
A preliminary version of this paper appears in the proceedings of the 44th Annual International
Cryptology Conference (CRYPTO 2024). This is the full version.

Ring Signatures for Deniable AKEM:
Gandalf’s Fellowship

Phillip Gajland1,2, Jonas Janneck2, and Eike Kiltz2

1 Max Planck Institute for Security and Privacy
2 Ruhr-Universität Bochum

June 7, 2024

Abstract Ring signatures, a cryptographic primitive introduced by Rivest, Shamir and Tauman
(ASIACRYPT 2001), offer signer anonymity within dynamically formed user groups. Recent
advancements have focused on lattice-based constructions to improve efficiency, particularly for large
signing rings. However, current state-of-the-art solutions suffer from significant overhead, especially
for smaller rings.
In this work, we present a novel NTRU-based ring signature scheme, Gandalf, tailored towards small
rings. Our post-quantum scheme achieves a 50% reduction in signature sizes compared to the linear
ring signature scheme Raptor (ACNS 2019). For rings of size two, our signatures are approximately
a quarter the size of DualRing (CRYPTO 2021), another linear scheme, and remain more compact
for rings up to size seven. Compared to the sublinear scheme Smile (CRYPTO 2021), our signatures
are more compact for rings of up to 26. In particular, for rings of size two, our ring signatures are only
1236 bytes.
Additionally, we explore the use of ring signatures to obtain deniability in authenticated key exchange
mechanisms (AKEMs), the primitive behind the recent HPKE standard used in MLS and TLS. We
take a fine-grained approach at formalising sender deniability within AKEM and seek to define the
strongest possible notions. Our contributions extend to a black-box construction of a deniable AKEM
from a KEM and a ring signature scheme for rings of size two. Our approach attains the highest level
of confidentiality and authenticity, while simultaneously preserving the strongest forms of deniability in
two orthogonal settings. Finally, we present parameter sets for our schemes, and show that our deniable
AKEM, when instantiated with our ring signature scheme, yields ciphertexts of 2004 bytes.

1 Introduction

Ring Signatures. The seminal work of Rivest, Shamir and Tauman [RST01] introduced ring signatures as
an extension of group signatures [Cv91], allowing users to sign messages on behalf of dynamically formed user
groups. This cryptographic primitive facilitates public verification while preserving the signer’s anonymity
within the group, referred to as the signing ring ρ. Ring signatures have witnessed widespread adoption
across various domains, including blockchains, digital currencies such as Monero and Bytecoin, as well as
electronic voting systems. A plethora of constructions based on number-theoretic assumptions exist [BSS02,
Nao02,AOS02, ZK02,BGLS03,DKNS04], with recent focus shifting towards post-quantum ring signatures.
Here, lattice-based constructions [BK10, ABB+13, LLNW16, BLO18, ESS+19, BKP20, LNS21] represent a
significant body of research. Recent advancements have leveraged proof systems [ESS+19,BKP20,LNS21],
leading to better efficiency for large signing rings. The current state of the art is Smile by Lyubashevsky,
Nguyen, and Seiler [LNS21], achieving asymptotic signature sizes O(log(|ρ|)). While asymptotically sub-
linear, these proof systems involve significant overhead and concrete instantiations range from 16 KB for
|ρ| ≤ 32 users to 22 KB for up to |ρ| = 225 users. In applications involving small rings (Monero uses rings of
size 11)3, linearly scaling schemes are often preferable. For ring of size two, the Raptor ring signature by
Lu, Au, and Zhang [LAZ19] emerges as the best option, yielding signatures of approximately 2.5 KB. When
the ring size is between 4 and 439, the DualRing scheme [YEL+21] is the most compact.

3 https://www.getmonero.org/resources/moneropedia/ring-size.html

https://crypto.iacr.org/2024/
https://www.getmonero.org/resources/moneropedia/ring-size.html

Deniable AKEM. The authenticated key encapsulation mechanism (AKEM) primitive studied
in [ABH+21,AJKL23], can be thought of as the KEM analogue of signcryption [Zhe97,DZ10], and plays a
crucial role in authenticating the sender to the receiver in two modes of the HPKE standard [BBLW22].
Despite HPKE’s integration into protocols like Messaging Layer Security (MLS) [BBR+23] and the
Encrypted Client Hello privacy extension for Transport Layer Security (TLS) 1.3 [ROSW23], it’s
deniability aspects remain unexplored in the literature. This is somewhat surprising considering HPKE
constructs an AKEM using a non-interactive key exchange (NIKE) for authentication, suggesting some
form of deniability. However, the specifics remain unclear.

Ring Signatures for Deniability. There exists a folklore belief regarding the potential applicability
of ring signatures in constructing deniable authentication. For instance, in two-party scenarios where a
sender seeks to deniably authenticate itself to a receiver, linear size ring signatures would be advantageous.
However, the precise notions of anonymity within ring signatures and the resulting level of deniability remain
subjects of subtlety. For example, a recent work from PKC’22 [BFG+22] suggested employing anonymous ring
signatures to establish deniable key exchange within the context of the Signal Handshake (X3DH) [MP16b].
However, we show a ring signature scheme which provides anonymity against the standard notion of full
key exposure [BKM09], while falling short of satisfying the anonymity notion introduced in [BFG+22], thus
highlighting the need for careful analysis.

1.1 Contributions and Technical Overview

2 3 4 5 6 7 8

2 000

4 000

6 000

8 000

10 000

Size of ring |ρ| = k

S
iz
e
o
f
si
g
n
a
tu
re
s
in

b
y
te
s
|σ
|

Raptor [LAZ19]: |σ| = 1 266 · k
DualRing [YEL+21]: |σ| = 4536 + 26 · k
Gandalf [Fig. 5]: |σ| = 606 · k + 24

Figure 1. Signature sizes against ring sizes for state of the art lattice-based schemes.

This section outlines our main contributions: a novel ring signature scheme, formalisation of deniability
for Authenticated Key Exchange Mechanisms (AKEMs), and a generic construction of deniable AKEMs
inspired by our ring signature scheme.

