
Fully-Succinct Multi-Key Homomorphic Signatures from Standard
Assumptions

Gaspard Anthoine1,2 , David Balbás1,2 , and Dario Fiore1

1 IMDEA Software Institute, Madrid, Spain
{gaspard.anthoine, david.balbas, dario.fiore}@imdea.org

2 Universidad Politécnica de Madrid, Madrid, Spain

Abstract. Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data
signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness
of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness
where signatures are succinct in the total number of inputs but grow linearly with the number of users
involved in the computation. The only exception is a SNARK-based construction which relies on a strong
notion of knowledge soundness in the presence of signing oracles that not only requires non-falsifiable
assumptions but also encounters some impossibility results.
In this work, we present the first construction of MKHS that are fully succinct (also with respect to
the number of users) while achieving adaptive security under standard falsifiable assumptions. Our
result is achieved through a novel combination of batch arguments for NP (BARGs) and functional
commitments (FCs), and yields diverse MKHS instantiations for circuits of unbounded depth based
on either pairing or lattice assumptions. Additionally, our schemes support efficient verification with
pre-processing, and they can easily be extended to achieve multi-hop evaluation and context-hiding.

1 Introduction

The rise of decentralized and remote computing has sparked an interest in cryptographic solutions
for secure outsourcing of data to untrusted parties. In parallel to the effort of ensuring data privacy,
which is the object of study of, e.g., works on fully homomorphic encryption [Gen09], another
important goal is to provide authenticity for the data used during computation – a problem that
can be described as follows.

Consider a scenario where a user, Alice, authenticates a large data set m1, . . . , mn, producing
signatures σ1, . . . , σn, and stores both data and signatures on an untrusted platform. Subsequently,
a third entity, called the evaluator, performs a computation on Alice’s data, denoted as y =
f(m1, . . . , mn), and sends y to another user, Bob. How can the evaluator convince Bob that y is the
correct result obtained by running f on data signed by Alice? A naive solution is for the evaluator
to send to Bob the n inputs along with the corresponding signatures, and for Bob to verify their
validity and to recompute f . A natural question is whether the evaluator can convince Bob with
short communication, i.e., by sending o(n) bits of information.

Homomorphic Signatures. Homomorphic signatures (HS) [JMSW02] stand out as a solution for
the above problem of authenticity-preserving computation. They allow the evaluator to compute on
signed data, deriving not only the output y but also a signature σf,y. Anyone can publicly verify
the tuple (f, y, σf,y) and get convinced of the correctness of y as the result of computing f on
Alice’s data, without having to download the large data input. Crucially, in HS the signature σf,y is

A short version of this paper appears in the proceedings of CRYPTO 2024.

https://orcid.org/0009-0004-3977-617X
https://orcid.org/0000-0003-4864-1125
https://orcid.org/0000-0001-7274-6600

succinct, namely its size should remain independent, or at most grow sublinearly in the number of
messages n used in the computation.3

Multi-Key Homomorphic Signatures. In many real-world scenarios, however, computations
are performed on data that belongs to (and is authenticated by) multiple entities. Typical examples
include aggregating data collected by several hospitals for clinical studies, smart monitoring of
signals produced by IoT devices (e.g., medical/environmental/traffic sensors, wearable devices, etc.),
or transactions made by different users in a blockchain. In this context, the standard notion of
homomorphic signatures falls short, since it requires that all messages are signed under the same key.
To address this issue, Fiore, Mitrokotsa, Nizzardo, and Pagnin introduced multi-key homomorphic
signatures (MKHS) [FMNP16]. In a MHKS, the evaluator computes a function f over n messages
m1, . . . , mn, where each mi is authenticated by someone in a set of t parties that we denote by
id1, . . . , idt. In this case, the resulting signature σf,y must vouch for the correctness of y as output of
f on inputs that were signed under public signature keys vk1, . . . , vkt, where each vki corresponds
to idis.

The construction of succinct MKHS conveys a greater challenge than for their single-user
counterparts. All the MKHS constructions in the standard model [FMNP16, FP18, SBB19, SFVA21]
achieve only a weak notion of succinctness in which, for a function f with n inputs signed by t
distinct users, the size of the evaluated signature σf,y grows as poly(λ, t, log n), i.e., at least linearly
in the number t of users involved in the computation. Even if this level of succinctness may be
acceptable in applications where a few users provide each a large amount of data, it is clearly
undesirable in scenarios that involve computing on data from many parties, such as the case of IoT
sensors or users in a blockchain.

The only MKHS construction that overcomes this succinctness limitation uses SNARKs [LTWC18],
which in this context are a double-edged sword. On the good side, SNARKs lead to fully succinct
signatures whose size grows only polynomially in the security parameter, i.e., |σf,y| = poly(λ). As a
drawback, the security of SNARK-based MKHS relies on non-falsifiable assumptions, since this is
known to be the case for SNARKs [GW11]. Even more problematically, the security of MKHS from
SNARKs [LTWC18] needs the stronger notion of knowledge-soundness in the presence of signing
oracles, for which there are some impossibility results [FN16].

The state of the art in MKHS therefore raises the following open question:

Is it possible to build a fully-succinct multi-key homomorphic signature scheme under standard
falsifiable assumptions?

1.1 Our Contribution

In this paper, we answer the above question in the affirmative, proposing the first multi-key
homomorphic signatures that achieve full succinctness while being secure in the standard model
under falsifiable assumptions. Our construction relies on a novel combination of standard digital
signatures, succinct functional commitments (FC) [LRY16], and batch arguments for NP (BARG)
[KPY19, CJJ21]. Our MKHS allows the evaluation of the same functions supported by the FC
scheme, and inherits succinctness from the succinctness of the FC and of the BARG. We present a
simplified version of our main theorem below.

3 HS may incorporate additional useful properties, such as amortized efficiency (enabling verification in time
independent of the complexity of f , after preprocessing) and context-hiding (preventing the verifier to learn
information on the inputs beyond the computation’s output); see Section 3 for more details.

2

Theorem 3 (simplified). Let FC be a functional commitment scheme for a class of functions F ,
BARG a somewhere-extractable batch argument for NP, SEC a somewhere extractable commitment,
and Σ a digital signature scheme. Then, there exists an adaptively-secure multi-key homomorphic
signature MKHS for F . Moreover, if the BARG generates proofs of size sBARG and the FC generates
proofs of size sFC, then the signatures produced by MKHS have size sMKHS ≈ sFC + sBARG.

Both BARGs and FCs have been in the spotlight in recent years and currently offer several
instantiations from different (falsifiable) assumptions, which in turn yield MKHS for all functions
from a variety of assumptions. For instance, we can instantiate our MKHS from building blocks
based on correlation-intractable hash functions and probabilistic checkable proofs, such as the
BARGs from [CJJ21, CJJ22, CGJ+23] and an FC for circuits based on the SNARG for P from
[KLVW23], to obtain constructions from standard assumptions such as LWE or subexponential
DDH. Alternatively, we can use the algebraic BARG of [WW22] based on the k-Lin assumption,
and the algebraic FC from [BCFL23] based on the (falsifiable) HiKer assumption, obtaining a
pairing-based construction for unbounded-depth circuits. We summarize these instantiations below.

Corollary 2 (simplified). Assuming the hardness of either (1) subexponential DDH, or (2) learning
with errors, there exists a multi-key homomorphic signature MKHS for boolean circuits of unbounded
depth d with public parameter size poly(λ, log n) and signature size poly(λ, log n) · d.

Corollary 3 (simplified). Assuming the hardness of HiKer and k-Lin for k ≥ 2, there exists a multi-
key homomorphic signature MKHS for arithmetic circuits of unbounded depth d and bounded width w
from algebraic building blocks, with public parameter size O

(
w5)

and signature size O
(
λ · d2)

+poly(λ).

Additional Properties. Compared to the weakly succinct scheme of [FMNP16], our MKHS
schemes achieve a variety of useful properties. First, we do not need to bound a priori the number of
values to be signed, but only the class of functions (to the extent required by the FC); this feature
is useful in applications where one computes on portions of very large data (e.g., sliding-window
statistics on unbounded data streams). Second, our schemes are secure against adversaries that can
adaptively corrupt users, whereas [FMNP16] can only handle non-adaptive corruptions. Third, our
MKHS have efficient verification time, after preprocessing the function; this is similar to [FMNP16]
though we support a more flexible preprocessing model (see Section 3.2). Furthermore, all our
instantiations allow multi-hop sequential composition of different functions (Section 5.1) and can be
compiled to provide context-hiding via a generic NIZK-based technique (Theorem 2).

Other Contributions. In order to broaden the instantiations of our constructions and to enable
the evaluation of unbounded-depth circuits, we give two additional results on output-succinctness
and unbounded FCs, which are generic and may be of independent interest.

– In Theorem 1, we show that any succinct FC for n-to-1 functions can be transformed into a
n-to-m FC that is fully succinct in the output, i.e., the proof size does not grow with m.

– In Theorem 4, we show that any suitably expressive FC can be boosted into a single-input
chainable FC [BCFL23], which is sufficient to construct FC schemes for unbounded-depth circuits.

Beyond our result for MKHS, the techniques underlying our construction present, to the best of
our knowledge, a novel approach for building an advanced cryptographic primitive that was only
known to be (with full succinctness) realizable from SNARKs. We expect that our techniques can

3

be applied in other settings, leading to further constructions of advanced primitives from standard
assumptions.

1.2 Technical Overview

Background: Labeled Programs. In a multi-key homomorphic signature scheme, the evaluator
must declare the evaluated function as a labeled program [GW13]. A labeled program is specified by
a tuple (f, ℓ1, . . . , ℓn) where f :Mn →Mm is a function represented by an arithmetic or boolean
circuit, and the ℓi are labels of the inputs. Without loss of generality, we assume that ℓi := (idi, τi),
where idi is an identity and τi an arbitrary string.

Upon evaluating the homomorphic signature, the n messages m1, . . . , mn ∈M that are collected
by the evaluator are each uniquely associated to labels ℓ1, . . . , ℓn, and therefore to identities
id1, . . . , idn (not necessarily all distinct). Additionally, each of these identities is associated to a
public key vki, that can be used to verify the authenticity of a message-label pair (mi, ℓi). Program
labelling is required to properly define both correctness and security of MKHS, since e.g. otherwise
the order in which the mi’s are input to f is unspecified.

Warm-Up: Aggregating Signatures with BARGs . The initial inspiration for our MKHS
construction lies in the mechanism to construct aggregate signatures from Waters and Wu [WW22].
In an aggregate signature scheme [BGLS03], an aggregator (or also evaluator) can take multiple
message-signature pairs (m1, σ1), . . . , (mn, σn) from different users, and compress all the signatures
into a succinct σAgg. Their construction is based on batch arguments for NP (BARGs), which are a
standard-model proof system for batches of NP statements. In other words, given a boolean circuit
C, a BARG allows one to prove that n statements x1, . . . , xn, have NP witnesses w1, . . . , wn such
that C(xi, wi) accepts for every i ∈ [n]. Moreover, the size of the proof π grows sublinearly with n.

To construct aggregate signatures, [WW22] start from any digital signature scheme Σ =
(KeyGen, Sign, Ver). Then, to sign messages, aggregate signatures, and verify the aggregation proof,
their algorithm broadly proceeds as follows:

– Aggregate: To aggregate n message-signature pairs, (m1, σ1), . . . , (mn, σn), let xi = (mi, vki) be
the statements and wi = σi be the witnesses for the circuit C(xi, wi) that checks:

Σ.Ver(vki, mi, σi) = 1

Then, the aggregate signature σAgg is a BARG proof on (C, {xi}, {wi}).
– Verify: To verify σAgg, one runs the BARG verification algorithm on (C, {xi}).

A mechanism to aggregate signatures can be seen as the “first step” of the evaluation of a
fully-fledged MKHS. Indeed, similarly to aggregate signatures, in MKHS one also needs to prove
that all signatures and messages are valid in a succinct manner. However, while in aggregate
signatures the verifier knows all the messages (m1, . . . , mn), in MKHS one only knows the result
y = f(m1, . . . , mn). Therefore the evaluation step must additionally prove in a succinct manner
the correctness of f ’s computation. This is what makes the realization of fully succinct MKHS
challenging. A natural attempt to deal with this problem is to extend the BARG circuit by placing
mi in the witness, and by additionally proving that y = f(m1, . . . , mn). An example of such a
language could be the following:

Σ.Ver(vki, mi|ℓi, σi) = 1 ∧ y = f(m1, . . . , mn),

4

where xi = (ℓi, vki, f, y) and wi = (mi, σi). Unfortunately, the computation of f can be “global”,
i.e., involve messages from all the witnesses, and thus the language is not compatible with that
supported by BARGs.

Proving f(m1, . . . , mn): Functional Commitments. To address the problem of f being global,
our second idea is to resort to functional commitments (FCs). A functional commitment scheme
[LRY16] allows an entity to first commit to some input x in c, and then open c to f(x) for some
function f ∈ F , where F is the class of functions supported by the scheme. Importantly for our
goal, FCs ensure commitments and openings to be succinct and can be realized from falsifiable
assumptions.

By using FCs, the evaluator could create a commitment c to the inputs of the computation
(m1, . . . , mn) and then use the opening feature to prove the evaluation y = f(m1, . . . , mn). This
way we can take this “global” task outside of the BARG. Unfortunately, doing two separate proofs,
one for the BARG and one for the FC, does not suffice. The issue is that there is no connection
between the mi committed inside the FC and the messages whose signatures are verified in the
BARG circuit C, i.e., in Σ.Ver(vki, mi|ℓi, σi). To integrate FCs and BARGs into a working solution,
we need to be able to link the commitment c to the messages mi that are in the witnesses wi of
C. One natural example of such a connection may consist of showing that, at every local step i, c
opens to message mi at position i (i.e., à la vector commitment), a local check that could be easily
integrated in the circuit C(xi, wi) and proven with a BARG. This approach, while giving correctness,
is unsuccessful for the security proof. At a very high level, the MKHS adversary produces a forgery
which contains a commitment c∗ and a functional-opening π∗ to y∗ ̸= f(m1, . . . , mn). To break
the security of the FC we would need to come up with another functional-opening to a different
value, say the honest output f(m1, . . . , mn). The reduction could compute this by itself if we had
the guarantee that c∗ is a commitment to (m1, . . . , mn) but this is not ensured; we can only use
the BARG to extract, for a single index i at a time, a position-opening to a validly signed mi at
position i in c∗. This is however not enough to break the evaluation binding of the FC.

Our Solution: Proving FC updates in the BARG. To get around the above problem, our
approach consists of iteratively computing c inside the BARG circuit. We start by defining a sequence
of partial commitments c0, . . . , cn, where the i-th commitment commits to the first i messages.
Namely, let ci ← FC.Com(ck, (m1, . . . , mi, 0, . . . , 0)). Then, at step i of the BARG proof, C(xi, wi)
verifies a proof πi that ci and ci−1 only differ on mi at position i. In other words, that if we update
ci−1 with mi at position i, then we obtain ci.

For this idea to work, we require two properties from our FC. One, determinism, such that
we can compare commitments without having to open them. Two, local updatability, such that
there exists an efficient update verification algorithm FC.VerUpd that runs in constant (or at least
sublinear) time in n. Moreover, update verification should only require a succinct section cki of the
commitment key. We describe a simplified version of the resulting BARG circuit in Figure 1.

