝑀,𝑧, 𝑘,𝑇), where:

• 𝑀 is the description of a Turing machine.

• 𝑧 is an input string (to𝑀)

• 𝑘 is a batch size, and

• 𝑇 is a running time.

An instance 𝑥 = (𝑀,𝑧, 𝑘,𝑇) is in BatchIndexTMSAT if for all 1 ≤ 𝑖 ≤ 𝑘 , there exists a string 𝑤𝑖 such that
𝑀(𝑧, 𝑖,𝑤𝑖) accepts within 𝑇 steps.

We sometimes use the notation R(𝑥, 𝑖,𝑤𝑖) to denote the relation with instance (𝑥, 𝑖) and corresponding
witness𝑤𝑖 .

Syntax. A (publicly verifiable and non-interactive) somewhere extractable batch argument system
seBARG for BatchIndexTMSAT consists of the following polynomial-time algorithms:

Gen(1_, 𝑖∗)→ (crs, td). This is a probabilistic algorithm that takes as input a security parameter 1_ , and an
index 𝑖∗ ∈ [2_]. It outputs a common reference string crs along with a trapdoor td.

P(crs, 𝑀, 𝑧, 1𝑇 ,𝑤1, . . . ,𝑤𝑘)→ 𝜋. This is a deterministic algorithm that takes as input a crs, Turing machine
𝑀 , input 𝑧, runtime 1𝑇 , and 𝑘 witnesses𝑤1, . . . ,𝑤𝑘 . It outputs a proof 𝜋 .

V(crs, 𝑥, 𝜋)→ 0/1. This is a deterministic algorithm that takes as input a crs, instance 𝑥 = (𝑀,𝑧, 𝑘,𝑇), and
a proof 𝜋 . It outputs a bit (1 to accept, 0 to reject).

Extract(td, 𝜋)→ 𝑤. This is a deterministic algorithm that takes as input a trapdoor td and a proof 𝜋 . It
outputs a witness𝑤 .

Definition 3.5 (seBARG). A somewhere-extractable batch argument scheme seBARG = (Gen,P,V, Extract)
for BatchIndexTMSAT is required to satisfy the following properties:

Completeness. For any _ ∈ N, any 𝑘, 𝑛,𝑚,𝑇 ≤ 2_ , any instance 𝑥 = (𝑀,𝑧, 𝑘,𝑇) ∈ BatchIndexTMSAT
with |𝑀 |+|𝑧 |= 𝑛, any corresponding witnesses𝑤1, . . . ,𝑤𝑘 ∈ {0, 1}𝑚 and any index 𝑖∗ ∈ [𝑘],

Pr
[
V(crs, 𝑥, 𝜋) = 1 : (crs, td)← Gen(1_, 𝑖∗),

𝜋 ← P(crs, 𝑀, 𝑧, 1𝑇 ,𝑤1, . . . ,𝑤𝑘)

]
= 1.

Efficiency. In the completeness experiment above, |crs|+|𝜋 |≤ 𝑚 · poly(_). The running time of the verifier is
at most poly(|crs|+|𝜋 |) + poly(_) · |𝑥 |.

18

Index hiding. For any poly-size adversary A, there exists a negligible function negl(·) such that for every
_ ∈ N and every pair of indices 𝑖0, 𝑖1 ∈ [2_],

Pr
[
A(crs) = 𝑏 : 𝑏 ← {0, 1},

(crs, td)← Gen(1_, 𝑖𝑏)

]
≤ 1

2 + negl(_).

Somewhere argument of knowledge. For any poly-size adversary A and any polynomials 𝑘(_),𝑇 (_)
there exists a negligible function negl(·) such that for any index 𝑖∗ ∈ [𝑘] and for every _ ∈ N,

Pr

V(crs, 𝑥, 𝜋) = 1
∧ (𝑥, 𝑖∗,𝑤∗) ̸∈ R :

(crs, td)← Gen(1_, 𝑖∗)
(𝑀,𝑧, 𝜋) = A(crs)
𝑤∗ ← Extract (td, 𝜋)
𝑥 = (𝑀,𝑧, 𝑘,𝑇)

 ≤ negl(_).

Remark 3.3. We say that a seBARG scheme is Λ-secure, for Λ = Λ(_), if the index hiding property and
the somewhere argument of knowledge property hold w.r.t. a poly(Λ)-size adversary (as opposed to a
poly(_)-size), and the advantage probability is negl(Λ) (as opposed to negl(_)). We refer to these properties
as Λ-index-hiding and Λ-somewhere-argument-of-knowledge, respectively.

Remark 3.4. Given an seBARG, one can naturally extend the definition of the key generation algorithm
Gen to take as input an index set 𝐼 ⊂ [𝑘], as opposed to a single index. Gen(1_, 𝐼) will simply run Gen(1_, 𝑖)
for every 𝑖 ∈ 𝐼 . The prover algorithm P, given a crs that encodes the |𝐼 | indices, will simply generate |𝐼 |
proofs (one for each crs), and the verifier will check these |𝐼 | proofs independently.

Theorem 3.6 ([CJJ22, WW22, KLVW23, CGJ+23]). There exists a Λ-secure seBARG for BatchIndexTMSAT
assuming Λ-hardness of LWE or DLIN.

4 Aggregate Signatures for Monotone Policies

In this section we define aggregate signature schemes for monotone policies. We additionally define a
weaker notion, and define a special case of aggregate signatures where the prover time depends only on
the number of instances for which it has witnesses.

Syntax. Let 𝐹 = {𝐹_}_∈N be a family of monotone policies, such that each 𝑓 ∈ 𝐹_ is a monotone function
𝑓 : {0, 1}𝑘 → {0, 1}. Let S = (KeyGen, Sign,Verify) be a digital signature scheme. An 𝐹 -aggregation scheme
for S consists of the following polynomial-time algorithms:

Setup(1_)→ crs. This is a probabilistic setup algorithm that takes as input the security parameter 1_ . It
outputs a common reference string crs.

KeyAgg(crs,
{
vk𝑖

}
𝑖∈[𝑘])→ v̂k. This is a deterministic key aggregation algorithm that takes as input the

common reference string crs, and a collection of verification keys
{
vk𝑖

}
𝑖∈[𝑘]. It outputs an aggregate

verification key v̂k.

SigAgg(crs, 𝑓 ,
{
vk𝑖 , 𝜎𝑖

}
𝑖∈[𝑘] ,m)→ 𝜎 . This is a deterministic signature aggregation algorithm that takes as

input the common reference string crs, a policy 𝑓 , a collection of verification keys and signatures{
vk𝑖 , 𝜎𝑖

}
𝑖∈[𝑘], and a message m. It outputs an aggregate signature 𝜎 .

19

AggVerify(crs, 𝑓 , v̂k,m, 𝜎)→ 0/1. This is a deterministic aggregate verification algorithm that takes as input
the common reference string crs, a policy 𝑓 , an aggregate verification key v̂k, a message m, and an
aggregate signature 𝜎 . It outputs a bit (1 to accept, 0 to reject).

Remark 4.1. For simplicity, in this work we focus on a notion that only allows for aggregating many
signatures on the same message. One might consider a more general notion where each party can sign a
different message. In this case the verification algorithm AggVerify should take as input a vector {m𝑖}𝑖∈[𝑘]
of messages instead of a single message m.

In general, if we sign different messages, the running time of AggVerify must grow with 𝑘 . The size of
the aggregate signature and verification key, however, should remain independent of 𝑘 . Moreover, in case
the messages signed have some succinct representation, we may require that the running time of AggVerify
grows with the representation size instead of 𝑘 . Indeed, our constructions in subsequent section can be
extended to support such succinct verification. See Remark 5.2 for more details.

Definition 4.1 (Aggregation Scheme). An 𝐹 -aggregation scheme (Setup,KeyAgg, SigAgg,AggVerify) for
S = (KeyGen, Sign,Verify) is required to satisfy the following properties:

Correctness. For any _ ∈ N, any policy 𝑓 ∈ 𝐹_ , any message m ∈ {0, 1}_ , and any collection of verification
keys and signatures

{
vk𝑖 , 𝜎𝑖

}
𝑖∈[𝑘] such that for 𝑏𝑖 = Verify(vk𝑖 ,m, 𝜎𝑖) it holds that 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1,

Pr

 AggVerify(crs, 𝑓 , v̂k,m, 𝜎) = 1 :
crs← Setup(1_)
v̂k← KeyAgg(crs,

{
vk𝑖

}
𝑖∈[𝑘])

𝜎 ← SigAgg(crs, 𝑓 ,
{
vk𝑖 , 𝜎𝑖

}
𝑖∈[𝑘] ,m)

 = 1 .

Efficiency. There exists a fixed polynomial poly such that in the correctness experiment above, |v̂k|+|𝜎 |=
poly(_).

Unforgeability. For any _ ∈ N and 𝑓 ∈ 𝐹_ , define the unforgeability game between an adversary A and a
challenger as follows:

• The challenger samples crs← Setup(1_), and gives crs to A.

• The adversary can now make queries to the challenger. Each query is of one of three types:

– Verification key queries: A can request a verification key from the challenger. The challenger
generates (sk, vk)← KeyGen(1_), gives vk to A and saves the pair (sk, vk).

– Signing queries: Given a verification key vk and a message m ∈ {0, 1}_ , if the challenger
previously saved the pair (sk, vk) it gives Sign(sk,m) to A. Otherwise, it gives ⊥.

– Signing key queries: Given a verification key vk, if the challenger previously saved the pair
(sk, vk) it gives sk to A. Otherwise, it gives ⊥.

• At the end of the game the adversary outputs a collection of verification keys
{
vk𝑖

}
𝑖∈[𝑘], a message

m ∈ {0, 1}_ , and an aggregate signature 𝜎 .

• Let v̂k = KeyAgg(crs,
{
vk𝑖

}
𝑖∈[𝑘]). For 𝑖 ∈ [𝑘], let 𝑏𝑖 = 1 if one of the following conditions holds.

Otherwise, let 𝑏𝑖 = 0:
– A did not make a verification key query that was answered with vk𝑖 (that is, if vk𝑖 is a

maliciously generated key).
– A made a signing query for vk𝑖 ,m.

20

– A made a signing key query for vk𝑖
• The adversary A wins the game if 𝑓 (𝑏1, . . . , 𝑏𝑘) = 0 and AggVerify(crs, 𝑓 , v̂k,m, 𝜎) = 1.

For any poly-size adversary A, there exists a negligible function negl(·) such that for all _ ∈ N and
𝑓 ∈ 𝐹_ , A wins the unforgeability game with probability at most negl(_).

In the above definition, and throughout the paper we assume that m ∈ {0, 1}_ . Our results can be
extended using standard techniques to handle arbitrary sized messages m ∈ {0, 1}∗ by further assuming
collision-resistant hash functions18.

We also consider a relaxed definition satisfying a weaker notion of unforgeability.

Definition 4.2 (Weakly Unforgeable Aggregation Scheme). A weakly unforgeable 𝐹 -aggregation scheme
(Setup,KeyAgg, SigAgg,AggVerify) for S is required to satisfy correctness and efficiency (as in Definition 4.1),
and a weaker notion of unforgeability.

The weak unforgeability game is identical to the unforgeability game in Definition 4.1, except that to win
the game, in addition to the condition specified in Definition 4.1, the adversary A may not make any signing
query of the form (vk𝑖 ,m), or any signing key query vk𝑖 for any 𝑖 ∈ [𝑘].

4.1 Fast Aggregation

In the notion of aggregation scheme as defined above, to compute an aggregated signature under an
aggregated key v̂k the signature aggregator must know all the verification keys aggregated in v̂k. In what
follows we formalize the notion of aggregation scheme with “sublinear” aggregation where the signature
aggregator is only given a subset of the verification keys aggregated in v̂k and signatures under the keys in
this subset such that the subset satisfies the policy. In addition, for every verification key in the subset, the
signature aggregator is also given a “proof” that the key is indeed one of the keys aggregated in v̂k. For a
signature aggregator that is given 𝑡 signatures and verification keys, we want the aggregator run time to
depend only on 𝑡 .

Syntax. An 𝐹 -aggregation scheme for S with fast aggregation contains polynomial-time key aggregation
and signature aggregation algorithms with the following syntax (the syntax of the setup and aggregated
verification algorithm is unchanged):

KeyAgg(crs,
{
vk𝑖

}
𝑖∈[𝑘])→ (v̂k, {𝜌𝑖}𝑖∈[𝑘]). This is a deterministic key aggregation algorithm that takes as

input the common reference string crs, and a collection of verification keys
{
vk𝑖

}
𝑖∈[𝑘]. It outputs an

aggregate verification key v̂k, and openings 𝜌1, . . . , 𝜌𝑘 .

SigAgg(crs, 𝑓 , v̂k,
{
vk𝑖 , 𝜌𝑖 , 𝜎𝑖

}
𝑖∈[𝑡] ,m)→ 𝜎 . This is a deterministic signature aggregation algorithm that

takes as input the common reference string crs, a policy 𝑓 , the aggregate verification key v̂k, a
collection of verification keys, openings and signatures

{
vk𝑖 , 𝜌𝑖 , 𝜎𝑖

}
𝑖∈[𝑡], and a message m. It outputs

an aggregate signature 𝜎 .

We modify Definition 4.1 to support the syntax above. In particular, the modified correctness property is as
follows:

18We note that ollision-resistant hash functions were recently shown to be implied by BARGs. [BKP+24]

21

Correctness. For any _ ∈ N, any 𝑘 ≤ 2_ , any policy 𝑓 ∈ 𝐹_ , any message m ∈ {0, 1}_ , any set 𝑆 ⊆ [𝑘]
such that 𝑓 (1𝑆) = 1, and any collection of verification keys and signatures

{
vk𝑖 , 𝜎𝑖

}
such that

Verify(vk𝑖 ,m, 𝜎𝑖) = 1 for every 𝑖 ∈ 𝑆 ,

Pr

 AggVerify(crs, 𝑓 , v̂k,m, 𝜎) = 1 :
crs← Setup(1_)
(v̂k, {𝜌𝑖}𝑖∈[𝑘])← KeyAgg(crs,

{
vk𝑖

}
𝑖∈[𝑘])

𝜎 ← SigAgg(crs, 𝑓 , v̂k,
{
vk𝑖 , 𝜌𝑖 , 𝜎𝑖

}
𝑖∈𝑆 ,m)

 = 1 .

5 Batch Arguments for Monotone Policies

In this section we provide new definitions for batch arguments, specifically BARGs with adaptive subset
extraction, and BARGs with functional subset extraction, both for monotone policies. The definitions extend
the definition of BARGs for monotone policies considered in [BBK+23]. We then show how to construct
aggregate signatures from BARGs with adaptive subset extraction, and weakly unforgeable aggregate
signatures from BARGs with functional subset extraction.

We defer the construction of these BARGs to later technical sections. Our BARGs are going to be
defined for the following batch language considered in [BBK+23].
Definition 5.1. The languageMonotonePolicyTMSAT consists of instances of the form 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇), where:

• 𝑓 : {0, 1}𝑘 → {0, 1} is the description of a monotone function.

• 𝑀 is the description of a Turing machine.

• 𝑧 is an input string (to𝑀), and

• 𝑇 is a running time.

An instance 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇) is in MonotonePolicyTMSAT if it satisfies any one of the following witness
relations. The two relations define the same language, but differ in the witness representation. Notably, Rsub

allows for witnesses that are sublinear in the batch size 𝑘 , which will allow us to obtain more efficient provers
for our batch arguments.

• A Rfull-witness for 𝑥 is 𝑤 = (𝑤1, . . . ,𝑤𝑘) such that 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1, where 𝑏𝑖 ∈ {0, 1} are defined by
𝑏𝑖 = 1 if and only if𝑀(𝑧, 𝑖,𝑤𝑖) accepts within 𝑇 steps.

• A Rsub-witness for 𝑥 is𝑤 = (𝑖1,𝑤1, . . . , 𝑖𝑡 ,𝑤𝑡) such that:

1. For every 𝑗 ∈ [𝑡], it holds that 𝑖 𝑗 ∈ [𝑘] and𝑀(𝑧, 𝑖 𝑗 ,𝑤 𝑗) accepts within 𝑇 steps.
2. 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1, where 𝑏𝑖 = 1 if and only if 𝑖 = 𝑖 𝑗 for some 𝑗 ∈ [𝑡].

Further, let 𝐹 = {𝐹_}_∈N be a family of policies, where each 𝑓 ∈ 𝐹_ is a monotone function 𝑓 : {0, 1}𝑘 →
{0, 1}. We say that a subset 𝐽 ⊆ [𝑘] is necessary for a monotone function 𝑓 if 𝑓 (1[𝑘]\𝐽) = 0.

5.1 Batch Arguments with Adaptive Subset Extraction

The syntax of batch arguments with adaptive subset extraction is similar to the syntax of somewhere-
extractable BARGs for monotone policy in [BBK+23], except that the trapdoor generated by the setup
algorithm does not depend on a particular subset of indices (or on a single index as in standard somewhere
extractable batch arguments [CJJ22]). Instead the adaptive subset extraction guarantee will be defined with
respect to necessary subsets chosen by the prover as a function of the crs.

22

Syntax. Let R be a witness relation for MonotonePolicyTMSAT (either Rfull or Rsub). Let 𝛼 = 𝛼(_) be a
polynomial. A 𝐹 -batch argument with 𝛼-adaptive subset extraction for relation R consists of the following
polynomial-time algorithms:

Setup(1_)→ (crs, td). This is a probabilistic setup algorithm that takes as input the security parameter 1_ .
It outputs a common reference string crs and a trapdoor td.

P(crs, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤)→ 𝜋 . This is a deterministic prover algorithm that takes as input the common reference
string crs, policy 𝑓 , Turing machine 𝑀 , input 𝑧, runtime 1𝑇 , and witness 𝑤 (for the relation R). It
outputs a proof 𝜋 .

V(crs, 𝑥, 𝜋)→ 0/1. This is a deterministic verification algorithm that takes as input the common reference
string crs, instance 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇), and a proof 𝜋 . It outputs a bit (1 to accept, 0 to reject).

Extract(td, 𝜋)→ (𝑖,𝑤𝑖). This is a deterministic extraction algorithm that takes as input the trapdoor td, and
a proof 𝜋 . It outputs an index 𝑖 ∈ [𝑘], and a witness𝑤𝑖 .

Definition 5.2 (Batch Argument for Policies with Adaptive Subset Extraction). A 𝐹 -batch argument with
𝛼-adaptive subset extraction (Setup,P,V, Extract) for relation R is required to satisfy the following properties:

Completeness. For any _ ∈ N, any 𝑛,𝑚,𝑇 ≤ 2_ , any instance 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇) ∈
MonotonePolicyTMSATwith |𝑀 |+|𝑧 |= 𝑛 and corresponding witness𝑤 such that (𝑥,𝑤) ∈ R and |𝑤𝑖 |=𝑚,

Pr
[
V(crs, 𝑥, 𝜋) = 1 : (crs, td)← Setup(1_)

𝜋 ← P(crs, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤)

]
= 1 .

Succinctness. In the completeness experiment above, |𝜋 |≤ 𝑚 · poly(_). The running time of the verifier is at
most poly(|crs|+|𝜋 |) + poly(_) · |𝑥 |.

𝛼-Adaptive Subset Extraction. For any polynomial 𝑇 (_), any poly-size cheating prover P∗, and any
sequence {𝑓_ ∈ 𝐹_}_∈N, there exists a negligible function negl(·) such that for every _ ∈ N,

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
≥ 1
𝛼(_) · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− negl(_) ,

where EXP is the experiment defined as follows:

• Generate (crs, td)← Setup(1_).
• Run the cheating prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).
• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇).
• Extract (𝑖,𝑤𝑖)← Extract(td, 𝜋).

5.2 Batch Arguments with Functional Subset Extraction

We now consider a related notion of functional subset extraction, which generalizes the notion of somewhere
extractable BARGs for monotone policy defined in [BBK+23]. Here, we program the crs on some function
𝑔 whose outputs are subsets of [𝑘]. The extraction guarantee we will require that if prover and verifier
both use a function input 𝑦, we can extract from the proof a witness from the set 𝐽 = 𝑔(𝑦), as long as 𝐽 is a
necessary subset. Unlike the definition of adaptive subset extraction considered in Section 5.1, where the
crs does not require additional input, we note that here we do have to program a crs but the adversary is
allowed to adaptively pick the input 𝑦 to the function 𝑔.

23

Syntax. Let R be a witness relation for MonotonePolicyTMSAT (defined in Definition 5.1). The syntax
remains largely the same as in the case of BARGs adaptive subset extraction, with the primary difference
pertaining to the additional function 𝑔 specified during setup, and the additional input 𝑦 used by both
parties.

A 𝐹 -batch argument with functional subset extraction consists of the following polynomial-time
algorithms:

Setup(1_, 𝑔)→ (crs, td). This is a probabilistic setup algorithm that takes as input the security parameter
1_ and a function 𝑔 ∈ 𝐺_ . It outputs a common reference string crs and a trapdoor td.

P(crs, 𝑦, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤)→ 𝜋 . This is a deterministic prover algorithm that takes as input the common
reference string crs, function input 𝑦, policy 𝑓 , Turing machine 𝑀 , input 𝑧, runtime 1𝑇 , and witness
𝑤 (for the relation R). It outputs a proof 𝜋 .

V(crs, 𝑦, 𝑥, 𝜋)→ 0/1. This is a deterministic verification algorithm that takes as input the common reference
string crs, function input 𝑦, instance 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇), and a proof 𝜋 . It outputs a bit (1 to accept, 0 to
reject).

Extract(td, 𝑦, 𝜋)→ (𝑖,𝑤𝑖). This is a deterministic extraction algorithm that takes as input the trapdoor td,
and a proof 𝜋 . It outputs an index 𝑖 ∈ [𝑘], and a witness𝑤𝑖 .

Definition 5.3 (Batch Argument for Policies with Functional Subset Extraction). A 𝐹 -batch argument
with 𝐺-functional subset extraction (Setup,P,V, Extract) for relation R is required to satisfy the following
properties:

Completeness. For any _ ∈ N, any 𝑘, 𝑛,𝑚, ℓ,𝑇 ≤ 2_ , any instance 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇) ∈
MonotonePolicyTMSATwith |𝑀 |+|𝑧 |= 𝑛 and corresponding witness𝑤 such that (𝑥,𝑤) ∈ R and |𝑤𝑖 |=𝑚,
any function 𝑔 ∈ 𝐺_ , and any function input 𝑦 ∈ {0, 1}ℓ ,

Pr
[
V(crsV, 𝑦, 𝑥, 𝜋) = 1 : (crs, td)← Setup(1_, 𝑔)

𝜋 ← P(crs, 𝑦, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤)

]
= 1 .

Succinctness. In the completeness experiment above, |𝜋 |≤ 𝑚 · poly(_) and |crs|≤ (𝑚 + |𝑔|) · poly(_) where
|𝑔| is the description length of the function 𝑔.