Ring Signatures. Our primary contribution is Gandalf, a lattice-based ring signature scheme, specifically
designed for small rings. Compared to existing schemes, Gandalf offers a remarkable improvement of over
50%. It provides compact signatures, as small as 1236 bytes for two-member rings. The signature size scales
linearly with the ring size |ρ| = k, occupying 606 · k + 24 bytes. This renders Gandalf the most compact
option for rings up to size 7.

At a technical level,Gandalf, is based on the NTRU preimage sampleable trapdoor function fh [GPV08]
over the NTRU ring R [HPS98,DLP14, PFH+22]. Concretely, fh inputs two ring elements of small norm

2

and is defined as fh(u,v) := h ∗ u + v. A valid ring signature on message m for the ring ρ = {h1, . . . ,hk}
simply consists of a vector (u1, . . . ,uk) ∈ Rk such that∥∥∥∥∥

(
u1, . . . ,uk,v := H(m, ρ)−

k∑
i=1

hi ∗ ui

)∥∥∥∥∥
2

≤ β. (1)

Note that the ring signature essentially consists of k “unseeded Antrag signatures” [ENS+23] and the ring
element v is implicitly reconstructed in the verification equation. Our construction can also be seen as a ring
trapdoor function [BK10] leveraging concrete algebraic properties of NTRU rings for compactness. The ring
signature can be computed by the holder of the j-th secret key (i.e., the trapdoor for fhj

) by first sampling

small ui for i ̸= j and finally computing (uj ,v) ← f−1hj
(H(m, ρ) −

∑k
i ̸=j ui ∗ hi) using preimage sampling.

Unfortunately, the norm on the verification equation Equation (1) increases with the maximal size of the
ring κ, and hence security decreases with larger ring sizes. However, in these cases other schemes would be
preferable.

For Gandalf we prove one per message unforgeability [FKP17] under chosen ring attacks [BKM06,
BKM09] for Gandalf, which is sufficient for our main application. Similar to Falcon or Antrag, we
achieve full unforgeability by adding a small random seed to the hash function. Furthermore, we consider a
stronger notion of anonymity than typically examined in the literature, namely that of an adaptive multi-
challenge anonymity under full key exposure, as this will become useful for our applications. For all our
proofs we give concrete security bounds.

Deniability for AKEMs. Our subsequent contribution is to formally investigate deniability in the context
of AKEM. Deniability aims to prevent a third party — modelled as the adversary — from conclusively
attributing a, potentially incriminating, message to a particular sender. We consider eight distinct settings
to characterise deniability in a fine grained approach, focusing on two main settings; honest and dishonest
receivers. For scenarios involving honest receivers, we can assume that they do not simulate any values. Thus,
an adversary is given only the sender’s secret key sks. Note that a notion where the adversary is additionally
given the receiver’s secret key skr is known to be impossible. Concurrently, we investigate a different setting
where the receiver is considered to be dishonest. In this setting the strongest notion one could hope to achieve
gives the adversary both sks and skr and further assumes the existence of a simulator, which, given access to
skr, is able to produce a ciphertext and key that are indistinguishable from those generated by the AKEM
encapsulation process Enc. Hence, the ciphertext could be constructed by the receiver itself by executing the
simulator and the sender can plausibly deny their involvement. As for all our proofs and notions we consider
the multi-user setting where the adversary can query oracles adaptively.

Deniable AKEM Construction. Our third contribution is a black-box construction of deniable AKEM
from key encapsulation mechanisms and ring signatures for rings of size two in the standard model.
Notably, AKEM has two existing notions of authenticity. Insider authenticity models a setting with an
insider adversary (having access to receivers’ secret keys) where outsider authenticity only allows outsider
adversaries. While insider authenticity implies outsider authenticity, the latter is the strongest notion
compatible with any form of deniability. The reason being that a simulator that is given the secret key
from the deniability notion can be used to break the insider authentication notion of the AKEM. Our
approach achieves the highest level of CCA security, known as insider CCA security, and the most robust
form of authentication, outsider authentication, while preserving deniability in both the honest and
dishonest receiver setting.

Evaluation. Our final contribution is to select appropriate parameters for Gandalf and instantiating
our AKEM construction from Gandalf and the best NTRU KEM from [DHK+23]. Leveraging the latest
developments in Gaussian sampling we instantiate our schemes with help of [ENS+23], thus avoiding issues
related to floating point arithmetic, ensuring robustness for potential future implementations. For a
comprehensive comparison of our ring signature schemes against other alternatives, refer to Figure 1. Our
resulting AKEM has ciphertexts of 2004 bytes and public keys of 1664 bytes.

3

1.2 Related Work

Ring Signatures. Ring signatures [RST01] have been extensively studied in the cryptographic literature.
Bender et al. [BKM09] provide a thorough examination of ring signatures, covering various unforgeability
and anonymity notions, along with several constructions. For large rings, the most efficient constructions
rely on proof systems [ESS+19,BKP20,LNS21]. These could be made efficient using lattice-based succinct
non-interactive arguments of knowledge (SNARKs) [ACL+22], although this would likely involve significant
overhead for provers. Other schemes are more suitable for small rings. One closely related work to ours is
the Raptor scheme proposed by Lu et al. [LAZ19], which also presents a linkable ring signature scheme.
Their scheme, approximately 1.3 KB per user, relies on chameleon hash functions with slightly stronger
properties which they call Chameleon Hash+. Moreover, their construction is also instantiated over NTRU
lattices, where signatures consist of k = |ρ| many (u,v) pairs of polynomials along with a 32 byte salt.
Another approach was taken in [YEL+21] where they introduce a new ring signature construction they call
DualRing which can be built from identification schemes. They provide an instantiation based on M-LWE
and M-SIS. While the signature size grows linearly, increasing by only 24 bytes per user, each signature
includes a large constant of 4536 bytes. Another approach is that of MPC-in-the-Head, where the state of
the art yields signatures of at least 4.41 KB [FR23].

