
Glitch-Stopping Circuits:
Hardware Secure Masking without Registers

Zhenda Zhang1, Svetla Nikova1 and Ventzislav Nikov2

1 COSIC, ESAT, KU Leuven, Belgium,
firstname.lastname@esat.kuleuven.be

2 NXP Semiconductors, Belgium,
venci.nikov@gmail.com

Abstract. Masking is one of the most popular countermeasures to protect imple-
mentations against power and electromagnetic side channel attacks, because it offers
provable security. Masking has been shown secure against d-threshold probing adver-
saries by Ishai et al. at CRYPTO’03, but this adversary’s model doesn’t consider
any physical hardware defaults and thus such masking schemes were shown to be
still vulnerable when implemented as hardware circuits. To addressed these limita-
tions glitch-extended probing adversaries and correspondingly glitch-immune masking
schemes have been introduced. This paper introduces glitch-stopping circuits which,
when instantiated with registers, coincide with circuits protected via glitch-immune
masking. Then we show that one can instantiate glitch-stopping circuits without
registers by using clocked logic gates or latches. This is illustrated for both ASIC
and FPGA, offering a promising alternative to conventional register-based masked
implementations. Compared to the traditional register-based approach, these register-
free solutions can reduce the latency to a single cycle and achieve a lower area cost.
We prove and experimentally confirm that the proposed solution is as secure as the
register-based one. In summary, this paper proposes a novel method to address the
latency of register-based hardware masking without jeopardising their security. This
method not only reduces the latency down to one clock cycle, but also improves the
area cost of the implementations.
Keywords: AES · Hardware Secure Masking · Glitch-Stopping Circuits

1 Introduction
Every cryptographic implementation leaks certain information about the sensitive variables
used for the computations through the so-called side-channels. These leakages can be of
different nature: power consumption, electromagnetic, timing, micro-architectural, etc.
In this paper we focus on leakages based on power and electromagnetic side-channels.
The threat model is captured by the corresponding side-channel attacks (SCA) which
are exploiting those power leakages by passively measuring the power consumption of
millions of executions. Then using the collected power traces the attacker apples statistical
methods, like differential power analysis [KJJ99], to recover the sensitive variables (e.g.,
the AES key) using divide and conquer revealing the key byte per byte. SCA can be very
harmful if there is no proper countermeasure implemented. The known countermeasures
fall into the following two categories, which however, can be jointly implemented:

• Leakage hiding tries to either remove the variations caused by the computations, or
to create artificial noise in the circuit. The means to achieve hiding are shielding,
power balancing, noise makers, dummy operations, dual-rail technology.

mailto:firstname.lastname@esat.kuleuven.be
mailto:venci.nikov@gmail.com


2 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

• Noise amplification leverages the existing noise in the given side-channels to make the
measurements harder. Shuffling and masking are the two methods used to achieve
noise amplification.

Through the years masking earned the reputation of being the most effective practical
countermeasure. It is especially relevant because of its provable security. To prove the
security of a cryptographic implementation, first the side-channel adversary’s model has to
be defined. The simplest model is the d-threshold probing model in which the adversary
is only allowed to probe the values of d wires within the circuit [ISW03]. However, the
d-probing model considers only ideal circuits and excludes any physical hardware defaults.
To address this limitation, the glitch-extended probing model was first introduced by
Reparaz et al. [RBN+15] at CRPYTO’15, followed by the formal definition of the robust
probing model by Faust et al. [FGP+18] at CHES’18. The glitch-extended d-threshold
probing model again allows the adversary to probe d wires within the circuit but in addition
also all the input values of the probed wires are given to the adversary. In other words,
the adversary can learn more than d values. We stress that although glitches are undesired
(for security and power reasons) they are ubiquitous part of every CMOS technology.
Masking with d + 1 shares provides a successful defense against (glitch-extended) d-probing
adversary if no information can be revealed for the sensitive variable for any choice of the
d probes.

Early masked schemes didn’t consider physical hardware defaults and Mangard et
al. [MPO05] at CHES’05 showed that such schemes leak information due to glitches. It
became clear that glitches in hardware designs can cause unintended re-combinations of
masked values due to varying delays in the circuit, so the question was how to build resistant
circuits. Mangard et al. also proposed two strategies which Lammers et al. [LMM23]
named as glitch-free circuits and glitch-immune circuits.

Two main physical defaults have been identified: glitches and transitions. When a
circuit stores a value in a memory element, the power consumption depends on the old
(i.e., already stored value) and the new value, which overwrites the memory state. This
overwriting effect is called a transition. The propagation delay across different data paths
within the combinational logic is not uniform. A single gate may receive input signals
that arrive at different times. As a result, the gate’s output may undergo temporary
changes. This process continues until the gate’s input signals stabilize, after which the
gate will produce a stable output. From a logical circuit perspective, these stable signals
progressively propagate through the circuit from the input registers to the output registers
throughout a cycle. Such short-lived effects of the signal are known as glitches.

A circuit is considered glitch-free if it experiences no internal glitches. One branch of
research focused on investigating ways to eliminate glitches in circuits with the goal of
achieving power equalization and thus leakage hiding. Early attempts to build glitch-free
circuits have focused on dual-rail logic with pre-charging (DRP) and its extension WDDL
[TV04]. All DRP circuits are usually asynchronous since, otherwise, they introduce time
delay due to the pre-charging phase. Early-propagation in DRP logic, where a DRP
logic’s output stabilizes without all input signals being determined, causes side-channel
leakages and such have been illustrated for both DRP and WDDL. Further extensions
like DRPnoEE and AWDDL considered monotonic Boolean gates, but still standalone
(without additional masking) those solutions were shown to be vulnerable.

In parallel to glitch-freedom, another branch of research focused on the glitch-immune
circuits, namely masking (i.e., noise amplification) that maintains their security in the
presence of glitches. The first glitch-immune circuit is proposed in 2006 [NRR06], where
the Threshold Implementations (TI) methodology is introduced. TI outlines two principal
guidelines for constructing glitch-immune masking:

• To render a circuit resistant to SCA in the presence of glitches, it is necessary to
incorporate additional registers. The primary role of these additional registers is to



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 3

prevent the propagation of glitches between sub-circuits.

• Each masked logic block between two registers (starting and ending points) must
adhere to the non-completeness requirement as defined by TI. This ensures that each
such sub-circuit is glitch-immune.

Since then, many glitch-immune masking schemes have been proposed on the basis of,
or expanding upon, the TI design principles, for example HOTI, CMS, DOM, HPC1,
HPC2, and HPC3 [BGN+14, RBN+15, GMK16, CGLS21, KM22]. To reduce the latency
overhead, GLM [GIB18] omitted share compression after each nonlinear operation but at
the cost of increased intermediate share count for higher-degree S-boxes. More recently,
LLTI, a low-latency masking technique based on TI, offers comparable area requirements
to GLM while eliminating online randomness [AZN21]. Note that glitch-immunity refers
to a circuit which achieves glitch-extended probing security. We are now ready to define
glitch-stopping circuits as follows.

Definition 1. A glitch-stopping circuit (GSC) refers to a synchronous digital circuit that
(1) incorporates glitch-immune masking schemes and (2) stops the propagation of glitches
between consecutive blocks of combinational logic.

Meanwhile since DRP-like solutions standalone still exhibited data-dependent early
signal propagation leading to potential leakage [MS16], research shifted to strengthen such
solutions by applying glitch-immune masking in addition. The authors of [MS16] proposed
the integration of WDDL and first-order TI masking. More recently LMDPL [SBHM20],
self-synchronized masking (SESYM) [NGPM22] and self-timed masking [SBB+22] were
proposed. Those solutions have been applied as asynchronous logic for part of a cipher
implementation, while globally the cipher is a synchronous design. All these three recent
solutions highlight the importance of data synchronization layers even in glitch-free designs,
especially synchronizing in long combinational data paths inside such asynchronous circuits.
Considering these works, which integrate DRP logic and masking, we redefine glitch-free
circuits as follows.

Definition 2. A glitch-free circuit (GFC) refers to an asynchronous digital circuit that
(1) incorporates glitch-immune masking schemes and (2) uses DRP logic and its extensions
to eliminate any internal glitches.

A notable aspect of our investigation is the measurement of latency. Latency can be
measured in two different ways: cycle-wise or time-wise. The choice between the ways to
measure depends on the specific use cases and constraints. In scenarios where there are no
limitations on clock frequency, time-wise measurement, which is the delay from the input
of a circuit to its output, is preferable. However, in instances where the clock frequency
is constrained, and the implementation block cannot be clocked faster than the rest of
the integrated circuit (IC), cycle-wise measurement becomes more relevant. Recognizing
the dual meaning of the term, we will provide latency measurements in both cycle-wise
and time-wise formats, offering a comprehensive view of the circuit’s performance under
different conditions.