Given the description of C, our construction of MKHS can be summarized as follows:

– Sign: To sign a message mi with label ℓi under key ski, compute and output σi ← Σ.Sign(ski, mi|ℓi).
– Evaluate: To evaluate (f, ℓ1, . . . , ℓn) on n message-signature pairs (m1, σ1), . . . , (mn, σn), com-

pute:
• An FC commitment c← FC.Com(ck, (m1, . . . , mn)).
• A BARG proof πσ for C(x1, w1) ∧ · · · ∧ C(xn, wn).
• An FC opening proof πf that c opens to y = f(m1, . . . , mn) on f .

5

Description of C(x, w) (simplified):
Statement: x = (vki, cki, ℓi, i)
Witness: w = (mi, σi, πi, ci−1, ci)
Circuit:

– If i = 1, check that ci−1 = FC.Com(ck, 0).
– If i = n, check that ci = c.
– Check that:

Σ.Ver(vki, mi|ℓi, σi) = 1
∧ FC.VerUpd(cki, i, ci−1, 0, ci, mi, πi) = 1

Fig. 1: Simplified description of the BARG circuit C in our MKHS construction. The commitment c
is hardwired into the circuit.

Then, the output signature is σf,y = (c, πσ, πf).
– Verify: To verify σf,y, simply check the BARG and FC proofs w.r.t. c.

We note that our actual construction in Section 4 is slightly more complex, as it additionally
involves a somewhere extractable commitment scheme (SEC) which we require to connect the
consecutive steps i− 1 and i of the BARG and for the security proof to go through.

Security and Proof Strategy. The security notion for MKHS considers adversaries that can
make signing queries for messages and labels of their choice and it captures that it should be hard
for the adversary to (1) claim valid messages and signatures that were never received from the
signing oracle, and (2) forge the output of the computation of the labeled program (f, ℓ1, . . . , ℓn).
The notion is adaptive as the adversary may arbitrarily expose parties’ secret keys, yet compromised
keys cannot be involved in a forgery.

Our security proof proceeds by partitioning the winning condition in multiple events, according
to the type of forgery that is produced by the adversary, and then handles each event separately. The
most interesting component of the proof, and arguably the hardest technical challenge of this work, is
to deal with the event when the adversary produces a forgery for y ̸= f(m1, . . . , mn), where the (deter-
ministic) commitment to the messages c∗ output by A is dishonest, c∗ ̸= FC.Com(ck, (m1, . . . , mn)).

To bound the probability of this event, the general proof strategy is to show that all partial
commitments ci for i ∈ [n] must have been computed honestly. We define multiple hybrids for each
index i, which implement a ‘sliding window’ strategy where we roughly: (1) extract from both
the BARG and the SEC at step i, (2) compare the extracted ci to their honest counterparts, and
(3) extract the message mi and signature σi (a potential forgery) from the adversary’s output,
such that we can certify the validity of the i-th update. Then, we “reboot” the BARG and SEC
extraction and start again at step i + 1. From the above proof strategy, steps (1) and (2) follow
the blueprint of a line of work on succinct delegation schemes (also known as SNARGs for P)
[KPY19, GZ21, KVZ21, CJJ22, KLVW23], whereas step (3) requires to go a few steps beyond.
Notably, in contrast to delegation schemes where the proven computation is deterministic, in our
MKHS scheme the statement includes a non-deterministic part, messages and signatures, that are
not available to the verifier.

6

1.3 Related Work

Homomorphic Signatures. The concept of homomorphic signatures was introduced by Desmedt
[Des93] and Johnson et al. [JMSW02] and properly formalized by Boneh and Freeman [BF11].
Starting from seminal works on linearly-homomorphic signatures, e.g., [BFKW09, GKKR10, AL11,
CFW12, Fre12, LPJY13, CFGV13, CFN15], the expressivity of HS has significantly improved,
capturing bounded-degree polynomials [BF11, CFW14, CFT22], and circuits of logarithmic depth
[KNYY19, CFT22], bounded polynomial depth [GVW15], and unbounded depth [BCFL23, GU24].
Among these works, the closest to ours in terms of techniques is that of Catalano, Fiore and Tucker
[CFT22] who first proposed to use functional commitments to build HS. In their solution, each
signer signs a commitment to the vector with mi in position i and 0 elsewhere; the evaluator
builds a commitment to the inputs using the additive homomorphic property and uses a (single-key)
linearly-homomorphic signature to prove that the commitment is correctly aggregated. Unfortunately
generalizing this approach to the multi-key setting fails, as there exists no fully-succinct MKHS
scheme, not even for linear functions. Our solution uses a similar idea of employing an FC of the
inputs; however we develop a different set of techniques to validate the correct authentication, in
the multi-key setting, of the committed inputs.

Multi-Key HS. Fiore et al. [FMNP16] introduced the definition of MKHS and proposed a
construction that supports circuits of bounded depth and is weakly succinct (see earlier for a
detailed comparison). Lai et al. [LTWC18] proposed the first fully succinct MKHS by using SNARKs.
Compared to ours, their construction achieves the stronger notion of unforgeability under insider
corruption, which tolerates adversaries that can even corrupt users involved in the input of a
computation. Unfortunately [LTWC18] also shows that MKHS secure in this model imply SNARGs
and thus need non-falsifiable assumptions. The state of the art in MKHS includes works that have
investigated how to construct MKHS schemes starting from single-key HS [FP18, SFVA21], as well
as constructions that aim for concrete efficiency for linear functions [AP19, SBB19]. However, with
the only exception of the SNARK-based solution of [LTWC18], all these works feature signatures
whose size grows linearly in the number of users.

Aggregate Signatures. The concept of aggregate signatures was introduced by Boneh et. al.
[BGLS03]. Their initial construction was pairing-based and relied on random oracles. Since then, con-
structions have also been proposed from multilinear maps [RS09] and indistinguishability obfuscation
[HKW15]. In recent years, progress on building BARGs for NP sparked multiple constructions of ag-
gregate signatures from standard assumptions. Examples include [CJJ21, DGKV22, WW22, Goy24]
for n-out-of-n policies, and [NWW23, BCJP24] for monotone policies.

2 Preliminaries

Notation. We denote by N the set of natural numbers > 0. We denote the security parameter by
λ ∈ N. We call a function ϵ negligible, denoted ϵ(λ) = negl(λ), if ϵ(λ) = O(λ−c) for every constant
c > 0, and call a function p(λ) polynomial, denoted poly, if p(λ) = O(λc) for some constant c > 0.
We say that an algorithm is probabilistic polynomial time (PPT) if it consumes randomness and
its running time is bounded by some p(λ) = poly(λ). For a finite set S, x←$ S denotes sampling x
uniformly at random in S. For an algorithm A, we write y ← A(x) for the output of A on input
x. For a positive n ∈ N, [n] is the set {1, . . . , n}. We denote vectors x and matrices M using bold

7

fonts. We define a message space M which is common to all the cryptographic primitives used in
this work. The operator | refers to the concatenation.

2.1 Digital Signatures

Definition 1 (Digital signature). A digital signature scheme Σ = (KeyGen, Sign, Ver) is defined
as the following tuple of efficient algorithms.

KeyGen(1λ)→ (sk, vk): On input the security parameter, creates a public-private key pair (sk, vk)
Sign(sk, m)→ σ: On input a message m ∈M and the secret key sk, generates a signature σ.
Ver(vk, σ, m)→ b: Given a signature σ, a message m ∈M and a public key pk, outputs b ∈ {0, 1},

indicating acceptance or rejection.

We say that the signature scheme is correct if for any admissible m ∈ M and all choices of
randomness, if (sk, vk)←$ KeyGen(1λ) and σ ←$ Sign(sk, m), then Ver(vk, σ, m) = 1.

Definition 2 (EUF-CMA security for signatures). Let Σ be a signature scheme. Existential
unforgeability, or EUF-CMA security, for Σ is defined via the game EUF-CMAA,Σ(λ) depicted in
Figure 2. We define the advantage of adversary A in the game

Adveufcma
A,Σ (λ) := Pr[EUF-CMAA,Σ(λ) = 1].

We say that Σ is EUF-CMA if for all PPT adversaries A we have Adveufcma
A,Σ (λ) = negl(λ).

EUF-CMAA,Σ(λ):

(sk, vk)←$ Σ.KeyGen(1λ)
LSig ← ∅

(m, σ)← AOSign(pk)
Output 1 iff Σ.Ver(pk, σ, m) = 1 ∧m ̸∈ LSig

Oracle OSign(m)

σ ←$ Σ.Sign(sk, m)
LSig ← LSig ∪ {m}
return σ

Fig. 2: EUF-CMA security game for a signature scheme Σ.

2.2 Somewhere Extractable Commitments

We recall the notion of somewhere extractable commitment scheme from [CJJ22, WW22], which
is closely related to the notion of somewhere statistically binding hash functions introduced in
[HW15, OPWW15]. In a nutshell, a somewhere extractable commitment is a vector commitment
[CF13] with a dual-mode, programmable commitment key dk. In extractable mode, a trapdoor td
allows one to extract at the programmed location i∗. Moreover, a commitment key in extractable
mode is indistiguishable from a key in normal mode.

Without loss of generality, we adopt the convention that SEC admits local verification, where
the commitment key dk naturally splits into sub-keys {dki}i∈[n], not necessarily disjoint. Then, the
verification algorithm at location i requires only to read dki. If this property does not apply to a
given SEC scheme, one can simply let dki := dk ∀i ∈ [n].

8

Definition 3 (Somewhere Extractable Commitment, adapted from [CJJ22, WW22]).
A somewhere extractable commitment scheme SEC with local verification is a tuple of algorithms
SEC = (Setup, Com, Open, Ver) defined as follows.

Setup(1λ, 1n, B)→ dk : On input the security parameter λ, the input length n, and the block size B,
outputs a commitment key dk.

Com(dk, x)→ (c, aux) : On input the commitment key dk, and a vector x ∈ MnB, outputs a
commitment c and auxiliary input aux.

Open(dk, aux, i)→ πi : On input the commitment key dk, the auxiliary input aux, and an index i,
outputs a local opening πi.

Ver(dki, c, i, xi, πi)→ b : On input the (local) verification key dki, the commitment c, an index
i ∈ [n], an input xi ∈MB, and a proof πi, outputs a bit b ∈ {0, 1}.

In addition, SEC must include the following trapdoor-extraction algorithms:

TdSetup(1λ, 1n, B, i∗)→ (dk, td) works as the setup algorithm, and additionally outputs a trapdoor
td associated to index i∗.

Ext(td, c, i∗)→ xi∗ On input a trapdoor td, a commitment c and an index i∗, extracts an input xi∗.

Moreover, the algorithms must satisfy the following properties:

Correctness. For any λ ∈ N, any integers n, B, index i ∈ [n], and admissible inputs x ∈MnB,

Pr

Ver(dki, c, i, xi, πi) = 1

∣∣∣∣∣∣∣
dk← Setup(1λ, 1n, B, i)
(c, aux)← Com(dk, x)
πi ← Open(dk, aux, i)

 = 1

Succinct local verification. For any admissible set of parameters, there exists a function sSEC(λ, n, B) =
poly(λ, B) · o(n) such that the following properties hold:
– Succinct local verification keys: |dki| ≤ sSEC(λ, n, B).
– Succinct commitments: |c| ≤ sSEC(λ, n, B).
– Succinct local openings: |πi| ≤ sSEC(λ, n, B).
– Fast local verification: Ver(dki, c, i, xi, πi) runs in time ≤ sSEC(λ, n, B).

Setup indistinguishability. For any PPT adversary A, and any integers n, B,

Pr
[
A(dk) = 1

∣∣∣∣∣ i∗ ← A(1λ, 1n, B)
(dk, td)← TdSetup(1λ, 1n, B, i∗)

]

−Pr
[
A(dk) = 1

∣∣∣∣∣ i∗ ← A(1λ, 1n, B)
dk← Setup(1λ, 1n, B)

]
≤ negl(λ)

Somewhere extractability. For any PPT adversary A, and any integers n, B,

Pr

Ver(dki∗ , c, i∗, xi∗ , πi∗) = 1
∧ Ext(td, c, i∗) ̸= xi∗

∣∣∣∣∣∣∣
i∗ ← A(1λ, 1n, B)
(dk, td)← TdSetup(1λ, 1n, B, i∗)
(c, xi∗ , πi∗)← A(dk)

 ≤ negl(λ)

9

2.3 Batch Arguments for NP

A Batch Argument for NP (BARG) is a proof system for a particular subclass of NP, which is the
conjunction of k NP statements corresponding to the same NP language. More precisely, given an
NP language L, the prover attests that k statements x1, . . . , xk belong to L. In terms of efficiency,
BARGs produce proofs π whose size is sublinear in the number of instances k. As opposed to
SNARKs, the proof is linear in the size of the circuit C(xi, wi) that decides the language given an
input xi and an NP witness wi.

The usual security notion for BARGs is somewhere soundness. This means that we can program
the BARG crs at some index i∗ such that it is hard for any PPT adversary to produce a valid
BARG proof when xi∗ ̸∈ L. Additionally, a crs programmed at i∗ should be indistiguishable from a
crs programmed at any other index, or at no index.

We adapt the definition of BARGs for NP from [CJJ22, KLVW23]. We directly introduce
BARGs with somewhere extractability, also known as seBARGs [KLVW23], since these will be the
ones required by the constructions in this paper. In a nutshell, a somewhere extractable BARG
strengthens the usual BARG somewhere soundness by allowing us to extract, with the help of a
trapdoor, the witness wi∗ corresponding to the index i∗ that was set at the time of programming
the crs. We describe BARGs for boolean circuits C : {0, 1}n → {0, 1}.

Definition 4 (BARG for NP [CJJ22, KLVW23]). A somewhere extractable batch argument
(BARG) for NP is a tuple of algorithms BARG = (Setup, Prove, Ver):

Setup(1λ, k, 1|C|)→ crs : on input the security parameter λ, a number of instances k and a circuit
size |C|, outputs a common reference string crs.

Prove(crs, C, {(xi, wi)}i∈[k])→ π : on input the common reference string crs, a boolean circuit C :
{0, 1}n → {0, 1}, and a batch of input-witness pairs {(xi, wi)}i∈[k], outputs a proof π.

Ver(crs, C, {xi}i∈[k], π)→ b : on input the common reference string crs, a circuit C, a batch of state-
ments {xi}i∈[k], and a proof π, accepts (b = 1) or rejects (b = 0).

In addition, BARG must include the following trapdoor-extraction algorithms:

TdSetup(1λ, k, 1|C|, i∗)→ (crs, td) works as Setup, and additionally outputs a trapdoor td associated
to the index i∗ that is given as input.

Ext(td, C, {xi}i∈[k], π)→ w∗ On input a trapdoor td, a circuit C, a batch of statements {xi}i∈[k] and
a proof π, outputs a witness wi∗ corresponding to the position specified by the trapdoor.

Moreover, the algorithms must satisfy the following properties:

Completeness. For any λ, k ∈ N, any boolean circuit C : {0, 1}n → {0, 1}, all statement-witness
pairs (xi, wi)i∈[k] such that C(xi, wi) = 1 for all i ∈ [k],

Pr
[

Ver(crs, C, {xi}i∈[k], π) = 1
∣∣∣∣∣crs← Setup(1λ, k, 1|C|)
π ← Prove(crs, C, {(xi, wi)}i∈[k])

]
= 1

Succinctness. For any admissible set of parameters as before, there exists a function sBARG(λ, k, |C|) =
poly(λ, log k, |C|) such that |π| ≤ sBARG(λ, k, |C|). Besides, if |crs| ≤ sBARG(λ, k, |C|) then we say
that BARG is crs-succinct.