Authenticated KEMs. Related to AKEM is another primitive, called split-KEM, which was introduced by
Brendel, Fischlin, Günther, Janson, and Stebila [BFG+20]. Split-KEMs feature two distinct key generation
algorithms – one for sender keys and one for receiver keys. This comes with separate secret and public key
spaces for encapsulation and decapsulation, resulting in each party having two distinct key pairs for sending
and receiving. In contrast, AKEM can be regarded as a more general primitive as it provides a more unified
approach, enabling constructions where a single key serves both encapsulation and decapsulation functions.
This stands in contrast to split-KEMs, where using the same key for both would necessitate duplication, as
exemplified by the AKEM construction employed in HPKE [BBLW22], formally analysed in [ABH+21]. While
the authors of [BFG+20] present post-quantum secure instantiations of split-KEMs, none of them meets
their strongest security notion, full IND-CCA security (with multiple encapsulations and decapsulations). A
recent work, due to appear at USENIX [CHDN+24], constructs a lattice-based split-KEM that achieves a
somewhat weaker notion of confidentiality, IND-1BatchCCA security, as well as unforgeability against one
known-ciphertext attacks.

Note that the straightforward combination of KEM and signature does not fulfil the strongest security
guarantees for the insider setting [DZ10, Chapter 2.3]. The AKEM from [AJKL23] achieves the strongest
confidentiality notion using a black-box construction. We build upon this construction, resulting in a scheme
with the same security guarantees but relying on weaker assumptions, extending seamlessly to the split
KEM context and providing robust confidentiality and authenticity. As such, AKEM could potentially be
applied in new approaches to X3DH [MP16b,BFG+20], one of the main components behind Signal [MP16a],
WhatsApp [Wha20,BCG23] and Facebook Messenger. Moreover, our approach is compatible with any CCA
post-quantum KEM, such as NTRU [CDH+20] or Kyber [SAB+22].

Deniable Authentication. Deniable authentication, a concept introduced by Dwork, Naor and
Sahai [DNS98, DNS04], combines sender authentication with the ability to deny involvement to a third
party. This concept has been extensively studied in the realm of authenticated key exchange
(AKE) [DG05, DGK06, UG15, UG18, BFG+22], where deniability extends from exchanging keys to the
denial of entire communications under a shared key.

Typically, AKE involves multiple rounds of interaction to satisfy both authentication and deniability
requirements. KEM-TLS [SSW20], which relies on a KEM, falls into the same line of work by requiring
interactions. Another line of research explores deniable ring authentication [Nao02], where users within a
designated ring can deny sending a message while maintaining authentication within the ring. As for AKE,
there is no limit on the number of rounds of interactions. In contrast, Susilo and Mu [SM04] investigated
non-interactive ring authentication which uses a single message for sender-to-receiver authentication.
However, their construction is based on ring signatures and chameleon hash functions resulting in rather

4

weak deniability properties. The work of [FM15] gives a comprehensive overview of notions of deniable
message authentication; part of it is similar to our settings of deniability for AKEMs (see Section 4.2).

In [UG15,UG18] various black-box constructions are presented using ring signatures, of which Spawn+
is the most similar to our deniable AKEM (a one-shot primitive). Our black-box construction of deniable
AKEM requires the following primitives: a ring signature scheme, a KEM, and a symmetric encryption scheme
(which does not incur any overhead in ciphertext size); whereas the construction of Spawn+ requires: a ring
signature scheme and a Dual-Receiver Encryption with Associated Data, a primitive that is objectively more
costly than a KEM. Dual-Receiver Encryption with Associated Data, requires two encryptions (one to each
participant), a non-interactive zero knowledge proof of knowledge (NIZKPK) proving that ciphertexts contain
the same plaintext. Furthermore, instantiating Spawn+ with post-quantum NIZKs would incur an additional
cost. On the other hand, the ZDH/XZDH exchange implicitly involves a Diffie-Hellman key exchange in order
to derive the MAC key. Translating this to the post-quantum setting would require significantly larger public
keys, if using a post-quantum NIKE.

Another work [HKKP22] constructed Signal-conforming AKE from ring signatures and NIZKs. However,
the primitive is not one-move, as it requires ephemeral KEM keys. Additionally, they consider a weaker
anonymity notion for their ring signatures (no secret keys are exposed) which translates to weaker deniability
for the AKE.

Another folklore method to achieve deniability is non-interactive key exchange (NIKE) due to its
symmetric nature, enabling implicit authentication. This differs from most other approaches that employ
explicit methods, such as sending a signature from the sender to the receiver, which can then be explicitly
verified to confirm the sender’s authenticity. A main drawback of the NIKE approach is that it only
provides sender deniability guarantees in a scenario where the receiver is potentially dishonest but no
guarantee for the sender in an honest receiver setting (for detailed information, we refer to Section 4.2).
The same setting is considered in the work of [CHDN+24] constructing a lattice-based deniable split-KEM
focusing solely on the dishonest receiver setting and achieving a slightly weaker notion of deniability, where
the simulator is only given the receiver’s secret key, and the adversary is likewise only given the receiver’s
secret key (not the sender’s secret key).

2 Preliminaries

In this section, we present important preliminaries. Further standard preliminaries are defined in Appendix A.

2.1 Notation

Sets and Algorithms. We write s $← S to denote the uniform sampling of s from the finite set S. For an
integer n, we define [n] := {1, . . . , n}. The notation JbK, where b is a boolean statement, evaluates to 1 if the
statement is true and 0 otherwise. We use uppercase letters A,B, C,D to denote algorithms. Unless otherwise
stated, algorithms are probabilistic, and we write (y1, . . .)