This work: Figure 1 illustrates the categories of hardware secure masking which includes
GSCs as defined in Definition 1 and GFCs as defined in Definition 2. When glitch
propagation is prevented by registers, we denote such circuit by GSC_R. Such circuits are
equivalent to the conventional “glitch-immune circuits”. We recall that during the last 10
years glitch-immune masking (like TI, DOM, HPC, etc.) became the only recognised way
to do secure masking in hardware. Since additional registers are used for security purposes
such masking schemes have the drawback of increased cost and latency. However, GSC can
be instantiated not only with registers, and this paper focuses on building such instances



4 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

Hardware Secure Masking

Synchronous

Asynchronous

Glitch-Stopping Circuits (GSCs)

GSC_R

Register-Free Circuits (GFCs)

GSC_G

Dual-Rail-Based Masking

GSC_woR

GSCs with registers

GSCs with clocked gates

GSC_L
GSCs with latches

this work

Figure 1: Categories of Hardware Secure Masking

without registers. Thus, our motivation is to keep the same level of security while we aim
to reduce the cost in area and to improve the latency of secure HW implementations. In
particular, we propose the usage of clocked logic gates or latches to build glitch-stopping
circuits (GSC_G and GSC_L, respectively). We refer to those new solutions as GSC_woR
and we show that they can stop glitch propagation between logic blocks as effectively
as GSC_R, thus maintaining the security order of digital circuits against SCAs. The
design and implementations for GSC_woR are feasible for digital logic circuits in both
application-specific integrated circuits (ASIC) and field-programmable gate arrays (FPGA)
environments. The key contributions of this paper are as follows:

• We introduce a novel approach to build glitch-stopping circuits that do not rely on
registers GSC_woR while keeping the synchronous nature of the design. This method
employs clocked logic gates or latches, which can stop the propagation of glitches as
effectively as registers do.

• The novel GSC_woR require minimal changes in the clock configuration. Namely,
additional clocks are added, that play a crucial role in ensuring the correct timing
and synchronization of signals in the circuits. We provide complete procedure of
how to make the required changes in the circuit, for both ASIC and FPGA, in a
way that the security claims of the original circuit are preserved. This allows us to
prove that GSC_woR maintain the same security as GSC_R under the glitch-extended
probing model.

• A comprehensive comparison is provided between the proposed GSC_woR, the con-
ventional GSC_R and state-of-the-art glitch-free circuits. This analysis covers area
efficiency and latency in timing and in cycles. We show that GSC_woR can reduce
the latency to a single cycle, reduce area and improve the overall time-wise latency.

• We performed a leakage evaluation of the proposed GSC_woR instantiated with four
Xilinx FPGA primitives. This physical security evaluation provides empirical evidence
that two out of the four primitives effectively implement glitch-stopping gates and
thus achieve the first-order security.

2 Preliminaries
In this section we introduce all the notations and fundamental concepts of sequential logic
circuits and their role in developing secure hardware implementations by either preventing
glitches or their propagation.



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 5

Tpw

TCLK

Reg0 Reg1 Reg2
Combinational

Logic CL0

Combinational
Logic CL1

CLK

Figure 2: A synchronized circuit and its clock signal [WH10]

CLK Q

D Q

D-latch

D

CLK

Q

(a) A D-latch

transparent

hold
CLK

D

Q

(b) D-latch timing diagram

Figure 3: A D-latch that is level-sensitive to its clock signal [Wik24]

2.1 Sequential Logical Circuits
In digital design, sequential logic circuits provide outputs based on the current input
values and the preceding input states. These preceding input states are stored in memory
elements, usually referred to as registers. Conceptually, a register is characterized by a
single input and output, governed by a clock signal. Combinational logic circuits connect
the stages of registers. Combinational logic circuits consist of (Boolean) gates connected
by wires carrying the signals. Most common circuits are synchronized, meaning a mix of
combinational and sequential logic where the latter is driven by a global clock signal.

An example of sequential circuits is pipelining, as depicted in Figure 2. Pipelining is a
technique aimed at optimizing resource utilization, enhancing functional throughput, and
ultimately accelerating the operation of data paths in digital circuits. In this example,
the pipeline has two stages of combinational logic, separated by registers. Every cycle, a
new input is stored in Reg0, after two cycles the output becomes ready at Reg2. Thus,
the latency for each input is two cycles. However, the circuit does not need to wait for
the output to be ready before processing the next input. The throughput, quantifying the
number of operations a circuit can process per cycle, is 1 bit/cycle in this example.

2.1.1 Registers

A digital signal has two states or voltage levels: the low state is denoted as 0, and the high
state as 1. The clock signal is a special digital signal used to synchronize all gates in the
circuit. The rising edge, or positive edge, of the clock signal is the transition from 0 to 1.
Similarly, the falling edge, or negative edge of the clock signal is the transition from 1 to 0.
Registers are commonly instantiated as flip-flops and sometimes as latches.

Latches: A latch operates as a level-sensitive memory element, while in contrast, a
flip-flop operates as an edge-sensitive memory element. As depicted in Figure 3, when
the clock signal controlling a D-latch is 0, the input is ignored, while the output is locked
and maintained to the last input state. This state of the latch is referred to as the hold



6 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

CLK Q

D Q

D-latch

QM

CLK Q

D Q

D-latch
CLK

D Q

(a) A primary-secondary D-flip-flop (Register)

CLK

D

QM

Q

(b) D-flip-flop timing diagram with
its internal value

Figure 4: A primary-secondary D-flip-flop that is triggered on the rising edge of the clock
[Wik24, RCN03]

Q

D Q

Reg

D

CLK

Q

(a) A D-flip-flop (register)

tsetup thold

tcq

CLK

D

Q

(b) Timing characteristics

Figure 5: Definitions of set-up time, hold time, and propagation delay of a D-flip-flop
[Wik24, RCN03]

mode since it effectively stores the data. When the clock signal becomes 1, the input
propagates and passes continuously to the output. This is the transparent mode, which
ensures real-time tracking of the input signal. The hold mode makes latches an essential
building block for maintaining data in digital logic circuits, but any glitch on the input
will propagate to the output when the clock signal is high, hence latches should be in
transparent mode only when the input signal is stable.

Flip-Flops: D-flip-flops (FF) operate by sampling the input data typically at the rising
edge of the clock. They can also be triggered on the falling edge, though such implementa-
tions are less common. A flip-flop is normally built based on the primary-secondary, also
known as master-slave, configuration of two cascaded latches, as shown in Figure 4.

When CLK is 1 and before its falling edge, the primary D-latch is in hold mode and
the secondary D-latch operates in transparent mode. The primary latch ignores any new
input and holds its last input data constant at its output QM . The secondary latch, now
transparent, receives the data QM and transfers it to its output Q, allowing the data to
proceed to the combinational logic following the FF. Conversely, when CLK is 0 and
before its rising edge, the primary latch accepts data from the D input and transfers it
to its output QM . Meanwhile, the secondary latch is in hold mode, maintaining a stable
output of its previously stored value. Consequently, the FF changes its output Q when the
rising edge of the clock signal occurs. Unlike latches, either one of the FF’s two latches
always blocks any glitch inputs, preventing them from propagating to the FF’s output.

2.1.2 Clock Signal Characteristics and Timing Constraints in Synchronous Circuits

The clock controls the updating of the sequential memory elements within an IC or a chip.
As illustrated in Figure 2, a synchronous circuit is synchronized by a clock signal that is
connected to all registers. The clock period (TCLK) is the period between two rising clock
edges. In other words, this is the sum of the rise time, high time, fall time, and low time



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 7

of the clock signal, as depicted on Figure 2. Within this clock period, or during one cycle,
stable signal propagation through the circuits must be ensured, setting a minimum limit
for TCLK . The frequency of a synchronous circuit is defined as 1/TCLK , and consequently,
it possesses a maximum limit. It is important to note that in complex system-on-chips
(SoCs), different clock frequencies may coexist, being distributed to various parts of the
integrated circuit.

Duty Cycle: Pulse width (Tpw) of a signal is the duration from its rising edge to its
falling edge. The ratio of the positive pulse width Tpw and the total clock period TCLK is
defined as the duty cycle of the clock. Expressed as a percentage, the duty cycle is given
by D = Tpw/TCLK × 100%. Clock signals in modern circuit designs typically have a 50%
duty cycle, although this is not always the case. Advanced electronic design automation
tools (EDA) facilitate modifications of the duty cycle.

Timing Considerations of a flip-flop: The timing metrics of a flip-flop are critical for
correctly registering an input to its output, as illustrated in Figure 5. The setup time is the
interval during which the input data D must remain stable before the clock’s rising edge.
This period typically corresponds to the time required for the input signal to propagate
through the primary latch. The hold time represents the duration that D cannot change
for the data to transition to the secondary latch and the FF output. Propagation delay
tcq is the time the signal takes for the input change to be reflected at the output after the
clock edge.

If the setup or hold time requirements are not met, the output of the FF is unpredictable
and may even be unstable: the output may operate normally, take an invalid level, or
oscillate. Therefore, setup and hold times define the uncertainty time windows in which
the FF output is not deterministic. That is why in synchronous digital design clock periods
are chosen such that no meta-stability of the FFs ever happens. In synchronous circuit
design, the rising edge of the clock signal indicates that all signals have reached a valid
and stable state. This is guaranteed by setting the clock period, during the design time,
to the worst-case delay between two FFs. Usually, the timing requirements are controlled
and ensured via the EDA tools.

The global clock signal has a tree structure from a single source and thus it is glitch-free.
Note that if there are glitches in the clock signal then flip-flops might become meta-stable
and hence the glitches on the data signals might not be stopped by a flip-flop. We will
further consider the depicted in Figure 2 circuit to be a circuit without a side-channel
attack resistance.

2.2 SCA Resistant Circuits
In this section, we consider the leakage model that captures the effect of glitches and we
discuss the state-of-the-art for SCA resistant circuits.