Key Indistinguishability. For any poly-size adversaryA, any polynomial𝑇 (_) and any functions 𝑔0, 𝑔1 ∈
𝐺_ there exists a negligible function negl(·) such that for every _ ∈ N,

Pr
[
A(crs) = 𝑏 : 𝑏 ← {0, 1},

(crs, td)← Setup(1_, 𝑔𝑏)

]
≤ 1

2 + negl(_).

𝐺-Functional Subset Extraction. For any polynomial 𝑇 (_) and any poly-size cheating prover P∗, there
exists a negligible function negl(·) such that for every _ ∈ N and 𝑔 ∈ 𝐺_ ,

Pr
EXP

V(crsV, 𝑦, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0 ∧
(𝑖 /∈ 𝐽 ∨ 𝑀(𝑧, 𝑖,𝑤𝑖) = 0)

 ≤ negl(_).

where EXP is the experiment defined as follows:

24

• Generate (crs, td)← Setup(1_, 𝑔).
• Run the cheating prover and obtain (𝑀,𝑧, 𝜋,𝑦)← P∗(crs).
• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇) and 𝐽 = 𝑔(𝑦).
• Extract (𝑖,𝑤𝑖)← Extract(td, 𝑦, 𝜋).

Remark 5.1 (Hashed inputs). We additionally support a syntax where the verifier receives a hash of the
function input 𝑦 (for some hash family with local opening), rather than the full input. This allows for an
efficient verifier in case the function input is long. Looking ahead, this will be the case in our construction
in Section 5.4.

With this syntax, security is modified so that it holds if the verifier receives an honestly computed
hash of 𝑦. We note that this notion can be obtained generically, using RAM SNARGs (where the BARG
proof contains a RAM SNARG proof that the verifier accepts). A similar transformation was implemented
in [BBK+23] Section 5.3.3, to obtain a predicate-extractable hash family with efficient verification.

5.3 From Adaptive Subset Extraction to Aggregate Signatures

We present our first transformation, where we construct aggregate signatures from BARGs with adaptive
subset extraction, and any signature scheme. Specifically, let 𝐹 = {𝐹_} be a family of monotone policies.
We construct an 𝐹 -aggregation scheme for S (Definition 4.1) from the following building blocks:

• A digital signature scheme S = (KeyGen, Sign,Verify).

• An 𝐹 -batch argument with 𝛼-adaptive subset extraction (Definition 5.2)

(SetupBARG,PBARG,VBARG, ExtractBARG)

for relation R, where 𝛼 is some polynomial. For simplicity we assume R = Rfull. We note that a similar
construction with R = Rsub gives a 𝐹 -aggregation scheme with sublinear aggregation (Section 4.1).

• A hash family with local opening (Definition 3.2)

(GenHT,HashHT,OpenHT,VerifyHT) .

We describe the aggregate signature algorithms in Fig. 1, and prove the following theorem.

Theorem 5.4. Assuming the existence of a digital signature scheme, hash family and 𝐹 -batch argument with
𝛼-adaptive subset extraction, the construction given in Fig. 1 is an 𝐹 -aggregation scheme for S.

Remark 5.2. The proof of Theorem 5.4 can be extended to extended to give a stronger notion of aggregated
signatures where each party can sign a different message (see Remark 4.1). Moreover, if the the verification
algorithm is given as input a succinct representation of the messages signed, its running time grows with the
representation size instead of 𝑘 . In more detail, we can support a representation of the messages {m𝑖}𝑖∈[𝑘],
either as a Turing machine that given input 𝑖 ∈ [𝑘] outputs m𝑖 in time poly(_), or as the root of hash tree
over the messages.

If the messages {m𝑖}𝑖∈[𝑘] are represented by a Turing machine 𝑅 that generates them, we modify
the construction given in Fig. 1 as follows: The machine 𝑀 takes as input 𝑧 = (hk, v̂k, 𝑅) instead of
𝑧 = (hk, v̂k,m) and it computes m = 𝑅(𝑗). If the messages {m𝑖}𝑖∈[𝑘] are represented by a hash root m̂
we modify the construction as follows: The machine 𝑀 takes as input 𝑧 = (hk, v̂k, m̂) instead of 𝑧 =
(hk, v̂k,m), we add the message m𝑖 and its authentication path 𝜌m𝑗 to the witness 𝑤 𝑗 , and 𝑀 also checks
that VerifyHT(hk, m̂, 𝑗,m𝑗 , 𝜌

m
𝑗) = 1.

25

Setup(1_):

1. Generate hk← GenHT(1_).
2. Generate (crsBARG, tdBARG)← SetupBARG(1_).
3. Output crs = (hk, crsBARG).

KeyAgg(crs,
{
vk𝑖

}
𝑖∈[𝑘]):

1. Parse crs = (hk, crsBARG).

2. Output v̂k = HashHT(hk, (vk1, . . . , vk𝑘)).

SigAgg(crs, 𝑓 ,
{
vk𝑖 , 𝜎𝑖

}
𝑖∈[𝑘] ,m):

1. Parse crs = (hk, crsBARG).

2. Compute v̂k = HashHT(hk, (vk1, . . . , vk𝑘)).

3. Let 𝑧 = (hk, v̂k,m), and define the Turing machine 𝑀(𝑧, 𝑗,𝑤 𝑗) which operates as follows:

• Parse 𝑧 = (hk, v̂k,m).
• Parse𝑤 𝑗 = (𝜌 𝑗 , vk𝑗 , 𝜎 𝑗).
• Check that VerifyHT(hk, v̂k, 𝑗, vk𝑗 , 𝜌 𝑗) = 1.
• Check that Verify(vk𝑗 ,m, 𝜎 𝑗) = 1.

Let 𝑇 = poly(_) so that the above pseudocode terminates.
4. For every 𝑗 ∈ [𝑘], construct a witness 𝑤 𝑗 such that 𝑀(𝑧, 𝑗,𝑤 𝑗) = 1, using the OpenHT algorithm to

produce the appropriate openings. Let𝑤 = (𝑤1, . . . ,𝑤𝑘).
5. Output 𝜎 = PBARG(crsBARG, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤).

AggVerify(crs, 𝑓 , v̂k,m, 𝜎):

1. Parse crs = (hk, crsBARG).

2. Define 𝑀,𝑇 as above and 𝑧 = (hk, v̂k,m), and let 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇).
3. OutputVBARG(crsBARG, 𝑥, 𝜎).

Figure 1: Aggregate Signatures for Bounded Space Monotone Policies 𝑓 from BARGs with Adaptive Subset
Extraction for 𝑓

26

Proof of Theorem 5.4.

Correctness. Follows directly from the completeness and correctness properties of the underlying batch
argument, digital signature scheme and hash family with local opening.

Efficiency. We have that |v̂k|= poly(_) by the succinctness property of the hash family with local opening,
and |𝜎 |= poly(_) by the efficiency of the batch argument with adaptive subset extraction (each witness𝑤 𝑗

is of length poly(_) by efficiency of the hash family and digital signature scheme).

Unforgeability. Fix any poly-size adversary A. Assume towards contradiction that there exists a
polynomial poly such that for infinitely many _ ∈ N, there exists 𝑓 ∈ 𝐹_ such thatA wins the unforgeability
game with probability > 1

poly(_) .
We construct an adversary B that breaks the unforgeability of the underlying digital signature scheme.

Given the security parameter 1_ , a verification key vk∗, and oracle access to Sign(sk∗, ·), B does the following:

1. Let 𝑄(_) be a polynomial upper bound on the number of verification key queries that A makes.
Sample 𝑖∗ ← [𝑄].

2. Simulate the aggregate signature unforgeability game against A.

• Emulate Setup(1_), provide crs to A while holding on to tdBARG.
• WheneverA makes a verification key query, if it is the 𝑖∗th query, give it vk∗. Otherwise, sample

and save (sk, vk)← KeyGen(1_), and give vk to A.
• WheneverA makes a signing query for (vk,m), if vk = vk∗, query the signing oracle and return
𝜎 = Sign(sk∗,m). Otherwise, if a pair (sk, vk) was saved, compute and return 𝜎 = Sign(sk,m).
Otherwise, give ⊥ to A.

• Whenever A makes a signing key query for vk, if vk = vk∗ abort. If a pair (sk, vk) was saved,
return sk. Otherwise, give ⊥ to A.

3. At the end of the game, let (vk1, . . . , vk𝑘),m, 𝜎 be A’s output.

4. Extract (𝑖,𝑤𝑖)← ExtractBARG(tdBARG, 𝜎).

5. Parse𝑤𝑖 = (𝜌𝑖 , vk′𝑖 , 𝜎𝑖) and output m, 𝜎𝑖 .

We also consider an inefficient adversary B′ that is defined exactly like B′, except that if A makes a
signing key query for vk∗, B′ does not abort. Instead, B′ samples a secret key sk∗ such that (sk∗, vk∗) are
distributed like an output of KeyGen, and reruns sk∗ to A.

Recall that 𝛼 is the 𝐹 -batch argument’s extraction loss. We prove the following claim.

Claim 5.5. In the experiment of running B′, considering the extracted 𝑖,𝑤𝑖 = (𝜌𝑖 , vk′𝑖 , 𝜎𝑖), let GOOD be the
event that:

• vk′𝑖 is a key that A received via a verification key query.

• vk′𝑖 = vk𝑖 where vk𝑖 is the 𝑖-th key in the tuple output by A.

• A did not make a signing query for vk′𝑖 and m.

27

• A did not make a signing key query for vk′𝑖 .

• Verify(vk′𝑖 ,m, 𝜎𝑖) = 1.

Then, for infinitely many _ ∈ N, we have Pr[GOOD] > 1
𝛼 (_)·poly(_) .

Before proving Claim 5.5, we first argue that it implies that B succeeds in breaking unforgeability, in
contradiction to the security of the underlying signature scheme S.

Conditioned on GOOD, since vk′𝑖 was received via a verification key query and 𝑖∗ is uniform and
independent, with probability 1

𝑄(_) we have that vk′𝑖 was received in the 𝑖∗th query. Thus, for infinitely
many _,

Pr
B′

[
vk′𝑖 = vk∗ ∧ GOOD

]
= 1
𝑄(_) · Pr

B′
[
GOOD

]
>

1
𝑄(_)𝛼(_)poly(_) ,

In the experiment of running B, let GOOD′ be the event that B does not abort, vk′𝑖 = vk∗ and GOOD
holds. Since GOOD implies that A did not make a signing key query for vk′𝑖 we have that conditioned on
vk′𝑖 = vk∗ and GOOD the executions of B and B′ are identical. Therefore,

Pr
B

[
GOOD′

]
≥ Pr
B′

[
vk′𝑖 = vk∗ ∧ GOOD

]
>

1
𝑄(_)𝛼(_)poly(_) ,

Conditioned on GOOD′, B outputs m, 𝜎𝑖 such that Verify(vk∗,m, 𝜎𝑖) = 1 and it did not make a signing
query for vk′𝑖 = vk∗ and m. This implies that B succeeds in forging a signature with at least the same
non-negligible probability.

Proof of Claim 5.5. The claim follows from the 𝛼-adaptive subset extraction of the underlying batch
argument, and the collision resistance with respect to opening of the hash family. We consider a cheating
prover P∗, that given crsBARG, does the following:

1. Simulate the aggregate signature unforgeability game against A, as follows:

(a) Sample hk← GenHT(1_).
(b) Give crs = (hk, crsBARG) to A.
(c) Answer the verification key and signing queries made by A, by applying KeyGen and Sign as

required.

2. At the end of the game, let (vk1, . . . , vk𝑘),m, 𝜎 be A’s output.

3. Let 𝐽 ⊆ [𝑘] be the set of 𝑖 ∈ [𝑘] such that vk𝑖 is a key that A received via a verification key query,
and A did not make a signing query for vk𝑖 and m, or a signing key query for vk𝑖 .

4. Let 𝑀 as in SigAgg and 𝑧 = (hk, v̂k,m) where v̂k = HashHT(hk, (vk1, . . . , vk𝑘)).

5. Output 𝑀,𝑧, 𝜎, 𝐽 .

Let EXP be the experiment defined in the adaptive subset extraction requirement:

• Generate (crsBARG, tdBARG)← SetupBARG(1_).

• Run the cheating prover above and obtain (𝑀,𝑧, 𝜎, 𝐽)← P∗(crsBARG).

28

• Let 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇).

• Extract (𝑖,𝑤𝑖)← ExtractBARG(tdBARG, 𝜎).

By assumption, since A wins the aggregate unforgeability game with probability > 1
poly(_) , we have

Pr
EXP

[
VBARG(crsBARG, 𝑥, 𝜎) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
>

1
poly(_) ,

where (i)VBARG(crsBARG, 𝑥, 𝜎) = 1 follows from the fact thatAggVerify(crs, v̂k,m, 𝜎) = 1; and (ii) 𝑓 (1[𝑘]\𝐽) = 0
follows from our definition of 𝐽 . Therefore, by 𝛼-adaptive subset extraction,

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
>

1
𝛼(_)poly(_) − negl(_) .

Now, we observe that the experiment of running B′ is identical to EXP, and that the event 𝑖 ∈
𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1 above implies GOOD with all but negligible probability, since

• 𝑀(𝑧, 𝑖,𝑤𝑖) = 1 implies that, parsing𝑤𝑖 = (𝜌𝑖 , vk′𝑖 , 𝜎𝑖), we have that 𝜌𝑖 is a valid opening of v̂k to vk′𝑖 at
location 𝑖 and Verify(vk′𝑖 ,m, 𝜎𝑖) = 1. Since v̂k is an honestly generated hash, we must have vk𝑖 = vk′𝑖
except with negligible probability. This follows from the collision resistance with respect to opening
of the hash family, since if vk′𝑖 ̸= vk𝑖 , we would have two distinct openings at the 𝑖-th location: the
honestly computed opening for vk𝑖 in v̂k (can be computed since v̂k is honestly computed) and the
extracted opening 𝜌𝑖 to vk′𝑖 .

• 𝑖 ∈ 𝐽 implies that vk𝑖 = vk′𝑖 is a key that A received via a verification key query and A did not make
a signing query for vk𝑖 = vk′𝑖 and m.

Therefore, we get that Pr[GOOD] > 1
2𝛼 (_)·poly(_) for infinitely many _, which concludes the proof of Claim 5.5

and Theorem 5.4.

5.4 From Functional Subset Extraction to Weakly Unforgeable Aggregate Signatures

We present our second transformation, where we construct weakly unforgeable aggregate signatures
from BARGs with functional subset extraction. Our construction will require signature schemes with an
additional property that we call signature scheme with trapdoor keys. We start by describing this notion,
before we move to the construction of the aggregate signature scheme.

5.4.1 Signature with Trapdoor Keys

We extend the definition of digital signatures S = (KeyGen, Sign,Verify) with an additional property of
trapdoor verification keys. This is a requirement on the key generation algorithm of a signature scheme
that when provided with a randomly sampled trapdoor td ← {0, 1}_ , we can generate “trapdoor keys”.
Such trapdoor keys are indistinguishable from honest keys, but their verification keys vk can be recognized
using the corresponding trapdoor. Additionally, without the trapdoor, it is hard to forge new “false positive”
verification keys vk that are recognized as trapdoor keys, even if given a polynomial number of trapdoor
key samples.

Definition 5.6 (Signature with Trapdoor Keys). A digital signature scheme S = (KeyGen, Sign,Verify) has
trapdoor keys if it additionally supports the following syntax:

29

KeyGen(1_, td)→ (sk, vk). This is a PPT algorithm that takes as input the security parameter 1_ and a
trapdoor td ∈ {0, 1}_ . It outputs a signing key sk and a verification key vk.

Extract(td, vk)→ {0, 1}. This is a deterministic polynomial-time algorithm that takes as input a trapdoor
td ∈ {0, 1}_ and a verification key vk. It outputs a bit (0 if it is a normal key, 1 if it is a trapdoor key).

We additionally require the following properties:

Key Indistinguishability. For any poly-size adversary A, and for any polynomial 𝑛(_), there exists a
negligible function negl(·) such that for every _ ∈ N,

Pr

 A
({
sk𝑏𝑖 , vk

𝑏
𝑖

}
𝑖∈[𝑛]

)
= 𝑏 :

td← {0, 1}_
∀𝑖 ∈ [𝑛],

(
sk0

𝑖 , vk
0
𝑖

)
← KeyGen(1_, td)

∀𝑖 ∈ [𝑛],
(
sk1

𝑖 , vk
1
𝑖

)
← KeyGen(1_)

𝑏 ← {0, 1}

 ≤
1
2 + negl(_).

We remark that this property implies that correctness and unforgeability holds for keys sampled by
KeyGen(1_, td) for a random td← {0, 1}_ .

Extraction Correctness. For any _ ∈ N,

Pr
[
Extract(td, vk) = 1 : td← {0, 1}_

(sk, vk)← KeyGen(1_, td)

]
= 1.

Additionally, for any poly-size adversary A, and for any polynomial 𝑛(_), there exists a negligible
function negl(·) such that for every _ ∈ N,

Pr

Extract(td, vk) = 1 ∧
vk /∈

{
vk𝑖

}
𝑖∈[𝑛]

:
td← {0, 1}_
∀𝑖 ∈ [𝑛], (sk𝑖 , vk𝑖)← KeyGen(1_, td)
vk← A(1_,

{
sk𝑏𝑖 , vk

𝑏
𝑖

}
𝑖∈[𝑛]

)

 ≤ negl(_).

We note that given a signature scheme S = (KeyGen, Sign,Verify), we can construct a signature scheme
S′ with trapdoor keys, by appending a random padding pad← {0, 1}_ to its verification keys. To generate a
trapdoor key (sk′, vk′)← KeyGen′(1_, td), we instead append a pseudorandom padding pad = PRF(td, vk).
Extraction is implemented by comparing pad to PRF(td, vk), and the required properties follow from PRF
security. We state the following lemma without proof for the above stated construction, and note that the
proof follows in a straightforward manner akin to the construction of message authentication codes (MAC)
from PRF: (i) extraction correctness follows from the guarantee that the PRF behaves like a MAC on the
verification key; and (ii) key indistinguishability follows from the pseudorandomness of the PRF.

Lemma 5.7. Assuming the existence of a PRF and a signature scheme, there exists a signature scheme with
trapdoor keys.

5.4.2 Construction

We now describe our construction that uses BARGs with functional subset extraction and a signature
scheme with trapdoor keys. Specifically, let 𝐹 = {𝐹_} be a family of monotone policies. We construct an
𝐹 -aggregation scheme with weak unforgeability for S (Definition 4.2) from the following building blocks:

30

• A signature scheme with trapdoor keys S = (KeyGen, Sign,Verify) (Definition Definition 5.6).

• A 𝐹 -batch argument with𝐺-functional subset extraction for relation Rfull with hashed inputs (Defini-
tion 5.3 and Remark 5.1)

(SetupBARG,PBARG,VBARG, ExtractBARG) ,

where 𝐺 = {𝐺_}_∈N is a family of polynomial size circuits, with a polynomial bound set to support
computing the Extract algorithm of the underlying signature scheme with trapdoor keys.

• A hash family with local opening (Definition 3.2)

(GenHT,HashHT,OpenHT,VerifyHT) .

We describe the aggregate signature algorithms. The construction is identical to Section 5.3, except that
the BARG algorithms now receive a function and tag as needed, where we program the null function (later
modified in the security proof), and our tag is the tuple of verification keys (vk1, . . . , vk𝑘) (or the hashed
aggregate verification keys v̂k for the verifier, following the syntax in Remark 5.1). This is given in full
detail below, and we mark the changes from the previous transformation via a highlight . We prove the
following theorem.

Theorem 5.8. Assuming the existence of a digital signature scheme with trapdoor keys, hash family and
𝐹 -batch argument with 𝐺-functional subset extraction, the construction given in Fig. 2 is an 𝐹 -aggregation
scheme for S.

Remark 5.3. The proof of Theorem 5.8 can be extended to extended to give a stronger notion of aggregated
signatures where each party can sign a different message (see Remark 4.1). Moreover, if the the verification
algorithm is given as input a succinct representation of the messages signed, its running time grows with the
representation size instead of 𝑘 . In more detail, we can support a representation of the messages {m𝑖}𝑖∈[𝑘],
either as a Turing machine that given input 𝑖 ∈ [𝑘] outputs m𝑖 in time poly(_), or as the root of hash tree
over the messages. See Remark 5.2 for more details.

Proof of Theorem 5.8.

Correctness. Follows directly from the completeness and correctness properties of the underlying batch
argument, digital signature scheme and hash family with local opening.

Efficiency. Follows directly from the efficiency of the underlying primitives, and since each batch
argument witness is of length poly(_).

Weakly Unforgeable. Fix any poly-size adversary A. Assume towards contradiction that there exists
a polynomial poly such that for infinitely many _ ∈ N, there exists 𝑓 ∈ 𝐹_ such that A wins the weak
unforgeability game with probability > 1

poly(_) .
We consider an alternative setup procedure Setup(1_, tdS), and an alternative challenger C′ for the

weak unforgeability game.

Setup(1_, tdS) algorithm does the following:

31

Setup(1_):

1. Generate hk← GenHT(1_).

2. Let 𝑔 be a null function (we can use any arbitrary function).

3. Generate (crsBARG, tdBARG)← SetupBARG(1_, 𝑔).

4. Output crs = (hk, crsBARG).

KeyAgg(crs,
{
vk𝑖

}
𝑖∈[𝑘]):

1. Parse crs = (hk, crsBARG).

2. Output v̂k = HashHT(hk, (vk1, . . . , vk𝑘)).

SigAgg(crs, 𝑓 ,
{
vk𝑖 , 𝜎𝑖

}
𝑖∈[𝑘] ,m):

1. Parse crs = (hk, crsBARG).

2. Compute v̂k = HashHT(hk, (vk1, . . . , vk𝑘)).

3. Let 𝑧 = (hk, v̂k,m), and define the Turing machine 𝑀(𝑧, 𝑗,𝑤 𝑗) which operates as follows:

• Parse 𝑧 = (hk, v̂k,m).
• Parse𝑤 𝑗 = (𝜌 𝑗 , vk𝑗 , 𝜎 𝑗).
• Check that VerifyHT(hk, v̂k, 𝑗, vk𝑗 , 𝜌 𝑗) = 1.
• Check that Verify(vk𝑗 ,m, 𝜎 𝑗) = 1.

4. For every 𝑗 ∈ [𝑘], construct a witness𝑤 𝑗 for 𝑥 , using the OpenHT algorithm to produce the appropriate
openings. Let𝑤 = (𝑤1, . . . ,𝑤𝑘).