$← A(x1, . . .) to denote that A returns (y1, . . .)
when run on input (x1, . . .). We write AB to denote that A has oracle access to B during its execution. For
a randomised algorithm A, we use the notation y ∈ A(x) to denote that y is a possible output of A on input
x. The support of a discrete random variable X is defined as sup(X) := {x ∈ R | Pr[X = x] > 0}. For two
polynomials f , g, we denote the polynomial multiplication of f and g by f ∗ g.
Security Games.We use standard code-based security games [BR04]. A game G is a probability experiment
in which an adversary A interacts with an implicit challenger that answers oracle queries issued by A. The
game G has one main procedure and an arbitrary amount of additional oracle procedures which describe how
these oracle queries are answered. We denote the (binary) output b of game G between a challenger and
an adversary A as G(A) ⇒ b. A is said to win G if G(A) ⇒ 1, or shortly G ⇒ 1. Unless otherwise stated,
the randomness in the probability term Pr[G(A) ⇒ 1] is over all the random coins in game G. If a game is
aborted the output is either 0 or a random bit b in case of an indistinguishability game, i.e. a game for which
the advantage of an adversary is defined as the absolute difference of winning the game to 1

2 . To provide a

5

cleaner description and avoid repetitions, we sometimes refer to procedures of different games. To call the
oracle procedure Oracle of game G on input x, we shortly write G.Oracle(x).

2.2 Lattice Preliminaries

NTRU Lattices.We use the GPV [GPV08] framework instantiated over NTRU lattices as done in [DLP14].

Definition 1 (Lattice). For a finite basis B = {b1, . . . , bn}, let the lattice Λ(B), or simply Λ, be the set
of vectors

Λ(B) :=

{
n∑

i=1

cibi | ci ∈ Z

}
.

Definition 2 (NTRU Lattice). Let N = 2k for k ∈ Z, q prime, f , g ∈ R = Z[X]/(XN + 1), and
h = g ∗ f−1 mod q. The NTRU lattice parameterised by h and q is a lattice of volume qN in R2N in the
coefficient embedding of the following module

Λh,q := {(u,v) ∈ R2
q : u ∗ h+ v = 0 mod q}.

Equivalently, for R = Z[X]/(XN +1), an NTRU lattice is a full-rank submodule lattice of R2 generated
by the columns of a matrix of the form

Bh =

[
1 0
h q

]
for prime q and some h ∈ R coprime to q. A trapdoor for this lattice is a relatively short basis

Bf ,g =

[
f F
g G

]
where the basis vectors (f , g) ∈ R2 and (F ,G) ∈ R2 are not much larger than

√
detBh =

√
q and

f ∗G− g ∗ F = q.

Norms. For a polynomial f ∈ Rq = Zq[X]/(XN +1), let f ∈ ZN
q denote the coefficient embedding of f , and

fi ∈ Zq the ith coefficient. For an element fi ∈ Zq, we write |fi| to denote |fi mod q|. Let the ℓ2-norm for

f = f0+ f1X + . . .+ fN−1X
N−1 ∈ Rq be defined as ∥f∥2 :=

√∑N−1
i=0 |fi|

2
. For polynomials f1, . . . ,fk ∈ Rq

we use the notation

∥(f1, . . . ,fk)∥2 :=

√√√√N−1∑
i=0

(
|f1i |

2
+ . . .+ |fki |

2
)
.

Gaussians and Preimage Sampling. We recall some concepts and tools for Gaussian sampling.

Definition 3 (Discrete Gaussian Distribution over Λ). For any standard deviation s > 0, the
n-dimensional Gaussian function ρs,c : Rn → (0, 1] on Rn centred at c ∈ Rn with standard deviation s is
defined by

ρs,c(x) := exp

(
−
∥x− c∥22

2s2

)
.

For any c ∈ Rn, s ∈ R+, and lattice Λ, the discrete Gaussian distribution over Λ is defined as

∀ x ∈ Λ, DΛ,s,c :=
ρs,c(x)∑
z∈Λ ρs,c(z)

.

We omit the subscript c when the Gaussian is centred at 0 and subscript Λ when the Gaussian is over Zn.

6

For bounding the probability that a random variable deviates a long way from the mean, we will use the
following tail bounds from [Ban93,Lyu12].

Lemma 1. Let n > 1 and s > 0.

1. For any τ > 0, Prz←DZ,s [|z| > τs] ≤ 2e
−τ2

2 .

2. For any τ > 1, Prz←Ds
[∥z∥2 > τs

√
n] < τne

n
2 (1−τ2).

Definition 4 (Gram-Schmidt Norm [GPV08, DLP14]). For a finite basis B = (bi)i∈I , let B̃ =
(b̃i)i∈I be its Gram-Schmidt orthogonalization. Then the Gram-Schmidt norm of B is the value ∥B∥GS :=

maxi∈I

∥∥∥b̃i∥∥∥.
Lemma 2 (NTRU Trapdoor Generation [HPS98,Pre15]). Let R := Z[X]/(XN +1). There exists a
PPT algorithm, TpdGen(q, α), that given a modulus q, and a target quality α, returns a public key h ∈ R,
and the trapdoor (f , g) ∈ R×R, such that Bh and Bf ,g form a basis of the same lattice. Furthermore, the
Gram-Schmidt norm ∥Bf ,g∥GS ≤ α

√
q.

Let Λ be an n-dimensional lattice and ϵ > 0, the (scaled) smoothing parameter ηϵ(Λ) is the smallest
s > 0 such that ρ1/s(Λ

∗ \ 0) ≤ ϵ, where Λ∗ denotes the dual lattice (the exact definition of the dual is not
required for this work). We will use the following upper bound on the smoothing parameter.

Lemma 3 (Special case of [MR07, Lem. 4.4]). For any ϵ ∈ (0, 1) it holds

ηϵ
(
Z2N

)
≤ 1

π
·
√

ln(4N(1 + 1/ϵ))

2
.

Definition 5 (Rényi Divergence [BLL+15,Pre17]). Let P,Q be two distributions such that sup(P) ⊆
sup(Q). For a ∈ (1,∞), we define the Rényi divergence of order a as

Ra(P || Q) :=

 ∑
x∈sup(P)

P(x)a

Q(x)a−1

 1
a−1

.

Definition 6 (Kullback-Leibler Divergence). Let P and Q be two discrete probability distributions
over the same countable set X . The KL divergence of P from Q is defined as

δKL(P || Q) :=
∑
x∈X

ln

(
P(x)
Q(x)

)
· P(x).

Definition 7 (Relative Error [MW17]). Let P and Q be two discrete probability distributions over the
same countable set X . The relative error of P and Q is defined as

δRE(P,Q) := max
x∈sup(P)

|P(x)−Q(x)|
P(x)

.