Let’s recall that a glitch-extended probe on a wire z models the impact of glitches by
capturing all stable signals that contribute to the wire z. In other words, such a probe
collects all flip-flop values leading to the wire z. Similarly, the transition-extended probe on
a register w models the impact of transitions by recording two consecutive signals stored
in w. In the rest of the paper, the main concept we will use is the glitch-extended probing
model. In this model, it is assumed that an attacker can instantiate a glitch-extended probe
from a wire z in the circuit and trace the wire values backwards to all registers which store
signals contributing to z. However, tracing back beyond the register (into the preceding
circuit) is not feasible as glitches are stopped by the register. Since both the glitch-free
and the glitch-immune circuits include glitch-immune masking the glitch-extended probing
model offers a framework to establish security proofs for both of them.



8 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

Reg1C Reg2

TpwT I

TCLKT I

Reg1 Reg1A Reg1B

CLKT I

CL1A CL1B CL1C CL1D

Figure 6: Glitch-stopping circuit with four-stages TI

2.2.1 Glitch-Immune Circuits

The authors of TI [NRR06] were the first to provide first-order protection against side-
channel attacks in the presence of glitches. The TI methodology involves segmenting
the combinational logic into smaller sub-circuits, as illustrated in Figure 6. Moreover,
TI mandates non-completeness for each masked sub-circuit or gadget and requires that
the masking must be both correct and uniform to guarantee first-order composability.
Subsequently, the notion of composability was introduced [BBD+16]. Namely, a secure
gadget is composable if and only if all possible combinations of such gadgets maintain
probing security under the same security model. Various notions of composability, including
NI, SNI, and PINI, have been introduced [BBD+16, CS20]. Secure masking schemes in
hardware have also evolved to incorporate composability, resulting in the development
of schemes such as HPC1, HPC2, and HPC3. We will not explore the specifics of these
well-established and understood methods.

Figure 6 illustrates an example of a glitch-stopping circuit. For illustrative purposes,
let’s assume that the second combinatorial logic circuit CL1 from Figure 2 is made side-
channel protected by dividing it into four stages CL1A−1D and applying first-order TI
masking. The inserted additional registers expand the one-stage unprotected logic to four
stages of glitch-stopping circuits, thus increasing from one cycle latency with TCLK to four
cycles with TCLKT I

.

2.2.2 Glitch-Free Circuits

Dual-rail logic encodes each value {1} or {0} to a tuple {1,0} or {0,1} respectively, while
{0,0} is known as empty value and {1,1} being not allowed. It is not allowed to have a
transition from one valid encoding to another unless {0,0} is inserted in between. This
return-to-zero is achieved by forcing a reset to the circuit i.e., pre-charging. The DRP
logic e.g., WDDL [TV04], operates in two phases: a pre-charge phase setting all wires to
an empty value, followed by an evaluation phase processing valid inputs to yield an output.
WDDL is designed for power equalization and to reduce SCA leakages. However, WDDL’s
limitations in leaking secret information by unmatched wire delays and high routing
uncertainty between rails led to its gradual replacement by more flexible glitch-immune
masking techniques.

It has been noted that countermeasures relying solely on asynchronous logic are
inadequate without masking, which led to the exploration of a hybrid approach. The
research in [MS16] aimed to determine whether integrating a glitch-free WDDL-based
circuit with TI, but without using registers, could achieve a design secure against SCA.
The authors pointed out that “although placing registers between the shared non-linear
functions was initially introduced to avoid the propagation of glitches, it also synchronizes
the start of their evaluation to be independent of the timing of the previous stage.” In their
asynchronous circuit, the authors employed registers to isolate shared non-linear functions.
However, as [MS16] reveals, this approach results in a design significantly larger than its



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 9

synchronous counterpart and faces latency issues due to the interleaved pre-charge and
evaluation phases, ultimately compromising some advantages of asynchronous design due
to the synchronization constraints.

The primary goal of the most recent asynchronous glitch-free designs is to achieve low
latency, which means to reduce the number of clock cycles required for computing the entire
masked function. However, these designs remain globally synchronous while being locally
asynchronous so the efficiency improvement is focused on the masking of S-boxes in ciphers.
One such approach is the LMDPL technique [SBHM20], which combines look-up table
based first-order masking on monotonic gates with DRP logic. While this method has been
shown to ensure first-order security, its performance and area overhead in comparison to
similar designs without LMDPL are not clearly established due to the lack of comparative
data in the same CMOS technology. Additionally, Nagpal et al. [NGPM22] proposed the
SESYM technique. This method utilizes WDDL along with the Muller C-elements for
synchronization, ensuring security across different critical components like S-boxes without
the need for a fully dual-rail data path. Another approach is called self-timed masking
[SBB+22], which modifies monotonic Boolean functions i.e., dual-rail OR and AND gates,
and aims at eliminating the early-propagation. Data synchronization in [SBB+22] is done
in similar way as in [NGPM22] using the Muller C-element. To our best understanding,
the main difference between [SBB+22] and [NGPM22] is the use of AWDDL instead of
WDDL logic.

We stress here that the recently proposed GFCs, that incorporate glitch-immune
masking with DRPs, have demonstrated a notable resilience against SCAs, even at one
order higher than the masking order. This enhanced security is primarily attributed to
the dual-rail power-equalization effect.

3 Case Study: Threshold Implementations on AES
In this section, we present two different implementations of the AES S-box with serialized
architecture of AES-128 encryption. Let t be the algebraic degree of the corresponding
Boolean function. The first implementation uses first-order t + 2 TI sharing with five
shares of the S-box decomposed in two stages. The second one uses first-order t + 1 TI
sharing (with three shares) of the S-box decomposed in four stages. We will apply those 2
implementations in Section 4 and Section 5.

3.1 Serialized AES Encryption
The AES-128 encryption is implemented using a serialized architecture with a one-byte-
width data path, incorporating an AES S-box instance as described in either Section 3.2 or
Section 3.3. Due to the pipelining of the S-box, proper scheduling of operations is essential.
Data is stored in s shares, where s equals either 5 or 3. The architecture comprises two
state arrays of size s × 16 bytes each, one for data and the other for the key. Data and
key bytes in s shares move unidirectionally from one functional unit to the next, with
their results being stored in the respective state registers after each clock cycle. The
functional units consist of linear layers and the S-box, with registers in the latter capturing
intermediate results due to pipelining.

In the AES round control flow, the ShiftRows operation is executed concurrently with
the S-Box output processing. The output of the S-Box is written to the state arrays in
which it would be stored after performing the ShiftRows operation. In other words, each
column is written back diagonally with rotational wrapping around the state matrix. The
MixColumns operation is performed as soon as all column bytes are ready. The result of
MixColumns is ready in the following cycle. The key addition is performed in the next



10 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

Reg2

TCLKT I

Reg1 Reg1A

CLKT I

CL1A CL1B

X26 X49

Figure 7: Representation of the two-stage masked AES S-box with five shares.

Reg1C Reg2

TCLKT I

Reg1 Reg1A Reg1B

CLKT I

CL1A CL1B CL1C CL1D

F24 F22 F22 F24

Figure 8: Representation of the four-stage masked AES S-box with three shares.

round iteration, while the final key addition is computed during the read-out operation.
For the considered two pipelined designs an AES round fits into 20 cycles [BKN20].

3.2 Two-Stage AES S-box with Five Shares
The implementation of a two-stage AES S-box involves decomposing the inversion in
GF (28) of algebraic degree seven, into two cubic functions: namely x−1 = x254 = (x26)49

[NNR19]. This decomposition facilitates a pipelined two-stage implementation with an
interposed single glitch-stopping layer (register). First-order TI with t+2 shares [PAB+22]
is applied to each of the cubic functions x26 and x49. This strategy not only simplifies
the design but also saves randomness cost, since the sharing is uniform no additional
randomness is required. The architecture of the S-box is shown in Figure 7.

3.3 Four-Stage AES S-box with Three Shares
Canright [Can05] proposed an efficient tower field decomposition of the AES S-box in
order to improve hardware costs. Since then this decomposition was widely used to create
efficient hardware masking of AES. The tower-field decomposition of the S-box consists of
the linear input/output isomorphism; and the nonlinear finite field multipliers, finite field
scaling functions, and a multiplicative inversion. The tower-filed computes the inversion
by starting from GF (28) via GF (24) to GF (22) each time simplifying it until it becomes
a linear operation. The implementation we will use is a modified version of the Design II
by Askeland et al. [ADN+22] but with four stages instead. The shared linear stage from
the input is merged into the first non-linear stage which results in one stage less than the
Design II. The S-box uses a total of 36 random bits since we do not use the changing of
the guards method. The architecture of the S-box is shown in Figure 8.

3.4 Timing Overhead of Glitch-Immune Masking Schemes
Revisiting the timing requirements, we compare the total delay of an unprotected circuit
denoted as TCLK to the time delay of a GSC_R protected circuit, represented by TT I =
Number-of-stages × TCLKT I

. For the case of t + 2 TI and a cubic function (Section 3.2)
the timing overhead of GSC_R compared to unprotected cubic function is the time required



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 11

for the evaluation of 3 + 2 + 1 = 6 XORs one after another. When applied to the shared
AES S-box with two stages we obtain that the time delay compared to un-shared S-box is
the time to pass through 2 × 6 = 12 XORs and 1 Register. Note, that when we talk about
timing overhead in this section, we will refer to the number of gates but we will mean the
time required for their consecutive evaluation.

Let us consider now masked Canright S-box and t + 1 TI on quadratic functions
(Section 3.3). Taking into account that the overhead of finite field masked-multiplication
is 1 + 1 = 2 XORs, the overhead for the shared AES S-box (Canright with four stages) is
4 × 2 = 8 XORs and 3 Registers.