10

Setup indistinguishability. For any PPT adversary A, any k, |C| = poly(λ), and index i∗ ∈ [k],

Pr
[
A(crs) = 1

∣∣∣ (crs, td)← TdSetup(1λ, k, 1|C|, i∗)
]

−Pr
[
A(crs) = 1

∣∣∣crs← Setup(1λ, k, 1|C|)
]
≤ negl(λ).

Somewhere argument of knowledge. For any PPT adversary A, any k, |C| = poly(λ), and
index i∗ ∈ [k],

Pr

Ver(crs, C, {xi}i∈[k], π) = 1
∧ C(xi∗ , w) ̸= 1

∣∣∣∣∣∣∣
(crs, td)← TdSetup(1λ, k, 1|C|, i∗)
(C, {xi}i∈[k], π)← A(crs)
w∗ ← Ext(td, {xi}i∈[k], C, π)

 ≤ negl(λ)

Definition 5 (Efficient Verification). A BARG for NP has efficient amortized verification (also
called split verification in [WW22]) if there exists a pair of algorithms:

PreVer(crs, {xi}i∈[k])→ vk : On input the common reference string crs and k instances {xi}i∈[k], it
creates a succinct verification key vk such that |vk| ≤ poly(λ, log k, |xi|)

EffVer(vk, C, π)→ b : On input the succinct verification key vk, the circuit C and a proof π, accepts
(b = 1) or rejects (b = 0).

Furthermore, EffVer(vk, C, π) runs in time bounded by poly(λ, |vk|, |C|, |π|) = poly(λ, log k, |C|).

2.4 Functional Commitments

A Functional Commitment (FC) [LRY16] is a powerful primitive that allows an entity to first commit
to some input x ∈Mn and then open the commitment to f(x) for some admissible function f ∈ F .
Both the commitment c and the opening proof π are succinct. In the description below, we follow
the syntax from [BCFL23].

Definition 6 (Functional Commitments). Let M be some domain, n = poly(λ) and let F ⊆
{f : Mn → Mm} be a family of functions representable as arithmetic or boolean circuits over
M for any integer m = poly(λ). A functional commitment scheme for F is a tuple of algorithms
FC = (Setup, Com, Open, Ver) that works as follows:

Setup(1λ, 1n)→ ck on input the security parameter λ and the vector length n, outputs a commitment
key ck.

Com(ck, x; r)→ (c, aux) on input the commitment key ck, a vector x ∈Mn and (possibly) random-
ness r, outputs a commitment c and related auxiliary information aux.

Open(ck, aux, f)→ π on input the commitment key ck, auxiliary information aux, and a function
f ∈ F , returns an opening proof π.

Ver(ck, c, y, f, π)→ b ∈ {0, 1} on input the commitment key ck, a commitment c, an output y ∈Mm,
an opening proof π, and a function f ∈ F , accepts (b = 1) or rejects (b = 0).

Moreover, the algorithms must satisfy:

Correctness. FC is correct if for any n ∈ N, all ck ←$ Setup(1λ, 1n), any f :Mn →Mm in the
class F , and any x ∈Mn, if (c, aux)← Com(ck, x), then

Pr[Ver(ck, c, f, f(x), Open(ck, aux, f)) = 1] = 1.

11

Succinctness. For any set of admissible parameters, there exists a function sFC(λ, n, m, |f |) =
poly(λ, log n, log m, o(|f |)) such that |π| ≤ sFC(λ, n, m, |f |) and |c|,≤ sFC(λ, n, 1, 1).

Evaluation Binding. For any PPT adversary A, the following probability is negl(λ):

Pr


Ver(ck, c, f, y, π) = 1
∧ y ̸= y′ ∧

Ver(ck, c, f, y′, π′) = 1
:

ck← Setup(1λ, 1n)
(c, f, y, π, y′, π′)← A(ck)


Succinctness is defined with respect to both the input length n and the output length m –

which we name input-succinctness and output-succinctness. Some FC constructions in the literature,
however, are not output-succinct. To address this, we introduce a result that allows one to obtain
output-succinctness from any FC.

Theorem 1. Let FC be an evaluation binding FC for n-to-1 functions in the class F . Let F ′ be
the class of functions where each f :Mn →Mm in F ′ is such that each of its m projections is a
function in F . Let H :Mm →Mℓ with ℓ = poly(λ) be a collision resistant hash function. Then,
for a suitably expressive F , there exists an evaluation binding FC′ for the class F ′.

We prove the theorem and describe the transformation in Appendix A.1. Next, we introduce
efficient amortized verification for functional commitments.

Definition 7 (Efficient Verification). A functional commitment admits efficient verification if
there exists a pair of algorithms:

Digest(ck, f)→ df on input the commitment key ck and a function f ∈ F , outputs a digest of the
function df .

EffVer(ck, c, y, df , π)→ b ∈ {0, 1} on input the commitment key ck, a commitment c, an output y,
an opening proof π, and a digest df of a function f ∈ F , accepts (b = 1) or rejects (b = 0).

Furthermore, df is succinct, i.e. |df | ≤ sFC(λ, n, m, |f |), and FC.EffVer(ck, c, y, df , π) runs in time
≤ sFC(λ, n, m, |f |) + poly(λ, m)4.

We also introduce a notion of local updatability that is central to the main results of this work.
A FC supports local updatability if one can update a commitment c at a position i ∈ [n] (or more
generally, at a set of positions S ⊆ [n]) in a succinct way. Namely, the update must be verifiable
in time sFC(λ, n, 1, 1) · O(|S|) = O(λ, log n, |S|). Local update soundness is defined such that given
an honestly generated commitment c to x, and a set of updates {x′

i}i∈S that update x to x′, it
must be hard to forge a valid update from c to any c′ such that c′ does not commit to x′. For this
property, we enforce that commitments c are deterministic.

A consequence of the efficiency requirement is that if the size of ck is linear in n, the update
verification must only process a section ckS of ck. This is similar to what occurs for somewhere
extractable commitments (see Definition 3).

Definition 8 (Local updatability). A Functional Commitment FC is locally updatable if there
exists a pair of algorithms (Upd, VerUpd) as follows:

4 The term poly(λ, m) appears since the EffVer algorithm needs to at least read the output y, that has length m.

12

FC.Upd(ck, aux, S, {x′
i}i∈S)→ (c′, aux′, π) on input the commitment key ck, auxiliary information5

aux, a set of positions S ⊆ [n], and updates {x′
i}i∈S, outputs an updated deterministic commitment

c′, updated auxiliary input aux′, and an update proof π.
FC.VerUpd(ckS , S, c, {xi}i∈S , c′, {x′

i}i∈S , π)→ 0/1 on input a section of the commitment key ckS,
a commitment c, a set of positions S ⊆ [n], inputs {xi}i∈S, updates {x′

i}i∈S, an updated
deterministic commitment c′ and an update proof π, accepts (outputs 1) or rejects (outputs 0).

Let x′ ← Up(x, {x′
i}i∈S) be a function that updates x to x′, i.e., outputs a vector x′ that contains

xi at every coordinate i ̸∈ S, and x′
i at every i ∈ S. Then, these algorithms must satisfy the following

properties.

Correctness. For any n ∈ N, any f :Mn →Mm in the class F , any x ∈ Mn, any set S ⊆ [n],
and any set {x′

i}i∈S such that x′
i ∈M ∀i ∈ S, we have:

Pr


VerUpd(ckS , S, c, {xi}, c′, {x′

i}, π) = 1
∧ (c′, aux′) = Com(ck, x′)

:

ck← Setup(1λ, 1n)
(c, aux)← Com(ck, x)

x′ ← Up(x, {x′
i}i∈S)

(c′, aux′, π)←
FC.Upd(ck, aux, S, {x′

i})


= 1.

Soundness. For any PPT adversary A, the following probability is negl(λ):

Pr

VerUpd(ckS , S, c, {xi}, c′, {x′
i}, π) = 1

∧ c′ ̸= Com(ck, x′)
:

ck← Setup(1λ, 1n)
(c, aux)← Com(ck, x)

(S, {x′
i}, c′, π)← A(ck, c, aux)

x′ ← Up(x, {x′
i}i∈S)

 .

Succinctness. For any admissible parameters, the update proof |π| ≤ sFC(λ, n, 1, 1)·O(|S|). Besides,
FC.VerUpd runs in time bounded by sFC(λ, n, 1, 1) · O(|S|).

Additive Homomorphism and Updatability. Most previous FC constructions in the literature
do not explicitly state a local updatability property, even though many present it naturally. One
such way to achieve local updatability, such as in the FC schemes in [CFT22, BCFL23], is via
additive homomorphism. In short, an FC supports additive homomorphism if, given commitments
c1, . . . , cm to x1, . . . , xm, there exists an efficient addition algorithm that produces a commitment c
to

∑m
i=1 xi. For further details, we refer to ([CFT22], Appendix A.4).

Chainable Functional Commitments. Some functional commitment schemes may offer useful
composability properties such as chainability. A chainable functional commitment (CFC) [BCFL23]
is an extension of FCs that allows some party to commit to multiple inputs x1, . . . , xm and then
open to a commitment of y = f(x1, . . . , xm), i.e, the output y remains in committed form. We
refer to [BCFL23] for the exact syntax, which is a straightforward generalization of Definition 6.

Note that a CFC generically implies an FC by simply adding a proof that the output commitment
indeed opens to y.

5 We note that in some algebraic schemes, only the section of aux corresponding to the set S may be needed.

13

3 Multi-Key Homomorphic Signatures

In this section, we recall the definition of Multi-Key Homomorphic Signatures (MKHS) [FMNP16].
As explained in the introduction, a MKHS allows each signer to sign a set of messages {mid,i}

so that an evaluator can compute a function f on messages signed by different users and to produce
a signature that certifies the correctness of the result. Since the verifier does not see the original
inputs one must carefully define what does it mean that a value y is the correct output of a function
f on some signed messages. Following the work of Gennaro and Wichs [GW13] on (single-key)
homomorphic authenticators, even in the multi-key setting one can use the notion of labeled programs.
Informally speaking, this means that a user id signs each message mid,i along with a “tag” τi and, in
the MKHS case, her identity id. The pair ℓi = (id, τi) is called the “label” and is a unique identifier
of the signed message. To verify an output y, one checks the signature not only w.r.t. the function f
but also with the labels (ℓi) of its inputs—what is called a labeled program P . This way, a successful
verification of the tuple (P = (f, ℓ1, . . . , ℓn), y, σf,y) means that y is the correct output of f on some
messages signed by the corresponding user with label ℓ1, . . . , ℓn respectively.

Definition 9 (Labeled Programs for MKHS [FMNP16]). A labeled program P is a tuple
(f, ℓ1, . . . , ℓn) such that f :Mn →Mm is a function of n variables (e.g., a circuit) and ℓi ∈ L is a
label for the i-th input of f . Let fid :M→M be the identity function and ℓ ∈ L be any label. We
denote by Iℓ = (fid, ℓ) the identity program with label ℓ. Labeled programs can be composed as follows:
given P1, . . . ,Pk and a function g :Mt →Mm, the composed program, denoted P∗ = g(P1, . . . ,Pk),
is the one obtained by evaluating g on the collection of t outputs of P1, . . . ,Pk. The labeled inputs
of P∗ are the distinct labeled inputs of P1, . . .Pk, where inputs with the same label are converted
to a single input. A program P = (f, ℓ1, . . . , ℓn) can be expressed as the composition of n identity
programs, i.e., P = f(Iℓ1 , . . . , Iℓn).

In MKHS, each label ℓ is a pair (id, τ) where id ∈ ID is a user’s identity and τ ∈ T is a tag;
thus the label space is L = ID × T . We denote id ∈ P if there is at least one label of the program P
with identity id, i.e., for P = (f, ℓ1, . . . , ℓn), id ∈ P iff there exists ℓi = (idi, τi) such that idi = id.

Definition 10 (Multi-Key Homomorphic Signature). Let F be a family of functions, ID an
identity space, and T a tag space. A Multi-Key Homomorphic Signature scheme for a family of
functions F , identity space ID, and tag space T is a tuple of algorithms MKHS = (Setup, KeyGen,
Sign, Eval, Ver) such that:

Setup(1λ,F , ID, T)→ pp: On input the security parameter λ and descriptions of F , ID, T , the
setup algorithm outputs public parameters pp. We assume pp to be an input of all subsequent
algorithms, even if not specified.

KeyGen(pp)→ (sk, vk): On input the public parameters pp, the key generation algorithm outputs a
secret signing key sk and a public verification key vk.

Sign(sk, m, ℓ)→ σ: On input a signing key sk, a label ℓ = (id, τ) ∈ L, and a message m ∈ M, the
signing algorithm outputs a signature σ.

Eval(f, (Pi, {vkid}id∈Pi
, mi, σi)i∈[n])→ σf,y: Given a function f ∈ F with n inputs, and for each

input i a triple consisting of a labeled program Pi, the set of corresponding verification keys
{vkid}id∈Pi

, a message mi and a signature σi, the evaluation algorithm outputs a new signature
σf,y.

Ver(P, {vkid}id∈P , y, σf,y)→ b: On input a labeled program P = (f, ℓ1, . . . , ℓn), the set of verification
keys {vkid}id∈P of the users involved in P, a value y ∈Mm, and a signature σf,y, the verification
algorithm outputs 0 (reject) or 1 (accept).

14

A MKHS scheme should have authentication and evaluation correctness. The former says that a
freshly generated signature on (ℓ, m) verifies correctly for m as the output of the identity program
Iℓ.
Definition 11 (Authentication correctness). For all public parameters pp← Setup(1λ,F , ID, T),
keypair (sk, vk) ← KeyGen(pp), label ℓ ∈ L, message m ∈ M, and identity program Iℓ, if
σ ← Sign(sk, m, ℓ) then Ver(Iℓ, vk, m, σ) = 1 holds with overwhelming probability.

Evaluation correctness instead says, roughly, that running Eval with a function f on a tuple
of valid signatures produces a new valid signature for the output. We consider two classes of
MKHS schemes: single-hop and multi-hop. Single-hop MKHS are schemes where Eval can only be
executed on signatures produced by Sign. In this case, evaluation correctness ensures that, given a
function f and signatures (σ1, . . . , σn) such that each σi verifies for mi as the output of Iℓi

, Eval
produces a signature that verifies for y = f(m1, . . . , mn) as the output of the labeled program
P = (f, ℓ1, . . . , ℓn).
Definition 12 (Single-Hop Evaluation correctness). Consider any public parameters pp←
Setup(1λ,F , ID, T), any set {(vki, σi, mi, ℓi)}i∈[n] such that, for every i ∈ [n], vki is honestly gener-
ated and Ver(Iℓi

, vki, mi, σi) = 1, and any function f ∈ F . If y = f(m1, . . . , mn), P = (f, ℓ1, . . . , ℓn),
and σf,y = Eval(f, (Iℓi

, vki, mi, σi)i∈[n]) then Ver(P, {vkid}id∈P , y, σf,y) = 1 with overwhelming prob-
ability.