5. Let 𝑦 = (vk1, . . . , vk𝑘).

6. Output 𝜎 = PBARG(crsBARG, 𝑦, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤).

AggVerify(crsV , 𝑓 , v̂k,m, 𝜎):

1. Parse crsV = (hk, crsBARG).

2. Define 𝑀,𝑇 as above and 𝑧 = (hk, v̂k,m), and let 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇).

3. OutputVBARG(crsBARG, v̂k, 𝑥, 𝜎).

Figure 2: Weakly Unforgeable Aggregate Signatures for Monotone Circuits 𝑓 from BARGs with Functional
Subset Extraction for 𝑓

1. Generate hk← GenHT(1_).
2. Let 𝑔tdS be a function that does the following given input 𝑦:

(a) Parse 𝑦 = (vk1, . . . , vk𝑘).
(b) Output 𝐽 =

{
𝑖 ∈ [𝑘] : Extract(tdS, vk𝑖) = 1

}
.

3. Generate (crsBARG, tdBARG)← SetupBARG(1_, 𝑔tdS).
4. Output crs = (hk, crsBARG).

32

The alternative challenger C′ for the weak unforgeability game does the following:

1. Sample tdS ← {0, 1}_ .
2. Sample crs← Setup(1_, tdS) and give crs to A.
3. Answer the adversary’s queries as follows:

• Verification key queries: generate (sk, vk) ← KeyGen(1_, tdS) (using the trapdoor key
generation algorithm rather than the honest key generation algorithm).

• Signing queries are unchanged.

We claim that in the weak unforgeability game ofA against the alternative challenger C′, the adversary
still wins with probability > 1

poly(_) − negl(_). This follows from the key indistinguishability properties of
the underlying batch argument and digital signature with trapdoor keys.

We now construct an adversary B against the underlying digital signature scheme, similarly to the one
in the proof of Theorem 5.4, Given the security parameter 1_ , a verification key vk∗, and oracle access to
Sign(sk∗, ·), B does the following:

1. Let 𝑄(_) be a polynomial upper bound on the number of verification key queries that A makes.
Sample 𝑖∗ ← [𝑄].

2. Simulate the aggregate signature unforgeability game against A.

• Sample tdS ← {0, 1}_ .
• Generate crs← Setup(1_, tdS) and additionally save tdBARG. Give crs to A.
• WheneverA makes a verification key query, if it is the 𝑖∗th query, give it vk∗. Otherwise, sample

(sk, vk)← KeyGen(1_, tdS) and give it vk.
• Whenever A makes a signing query, if it requests to sign under vk∗, query the signing oracle
Sign(sk∗, ·) and give the result. Otherwise, sign with the signing key sk that was sampled
together with vk.

3. At the end of the game, let (vk1, . . . , vk𝑘),m, 𝜎 be A’s output.

4. Extract (𝑖,𝑤𝑖)← ExtractBARG(tdBARG, 𝑦, 𝜎) where 𝑦 = (vk1, . . . , vk𝑘).

5. Parse𝑤𝑖 = (𝜌𝑖 , vk′𝑖 , 𝜎𝑖) and output m, 𝜎𝑖 .

Thus, as in the proof of Theorem 5.4 and since unforgeability holds for trapdoor keys, it suffices to
prove the following claim:

Claim 5.9. In the experiment of running B, considering the extracted 𝑖,𝑤𝑖 = (𝜌𝑖 , vk′𝑖 , 𝜎𝑖), let GOOD be the
event that vk′𝑖 is a key that A received via a verification key query, and A did not make a signing query for
vk′𝑖 and m, and Verify(vk′𝑖 ,m, 𝜎𝑖) = 1. Then, we have Pr[GOOD] > 1

poly(_) − negl(_).

Proof of Claim 5.9. The claim follows from the functional subset extraction of the underlying batch
argument, together with the extraction correctness of the digital signature with trapdoor keys.

For a given trapdoor tdS ∈ {0, 1}_ we consider a cheating prover P∗tdS , that does the following given
crsBARG:

33

1. Simulate the aggregate signature unforgeability game againstA with challenger C′, giving it the com-
mon reference string crs = (hk, crsBARG) for some sampled hk← GenHT(1_) and usingKeyGen(1_, tdS)
and Sign as required.

2. At the end of the game, let (vk1, . . . , vk𝑘),m, 𝜎 be A’s output.

3. Let 𝑀 as in SigAgg and 𝑧 = (hk, v̂k,m) where v̂k = HashHT(hk, (vk1, . . . , vk𝑘)).

4. Let 𝑦 = (vk1, . . . , vk𝑘).

5. Output 𝑀,𝑧, 𝜎,𝑦.

Let EXP be the experiment defined in the functional subset extraction requirement:

• Generate (crsBARG, tdBARG)← SetupBARG(1_, 𝑔tdS) (where 𝑔tdS is defined as in Setup(1_, tdS).

• Run the cheating prover above and obtain (𝑀,𝑧, 𝜋,𝑦)← P∗td(crsBARG).

• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇) and 𝐽 = 𝑔tdS (𝑦).

• Extract (𝑖,𝑤𝑖)← ExtractBARG (tdBARG, 𝑦, 𝜋).

In the above experiment, consider the event thatA wins the weak unforgeability game against the alternative
challenger C′. In this event, by definition we have that (i) 𝑓 (𝑏1, . . . , 𝑏𝑘) = 0 where 𝑏𝑖 = 0 if vk𝑖 is a key
that A received via a verification key query, (ii)VBARG(crsBARG, 𝑦, 𝑥, 𝜋) = 1, and (iii) A did not make any
signing query for m.

By extraction correctness of the digital signature with trapdoor keys, we have that except with negligible
probability, Extract(tdS, vk𝑖) = 𝑏𝑖 for all 𝑖 . Indeed, if vk𝑖 was obtained via a verification key query then it
was generated with KeyGen(1_, tdS) and so Extract(tdS, vk𝑖) = 1 with probability 1, and otherwise we have
that Extract(tdS, vk𝑖) = 1 with negligible probability.

Therefore, conditioned on A winning, we have that except with negligible probability, 𝑓 (1[𝑘]\𝐽) =
𝑓 (𝑏1, . . . , 𝑏𝑘) = 0. Since we know that A wins the game against C with probability > 1

poly(_) − negl(_), we
get

Pr
EXP

[
VBARG(crsV, 𝑦, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
>

1
poly(_) − negl(_) .

We now use the functional subset extraction of the underlying batch argument. We obtain

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
>

1
poly(_) − negl(_) ,

and this event implies GOOD (as in Theorem 5.4), which concludes the proof of Claim 5.9 and Theorem 5.8.

6 Composable Verifiable Private Information Retrieval for Policies

In this section, we introduce and construct the main building block in the construction of our BARGs with
adaptive subset extraction for read-once monotone policies, composable verifiable private information
retrieval (vPIR). Our notion of composable vPIR extends the notion of vPIR to handle a composable definition
of security, and additionally monotone policies, both of which is necessary to construct our BARGs with
adaptive subset extraction for read-once monotone policies in Section 7.

34

We start by defining of composable vPIR for policies in Section 6.1. In Section 6.2 we give a construction
of vPIR that supports our extensions, and in Section 6.3 we extend the analysis of [BDKP22] to show that
this construction satisfies our new composable security definition. We first briefly describe vPIR for policies,
and how it differs from the notion considered in [BDKP22].

vPIR for policies. The work of [BDKP22] considers vPIR for bounded space global database constraints.
Such constraints are evaluated by reading the rows of the database one by one and maintaining a state of
bounded size between rows. In the adaptive setting, where the adversary may choose the constraint as a
function of the vPIR query, the security of their construction degrades exponentially with the description
length of the constraint (given by a program that updates state). However, in the non-adaptive setting, their
construction does not incur such loss.

We consider a particular type of bounded space global constraints that are suitable for describing
policies. The description of such constraints can be separated into two parts: a program Γ and a vector of
instances 𝑋 , one for every row in the database. The program updates the state as a function of both the
current row and the corresponding instance. Looking ahead, in our application the instances may be chosen
adaptively. Therefore, relying on the construction from [BDKP22] would result in exponential security loss.
However, in our instantiation the security loss is only exponential in the description length of the program
Γ and not of the instances. Moreover, in the adaptive setting, the simulator in the definition from [BDKP22]
is required to produce the entire constraint (Γ, 𝑋) (this constraint together with the simulated client’s output
row 𝐷[𝑡] is required to be indistinguishable from the constraint and output in the real world), while our
notion is relaxed: we only simulate the constraint Γ and the relevant instance 𝑋 [𝑡].

6.1 Definition

We define a simulation security notion for multiple parallel executions of vPIR. While one could consider
general forms of composition, we focus on the setting where a single client is sending a single vPIR query
to 𝑝 (potentially colluding) servers, each holding a different database and constraint. In this setting, we
require the simulator to produce the output of the client (including the database row and constraint) in all
𝑝 interactions.

For simplicity, in Definition 6.1 we simplify this further and only consider the case of 𝑝 = 2 colluding
servers, which suffices for our applications to BARGs with adaptive subset extraction and aggregate
signatures. However we note that the definition can be naturally extended to define 𝑝-composable vPIR.

Read-once bounded-space policy constraints. For parameters 𝑇, 𝑆 , we define a read-once bounded-
space constraint represented as a Turing machine Γ ∈ {0, 1}𝑁 and instances 𝑋 = (𝑥𝑖)𝑖∈[𝑘] ∈ {0, 1}𝑘×𝑛 . We
say that a database 𝐷 = (𝑟𝑖)𝑖∈[𝑘] ∈ {0, 1}𝑘×𝑤 satisfies the policy defined by (Γ, 𝑋) if and only if for every
𝑖 ∈ [𝑘 − 1] there exists 𝑐𝑖 ∈ {0, 1}𝑆 such that Γ(𝑐𝑖−1, 𝑥𝑖 , 𝑟𝑖) outputs 𝑐𝑖 within 𝑇 steps where 𝑐0, 𝑐𝑘 are some
fixed starting and accepting configurations. We denote by 𝑈𝑇,𝑆 (Γ, 𝑋, 𝐷) the bit that indicates whether or
not 𝐷 satisfies the policy (Γ, 𝑋).

Syntax. A verifiable private information retrieval (vPIR) scheme for policies consists of the following
polynomial-time algorithms:

Query(1_, 𝑡)→ (dk, vk, 𝑞). This is a probabilistic algorithm that takes as input the security parameter 1_ ,
and a row index 𝑡 ∈ [2_]. It outputs a decryption key dk, a verification key vk and a query 𝑞.

35

Answer(𝐷, 1𝑇 , Γ, 𝑋, 𝑞)→ 𝑎. This is a deterministic algorithm that takes as input a database 𝐷 ∈ {0, 1}𝑘×𝜔 ,
a time-bound 1𝑇 , a constraint Γ, instances 𝑋 ∈ {0, 1}𝑘×𝑛 , and a query 𝑞. It outputs an answer 𝑎.

Dec(dk, 𝑎)→ 𝑟 . This is a deterministic algorithm that takes as input a decryption key dk, and an answer 𝑎.
It outputs a row 𝑟 ∈ {0, 1}𝜔 .

Verify(vk, Γ, 𝑋, 𝑎)→ 0/1. This is a deterministic algorithm that takes as input a verification key vk, a
constraint Γ, instances 𝑋 ∈ {0, 1}𝑘×𝑛 , and an answer 𝑎. It outputs a bit (1 to accept, 0 to reject).

Remark 6.1 (Index instances). In our constructions in Section 7, we only need to consider instances 𝑋
of the form 𝑋 = (𝑥, 𝑖)𝑖∈[𝑘] for some 𝑥 ∈ {0, 1}𝑛 that is the same in all rows. We note that in this case, the
Answer,Verify algorithms may receive just 𝑥 rather than 𝑋 = (𝑥, 𝑖)𝑖∈[𝑘] (and so the verification time is
independent of 𝑘).

Definition 6.1. A Λ-secure 2-composable vPIR scheme for policies (Query,Answer,Dec,Verify) is required to
satisfy the following properties:

Completeness. For any _ ∈ N, any 𝑇, 𝑁, 𝑆, 𝑘, 𝑛, 𝜔 ≤ 2_ , database 𝐷 ∈ {0, 1}𝑘×𝜔 , row index 𝑡 ∈ [𝑘],
constraint Γ ∈ {0, 1}𝑁 and instances 𝑋 ∈ {0, 1}𝑘×𝑛 such that𝑈𝑇,𝑆 (Γ, 𝑋, 𝐷) = 1,

Pr
[
Dec(dk, 𝑎) = 𝐷[𝑡] ∧
Verify(vk, Γ, 𝑋, 𝑎) = 1 : (dk, vk, 𝑞)←Query(1_, 𝑡)

𝑎 ← Answer(𝐷, 1𝑇 , Γ, 𝑋, 𝑞)

]
= 1 .

Efficiency. In the completeness experiment above, |vk|+|𝑞 |+|𝑎 |≤ 𝜔 · poly(_).

Λ-Privacy. For any poly(Λ)-size adversaryA there exists a negligible function negl such that for any _ ∈ N
and row indices 𝑡0, 𝑡1 ∈ [2_],

Pr
[
A(vk, 𝑞) = 𝑏 : 𝑏 ← {0, 1}

(dk, vk, 𝑞)←Query(1_, 𝑡𝑏)

]
≤ 1

2 + negl(Λ) .

2-Composable Λ-simulation security. For any functions 𝑇 (_), 𝑁 (_), 𝑛(_), 𝑘(_), 𝜔(_) ≤ Λ(_), function
𝑆(_) = 𝑂(log Λ), any poly(Λ)-size adversary A and polynomial 𝑃 there exists a poly(Λ)-size simulator
Sim such that for any poly(Λ)-size distinguisher D, _ ∈ N, constraints Γ, Γ′ ∈ {0, 1}𝑁 , and row index
𝑡 ∈ [𝑘], ��Pr

[
D(RealA(_, Γ, Γ′, 𝑡)) = 1

]
− Pr

[
D(IdealSim(_, Γ, Γ′, 𝑡)) = 1

] �� < 1
𝑃 (Λ) ,

where the experiments RealA(_, Γ, Γ′, 𝑡) and IdealSim(_, Γ, Γ′, 𝑡) are defined as follows:

RealA(_, Γ, Γ′, 𝑡):
• Generate a query (dk, vk, 𝑞)←Query(1_, 𝑡).
• Run the adversary and obtain (𝑋,𝑋 ′, 𝑎, 𝑎′)← A(vk, 𝑞).
• IfVerify(vk, Γ, 𝑋, 𝑎) = 1 andVerify(vk, Γ′, 𝑋 ′, 𝑎′) = 1 output (𝑋 [𝑡], 𝑋 ′[𝑡],Dec(dk, 𝑎),Dec(dk, 𝑎′)).
• Otherwise output ⊥.

IdealSim(_, Γ, Γ′, 𝑡):
• Run the simulator and obtain (𝑋,𝑋 ′, 𝐷, 𝐷 ′)← Sim(_, Γ, Γ′).
• If𝑈𝑇,𝑆 (Γ, 𝑋, 𝐷) = 1 and𝑈𝑇,𝑆 (Γ′, 𝑋 ′, 𝐷 ′) = 1 output (𝑋 [𝑡], 𝑋 ′[𝑡], 𝐷[𝑡], 𝐷 ′[𝑡]).
• Otherwise output ⊥.

36

6.2 Construction

In this section we construct a 2-composable vPIR for policies. The construction is similar to the construction
given in [BDKP22], slightly modified to handle our extensions. It uses the following building blocks:

• A Λ-secure hash family with local opening (Definition 3.2)

(GenHT,HashHT,OpenHT,VerifyHT).

• A Λ-secure seBARG scheme (Definition 3.5)

(GenseBARG,PseBARG,VseBARG, ExtractseBARG).

We are now ready to describe our 2-composable vPIR scheme for policies.

6.3 Analysis

In this section we analyze the construction given in Section 6.2, and prove the following theorem:

Theorem 6.2. Assuming a Λ-secure hash family with local opening and a Λ-secure somewhere-extractable
batch argument scheme, there exists a Λ-secure 2-composable vPIR scheme for policies.

Our analysis, detailed below, is similar to the analysis of simulation secure vPIR in [BDKP22], with some
parts taken verbatim from the full version. We extend it to handle policy constraints, and 2-composable
simulation security.

Before proceeding with the formal proof, we describe the high-level ideas in our analysis. We first
recall the simulator given in [BDKP22]. It simulates an accepting database using coupling: for each row
index in the database 𝑖 ∈ [𝑘], it repeatedly queries the server for this index and constructs a list 𝐿𝑖 of tuples
(𝑐𝑖−1, 𝑟𝑖), where 𝑐𝑖−1 is the intermediate configuration of the bounded-space constraint Γ before reading
the corresponding row 𝑟𝑖 . Then, it couples the lists 𝐿1, . . . , 𝐿𝑘 to create a list 𝐿 of full databases, so that the
intermediate configurations “connect” to a consistent execution of Γ. Finally it samples a random database
from this list.

We now describe the changes in our analysis. To support policies (where we also need to simulate
instances 𝑋 ∈ {0, 1}𝑘×𝑛), our simulator constructs the list 𝐿𝑖 so that it contains tuples (𝑐𝑖−1, 𝑥𝑖 , 𝑟𝑖) (where 𝑥𝑖
is the 𝑖th instance given by the prover in this query), then couples the lists in the same way. To extend the
analysis to composition of 𝑝 parallel executions, each element in the list 𝐿𝑖 is a 𝑝-tuple of (𝑐 𝑗

𝑖−1, 𝑥
𝑗

𝑖
, 𝑟

𝑗

𝑖
)𝑗∈[𝑝],

with one configuration-instance-row tuple corresponding to each server. We then couple 𝐿1, . . . , 𝐿𝑘 to
obtain a list 𝐿 such that each individual database connects.

We note that, in order for the coupling argument to work, we need to assume hardness assumptions
that are exponential in the support size of the function according to which we’re coupling (which, in our
case, is the combined size of all intermediate configurations 𝑐 𝑓𝑖 in the 𝑝 parallel executions, for any given
𝑖). In [BDKP22] this is what limits the space 𝑆 of the constraint to 𝑂(log Λ), and in our case the limit is
𝑝 · 𝑆 = 𝑂(log Λ), assuming Λ-hardness of the underlying building blocks.

Proof of Theorem 6.2.

Completeness. Follows directly from the completeness of the underlying seBARG and hash family with
local opening.

37

Query(1_, 𝑡):

1. Generate hkHT ← GenHT(1_).
2. Generate (crsseBARG, tdseBARG)← GenseBARG(1_, 𝐼), where 𝐼 = {1, 𝑡}.
3. Output dk = tdseBARG, vk = 𝑞 = (hkHT, crsseBARG).

Answer(𝐷, 1𝑇 , Γ, 𝑋, 𝑞):

1. Parse 𝑞 = (hkHT, crsseBARG).
2. Parse 𝐷 = (𝑟𝑖)𝑖∈[𝑘] ∈ {0, 1}𝑘×𝜔 and 𝑋 = (𝑥𝑖)𝑖∈[𝑘] ∈ {0, 1}𝑘×𝑛 .
3. Let 𝑐0 be the starting configuration, and for every 1 ≤ 𝑖 ≤ 𝑘 compute 𝑐𝑖 = Γ(𝑐𝑖−1, 𝑥𝑖 , 𝑟𝑖).
4. Compute rt = HashHT(hkHT, (𝑐0, . . . , 𝑐𝑘)).
5. Define an instance 𝑌 = (𝑀,𝑧, 𝑘,𝑇 ′) of BatchIndexTMSAT. The input 𝑧 is defined as 𝑧 = (𝑋, hkHT, rt). The

batch size is set to 𝑘 . The Turing machine 𝑀(𝑧, 𝑗,𝑤 𝑗) is defined to operate as follows:
(a) Parse 𝑧 = (𝑋, hkHT, rt), and 𝑋 = (𝑥𝑖)𝑖∈[𝑘].
(b) Parse𝑤 𝑗 = (𝑟 𝑗 , 𝑐 𝑗−1, 𝑐 𝑗 , 𝜌 𝑗−1, 𝜌 𝑗), where𝑚′ = |𝑤 𝑗 |.
(c) If 𝑗 = 1, check that 𝑐0 is the starting configuration. If 𝑗 = 𝑘 , check that 𝑐𝑘 is the accepting

configuration.
(d) Check that VerifyHT(hkHT, rt, 𝑗 − 1, 𝑐 𝑗−1, 𝜌 𝑗−1) = 1 and VerifyHT(hkHT, rt, 𝑗, 𝑐 𝑗 , 𝜌 𝑗) = 1.
(e) Check that Γ(𝑐 𝑗−1, 𝑥 𝑗 , 𝑟 𝑗) = 𝑐 𝑗 .

The description length of 𝑀 is a constant. Finally, the time bound 𝑇 ′ = poly(𝑛, 𝑘,𝑤,𝑇 , 𝑁 , 𝑆) is set so that
the pseudocode above terminates.

6. For every 𝑗 ∈ [𝑘], construct a witness (𝑗,𝑤 𝑗) for 𝑌 , using the database 𝐷 = (𝑟𝑖)𝑖∈[𝑘], the computed
configurations 𝑐0, . . . , 𝑐𝑘 , and the OpenHT algorithm to produce the appropriate openings.

7. Compute 𝜋seBARG = PseBARG(crsseBARG, 𝑀, 𝑧, 1𝑇
′
,𝑤1, . . . ,𝑤𝑘).

8. Output 𝑎 = (rt, 𝜋seBARG).

Dec(dk, 𝑎):

1. Parse dk = tdseBARG and 𝑎 = (rt, 𝜋seBARG).
2. Extract𝑤1,𝑤𝑖 = ExtractseBARG(tdseBARG, 𝜋seBARG).
3. Parse𝑤𝑖 = (𝑟𝑖 , 𝑐𝑖−1, 𝑐𝑖 , 𝜌𝑖−1, 𝜌𝑖).
4. Output 𝑟𝑖 .

Verify(vk, Γ, 𝑋, 𝑎):

1. Parse vk = (hkHT, crsseBARG) and 𝑎 = (rt, 𝜋seBARG).
2. Define 𝑌 = (𝑀,𝑧, 𝑘,𝑇 ′) as in Answer.
3. OutputVseBARG(crsseBARG, 𝑌 , 𝜋seBARG).

Figure 3: Construction of 2-Composable vPIR Scheme for Policies

38

Efficiency. We have |vk|+|𝑞 |+|𝑎 |= |hkHT |+|rt|+|crsseBARG |+|𝜋seBARG |.

• By succinctness of the hash family with local opening, |hkHT |+|rt|= poly(_).

• By the seBARG efficiency,

|crsseBARG |+|𝜋seBARG |≤ (𝜔 + 2𝑆 + 2|𝜌 |) · poly(_) = 𝜔 · poly(_) .

So indeed |vk|+|𝑞 |+|𝑎 |≤ 𝜔 · poly(_).

Λ-Privacy. Follows directly from the Λ-index hiding property of the underlying seBARG.

Λ-Composable simulation security. Fix functions 𝑇 (_), 𝑁 (_), 𝑛(_)𝑘(_), 𝜔(_) ≤ Λ(_) and 𝑆 = 𝑂(log Λ),
poly-size adversary A, and polynomial 𝑃 .