We also can consider masking with d + 1 shares (e.g., CMS, DOM) for quadratic
functions. In this case the overhead of masked-multiplication is: log2(d + 1) × (1 + 1)
XORs and 1 Register. Hence, the overhead of a masked AES S-box (Canright with 5
stages) will become log2(d + 1) × 4 × 2 XORs and 4 Registers. Similar calculations can be
made for AES S-box implemented via Boyar-Peralta [BP11] representation which has the
multiplicative depth of 4.

The general, the timing observation for GSC_R masked implementations is that the
overhead comes from: a) the number of stages (and the required registers); b) the number
of XORs used for re-sharing; c) the number of XORs used to compress the expanded
number of sharings after multiplication.

4 Glitch-Stopping Circuits in ASIC
In this section, we introduce glitch-stopping circuits without registers (GSC_woR) in contrast
with the traditional approach with registers (GSC_R). We will show that glitch-stopping
circuits can be built with different clocked combinational logic blocks, i.e. MUX-gate, AND-
gate (GSC_G) and latch (GSC_L). This results in reduced latency and area. We will prove
that the proposed GSC_woR provides security equivalent to GSC_R in the glitch-extended
probing model. Different configurations of the clock signals can be used for GSC_G and
GSC_L. We will use both high and low clock signal levels as well as rising and falling clock
edges in our descriptions further. However, in cases when it is not advisable to use the
falling clock edge then the described solutions can easily be adapted to only use the clock
rising edge.

4.1 Clocked AND-Gate
Consider a device with GSC_R implementation as depicted in Figure 6. This implementation
is either represented in hardware description language on register-transfer level (RTL) or
gate-level description netlist. Now we preserve all the four sub-circuits CL1{A−D} and
their critical paths. We replace each register inside the pipeline Reg1{A−C} with clocked
logic AND gate, as depicted in Figure 9a. The AND-gate is placed between the data (in/out)
signals and the inverted clock signal is used for control. Note that the term clocked-gate
should not be confused with clock gating. Clock gating is a power-saving technique that
disables clock signals in a synchronous logic module to reduce dynamic power dissipation.

To ensure the same security as GSC_R, it is crucial to maintain the timing as shown
in Figure 10, where TCLKT I

is included for reference (as originally given in Figure 6)
to demonstrate the preserved critical path for CL1{A−D}. Proper synchronization is
achieved by introducing two additional clocks with the same period as the main clock
TCLKReg

= TCLKB
= TCLKA

= TCLKC
, yet with varying duty cycles. Specifically, DCLKA

is set at 25%, DCLKC
at 75%, and DCLKB

= DCLKReg
remains consistent with the global

clock at 50%. To be able to refer to the sub-circuit evaluation in each of the four circuit
stages we introduce the notion of “virtual cycle” as an analogue CLKT I .



12 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

CLK

D Q

(a) A clocked AND-Gate

In1

In2

Sel Out

(b) A clocked MUX-Gate

AN
DD

CLK

Q
CLi CLi+1

(c) Integration of the AND-Gate into GSC

MU
X

D

r{0,1,r}

CLK

Q
CLi

CLi+1

(d) Integration of the MUX-Gate into GSC

Figure 9: AND and MUX instances of the glitch-stopping circuits

Gate1C
Reg2Reg1

Gate1A Gate1B

CLKC

TCLKReg

CLKReg

=
CLKB

CLKA

CL1A CL1B CL1C CL1D

TCLKT I

CLKT I

r r r

MU
X

MU
X

MU
X

AN
D

AN
D

AN
D

CLKReg CLKA CLKB CLKC CLKReg

Figure 10: Clocked logic-gate-based glitch-stopping circuit



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 13

The three clock signals, CLKA, CLKB , CLKC , manage signal flow through the stages
CL1{A−D} in the GSC_G, ensuring only stable signals passing and stopping glitch prop-
agation. In the first virtual cycle, all three clock signals are high, ending with CLKA’s
falling edge. In other words, the positive pulse width Tpw_CLKA

align with CLKT I ’s first
clock period. Immediately the second virtual cycle starts with CLKA low, while CLKB

and CLKC remain high. It ends with CLKB’s falling edge, accordingly, Tpw_CLKB
−

Tpw_CLKA
matches with the second clock period of CLKT I . The third virtual cycle

has CLKA and CLKB low, CLKC high, and finishes with CLKC ’s falling edge. Thus
Tpw_CLKC

− Tpw_CLKB
aligns with CLKT I ’s third period. The final fourth cycle occurs

with all clocks low, ending with their simultaneous rising edge, thus matching CLKT I ’s
fourth clock period and corresponding to TCLKReg

− Tpw_CLKC
.

During the first virtual cycle in the clocked AND-gate GSC_G design, GateA is closed,
preventing signal propagation from CL1A to CL1B. GateA output is stabilizing at zero.
During this virtual cycle also GateB and GateC are closed, maintaining zero at their
outputs. CL1A is evaluated, while circuits CL1B−D receive zero inputs. By design the
virtual cycle finishes when CL1A’s signals stabilize, and thus when GateA opens at the
beginning of the second virtual cycle the signals without glitches pass between CL1A and
CL1B. In the second virtual cycle, GateB and GateC stay closed, sustaining their zero
outputs hence CL1{C,D} remain unchanged. GateA is open allowing CL1B’s evaluation
while CL1A remains stable. Again by design, this virtual cycle ends when CL1B stabilizes,
leading to the opening of GateB and the start of the third virtual cycle. In this third virtual
cycle only GateC remains closed, keeping its output zero. CL1C undergoes evaluation
while CL1{A,B} maintain their stable states. This virtual cycle ends with the stabilization
of CL1C ’s signals, initiating the fourth and final virtual cycle in which CL1D is evaluated.
During this period, CL1{A−C} remain stable, and Reg2 at the circuit’s end halts further
signal propagation. Thus, this strategy ensures stable output values at each stage circuit
when the negative edge of the corresponding clock signal occurs.

4.2 Clocked Latch
As described in Section 2.1.1, registers, or flip-flops, consist of cascaded latches connected
by the inverted clock signal. We show three ways to configure the clock signals for a
glitch-stopping circuit with latches GSC_L. The first approach repeats the clock signals of
the GSC_G. The second approach, depicted in Figure 11, differs from the first by introducing
two inverted clocks CLKP and CLKN . The third, simpler method, requires only the
CLKN clock but both rising and falling edges of the clock are utilized to control the Gates.
Notably, inverting the clock signal is not required when using the rising edge.

The GSC_L, while structurally similar to the GCS_G, diverges significantly in the way
circuits CL1{A−D} are evaluated due to the inherent ability of the latch to retain its
previous value. In the first virtual cycle, where CLKA is high, the GateA effectively halts
any glitch progression between CL1{A,B}. For the clocked AND-gate scenario, this results
in CL1{B−D} having stable, zero-valued inputs. Conversely, in a latch-based setup, these
circuits maintain stability by retaining their original data values.

4.3 Clocked MUX-Gate
The clocked MUX-gate solution is similar to the clocked AND-gate approach, with the primary
distinction being the connection of the clock signal to the select input sel of the MUX, as
shown in Figure 9b. This setup uses the same additional clocks as the AND-gate solution.
The key difference lies in the use of a 2-to-1 MUX where, apart from the data input, the
secondary input is variable. Setting this secondary input to a constant 0 repeats the AND-
gate solution by zeroizing unprocessed circuits. Alternatively, a constant 1 input results in
an identical operation with stable inputs 1. A more sophisticated option involves connecting



14 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

Latch1C Reg2

TCLKL

Reg1 Latch1A Latch1B

CLKN

CLKP

TCLKReg

CLKReg

CL1A CL1B CL1C CL1D

CLKReg CLKRegCLKN CLKP CLKN

TCLKT I

CLKT I

La
tc

h

La
tc

h

La
tc

h

Figure 11: Clocked latch-based glitch-stopping circuit

the secondary input to a randomness source, thereby randomizing the un-evaluated circuits.
This last choice adds noise and may result in a more robust solution.

4.4 Comparison of the Glitch-Stopping Circuits
In this section, we compare the four solutions: GSC_R given in Figure 6 and the 3 new
GSC_woR given in Figures 10 and 11. We weigh up their glitch-stopping mechanism and
their costs on timing and area.

For the new GSC_woR solutions we had to introduce additional clock signals. For example,
in the clocked AND-gate construction of the four-stage masked circuit, two additional clock
signals CLKA and CLKC are required. Instead of generating those clocks, a technique for
detecting the clock glitches can also be used, as detailed in the recent overview by Askeland
et al. [ANN23]. Namely, we will use in a different context the so-called parallel delay line
circuit (PDL), as illustrated in Figure 12. The PDL derives from the main clock two lines
of circuits, i.e. a fast and a delayed line, which are XOR-ed at the end of the path. We can
use the output of the PDL (the XOR-ed value) as the trigger for the clocked-gate instead of
the clock falling (or rising) edge as in Figures 10 and 11. The delay lines are using as many
buffers (or back-to-back inverters) as needed to achieve the right timing until the moment
comes when we need the trigger’s edge. However, it might be not so straightforward to
achieve the right timing, as indicated by [NT22]. When implemented in ASIC such delay
lines have to be tunable in order to mitigate the dynamic timing variations caused by
changes of the process, voltage, temperature and ageing. Without proper calibration in
silicon, false positives may occur which in our case will result in glitches propagating via
the clocked-gates. Such a glitch propagation violates the basic glitch-stopping assumption
and might cause a leakage. Since from practical point of view such a calibration process
requires additional efforts, we opted it out and favoured a solution with additional clocks.