The relative error can be used to bound the KL-divergence. We make use of the following result
from [MW17].

Lemma 4 ([MW17, Lem. 2.1]). For any two distributions P, and Q with the same support and
δRE(P,Q) < 1,

δKL(P || Q) ≤
δRE(P,Q)2

2(1− δRE(P,Q))2
.

In particular, using the Taylor series expansion the function can be approximated to
δKL(P,Q) ≲ 1

2δRE(P,Q)2 at δRE = 0.

7

Similarly, the relative error can be used to bound the Rényi.

Lemma 5 (Relative error [Pre17, Lem. 3]). Let P,Q be two distributions such that sup(P) = sup(Q)
and δRE > 0. Then for a ∈ (1,+∞],

Ra(P || Q) ≲ 1 +
aδ2RE

2
.

Lemma 6 (Relative Error of Preimage Sampler [Pre17, Lem. 6]). Let N be a positive integer and
ϵ ∈ (0, 1/4). Then there exists a preimage sampling algorithm PreSmp(B, s, c), such that for any basis B,
standard deviation s ≥ ηϵ(Z2N) · ∥B∥GS and arbitrary syndrome c, the relative error is bounded by

δRE(PreSmp(B, s, c),DΛ(B),s,c) ≤
(
1 + ϵ/N

1− ϵ/N

)N

− 1 ≈ 2ϵ.

Combining Lemmas 4 to 6 yields the following useful corollary.

Corollary 1. Let N be a positive integer, a > 1, and ϵ ∈ (0, 1/4). Then there exists a preimage sampling
algorithm PreSmp(B, s, c), such that for any basis B, standard deviation s ≥ ηϵ(Z2N) · ∥B∥GS and arbitrary
syndrome c, the KL divergence and Renyi divergence is bounded by

δKL := δKL(PreSmp(B, s, c) || DΛ(B),s,c) ≲ 2ϵ2

and
Ra(PreSmp(B, s, c) || DΛ(B),s,c) ≲ 1 + 2aϵ2.

We use the shorthand Ra(PreSmp || D) if the parameters are clear from the context.

Hardness Assumption. We define the R-LWE problem over NTRU lattices, with respect to a Gaussian
distribution with standard deviation s.

Definition 8. Let R := Z[X]/(XN + 1). The Ring Learning With Errors problem relative to the NTRU
trapdoor algorithm TpdGen with parametersm, q, α > 0 and s ≥ 0 is defined via the game R-LWE, depicted
in Figure 2. We define the advantage of A in R-LWE as

AdvR-LWE
m,q,α,s,A := Pr[R-LWEm,q,α,s(A)⇒ 1].

Game R-LWEm,q,α,s(A)

01 b $← {0, 1}
02 u $← DZN ,s

03 for i ∈ [m]

04 (hi, ·, ·)← TpdGen(q, α)

05 v $← DZN ,s

06 if b = 0

07 zi := u ∗ hi + v

08 else

09 zi
$←Rq

10 b′ $← A((h1,z1), . . . , (hm,zm))

11 return Jb = b′K

Game R-ISISm,q,α,β(A)

01 for i ∈ [m]

02 (hi, ·, ·)← TpdGen(q, α)

03 c $←Rq

04 (u1, . . . ,um,v)
$← A(h1, . . . ,hm, c)

05 return
r∑

i∈[m] hi ∗ ui + v = c ∧ ∥(u1, . . . ,um,v)∥2 ≤ β
z

Figure 2. Games defining R-LWEm,q,α,s and R-ISISm,q,α,β

We will use the following variant of the R-ISIS problem over NTRU lattices.

8

Definition 9 (R-ISIS). LetR := Z[X]/(XN+1). The Inhomogenious Ring Short Integer Solution problem
relative to the NTRU trapdoor algorithm TpdGen with parameters m, q > 0 and α, β > 0 is defined via the
game R-ISIS, depicted in Figure 2. We define the advantage of A in R-ISIS as

AdvR-ISIS
m,q,α,β,A := Pr[R-ISISm,q,α,β(A)⇒ 1].

According to [LM06], R-ISISm,q,α,β is as hard as SVPγ for γ = Õ(Nβ). In particular, its hardness is
independent of m.4

3 Ring Signatures

3.1 Definitions

We recall syntax and standard security notions of ring signatures [RST01].

Definition 10 (Ring Signature). Formally, a ring signature scheme RSig is given by three algorithms
(Gen,Sgn,Ver).

par $← Stp(κ): Given an upper bound on the ring size ρ, the probabilistic setup algorithm Stp returns system
parameters par, where par defines a message spaceM. We assume that all algorithms are implicitly given
access to the system parameters par.

(sk, pk) $← Gen: The probabilistic key generation algorithm returns a secret key sk and a corresponding
public key pk.

σ $← Sgn(sk, ρ,m): Given a secret key sk, a ring ρ = {pk1, . . . , pkk} such that the public key pk corresponding
to sk satisfies pk ∈ ρ and k ≤ κ, and a message m ∈M, the probabilistic signing algorithm Sgn returns
a signature σ from a signature space S.

b← Ver(σ, ρ,m): Given a signature σ, a ring ρ, and a message m, the deterministic verification algorithm
Ver returns a bit b, such that b = 1 if and only if σ is a valid signature on m and b = 0 otherwise.

RSig is δ(κ)-correct or has correctness error δ(κ) if for all κ ∈ N, par $← Stp(κ), and {(ski, pki)}i∈[k] ∈
sup (Gen), and for any i ∈ [k] with k ≤ κ,

Pr [Ver(Sgn(ski, ρ,m), ρ,m) ̸= 1] ≤ δ(κ),

where ρ := {pk1, . . . , pkk}, and the probability is taken over the random choices of Stp, Gen and Sgn.
We assume (w.l.o.g.) that there is a mapping µ from the space of secret keys to the space of public keys

such that for all (sk, pk) ∈ sup(Gen) it holds µ(sk) = pk.