Multi-hop MKHS instead allow to execute Eval on signatures produced by previous executions
of Eval. In this case, evaluation correctness ensures that, given a function f and triples (σ1, . . . , σn)
such that each σi verifies for mi as the output of Iℓi

, Eval produces a signature that verifies for
y = f(m1, . . . , mn) as the output of the labeled program P = (f, ℓ1, . . . , ℓn).

Definition 13 (Multi-Hop Evaluation correctness). Consider any public parameters pp ←
Setup(1λ,F , ID, T), any (Pi, {vkid}id∈Pi

, mi, σi)i∈[n] such that all the verification keys are honestly
generated and, for every i ∈ [n], Ver((Pi, {vkid}id∈Pi

, mi, σi)i∈[n]) = 1, and any function f ∈ F . If
y = f(m1, . . . , mn), P = f(P1, . . . ,Pn), and σf,y = Eval(f, (Pi, {vkid}id∈Pi

, mi, σi)i∈[n]) then with
overwhelming probability Ver(P, {vkid}id∈P , y, σf,y) = 1.

Next, we define succinctness, which is the property that makes MKHS a nontrivial primitive
to realize. Intuitively, a MKHS is succinct if the size of the signatures generated by Eval is much
shorter than the input size of the evaluated function, e.g., polylogarithmic.
Definition 14 (Succinctness). Let sMKHS : N4 → N be a function. A MKHS scheme MKHS
for a class of functions F is sMKHS-succinct if for every honestly generated parameters pp, keys
and signatures, and any function f : Mn → Mm, f ∈ F , the output σf,y of Eval(f, ·) is of size
|σf,y| ≤ sMKHS(λ, n, m, |f |). Additionally, we say that MKHS is succinct if there exists a fixed
function sMKHS(λ, n, m, |f |) = poly(λ, log n, log m, o(|f |)).

We note that our succinctness definition is stronger than the one originally proposed in [FMNP16]
which allowed signatures to grow linearly (or polynomially) in the number t of distinct users involved
in the computation, but still logarithmically in the total number of inputs.

3.1 Security

The security notion of multi-key homomorphic signatures intuitively models the fact that an
adversary, who can query signatures on messages of its choice to multiple users, can only produce

15

valid signatures that are either the ones it received, or ones that are obtained by correctly executing
the evaluation algorithm on genuine signatures. The adversary may also corrupt users to obtain
their secret keys, yet the alleged forgery cannot involve verification keys of corrupted users.

Definition 15 (Unforgeability). Consider the security experiment denoted by HomUF-CMAA,MKHS(1λ)
in Figure 3 between an adversary A and a challenger CH. A MKHS scheme is unforgeable (HomUF-CMA-
secure) if, for all PPT adversaries A, we have Pr[HomUF-CMAA,MKHS(1λ) = 1] ≤ negl(λ).

Game HomUF-CMAA,MKHS(1λ):

Setup: The challenger CH proceeds as follows:
– Initialize empty lists LID, LCorr, LSig ← ∅ and generate pp← Setup(1λ,F , ID, T).
– Run A(pp). Next, A can make the following queries adaptively.

KeyGen queries OKeyGen(id): If id /∈ LID, generate (vkid, skid)← KeyGen(pp), update LID =
LID ∪ {id}, and return vkid to A.

Signing queries OSign(ℓ, m): Given ℓ = (id, τ):
– If (ℓ, ·) /∈ LSig, compute σℓ ← Sign(skid, ℓ, m), update LSig := LSig ∪ (ℓ, m), and return σℓ

to A.
– Else, if (ℓ, ·) ∈ LSig, ignore the query.

Corruption queries OCorr(id): if id ∈ LID and id /∈ LCorr, update LCorr ← LCorr ∪ id, and
return skid

Forgery: At the end of the game, A returns a tuple (P∗, y∗, σ∗) where P∗ = (f∗, ℓ∗
1, . . . , ℓ∗

n).
Game output: Return 1 if and only if Ver(P∗, {vkid}id∈P∗ , y∗, σ∗) = 1, {id ∈ P∗}∩LCorr = ∅,

and one of the following cases occurs:
– Type 1: ∃j ∈ [n] such that (ℓ∗

j , ·) /∈ LSig (i.e., A never made a query with label ℓ∗
j).

– Type 2: ∀i ∈ [n] : (ℓ∗
i , mi) ∈ LSig but y∗ ̸= f∗(m1, . . . , mn)

Fig. 3: Security experiment HomUF-CMAA,MKHS(1λ).

The above notion of security, introduced by Fiore et al. [FMNP16], is adaptive insofar as the
adversary can make corruption queries at any point in the game. This notion is stronger than the
non-adaptive security achieved by the construction in [FMNP16], where the adversary can perform
corruption queries only on identities for which no signature query had already been performed.

3.2 Amortized efficiency

We give a definition of amortized efficiency for MKHS schemes. The issue is that in the basic syntax
of MKHS (and HS too) the verifier should read the description of the program P which may take
the same running time as the computation to be verified, especially in a model of computation
such as circuits. To address this, we consider the case in which one can preprocess the labeled
program P, independently of the signature to be verified, and to reuse it. However, we observe
that preprocessing the entire tuple P = (f, ℓ1, . . . , ℓn) would not give any benefit because in MKHS
labels are unique, and thus preprocessing a function f for the evaluation on a set of labels ℓ1, . . . , ℓn

cannot be reusable. Therefore we model preprocessing via two algorithms: one for the function f

16

and one for the input labels ℓ1, . . . , ℓn and verification keys {vkid}id∈P , which benefits when running
the same function f on different set of signed inputs or when executing different functions on the
same set of signed inputs.
Definition 16 (Amortized efficiency). An MKHS scheme satisfies amortized efficiency if there
is a triple of algorithms (PrepFunc, PrepLabels, EffVer) such that:
– For any labeled program P = (f, ℓ1, . . . , ℓn), verification keys {vkid}id∈P , output y and signature

σf,y such that Ver(P = (f, ℓ1, . . . , ℓn), {vkid}id∈P , y, σf,y) = 1 it holds that:
EffVer(PrepLabels(pp, {vkid}id∈P , (ℓ1, . . . , ℓn)), PrepFunc(pp, f), y, σf,y) = 1

– Given vkℓ ← PrepLabels(pp, {vkid}id∈P , (ℓ1, . . . , ℓn)) and df ← PrepFunc(pp, f), the running time
of EffVer(vkℓ, df , y, σf,y) is bounded by sMKHS(λ, n, m, |f |) ·m = poly(λ, log n, m, log |f |).
Finally, we note that previous work on (single-key) homomorphic signatures [CFW14, GVW15]

used a different preprocessing approach based on assuming that labels have a structure ℓ = (∆, τ)
consisting of a dataset identifier ∆ (e.g., a filename) and a tag.6 Then they allow preprocessing
the circuit along with tags in order to reuse it to verify computations on different datasets. In
comparison, our preprocessing notion is more flexible and, by allowing arbitrary labels, implies the
one from previous work.

3.3 Context Hiding
Informally speaking, a MKHS is context-hiding if signatures on outputs do not reveal information
on the inputs of the function. In our work, we adapt to the multi-key setting the context-hiding
definition for HS of [CFN15, full version], which in turn generalizes the one in [GVW15].
Definition 17 (Context-Hiding MKHS). A MKHS supports context-hiding if there exist addi-
tional PPT procedures σ̃ ← Hide(P, {vkid}id∈P , y, σ) and HVer(P, {vkid}id∈P , y, σ) such that:
– Correctness: For any tuple (P, {vkid}id∈P , y, σ) such that {vkid}id∈P are honestly generated and

Ver(P, {vkid}id∈P , y, σ) = 1, we have that HVer(P, {vkid}id∈P , y, Hide(P, {vkid}id∈P , y, σ)) = 1.
– Unforgeability: The signature scheme is secure when we replace the original verification algorihtm

Ver with HVer in the security game.
– Context-Hiding: There is a simulator Sim = (SimSetup, SimSig) such that for any PPT (stateful)

distinguisher D running in the experiments {CtxtHidingb}b=0,1 defined below, it holds∣∣∣Pr[CtxtHiding0
D,MKHS(λ) = 1]− Pr[CtxtHiding1

D,MKHS(λ) = 1]
∣∣∣ ≤ negl(λ)

CtxtHiding0
D,MKHS(λ)

pp← Setup(1λ,F , ID, T)
(f, (Pi, {vkid}id∈Pi , mi, σi)i∈[n])← D(pp)
b← ∧i∈[n]Ver(Pi, {vkid}id∈Pi , mi, σi)
y ← f(m1, . . . , mn)
P ← f(P1, . . . ,Pn)
σ ← Eval(f, (Pi, {vkid}id∈Pi , mi, σi)i∈[n])
σ̃ ← Hide(P, {vkid}id∈P , y, σ))
b′ ← D(σ̃)
return b ∧ b′

CtxtHiding1
D(λ)

(pp, td)← SimSetup(1λ,F , ID, T)
(f, (Pi, {vkid}id∈Pi , mi, σi)i∈[n])← D(pp)
b← ∧i∈[n]Ver(Pi, {vkid}id∈Pi , mi, σi)
y ← f(m1, . . . , mn)
P ← f(P1, . . . ,Pn)

σ̃ ← SimSig(td,P, {vkid}id∈P , y))
b′ ← D(σ̃)
return b ∧ b′

6 Though not formalized, this is the same notion used in the MKHS scheme of [FMNP16].

17

Generic Context-Hiding solution via NIZKs. We state a simple result showing that any
MKHS with amortized verification can be compiled, via the use of a NIZK scheme, into one that
has context-hiding.

Theorem 2. Let MKHS be a MKHS scheme with amortized efficiency, and let Π be a knowledge-
sound NIZK for the NP relation RMKHS = {((vkℓ, df , y); σf,y) : EffVer(vkℓ, df , y, σf,y) = 1}. Then
there exists a context-hiding MKHS scheme MKHS∗ for the same class of functions supported by
MKHS.

The proof is rather straightforward and based on the idea of using the NIZK to prove the existence
of a valid signature. The amortized efficiency requirement ensures that the scheme remains succinct
even if the NIZK is not succinct. A proof sketch is given below.

Proof (Sketch). The algorithms of MKHS∗ are the same as those of MKHS except that MKHS∗.Setup
runs MKHS.Setup and additionally generates a common reference string for Π. Then the algorithm
Hide runs Π’s prover on a valid ((vkℓ, df , y); σf,y) ∈ RMKHS and sets σ̃ as the resulting NIZK
proof. In turn, HVer executes Π’s verifier on (vkℓ, df , y) and σ̃. Correctness is straightforward. The
succinctness of MKHS∗ is based on the succinctness of MKHS and the fact that EffVer running time
is poly(λ, log n, log |f |); therefore, even if the size of the NIZK proof depended on the size of the
statement, it would be still succinct. For the unforgeability of MKHS∗ we rely on the fact that
Π is an argument of knowledge, which allows us to use its extractor to get a MKHS signature σ
from the NIZK proof σ̃ so that from a forgery for MKHS∗ we can get one for MKHS. Finally, the
context-hiding property follows by the zero-knowledge property of Π.

4 Our MKHS Construction

In this section we present our main result, that is the construction of a fully succinct MKHS.
Our scheme MKHS relies on four building blocks: a functional commitment FC, a digital signature

scheme Σ, a somewhere extractable BARG for NP BARG, and a somewhere extractable commitment
SEC. MKHS allows the evaluation of the same functions supported by FC, and it supports arbitrary
identities and tags, i.e., T = ID = {0, 1}λ. We denote messages by mi and labels by ℓi and assume
that |mi| = poly(λ) for a fixed polynomial.

As described in the technical overview, the main idea of our construction is to combine a BARG
proof to attest the validity of each signature-message pair, and a FC proof to show the correct
evaluation of f on m1, . . . , mn, which are committed in c. Moreover, to connect both proofs, our
construction verifies the correctness of c inside the BARG circuit C, by starting with an empty
commitment, and iteratively building a commitment to m1, . . . , mn. We remark that the FC scheme
must be updatable, and also deterministic, such that we can test commitment equality.

We describe the construction in Figure 4 and summarize its main properties in Theorem 3. For
ease of exposition, in this scheme we focus on single-hop evaluation and do not consider context-
hiding. We show in Section 5.1 how to achieve multi-hop sequential composition by employing
chainable FCs instead of FCs. Also, we recall that context-hiding can be achieved via NIZKs
following Theorem 2.

Theorem 3. Let FC be a deterministic and updatable functional commitment scheme for a class of
functions F :Mn →Mm, BARG a somewhere-extractable batch argument for NP, SEC a somewhere
extractable commitment, and Σ a EUF-CMA-secure signature scheme for messages in M×{0, 1}2λ.

18

MKHS.Setup(1λ, 1n,F) :
– Calculate the required circuit size |C| given n,F , λ.
– Calculate the required block size B from λ. Note that B = poly(λ).
– crs← BARG.Setup(1λ, n, 1|C|).
– dk← SEC.Setup(1λ, n, B)
– ck← FC.Setup(1λ, 1n).
– Output pp← (crs, dk, ck).

MKHS.KeyGen(1λ) :
– Output (vk, sk)← Σ.KeyGen(1λ).

MKHS.Sign(sk, ℓ, m) :
– σ ← Σ.Sign(sk, m|ℓ).
– Output σ.

MKHS.Eval(pp, f, (ℓi, vki, mi, σi)i∈[n]) :
– Parse pp := (crs, ck, dk).
– (c, aux)← FC.Com(ck, m1, . . . , mn).
– πf ← FC.Open(ck, f, aux).
– (c0, aux0)← FC.Com(ck, 0).
– For every i ∈ [n], compute (ci, auxi, πi)← FC.Upd(ck, auxi−1, i, mi).

Note that each ci is a commitment to the partial vector (m1, . . . , mi, 0, . . . , 0). Note also
that cn = c.

– Compute a somewhere extractable commitment to all partial commitments (cw, auxw)←
SEC.Com(dk, (c1, . . . , cn)).

– For every i ∈ [n], compute local opening proofs oi ← SEC.Open(dk, auxw, i) to each ci.
– Compute a BARG proof πσ ← BARG.Prove(crs, C, {xi, wi}i) for circuit C(xi, wi) as de-

scribed in Figure 5.
– Output σf,y = (c, πf , πσ, cw).

MKHS.Ver(pp,P, {vkid}id∈P , y, σf,y) :
– Parse P := (f, ℓ1, . . . , ℓn) and {ℓi := (idi, τi)}.
– If P = (fid, ℓ1) then check that Σ.Ver(vkid1 , y|ℓ1, σf,y) = 1.
– Else, parse σf,y := (c, πf , πσ, cw).
– Let c0 ← FC.Com(ck, 0)
– Compute the circuit C in Figure 5, hardcoding c, cw, c0.
– Given {vki}i := {vkidi

}i and {ℓi}i, {cki}i, {dki}i, define xi = (vki, cki, dki, dki−1, ℓi, i).
– Check that FC.Ver(ck, c, f, y, πf) = 1.
– Check that BARG.Ver(crs, C, {xi}i, πσ) = 1.
– Output 1 if both checks pass.

Fig. 4: Construction of a succinct multi-key homomorphic signature scheme MKHS from a functional
commitment FC, a BARG for NP BARG, a somewhere extractable commitment SEC and a digital
signature Σ.