We recall the following lemma from [BDKP22]:

Lemma 6.3 (Coupling [BDKP22]). For ℓ ∈ N and sets 𝑋1, 𝑋2, let
{
𝐿𝑖 ∈ 𝑋 ℓ

𝑖

}
𝑖∈[2] be a pair of lists and let

{𝑓𝑖 : 𝑋𝑖 → {0, 1}∗}𝑖∈[2] be a pair of polynomial-time computable functions. Then there exists a list of pairs
𝐿′ = (𝑋1×𝑋2)ℓ (the coupling of 𝐿1 and 𝐿2 with respect to 𝑓1, 𝑓2) such that for 𝑥1 ← 𝐿1, 𝑥2 ← 𝐿2 and (𝑥 ′1, 𝑥 ′2)← 𝐿′

it holds that 𝑥𝑖 ≡ 𝑥 ′𝑖 and:
Pr

[
𝑓1(𝑥 ′1) = 𝑓2(𝑥 ′2)

]
= 1 − SD (𝑓1(𝑥1), 𝑓2(𝑥2)) .

Moreover, 𝐿′ can be computed from 𝐿1, 𝐿2 in polynomial time.

We are now ready to describe the simulator Sim. Given the security parameter _ and constraints Γ0, Γ1,
it proceeds as follows:

1. Set ℓ = (20𝑘𝑃 (Λ))2 · 24𝑆 · Λ(_) and 𝜖 = 1
2𝑃 (Λ(_)) .

2. Generate (dk, vk, 𝑞)←Query(1_, 𝑡 = 1).

3. Run the adversary and obtain (𝑋 0, 𝑋 1, 𝑎0, 𝑎1)← A(vk, 𝑞).

4. If Verify(vk, Γ0, 𝑋 0, 𝑎0) = 0 or Verify(vk, Γ1, 𝑋 1, 𝑎1) = 0, output ⊥.

5. For every 𝑖 ∈ [𝑘]:

(a) Set 𝐿𝑖 to be an empty list.
(b) Repeat the following Λ(_) · ℓ/𝜖 times:

i. Generate (dk, vk, 𝑞)←Query(1_, 𝑖). Parse dk = tdseBARG.
ii. Run the adversary and obtain (𝑋 0, 𝑋 1, 𝑎0, 𝑎1)← A(vk, 𝑞).

iii. If Verify(vk, Γ0, 𝑋 0, 𝑎0) = 0 or Verify(vk, Γ1, 𝑋 1, 𝑎1) = 0, return to Item 5b.
iv. For 𝑏 ∈ {0, 1}, parse 𝑋𝑏 = (𝑥𝑏𝑖)𝑖∈[𝑘] and 𝑎𝑏 = (rt𝑏, 𝜋𝑏seBARG).
v. For 𝑏 ∈ {0, 1}, extract𝑤𝑏

1 ,𝑤
𝑏
𝑖 ← ExtractseBARG(tdseBARG, 𝜋𝑏seBARG).

vi. For 𝑏 ∈ {0, 1}, parse𝑤𝑏
𝑖 = (𝑟𝑏𝑖 , 𝑐𝑏𝑖−1, 𝑐

𝑏
𝑖 , 𝜌

𝑏
𝑖−1, 𝜌

𝑏
𝑖).

vii. Append (𝑐𝑏𝑖−1, 𝑥
𝑏
𝑖 , 𝑟

𝑏
𝑖)𝑏∈{0,1} to 𝐿𝑖 .

(c) If |𝐿𝑖 |< ℓ output ⊥. Otherwise, truncate its length to exactly ℓ .

39

6. Set 𝐿′1 = 𝐿1 ∈ {0, 1}𝑚
′ ·ℓ , where𝑚′ is the size of the witness used in the BARG.

7. For every 𝑖 ∈ [𝑘 − 1]:

(a) Let 𝑓 ′𝑖 : {0, 1}𝑚′ ·𝑖 → {0, 1}𝑆 and 𝑓𝑖+1: {0, 1}𝑚′ → {0, 1}𝑆 be the following functions:

𝑓 ′𝑖 ((𝑐𝑏𝑗−1, 𝑥
𝑏
𝑗 , 𝑟

𝑏
𝑗)𝑗∈[𝑖],𝑏∈{0,1}) = (Γ(𝑐0

𝑖−1, 𝑥
0
𝑖 , 𝑟

0
𝑖), Γ(𝑐1

𝑖−1, 𝑥
1
𝑖 , 𝑟

1
𝑖)) ,

𝑓𝑖+1((𝑐𝑏𝑖 , 𝑥𝑏𝑖+1, 𝑟
𝑏
𝑖+1)𝑏∈{0,1}) = (𝑐0

𝑖 , 𝑐
1
𝑖) .

(b) Compute 𝐿′𝑖+1 ∈ {0, 1}
(𝑚′ ·(𝑖+1))·ℓ , the coupling of 𝐿′𝑖 and 𝐿𝑖+1 with respect to 𝑓 ′𝑖 , 𝑓𝑖+1 given by

Lemma 6.3.

8. Sample (𝑐𝑏𝑖−1, 𝑥
𝑏
𝑖 , 𝑟

𝑏
𝑖)𝑖∈[𝑘],𝑏∈{0,1} ← 𝑆 ′

𝑘
(uniformly from the list).

9. For 𝑏 ∈ {0, 1}, set 𝑋𝑏 = (𝑥𝑏𝑖)𝑖∈[𝑘] and 𝐷𝑏 = (𝑟𝑏𝑖)𝑖∈[𝑘].

10. Output (𝑋 0, 𝑋 1, 𝐷0, 𝐷1).

Fix a poly(Λ)-size distinguisher D. Let _ ∈ N, constraints Γ0, Γ1 and query 𝑡 ∈ [𝑘], and denote the real
and ideal experiments defined in Definition 6.1 by EXPReal, EXPIdeal. Additionally, we omit Γ0, Γ1 from the
inputs of RealA, IdealSim, Sim.

Step 1: Bound the probability that Sim fails in Item 4. In the real experiment, let 𝐸⊥ be the event that
RealA(_, Γ0, Γ1, 𝑡) = ⊥. In the ideal experiment, let 𝐸⊥ be the event that Sim fails and outputs ⊥ in Item 4.
We have ���� Pr

EXPReal

[
D(RealA(_, 𝑡)) = 1

]
− Pr

EXPIdeal

[
D(IdealSim(_, 𝑡)) = 1

] ���� (1)

≤
���� Pr
EXPReal

[
D(RealA(_, 𝑡)) = 1 ∧ 𝐸⊥

]
− Pr

EXPIdeal

[
D(IdealSim(_, 𝑡)) = 1 ∧ 𝐸⊥

] ���� (2)

+
���� Pr
EXPReal

[
D(RealA(_, 𝑡)) = 1 ∧ ¬𝐸⊥

]
− Pr

EXPIdeal

[
D(IdealSim(_, 𝑡)) = 1 ∧ ¬𝐸⊥

] ���� . (3)

To bound Eq. (2), we observe that 𝐸⊥ in the real and ideal experiments are the events that A fails when
queried on 𝑡 , and when queried on 1. Therefore, by Λ-privacy, we have���� Pr

EXPReal

[
𝐸⊥

]
− Pr

EXPIdeal

[
𝐸⊥

] ���� ≤ negl(Λ) ,

which gives us the same bound for Eq. (2) (since in the case of 𝐸⊥, both RealP∗ (_, 𝑡) = ⊥ and IdealSim(_, 𝑡) = ⊥,
so D has the same output).

To show that Eq. (1) is at most 1
𝑃 (Λ) , it suffices to show that Eq. (3) is at most 1

2𝑃 (Λ) . First, note that if
PrEXPReal

[
¬𝐸⊥

]
≤ 1

5𝑃 (Λ) , then we immediately get the required bound, since by Λ-privacy we also have
PrEXPIdeal

[
¬𝐸⊥

]
≤ 1

5𝑃 (Λ) + negl(Λ).
Therefore, in the rest of the proof we assume wlog that PrEXPReal

[
¬𝐸⊥

]
> 1

5𝑃 (Λ) , and our goal is to
bound Eq. (3).

40

Step 2: Bound the probability that Sim fails in Item 5c. Let SHORT be the event that in the EXPIdeal
experiment, one of the lists 𝐿𝑖 is shorter than ℓ and Sim outputs ⊥ in Item 5c. We show that

Pr
EXPIdeal

[
SHORT : ¬𝐸⊥

]
≤ negl(Λ) .

Indeed, since we assumed (wlog, as shown in step 1) PrEXPReal
[
¬𝐸⊥

]
> 1

5𝑃 (Λ) , by seBARG index hiding
we also have that the probability of appending a new item to the list in a single iteration of Item 5b is
> 1

5𝑃 (Λ) − negl(Λ). In Λ(_) · 1/𝜖 iterations, the probability that we fail to append at least one item is ≤ 2−𝑂(Λ).
Thus, in the full Λ(_) · ℓ/𝜖 iterations for each 𝐿𝑖 , by a union bound, the resulting 𝐿𝑖 would be shorter

than ℓ with probability ≤ ℓ · 2−𝑂(Λ), and the probability that any 𝐿𝑖 is too short is ≤ 𝑘 · ℓ · 2−𝑂(Λ) which is
negligible, as desired.

Step 3: Bound the probability that Sim’s output is invalid. Let BAD be the event that in the EXPIdeal
experiment, Sim’s output was not⊥ but Ideal(_, 𝑡) = ⊥. This occurs when Sim outputs𝑋 0, 𝑋 1, 𝐷0, 𝐷1 (which
are not ⊥) such that𝑈_(Γ0, 𝑋 0, 𝐷0) = 0 or𝑈_(Γ1, 𝑋 1, 𝐷1) = 0.

We show that conditioned on Sim(1_) ̸= ⊥ in the EXPIdeal experiment (in other words, conditioned on
¬𝐸⊥ ∧ ¬SHORT), BAD occurs with probability ≤ 1

6𝑃 (Λ) . That is,

Pr
EXPIdeal

[
∀𝑏 ∈ {0, 1}, (𝑐𝑏0 , 𝑐𝑏𝑘) = (𝑐0, 𝑐𝑘) ∧
∀𝑏 ∈ {0, 1}, 𝑖 ∈ [𝑘], Γ(𝑐𝑏𝑖−1, 𝑥

𝑏
𝑖 , 𝑟

𝑏
𝑖) = 𝑐𝑏𝑖

: Sim(1_) ̸= ⊥
]
≥ 1 − 1

6𝑃 (Λ) ,

where 𝑐0, 𝑐𝑘 are the fixed correct starting and accepting configurations.
We recall that (𝑐𝑏𝑖−1, 𝑥

𝑏
𝑖 , 𝑟

𝑏
𝑖)𝑖∈[𝑘],𝑏∈{0,1} are sampled by Sim from the coupled list 𝑆 ′

𝑘
, in which the marginal

distribution of each tuple is identical to the distribution of 𝐿𝑖 . Additionally we denote 𝑐𝑏
𝑘

= Γ(𝑐𝑏
𝑘−1, 𝑥

𝑏
𝑘
, 𝑟𝑏

𝑘
).

Step 3a: starting and ending configurations. We claim that for all 𝑏 ∈ {0, 1}, (𝑐𝑏0 , 𝑐𝑏𝑘) = (𝑐0, 𝑐𝑘) occurs
with probability 1−negl(Λ), from the underlying seBARG somewhere argument of knowledge. Indeed, when
appending items to 𝐿𝑖 we check that Verify(vk, Γ𝑏, 𝑋𝑏, 𝑎𝑏) = 0, which implies that except with negligible
probability the extracted witness 𝑤𝑖 satisfies 𝑀(𝑧, 𝑖,𝑤𝑖) = 1. For 𝑖 = 1 and 𝑖 = 𝑘 , by definition of 𝑀 this
implies that 𝑐𝑏0 , 𝑐𝑏𝑘 are the starting and ending configurations.

Step 3b: connecting configurations. It suffices to show that for every 𝑖 ∈ [𝑘],

Pr
EXPIdeal

[
∀𝑏 ∈ {0, 1}.Γ(𝑐𝑏𝑖−1, 𝑥

𝑏
𝑖 , 𝑟

𝑏
𝑖) = 𝑐𝑏𝑖 : Sim(1_) ̸= ⊥

]
≥ 1 − 1

8𝑘𝑃 (Λ) .

Let 𝑖 ∈ [𝑘]. Consider 𝑌 ′𝑖 , 𝑌𝑖+1, independent uniform distributions over 𝐿′𝑖 , 𝐿𝑖+1. By Lemma 6.3, it suffices
to show that

Pr
EXPIdeal

[
SD

(
𝑓 ′𝑖 (𝑌 ′𝑖), 𝑓𝑖+1(𝑌𝑖+1)

)
≥ 1

9𝑘𝑃 (Λ) : Sim(1_) ̸= ⊥
]
≤ negl(Λ) .

We recall that 𝐿 𝑗 is a list whose elements are sampled by the experiment EXP𝑗 defined as follows:

• Generate (dk, vk, 𝑞)←Query(1_, 𝑗). Parse dk = tdseBARG.

• Run the adversary and obtain (𝑋 0, 𝑋 1, 𝑎0, 𝑎1)← A(vk, 𝑞).

• If Verify(vk, Γ0, 𝑋 0, 𝑎0) = 0 or Verify(vk, Γ1, 𝑋 1, 𝑎1) = 0, output ⊥.

41

• For 𝑏 ∈ {0, 1}, parse 𝑋𝑏 = (𝑥𝑏𝑖)𝑖∈[𝑘] and 𝑎𝑏 = (rt𝑏, 𝜋𝑏seBARG).

• For 𝑏 ∈ {0, 1}, extract𝑤𝑏
1 ,𝑤

𝑏
𝑗 ← ExtractseBARG(tdseBARG, 𝜋𝑏seBARG).

• For 𝑏 ∈ {0, 1}, parse𝑤𝑏
𝑗 = (𝑟𝑏𝑗 , 𝑐𝑏𝑗−1, 𝑐

𝑏
𝑗 , 𝜌

𝑏
𝑗−1, 𝜌

𝑏
𝑗).

• Output (𝑐𝑏𝑗−1, 𝑥
𝑏
𝑗 , 𝑟

𝑏
𝑗)𝑏∈{0,1} .

In fact, each element in 𝐿 𝑗 is distributed like a random sample from EXP𝑗 conditioned on it being different
than ⊥. Let �̃�𝑖 , �̃�𝑖+1 be independent uniform distributions over EXP𝑖 , EXP𝑖+1 conditioned on not ⊥. Since 𝑓 ′𝑖
only depends on the last element of its tuple, we abuse notation and use 𝑓 ′𝑖 (�̃�𝑖).

We prove the following claims:

Claim 6.4. There exists a negligible function negl such that for every 𝑖 ∈ [𝑘],

SD
(
𝑓 ′𝑖 (�̃�𝑖), 𝑓𝑖+1(�̃�𝑖+1)

)
≤ negl(Λ) .

Claim 6.5 ([BDKP22]). Let 𝐷 be a random variable supported on a set 𝑋 . For every 𝛿 > 0 and 𝑛 ∈ N let
ℓ = 𝛿−2 · |𝑋 |2·𝑛 and let 𝐿 ∈ 𝑋 ℓ be a list where each element is sampled independently from 𝐷 . Let𝑈𝐿 be the
uniform distribution over 𝐿. Then we have that

Pr
𝐿

[
SD (𝐷,𝑈𝐿) ≥ 𝛿

]
≤ 2−𝑛 · |𝑋 | .

We observe that the two claims imply that

Pr
EXPIdeal

[
SD

(
𝑓 ′𝑖 (𝑌 ′𝑖), 𝑓𝑖+1(𝑌𝑖+1)

)
≥ 1

9𝑘𝑃 (Λ) : Sim(1_) ̸= ⊥
]
≤ negl(Λ) .

Indeed, considering𝐷 = 𝑓 ′𝑖 (�̃�𝑖), since it is supported on a set of size 22𝑆 and by our definition of ℓ , by Claim 6.5
we have that 𝑓 ′𝑖 (�̃�𝑖), 𝑓 ′𝑖 (𝑌𝑖) are 1

20𝑘𝑃 (Λ) -close except with negligible probability. Since 𝐿′𝑖 is a coupling of 𝐿′𝑖−1
and 𝐿𝑖 , by Lemma 6.3 we have that the last element in 𝑌 ′𝑖 is identically distributed to 𝑌𝑖 , so 𝑓 ′𝑖 (𝑌𝑖) ≡ 𝑓 ′𝑖 (𝑌 ′𝑖).

Similarly, for 𝑌𝑖+1 we have that 𝑓𝑖+1(�̃�𝑖+1), 𝑓𝑖+1(𝑌𝑖+1) are 1
20𝑘𝑃 (Λ) -close except with negligible probability.

Therefore, by a hybrid argument and Claim 6.4, we get our result.
We now prove the first claim (Claim 6.5 is taken from [BDKP22]).

Proof of Claim 6.4. We show that 𝑓 ′𝑖 (�̃�𝑖) ≈ 𝑓𝑖+1(�̃�𝑖+1), where ≈ denotes that the distributions are indis-
tinguishable to poly(Λ)-size distinguishers. This suffices, since the distributions are over a support of size
2𝑆 = 𝑂(log Λ), so we get that the statistical distance is also negligible.

We first introduce new notation. We define alternative experiments EXP𝑗0, 𝑗1,𝑏′ , identical to EXP𝑗 except
for the following changes:

• We generate (dk, vk, 𝑞) ← Query(1_, { 𝑗0, 𝑗1}) rather than by Query(1_,𝑈 , 1𝑘 , 1𝑛, 1𝑤, 𝑗), where in a
query for a set we program the seBARG on 𝐼 = { 𝑗0, 𝑗1} rather than on {1, 𝑗}.

• For 𝑏 ∈ {0, 1} we extract both𝑤𝑏
𝑗0
,𝑤𝑏

𝑗1
← ExtractseBARG(tdseBARG, 𝜋𝑏seBARG), and continue parsing𝑤𝑏

𝑗𝑏′
.

42

With this definition, EXP𝑗 (from which �̃�𝑗 is sampled) is identical to EXP1, 𝑗,1, and we have

�̃�𝑖 = (𝑐𝑏𝑖−1, 𝑥
𝑏
𝑖 , 𝑟

𝑏
𝑖)𝑏∈{0,1} ,

𝑓 ′𝑖 (�̃�𝑖) = (Γ(𝑐𝑏𝑖−1, 𝑥
𝑏
𝑖 , 𝑟

𝑏
𝑖))𝑏∈{0,1} ,

�̃�𝑖+1 = (𝑐𝑏𝑖 , 𝑥𝑏𝑖+1, 𝑟
𝑏
𝑖+1)𝑏∈{0,1} ,

𝑓𝑖+1(�̃�𝑖+1) = (𝑐𝑏𝑖)𝑏∈{0,1} .

We proceed via a hybrid argument. First, by seBARG somewhere argument of knowledge and since
we conditioned on ∀𝑏 ∈ {0, 1}.Verify(vk, Γ𝑏, 𝑋𝑏, 𝑎𝑏) = 1 we have that in EXP1,𝑖,1, except with negligible
probability,

(Γ(𝑐0
𝑖−1, 𝑥

0
𝑖 , 𝑟

0
𝑖), Γ(𝑐1

𝑖−1, 𝑥
1
𝑖 , 𝑟

1
𝑖)) = (𝑐0

𝑖 , 𝑐
1
𝑖) ,

so
𝑓 ′𝑖 (�̃�𝑖) ≈

{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP1,𝑖,1

.

Now, by seBARG index hiding we have{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP1,𝑖,1

≈
{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖,1

.

Now, by seBARG somewhere argument of knowledge and by the collision resistance wrt opening of
the hash, in EXP𝑖,𝑖 since for 𝑏 ∈ {0, 1} both𝑤𝑏

0 and𝑤𝑏
1 contain valid openings of rt𝑏 to some 𝑐𝑏𝑖 at index 𝑖 ,

they must be equal except with negligible probability. Therefore,{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖,1

≈
{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖,0

.

Now, by seBARG index hiding, {
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖,0

≈
{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖+1,0

.

Again by seBARG somewhere argument of knowledge and by the collision resistance wrt opening of
the hash, {

𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖+1,0

≈
{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖+1,1

.

Finally, we again use seBARG index hiding, and get that{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP𝑖,𝑖+1,1

≈
{
𝑐0
𝑖 , 𝑐

1
𝑖

}
EXP1,𝑖+1,1

≡ 𝑓𝑖+1(�̃�𝑖+1) ,

which finishes the proof of Claim 6.4.

Step 4: Conclude Real and Ideal are indistinguishable. We recall that it suffices to bound Eq. (3). In
fact, since 𝐸⊥ occurs with the same probability (up to negl(Λ)) in EXPReal and EXPIdeal, and since we’ve
shown in step 2 that in EXPIdeal conditioned on ¬𝐸⊥ we have Sim(1_) ̸= ⊥ except with negligible probability,
it suffices to show���� Pr

EXPReal

[
D(RealA(_, 𝑡)) = 1 : ¬𝐸⊥

]
− Pr

EXPIdeal

[
D(IdealSim(_, 𝑡)) = 1 : Sim(1_) ̸= ⊥

] ���� < 1
2𝑃 (Λ) .

We consider (𝑥0
𝑡 , 𝑥

1
𝑡 , 𝑟

0
𝑡 , 𝑟

1
𝑡) output by RealA(_, 𝑡) conditioned on ¬𝐸⊥. By our definition of Sim, it is

identical to the distribution of elements added to 𝑆𝑡 . Therefore, by Lemma 6.3, we have that a random
sample (𝑐𝑏𝑖−1, 𝑥

𝑏
𝑖 , 𝑟

𝑏
𝑖)𝑖∈[𝑘],𝑏∈{0,1} ← 𝑆 ′

𝑘
is marginally identically distributed to (𝑥0

𝑡 , 𝑥
1
𝑡 , 𝑟

0
𝑡 , 𝑟

1
𝑡).

43

Thus, conditioned on Sim(1_) ̸= ⊥, and considering 𝑋 0, 𝑋 1, 𝐷0, 𝐷1 ← Sim(1_), we have that 𝑋 0[𝑡], 𝑋 1[𝑡],
𝐷0[𝑡], 𝐷1[𝑡] are identically distributed to 𝑥0

𝑡 , 𝑥
1
𝑡 , 𝑟

0
𝑡 , 𝑟

1
𝑡 ← RealA(_, 𝑡).

Now, we observe that the output of IdealSim(_, 𝑡) is exactly 𝑋 0[𝑡], 𝑋 1[𝑡], 𝐷0[𝑡], 𝐷1[𝑡], except when Sim
outputs 𝑋 0, 𝑋 1, 𝐷0, 𝐷1 that don’t satisfy the policy. However, we showed in step 3 that conditioned on
Sim(1_) ̸= ⊥ in EXPIdeal this only occurs with probability ≤ 1

6𝑃 (Λ) , which concludes the proof of Theorem 6.2.