Apart from the triggering/clocking mechanism the new solutions – GSC_G and GSC_-
L – differ from traditional GSC_R in their circuit evaluation process. In the pipelined
register-based approach, all four circuits CL1{A−D} are evaluated simultaneously at each
CLKT I cycle. In contrast, in the new solutions, only one stage circuit (out of the four)
will be evaluated at the virtual cycle corresponding to the CLKT I . Circuits before the
one currently being evaluated are preserved with their already computed values, while
the subsequent circuits use predefined input values. For instance, in the clocked AND-gate
solution, all circuits except for CL1A are zeroized during the first virtual cycle and remain
stable until their turn for evaluation arrives. In all four GSC solutions, glitches can occur



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 15

CLK

D Q

D Q

CLK

CLK

D Q

D Q

CLK

CL1

MU
X

CL2

r

CLKReg CLKReg

Figure 12: Use PDL-1 [ANN24] to generate trigger signal for the clocked-gate in two-stage
masked circuit GSC_woR

Gate1C
Reg2Reg1

Gate1A Gate1B

CLKC

TCLKReg

CLKReg

=
CLKB

CLKA

CL1A
CL1B CL1C

CL1D

TCLKT I

CLKT I

r r r

MU
X

MU
X

MU
X

CLKReg CLKA CLKB CLKC CLKReg

F24 F22 F22 F24

Figure 13: Clocked logic-gate-based glitch-stopping circuit with optimized virtual cycles.

during the evaluation of a sub-circuit within its designated (virtual) cycle. However, these
sub-circuits are designed to be glitch-immune, adhering to the non-completeness property.
This holds because GSC_woR preserved the original GSC_R masking scheme properties and
in particular the non-completeness.

When comparing various glitch-stopping gate solutions as shown in Figures 3, 4, 9a
and 9b, the AND-gate emerges as the simplest option with a cost of one AND and one
NOT, with a delay on the data line of one AND. Next in simplicity is the MUX-gate with
a cost of three NANDs and one NOT, and delay on the data line of two NANDs. The
latch-gate, slightly more complex, requires four NANDs and two NOTs, also with a delay
of two NANDs. Comparatively, the register (flip-flop) solution is more costly, doubling the
latch cost while maintaining a similar signal delay.

All three new solutions offer better area efficiency than the register-based approach.
In terms of cycle-wise latency, all these new solutions require only one single cycle for
evaluation compared to four cycles in traditional register-based designs. However, it is
important to note that the advantage in cycle reduction is mainly applicable to round-based
architectures, as data pipelining is not feasible with the new solutions. Last but not least,
time-wise latency can potentially be reduced in these new solutions by relaxing setup and
hold times and thus slightly shortening the gating-related clocks. However, optimizing
different critical paths per stage instead of a single maximum critical path can further
reduce time-wise latency as illustrated in Figure 13. In this example we assume that the



16 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

sub-circuits in the first and fourth stages have 2 times longer critical paths than those sub-
circuits in stages two and three. This is a plausible assumption given the fact that the first
2 sub-circuits contain multiplication over GF (24) and affine operations compared to the
later 2 circuits which contain multiplication over GF (22). Therefore we can optimize the
virtual cycles to fit the sub-circuits’ critical paths and in that way the whole computation
will be 3 ∗ TCLKT I

instead of 4 ∗ TCLKT I
.

4.5 Security in the Glitch-Extended Probing Model
In this section, Procedure 4.1 outlines the essential steps for designers to ensure the secure
implementation of glitch-stopping circuits. Following this procedure, GSC_woR circuit gW is
derived from GSC_R circuit gR. The steps described are critical to guarantee that glitches
are effectively stopped across various stages. Subsequently, the security of the GSC hinges
on the correct application of the masking techniques used. For example, Step 3 mandates
the implementation of delays in the direct wires that pass through a combinational logic
block from its input to the output. The aim is to mitigate (as an example) the risk that
the time, required for the rising edge of CLKA to reach Gate1A from Reg1, is bigger than
the time needed for the data propagating on a direct wire between them. Adding buffers
(or back-to-back inverters) on such direct wire resolves this.

Step 1. Start with a secure register-based implementation GSC_R named gR.

Optional. Perform leakage assessment tests on gR.

Step 2. Find the register layers and the critical path of gR.

Optional. Calculate the critical path for each combinational logic stages of gR, if the
time-wise latency is to be optimised.

Step 3. Preserve the combinational logic of gR and insert delays on the direct wires.

Step 4. Add corresponding clocks for GSC_L or GSC_G as shown in Figures 10 and 11.
Reduce the number of clocks whenever applicable.

Optional. Optimize the clocks if the time-wise latency is the goal.

Step 5. Replace the registers with the chosen type of glitch-stopping latches or gates for
GSC_L or GSC_G respectively in the RTL or netlist level.

Step 6. Connect the gates with the correspondingly introduced new clocks and obtain
GSC_woR named gW .

Step 7. Check the behavioural and timing correctness of gW .

Optional. Perform leakage assessment tests on gW .

Procedure 4.1: GSC design principles

Our methodology for circuit derivation remains independent of the used security
notion in the glitch extended probing model, such as TI, NI, SNI, or PINI. For simplicity,
we collectively refer to these as α-secure GSC, where α represents any of these notions.
Recall that a glitch-extended probe on a wire z models the impact of glitches by capturing
all stable signals that contribute to the wire z. For the conventional GSC_R case those are
flip-flop values, however for the GSC_woR cases such an extended probe captures the values
of the clocked-gates instead. We are now ready to state our main result.



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 17

Theorem 1. If a gadget gR is glitch-extended d-order α-secure GSC_R, then the derived
gadget gW is also glitch-extended d-order α-secure GSC_woR (i.e., with clocked AND-gate,
MUX-gate, and latch).

If a composition of gadgets gR is glitch-extended d-order α-secure GSC_R, then the
derived composition of gadgets gW is also glitch-extended d-order α-secure GSC_woR.

Proof. Consider a GSC_woR circuit gW which is built following the design principles given
in Procedure 4.1 starting from a GSC_R circuit gR, in other words, the circuit gW is
derived from the circuit gR. Such a masked circuit gW has clocked-gates instead of
registers while it preserves the combinational sub-circuits and their timing conditions
exactly as in gR. This guarantees that in gW no glitches propagate between two sequential
sub-circuits via the clocked-gates exactly as this is the case for the gR circuit. At the
beginning and the end of each virtual cycle all the sub-circuits in gW have stable signals
exactly as for gR.

Let us now consider the extended probing model with glitches and compare the
information received by the attacker observing both gW and gR. As explained above,
gW has no pipelining and the sub-circuits are evaluated consecutively while in gR the
pipelining is used and all sub-circuits are evaluated at the same cycle. The sub-circuits in
gW that have been evaluated and those which are not yet in evaluation keep stable signals.
A glitch-extended probe in a particular virtual cycle retrieves the same information for all
sub-circuits which have already been evaluated and the one under evaluation in circuits
gW and gR. The sub-circuits in gW which are not yet evaluated have no analogue in
gR, however, those sub-circuits are evaluated with constant or random inputs which are
independent of any data (sensitive or not) used in the gR circuit. Therefore, a glitch-
extended probe over such (not yet evaluated) sub-circuit reveals no information to the
attacker.

For both circuits gW and gR, the adversary has the same information and hence, the
adversary advantage for both designs will be the same. So, we can conclude that if gR is a
glitch-extended d-order α-secure gadget then gW is also a glitch-extended d-order α-secure
gadget. Similarly, if gR is a composition of glitch-extended d-order α-secure gadgets then
gW is a composition of glitch-extended d-order α-secure gadgets. This concludes the
proof.

It has been noted that early signal propagation is the main security threat to asyn-
chronous designs, particularly those based on DRP logic. In these glitch-free circuits,
the timing information for the initial signal propagation is enough to reveal the secret.
However, glitches are present in GSC_R, early signal propagations are not only related
to the secret value and have not been shown to cause leakage. Thus GSC_woR are not
vulnerable to early signal propagation similar to the GSC_R.

At the end of this section we stress that there are no layout-dependent constrains
which a designer has to take into account. Procedure 4.1 (step. 2,3,4) demonstrates that
the circuits are preserved and hence their time-wise behavior is preserved as well. The
Place-and-Route procedure will make sure that the timing constrains are met and is not
going to optimize any of the “gates” since this is prevented by the typical for masking
“don’t touch” instances.

5 Glitch-Stopping Circuits in FPGA
In this section, we describe how the three new solutions for ASIC presented in Section 4
can be implemented on FPGA taking into account the FPGA specifics. Unlike ASICs
which are designed for a specific purpose and manufactured for that use case, FPGAs
can be reprogrammed to perform a wide variety of tasks. However, this versatility comes
with limitations and high complexity of placement and routing. Although the FPGA



18 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

primitives can perform the same logical functions as the corresponding ASIC designs,
their implementation is more complex. Indeed, the designer has to use the provided
FPGA native primitives which might not entirely fit for the glitch-stopping purpose, for
example, be more glitchy because they have more inputs. Compared to the register-based
implementation of GSC which is on algorithmic RTL level, the GSC without registers requires
deeper intrusion like preserving circuits time, taking care of the additional clocks, using less
standard clocked-gates instead of registers. Some of these changes have to be performed
on netlist level.