19

Description of C(x, w) :
Hardwired: c, cw, c0
Statement: x = (vki, cki, dki, dki−1, ℓi, i)
Witness: w = (mi, σi, πi, ci−1, ci, oi−1, oi)
Circuit:

– If i = 1, check that ci−1 = c0 and skip the SEC verification check for i− 1.
– If i = n, check that ci = c
– Check that:

Σ.Ver(vki, mi|ℓi, σi) = 1
∧ FC.VerUpd(cki, i, ci−1, 0, ci, mi, πi) = 1
∧ SEC.Ver(dki, cw, i, oi, ci) = 1
∧ SEC.Ver(dki−1, cw, i− 1, oi−1, ci−1) = 1

Fig. 5: Description of the BARG circuit C.

Then, the construction MKHS in Figure 4 is an adaptively-secure multi-key homomorphic signature
for F .

Moreover, given that the following conditions are satisfied:

– BARG has sBARG(λ, |C|, k) succinct proofs.
– FC has sFC(λ, n, m, |f |) succinct opening proofs and commitments, and admits succinct local

verification where VerUpd(cki, i, c, 0, c′, mi, πi) runs in time bounded by sFC(λ, n, 1, 1).
– SEC admits local verification with sSEC(λ, n, B) succinctness.

Then, MKHS has succinct signatures of size |σf,y| = sMKHS(λ, n, m, |f |), where, for |C| = sFC(λ, n, 1, λ)+
sSEC(λ, n, λ), we have (up to constant factors),

sMKHS(λ, n, m, |f |) = sBARG(λ, |C|, n) + sFC(λ, n, m, |f |) + sSEC(λ, n, λ).

Proof. Authentication correctness follows directly by the correctness of Σ. Evaluation correctness
follows from the correctness of all the building blocks.

For succinctness, observe that the four additive factors in the expression for |σf,y| correspond
to the sizes of πσ, πf , c, cw, respectively. To calculate the expression for sMKHS(λ, n, m, |f |), note
that the block size of the SEC is B = poly(λ, log n). Then, note that all keys, commitments, and
openings involved in C are of size sFC(λ, n, 1, λ) + sSEC(λ, n, λ), as well as the running time of the
FC.VerUpd, SEC.Ver and Σ.Ver algorithms. Hence, |C| = sFC(λ, n, 1, λ) + sSEC(λ, n, λ).

We prove security in Section 4.2.

4.1 Efficient Verification

If FC has amortized efficient verification, then it is possible to preprocess the function f . Similarly, if
BARG has amortized efficient verification, it is possible to preprocess the labels ℓi and the respective
verification keys. We describe the corresponding preprocessing algorithms MKHS.PrepFunc and
MKHS.PrepLabels, as well as the efficient verification algorithm MKHS.EffVer, in Figure 6.

20

MKHS.PrepFunc(pp, f) :
– Parse pp := (crs, ck, dk).
– Output dF ← FC.Digest(ck, f).

MKHS.PrepLabels(pp, (vki, ℓi)i∈[n]) :
– Parse pp := (crs, ck, dk).
– Given {vki}i, {ℓi}i, {ck}i, {dk}i, define xi = (vki, ℓi, cki, dki).
– Output vkℓ ← BARG.PreVer(crs, {xi}i).

MKHS.EffVer(vkℓ, dF , y, σf,y) :
– Parse σf,y := (c, πf , πσ, cw).
– Let c0 ← FC.Com(ck, 0)
– Check that FC.EffVer(ck, c, dF , y, πf) = 1
– Compute the BARG circuit C, hardcoding c, cw, c0.
– Check that BARG.EffVer(crs, C, vkℓ, πσ) = 1
– Output 1 iff both checks pass.

Fig. 6: Efficient verification algorithms for our construction of a multi-key homomorphic signature
scheme MKHS.

We summarize the efficient verification properties in the following corollary of Theorem 3. The
proof follows from the definitions of efficient verification for BARGs (Definition 5) and for FCs
(Definition 7).

Corollary 1. If BARG and FC admit efficient verification, the MKHS scheme from Figure 4
with the algorithms in Figure 6 also satisfies efficient verification, i.e., the running time of
MKHS.EffVer(vkℓ, dF , y, σf,y) is bounded by sMKHS(λ, n, m, |f |) ·m.

We note that the efficient verification property of our scheme is flexible, in the sense that we
introduce separate algorithms for preprocessing the function PrepFunc and for the labels PrepLabels.
Therefore, if the BARG satisfies efficient verification but the FC does not (or vice-versa), our MKHS
admits pre-processing only the labels (or the function).

4.2 Proof of Security

Let A be an adversary in the security experiment HomUF-CMAA,MKHS(1λ) for our MKHS construc-
tion. In this game, the adversary has access to a signing oracle OSign such that, for ℓ = (id, τ), then
OSign(ℓ, m) outputs σℓ ← Σ.Sign(skid, m|ℓ). It also has access to a key generation OKeyGen and a cor-
ruption OCorr oracle. Finally, A produces an alleged forgery (P∗, y∗, σ∗) where P∗ = (f∗, ℓ∗

1, . . . , ℓ∗
n).

We recall that there are two possible types of forgeries, that we define formally as the following
events.

– TYPE1 := ∃j ∈ [n], (ℓ∗
j , ·) /∈ LSig. Namely, there exists some index j such that A never queried

(ℓ∗
j , ·) to the signing oracle.

– TYPE2 := ∀i ∈ [n], (ℓ∗
i , mi) ∈ LSig ∧ y∗ ̸= f∗(m1, . . . , mn). Namely, A asked all queries (ℓ∗

i , mi)
to the signing oracle, but cheated at computing y∗.

For both types of forgeries we can partition on whether the forgery is a fresh signature (i.e.,
P = Iℓ) or an evaluated one. In the event of type 2 forgeries, for our scheme we can also partition

21

over the event ‘c∗ = FC.Com(ck, m1, . . . , mn)’, where c∗ is the (deterministic) commitment included
in σ∗.

Let also VER be the event that verification passes and that no user involved in a labeled program
is corrupted, i.e.,

VER := MKHS.Ver(pp,P∗, {vkid}id∈P∗ , y∗, σ∗) = 1 ∧ {id ∈ P∗} ∩ LCorr = ∅.

We define 4 experiments, UF1, UF2, UF3, and UF4:

– UF1 outputs 1 iff VER ∧ P ̸= Iℓ ∧ TYPE1.
– UF2 outputs 1 iff VER ∧ P ̸= Iℓ ∧ TYPE2 ∧ (c∗ = FC.Com(ck, m1, . . . , mn)).
– UF3 outputs 1 iff VER ∧ P ̸= Iℓ ∧ TYPE2 ∧ (c∗ ̸= FC.Com(ck, m1, . . . , mn)).
– UF4 outputs 1 iff VER ∧ P = Iℓ ∧ (TYPE1 ∨ TYPE2).

Overall, we partitioned the probability space so that, by the union bound, for any PPT adversary
A we have that Pr[HomUF-CMAA,MKHS(λ) = 1] ≤

∑4
k=1 Pr[UFk,A(λ) = 1]. We separate the proof

in lemmas that bound the probability that A wins in each of the experiments.

Lemma 1. For any PPT adversary A making at most Q = poly(λ) queries to the key generation
oracle and that can produce a valid forgery in UF1, there exist PPT adversaries Bsind,BsExt,BEUF-CMA
against the BARG setup indistinguishability, somewhere extractability and the EUF-CMA property
of the digital signature scheme Σ, such that:

Pr[UF1,A(λ) = 1] ≤

n ·
(
Advsind

BARG,Bsind
(λ) + Advsext

BARG,BsExt
(λ) + Q · Adveuf-cma

Σ,BEUF-CMA(λ)
)

.

Proof. We first define WIN1 as the winning event of UF1:

WIN1 :=
{
∃j ∈ [n] : (ℓ∗

j = (id∗
j , τ∗

j), ·) /∈ LSig ∧ id∗
j /∈ LCorr

∧ BARG.Ver(crs, C, {x∗
i }i, π∗

σ) = 1 .

Notice that WIN1 is implied by VER ∧ TYPE1, and that we have suppressed unnecesary checks that
will not be used in the proof of this lemma. Based on this winning condition, we define a series of
hybrid games Hyb0, Hyb1, Hyb2, Hyb3 described in Figure 7.

Hyb0: As described above, this game is a simplified version of UF1 where we omit unnecessary
outputs from the adversary and from the winning condition.

Hyb1: To transition from Hyb0 to Hyb1, since the choice of j∗ is uniform over [n], we have that
j = j∗ with probability 1

n . As a result we have that:

Pr[Hyb1
A(λ) = 1] ≥ 1

n
Pr[Hyb0

A(λ) = 1].

Hyb2: In this game, the only difference with Hyb1 is that the BARG setup is set in trapdoor mode
at position j∗. Then, we have that if A interpolates between Hyb1 and Hyb2, we can construct
an adversary Bsind against BARG setup indistinguishability property such that

Pr[Hyb2
A(λ) = 1] ≤ Pr[Hyb1

A(λ) = 1] + Advsind
BARG,Bsind

(λ).

22

Hyb0
A(λ):

crs← BARG.Setup()
dk← SEC.Setup()
ck← FC.Setup()
(P∗, π∗

σ, {x∗
i }i)← AO(crs, dk, ck)

Output 1 iff:
WIN1 = 1

Hyb1
A(λ):

j∗ ←$ [n]
crs← BARG.Setup()
dk← SEC.Setup()
ck← FC.Setup()
(P∗, π∗

σ, {x∗
i }i)← AO(crs, dk, ck)

Output 1 iff:
WIN1 = 1
∧(j∗ = j)

Hyb2
A(λ):

j∗ ←$ [n]
(crs, td)← BARG.TdSetup(j∗)
dk← SEC.Setup()
ck← FC.Setup()
(P∗, π∗

σ, {x∗
i }i)← AO(crs, dk, ck)

Output 1 iff:
WIN1 = 1
∧ (j∗ = j)

Hyb3
A(λ):

j∗ ←$ [n]
(crs, td)← BARG.TdSetup(j∗)
dk← SEC.Setup()
ck← FC.Setup()
w̄j∗ ← BARG.Ext(td, C, π∗

σ)
(P∗, π∗

σ, {x∗
i }i)← AO(crs, dk, ck)

Output 1 iff:
WIN1 = 1
∧ (j∗ = j)
∧ C(x∗

j∗ , w̄j∗) = 1

Fig. 7: Games Hyb0, Hyb1, Hyb2, Hyb3 for the proof of Lemma 1. We highlight changes between games
and omit inputs to Setup for succinctness.

Hyb3: If A outputs 1 against Hyb2 but outputs 0 against Hyb3, it must be the case that:
– BARG.Ver(crs, C, {xi}i, πσ∗) = 1,
– C(xj∗ , w̄j∗) ̸= 1 where w̄j∗ is obtained from BARG.Ext(td, C, π∗

σ).
Then, we can use A to construct an adversary BsExt against BARG somewhere extractability
such that:

Pr[Hyb3
A(λ) = 1] ≤ Pr[Hyb2

A(λ) = 1] + Advsext
BARG,BsExt

(λ).

Finally, we proceed to bound the advantage of A in Hyb3. Recall that A can make at most
Q = poly(λ) queries to the key generation oracle OKeyGen. We use A to build an algorithm BEUF-CMA
that breaks the existential unforgeability of Σ. BEUF-CMA simulates the game Hyb3 to A, proceeding
as follows:

1. BEUF-CMA receives the verification key vk∗ from the EUF-CMA challenger.
2. BEUF-CMA starts by uniformly sampling j∗ ←$ [n] and q∗ ←$ [Q]. It initializes empty lists

LID, LSig ← ∅. Then BEUF-CMA runs the setup algorithm for BARG, FC, MKHS, setting (crs, td)←
BARG.TdSetup(j∗). It then sends the public parameters pp to A.

3. Whenever A makes a query to OKeyGen(id):
– If the query is the q∗-th query, let vkid = vk∗ and return vkid to A.
– Otherwise, let (vkid, skid)← Σ.KeyGen(1λ).

23

4. Whenever A makes a query to OSign(m, ℓ = (id, τ)):
– If (ℓ, m) /∈ LSig:
• If id = idq∗ : forward the query to the EUF-CMA oracle σ ← OSign(m|ℓ), update LSig :=

LSig ∪ (ℓ, m) and then send σ to A.
• Otherwise, if id ̸= idq∗ : compute σℓ ← Sign(skid, ℓ, m), update LSig := LSig ∪ (ℓ, m), and

return σℓ to A.
– Else, if (ℓ, m) ∈ LSig, ignore the query.

5. Whenever A makes a query to OCorr(id):
– if id = idq∗ , abort
– else, if id ∈ LID and id /∈ LCorr, update LCorr ← LCorr ∪ id, and return skid.

6. At the end of the gameA outputs (P∗, y∗, σ∗). BEUF-CMA checks that BARG.Ver(crs, C, {x∗
i }i, π∗

σ) =
1 and that (ℓ∗

j∗ = (id∗
j∗ , τ∗

j∗), ·) /∈ LSig and id∗
j∗ /∈ LCorr. Additionally, it checks that id∗

j∗ = idq∗ .
If any of these checks does not pass, BEUF-CMA aborts. Otherwise it computes w̄j∗ ← BARG.Ext(td,
C, {x∗

i }i∈[n], π∗
σ) and parses σ̄j∗ and m̄j∗ from w̄j∗ . At the end BEUF-CMA outputs (m̄j∗ |ℓ∗

j∗ , σ̄j∗)
as its forgery.

By construction, conditioned on id∗
j∗ = idq∗ , algorithm BEUF-CMA perfectly simulates an execution

of Hyb3 to A. Note that, overall, the probability of not aborting during the simulation is at least
1/Q, since the winning condition guarantees that there exists at least one identity that remains
uncorrupted. If all guesses are correct, as C is explicitly checking Σ.Ver(vk∗, m̄j∗ |ℓ∗

j∗ , σ̄j∗) = 1, it
means that σ̄j∗ is a valid signature on m̄j∗ |ℓ∗

j∗ .
Thus with probability at least 1

Q ·Pr[Hyb3
A(λ) = 1], BEUF-CMA outputs a valid EUF-CMA forgery.

In summary,
Pr[Hyb3

A(1λ) = 1] ≤ Q · Adveuf-cma
Σ,BEUF-CMA(λ).

Lemma 2. For any PPT adversary A that can produce a valid forgery against UF2, there exists a
PPT adversary B against evaluation binding of the functional commitment scheme FC such that

Pr[UF2,A(λ) = 1] ≤ Advevbind
FC,B (λ).

Proof. As in the proof of Lemma 1, we first define a wining event WIN2 as a simplification of the
winning condition of UF2 which only includes the checks that are relevant for the reduction.

WIN2 :=


∀i ∈ [n], (ℓ∗

i , mi) ∈ LSig
∧ y∗ ̸= f∗(m1, . . . , mn)
∧ c∗ = FC.Com(ck, (m1, . . . , mn))
∧ FC.Ver(ck, c∗, y∗, f∗, π∗

f∗) = 1

.

We describe how to build an efficient algorithm B that breaks the evaluation binding of FC.