Remark 6.2. Finally, we note that the above construction and analysis extend to any 𝑝-composable vPIR
for 𝑝 = 𝑂(1) (or, more generally, to 𝑝 · 𝑆 = 𝑂(log Λ) assuming Λ-security of the underlying building blocks,
where 𝑆 is the space bound of the constraint Γ).

7 BARGs with Adaptive Subset Extraction for Bounded-Space Policies

In this section, we use our constructed 2-composable vPIR for policies (Definition 6.1) to construct batch
arguments with adaptive subset extraction.

We proceed by defining the families of policies we support and stating our main theorems, which we
prove in Section 7.1 and Section 7.2.

Definition 7.1 (Read-Once Space-𝑆 Policies). Let 𝑆(_) be a function and let 𝐹 = {𝐹_}_∈N be a family of
functions. 𝐹 is a read-once space-𝑆 family of policies if there exist polynomials 𝑇 (_), 𝑁 (_), 𝑘(_) such that each
𝑓 ∈ 𝐹_ is a monotone function 𝑓 : {0, 1}𝑘 → {0, 1}, and there exists a Turing machine Γ ∈ {0, 1}𝑁 such that
𝑓 (𝑏1, . . . , 𝑏𝑘) = 1 if and only if for every 𝑖 ∈ [𝑘 − 1] there exists 𝑐𝑖 ∈ {0, 1}𝑆 such that Γ(𝑐𝑖−1, 𝑏𝑖) outputs 𝑐𝑖
within 𝑇 steps where 𝑐0, 𝑐𝑘 are some fixed starting and accepting configurations.

Theorem 7.2 (Section 7.1). Let Λ = Λ(_) be a function. Assuming a Λ-secure 2-composable vPIR scheme for
policies, there exists a scheme BARG = (Setup,P,V, Extract) such that for any family 𝐹 of read-once space 𝑆
policies where 𝑆 = 𝑂(log Λ), BARG is a 𝐹 -batch argument with 𝑂(𝑘)-adaptive subset extraction for relation
Rfull.

Using Theorem 5.4 and Theorem 7.2 above, we obtain the following theorem on aggregate signatures.

Theorem 7.3. Let Λ = Λ(_) be a function. Assuming a Λ-secure 2-composable vPIR scheme for policies and a
Λ-secure hash family with local opening, there exists a scheme AggS = (Setup,KeyAgg, SigAgg,AggVerify)
such that for any family 𝐹 of read-once space 𝑆 policies where 𝑆 = 𝑂(log Λ) and for any digital signature
scheme S, AggS is a 𝐹 -aggregation scheme for S.

We define below a specific family of monotone function, that of threshold policies.

Definition 7.4 (Weighted Threshold Policies). Let 𝐹 = {𝐹_}_∈N be a family of functions. 𝐹 is a family of
weighted threshold policies if there exist polynomials 𝑘(_), {𝛼𝑖 (_)}𝑖∈[𝑘] , 𝑡 (_) such that each 𝑓 ∈ 𝐹_ is a function
𝑓 : {0, 1}𝑘 → {0, 1} such that 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1 if and only if 𝑏𝑖 ∈ {0, 1} and

∑𝑘
𝑖=1 𝛼𝑖𝑏𝑖 ≥ 𝑡 .

We prove in Section 7.2 the following theorem for threshold policies.

Theorem 7.5 (Section 7.2). Assuming a (polynomially-secure) 2-composable vPIR scheme for policies, there
exists a scheme BARG = (Setup,P,V, Extract) such that for any family 𝐹 of weighted threshold policies with
threshold 𝑡 , BARG is a 𝐹 -batch argument with 𝑂(𝑡)-adaptive subset extraction for relation Rsub (where the
aggregation time is polynomial in 𝑡).

Thus, again using Theorem 5.4 and the Theorem 7.5 we have the following theorem.

44

Theorem 7.6. Assuming a 2-composable vPIR scheme for policies and a hash family with local opening, there
exists a scheme AggS = (Setup,KeyAgg, SigAgg,AggVerify) such that for any family 𝐹 of weighted threshold
policies with threshold 𝑡 and for any digital signature scheme S, AggS is a 𝐹 -aggregation scheme for S with
aggregation time polynomial in 𝑡 .

Note that by setting 𝛼𝑖 = 1, in the above theorems, we revert to the (unweighted) threshold setting,
where the aggregation time now depends on the number of signatures 𝑡 .

7.1 Adaptive Subset Extraction for Bounded-Space Policies

In this section we prove Theorem 7.2. We begin by describing our construction, then prove its security.

7.1.1 Construction.

Our construction uses as a building block a Λ-secure 2-composable vPIR scheme for policies

(Query,Answer,Dec,Verify) ,

where we use the syntax for index instances (as in Remark 6.1).
We now describe the batch argument algorithms in Fig. 4.

7.1.2 Analysis.

We now prove security of our construction in Section 7.1.1, and obtain Theorem 7.2.
In the analysis, we sometimes abuse notation and omit the instances 𝑋 from the Answer,Verify algo-

rithms and simulation security experiments, in case that 𝑋 = ⊥ (which means that our policy is just a
standard vPIR constraint, without instances).

Proof of Theorem 7.2.

Completeness. Follows directly from the completeness of the 2-composable vPIR scheme for policies.

Succinctness. By the vPIR efficiency we have |𝜋 |≤ 𝑚 · poly(_).

𝑂(𝑘)-Adaptive Subset Extraction. Let 𝑆 = 𝑂(log Λ) and let 𝐹 be a family of read-once space-𝑆 policies.
Fix any polynomial𝑇 (_), any poly-size cheating prover P∗, and any sequence {𝑓_ ∈ 𝐹_}_∈N. Let EXP be the
experiment defined in the adaptive subset extraction requirement:

• Generate (crs, td)← Setup(1_).

• Run the cheating prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).

• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇).

• Extract (𝑖,𝑤𝑖)← Extract(td, 𝜋).

We define an adversary A against the Λ-security of the 2-composable vPIR scheme for policies. Given
vk, 𝑞, the adversary A does the following:

45

Setup(1_):

1. For every 𝑗 ∈ [_], sample 𝑖 𝑗 ← [2𝑗] uniformly at random.
2. For every 𝑗 ∈ [_], generate (dk𝑗 , vk𝑗 , 𝑞 𝑗)←Query(1_, 𝑖 𝑗).
3. Output crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_], td = (𝑖 𝑗 , dk𝑗)𝑗∈[_].

P(crs, 𝑓 , 𝑀, 𝑧, 1𝑇 ,𝑤1, . . . ,𝑤𝑘):

1. Parse crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_].

2. Let (𝑞, vk) = (𝑞 𝑗 , vk𝑗) for 𝑗 = ⌈log𝑘⌉ (where recall that 𝑓 : {0, 1}𝑘 → {0, 1}).
3. Let Γ𝑓 ,𝑇 be the policy-checking constraint defined by Γ𝑓 and 𝑇 : given 𝑐𝑖−1, 𝑥𝑖 , 𝑟𝑖 as input, Γ𝑓 ,𝑇 does the

following:
(a) Parse 𝑥𝑖 = (𝑀,𝑧, 𝑖) and 𝑟𝑖 = 𝑤𝑖 .
(b) Let 𝑏𝑖 = 1 if 𝑀(𝑧, 𝑖,𝑤𝑖) accepts within 𝑇 steps, and 𝑏𝑖 = 0 otherwise.
(c) Output 𝑐𝑖 = Γ𝑓 (𝑐𝑖−1, 𝑏𝑖).

4. Let 𝐷 = (𝑤𝑖)𝑖∈[𝑘].
5. Output 𝜋 = Answer(𝐷, Γ𝑓 ,𝑇 , (𝑀,𝑧), 𝑞).

V(crs, 𝑥, 𝜋):

1. Parse crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_], 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇) and 𝜋 = 𝑎.
2. Let (𝑞, vk) = (𝑞 𝑗 , vk𝑗) for 𝑗 = ⌈log𝑘⌉.
3. Let Γ𝑓 ,𝑇 as in P.
4. Output Verify(vk, Γ𝑓 ,𝑇 , (𝑀,𝑧), 𝑎).

Extract(td, 𝜋):

1. Parse td = (𝑖 𝑗 , dk𝑗)𝑗∈[_] and 𝜋 = 𝑎.
2. Let (𝑖, dk) = (𝑖 𝑗 , dk𝑗) for 𝑗 = ⌈log𝑘⌉.
3. Extract𝑤𝑖 = Dec(dk, 𝑎).
4. Output (𝑖,𝑤𝑖).

Figure 4: Construction of BARGs with Adaptive Subset Extraction for bounded-space policies

1. Sample crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_] ← Setup(1_) and replace (𝑞 𝑗 , vk𝑗) for 𝑗 = ⌈log𝑘⌉ with (𝑞, vk).

2. Run the cheating prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).

3. Let 𝑓 = 𝑓_ , and Γ𝑓 be a constraint such that Γ𝑓 is accepting iff Γ𝑓 is rejecting.

4. Let 𝐷 𝐽 = 1[𝑘]\𝐽 =
(
𝐽𝑖
)
𝑖∈[𝑘].

5. Compute 𝑎′ = Answer(𝐷 𝐽 , Γ𝑓 , 𝑞).

6. Output ((𝑀,𝑧, 𝑖)𝑖∈[𝑘],⊥, 𝑎, 𝑎′) where 𝑎 = 𝜋 .

46

Let 𝑃 be a polynomial. By 2-composable security of the underlying vPIR scheme, there exists a poly(Λ)-
size simulator Sim such that for any poly(Λ)-size distinguisher D and for any _ ∈ N and row index
𝑡 ∈ [𝑘], ��Pr

[
D(RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑡)) = 1

]
− Pr

[
D(IdealSim(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑡)) = 1

] �� < 1
𝑃 (Λ) .

First, we observe that in the real experiment, for every _ ∈ N let 𝑗 = ⌈log𝑘⌉ then we have

Pr
[
RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑡) ̸= ⊥ : 𝑡 ← [2𝑗]

]
≥ Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
,

since RealA with a random 𝑡 ← [2𝑗] runs P∗ with an identical input distribution to the one in EXP, and
we have that (i)V(crs, 𝑥, 𝜋) = 1 implies that Verify(vk, Γ𝑓 ,𝑇 , (𝑀,𝑧), 𝑎) = 1, and (ii) 𝑓 (1[𝑘]\𝐽) = 0 implies that
𝐷 𝐽 defined in A satisfies the constraint Γ𝑓 , which by completeness of vPIR implies Verify(vk, Γ𝑓 , 𝑎

′) = 1.
Combining (i) and (ii) we get that RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑡) ̸= ⊥.

We now use 2-composable simulation security to switch to the ideal experiment. Let 𝑡 ∈ [2𝑗] such that
the above inequality holds (exists by averaging), and let 𝑇 ′ be the time bound for the constraints Γ𝑓 ,𝑇 , Γ𝑓

then

Pr
[
𝑈𝑇 ′,𝑆 (Γ𝑓 ,𝑇 , 𝑋, 𝐷) = 1 ∧
𝑈𝑇 ′,𝑆 (Γ𝑓 , 𝐷

′) = 1 : (𝑋,⊥, 𝐷, 𝐷 ′)← Sim(1_, Γ𝑓 ,𝑇 , Γ𝑓)
]

= Pr
[
IdealSim(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑡) ̸= ⊥

]
> Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ) .

By definition of Γ𝑓 ,𝑇 , we have that if𝑈𝑇 ′,𝑆 (Γ𝑓 ,𝑇 , 𝑋, 𝐷) = 1 then, parsing𝑋 = (𝑀𝑖 , 𝑥𝑖)𝑖∈[𝑘] and𝐷 = (𝑤𝑖)𝑖∈[𝑘],
it holds that for 𝑏𝑖 = 𝑀𝑖 (𝑥𝑖 ,𝑤𝑖) we have 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1. Similarly, if 𝑈𝑇 ′,𝑆 (Γ𝑓 , 𝐷

′) = 1 then defining
𝐽 = {𝑖 ∈ [𝑘] : 𝐷 ′[𝑖] = 0} we have 𝑓 (1[𝑘]\𝐽) = 0.

Now, if 𝑓 (𝑏1, . . . , 𝑏𝑘) = 1 and 𝑓 (1[𝑘]\𝐽) = 0 (in other words, 𝑏1, . . . , 𝑏𝑘 is a satisfying assignment and 𝐽 is
a necessary subset), since 𝑓 is a monotone function there must exist an 𝑖 ∈ [𝑘] such that 𝑏𝑖 = 1 and 𝑖 ∈ 𝐽 .
Therefore, sampling an independent 𝑖 ← [𝑘] in the above experiment, we get that

Pr
[
𝐽𝑖 = 0 ∧ 𝑀𝑖 (𝑥𝑖 ,𝑤𝑖) = 1 : 𝑖 ← [𝑘]

((𝑀𝑖 , 𝑥𝑖),⊥,𝑤𝑖 , 𝐽𝑖)← IdealSim(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑖)

]
>

1
𝑘(_)

(
Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ)

)
.

Switching to the RealA experiment and using 2-composable simulation security, we get that

Pr
[
𝐽𝑖 = 0 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1 : 𝑖 ← [𝑘]

((𝑀,𝑧, 𝑖),⊥,𝑤𝑖 , 𝐽𝑖)← RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑖)

]
>

1
𝑘(_)

(
Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ)

)
− 1
𝑃 (Λ) .

We now observe that the experiment of runningA above is identical to running P∗ in EXP, conditioned
on 𝑖 𝑗 ∈ [𝑘] for 𝑗 = ⌈log𝑘⌉ (which occurs with probability ≥ 1

2 by choice of 𝑗). In particular, we have
that (i) Dec(dk, 𝑎) = 𝑤𝑖 above is identical to𝑤𝑖 = Extract(td, 𝜋) in EXP, and (ii) by vPIR completeness and

47

construction ofA, we have that Dec(dk, 𝑎′) = 𝐽𝑖 corresponds to 𝑖 /∈ 𝐽 where 𝐽 is the set given by P∗ in EXP.
Therefore, we have

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
≥ 1

2 Pr
[
𝐽𝑖 = 0 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1 : 𝑖 ← [𝑘]

((𝑀,𝑧, 𝑖)𝑖∈[𝑘],⊥,𝑤𝑖 , 𝐽𝑖)← RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑖)

]
>

1
2𝑘(_)

(
Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ)

)
− 1
𝑃 (Λ) .

Since this holds for any polynomial 𝑃 , we get that there exists a negligible function negl such that

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
>

1
2𝑘(_) · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− negl(_) ,

which proves the 𝑂(𝑘)-adaptive subset extraction property and concludes the proof of Theorem 7.2.

7.2 Adaptive Subset Extraction with Sublinear Prover for Threshold Policies

In this section, we use 2-composable vPIR to construct batch arguments with adaptive subset extraction for
the sublinear relation Rsub. We fully describe a solution for the case of threshold policies, and sketch how
to extend it to support general read-once bounded-space policies.

We begin by describing a general approach towards achieving a sublinear prover for any read-once
bounded-space policy. The idea is to consider a compressed vPIR database, corresponding to the Rsub-
witness: suppose the witness is (𝑖1,𝑤1, . . . , 𝑖𝑡 ,𝑤𝑡), where 𝑖1, . . . , 𝑖𝑡 are sorted in increasing order. We consider
the vPIR database that contains 𝑡 rows, each containing an index-witness pair. Then, the BARG verifier
would verify that this database satisfies the constraint corresponding to the validity of this witness: (i) the
indices are sorted, (ii) all witnesses are valid, and (iii) the input 𝑏1, . . . , 𝑏𝑘 where 𝑏𝑖 = 1 ⇐⇒ ∃ 𝑗 s.t. 𝑖 = 𝑖 𝑗
satisfies the policy 𝑓 .

First, we observe that for general bounded-space policies, it is not clear that the prover can evaluate
this constraint on the database in sublinear time (i.e. in time that only depends on the compressed database
size and not on 𝑘). Indeed, the difficulty lies in (iii) above: even if the policy 𝑓 is read-once bounded-space,
to update the state between rows 𝑗 and 𝑗 + 1, the prover needs to update the state using the next 𝑖 𝑗+1 − 𝑖 𝑗
input bits: 𝑏𝑖 𝑗 = 1 and 𝑏𝑖 = 0 for 𝑖 𝑗 < 𝑖 < 𝑖 𝑗+1. This could take up to linear time. We propose two ways to
handle this issue:

• First, we can restrict the class of policies 𝑓 to ones with a “fast-forward” property, where one can
update 𝑓 ’s state reading any number of repeated zeroes in time that depends sublinearly in this
number. It class includes, in particular, threshold and weighted threshold policies where reading
zeroes does not change the state at all.

• Alternatively, we can also support general monotone policies, at the expense of having a long crs
(exponential in the space), which the prover has random access to. This crs could contain a table
of states of 𝑓 after any number of zeroes, which the prover can later use instead of performing the
computation during proof generation (we note that in order to convince the verifier, the long crs
should also contain SNARG proofs that each table entry is correct).

48

Security for Threshold policies. To argue security, we start by looking at the case of threshold policies.
Similarly to our construction in Section 7.1, given a cheating prover that outputs a vPIR answer 𝑎 and a
necessary subset 𝐽 , we consider a composed prover that gives an additional vPIR answer based on the
database corresponding to this subset 𝐽 , and the constraint that checks that it is necessary, i.e. that |𝐽 |> 𝑘−𝑡 .
To use composition, we encode 𝐽 as a database 𝐷 ′ of size 𝑡 (matching the size of the prover’s database),
consisting of rows (𝑖 𝑗−1, 𝑖 𝑗) where 𝑖 𝑗 are such that the edges are 𝑖0 = 0 and 𝑖𝑡 = 𝑘 + 1, and the points cover 𝐽 ,
i.e. 𝐽 ⊆

{
𝑖1, . . . , 𝑖𝑡−1

}
.

Given this cheating prover, our composition theorem guarantees a simulator for the joint distribution
of the databases 𝐷 = (𝑖 𝑗 ,𝑤 𝑗)𝑗∈[𝑡] and 𝐷 ′ = (𝑖 𝑗−1, 𝑖 𝑗)𝑗∈[𝑡]. Now, we use the combinatorial property that every
pair of valid databases 𝐷,𝐷 ′ must contain a row 𝑗 such that 𝑖 𝑗 is contained in the open interval (𝑖 𝑗−1, 𝑖 𝑗),
which implies that 𝑖 𝑗 ∈ 𝐽 . This gives us the adaptive subset extraction property: sampling a random row in
the database, with probability 1

𝑘
we’re guaranteed to find a row 𝑗 such that𝑤 𝑗 is valid and 𝑖 𝑗 ∈ 𝐽 .

This analysis also extends to weighted threshold policies, by expanding the database to contain multiple
copies of each witness, corresponding to the weight. The full analysis for the case of weighted threshold
is given below. Before describing this analysis, we explain why the same ideas cannot be used to argue
security for more general policies and sketch an alternative argument for this case.

Security for general policies. Unfortunately, it seems that the same approach doesn’t extend to general
read-once bounded-space policies. Instead, we can argue security using a direct analysis, utilizing additional
properties of the vPIR construction in Section 6 that do not seem to be captured by our composition theorem.

In a nutshell, the issue is with defining the encoding of 𝐽 as a database. For the case of thresholds, we
exploited the fact that the complement of a necessary subset must be smaller in size than any satisfying
subset to the policy, to encode 𝐽 as a sequence of 𝑡 open intervals in 𝐽 . For general policies, where this fact
does not hold, it’s not clear how to encode 𝐽 . We could try to compress 𝐽 to 𝑡 rows by encoding multiple
such intervals in each row, but for any fixed choice of the number of intervals in each row, we could find a
set of valid databases where our combinatorial property doesn’t hold, i.e. there is no row 𝑗 such that the
index 𝑖 𝑗 is contained in some open interval in the same row.

To solve this problem, we can open up the proof of our composition theorem, and define a “dynamic”
database structure for 𝐽 that depends on the rows (𝑖 𝑗 ,𝑤 𝑗) in 𝐷 to choose precisely how many elements of 𝐽
to include in each row. In more detail, using the same simulation strategy as in Section 6 we can repeatedly
query P∗ on each index 𝑗 , by running P∗(𝑞) → (𝑎, 𝐽) for (dk, vk, 𝑞) ← Query(1_, 𝑗) and decrypting the
database row (𝑖 𝑗−1, 𝑖 𝑗 ,𝑤 𝑗) = 𝑟 𝑗 = Dec(dk, 𝑎) (we include the previous index 𝑖 𝑗−1 as part of each database
row). Then, we construct a list 𝐿 𝑗 of answers of the form (𝑖 𝑗−1, 𝑖 𝑗 ,𝑤 𝑗 , 𝐽 ∩ (𝑖 𝑗−1, 𝑖 𝑗]). Finally, using the
coupling lemma Lemma 6.3, we can couple together the lists 𝐿1, . . . , 𝐿𝑡 according to (𝑖 𝑗−1, 𝑖 𝑗 ,𝑤 𝑗)𝑗∈[𝑡] being
an accepting database (i.e., 𝑖 𝑗 that appears in the 𝑗 th and 𝑗 + 1-th rows should be equal, and𝑤 𝑗 should all be
valid witnesses), and the set 𝐽 composed of the intervals 𝐽 ∩ (𝑖 𝑗−1, 𝑖 𝑗] not satisfying the policy, i.e. 𝐽 being a
necessary subset (note these two conditions can be checked with a bounded size state between rows).

We then have that in any such pair of databases, since the set of witnesses satisfy the policy and 𝐽
is a necessary subset, there must exist an index 𝑗 ∈ 𝐽 such that 𝑤 𝑗 is an accepting witness for the 𝑖 𝑗 th
statement, and 𝑖 𝑗 ∈ 𝐽 . But now, since we defined 𝐽 ’s database structure such that its rows 𝐽 ∩ (𝑖 𝑗−1, 𝑖 𝑗]
exactly match the indices of valid witnesses, we have that just row 𝑗 in the simulated pair of databases is
enough to decide if 𝐽 contains the index 𝑖 𝑗 . Thus this property is maintained in the real world experiment,
and we get 𝑂(𝑡)-adaptive subset extraction by extracting at a random row index 𝑗 .

In what follows we describe the analysis for the case of weighted threshold.

49

7.2.1 Construction.

Our construction uses as a building block a composable polynomially-secure vPIR scheme for policies

(Query,Answer,Dec,Verify) ,

where we use the syntax for index instances (as in Remark 6.1).

7.2.2 Analysis.

We now prove security of our construction in Section 7.2, and obtain Theorem 7.5.

Proof of Theorem 7.5.

Completeness. Follows directly from the completeness of the 2-composable vPIR scheme for policies.

Succinctness. By the vPIR efficiency we have |𝜋 |≤ 𝑚 · poly(_).