Unforgeability. Unforgeability for ring signatures states that, given a target set of public-keys
{pk1, . . . , pkn}, an adversary cannot forge a signature σ∗ on a message m∗ and a ring ρ∗ ⊆ {pk1, . . . , pkn}.
The adversary is furthermore allowed to make adaptive signing queries on a message mi and ring ρi, as
long as the ring contains at least one of the supplied key from the set {pk1, . . . , pkn} (and hence the
experiment knows the corresponding secret key). This is also referred to as “insider security” in [BKM09]
since it models an adversary who is part of a ring for which an honest signature is created. This is the
strongest unforgeability notion for ring signatures considered in [BKM09]. We will further consider the
weaker notion of one-per-message unforgeability, where the adversary is only allowed to make a single
signing query for each message/ring pair (mi, ρi). The two notions unforgeability under chosen ring attacks
and one-per-message unforgeability under chosen ring attacks are formalised through the games
(n, κ,QSgn)-UF-CRARSig(A) and (n, κ,QSgn)-UF-CRA1RSig(A) depicted in Figure 3, where n is the

4 Standard R-ISIS is usually defined with respect to uniform ring elements hi. But under the NTRU assumption,
hi generated using TpdGen are computationally indistinguishable from uniform ones.

9

number of users, κ the maximal ring size, and QSgn is an upper bound on the signing queries. We define the
advantage functions of adversary A as

Adv
(n,κ,QSgn)-UF-CRA
RSig,A := Pr[(n, κ,QSgn)-UF-CRARSig(A)⇒ 1],

Adv
(n,κ,QSgn)-UF-CRA1
RSig,A := Pr[(n, κ,QSgn)-UF-CRA1RSig(A)⇒ 1].

Games (n, κ,QSgn)-UF-CRARSig(A) and (n, κ,QSgn)-UF-CRA1RSig(A)

01 Q ← ∅
02 par $← Stp(κ)

03 for i ∈ [n]

04 (ski, pki)
$← Gen

05 (σ⋆, ρ⋆,m⋆) $← ASgn(par, pk1, . . . , pkn)

06 return Jρ⋆ ⊆ {pk1, . . . , pkn} ∧ Ver(σ⋆, ρ⋆,m⋆) = 1 ∧ (ρ⋆,m⋆) /∈ QK

Oracle Sgn(i ∈ [n], ρ,m)

07 if pki /∈ ρ
08 return ⊥
09 if (ρ,m) ∈ Q //UF-CRA1

10 return ⊥ //UF-CRA1

11 σ $← Sgn(ski, ρ,m)

12 Q ← Q∪ {(ρ,m)}
13 return σ

Figure 3. Games defining UF-CRA and UF-CRA1 for a ring signature scheme RSig and adversary A.

Anonymity. In our study of ring signatures, we focus on the strongest possible notion of anonymity, namely
that of anonymity under full key exposures from [BKM09]. This means, that it is indistinguishable which
participant of a ring signed a message even if all the secret keys are exposed. A shortcoming of the notion
from [BKM09] is that the adversary is two-staged. In particular, given the public keys and a signing oracle
the adversary first chooses a message and two indices. After that, they get the challenge signature together
with the secret keys and have to guess who signed the message. Note that the adversary must choose message
and attacked users before knowing the secret keys. This can be strengthened by providing the secret keys in
the beginning of the game. We provide a counterexample in Appendix B.1 to illustrate the discrepancy.

Furthermore, this approach gives a natural extension to a multi-challenge notion implied via a hybrid
argument which is not directly possible for the notion from [BKM09]. The multi-challenge notion is
particularly important for the use in larger protocols, for example in Section 4. We formalise
multi-challenge anonymity under full key exposures of a ring signature RSig via the game
(n, κ,QChl)-MC-AnoRSig(A) for and adversary A, depicted in Figure 4. We define the advantage as

Adv
(n,κ,QChl)-MC-Ano
RSig,A :=

∣∣∣∣Pr[(n, κ,QChl)-MC-AnoRSig(A)⇒ 1]− 1

2

∣∣∣∣.

Game (n, κ,QChl)-MC-AnoRSig(A)

01 par $← Stp(κ)

02 for i ∈ [n]

03 (ski, pki)
$← Gen

04 b $← {0, 1}
05 b′ $← AChl(par, (sk1, pk1), . . . , (skn, pkn))

06 return Jb = b′K

Oracle Chl(i0 ∈ [n], i1 ∈ [n], ρ,m)

07 if (ρ ⊆ {pk1, . . . , pkn}) ∧ (pki0 ∈ ρ) ∧ (pki1 ∈ ρ)
08 σ $← Sgn(skib , ρ,m)

09 return σ

10 else

11 return ⊥

Figure 4. Game defining MC-Ano for a ring signature scheme RSig with adversary A making at most QChl queries
to Chl.

10

3.2 A New Ring Signature Construction from Lattices

Construction. Our ring signature construction Gandalf is defined over Rq and instantiated with a
trapdoor generation algorithm TpdGen and a preimage sampler PreSmp, detailed in Figure 5. The setup
algorithm Stp takes as input the maximum ring size κ and outputs the system parameters. The function
ψ sets an appropriate tailcut rate τ based on κ. An explicit ψ is presented in the instantiation section
in Table 3. Note that we do not explicitly mention other general parameters in the construction such as the
modulus q, the standard deviation s, or the quality of the trapdoor α. We refer to Table 2 for an overview
of all relevant parameters and to Section 5 for a concrete parameter selection. Line 12 verifies whether the
signer is actually part of the ring they intend to sign for.