1. B receives a commitment key ck by the challenger of the evaluation binding game.
2. B initialize empty lists LID, LSig ← ∅. Then B runs crs ← BARG.Setup(1λ, n, 1|C|) and dk ←

SEC.Setup(1λ, n, B) and sends pp← (crs, dk, ck) to A.
3. B simulates all of A’s queries to OKeyGen,OSign,OCorr by using knowledge of the secret keys, and

updates the list LSig every time a fresh OSign(ℓ∗, m) query is made by A.
4. At the end of the simulation, A outputs (P∗, c∗, π∗

f∗) (we ignore the remaining outputs). B parses
(f∗, (ℓ∗

1, . . . , ℓ∗
n)) from P∗, and retrieves the messages m1, . . . , mn associated to labels ℓ∗

1, . . . , ℓ∗
n

from LSig.

24

5. Finally, B computes the honest output y = f∗(m1, . . . , mn), and an honest FC opening proof to
y as πf∗ ← FC.Open(ck, (m1, . . . , mn), f∗). Then, B outputs (c∗, f∗, y, πf∗ , y∗, π∗

f∗).

By construction, B perfectly simulates an execution of the MKHS game for A. Also, note that if A
is a successful adversary against UF2, then by the WIN2 event, the messages m1, . . . , mn retrieved
from LSig must be the same ones that are committed under c∗. As c∗ and y are honest, we have
that FC.Ver(ck, c∗, y, f∗, πf∗) = 1.

Thus, B’s output is a valid output in the FC evaluation binding game. To summarize,

Pr[UF2,A(λ) = 1] ≤ Advevbind
FC,B (λ).

Lemma 3. For any PPT adversary A that wins in the UF3 game, there exists a tuple of PPT
adversaries (B1, . . . ,B6) such that

Pr[UF3A(λ) = 1] ≤ n ·
[
Advsind

BARG,B1(λ) + Advsext
BARG,B2(λ) + 2 · Advsind

SEC,B3(λ)

+ Advsext
SEC,B4(λ) + Q · Adveufcma

Σ,B5 (λ) + Advupdbind
FC,B6

(λ)
]

.

Proof. For A to win in event UF3, it must have crafted a type 2 forgery y∗ ̸= f∗(m1, . . . , mn) such
that ∀i ∈ [n], (ℓ∗

i , mi) ∈ LSig, and such that {id ∈ P∗}∩LCorr = ∅. Besides, the commitment c∗ to the
messages must not be honestly computed, c∗ ̸= FC.Com(ck, m). We will prove the lemma through a
long sequence of hybrid sub-games Hyb1,0, . . . , Hybn,8, Hybn,8∗. First of all, we describe the following
winning event:

WIN3 :=


∀i ∈ [n], (ℓ∗

i , mi) ∈ LSig
∧ {id ∈ P∗} ∩ LCorr = ∅
∧ BARG.Ver(crs, C, {xi}i, πσ) = 1
∧ c∗ ̸= FC.Com(ck, m)

.

As in previous lemmas, note that WIN3 only includes a subset of the checks in MKHS.Ver, as the
other conditions (in particular, FC verification) are not relevant for this lemma. Based on this
winning condition, we introduce an initial Hyb1,0 in Figure 8 as a simplification of UF3 where we
omit the outputs πf , y∗ from the adversary. As the winning condition in Hyb1,0 is less strict than in
UF3 while the pre-conditions remain the same, any adversary winning in UF3 also wins in Hyb1,0.
Hence, Pr[UF3A(λ) = 1] ≤ Pr[Hyb1,0

A (λ) = 1].

Games Hyb1,j: We formally introduce the hybrid games in Figures 8, 9, 10, and 11. We progress
through the hybrids below.

Hyb1,1: The transition from Hyb1,0 to Hyb1,1, where we switch BARG.Setup to trapdoor mode
BARG.TdSetup(1) at index 1, follows easily by the setup indistinguishability property of BARG.
We have that there exists a PPT adversary B1 against BARG setup indistinguishability such
that

Pr[Hyb1,0
A (λ) = 1] ≤ Pr[Hyb1,1

A (λ) = 1] + Advsind
BARG,B1(λ).

Hyb1,2: In this step, we additionally extract from BARG at position 1 and abort if C(x1, w̄1) ̸= 1 for
the extracted witness w̄1. The witness is given by w̄1 = (m̄1, σ̄1, π̄1, c̄0, c̄1, ō0, ō1), where c̄0 and
ō0 are irrelevant for the proof. It follows that there exists a PPT adversary B2 against BARG
somewhere extractability such that

Pr[Hyb1,1
A (λ) = 1] ≤ Pr[Hyb1,2

A (λ) = 1] + Advsext
BARG,B2(λ).

25

Hyb1,0
A (λ):

crs← BARG.Setup()
dk← SEC.Setup()
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

Output 1 iff WIN3 = 1

Hyb1,1
A (λ):

(crs, td)← BARG.TdSetup(1)
dk← SEC.Setup()
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

Output 1 iff WIN3 = 1

Fig. 8: Games Hyb1,0, Hyb1,1 for the proof of Lemma 3. We highlight changes between games and
omit inputs to Setup for succinctness.

Hyb1,2
A (λ):

(crs, td)← BARG.TdSetup(1)
dk← SEC.Setup()
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄1 ← BARG.Ext(td, C, πσ)
Output 1 iff:

WIN3 = 1
∧ C(x1, w̄1) = 1

Hyb1,3
A (λ):

(crs, td)← BARG.TdSetup(1)
(dk, tdc)← SEC.TdSetup(1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄1 ← BARG.Ext(td, C, πσ)
Output 1 iff:

WIN3 = 1
∧ C(x1, w̄1) = 1

Fig. 9: Games Hyb1,2, Hyb1,3 for the proof of Lemma 3.

Hyb1,3: In this game, we set SEC.Setup extractable at index 1. We have that there exists an adversary
B4 against SEC setup indistinguishability such that

Pr[Hyb1,2
A (λ) = 1] ≤ Pr[Hyb1,3

A (λ) = 1] + Advsind
SEC(λ).

Hyb1,4: In this game, we extract ĉ1 ← SEC.Ext(tdc, cw) and abort if ĉ1 ̸= c̄1. To prove the transition
from the previous game, note that, by definition, C(x1, w̄1) = 1 implies that SEC.Ver(dk1, cw, 1, c̄1, ō1) =
1. Hence, if SEC.Ext(tdc, cw, i∗) ̸= c̄i∗ , then we can create an adversary B3 against SEC somewhere
extractability. We have that

Pr[Hyb1,3
A (λ) = 1] ≤ Pr[Hyb1,4

A (λ) = 1] + Advsext
SEC,B3(λ).

Hyb1,5: In this game, we add the requirement that the extracted m̄1 ∈ w̄1 equals the honest m1,
where m1 is the message that A queries to the OSign oracle on label ℓ∗

1 ∈ P∗. By definition of C,
we have that C(x1, w̄1) = 1 and therefore Σ.Ver(vk1, m̄1|ℓ∗

1, σ̄1) = 1. If m1 ̸= m̄1, then A must
have produced a signature forgery (m̄1|ℓ∗

1, σ̄1) for key vk1.
In a more careful analysis, we bound the probability of this event by constructing an adversary
B5 against the unforgeability of the signature scheme Σ. B5 runs on input a verification key vk∗

from the EUF-CMA challenger; it chooses a random index q∗ ←$ [Q], where Q = poly(λ) is the

26

Hyb1,4
A (λ):

(crs, td)← BARG.TdSetup(1)
(dk, tdc)← SEC.TdSetup(1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄1 ← BARG.Ext(td, C, πσ)
ĉ1 ← SEC.Ext(tdc, cw)
Output 1 iff:

WIN3 = 1
∧ C(x1, w̄1) = 1
∧ ĉ1 = c̄1

Hyb1,5
A (λ):

(crs, td)← BARG.TdSetup(1)
(dk, tdc)← SEC.TdSetup(1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄1 ← BARG.Ext(td, C, πσ)
ĉ1 ← SEC.Ext(tdc, cw)
Output 1 iff:

WIN3 = 1
∧ C(x1, w̄1) = 1
∧ ĉ1 = c̄1

∧ m̄1 = m1

Fig. 10: Games Hyb1,4, Hyb1,5 for the proof of Lemma 3.

number of queries that A can make to the OKeyGen oracle, and then it adaptively simulates all
OKeyGen, OSign and OCorr queries for A as follows:
– For the i-th query to OKeyGen(id), if i = q∗, return vkid = vk∗, otherwise generate a keypair

(vkid, skid)← Σ.KeyGen(1λ) and return vkid.
– All OSign((id, ·), ·) queries such that id = idq∗ are answered using the OSign(·) oracle of the

EUF-CMA challenger, where all the remaining queries are answered by using the secret key
skid, which is known to B5.

– If A makes a query OCorr(id) such that id = idq∗ abort, otherwise return the corresponding
secret key skid.

After A outputs (P∗, {x∗
i }i, c∗, πσ, cw), B5 parses the labels ℓ∗

1 = (id∗
1, ·) in P∗ and aborts if

id∗
1 ̸= idq∗ .

If B5 does not abort, then the simulation is perfect and it must be that (m̄1|ℓ∗
1, σ̄1) is a valid

forgery for the EUF-CMA game. This holds as the WIN3 condition enforces that A is only
allowed to output labels ℓ∗

i such that (ℓ∗
i , mi) was queried to OSign. Moreover, WIN3 also enforces

that vk1 is not a corrupted key. Namely, id∗
1 is one of the non-corrupted keys and thus the

probability that B5 does not abort is 1/Q. Thus, we conclude:

Pr[Hyb1,4
A (λ) = 1] ≤ Pr[Hyb1,5

A (λ) = 1] + Q · Adveufcma
Σ,B5 (λ).

Hyb1,6: In this game, we compute the honest partial commitment c1 ← FC.Com(ck, (m1, 0, . . . , 0)),
and require that c̄1 = c1, and by extension, that ĉ1 = c1. This step follows by the updatability
of FC, since C(x1, w̄1) = 1 only holds if FC.VerUpd(ck1, 1, c̄0, 0, c̄1, m̄1, π̄1) = 1. As m̄1 = m1, if
c̄1 ≠ c1 then we break FC updatability soundness. Hence, there exists an adversary B6 against
FC updatability such that

Pr[Hyb1,5
A (λ) = 1] ≤ Pr[Hyb1,6

A (λ) = 1] + Advupdbind
FC,B6

(λ).

27

Hyb1,6
A (λ):

(crs, td)← BARG.TdSetup(1)
(dk, tdc)← SEC.TdSetup(1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄1 ← BARG.Ext(td, C, πσ)
ĉ1 ← SEC.Ext(tdc, cw)
c1 ← FC.Com(ck, (m1, 0))
Output 1 iff:

WIN3 = 1
∧ C(x1, w̄1) = 1
∧ ĉ1 = c̄1 = c1

∧ m̄1 = m1

Hyb1,7
A (λ):

(crs, td)← BARG.TdSetup(1)
(dk, tdc)← SEC.TdSetup(1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄1 ← BARG.Ext(td, C, πσ)
ĉ1 ← SEC.Ext(tdc, cw)
c1 ← FC.Com(ck, (m1, 0))
Output 1 iff:

WIN3 = 1
∧ ĉ1 = c1

Fig. 11: Games Hyb1,6, Hyb1,7 for the proof of Lemma 3.

Hyb1,7: This game is a simplification of Hyb1,6 where we no longer extract from BARG, and hence
we no longer have C(x1, w̄1) = 1 ∧ m̄1 = m1 ∧ ĉ1 = c̄1 in the winning condition. We have that

Pr[Hyb1,6
A (λ) = 1] = Pr[Hyb1,7

A (λ) = 1 ∧ C(x1, w̄1) = 1 ∧ m̄1 = m1 ∧ ĉ1 = c̄1]
≤ Pr[Hyb1,7

A (λ) = 1].

Note, this simplification makes the winning condition of Hyb1,7 independent of BARG extraction,
which is crucial for changing the extraction index in the subsequent hybrid.

Games Hybi,j for 2 ≤ i < n: We introduce the hybrid games in Figures 12, 13, 14. First of
all, we analyze the step from Hyb1,7 to Hyb2,1. Then, we analyze the generic step from Hybi−1,9 to
Hybi,1 for i > 2, and proceed with the remaining hybrids.

Hyb2,1: In the transition from Hyb1,7 to Hyb2,1, we simply switch BARG.TdSetup(1) to the following
index BARG.TdSetup(2). The step again follows by the setup indistinguishability of BARG. We
have that

Pr[Hyb1,7
A (λ) = 1] ≤ Pr[Hyb2,1

A (λ) = 1] + Advsind
BARG,B1(λ).

Hybi,1: In the transition from Hybi−1,9 to Hybi,1, we also simply switch BARG.TdSetup(i− 1) to the
following index BARG.TdSetup(i). As above, the setup indistinguishability of BARG implies that

Pr[Hybi,1
A (λ) = 1] ≤ Pr[Hybi−1,9

A (λ) = 1] + Advsind
BARG,B1(λ).

Hybi,2, Hyb1,3: These steps are identical to the respective steps for Hyb1,2, Hyb1,3,

Pr[Hybi,1
A (λ) = 1] ≤ Pr[Hybi,3

A (λ) = 1] + Advsext
BARG,B2(λ) + Advsind

SEC,B3(λ).

28

Hybi,1
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.Setup(i− 1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

ĉi−1 ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ ĉi−1 = ci−1

Hybi,2
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.Setup(i− 1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi−1 ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ ĉi−1 = ci−1

Hybi,3
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.Setup(i− 1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi−1 ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ ĉi−1 = c̄i−1 = ci−1

Fig. 12: Games Hybi,1, Hybi,2, Hybi,3 for the proof of Lemma 3.

Hybi,4
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.Setup(i− 1)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi−1 ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ c̄i−1 = ci−1

Hybi,5
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.TdSetup(i)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi−1 ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ c̄i−1 = ci−1

Hybi,6
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.TdSetup(i)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ c̄i−1 = ci−1

∧ c̄i = ĉi

Fig. 13: Games Hybi,4, Hybi,5, Hybi,6 for the proof of Lemma 3.

Hybi,4: This game is a simplification of Hybi,3 where we no longer extract from SEC, and therefore,
the winning condition ci−1 = ĉi−1 also vanishes. Similarly to the proof for Hyb1,7, it follows that

Pr[Hybi,3
A (λ) = 1] ≤ Pr[Hybi,4

A (λ) = 1].

Hybi,5, Hybi,6: These steps are nearly identical to Hyb1,3 and Hyb1,4, where we switch the extraction
index of SEC (to index i), and then use the corresponding SEC extractor. By the setup indistin-
guishability and somewhere extractability of SEC, it follows that we can construct adversaries

29

B3 and B4 such that

Pr[Hybi,4
A (λ) = 1] ≤ Pr[Hybi,6

A (λ) = 1] + Advsind
SEC,B3(λ) + Advsext

SEC,B4(λ).

Hybi,7
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.TdSetup(i)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ c̄i−1 = ci−1

∧ c̄i = ĉi

∧ m̄i = mi

Hybi,8
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.TdSetup(i)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi ← SEC.Ext(tdc, cw)
ci−1 ←

FC.Com(ck, (m[1:i−1], 0))
ci ← FC.Com(ck, (m[1:i], 0))
Output 1 iff:

WIN3 = 1
∧ C(xi, w̄i) = 1
∧ c̄i−1 = ci−1

∧ c̄i = ĉi = ci

∧ m̄i = mi

Hybi,9
A (λ):

(crs, td)← BARG.TdSetup(i)
(dk, tdc)← SEC.TdSetup(i)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄i ← BARG.Ext(td, C, πσ)
ĉi ← SEC.Ext(tdc, cw)
ci−1 ← FC.Com(ck, (m[1:i−1], 0))
ci ← FC.Com(ck, (m[1:i], 0))
Output 1 iff:

WIN3 = 1
∧ ĉi = ci

Fig. 14: Games Hybi,7, Hybi,8, Hybi,9 for the proof of Lemma 3.