𝑂(𝑡)-Adaptive Subset Extraction. Let 𝐹 be a family of weighted threshold policies. Fix any polynomial
𝑇 (_), any poly-size cheating prover P∗, and any sequence {𝑓_ ∈ 𝐹_}_∈N. Let EXP be the experiment defined
in the adaptive subset extraction requirement:

• Generate (crs, td)← Setup(1_).

• Run the cheating prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).

• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇).

• Extract (𝑖,𝑤𝑖)← Extract(td, 𝜋).

We define an adversary A against the Λ-security of the 2-composable vPIR scheme for policies. Given
vk, 𝑞, the adversary A does the following:

1. Suppose that 𝑓 = 𝑓_ is a weighted threshold function with 𝑘 inputs, weights {𝛼𝑖}𝑖∈[𝑘] and threshold 𝑡 .

2. Sample crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_] ← Setup(1_) and replace (𝑞 𝑗 , vk𝑗) for 𝑗 = ⌈log 𝑡⌉ with (𝑞, vk).

3. Run the cheating prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).

4. Define the constraint Γ𝑓 which does the following given 𝑐 𝑗−1, 𝑟 𝑗 as input:

(a) Parse the state 𝑐 𝑗−1. The state is either 𝑐 𝑗−1 = ⊥, or the starting state 𝑐 𝑗−1 = 𝑐0, or a tuple
𝑐 𝑗−1 = (𝑎, 𝑏, 𝑐) where 𝑎 < 𝑏 ∈ [𝑘] ∪ {−∞,∞} are indices, and 𝑐 ∈ [𝛼𝑏] is a counter (where
𝛼∞ = ∞).

(b) Parse the row 𝑟 𝑗 = (𝑎′, 𝑏′).
(c) Define the next state 𝑐 𝑗 via one of the following cases:

• If 𝑐 𝑗−1 = 𝑐0 and −∞ = 𝑎′ < 𝑏′ ∈ [𝑘] ∪ {∞}, set 𝑐 𝑗 = (𝑎′, 𝑏′, 1).
• If 1 ≤ 𝑐 < 𝛼𝑏 and 𝑎 = 𝑎′ and 𝑏 = 𝑏′, set 𝑐 𝑗 = (𝑎, 𝑏, 𝑐 + 1).
• If 𝑐 = 𝛼𝑏 and 𝑏 = 𝑎′ < 𝑏′, set 𝑐 𝑗 = (𝑎′, 𝑏′, 1).

50

Setup(1_) does the following:

1. For every 𝑗 ∈ [_], sample 𝑖 𝑗 ← [2𝑗] uniformly at random.
2. For every 𝑗 ∈ [_], generate (dk𝑗 , vk𝑗 , 𝑞 𝑗)←Query(1_, 𝑖 𝑗).
3. Output crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_], td = (dk)𝑗∈[_].

P(crs, 𝑓 , 𝑀, 𝑧, 1𝑇 ,
{
𝑖 𝑗 ,𝑤 𝑗

}
𝑗∈[𝑡]) does the following:

1. Parse crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_].
2. Suppose that 𝑓 is a weighted threshold function with 𝑘 inputs, weights {𝛼𝑖 }𝑖∈[𝑘] and threshold 𝑡 . We

define the policy-checking constraint Γ𝑓 ,𝑇 which does the following given 𝑐 𝑗−1, 𝑥 𝑗 , 𝑟 𝑗 as input:
(a) Parse the state 𝑐 𝑗−1. The state is either 𝑐 𝑗−1 = ⊥, or the starting state 𝑐 𝑗−1 = 𝑐0, or a tuple 𝑐 𝑗−1 = (𝑖, 𝑐)

where 𝑖 ∈ [𝑘] is an index, and 𝑐 ∈ [𝛼𝑖] is a counter.
(b) Parse the instance 𝑥 𝑗 = (𝑀,𝑧, 𝑗) and the row 𝑟 𝑗 = (𝑖′,𝑤𝑖′).
(c) Define the next state 𝑐 𝑗 via one of the following cases:

i. If 𝑐 𝑗−1 = 𝑐0 and 1 ≤ 𝑖′ ≤ 𝑘 and 𝑀(𝑧, 𝑖′,𝑤𝑖′) accepts within 𝑇 steps, set 𝑐 𝑗 = (𝑖′, 1).
ii. If 1 ≤ 𝑐 < 𝛼𝑖 and 𝑖 = 𝑖′, set 𝑐 𝑗 = (𝑖, 𝑐 + 1).

iii. If 𝑐 = 𝛼𝑖 and 𝑖 < 𝑖′ ≤ 𝑘 and 𝑀(𝑧, 𝑖′,𝑤𝑖′) accepts within 𝑇 steps, set 𝑐 𝑗 = (𝑖′, 1).
iv. Otherwise, set 𝑐 𝑗 = ⊥.

(d) If 𝑗 = 𝑡 and 𝑐 𝑗 ̸= ⊥, output the accepting state. Otherwise, output 𝑐 𝑗 .
3. Let (𝑞, vk) = (𝑞 𝑗 , vk𝑗) for 𝑗 = ⌈log 𝑡⌉.
4. Let 𝐷 = (𝑖 𝑗 ,𝑤 𝑗)𝑗∈[𝑡] (we assume 𝑖 𝑗 are sorted).
5. Output 𝜋 = Answer(𝐷, Γ𝑓 ,𝑇 , (𝑀,𝑧), 𝑞).

V(crs, 𝑥, 𝜋) does the following:

1. Parse crs = (𝑞 𝑗 , vk𝑗)𝑗∈[_], 𝑥 = (𝑓 , 𝑀, 𝑧,𝑇) and 𝜋 = 𝑎.
2. Let (𝑞, vk) = (𝑞 𝑗 , vk𝑗) for 𝑗 = ⌈log 𝑡⌉.
3. Let Γ𝑓 ,𝑇 as in P.
4. Output Verify(vk, Γ𝑓 ,𝑇 , (𝑀,𝑧), 𝑎).

Extract(td, 𝜋) does the following:

1. Parse td = (dk𝑗)𝑗∈[_] and 𝜋 = 𝑎.
2. Let dk = dk𝑗 for 𝑗 = ⌈log 𝑡⌉.
3. Output (𝑖 𝑗 ,𝑤 𝑗) = Dec(dk, 𝑎).

Figure 5: Construction of Sublinear Prover BARGs for weighted threshold policies

• Otherwise, set 𝑐 𝑗 = ⊥.
(d) If 𝑖 = 𝑡 and 𝑏 = ∞, output the accepting state. Otherwise, output 𝑐𝑖 .

5. Let 𝐽1, . . . , 𝐽ℓ be the elements of 𝐽 = [𝑘] \ 𝐽 sorted in increasing order.

6. If ∑ℓ
𝑖=1 𝛼 𝐽𝑖 ≥ 𝑡 , output ⊥.

51

7. Otherwise, let 𝐷 𝐽 be the database that contains 𝛼 𝐽1 copies of the row (−∞, 𝐽1), followed by 𝛼 𝐽𝑖+1 copies
of the row (𝐽𝑖 , 𝐽𝑖+1) for every 1 ≤ 𝑖 ≤ ℓ , and finally 𝑡 −∑ℓ

𝑖=1 𝛼 𝐽𝑖 copies of the row (𝐽𝑠 ,∞).

8. Compute 𝑎′ = Answer(𝐷 𝐽 , Γ𝑓 , 𝑞).

9. Output ((𝑀,𝑧, 𝑗)𝑗∈[𝑡],⊥, 𝑎, 𝑎′) where 𝑎 = 𝜋 .

Let 𝑃 be a polynomial. Now, as in the proof of Theorem 7.2, using the definition ofA and 2-composable
simulation security, let 𝑇 ′, 𝑆 be the time and space bounds for the constraints Γ𝑓 ,𝑇 , Γ𝑓 then we have

Pr
[
𝑈𝑇 ′,𝑆 (Γ𝑓 ,𝑇 , 𝑋, 𝐷) = 1 ∧
𝑈𝑇 ′,𝑆 (Γ𝑓 , 𝐷

′) = 1 : (𝑋,⊥, 𝐷, 𝐷 ′)← Sim(1_, Γ𝑓 ,𝑇 , Γ𝑓)
]

= Pr
[
IdealSim(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑖) ̸= ⊥ : 𝑖 ← [𝑡]

]
> Pr

[
RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑖) ̸= ⊥ : 𝑖 ← [𝑡]

]
− 1
𝑃 (Λ) ≥ Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ) .

By definition of Γ𝑓 ,𝑇 and Γ𝑓 , we have that:

• If𝑈𝑇 ′,𝑆 (Γ𝑓 ,𝑇 , 𝑋, 𝐷) = 1 then, parsing 𝑋 = (𝑀 𝑗 , 𝑧 𝑗 , ·)𝑗∈[𝑡] and 𝐷 = (𝑖 𝑗 ,𝑤 𝑗)𝑗∈[𝑡], we have that (i)
{
𝑖 𝑗
}
𝑗∈[𝑡]

is a weakly increasing sequence of indices in [𝑘], (ii) each 𝑖 𝑗 appears 𝛼𝑖 𝑗 times (or does not appear at
all), and (iii) for each 𝑗 ∈ [𝑡], the machine 𝑀 𝑗 (𝑧 𝑗 , 𝑖 𝑗 ,𝑤 𝑗) = 1 accepts within 𝑇 steps.

• If 𝑈𝑇 ′,𝑆 (Γ𝑓 , 𝐷
′) = 1 then, parsing 𝐷 ′ = (𝑎 𝑗 , 𝑏 𝑗)𝑗∈[𝑡], we have that (i) each row has 𝑎 𝑗 < 𝑏 𝑗 ∈ [𝑘] ∪

{−∞,∞}, (ii) consecutive rows in 𝐷 ′ are either identical or such that 𝑏 𝑗 = 𝑎 𝑗+1, (iii) 𝑎0 = −∞ and
𝑏𝑡 = ∞, and (iv) for each 𝑏 𝑗 ∈ [𝑘] that appears in the database, we have exactly 𝛼𝑏 𝑗

copies of it.

Combining the above, we claim that there must exist an 𝑗 ∈ [𝑡] such that 𝑎 𝑗 < 𝑖 𝑗 < 𝑏 𝑗 . Indeed, if this
property does not hold for any 𝑖 ≤ 𝑡 − 1, then since −∞ = 𝑎1 < 𝑖1 we must have 𝑏1 ≤ 𝑖1, and so by induction
we argue that we always have 𝑎 𝑗 < 𝑖 𝑗 , and finally this implies that 𝑎𝑡 < 𝑖𝑡 < ∞ = 𝑏𝑡 (so the property holds
for 𝑖 = 𝑡).

Therefore, we have that

Pr
[
𝑎 𝑗 < 𝑖 𝑗 < 𝑏 𝑗 ∧
𝑀 𝑗 (𝑧 𝑗 , 𝑖 𝑗 ,𝑤 𝑗) = 1 : 𝑗 ← [𝑡]

((𝑀 𝑗 , 𝑧 𝑗 , ·),⊥, (𝑖 𝑗 ,𝑤 𝑗), (𝑎 𝑗 , 𝑏 𝑗))← IdealSim(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑗)

]
≥ 1
𝑡 (_)

(
Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ)

)
.

Switching to the RealA experiment and using 2-composable simulation security, we get that

Pr
[
𝑎 𝑗 < 𝑖 𝑗 < 𝑏 𝑗 ∧
𝑀 𝑗 (𝑧 𝑗 , 𝑖 𝑗 ,𝑤 𝑗) = 1 : 𝑗 ← [𝑡]

((𝑀 𝑗 , 𝑧 𝑗 , ·),⊥, (𝑖 𝑗 ,𝑤 𝑗), (𝑎 𝑗 , 𝑏 𝑗))← RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑗)

]
≥ 1
𝑡 (_)

(
Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ)

)
− 1
𝑃 (Λ) .

Finally, as in Theorem 7.2, we observe that the experiment of running A above is identical to running
P∗ in EXP conditioned on 𝑖 𝑗 ∈ [𝑡] (which happens wp > 1

2 , and in particular:

• By definition, Dec(dk, 𝑎) is identical to the extracted value Extract(td, 𝜋) = (𝑖 𝑗 ,𝑤 𝑗) in EXP.

52

• By vPIR completeness and construction of A, we have that Dec(dk, 𝑎′) = (𝑎 𝑗 , 𝑏 𝑗) contains indices
such that any 𝑎 𝑗 < 𝑖 < 𝑏 𝑗 is contained in 𝐽 (since 𝐷 𝐽 is constructed to contain all elements in 𝐽 in
order).

Therefore, we have

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
≥ 1

2 Pr
[
𝑎 𝑗 < 𝑖 𝑗 < 𝑏 𝑗 ∧
𝑀 𝑗 (𝑧 𝑗 , 𝑖 𝑗 ,𝑤 𝑗) = 1 : 𝑗 ← [𝑡]

((𝑀 𝑗 , 𝑧 𝑗 , ·),⊥, (𝑖 𝑗 ,𝑤 𝑗), (𝑎 𝑗 , 𝑏 𝑗))← RealA(_, Γ𝑓 ,𝑇 , Γ𝑓 , 𝑗)

]
≥ 1

2𝑡 (_)

(
Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− 1
𝑃 (Λ)

)
− 1
𝑃 (Λ) .

Since this holds for any polynomial 𝑃 , we get that there exists a negligible function negl such that

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
>

1
2𝑡 (_) · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− negl(_) ,

which proves 𝑂(𝑡)-adaptive subset extraction and concludes the proof of Theorem 7.5.

8 BARGs with Functional Subset Extraction for Monotone Circuit Poli-
cies

In this section, we construct functional subset extraction for monotone functions that can be represented as
polynomial size circuits. We state the following theorem, and provide a proof sketch since analysis follows
identically to the analysis presented in [BBK+23].

Theorem 8.1. Assuming a somewhere-extractable batch argument scheme (Definition 3.5) and fully homomor-
phic encryption, there exists a scheme BARG = (Setup,P,V, Extract) such that for any family 𝐹 of monotone
circuit policies and family𝐺 of functions computable by polynomial-size circuits, BARG is a 𝐹 -batch argument
with 𝐺-functional subset extraction for relation Rfull with hashed inputs.

Combining Theorem 5.8 and Theorem 8.1 above, we have the following theorem about weakly unforge-
able aggregate signatures.

Theorem 8.2. Assuming a somewhere-extractable batch argument scheme (Definition 3.5) and fully homomor-
phic encryption, there exists a scheme AggS = (Setup,KeyAgg, SigAgg,AggVerify) such that for any family 𝐹
of functions computable by polynomial-size monotone circuits and for any digital signature scheme S with
trapdoor keys, AggS is a 𝐹 -aggregation scheme for S.

8.1 Construction and Proof Sketch

In this section we give a proof sketch for Theorem 8.1. We recall the construction of batch arguments for
monotone circuit policies from [BBK+23], and show that it can support functional subset extraction (defined
in Section 5.2).

In Section 8.1.1, we recall the notion of a predicate-extractable hash [BBK+23], and extend the definition
to support functional predicate extraction. This extension was in fact already used in [BBK+23], to get a
shorter common reference string for their SNARG.

53

Then, in Section 8.1.2 we recall the construction of a somewhere-extractable SNARG for monotone
policy BatchNP from [BBK+23]. We show that instantiating this construction with a functional predicate-
extractable hash, we get a batch argument with functional subset extraction.

8.1.1 Predicate Extractable Hash (PEHash)

In this section we define predicate-extractable hash with tags for bit-fixing predicates. The definition
is taken from [BBK+23] (Definition 5.4). This is a notion that generalizes the notion of a somewhere-
extractable hash [HW15, OPWW15]. Whereas a somewhere-extractable hash allows to generate a hash key
hk𝑖 programmed on an index 𝑖 and use a corresponding trapdoor td𝑖 to extract 𝑥𝑖 from rt = Hash(hk𝑖 , 𝑥), a
predicate-extractable hash for a family F allows to generate a hash key programmed on a global predicate
𝑓 ∈ F , and extract the value of 𝑓 (𝑥). [BBK+23] construct such hash families for the bit-fixing family of
predicates, where each 𝑓 ∈ F is defined by a set 𝐽 ⊆ [𝑘] and a string 𝑠 ∈ {0, 1} 𝐽 , and we have 𝑓 (𝑥) = 1 iff
∀𝑗 ∈ 𝐽 , 𝑥 𝑗 = 𝑠 𝑗 .

We consider an extended definition that supports functional predicate extraction (as in Remark 5.2
in [BBK+23]). This allows to program the PEHash on a function 𝑔 during key generation (rather than on a
predicate specified by 𝐽 , 𝑠), then specify an input 𝑦 to the function when hashing a string 𝑥 . This produces a
hash value, from which we can extract the value of the predicate 𝑓 = 𝑔(𝑦) on 𝑥 .

Syntax. Let 𝐺 = {𝐺_}_∈N be a collection of functions such that every 𝑔 ∈ 𝐺_ maps inputs to bit-fixing
predicates 𝑓 . For 𝑔 ∈ 𝐺_ , we denote its description length as a circuit by |𝑔 |.

A 𝐺-functional predicate extractable hash family PEHash with tags with respect to the bit-fixing
predicate family consists of the following polynomial-time algorithms:

Gen(1_, 𝑔)→ (hk, vk, td). This is a probabilistic setup algorithm that takes as input a security parameter 1_
in unary, and a function 𝑔 ∈ 𝐺_ . It outputs a hash key hk, verification key vk and trapdoor td.

Hash(hk, 𝑦, 𝑥, ®𝑡)→ v. This is a deterministic algorithm that takes as input a hash key hk, a function input𝑦, a
hash input 𝑥 ∈ {0, 1}𝑁 , and tags ®𝑡 = (𝑡1, . . . , 𝑡𝑁) ∈ ({0, 1}𝑇)𝑁 . It outputs a hash value v ∈ {0, 1}𝑇 ·poly(_).

Open(hk, 𝑦, 𝑥, ®𝑡, 𝑗)→ 𝜌 . This is a deterministic algorithm that takes as input a hash key hk, a function
input 𝑦, a hash input 𝑥 ∈ {0, 1}𝑁 , tags ®𝑡 = (𝑡1, . . . , 𝑡𝑁) ∈ ({0, 1}𝑇)𝑁 and an index 𝑗 ∈ [𝑁]. It outputs
an opening 𝜌 ∈ {0, 1}𝑇 ·poly(_).

Verify(vk, 𝑦, v, 𝑗, 𝑏, 𝑡, 𝜌)→ 0/1. This is a deterministic algorithm that takes as input a verification key vk, a
function input 𝑦, a hash value v ∈ {0, 1}𝑇 ·poly(_), an index 𝑗 ∈ [𝑁], a bit 𝑏 ∈ {0, 1}, a tag 𝑡 ∈ {0, 1}𝑇
and an opening 𝜌 ∈ {0, 1}𝑇 ·poly(_), and outputs 1 (accept) or 0 (reject).

Extract(td, 𝑦, v)→ 𝑢. This is a deterministic extraction algorithm that takes as input a trapdoor td, a
function input 𝑦 and a hash value v ∈ {0, 1}𝑇 ·poly(_), and outputs a bit 𝑢 ∈ {0, 1}.

ExtractIndex(td, 𝑦, v)→ 𝑗 . This is a deterministic extraction algorithm that takes as input a trapdoor td, a
function input 𝑦 and a hash value v ∈ {0, 1}𝑇 ·poly(_), and outputs an index 𝑗 ∈ [𝑁].

ExtractTag(td, 𝑦, v)→ 𝑡 . This is a deterministic extraction algorithm that takes as input a trapdoor td, a
function input 𝑦 and a hash value v ∈ {0, 1}𝑇 ·poly(_), and outputs a tag 𝑡 ∈ {0, 1}𝑇 .

A PEHash is required to satisfy the following basic properties, and additional consistency properties.

54

Definition 8.3 (PEHash Basic Properties). A𝐺-functional predicate extractable hash family PEHash satisfies
the following properties:

Completeness. For any _ ∈ N, any 𝑁,𝑇 , ℓ ≤ 2_ , any function 𝑔 ∈ 𝐺_ , any function input 𝑦 ∈ {0, 1}ℓ , any
index 𝑗 ∈ [𝑁], and any 𝑥 ∈ {0, 1}𝑁 and tags ®𝑡 = (𝑡1, . . . , 𝑡𝑁) ∈ ({0, 1}𝑇)𝑁 , let 𝑓 = 𝑔(𝑦), then

Pr
 Extract(td, v) = 𝑓 (𝑥) ∧
Verify(vk, 𝑦, v, 𝑗, 𝑥 𝑗 , 𝑡 𝑗 , 𝜌) = 1 :

(hk, vk, td)← Gen(1_, 𝑔),
v = Hash(hk, 𝑦, 𝑥, ®𝑡),
𝜌 = Open(hk, 𝑦, 𝑥, ®𝑡, 𝑗)

 = 1.

Succinctness. In the completeness experiment above, the size of the verification key vk and the hash value v
is poly(_). The size of the hash key hk is at most |𝑔|·poly(_).

Computational binding. For any poly-size adversary A and polynomial ℓ(_) there exists a negligible
function negl(·) such that for any _ ∈ N, any function 𝑔 ∈ 𝐺_ and any function input 𝑦 ∈ {0, 1}ℓ ,

Pr
[
Verify(vk, 𝑦, v, 𝑗, 0, 𝑡0, 𝜌0) = 1 ∧
Verify(vk, 𝑦, v, 𝑗, 1, 𝑡1, 𝜌1) = 1 : (hk, vk, td)← Gen(1_, 𝑔),

(v, 𝑗, 𝑡0, 𝑡1, 𝜌0, 𝜌1)← A(hk, vk)

]
≤ negl(_).

Function hiding. For any poly-size adversary A there exists a negligible function negl(·) such that for
every _ ∈ N and 𝑔0, 𝑔1 ∈ 𝐺_ such that |𝑔0 |= |𝑔1 |,

Pr
[
A(hk, vk) = 𝑏 : 𝑏 ← {0, 1}

(hk, vk, td)← Gen(1_, 𝑔𝑏)

]
≤ 1

2 + negl(_),

Definition 8.4 (PEHash Consistency Properties). The hash family is furthermore required to satisfy the
following consistency properties:

Index extraction correctness. For any _ ∈ N, any ℓ ≤ 2_ , any function 𝑔 ∈ 𝐺_ and function input
𝑦 ∈ {0, 1}ℓ such that for 𝑓 = 𝑔(𝑦) = (𝐽 , 𝑠) we have 𝐽 ̸= ∅, and any hash value v,

Pr
[
ExtractIndex(td, 𝑦, v) ∈ 𝐽 : (hk, vk, td)← Gen(1_, 𝑔)

]
= 1 .