5.1 Primitives in FPGAs for Glitch-Stopping Circuit
FPGAs consist of Configurable Logic Blocks (CLBs) linked by a reconfigurable hierar-
chy of customizable interconnects. These CLBs can be customized to execute complex
combinational functions typically utilizing Look-Up Table (LUT) circuits, flip-flops, and
various logic components. This setup enables the implementation of both combinational
and sequential digital circuits. Each CLB interfaces with a switch matrix, linking it to a
broader routing matrix for flexible connectivity with other CLBs and I/O blocks within
the FPGA.

Since we implement and evaluate our designs in the Xilinx Spartan-6 FPGAs on the
Sakura-G board, we first introduce the instances of the required primitives in the Spartan-6
FPGAs. These primitives are also present in newer Xilinx FPGA models, accessible through
identical instantiation methods. For Intel FPGAs, corresponding primitives adhering to
the specifications of these FPGA models should be selected based on their glitch-stopping
characteristics.

Look-up table and multiplexers in Spartan-6 Spartan-6 FPGAs utilize six-input Look-
Up Table LUT circuits as function generators. Each LUT features six independent inputs,
labelled A1 to A6, and two independent outputs, O5 and O6. These LUTs can execute
any Boolean function with six inputs, including the AND-gate. Additionally, SLICEL and
SLICEM slices in Spartan-6 FPGAs incorporate three 2-to-1 multiplexers, named MUXF7,
along with the basic LUTs. These multiplexers combine function generators, allowing
for up to eight-input functions within a slice when integrated with LUTs. The MUXF7, a
straightforward 2-to-1 multiplexer, receives one of its inputs from the LUT output O6 and
can be driven by any internal net, making it suitable for use as a glitch-stopping MUX-gate

Latches and storage elements in Spartan-6 Each slice within the Spartan-6 FPGA
structure incorporates also eight storage elements. Out of them, four storage elements
can be configured either as edge-triggered FFs or as level-sensitive latches. Spartan-6
devices also feature an additional set of four storage elements that can exclusively be set
as edge-triggered FFs.

In a normal synchronized circuit, the flip-flops are used to store the intermediate values
of the circuit and are instantiated by using FDCE which represents a D-flip-flop with an
asynchronous reset. This is done as part of the synthesis and mapping procedure of Xilinx
design suits, so it is not exposed to the user. However, we can also explicitly instantiate
the latches in the design by using LDCE which is a transparent level-sensitive data latch.
We will use LDCE as a glitch-stopping latch.

Beyond the standard roles of such storage elements, they can also be used to implement
logic gates. For example, a level-sensitive latch can emulate basic logic gates. Two
primitives in Spartan-6 that help in leveraging the latch function as logic gates are the
AND2B1L and OR2L. AND2B1L is a 2-input AND gate with one of the inputs inverted. This
configuration uses the data input of the latch as the inverted AND-gate input (labelled
as DI) and the latch’s asynchronous clear input (labelled as SRI) as the other AND-gate



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 19

input. OR2L is a 2-input OR gate that combines the data input of the latch with the latch’s
asynchronous preset.

The design purpose of these primitives is to broaden the logic capability by adding an
additional external input. Typically, the latch data input is sourced from the output of a
LUT located in the same slice. Similar to MUXF7, AND2B1L is a 2-input AND gate with
one input inverted implemented on the latch function. We will use either AND2B1L or LUT
as a glitch-stopping AND-gate. Thus on our Spartan-6, we have identified four ways to
implement the three clocked-gates.

5.2 AES Implementations

In our implementations, we will use MUXF7 only with the second input set to 0, therefore
implementing glitch-stopping AND-gate. Further, we will present several implementations
for the two AES designs (S-boxes with two and four stages). Namely, for the design with
two stages S-box we present four implementations AND2B1L, MUXF7, LUT and LDCE; while
for the design with four stages S-box, we present two implementations MUXF7 and LDCE.

Implementations of AES with the Two-Stage S-Box In synchronous logical circuits,
the clock signal is routed from its source, such as a Phase-Locked Loop, crystal oscillator,
or clock divider, to all relevant components including registers and latches. This process,
known as clock tree synthesis, is a crucial step in the circuit design workflow, taking place
after the placement phase and before the routing phase.

We start from the GSC_R implementation, as described in Section 3.2, focusing solely
on the 2-stage S-box illustrated in Figure 7. The remainder of the implementation is the
serialized AES encryption architecture assuming the S-box is evaluated in a single cycle.
We need to replace the register between the two stages with a glitch-stopping gate, which
could be either a clocked latch or clocked AND. Note that in this simple configuration when
only one register has to be replaced, we can maintain the same clock signal as in the
standard register configuration. However, the clock routing should connect this signal to
the pin of the glitch-stopping gate as referred to in Figure 9a.

In our implementation, an external 6 MHz clock signal from a waveform generator is
provided to the clock pin of the Spartan-6 FPGA. Internally, this 6 MHz clock signal is
routed to all the registers, while we have to manually set the clock pins of the glitch-stopping
gates to be CLOCK_DEDICATED_ROUTE = FALSE. Thus, the 5 × 8 bits of the registers are
now replaced by the same quantity of clocked-gates.

Implementations of AES with the Four-Stage S-Box We start with the GSC_R imple-
mentation described in Section 3.3 and again focus only on the 4-stage S-box as depicted
in Figure 8. The FPGA is supplied with a 24MHz clock. In this implementation, the
Xilinx clock wizard is utilized to generate clock signals with different duty cycles, namely
25%, 50%, and 75% duty cycles. For a latch-based pipeline, the clock outputs are 6MHz,
12MHz, and 12MHz with 180◦ phase shift. The clocking wizard in the ISE or Vivado
design tools for Xilinx has a GUI interface which allows implementing such clock signals
directly. Again as it was the case for the S-box with 2 stages, we have to manually re-route
to the corresponding registers clock pins of the the glitch-stopping gates replacing those
pipeline internal registers. Similar to the 2-stage S-box scenario, it is necessary to manually
set the clocks signal to the pins of the glitch-stopping gates CLOCK_DEDICATED_ROUTE
= FALSE, which replace the three internal pipeline registers. Thus, the 114 bits of the
registers are now replaced by the same quantity of clocked-gates.



20 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

5.3 Performance Comparison
In Table 1, we start by listing the AES unprotected S-box [MPL+11] based on Can-
right [Can05], which is a standard unprotected synchronous circuit with registers. We
then compare this with the latest implementations of low-latency glitch-stopping cir-
cuits with registers (GSC_R) [GIB18] and state-of-the-art GFC, which are asynchronous
[SBB+22, SBHM20, NGPM22]. A direct comparison is challenging due to variations in
CMOS libraries across different studies. WDDL-based solutions typically eliminate the
need for registers, thus reducing area costs, but they still have a substantial overhead in
combinational logic due to DRP logic. Additionally, these circuits have a higher logic
depth and require a pre-charging phase, which in synchronous designs translates to one
cycle. However, GFCs are self-synchronizing and may get better latency in time. Clear
advantage for the GFC versus GSC_R can be seen when latency is measured in cycles.

We have implemented two specific designs of GSC_R using t + 1 and t + 2 TI, which
serve as a baseline for our comparisons. Both implementations are described in Section 3.2
and Section 3.3. All our implementations use Nangate45 CMOS library. The syntheses are
re-run with Synopsys Design Compiler 2017.09 using the command compile -exact_map
and with the set_dont_touch flag applied to all nets. We made this choice because the
compile command includes fewer default optimizations compared to compile_ultra. The
command flag -exact_map prevents sequential mapping from encapsulating combinational
logic into sequential cells. We note that the instantiating of glitching-stopping circuits
in the synthesis libraries and on the FPGAs are different. Namely, in the HDL code the
AND-gates, MUX-gates and latches are respectively instantiated with AND2_X1, MUX2_X1 and
DLH_X1 elements for Nangate45 while for Xiling FPGA (as already explained in Section 5.1)
those are instantiated with AND2B1L, LUT, MUXF7 and LDCE. In the last part of Table 1 we
list our results for the implementations of GSC_R.

Firstly, the glitch-stopping circuits without registers GSC_woR are smaller than the
corresponding circuits with registers GSC_R. The 2-Stage versus 4-Stage cases also show
the trend that the more stages the initial solution has the larger is the area reduction.
Secondly, our solutions match the cycle-wise latency of GFC. For latency measured in
time, we estimate the maximum frequency based on the longest data arrival time from one
glitch-stopping (sequential) layer to another. In GSC_R, the propagation delay occurs on
the data path between registers, triggered by the clock’s positive edges. In circuits without
registers GSC_woR, glitch-stopping layers operate under specific clock configurations, and
their propagation delays span all stages of the combinational logic. The timing report is
generated by Synopsys’s static timing analysis (STA) tool, although no user-defined clock
constraints are applied to the implementations. Note that the STA tool considers latches
and registers as sequential elements, compared to AND and MUX gates as logic elements.
Thus, the timing estimations of GSC_G and GSC_L are not directly comparable. As a rule
of thumb the latency in time can be roughly calculated as the GSC_R masked latency
multiplied with the number of stages.

We further elaborate on the impact of GSC_woR on the latency in time. As explained in
Section 3.4, the latency overhead in traditional GSC_R is attributed to the XOR operations
used for re-sharing and compression, along with the time consumed by registers inserted
for separating the circuits. Typically, these implementations involve between 8 to 12 XORs
and one to three registers. In contrast, GFC do not have the overhead of the registers. The
GSC_woR also eliminates overhead of registers, but the synchronization of the circuits costs
time. However, this synchronisation can be further optimized per stage and the overhead
can be made similar to the asynchronous GFC case.