Stp(κ)

01 τ := ψ(κ)

02 β := τ · s ·
√

(κ+ 1)N

03 par := (κ, τ, β) ∈ N× R× R
04 return par

Gen

05 (f , g,h) $← TpdGen(q, α)

06 sk := (f , g) ∈ Rq ×Rq

07 pk := h ∈ Rq

08 return (sk, pk)

Sgn(sk, ρ,m)

09 parse sk → (f , g)

10 parse ρ→ (h1, . . . ,hk)

11 require k ≤ κ
12 require ∃ j ∈ [k] : µ(sk) = hj

13 for i ∈ [k] \ {j}
14 ui

$← DZN ,s,0

15 ci := ui ∗ hi ∈ Rq

16 h := H(m, ρ) ∈ Rq

17 cj := h−
∑

i∈[k]\{j} ci

18 (uj ,v)
$← PreSmp(Bf ,g, s, cj)

19 σ := (u1, . . . ,uk) ∈ Rk
q

20 return σ

Ver(σ, ρ,m)

21 parse σ → (u1, . . . ,uk)

22 parse ρ→ {h1, . . . ,hk}
23 v := H(m, ρ)−

∑
i∈[k] ui∗hi

24 if ∥(u1, . . . ,uk,v)∥2 ≤ β
25 return 1

26 else

27 return 0

Figure 5. Construction of ring signature scheme Gandalf[TpdGen,PreSmp] := (Stp,Gen, Sgn,Ver) with hash
function H : {0, 1}∗ →Rq.

Lemma 7 (Correctness). The ring signature scheme Gandalf depicted in Figure 5 is δ(κ)-correct where

δ(κ) = τ (κ+1)N · e
(κ+1)N

2 (1−τ2),

with τ > 1.

Proof. For i ∈ [k] and k ≤ κ let (ski, pki) ∈ sup(Gen), ρ := {pk1, . . . , pkk}, and τ > 1. Applying Lemma 1
gives

Pr[Ver(Sgn(ski, ρ,m), ρ,m) ̸= 1] = Pr[∥(u1, . . . ,uk,v)∥2 > β]

= Pr[∥(u1, . . . ,uk,v)∥2 > τs
√
(κ+ 1) ·N]

< τ (κ+1)N · e
(κ+1)N

2 (1−τ2).

■

Anonymity. In this section we show the MC-Ano of Gandalf. Note that anonymity is independent of
the maximum ring size κ.

Theorem 1 (Gandalf MC-Ano). For any adversary A, making at most QChl challenge queries, against
the MC-Ano security of Gandalf, depicted in Figure 5, it holds

Adv
(n,κ,QChl)-MC-Ano
Gandalf,A ≤ QChl · δKL.

11

The proof of Theorem 1 can be found in Appendix B.1.

Unforgeability. We show that Gandalf fulfills UF-CRA1 security, i.e. one-per-message unforgeability
against chosen ring attacks. However, with an additional salt we can enhance the security of the signature
scheme to achieve full UF-CRA security for the cost of increasing the signature size by the size of the salt.
For a security level of 128 bits, this amounts to a salt of 24 byte (see Section 5). A generic transformation
is shown in Appendix B.2.

Theorem 2 (R-LWE + R-ISIS⇒ Gandalf UF-CRA1). Let TpdGen be a trapdoor generation algorithm
and PreSmp a preimage sampling algorithm. Then for any adversary A, making at most QSgn signing queries
and QH random oracle queries, against the UF-CRA1 security of Gandalf[TpdGen,PreSmp] (Figure 5)
in the random oracle model, there exist adversaries B against R-LWE and C against R-ISIS such that

Adv
(n,κ,QSgn)-UF-CRA1

Gandalf[TpdGen,PreSmp],A ≤ QH ·AdvR-LWE
m=1,q,α,s,B + c ·QH ·AdvR-ISIS

m=n,q,α,β,C +
c

|Rq|
,

for c =
√
2 ·R2λ(PreSmp || D)QSgn and β = τs

√
(κ+ 1)N .

Proof. Consider the sequence of games depicted in Figure 6.

Game G0. This is the UF-CRA1 game for RSig so by definition

Pr[GA
0 ⇒ 1] = Adv

(n,κ,QSgn)-UF-CRA1
Gandalf,A .

Game G1. In this game, the output of the random oracle is changed if there is at least one honest public
key in ring ρ. The smallest index of such an honest user is denoted by i∗ (see Line 21). Instead of drawing
a uniform element from Rq, we sample Gaussian distributed values u from Rq for each element in ρ and
compute c := u∗h′. For user with index i∗ in the ring, i.e. for public key h′i∗ , we sample an additional element
v from the same distribution and instead compute c := u∗h′i∗ +v to represent an honest signer and making
the RO output uniformly random. Then we set the output of the random oracle to be h :=

∑
i∈[k] ci. Note

that this is basically the signing procedure without using the knowledge of any signing key but programming
the random oracle. Further, we store the preimage (u1, . . . ,uk,v) together with ring and message in set P
for later use.

Claim 1: There exists a PPT adversary B against R-LWE1 ,q,α,s such that∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QH ·AdvR-LWE
1,q,α,s,B.

Proof. In Game G0, the output of the random oracle is h $← Rq. In the first step, we compute h as
h←

∑
i∈[k]\{i∗} ci+ci∗ where the ci are computed as in Game G1 except for ci∗ which is chosen uniformly at

random from Rq. This change is perfectly indistinguishable. Next, we replace ci∗
$← Rq by ci∗ ← u ∗h′i∗ +v

with (u,v) $← DZ2N ,s,0. This change can be reduced to R-LWE with one sample (m = 1). Applying this
change QH times results in Game G1 using a hybrid argument. ■

Game G2. In this game, the signing oracle is simulated without using the signing key. To this end, the stored
preimages from the random oracle query are used as a signature (Line 45).

Claim 2:
Pr[GA

1 ⇒ 1] ≤
√
2 ·R2λ(PreSmp || D)QSgn · Pr[GA

2 ⇒ 1].

Proof. The difference is that the output of the preimage sampler uj ,vj is now replaced by a random value
drawn from distribution DZ2N ,s,0 conditioned on the ring equation, i.e. uj ∗ hj + vj = h −

∑
ℓ∈[k]\{j} cℓ.