Consistency of extraction. For any poly-size adversary A it holds that for any 𝑔 ∈ 𝐺_ , there exists a
negligible function negl(·) such that for any _ ∈ N,

Pr
 Extract(td, 𝑦, v) = 1 ∧ 𝑗 ∈ 𝐽 ∧
Verify(vk, 𝑦, v, 𝑗, 1 − 𝑠 𝑗 , 𝑡, 𝜌) = 1 :

(hk, vk, td)← Gen(1_, 𝑔),
(𝑦, v, 𝑗, 𝑡, 𝜌)← A(hk, vk),
(𝐽 , 𝑠) = 𝑔(𝑦)

 ≤ negl(_),

and

Pr

Extract(td, 𝑦, v) = 0 ∧
ExtractIndex(td, 𝑦, v) = 𝑗 ∧
Verify(vk, 𝑦, v, 𝑗, 𝑠 𝑗 , 𝑡, 𝜌) = 1

:
(hk, vk, td)← Gen(1_, 𝑔),
(𝑦, v, 𝑗, 𝑡, 𝜌)← A(hk, vk),
(𝐽 , 𝑠) = 𝑔(𝑦)

 ≤ negl(_).

Consistency of tag extraction. For any poly-size adversary A it holds that for any 𝑔 ∈ 𝐺_ , there exists a
negligible function negl(·) such that for any _ ∈ N,

Pr

Extract(td, 𝑦, v) = 0 ∧
ExtractIndex(td, 𝑦, v) = 𝑗 ∧
ExtractTag(td, 𝑦, v) ̸= 𝑡 ∧
Verify(vk, 𝑦, v, 𝑗, 1 − 𝑠 𝑗 , 𝑡, 𝜌) = 1

: (hk, vk, td)← Gen(1_, 𝑔)
(𝑦, v, 𝑗, 𝑡, 𝜌)← A(hk, vk)

55

Theorem 8.5 ([BBK+23], Theorem 5.3 and Remark 5.2). Assuming fully homomorphic encryption, there
exists a PEHash family with tags with respect to the bit-fixing predicate family, which is 𝐺-functional with
respect to any family 𝐺 of polynomial-size circuits.

8.1.2 Functional Subset Extraction from Functional PEHash

We now recall the construction of SNARGs for monotone policy BatchNP from [BBK+23], and replace the
PEHash with a functional PEHash to obtain a 𝐹 -batch argument with 𝐺-functional subset extraction, for
any family 𝐹 of monotone circuit policies and 𝐺 of polynomial size circuits. The construction uses the
following building blocks:

• A 𝐺 ′-functional PEHash family with tags (Definition 8.4)

(GenPEHT,HashPEHT,OpenPEHT,VerifyPEHT, ExtractPEHT, ExtractIndexPEHT, ExtractTagPEHT)

with respect to the bit-fixing predicate family, where 𝐺 ′ is a family of polynomial size circuits,
containing a function 𝑔′ for every 𝑔 ∈ 𝐺_ , defined as follows:

1. Receive an input 𝑦 ∈ {0, 1}ℓ and compute 𝑔(𝑦) = 𝐽 ⊆ [𝑘].
2. Output 𝑓 = (𝐽 , 𝑠) where 𝑠 = 0𝐽 is the all-zero string.

• A 𝐺 ′′-functional PEHash family

(GenPEH,HashPEH,OpenPEH,VerifyPEH, ExtractPEH, ExtractIndexPEH)

with respect to the bit-fixing predicate family, where 𝐺 ′′ is a family of polynomial size circuits,
containing a function 𝑔′′𝑖 for every 𝑔 ∈ 𝐺_ and 𝑖 ∈ [𝑑], defined as follows:

1. Receive an input 𝑦′ = (𝐶,𝑦) where 𝐶 ∈ 𝐹_ is a monotone circuit, and 𝑦 ∈ {0, 1}ℓ is an input to 𝑔.
2. Compute 𝑔(𝑦) = 𝐽 ⊆ [𝑘].
3. Let (𝑏∗1, . . . , 𝑏∗𝑁) be the values of all the wires in 𝐶 on input 1[𝑘]\𝐽 .
4. Let 𝐽 ′ ⊆ [𝑁] be the set of wires in the 𝑖th layer of 𝐶 whose values 𝑏∗ are 0.
5. Output 𝑓 = (𝐽 ′, 𝑠) where 𝑠 = 0𝐽 ′ is the all-zero string.

• A seBARG scheme (Definition 3.5)

(GenseBARG,PseBARG,VseBARG, ExtractseBARG).

We are now ready to describe our batch argument algorithms in Fig. 6.
The analysis of the construction above follows identically to the analysis of the somewhere-extractable

SNARG for monotone policy BatchNP in [BBK+23] Theorem 7.1. In particular, the 𝐺-functional subset
extraction property follows similarly to the somewhere argument of knowledge property in [BBK+23], and
using the functional properties of the PEHash. We thus obtain Theorem 8.1.

56

Gen(1_, 𝑔) does the following:

1. Generate (hkPEHT, vkPEHT, tdPEHT)← GenPEHT(1_, 𝑔′), for 𝑔′ ∈ 𝐺 ′
_

defined above.

2. For each 𝛽 ∈ {1, 2}, generate (hk(𝛽)
PEH, vk

(𝛽)
PEH, td

(𝛽)
PEH)← GenPEH(1_, 𝑔′′

𝛽
), where 𝑔′′

𝛽
is an arbitrary function

in 𝐺 ′′
_

.

3. Generate (crsseBARG, tdseBARG)← GenseBARG(1_, 𝐼) where 𝐼 ⊆ [𝑁] is initialized to {1, 2, 𝑁 }.
4. Let crs = (hkPEHT, vkPEHT, hk

(1)
PEH, vk

(1)
PEH, hk

(2)
PEH, vk

(2)
PEH, crsseBARG).

5. Output (crs, td = tdPEHT).

P(crs, 𝑦,𝐶,𝑀, 𝑧, 1𝑇 ,𝑤1, . . . ,𝑤𝑘) does the following:

1. Let (𝑏1, . . . , 𝑏𝑘) ∈ {0, 1}𝑘 such that 𝑏𝑖 = 1 iff 𝑀(𝑧, 𝑖,𝑤𝑖) accepts within 𝑇 steps.
2. Compute the values (𝑏1, . . . , 𝑏𝑁) of all the wires in the circuit 𝐶 on input (𝑏1, . . . , 𝑏𝑘).

3. Parse crs = (hkPEHT, vkPEHT, hk
(1)
PEH, vk

(1)
PEH, hk

(2)
PEH, vk

(2)
PEH, crsseBARG).

4. Compute vPEHT = HashPEHT(hkPEHT, 𝑦, (𝑏1, . . . , 𝑏𝑘), (𝑤1, . . . ,𝑤𝑘)).

5. Compute v(𝛽) = HashPEH(hk(𝛽)
PEH, (𝐶,𝑦), (𝑏1, . . . , 𝑏𝑁)) for 𝛽 ∈ {1, 2}.

6. Define an instance 𝑋 = (𝑀 ′, 𝑧′, 𝑁 ,𝑇) of BatchIndexTMSAT. The input 𝑧′ is defined as 𝑧′ =
(𝐶, 𝑥1, . . . , 𝑥𝑘 , vkPEHT, vPEHT, (vk(𝛽)

PEH, v
(𝛽))𝛽∈{1,2}). The batch size is set to 𝑁 . The Turing machine

𝑀 ′(𝑧′, 𝑗,𝑤 ′𝑗) is defined to operate as follows:

(a) Parse 𝑧′ = (𝐶,𝑀, 𝑧,𝑇 , vkPEHT, vPEHT, (vk(𝛽)
PEH, v

(𝛽))𝛽∈{1,2}).
(b) If 1 ≤ 𝑗 ≤ 𝑘 :

i. Parse𝑤 ′𝑗 = (𝑤 𝑗 , 𝑏 𝑗 , 𝜌PEHT, 𝜌
(1), 𝜌 (2)).

ii. Check that VerifyPEHT(vkPEHT, 𝑦, vPEHT, 𝑗, 𝑏 𝑗 ,𝑤 𝑗 , 𝜌PEHT) = 1.
iii. Check that VerifyPEH(vk(𝛽)

PEH, (𝐶,𝑦), v(𝛽), 𝑗, 𝑏 𝑗 , 𝜌
(𝛽)) = 1 for 𝛽 ∈ {1, 2}.

iv. Check that 𝑏 𝑗 = 1 iff 𝑀(𝑧, 𝑗,𝑤 𝑗) accepts within 𝑇 steps.
(c) If 𝑗 > 𝑘 :

i. Compute the 𝑗th gate of 𝐶 , 𝑔 𝑗 = (𝑗, 𝑗1, 𝑗2, 𝑐 ∈ {AND,OR}).

ii. Parse𝑤 ′𝑗 =
(
𝑏 𝑗 , 𝑏 𝑗1 , 𝑏 𝑗2 ,

(
𝜌

(𝛽)
𝑗
, 𝜌

(𝛽)
𝑗1
, 𝜌

(𝛽)
𝑗2

)
𝛽∈{1,2}

)
.

iii. Check that VerifyPEH(vk(𝛽)
PEH, (𝐶,𝑦), v(𝛽), 𝑗, 𝑏 𝑗 , 𝜌

(𝛽)
𝑗

) = 1 for 𝛽 ∈ {1, 2}.

iv. Check that VerifyPEH(vk(𝛽)
PEH, (𝐶,𝑦), v(𝛽), 𝑗𝛼 , 𝑏 𝑗𝛼 , 𝜌

(𝛽)
𝑗𝛼

) = 1 for 𝛼, 𝛽 ∈ {1, 2}.
v. Check that 𝑏 𝑗 = 𝑐(𝑏 𝑗1 , 𝑏 𝑗2). (That is, check that the gate is satisfied.)

vi. If 𝑗 = 𝑁 is the output wire then check that 𝑏 𝑗 = 1.
The description length of 𝑀 is a constant. Finally, the time bound 𝑇 ′ is set so that the pseudocode above
terminates.

7. For every 𝑗 ∈ [𝑁], construct a witness (𝑗,𝑤 ′𝑗) for 𝑋 , using the OpenPEH,OpenPEHT algorithms to produce
openings for (𝑏1, . . . , 𝑏𝑁) and (𝑏1, . . . , 𝑏𝑘) with tags (𝑤1, . . . ,𝑤𝑘) as appropriate.

8. Compute 𝜋seBARG = PseBARG(crsseBARG, 𝑀 ′, 𝑧′, 1𝑇
′
,𝑤 ′1, . . . ,𝑤

′
𝑁

).
9. Output 𝜋 = (vPEHT, v(1), v(2), 𝜋seBARG).

57

V(crs, 𝑦, 𝑥, 𝜋) does the following:

1. Parse crsV = (vkPEHT, vk
(1)
PEH, vk

(2)
PEH, crsseBARG).

2. Parse 𝑥 = (𝐶,𝑀, 𝑧,𝑇).
3. Parse 𝜋 = (vPEHT, v(1), v(2), 𝜋seBARG).
4. Define 𝑋 = (𝑀 ′, 𝑧′, 𝑁 ,𝑇 ′) as above.
5. OutputVseBARG(crsseBARG, 𝑋, 𝜋seBARG).

Extract(td, 𝑦, 𝜋) does the following:

1. Parse 𝜋 = (vPEHT, v(1), v(2), 𝜋seBARG).
2. Compute 𝑗 = ExtractIndexPEHT(td, 𝑦, vPEHT), and𝑤 𝑗 = ExtractTag(td, 𝑦, vPEHT).
3. Output (𝑗,𝑤 𝑗).

Figure 6: Construction of BARGs with Functional Subset Extraction

References

[BBK+23] Zvika Brakerski, Maya Farber Brodsky, Yael Tauman Kalai, Alex Lombardi, and Omer Paneth.
SNARGs for monotone policy batch NP. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 252–283. Springer, Heidelberg, August
2023. 2, 4, 5, 6, 8, 9, 10, 15, 18, 22, 23, 25, 53, 54, 56, 63

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017. 2

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 111–120. ACM Press, June 2013. 2

[BCPR16] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. SIAM J. Comput., 45(5):1910–1952, 2016. 2

[BDKP22] Shany Ben-David, Yael Tauman Kalai, and Omer Paneth. Verifiable private information
retrieval. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part III, volume 13749 of
LNCS, pages 3–32. Springer, Heidelberg, November 2022. 11, 13, 35, 37, 39, 42, 68, 69

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 416–432. Springer, Heidelberg, May 2003. 1, 5

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press, May 1988. 5

58

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation and
batch NP verification from standard computational assumptions. In Hamed Hatami, Pierre
McKenzie, and Valerie King, editors, 49th ACM STOC, pages 474–482. ACM Press, June 2017.
2, 7

[BKP+24] Nir Bitansky, Chethan Kamath, Omer Paneth, Ron Rothblum, and Prashant Nalini Vasudevan.
Batch proofs are statistically hiding. 2024. 21

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg,
December 2001. 5

[BTZ22] Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive
threshold signatures: BLS and FROST. IACR Cryptol. ePrint Arch., page 833, 2022. 4

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure proto-
cols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293 of
LNCS, page 462. Springer, Heidelberg, August 1988. 5

[CDM00] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient zero-knowledge proofs of
knowledge without intractability assumptions. IACR Cryptol. ePrint Arch., page 45, 2000. 6

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang.
Correlation intractability and SNARGs from sub-exponential DDH. In Helena Handschuh
and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 635–668.
Springer, Heidelberg, August 2023. 2, 6, 19

[Chi] Chia Network. BLS signatures in C++ using the RELIC toolkit. https://github.com/
Chia-Network/bls-signatures. Accessed: 2019-05-06. 1

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for
NP from standard assumptions. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV,
volume 12828 of LNCS, pages 394–423, Virtual Event, August 2021. Springer, Heidelberg. 2, 6

[CJJ22] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd
FOCS, pages 68–79. IEEE Computer Society Press, February 2022. 2, 6, 7, 8, 16, 18, 19, 22

[CMRR23] Lily Chen, Dustin Moody, Andrew Regenscheid, and Angela Robinson. Digital
signature standard (dss). 2023. https://www.nist.gov/publications/
digital-signature-standard-dss-3. 5

[Cra97] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD Thesis,
University of Amsterdam, January 1997. 6

[DCX+23] Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier Nieto, Benedikt Bünz, and Ling Ren.
Threshold signatures from inner product argument: Succinct, weighted, and multi-threshold.
IACR Cryptol. ePrint Arch., page 598, 2023. 5

[Des88] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Heidelberg, August 1988. 1,
5

59

https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
https://www.nist.gov/publications/digital-signature-standard-dss-3
https://www.nist.gov/publications/digital-signature-standard-dss-3

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990. 1, 5

[DFI] DFINITY. go-dfinity-crypto. https://github.com/dfinity/
go-dfinity-crypto. Accessed: 2019-05-06. 1

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive
arguments for batch-NP and applications. In 63rd FOCS, pages 1057–1068. IEEE Computer
Society Press, October / November 2022. 2, 4, 6

[dra17] drand: Randomness Beacon Service, 2017. https://drand.love/docs/
cryptography/. 1

[EJN17] Steve Ellis, Ari Juels, and Sergey Nazarov. Chainlink: A decentralized oracle network. Retrieved
March, 11:2018, 2017. 1

[FHPS13] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 513–530. Springer, Heidelberg, August 2013.
5

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology - CRYPTO ’86,
Santa Barbara, California, USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer, 1986. 6

[GJM+23] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and Yinuo
Zhang. hinTS: Threshold signatures with silent setup. IACR Cryptol. ePrint Arch., page 567,
2023. 5

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987. 5

[HJKS22] James Hulett, Ruta Jawale, Dakshita Khurana, and Akshayaram Srinivasan. SNARGs for P
from sub-exponential DDH and QR. In Orr Dunkelman and Stefan Dziembowski, editors, EU-
ROCRYPT 2022, Part II, volume 13276 of LNCS, pages 520–549. Springer, Heidelberg, May / June
2022. 6

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 3–34. Springer, Heidelberg, April 2015. 4, 5

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Tim Roughgarden, editor, ITCS 2015, pages 163–172. ACM,
January 2015. 54

[IN83] K Itakura and K Nakamura. A public key cryptosystem suitable for digital multisignatures. In
NEC Research and Development, 1983. 1, 5

60

https://github.com/dfinity/go-dfinity-crypto
https://github.com/dfinity/go-dfinity-crypto
https://drand.love/docs/cryptography/
https://drand.love/docs/cryptography/

[KLVW23] Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch argu-
ments and RAM delegation. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the
55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 1545–1552. ACM, 2023. 2, 6, 18, 19

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In
Moses Charikar and Edith Cohen, editors, 51st ACM STOC, pages 1115–1124. ACM Press, June
2019. 6

[KPY20] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unambigu-
ous proofs and PPAD-hardness. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 652–673. Springer, Heidelberg, August
2020. 2

[KVZ21] Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical
soundness, post-quantum security, and SNARGs. In Kobbi Nissim and Brent Waters, editors,
TCC 2021, Part I, volume 13042 of LNCS, pages 330–368. Springer, Heidelberg, November 2021.
18

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequential aggregate
signatures from trapdoor permutations. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 74–90. Springer, Heidelberg, May 2004. 5

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential
aggregate signatures and multisignatures without random oracles. In Serge Vaudenay, editor,
EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485. Springer, Heidelberg, May / June
2006. 5

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl
Pomerance, editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg,
August 1988. 17

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th FOCS, pages 436–453. IEEE Computer
Society Press, November 1994. 2

[NHN+19] Cong T. Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Dusit Niyato, Huynh Tuong Nguyen,
and Eryk Dutkiewicz. Proof-of-stake consensus mechanisms for future blockchain networks:
Fundamentals, applications and opportunities. IEEE Access, 7:85727–85745, 2019. 1

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, May 14-17, 1989, Seattle, Washington, USA, pages 33–43. ACM, 1989. 16

[OPWW15] Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations
of somewhere statistically binding hashing and positional accumulators. In Tetsu Iwata
and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 121–145.
Springer, Heidelberg, November / December 2015. 54

[Pol20] Poly Network. Poly Network, 2020. https://poly.network/. 1

61

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments.
In 63rd FOCS, pages 1045–1056. IEEE Computer Society Press, October / November 2022. 6

[RS09] Markus Rückert and Dominique Schröder. Aggregate and verifiably encrypted signatures from
multilinear maps without random oracles. In ISA, volume 5576 of Lecture Notes in Computer
Science, pages 750–759. Springer, 2009. 5

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990. 5

[sep21] Threshold Signature Wallets, 2021. https://sepior.com/mpc-blog/
threshold-signature-wallets. 1

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov 1979. 5

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances in Cryptology
- EUROCRYPT 2000, International Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 207–220. Springer, 2000. 4

[Tou84] Sam Toueg. Randomized byzantine agreements. In Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, PODC ’84, page 163–178. Association for
Computing Machinery, 1984. 1

[WW22] Brent Waters and David J. Wu. Batch arguments for NP and more from standard bilinear
group assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II,
volume 13508 of LNCS, pages 433–463. Springer, Heidelberg, August 2022. 2, 6, 19

62

https://sepior.com/mpc-blog/threshold-signature-wallets
https://sepior.com/mpc-blog/threshold-signature-wallets

A BARGs with Adaptive Subset Extraction for Low-Depth Policies

In this section we give a batch argument with adaptive subset extraction for families of monotone policies
implemented by a low-depth monotone circuits. The construction is identical to the SNARGs for low-depth
monotone BatchNP circuits in [BBK+23]. We show that with minor modifications to the proof of soundness,
their scheme satisfies adaptive subset extraction (as in Definition 5.2). Most of the construction and proof
are taken verbatim from [BBK+23].

We proceed by defining low-depth monotone circuit families, then state our main theorem and a
corollary.

Definition A.1 (Depth-𝑑 Monotone Circuit Policies). Let 𝑑(_) be a function and let 𝐹 = {𝐹_}_∈N be a family
of functions. 𝐹 is a depth-𝑑 family of policies if there exist polynomials 𝑁 (_), 𝑘(_) such that each 𝑓 ∈ 𝐹_ is a
monotone function 𝑓 : {0, 1}𝑘 → {0, 1} computable by a monotone circuit 𝐶 of size 𝑁 and depth 𝑑 .

Theorem A.2. Assuming a somewhere extractable batch argument scheme and a hash family with local
opening, there exists a scheme BARG = (Setup,P,V, Extract) such that for any family 𝐹 of depth-𝑑 policies
where 𝑑 = 𝑂(log _), BARG is a 𝐹 -batch argument with 𝑂(𝑘 · 2𝑑)-adaptive subset extraction for relation Rfull.

Corollary A.3. Assuming a somewhere extractable batch argument scheme and a hash family with local
opening, there exists a scheme AggS = (Setup,KeyAgg, SigAgg,AggVerify) such that for any family 𝐹 of
depth-𝑑 policies where 𝑑 = 𝑂(log _) and for any digital signature scheme S, AggS is a 𝐹 -aggregation scheme
for S.

In the rest of this section, we prove Theorem A.2. Using Theorem 5.4 we immediately obtain Corol-
lary A.3.

In what follows we construct 𝐹 -batch arguments with adaptive subset extraction for low-depth monotone
circuits for relation Rfull. Our construction uses the following building blocks:

• A hash family with local opening (Definition 3.2)

(GenHT,HashHT,OpenHT,VerifyHT) .

• A somewhere extractable batch argument scheme (Definition 3.5)

(GenseBARG,PseBARG,VseBARG, ExtractseBARG) .

We now describe the batch argument algorithms.

Setup(1_) does the following:

1. Generate hkHT ← GenHT(1_).
2. For every 𝑡 ∈ [_], sample 𝑖𝑡 ← [2𝑡] uniformly at random.
3. For every 𝑡 ∈ [_], let (crsseBARG,𝑡 , tdseBARG,𝑡)← GenseBARG(1_, 𝐼) where 𝐼 = {𝑖𝑡 , 𝑁 }.
4. Output crs = (hkHT, (crsseBARG,𝑡)𝑡 ∈[_]), td = (𝑖𝑡 , tdseBARG,𝑡)𝑡 ∈[_].

P(crs,𝐶,𝑀, 𝑧, 1𝑇 ,𝑤1, . . . ,𝑤𝑘) does the following:

1. Parse crs = (hkHT, (crsseBARG,𝑡)𝑡 ∈[_]).

63

2. Let crsseBARG = crsseBARG,𝑡 for 𝑡 = ⌈log𝑘⌉.
3. Compute the values of all the wires in the circuit𝐶 on the input (𝑏1, . . . , 𝑏𝑘), where𝑏𝑖 = 𝑀(𝑧, 𝑖,𝑤𝑖).