As it can be seen in Table 1 and Table 2, both GSC_R and Latch-based GSC_woR designs
achieve the same time-wise latency for the S-box. Taking into account that the logic which
in GSC_R was spread over 2 or 4 cycles, it is processed in GSC_woR in a single cycle we see
that 609/4 = 152 and 387/2 = 193 holds. However, AND and MUX-based GSC_woR designs



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 21

Table 1: Comparison of first-order secure AES S-box implementations
Solutions Area Latency Max clock CMOS

(kGE) (cycles) (MHz) Library
Unprotected S-box [MPL+11] 0.23 1 - UMC L180

Glitch-Free Circuits (GFC)
Self-Timed Masking [SBB+22] 6.07 1 4.8 STCMOSM40
LMDPL [SBHM20] 3.84 1 400 GF28
SESYM [NGPM22] 3.98 1 192 UMC65

Glitch-Stopping Circuits with Registers (GSC_R)
GLM [GIB18] 60.73 1 356 UMC90
GLM [GIB18] 6.74 2 584 UMC90
5-share (t + 2 TI) 2-Stage S-Box 21.86 2 387 Nangate45
3-share (t + 1 TI) 4-Stage S-Box 5.31 4 609 Nangate45

Glitch-Stopping Circuits without Registers (GSC_woR)
AND-based 2-Stage S-Box 19.41 1 211 Nangate45
MUX-based 2-Stage S-Box 19.45 1 211 Nangate45
Latch-based 2-Stage S-Box 19.63 1 193 Nangate45
AND-based 4-Stage S-Box 4.76 1 217 Nangate45
MUX-based 4-Stage S-Box 4.90 1 217 Nangate45
Latch-based 4-Stage S-Box 5.12 1 152 Nangate45

can achieve higher S-box time-wise latency by employing optimization of the virtual cycles
as depicted in Figure 13. In the 2-stage AES S-box both stages have nearly equal critical
paths hence only a small optimization (211 versus 193) can be achieved. However, the
4-stage AES S-box has 2 middle stages with critical path more than twice shorter than
the other 2 stages, thus a frequency of 217 MHz instead of 152 MHz only.

In summary, implementing GSC_woR, as outlined in Procedure 4.1, involves the usage
of additional clocks to maintain synchronization of the combinational logic in contrast
to the conventional GSC_R. This approach not only improves latency in terms of time
and cycles but also offers better area efficiency. However, the GSC_woR design method
is more engineering-intensive in executing all the steps in Procedure 4.1. Whether the
overall gain in cost compensates for the additional efforts and risks is case dependent.
While direct comparison with glitch-free circuits is not straightforward, we anticipate
achieving comparable latency in time and equal latency in cycles, but with better area
efficiency. Moreover, this method is compatible with standard digital design tools and
libraries, making it more accessible for practical implementation.

Table 2: Comparison of propagation delays (ns, Mhz) of the different stages in the masked
GSC_R S-boxes synthesized with Synopsys

S-box Stage 1 Stage 2 Stage 3 Stage 4
Instance (ns, Mhz) (ns, Mhz) (ns, Mhz) (ns, Mhz)
3-share 4-stage AES S-box 1.58 0.73 0.64 1.64

632 1369 1562 609
5-share 2-stage AES S-box 2.18 2.58 NA NA

458 387

5.4 Leakage Evaluation
None of the existing formal verification tools like SILVER [KSM20], COCO [GHP+20],
etc. can be used to evaluate the new glitch-stopping without registers (GSC_woR) designs.



22 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

Table 3: Summary of the first-order implementations using the FPGA primitives on
Sakura-G

Synthesis FPGA Implementation TVLA Figure
AND or MUX gates MUXF7 2-stage 5-share AES S-box Pass Fig. 14
AND-gate AND2B1L 2-stage 5-share AES S-box Pass Fig. 15
AND-gate LUT 2-stage 5-share AES S-box Fail Fig. 16
Latch LDCE 2-stage 5-share serialized AES Pass Fig. 17
AND or MUX gates MUXF7 2-stage 5-share serialized AES Pass Fig. 18
AND-gate AND2B1L 2-stage 5-share serialized AES Fail Fig. 19
AND-gate LUT 2-stage 5-share serialized AES Fail Fig. 20
Latch LDCE 4-stage 3-share serialized AES Fail Fig. 21
AND or MUX gates MUXF7 4-stage 3-share serialized AES Pass Fig. 22
MUX gates @30MHz MUXF7 4-stage 3-share serialized AES Pass Fig. 23

Table 4: Summary of the serialized AES implementations using the FPGA primitives on
Sakura-X

Synthesis on FPGA Implementation TVLA Security Order Figure
MUXF7 4-stage 3-shares Pass first-order uni-variate Fig. 24
MUXF7 6-stage 3-shares Pass second-order bi-variate Fig. 25

Thus similarly to [SBHM20, NGPM22, SBB+22] the only remaining way to demonstrate
the security of our designs is to use Test Vector Leakage Assessment (TVLA) by Goodwill
et al. [GJJR11] which is widely used to evaluate the security of cryptographic designs
against SCA. Instead of testing against potential attacks, TVLA’s goal is to identify, using
the power traces, the leakage points of the secrets, irrespective of whether these leakages
are immediately exploitable or not. The non-specific t-test is applied which verifies that
our implementations do not show first-order leakage. For this, the measured power traces
are divided into two sets, where the first set S0 uses fixed plaintexts and the second S1
receives random plaintexts. The t-test verifies whether the first-order statistical moments
of these two sets are the same. The null hypothesis of the t-test states that “S0 and S1
are drawn from populations with the same mean.”

Large absolute values of this t-statistic provide evidence for rejecting the null hypothesis
with a certain confidence. In side-channel research, a widely adopted threshold for the
t-test is 4.5. If the t-test value computed from the power traces exceeds this threshold,
it signifies a potential security vulnerability in the tested implementation. Note that we
have used this threshold value for the t-tests, however one can apply the methodology by
Ding et al. [DZD+17] to obtain a proper threshold when the number of samples is large,
for example, t = 6 for 10K samples and α = 10−5 or t = 7.4 for 13K samples. Since our
AES serialized implementations have 20K samples even higher t can be applied.

For the practical experiments, we mainly used a Xilinx Spartan-6 FPGA on a SAKURA-
G evaluation board. We collect power traces using a digital oscilloscope at a sampling
rate of 500MS/s. The encryption is performed up to 100 million times receiving either
fixed or random masked plaintexts. To do the t-test, we collect 4K sample points for
the S-box implementations and 20K samples for the AES with serialized architecture
implementations. As usual, we performed TVLA on our design with the PRNG both
active and inactive to check that the tool-chain performs as expected. We perform the
first-order t-test, the summary of the results is given in Table 3, while the figures for the
t-tests are provided in Appendix A.

The FPGA primitives, although perform the same logical functions as the corresponding
digital designs, can introduce glitches from internal hardware. For example, an LUT instance
on FPGA when initiated to be an AND-gate is a glitchy hardware unit with five or six input



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 23

signals. TVLA tests were conducted on both a standalone 2-stage 5-share S-box and the
serialized AES-128 encryption incorporating such an S-box, evaluating the efficiency of AND-
gate implementations within LUTs. As indicated in Figures 16 and 20, the implementation
through LUT was ineffective in stopping glitches, evidenced by the failure of both t-tests.

This failure leads to the experiments using other primitives on FPGA, like MUXF7 and
AND2B1L, that can build the same logic function of AND-gate. In the 2-stage 5-share S-box
implementations, both MUXF7 and AND2B1L show no leakages as illustrated in Figures 14
and 15. However, when the tests are extended to the serialized AES-128 encryption
Figure 18 shows that MUXF7 achieves the first-order security, while AND2B1L fails Figure 19.
The key differences between the AND2B1L and MUXF7 primitives are that AND2B1L, is a
larger unit shared with latches and registers and thus it requires more complex routing.
Additionally, the full AES serialized encryption, combining synchronous state arrays and
control logics, adds complexity and potential leakage sources. Due to negative results with
AND2B1L and LUT, they were not tested on the 4-stage 3-share serialized AES. However,
MUXF7 showed no leakage in the 4-stage 3-share implementation (Figure 22), suggesting its
suitability as a glitch-stopping gate in FPGA environments.

The test using latches (LDCE) with the 2-stage 5-share S-box in AES serialized encryption
showed no first-order leakage (Figure 17), where the clock configuration is the same as the
AND-gate. However, the AES serialized encryption with a 4-stage 3-share S-box exhibited
leakage (Figure 21), potentially due to complex clock configurations that inadequately
prevented glitch propagation ac-ross imperfect clock edges.

For all evaluations on Sakura-G given in Table 3 we use 12MHz clock, except for the
last one where we show that clocking faster at 30MHz (with 25%, 50% and 75% duty
cycles) doesn’t change the result for the AND or MUX gates.

In order to illustrate transfer-ability of the results to another platform we show in
Table 4 that MUXF7 based 4-stage 3-share serialized AES implementation on Sakura-X is
still first-order secure.

Finally, in order to demonstrate that the proposed approach is independent of the
security order, we used the RTL of the 6-stage 3-share 2nd-order serialized AES imple-
mentation by De Cnudde et al. [CRB+16]. The modification from GSC_R to MUXF7 based
GSC_woR implementation is second-order secure as shown in Table 4.

In summary, we have shown that MUX or AND glitch-stopping gate can be implemented
on FPGA via MUXF7. We leave as a further research topic to show that LDCE is also a way
to implement latch-based glitch-stopping on FPGA.