Hybi,7: This game transition is as for Hyb1,5, where we rely on the unforgeability of Σ. The only
difference is that in the reduction we must replace vk1 by vki in the abort condition defined in
the guessing argument. In an analog manner, it follows that

Pr[Hybi,6
A (λ) = 1] ≤ Pr[Hybi,7

A (λ) = 1] + Q · Adveufcma
Σ,B5 (λ).

Hybi,8, Hybi,9: These steps are identical to those for Hyb1,6 and Hyb1,7, respectively. We have that,
by FC updatability soundness, and by the simplification of the winning condition, there exists
an adversary B6 such that

Pr[Hyb1,7
A (λ) = 1] ≤ Pr[Hyb1,9

A (λ) = 1] + Advupbind
FC,B6

(λ).

Games Hybn,j: Games Hybn,1 to Hybn,8 are defined as the games Hybi,1 to Hybi,8, for i = n, in
Figures 12, 13, 14, and the reduction steps are identical for these cases. To analyze the advantage
of the adversary in Hybn,8, we introduce an additional Hybn,8∗, that we compare to the former in
Figure 15.

Observe that Hybn,8∗ is just a simplification of game Hybn,8 with an easier winning condition.
Hence,

Pr[Hybn,8
A (λ) = 1] ≤ Pr[Hybn,8∗

A (λ) = 1]

30

Hybn,8
A (λ):

(crs, td)← BARG.TdSetup(n)
(dk, tdc)← SEC.TdSetup(n)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄n ← BARG.Ext(td, C, πσ)
ĉn ← SEC.Ext(tdc, cw)
cn−1 ← FC.Com(ck, (m[1:n−1], 0))
cn ← FC.Com(ck, (m[1:n], 0))
Output 1 iff:

WIN3 = 1
∧ C(xn, w̄n) = 1
∧ c̄n−1 = cn−1

∧ c̄n = ĉn = cn

∧ m̄n = mn

Hybn,8∗
A (λ):

(crs, td)← BARG.TdSetup(n)
(dk, tdc)← SEC.TdSetup(n)
ck← FC.Setup()
(P∗, {x∗

i }i, c∗, πσ, cw)
← AO(crs, dk, ck)

w̄n ← BARG.Ext(td, C, πσ)
ĉn ← SEC.Ext(tdc, cw)
cn−1 ← FC.Com(ck, (m[1:n−1], 0))
cn ← FC.Com(ck, (m[1:n], 0))
Output 1 iff:

WIN3 = 1
∧ C(xn, w̄n) = 1
∧ c̄n = cn

Fig. 15: Games Hybn,8, Hybn,8∗ for the proof of Lemma 3.

Finally, note that the conditions WIN3, C(xn, w̄n) = 1, and c̄n = cn cannot occur simultaneously.
The circuit C(xn, w̄n) = 1 (Figure 5) checks, for i = n, that c̄n = c∗. Therefore, c∗ = cn is honestly
computed, which contradicts the winning condition WIN3. We conclude that

Pr[Hybn,8∗
A (λ) = 1] = 0.

Proof summary. Putting all the intermediate bounds together, we obtain the following final
bound:

Pr[UF3A(λ) = 1] ≤ n · Advsind
BARG,B1(λ) + n · Advsext

BARG,B2(λ)
+ (2n− 1) · Advsind

SEC,B3(λ) + n · Advsext
SEC,B4(λ)

+ n ·Q · Adveufcma
Σ,B5 (λ) + n · Advupdbind

FC,B6
(λ).

Lemma 4. For any PPT adversary A making at most Q = poly(λ) queries to the key generation
oracle and that can produce a valid forgery in UF4, there exists a PPT adversary BEUF-CMA against
the EUF-CMA property of the digital signature scheme Σ, such that

Pr[UF4,A(λ) = 1] ≤ Q · Adveuf-cma
Σ,BEUF-CMA(λ).

Proof. The proof of this lemma follows virtually the same reduction strategy to unforgeability
as in the previous lemmas (the proof of the last hybrid in Lemma 1 and the proofs for hybrids
Hyb1,4 ≈ Hyb1,5 in Lemma 3). Therefore we only give a sketch to highlight the main differences.
The reduction starts by making a guess (which is correct with probability 1/Q) about the index of
the key generation query that gives the verification key that will be used in the forgery. If the guess

31

is correct, a MKHS forgery (ℓ∗, y∗, σ∗) gives a signature on the message y∗|ℓ∗. If the MKHS forgery
is of type 1, then the message is new since no message with suffix ℓ∗ was asked to the signing oracle
(as in Lemma 1). If instead it is a MKHS forgery of type 2 then the message is new since the signing
oracle was queried on m|ℓ∗ for m ̸= y∗, and on no other message with label ℓ∗ due to the rule of the
MKHS security game (as in Lemma 3).

5 Extensions and Instantiations

In this section, we extend our base MKHS construction to support sequential multi-hop evaluation.
Later, we describe a variety of instantiations of MKHS from falsifiable (and standard) assumptions,
obtained through BARGs, FCs and SECs introduced in previous works.

Before, we present a generic result that allows one to construct a chainable functional commitment
[BCFL23] from any (suitably expressive) FC.7 This transformation turns out useful both for achieving
multi-hop evaluation and for instantiations. The idea is simple: for a committed x, instead of opening
to y = f(x) we open to cy = FC.Com(ck, f(x)), which can be expressed as cy = f ′(x) for a function
f ′ = g⊙f (i.e., the sequential composition of f followed by g), where g(·) is the circuit that computes
the commitment algorithm FC.Com(ck, ·).

Theorem 4. Let FC be a functional commitment scheme for a class of circuits F and whose
commitment algorithm FC.Com can be computed by a circuit g ∈ F . Then there exists a CFC scheme
CFC for the class of circuits F ′ = {f : g ⊙ f ∈ F}.

We remark that, by applying the generic CFC-to-FC transformation introduced by Balbás,
Catalano, Fiore and Lai [BCFL23] for the special case of layered circuits, this result boosts any
FC for bounded-depth circuits into a FC′ for unbounded-depth circuits, albeit the proof size of FC′

grows linearly with the circuit depth. We refer to Appendix A.2 for the proof and further details.

5.1 Multi-Hop Evaluation

We show how to adapt our MKHS construction in Figure 4 to support multi-hop evaluation of
sequential functions f (h)(f (h−1)(· · · f (1)(·))). This construction relies on the same primitives as
before, except that we require a chainable functional commitment CFC instead of a FC. We remark
that, by applying Theorem 4, we can generically turn any FC for circuits into a CFC for circuits.
The scheme supports the same labels and messages as the single-hop scheme.

First, we define a param structure for the input taken by the Eval algorithm with function f ,
such that we can distinguish whether f does a first-hop evaluation, or whether we compute over a
previous output of Eval.

param =
{

(ℓi, vki, mi, σi)i∈[n] if h = 1
(P, {vki}i∈P , m(h−1), σ) if h > 1 .

We introduce the scheme in Figure 16. The Setup, KeyGen, and Sign algorithms remain as in
Figure 4. For security, note that the signature σf,y is as in our single-hop MKHS, except that it
includes multiple CFC commitments and opening proofs (π(j)

f , c(j−1))j∈[h]. The key observation
7 Precisely, we can build a CFC supporting a single input commitment; this is however enough in our application of

composable MKHS.

32

is that we can see π̄f := (π(j)
f , c(j−1))j∈[h] as the opening proof for f (h) ⊙ · · · ⊙ f (1) on c(0) in the

generic CFC-to-FC construction from [BCFL23, Theorem 2]. Hence, from the security standpoint
we can interpret the multi-hop scheme as our single-hop one instantiated with a different FC; thus
the same security proof applies.

MKHS.Eval(pp, f := f (h), param, h) :
If h = 1:
– Parse param := (ℓi, vki, mi, σi)i∈[n].
– Output (cw, πσ, π

(1)
f , c(0))← MKHS.Eval0(pp, f (1), (ℓi, vki, mi, σi)i∈[n]).

If h > 1:
– Parse param := (P, {vkid}id∈P , m(h−1), σ).
– Parse σ := (cw, πσ, (π(j)

f , c(j−1))j∈[h−1]).
– Parse pp := (crs, ck, dk).
– Compute m(h) ← f (h)(m(h−1)).
– c(h−1) ← CFC.Com(ck, m(h−1)).
– π

(h)
f ← CFC.Open(ck, m(h−1), f (h)).

– Output σf,y = (cw, πσ, (π(j)
f , c(j−1))j∈[h]).

MKHS.Ver(pp,P, {vkid}id∈P , y, σf,y) :
– Parse P := (f, ℓ1, . . . , ℓn) and {ℓi := (idi, τi)}.
– If P = (fid, ℓ1) then check that Σ.Ver(vkid1 , y|ℓ1, σf,y) = 1.
– Else, parse σf,y := (cw, πσ, (π(j)

f , c(j−1))j∈[h]).
– Parse pp := (crs, ck, dk).
– Parse f := (f (1), . . . , f (h)).
– Compute c(h) ← CFC.Com(ck, y).
– Compute c0 ← FC.Com(ck, 0).
– Compute the BARG circuit C described in Figure 5, hardcoding c(0), cw, c0.
– Given {vki}i := {vkidi

}i and {ℓi}i, {cki}i, {dki}i, define xi = (vki, cki, dki, dki−1, ℓi, i).
– ∀ j ∈ [h], check that CFC.Ver(ck, c(j−1), f (j), c(j), π

(j)
f) = 1.

– Check that BARG.Ver(crs, C, {xi}i, πσ) = 1.
– Output 1 if all checks pass.

Fig. 16: MKHS.Eval and MKHS.Ver algorithms of a multi-hop succinct multi-key homomorphic
signature scheme MKHS constructed from a chainable functional commitment CFC, a BARG for NP
BARG, a somewhere extractable commitment SEC and a digital signature Σ. Eval0 is the single-hop
Eval from Figure 4.

5.2 Instantiations of MKHS for all functions

We describe several instantiations for our construction in Section 4 that we obtain by instantiating
its main building blocks. We focus on MKHS for all functions, that we model as either boolean
or arithmetic circuits of unbounded depth. We discuss the properties of the resulting schemes, in
particular their succinctness and the underlying assumptions.

33

We give two families of MKHS instantiations: those that use non-algebraic FCs and BARGs
(internally relying on correlation-intractable hash functions (CIHs) and probabilistic checkable
proofs (PCPs)), and those that use algebraic constructions of these schemes. CIH + PCP based
constructions offer nearly optimal asymptotic succinctness, but the concrete parameters suffer from
an impractical blow-up. Algebraic BARGs and FCs have smaller concrete parameters, and although
our MKHS construction makes non-black-box use of them, we believe that instantiations based on
algebraic building blocks present a more promising avenue towards fully-algebraic, concretely-efficient
future MKHS constructions.

MKHS for unbounded-depth circuits from CIH and PCPs. The natural choices for this family
of BARGs are the constructions in [CGJ+23, CJJ22] from either subexponential DDH or LWE,
respectively.8 Their efficiency is later refined in [KLVW23].

For functional commitments, the asymptotically optimal choice is to extend the SNARG for
RAM computations from [KLVW23], which can be seen as an FC for single-output boolean circuits
C : {0, 1}n → {0, 1}. Such an FC can be constructed generically from BARGs, and hence from
the same assumptions as before. Extending their SNARG to a fully-fledged FC for unbounded
depth-circuits is not straightforward and requires a series of observations:
– The commitment scheme underlying their SNARG is deterministic and supports efficient local

updatability as it is implemented as a Merkle tree.
– Their SNARG satisfies FC evaluation binding for RAM computations with a bounded number of

steps, which can be represented by single-output boolean circuits f : {0, 1}n → {0, 1} of bounded
depth dmax. To boost their scheme, we can apply our generic transformation to obtain a CFC
from any FC (Theorem 4). Since committing to a Merkle tree can be carried out by a circuit of
poly(λ, log n) depth, the transformation yields a CFC for boolean circuits f : {0, 1}n → {0, 1}n
of bounded depth d′

max ≲ dmax, where the opening proofs have size |πf | = poly(λ, log n).
– Given such a CFC for boolean circuits of bounded depth, one can obtain a FC for circuits of

unbounded depth d by applying the generic CFC-to-FC transformation from [BCFL23], which
imposes a multiplicative overhead of d on the opening size. Overall, |πf | = poly(λ, log n) · d.

Corollary 2. Assuming the hardness of either (1) subexponential decisional Diffie-Hellman (DDH),
or (2) learning with errors, there exists a multi-key homomorphic signature for unbounded-depth
boolean circuits F = {f : {0, 1}n → {0, 1}m} with the following properties:
– Public parameters size: |pp| = poly(λ, log n).
– Signature size: |σf,y| = poly(λ, log n, log m) · d.
– Efficient verification: Both the labels and the function can be preprocessed. The online efficient

verification algorithm runs in time poly(λ, log n, m) · d.
– Multi-hop evaluation and Context-hiding.

MKHS for unbounded-depth circuit from algebraic schemes. Our MKHS can be instantiated over
bilinear groups by using the algebraic BARG from [WW22], which relies either on the subgroup
decision assumption or on the k-Lin assumption for any k ≥ 2. In [WW22], they also present
companion constructions of somewhere extractable commitments from the same assumptions. For
the FC, the most natural pairing-based choice is the algebraic scheme from [BCFL23], which relies
on the HiKer assumption. Notably, this FC scheme admits efficient local updatability, deterministic
commitments, and supports efficient verification with preprocessing.

8 In the same works, SECs are constructed from the same assumptions as a building block for BARGs.

34

Corollary 3. Assuming the hardness of HiKer and either the subgroup decision assumption or
k-Lin for k ≥ 2, there exists a pairing-based MKHS for unbounded-depth arithmetic circuits
F = {f :Mn →Mm} of bounded width w with the following properties:

– Public parameters size: |pp| = O
(
w5)

– Signature size: |σf,y| = O
(
λ · d2)

+ poly(λ). In particular, the signature is fully succinct on
both n and m.

– Efficient verification: Both the labels and the function can be preprocessed. The online efficient
verification algorithm runs in time O

(
λ · d2)

+ poly(λ).
– Multi-hop evaluation and Context-hiding.

Thanks to a recent result by Wee and Wu [WW24], one may also replace the HiKer assumption
by bilateral k-Lin. Towards a lattice-based algebraic instatiation, we remark that no lattice-based
algebraic BARGs exist up to date. For FCs, a natural choice may be the lattice-based (C)FC in
[BCFL23], or the scheme that results after applying the transformation of Theorem 4 to the FC in
[WW23a].

Acknowledgements

This work is supported by the PICOCRYPT project that has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 101001283), partially supported by projects PRODIGY (TED2021-132464B-
I00) and ESPADA (PID2022-142290OB-I00) funded by MCIN/AEI/10.13039/501100011033/ and the
European Union NextGenerationEU / PRTR, and partially funded by Ministerio de Universidades
(FPU21/00600).