Denote these values by (𝑏1, . . . , 𝑏𝑁).
4. Compute rt = HashHT(hkHT, (𝑏1, . . . , 𝑏𝑁)).
5. Define an instance 𝑋 = (𝑀 ′, 𝑧′, 𝑁 ,𝑇 ′) of BatchIndexTMSAT. The input 𝑧′ is defined as 𝑧′ =

(𝐶,𝑀, 𝑧,𝑇 , hkHT, rt). The batch size is set to 𝑁 , the size of the circuit 𝐶 . The Turing machine
𝑀 ′(𝑧′, 𝑗,𝑤 ′𝑗) is defined to operate as follows:
(a) Parse 𝑧′ = (𝐶,𝑀, 𝑧, hkHT, rt).
(b) If 1 ≤ 𝑗 ≤ 𝑘 :

i. Parse𝑤 ′𝑗 = (𝑤 𝑗 , 𝑏 𝑗 , 𝜌).
ii. Check that VerifyHT(hkHT, rt, 𝑗, 𝑏 𝑗 , 𝜌) = 1.

iii. Check that 𝑏 𝑗 = 1 iff 𝑀(𝑧, 𝑗,𝑤 𝑗) accepts within 𝑇 steps.
(c) If 𝑗 > 𝑘 :

i. Compute the 𝑗th gate of 𝐶 , 𝑔 𝑗 =
(
𝑗, 𝑗1, 𝑗2, 𝑐 𝑗 ∈ {AND,OR}

)
.

ii. Parse𝑤 ′𝑗 =
(
𝑏 𝑗 , 𝑏 𝑗1, 𝑏 𝑗2, 𝜌 𝑗 , 𝜌 𝑗1, 𝜌 𝑗2

)
.

iii. Check that VerifyHT(hkHT, rt, 𝑗, 𝑏 𝑗 , 𝜌 𝑗) = 1.
iv. Check that VerifyHT(hkHT, rt, 𝑗𝛼 , 𝑏 𝑗𝛼 , 𝜌 𝑗) = 1 for 𝛼 ∈ {1, 2}.
v. Check that 𝑏 𝑗 = 𝑐 𝑗 (𝑏 𝑗1, 𝑏 𝑗2). (That is, check that the gate is satisfied.)

vi. If 𝑗 = 𝑁 is the output wire then check that 𝑏 𝑗 = 1.
The description length of𝑀 is a constant. Finally, the time bound𝑇 ′ is set so that the pseudocode
above terminates.

6. For every 𝑗 ∈ [𝑁], construct a witness 𝑤 ′𝑗 for 𝑋 , using the OpenHT algorithm to produce
openings for (𝑏1, . . . , 𝑏𝑁) as appropriate.

7. Compute 𝜋seBARG = PseBARG(crsseBARG, 𝑀 ′, 𝑧′, 1𝑇
′
,𝑤 ′1, . . . ,𝑤

′
𝑁

).
8. Output 𝜋 = (rt, 𝜋seBARG).

V(crs, 𝑥, 𝜋) does the following:

1. Parse crs = (hkHT, (crsseBARG,𝑡)𝑡 ∈[_]), 𝑥 = (𝐶,𝑀, 𝑧,𝑇) and 𝜋 = (rt, 𝜋seBARG).
2. Let crsseBARG = crsseBARG,𝑡 for 𝑡 = ⌈log𝑘⌉.
3. Define 𝑋 = (𝑀 ′, 𝑧′, 𝑁 ,𝑇 ′) as above.
4. OutputVseBARG(crsseBARG, 𝑋, 𝜋seBARG).

Extract(td, 𝜋) does the following:

1. Parse td = (𝑖𝑡 , tdseBARG,𝑡)𝑡 ∈[_] and 𝜋 = (rt, 𝜋seBARG).
2. Let (𝑖, tdseBARG) = (𝑖𝑡 , tdseBARG,𝑡) for 𝑡 = ⌈log𝑘⌉.
3. Extract𝑤 ′𝑖 ,𝑤 ′𝑁 = ExtractseBARG(tdseBARG, 𝜋seBARG).
4. Parse𝑤 ′𝑖 = (𝑤𝑖 , 𝑏𝑖 , 𝜌).
5. Output (𝑖,𝑤𝑖).

64

Proof of Theorem A.2. Let 𝑑 = 𝑂(log Λ) and let 𝐹 be a family of depth-𝑑 monotone circuit policies.
We prove that the construction above is a 𝐹 -batch argument with 𝑂(𝑘 · 2𝑑)-adaptive subset extraction for
relation Rfull.

Completeness. Follows directly from the completeness of the underlying hash family with local opening
and seBARG.

Succinctness. By the seBARG and hash family efficiency we have |𝜋 |≤ 𝑚 · poly(_).

𝑂(𝑘 · 2𝑑)-Adaptive Subset Extraction. Fix any polynomial 𝑇 (_), any poly-size cheating prover P∗, and
any sequence {𝑓_ ∈ 𝐹_}_∈N computable by circuits {𝐶_}_∈N. Let EXP be the experiment defined in the
adaptive subset extraction requirement:

• Generate (crs, td)← Setup(1_).

• Run the cheating prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).

• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇).

• Extract (𝑖,𝑤𝑖)← Extract(td, 𝜋).

For 1 ≤ 𝑗1, 𝑗2 ≤ 𝑁 , we define an alternative experiment EXP𝑗1, 𝑗2 as follows:

• Sample (crs, td)← Setup𝑗1, 𝑗2 (1
_), where Setup𝑗1, 𝑗2 is identical to Setup, except that for 𝑡 = ⌈log𝑘⌉ it

runs GenseBARG on { 𝑗1, 𝑗2} rather than on {𝑖, 𝑁 } for a random 𝑖 .

• Run the prover and obtain (𝑀,𝑧, 𝜋, 𝐽)← P∗(crs).

• Let 𝑥 = (𝑓_, 𝑀, 𝑧,𝑇).

• Extract𝑤 ′(1)
𝑗1
,𝑤
′(2)
𝑗2
← ExtractseBARG(tdseBARG, 𝜋seBARG), where we parse 𝜋 = (rt, 𝜋seBARG).

• For 𝛼 ∈ {1, 2}, parse:

1. If 1 ≤ 𝑗 ≤ 𝑘 , parse𝑤 ′(𝛼)
𝑗𝛼

= (𝑤 (𝛼)
𝑗𝛼
, 𝑏

(𝛼)
𝑗𝛼
, 𝜌

(𝛼)
𝑗𝛼

).

2. If 𝑗 > 𝑘 , parse𝑤 ′(𝛼)
𝑗𝛼

= (𝑏(𝛼)
𝑗𝛼
, 𝑏

(𝛼)
𝑗𝛼,1
, 𝑏

(𝛼)
𝑗𝛼,2
, 𝜌

(𝛼)
𝑗𝛼
, 𝜌

(𝛼)
𝑗𝛼,1
, 𝜌

(𝛼)
𝑗𝛼,2

).

For ease of notation, if 𝑗1 = 𝑗2 = 𝑗 , we use the notation EXP𝑗 instead of EXP𝑗, 𝑗 , and skip the superscript (1)
when referring to𝑤 ′(1)

𝑗
and the values parsed from it.

For a wire 𝑗 in the circuit 𝐶 computing function 𝑓 , we denote by 𝐶 𝑗 (𝑥) ∈ {0, 1}, the value of the 𝑗th
wire in 𝐶 when computing the circuit on the input 𝑥 .

Lemma A.4. There exists a negligible function negl(·) such that for every _ ∈ N, there exists an input wire
𝑗 ∈ [𝑘] such that

Pr
EXP𝑗

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑏 𝑗 > 𝐶 𝑗 (1[𝑘]\𝐽)

]
≥ 1

2𝑑(_) · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− negl(_) .

65

Before proving Lemma A.4, we first argue that the lemma indeed implies 𝑂(𝑘 · 2𝑑)-adaptive subset
extraction. SinceV(crs, 𝑥, 𝜋) = 1 implies thatVseBARG(crsseBARG, 𝑋, 𝜋seBARG) = 1, by the seBARG somewhere
argument of knowledge we get that except with negligible probability, 𝑀 ′(𝑧′, 𝑗,𝑤 ′𝑗) = 1, which means that
𝑀(𝑧, 𝑗,𝑤 𝑗) = 𝑏 𝑗 = 1. So, we get

Pr
EXP𝑗

[
𝑗 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑗,𝑤 𝑗) = 1

]
≥ 1

2𝑑(_) · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− negl(_) .

By seBARG index hiding, the same holds when switching to the experiment EXP𝑗,𝑁 , except with
negligible probability. We recall that EXP is identical to running EXP𝑖,𝑁 for a random 𝑖 ∈ [2𝑡] for 𝑡 = ⌈log𝑘⌉,
and in particular with probability 1

2𝑡 ≥
1

2𝑘 we get the experiment EXP𝑗,𝑁 , so

Pr
EXP

[
𝑖 ∈ 𝐽 ∧ 𝑀(𝑧, 𝑖,𝑤𝑖) = 1

]
>

1
2𝑘(_)

(
1

2𝑑(_) · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− negl(_)

)
,

which proves 𝑂(𝑘 · 2𝑑)-adaptive subset extraction.

Proof of Lemma A.4. Let `1, `2 be the negligible functions in the seBARG index hiding and somewhere
argument of knowledge properties (for the adversary P∗ and corresponding polynomials 𝑘, 𝑛,𝑚,𝑇), and
`3 be the negligible function in the hash tree collision resistance wrt opening property. Define `𝑖 (_) =
2(𝑑(_) − 𝑖 + 1)(`1(_) + `2(_) + `3(_)).

It suffices to prove the following inductive claim: for every _ ∈ N, let 𝐶 be the circuit computing 𝑓_
then for every 0 ≤ 𝑖 ≤ 𝑑(_), there exists a wire 𝑗 in the 𝑖th layer of 𝐶 such that

Pr
EXP𝑗

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑏 𝑗 > 𝐶 𝑗 (1[𝑘]\𝐽)

]
≥ 1

2𝑑(_)−𝑖 · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖 (_) .

First, for 𝑖 = 𝑑 , we take the output wire 𝑗 = 𝑁 . By the index hiding of the seBARG we have that

Pr
EXP𝑁

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
≥ Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `1(_) .

Now, by the seBARG argument of knowledge, we have thatV(crs, 𝑥, 𝜋) implies 𝑀 ′(𝑧′, 𝑁 ,𝑤 ′
𝑁

) = 1 except
with negligible probability `2, which implies that 𝑏𝑁 = 1. So, since 𝐶𝑁 = 𝑓 , we get

Pr
EXP𝑁

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑏𝑁 > 𝐶𝑁 (1[𝑘]\𝐽)

]
≥ Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `1(_) − `2(_) .

This proves the base case. Now assume by induction that the lemma holds for 𝑖 + 1, and let 𝑗 in the
𝑖 + 1th layer of𝐶 given by the lemma. By the somewhere argument of knowledge property of the underlying
seBARG, we have

Pr
EXP𝑗

V(crs, 𝑥, 𝜋) = 1 ∧
𝑀 ′(𝑧′, 𝑗,𝑤 ′𝑗) = 1 ∧
𝑏 𝑗 > 𝐶 𝑗 (1[𝑘]\𝐽)

 ≥
1

2𝑑(_)−𝑖−1 · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖+1(_) − `2(_) .

We now analyze the 𝑗th gate. We know that 𝑀 ′(𝑧′, 𝑗,𝑤 ′𝑗) = 1 implies 𝑏 𝑗 = 𝑐 𝑗 (𝑏 𝑗1, 𝑏 𝑗2). Moreover, by
monotonicity, if we also have 𝑏 𝑗 > 𝐶 𝑗 (1[𝑘]\𝐽), we get 𝑏 𝑗𝛼 > 𝐶 𝑗𝛼 (1[𝑘]\𝐽) for some 𝛼 ∈ {1, 2}. Therefore, there
exists an 𝛼 ∈ {1, 2} for which we have

Pr
EXP𝑗

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑏 𝑗𝛼 > 𝐶 𝑗𝛼 (1[𝑘]\𝐽)

]
≥ 1

2𝑑(_)−𝑖 · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖+1(_) − `2(_) . (4)

66

It remains to prove the following claim, which shows that the lemma holds for 𝑗𝛼 , and thus finishes the
inductive step.

Claim A.5.

Pr
EXP𝑗𝛼

[
V(crs, x, 𝜋) = 1 ∧
𝑏 𝑗𝛼 > 𝐶 𝑗𝛼 (1[𝑘]\𝐽)

]
≥ 1

2𝑑(_)−𝑖 · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖 (_) .

Proof of Claim A.5. Recall that EXP𝑗 is a shorthand for EXP𝑗, 𝑗 , and rewrite Eq. (4) as follows:

Pr
EXP𝑗,𝑗

[
V(crs, 𝑥, 𝜋) = 1 ∧ 𝑏

(1)
𝑗𝛼

> 𝐶 𝑗𝛼 (1[𝑘]\𝐽)
]

≥ 1
2𝑑(_)−𝑖 · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖+1(_) − `2(_) .

We first switch to the hybrid experiment EXP𝑗, 𝑗𝛼 . By the index hiding of seBARG, we have

Pr
EXP𝑗,𝑗𝛼

[
V(crs, 𝑥, 𝜋) = 1 ∧ 𝑏

(1)
𝑗𝛼

> 𝐶 𝑗𝛼 (1[𝑘]\𝐽)
]

≥ 1
2𝑑(_)−𝑖 · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖+1(_) − `2(_) − `1(_) .

Let Correct𝑀 denote the event that 𝑀 ′(𝑧′, 𝑗,𝑤 ′(1)
𝑗

) = 1 and 𝑀 ′(𝑧′, 𝑗𝛼 ,𝑤 ′(2)
𝑗𝛼

) = 1. By the somewhere argument
of knowledge property of the seBARG, we have that in the above experiment, Correct𝑀 holds except with
negligible probability `2.

Now, observe that𝑀(𝑧, 𝑗,𝑤 ′(1)
𝑗

) = 1 implies thatVerifyHT(hkHT, rt, 𝑗𝛼 , 𝑏
(1)
𝑗𝛼
, 𝜌

(1)
𝑗𝛼

) = 1, whereas𝑀(𝑧, 𝑗𝛼 ,𝑤 ′(2)
𝑗𝛼

) =
1 implies VerifyHT(hkHT, rt, 𝑗𝛼 , 𝑏

(2)
𝑗𝛼
, 𝜌

(2)
𝑗𝛼

) = 1. By the collision resistance wrt opening property of the HT

family, we get that except with negligible probability, 𝑏(1)
𝑗𝛼

= 𝑏(2)
𝑗𝛼

. Therefore,

Pr
EXP𝑗,𝑗𝛼

[
V(crs, 𝑥, 𝜋) = 1 ∧ 𝑏

(2)
𝑗𝛼

> 𝐶 𝑗𝛼 (1[𝑘]\𝐽)
]

≥ 1
2𝑑(_)−𝑖 · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖+1(_) − `2(_) − `1(_) − `3(_) .

Finally, we switch to the experiment EXP𝑗𝛼 , 𝑗𝛼 . By the index hiding of seBARG,

Pr
EXP𝑗𝛼 ,𝑗𝛼

[
V(crs, 𝑥, 𝜋) = 1 ∧ 𝑏

(2)
𝑗𝛼

> 𝐶 𝑗𝛼 (1[𝑘]\𝐽)
]

≥ 1
2𝑑(_)−𝑖 · Pr

EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖+1(_) − `2(_) − 2`1(_) − `3(_) .

Applying the same argument using somewhere argument of knowledge and collision resistance wrt opening,
we get that in the above experiment we also have 𝑏(1)

𝑗𝛼
> 𝐶 𝑗𝛼 (1[𝑘]\𝐽) except with negligible probability,

which implies

Pr
EXP𝑗𝛼

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑏 𝑗𝛼 > 𝐶 𝑗𝛼 (1[𝑘]\𝐽)

]
≥ 1

2𝑑(_)−𝑖 · Pr
EXP

[
V(crs, 𝑥, 𝜋) = 1 ∧
𝑓 (1[𝑘]\𝐽) = 0

]
− `𝑖 (_) .

This concludes the proof of Claim A.5, Lemma A.4 and Theorem A.2.

67

B Verifiable Private Information Retrieval (vPIR)

In this section we define vPIR [BDKP22]. For simplicity and consistency with Section 6, we make the
following modifications:

• The Setup and Query algorithms are merged.

• We do not consider verification with multiple queries.

• We only consider publicly verifiable vPIR schemes.

• We only consider read-once bounded-space constraints.

• We consider simulation security for non-adaptive constraints. This differs from the definition in
[BDKP22], that considers adaptively chosen constraints, which requires limiting the constraint’s
description length to 𝑁 = 𝑂(log Λ). However, as noted in a remark in their work (and as we prove in
Section 6 where we analyze a stronger form of vPIR), simulation security for non-adaptive constraints
holds even when their length is 𝑁 ≤ Λ.

Read-once bounded-space constraints. For parameters 𝑇, 𝑆 , we define a read-once bounded-space
constraint represented as a Turing machine Γ ∈ {0, 1}𝑁 . We say that a database 𝐷 = (𝑟𝑖)𝑖∈[𝑘] ∈ {0, 1}𝑘×𝜔
satisfies Γ if and only if for every 𝑖 ∈ [𝑘 − 1] there exists 𝑐𝑖 ∈ {0, 1}𝑆 such that Γ(𝑐𝑖−1, 𝑟𝑖) outputs 𝑐𝑖 within 𝑇
steps where 𝑐0, 𝑐𝑘 are some fixed starting and accepting configurations. We denote by𝑈𝑇,𝑆 (Γ, 𝐷) the bit that
indicates whether or not 𝐷 satisfies the constraint Γ.

Syntax. A verifiable private information retrieval (vPIR) scheme consists of following polynomial-time
algorithms:

Query(1_, 𝑡)→ (dk, vk, 𝑞). This is a probabilistic algorithm that takes as input the security parameter 1_
and a row index 𝑡 ∈ [2_]. It outputs a decryption key dk, a verification key vk and a query 𝑞.

Answer(𝐷, 1𝑇 , Γ, 𝑞)→ 𝑎. This is a deterministic algorithm that takes as input a database 𝐷 ∈ {0, 1}𝑘×𝜔 , a
time bound 1𝑇 , a constraint Γ, and a query 𝑞. It outputs an answer 𝑎.

Dec(dk, 𝑎)→ 𝑟 . This is a deterministic algorithm that takes as input a decryption key dk, and an answer 𝑎.
It outputs a row 𝑟 ∈ {0, 1}𝜔 .

Verify(vk, Γ, 𝑎)→ 0/1. This is a deterministic algorithm that takes as input a verification key vk, a constraint
Γ, and an answer 𝑎. It outputs a bit (1 to accept, 0 to reject).

DefinitionB.1. AΛ-secure vPIR scheme (Query,Answer,Dec,Verify) forU is required to satisfy the following
properties:

Completeness. For any _ ∈ N, any 𝑇, 𝑁, 𝑆, 𝑘, 𝜔 ≤ 2_ , database 𝐷 ∈ {0, 1}𝑘×𝑤 , row index 𝑡 ∈ [𝑘] and
constraint Γ ∈ {0, 1}𝑁 such that𝑈𝑇,𝑆 (Γ, 𝐷) = 1,

Pr
[
Dec(dk, 𝑎) = 𝐷[𝑡] ∧
Verify(vk, Γ, 𝑎) = 1 : (dk, vk, 𝑞)←Query(1_, 𝑡)

𝑎 ← Answer(𝐷, 1𝑇 , Γ, 𝑞)

]
= 1 .

68

Efficiency. In the completeness experiment above, |vk|+|𝑞 |+|𝑎 |≤ 𝜔 · poly(_, log(𝑘𝑇)).

Λ-Privacy. For any poly(Λ)-size adversary A and function 𝑘(_) ≤ Λ(_) there exists a negligible function
negl such that for any _ ∈ N and row indices 𝑡0, 𝑡1 ∈ [𝑘(_)],

Pr
[
A(vk, 𝑞) = 𝑏 : 𝑏 ← {0, 1}

(dk, vk, 𝑞)←Query(1_, 𝑡𝑏)

]
≤ 1

2 + negl(Λ) .

Λ-Simulation security. For any functions 𝑇 (_), 𝑁 (_), 𝑘(_), 𝜔(_) ≤ Λ(_), function 𝑆(_) = 𝑂(log Λ), any
poly(Λ)-size adversary A and polynomial 𝑃 there exists a poly(Λ)-size simulator Sim such that for any
poly(Λ)-size distinguisher D, _ ∈ N, constraint Γ and row index 𝑡 ∈ [𝑘],��Pr

[
D(RealA(_, Γ, 𝑡)) = 1

]
− Pr

[
D(IdealSim(_, Γ, 𝑡)) = 1

] �� < 1
𝑃 (Λ) ,

where the experiments RealA(_, Γ, 𝑡) and IdealSim(_, Γ, 𝑡) are defined as follows:

RealA(_, Γ, 𝑡):
• Generate a query (dk, vk, 𝑞)←Query(1_, 𝑡).
• Run the adversary and obtain 𝑎 ← A(vk, 𝑞).
• If Verify(vk, Γ, 𝑎) = 1 output Dec(dk, 𝑎). Otherwise output ⊥.

IdealSim(_, Γ, 𝑡):
• Run the simulator and obtain 𝐷 ← Sim(_, Γ).
• If𝑈𝑇,𝑆 (Γ, 𝐷) = 1 output 𝐷[𝑡]. Otherwise output ⊥.

Theorem B.2 ([BDKP22]). Assuming a Λ-secure somewhere extractable batch argument scheme and a
Λ-secure hash family with local opening, there exists a Λ-secure vPIR scheme for read-once bounded-space
constraints.

69

	Introduction
	Our Results
	Related Work

	Technical Overview
	Aggregate Signatures for Bounded-Space Monotone Policies
	Weakly Unforgeable Aggregate Signatures for Polynomial-Size Monotone Policies

	Preliminaries
	Digital Signatures
	Hash Family with Local Opening
	Somewhere Extractable Batch Arguments (seBARGs)

	Aggregate Signatures for Monotone Policies
	Fast Aggregation

	Batch Arguments for Monotone Policies
	Batch Arguments with Adaptive Subset Extraction
	Batch Arguments with Functional Subset Extraction
	From Adaptive Subset Extraction to Aggregate Signatures
	From Functional Subset Extraction to Weakly Unforgeable Aggregate Signatures
	Signature with Trapdoor Keys
	Construction

	Composable Verifiable Private Information Retrieval for Policies
	Definition
	Construction
	Analysis

	BARGs with Adaptive Subset Extraction for Bounded-Space Policies
	Adaptive Subset Extraction for Bounded-Space Policies
	Construction.
	Analysis.

	Adaptive Subset Extraction with Sublinear Prover for Threshold Policies
	Construction.
	Analysis.

	BARGs with Functional Subset Extraction for Monotone Circuit Policies
	Construction and Proof Sketch
	Predicate Extractable Hash (PEHash)
	Functional Subset Extraction from Functional PEHash

	BARGs with Adaptive Subset Extraction for Low-Depth Policies
	Verifiable Private Information Retrieval (vPIR)