6 Conclusions

In this paper, we introduced a method to build secure hardware masking without registers,
offering improved performance efficiency and area reduction compared to conventional
register-based methods. Our method employs clocked AND-gates, latches, and multiplexers
to effectively stop glitch propagation. The GSC_woR approach is proven, in the glitch-
extended probing model, to retain the security level of GSC_R. We experimentally confirmed,
via TVLA evaluations, the first-order and second-order security of FPGA implementations
using MUXF7 and LDCE.

Acknowledgements. This work was supported by CyberSecurity Research Flanders with
reference number VR20192203.



24 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

References
[ADN+22] Amund Askeland, Siemen Dhooghe, Svetla Nikova, Vincent Rijmen, and

Zhenda Zhang. Guarding the first order: The rise of AES maskings. In Ileana
Buhan and Tobias Schneider, editors, Smart Card Research and Advanced
Applications - CARDIS 2022, volume 13820 of Lecture Notes in Computer
Science, pages 103–122. Springer, 2022.

[ANN23] Amund Askeland, Svetla Nikova, and Ventzislav Nikov. Who watches the watch-
ers: Attacking glitch detection circuits. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2024(1):157–179, Dec. 2023.

[ANN24] Amund Askeland, Svetla Nikova, and Ventzislav Nikov. Who watches the
watchers: Attacking glitch detection circuits. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2024(1):157–179, 2024.

[AZN21] Victor Arribas, Zhenda Zhang, and Svetla Nikova. LLTI: low-latency threshold
implementations. IEEE Trans. Inf. Forensics Secur., 16:5108–5123, 2021.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 116–129. ACM, 2016.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In Palash Sarkar and Tetsu
Iwata, editors, Advances in Cryptology - ASIACRYPT 2014, volume 8874 of
LNCS, pages 326–343. Springer, 2014.

[BKN20] Dusan Bozilov, Miroslav Knezevic, and Ventzislav Nikov. Optimized threshold
implementations: Minimizing the latency of secure cryptographic accelerators.
In S. Belaid and T. Guneysu, editors, Smart Card Research and Advanced
Applications - CARDIS 2020, Lecture Notes in Computer Science, pages 20–39.
Springer, 2020.

[BP11] Joan Boyar and Rene Peralta. A depth-16 circuit for the aes s-box. Cryptology
ePrint Archive, Paper 2011/332, 2011.

[Can05] David Canright. A very compact S-box for AES. In Cryptographic Hardware
and Embedded Systems - CHES 2005 Proceedings, pages 441–455, 2005.

[CGLS21] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware private circuits: From trivial composition to full verification.
IEEE Transactions on Computers, 70(10):1677–1690, 2021.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 shares in hardware. In
Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science, pages 194–212. Springer, 2016.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 25

[DZD+17] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert,
and Yunsi Fei. Towards sound and optimal leakage detection procedure. In
Thomas Eisenbarth and Yannick Teglia, editors, Smart Card Research and
Advanced Applications - CARDIS 2017, volume 10728 of Lecture Notes in
Computer Science, pages 105–122. Springer, 2017.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., (3):89–120, 2018.

[GHP+20] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-design and co-verification of masked software implementa-
tions on cpus. Cryptology ePrint Archive, Paper 2020/1294, 2020.

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation, September 2011.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
IACR Cryptol. ePrint Arch., 2016:486, 2016.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in Cryp-
tology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science,
pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO 1999, volume
1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[KM22] David Knichel and Amir Moradi. Low-latency hardware private circuits.
Proceedings of the 2022 ACM CCS Conference, 2022.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. Silver - statistical indepen-
dence and leakage verification. Cryptology ePrint Archive, Paper 2020/634,
2020.

[LMM23] Daniel Lammers, Nicolai Müller, and Amir Moradi. Glitch-free is not enough -
revisiting glitch-extended probing model. Cryptology ePrint Archive, Paper
2023/035, 2023.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of aes. In
EUROCRYPT, volume 6632, pages 69–88, 2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In Cryptographic Hard-
ware and Embedded Systems - CHES 2005, volume 3659 of Lecture Notes in
Computer Science, pages 157–171. Springer, 2005.



26 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

[MS16] Amir Moradi and Tobias Schneider. Side-channel analysis protection and
low-latency in action - - case study of PRINCE and midori -. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages 517–547,
2016.

[NGPM22] Rishub Nagpal, Barbara Gigerl, Robert Primas, and Stefan Mangard. Riding
the waves towards generic single-cycle masking in hardware. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2022(4):693–717, 2022.

[NNR19] Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. Decomposition of
permutations in a finite field. In Cryptography and Communications, volume 11,
pages 379—-384, 2019.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In Peng Ning, Sihan
Qing, and Ninghui Li, editors, Inform. and Commun. Secur., ICICS 2006,
Proceedings, volume 4307 of LNCS, pages 529–545. Springer, 2006.

[NT22] Daniel Nemiroff and Carlos Tokunaga. Fault-Injection Countermeasures De-
ployed at Scale. Technical report, Intel Corporation, 2022.

[PAB+22] Enrico Piccione, Samuele Andreoli, Lilya Budaghyan, Claude Carlet, Siemen
Dhooghe, Svetla Nikova, George Petrides, and Vincent Rijmen. An optimal
universal construction for the threshold implementation of bijective s-boxes.
Cryptology ePrint Archive, Paper 2022/1141, 2022.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology -
CRYPTO 2015 Proceedings, Part I, pages 764–783, 2015.

[RCN03] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolić. Digital
integrated circuits: a design perspective. Prentice Hall electronics and VLSI
series. Pearson Education, Upper Saddle River, N.J, 2nd ed edition, 2003.

[SBB+22] Mateus Simoes, Lilian Bossuet, Nicolas Bruneau, Vincent Grosso, and Patrick
Haddad. Self-timed masking: Implementing first-order masked s-boxes without
registers. IACR Cryptol. ePrint Arch., page 641, 2022.

[SBHM20] Pascal Sasdrich, Begül Bilgin, Michael Hutter, and Mark E. Marson. Low-
latency hardware masking with application to AES. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(2):300–326, 2020.

[TV04] Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a
secure DPA resistant ASIC or FPGA implementation. In Design, Automation
and Test in Europe Conference and Exposition (DATE 2004, pages 246–251.
IEEE Computer Society, 2004.

[WH10] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[Wik24] Wikipedia. Flip-flop (electronics) — wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Flip-flop%20(electronics)
&oldid=1193270436, 2024. [Online; accessed 08-January-2024].

A TVLA Test Results

http://en.wikipedia.org/w/index.php?title=Flip-flop%20(electronics)&oldid=1193270436
http://en.wikipedia.org/w/index.php?title=Flip-flop%20(electronics)&oldid=1193270436


Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 27

(a) The final t-test result (b) The maximum t-test value evolving

Figure 14: The 2-stage 5-share AES S-box using MUXF7

(a) The final t-test result (b) The maximum t-test value evolving

Figure 15: The 2-stage 5-share AES S-box using AND2B1L

(a) The final t-test result (b) The maximum t-test value evolving

Figure 16: The 2-stage 5-share AES S-box using LUT



28 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

(a) The final t-test result (b) The maximum t-test value evolving

Figure 17: The 5-share serialized AES using the 2-stage S-box in LDCE

(a) The final t-test result (b) The maximum t-test value evolving

Figure 18: The 5-share serialized AES using the 2-stage S-box in MUXF7

(a) The final t-test result (b) The maximum t-test value evolving

Figure 19: The 5-share serialized AES using the 4-stage S-box in AND2B1L



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 29

(a) The final t-test result (b) The maximum t-test value evolving

Figure 20: The 5-share Serialized AES using LUT

(a) The final t-test result (b) The maximum t-test value evolving

Figure 21: The 3-share serialized AES using the 4-stage S-box in LDCE

(a) The final t-test result (b) The maximum t-test value evolving

Figure 22: The 3-share serialized AES using the 4-stage S-box in MUXF7



30 Glitch-Stopping Circuits: Hardware Secure Masking without Registers

(a) The final t-test result (b) The maximum t-test value evolving

Figure 23: The 3-share serialized AES using the 4-stage S-box in MUXF7 on Sakura-G with
30Hz input clocks

(a) The final t-test result (b) The maximum t-test value evolving

Figure 24: The 3-share first-order serialized AES using the 4-stage S-box in MUXF7 on
Sakura-X



Zhenda Zhang, Svetla Nikova and Ventzislav Nikov 31

(a) The final uni-variate t-test result: PRNG
on (b) The maximum t-test value evolving

(c) The final uni-variate t-test result: PRNG
off

(d) The final bi-variate t-test result: PRNG
on (bottom left) and PRNG off (top right)

Figure 25: The 3-share second-order serialized AES using the 6-stage S-box in MUXF7 on
Sakura-X


	Introduction
	Preliminaries
	Sequential Logical Circuits
	SCA Resistant Circuits

	Case Study: Threshold Implementations on AES
	Serialized AES Encryption
	Two-Stage AES S-box with Five Shares
	Four-Stage AES S-box with Three Shares
	Timing Overhead of Glitch-Immune Masking Schemes

	Glitch-Stopping Circuits in ASIC
	Clocked AND-Gate
	Clocked Latch
	Clocked MUX-Gate
	Comparison of the Glitch-Stopping Circuits
	Security in the Glitch-Extended Probing Model

	Glitch-Stopping Circuits in FPGA
	Primitives in FPGAs for Glitch-Stopping Circuit 
	AES Implementations
	Performance Comparison
	Leakage Evaluation

	Conclusions
	TVLA Test Results