References

AL11. Nuttapong Attrapadung and Benoît Libert. Homomorphic network coding signatures in the standard
model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th
International Conference on Theory and Practice of Public Key Cryptography, volume 6571 of Lecture
Notes in Computer Science, pages 17–34. Springer, Heidelberg, March 2011.

AP19. Diego F. Aranha and Elena Pagnin. The simplest multi-key linearly homomorphic signature scheme.
In Peter Schwabe and Nicolas Thériault, editors, Progress in Cryptology - LATINCRYPT 2019: 6th
International Conference on Cryptology and Information Security in Latin America, volume 11774 of
Lecture Notes in Computer Science, pages 280–300. Springer, Heidelberg, October 2019.

BCFL23. David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Chainable functional commitments
for unbounded-depth circuits. In Theory of Cryptography, Cham, 2023. Springer Nature Switzerland.

BCJP24. Maya Farber Brodsky, Arka Rai Choudhuri, Abhishek Jain, and Omer Paneth. Monotone-policy aggregate
signatures. In Marc Joye and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024,
pages 168–195, Cham, 2024. Springer Nature Switzerland.

BF11. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial functions. In Kenneth G.
Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 149–168. Springer, Heidelberg, May 2011.

BFKW09. Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace: Signature
schemes for network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th International
Conference on Theory and Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Computer
Science, pages 68–87. Springer, Heidelberg, March 2009.

BGLS03. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of
Lecture Notes in Computer Science, pages 416–432. Springer, Heidelberg, May 2003.

35

CF13. Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa and
Goichiro Hanaoka, editors, PKC 2013: 16th International Conference on Theory and Practice of Public
Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 55–72. Springer, Heidelberg,
February / March 2013.

CFGV13. Dario Catalano, Dario Fiore, Rosario Gennaro, and Konstantinos Vamvourellis. Algebraic (trapdoor)
one-way functions and their applications. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography
Conference, volume 7785 of Lecture Notes in Computer Science, pages 680–699. Springer, Heidelberg,
March 2013.

CFN15. Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash functions go private: Constructions
and applications to (homomorphic) signatures with shorter public keys. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes
in Computer Science, pages 254–274. Springer, Heidelberg, August 2015.

CFT22. Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments and
applications to homomorphic signatures. In Shweta Agrawal and Dongdai Lin, editors, Advances in
Cryptology – ASIACRYPT 2022, Part IV, volume 13794 of Lecture Notes in Computer Science, pages
159–188. Springer, Heidelberg, December 2022.

CFW12. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures in the standard
model. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012: 15th International
Conference on Theory and Practice of Public Key Cryptography, volume 7293 of Lecture Notes in Computer
Science, pages 680–696. Springer, Heidelberg, May 2012.

CFW14. Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with efficient verification
for polynomial functions. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 371–389. Springer,
Heidelberg, August 2014.

CGJ+23. Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng Zhang. Correlation
intractability and SNARGs from sub-exponential DDH. In Helena Handschuh and Anna Lysyanskaya,
editors, Advances in Cryptology – CRYPTO 2023, Part IV, volume 14084 of Lecture Notes in Computer
Science, pages 635–668. Springer, Heidelberg, August 2023.

CJJ21. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for NP from
standard assumptions. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology – CRYPTO 2021,
Part IV, volume 12828 of Lecture Notes in Computer Science, pages 394–423, Virtual Event, August 2021.
Springer, Heidelberg.

CJJ22. Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE. In 62nd Annual
Symposium on Foundations of Computer Science, pages 68–79. IEEE Computer Society Press, February
2022.

dCP23. Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent setup and
from SIS. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
Part III, volume 14006 of Lecture Notes in Computer Science, pages 287–320. Springer, Heidelberg, April
2023.

Des93. Yvo Desmedt. Computer security by redefining what a computer is. NSPW, 1993.
DGKV22. Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive arguments

for batch-NP and applications. In 63rd Annual Symposium on Foundations of Computer Science, pages
1057–1068. IEEE Computer Society Press, October / November 2022.

FMNP16. Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin. Multi-key homomorphic authenti-
cators. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016,
Part II, volume 10032 of Lecture Notes in Computer Science, pages 499–530. Springer, Heidelberg,
December 2016.

FN16. Dario Fiore and Anca Nitulescu. On the (in)security of SNARKs in the presence of oracles. In Martin
Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part I, volume
9985 of Lecture Notes in Computer Science, pages 108–138. Springer, Heidelberg, October / November
2016.

FP18. Dario Fiore and Elena Pagnin. Matrioska: A compiler for multi-key homomorphic signatures. In
Dario Catalano and Roberto De Prisco, editors, SCN 18: 11th International Conference on Security in
Communication Networks, volume 11035 of Lecture Notes in Computer Science, pages 43–62. Springer,
Heidelberg, September 2018.

Fre12. David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic framework. In
Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012: 15th International Conference

36

on Theory and Practice of Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science,
pages 697–714. Springer, Heidelberg, May 2012.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, 41st
Annual ACM Symposium on Theory of Computing, pages 169–178. ACM Press, May / June 2009.

GKKR10. Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding over the
integers. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010: 13th International Conference
on Theory and Practice of Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science,
pages 142–160. Springer, Heidelberg, May 2010.

Goy24. Rishab Goyal. Mutable batch arguments and applications. Cryptology ePrint Archive, Paper 2024/737,
2024. https://eprint.iacr.org/2024/737.

GU24. Romain Gay and Bogdan Ursu. On Instantiating Unleveled Fully-Homomorphic Signatures from Falsifiable
Assumptions. In International Conference on Public Key Cryptography - PKC 2024, 2024. to appear.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on
Theory of Computing, pages 469–477. ACM Press, June 2015.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd Annual ACM Symposium on Theory of
Computing, pages 99–108. ACM Press, June 2011.

GW13. Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Kazue Sako and
Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II, volume 8270 of Lecture
Notes in Computer Science, pages 301–320. Springer, Heidelberg, December 2013.

GZ21. Alonso González and Alexandros Zacharakis. Fully-succinct publicly verifiable delegation from constant-
size assumptions. In Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory of Cryptography
Conference, Part I, volume 13042 of Lecture Notes in Computer Science, pages 529–557. Springer,
Heidelberg, November 2021.

HKW15. Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057
of Lecture Notes in Computer Science, pages 3–34. Springer, Heidelberg, April 2015.

HW15. Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation with
long output. In Tim Roughgarden, editor, ITCS 2015: 6th Conference on Innovations in Theoretical
Computer Science, pages 163–172. Association for Computing Machinery, January 2015.

JMSW02. Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature
schemes. In Bart Preneel, editor, Topics in Cryptology – CT-RSA 2002, volume 2271 of Lecture Notes in
Computer Science, pages 244–262. Springer, Heidelberg, February 2002.

KLVW23. Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch arguments and
ram delegation. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC),
STOC 2023, page 1545–1552, New York, NY, USA, 2023. Association for Computing Machinery.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated verifier/prover
and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology – EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer
Science, pages 622–651. Springer, Heidelberg, May 2019.

KPY19. Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly. In Moses
Charikar and Edith Cohen, editors, 51st Annual ACM Symposium on Theory of Computing, pages
1115–1124. ACM Press, June 2019.

KVZ21. Yael Tauman Kalai, Vinod Vaikuntanathan, and Rachel Yun Zhang. Somewhere statistical soundness,
post-quantum security, and SNARGs. In Kobbi Nissim and Brent Waters, editors, TCC 2021: 19th Theory
of Cryptography Conference, Part I, volume 13042 of Lecture Notes in Computer Science, pages 330–368.
Springer, Heidelberg, November 2021.

LPJY13. Benoît Libert, Thomas Peters, Marc Joye, and Moti Yung. Linearly homomorphic structure-preserving
signatures and their applications. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages 289–307. Springer,
Heidelberg, August 2013.

LRY16. Benoît Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From polynomial
commitments to pairing-based accumulators from simple assumptions. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP 2016: 43rd International Colloquium
on Automata, Languages and Programming, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl,
July 2016.

37

https://eprint.iacr.org/2024/737

LTWC18. Russell W. F. Lai, Raymond K. H. Tai, Harry W. H. Wong, and Sherman S. M. Chow. Multi-key
homomorphic signatures unforgeable under insider corruption. In Thomas Peyrin and Steven Galbraith,
editors, Advances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer
Science, pages 465–492. Springer, Heidelberg, December 2018.

NWW23. Shafik Nassar, Brent Waters, and David J. Wu. Monotone policy bargs from bargs and additively
homomorphic encryption. Cryptology ePrint Archive, Paper 2023/1967, 2023. https://eprint.iacr.
org/2023/1967.

OPWW15. Tatsuaki Okamoto, Krzysztof Pietrzak, Brent Waters, and Daniel Wichs. New realizations of somewhere
statistically binding hashing and positional accumulators. In Tetsu Iwata and Jung Hee Cheon, editors,
Advances in Cryptology – ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Science,
pages 121–145. Springer, Heidelberg, November / December 2015.

RS09. Markus Rückert and Dominique Schröder. Aggregate and verifiably encrypted signatures from multilinear
maps without random oracles. In Jong Hyuk Park, Hsiao-Hwa Chen, Mohammed Atiquzzaman, Changhoon
Lee, Tai-hoon Kim, and Sang-Soo Yeo, editors, Advances in Information Security and Assurance, pages
750–759, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

SBB19. Lucas Schabhüser, Denis Butin, and Johannes Buchmann. Context hiding multi-key linearly homomorphic
authenticators. In Mitsuru Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume 11405 of Lecture
Notes in Computer Science, pages 493–513. Springer, Heidelberg, March 2019.

SFVA21. Somayeh Dolatnezhad Samarin, Dario Fiore, Daniele Venturi, and Morteza Amini. A compiler for
multi-key homomorphic signatures for turing machines. Theor. Comput. Sci., 889:145–170, 2021.

WW22. Brent Waters and David J. Wu. Batch arguments for sfNP and more from standard bilinear group
assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
Part II, volume 13508 of Lecture Notes in Computer Science, pages 433–463. Springer, Heidelberg, August
2022.

WW23a. Hoeteck Wee and David J. Wu. Lattice-based functional commitments: Fast verification and cryptanalysis.
In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, Part V, volume
14442 of Lecture Notes in Computer Science, pages 201–235. Springer, Heidelberg, December 2023.

WW23b. Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from lattices.
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023, Part III,
volume 14006 of Lecture Notes in Computer Science, pages 385–416. Springer, Heidelberg, April 2023.

WW24. Hoeteck Wee and David J. Wu. Succinct Functional Commitments for Circuits from k-Lin. In Marc Joye
and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages 280–310, Cham, 2024.
Springer Nature Switzerland.

A On Generic Transformations for Functional Commitments

A.1 Theorem 1: from Succinct to Compact FC and (MK)HS

We show a generic method to turn an input-succinct FC into one that is also output-succinct. The
same transformation applies to (multi-key) homomorphic signatures (the adaptation is straightfor-
ward and omitted here). The idea is to execute FC on the composed function fH := H⊙f :Mn →Mℓ

in order to generate an opening for each of the ℓ output values of fH . The verifier who knows the
output y ∈Mm runs the FC verification with the function fH and the output H(y). Precisely, since
we assume that FC supports only n-to-1 functions, we would consider an instantiation for n-to-ℓ
functions obtained by running the opening and verification algorithms ℓ times, for the functions
{fH,i}i=1..m that return the i-th output bit of fH . As one can see, the size of the opening proof of
this construction is ℓ · |π| where |π| is the size of an opening in FC.

For this transformation to be correct we need the FC scheme to be sufficiently expressive in
order to support the functions H ⊙ f , which may be in a class of functions larger than F . For
example, for FCs that support circuits of bounded depth one needs to increase the bound by dH(m)
(i.e., the depth of H on inputs of length m). Technically, we need that each projection fH,j , for
j = 1 to ℓ, is in the class F supported by FC.

38

https://eprint.iacr.org/2023/1967
https://eprint.iacr.org/2023/1967

The security of this transformation relies on the evaluation binding of FC and the collision
resistance of H. A proof sketch follows. Consider any adversary breaking evaluation binding of
FC′. Recall that this means that we have two valid openings for y and y′ ̸= y. Then there are two
possible cases: H(y) = H(y′) or not. In the former case we can break collision resistance of H. In
the second case, there is at least an index j such that H(y)j ̸= H(y′)j and there are two valid
proofs for these values w.r.t. the same function fH,j . This case can be reduced to the evaluation
binding of FC.

An interesting special case. Interestingly, the idea of this transformation can be applied even
to very limited FCs, such as ones for linear maps, by means of linear hash functions such as
Ajtai’s. In turn, this method can be applied to existing functional commitments from lattices
[dCP23, WW23b, WW23a] to obtain output-succinctness efficiently.

Let FC be an FC for n-to-1 linear forms over a ring Zq. Precisely, let F be a set of functions
F = {f : Zn

q → Zm
q } where outputs are small integers bounded (in absolute value) by some β < q.

Consider Ajtai’s hash function HA : Zm → Zℓ
q defined by HA(y) := A · y mod q for A ∈ Zm×ℓ

q ,
which is collision-resistant for vectors of small norm. For any f ∈ F define fH := HA ⊙ f , i.e.,
fH(x) := A · f(x). Notice that fH : Zn

q → Zℓ
q is a linear map and thus we can run FC for linear

forms ℓ times, one for every output.

A.2 Theorem A.2: From FCs to Chainable FCs

To obtain a chainable FC scheme CFC from an FC scheme FC, we define CFC as follows:

– CFC.Setup(1λ, 1n) = FC.Setup(1λ, 1n)
– CFC.Com(ck, x) = FC.Com(ck, x)
– CFC.Open(ck, aux, f) = FC.Open(ck, aux, g ⊙ f)
– CFC.Ver(ck, cx, cy, f, π) = FC.Ver(ck, cx, cy, g ⊙ f, π).

Correctness is immediate by construction and by the definition of the class F ′.
For evaluation binding, assume by contradiction that an adversaryA outputs a tuple (cx, f, cy, π, c′

y, π′)
that breaks the evaluation binding of CFC. Then, by construction, the tuple (cx, g ⊙ f, cy, π, c′

y, π′)
breaks the evaluation binding of FC.

The CFC scheme has succinctness sCFC(λ, n, m, |f |) = sFC(λ, n, m, |g ⊙ f |), which by suc-
cinctness of FC is = poly(λ, log n, log m, o(|g ⊙ f |)). To argue that this yields succinctness, i.e.,
sCFC(λ, n, m, |f |) = poly(λ, log n, log m, o(|f |)), we need that |g| = o(|f |). Concretely, for the sake of
existing FCs it can be enough to assume that g is a circuit of depth polylog(n).

39

	Fully-Succinct Multi-Key Homomorphic Signatures from Standard Assumptions
	Introduction
	Our Contribution
	Technical Overview
	Related Work

	Preliminaries
	Digital Signatures
	Somewhere Extractable Commitments
	Batch Arguments for NP
	Functional Commitments

	Multi-Key Homomorphic Signatures
	Security
	Amortized efficiency
	Context Hiding

	Our MKHS Construction
	Efficient Verification
	Proof of Security

	Extensions and Instantiations
	Multi-Hop Evaluation
	Instantiations of MKHS for all functions

	On Generic Transformations for Functional Commitments
	Theorem 1: from Succinct to Compact FC and (MK)HS
	Theorem A.2: From FCs to Chainable FCs