According to [Pre17, Sec. 3.3], we get

Pr[GA
1 ⇒ 1]

Pr[GA
2 ⇒ 1]

≤
√
2 ·R2λ(P || Q)QSgn

12

G0 − G3

01 Q,H,P ← ∅
02 par $← Stp(κ)

03 for i ∈ [n]

04 (fi, gi,hi)
$← TpdGen

05 ski := (fi, gi)

06 pki := hi

07 (σ⋆, ρ⋆,m⋆) $← ASgn,H(par, pk1, . . . , pkn)

08 parse σ⋆ → (u⋆
1, . . . ,u

⋆
k)

09 parse ρ⋆ → {h⋆
1, . . . ,h

⋆
k}

10 for i ∈ [k]

11 c⋆i := u⋆
i ∗ h⋆

i

12 if (·, ρ⋆,m⋆) /∈ H //G3

13 abort //G3

14 v⋆ := H(m⋆, ρ⋆)−
∑

i∈[k] c
⋆
i

15 return Jρ⋆ ⊆ {pk1, . . . , pkn} ∧ ∥(u⋆
1, . . . ,u

⋆
k,v

⋆)∥2 ≤ β ∧ (ρ⋆,m⋆) /∈ QK

H(m, ρ)

16 if ∃ h : (h,m, ρ) ∈ H
17 return h

18 h $←Rq

19 parse ρ→ {h′
1, . . . ,h

′
k} //G1 − G3

20 if ρ ∩ {h1, . . . ,hn} ≠ ∅ //G1 − G3

21 i∗ := min{i | h′
i ∈ {h1, . . . ,hn}} //G1 − G3

22 (ui∗ ,v)
$← DZ2N ,s //G1 − G3

23 ci∗ := ui∗ ∗ h′
i∗ + v //G1 − G3

24 for i ∈ [k] \ {i∗} //G1 − G3

25 ui
$← DZN ,s //G1 − G3

26 ci := ui ∗ h′
i //G1 − G3

27 P ← P ∪ {(m, ρ,u1, . . . ,uk,v)} //G1 − G3

28 h :=
∑

i∈[k] ci //G1 − G3

29 H ← H∪ {(h,m, ρ)}
30 return h

Oracle Sgn(i ∈ [n], ρ,m)

31 if pki /∈ ρ
32 return ⊥
33 if (ρ,m) ∈ Q
34 return ⊥
35 parse ρ→ (h′

1, . . . ,h
′
k)

36 require k ≤ κ
37 require ∃ j ∈ [k] : hi = h′

j

38 h := H(m, ρ)

39 for ℓ ∈ [k] \ {j}
40 uℓ

$← DZN ,s,0

41 cℓ := uℓ ∗ h′
ℓ

42 cj := h−
∑

ℓ∈[k]\{j} cℓ

43 (uj ,vj)
$← PreSmp(Bfi,gi , s, cj)

44 p← P : p = (m, ρ, . . .) //G2 − G3

45 parse p→ (m, ρ,u1, . . . ,uk,v) //G2 − G3

46 σ := (u1, . . . ,uk,v)

47 Q ← Q∪ {(ρ,m)}
48 return σ

Figure 6. Games G0 − G3 for the proof of Theorem 2.

since the only difference between G1 and G2 is the access to the underlying distributions of PreSmp/D and
there are at most QSgn queries to these distributions. The preimage can be used independent of signer i since
the distribution of the u’s as well as v is always the same. The procedure only works if there is at least one
honest user in the ring which must be satisfied in the signing oracle, by definition of a ring signature. Note
that the signature is now the same for any fixed pair (ρ,m) but this is not observable for a one-per-message
adversary. ■

13

Game G3. Game G3 aborts if the adversary did not query the random oracle on the forgery, i.e. did not issue
a query H(ρ⋆,m⋆).

Claim 3: ∣∣Pr [GA
2 ⇒ 1

]
− Pr

[
GA
3 ⇒ 1

]∣∣ ≤ 1

|Rq|
.

Proof. If the adversary does not query the RO on the forgery parameters ρ⋆ and m⋆, the chances of winning
the game are at most 1

|Rq| since Rq is the output space of the RO. Moreover, the signing oracle does not

reveal any information of the RO to the adversary since the same ring and message cannot be used for a
valid forgery. ■

Reduction to G3. To upper bound the winning probability of Game G3, we show that there exists an
adversary C against R-ISIS.

Claim 4: There exists a PPT adversary C against R-ISISn,q,α,β such that

Pr[GA
3 ⇒ 1] ≤ QH ·AdvR-ISIS

m=n,q,α,β,C .

Proof. Adversary C is formally constructed in Figure 7. They guess a random oracle query in the beginning
of the game (Line 02) and embed the ISIS challenge in this query to the random oracle in Line 43. However,
we only consider explicit queries to the RO and no implicit queries from the singing oracle (see condition
in Line 40). If the guess is correct, reduction C returns an ISIS solution; this happens with probability 1

QH
.

Then solution (û1,ûn,v
⋆) is correct since

h1 ∗ û1 + . . .+ hn ∗ ûn + v⋆ = H(m⋆, ρ⋆) = c

due to Line 13, Line 16, and the fact that all the u’s are 0 for all the h’s not being in ρ⋆ (Line 24). Taking
the guessing probability into account includes the abort in Line 19 because the abort only occurs if the guess
was wrong: if the guess was correct, the adversary cannot query the signing oracle on the challenge message
and win the game. Further, it holds ∥(u⋆

1, . . . ,u
⋆
k,v

⋆)∥2 ≤ β because A returned a valid signature (Line 17).
This implies ∥(û1, . . . , ûn,v

⋆)∥2 ≤ β since all the u’s not occurring in (u⋆
1, . . . ,u

⋆
k) were set to 0 (Line 24).

■

Collecting the terms, we obtain the stated bound of the theorem. ■

4 Deniable AKEM

4.1 Syntax and Security

Definition 11 (Authenticated Key Encapsulation Mechanism). An authenticated key encapsulation
mechanism AKEM is defined as a tuple AKEM := (Gen,Enc,Dec) of the following PPT algorithms.

(sk, pk) $← Gen: The probabilistic generation algorithm Gen returns a secret key sk and a corresponding
public key pk. We implicitly assume the existence of a shared key space K.

(c, k) $← Enc(sks, pkr): Given a sender’s secret key sks and a receiver’s public key pkr, the probabilistic
encapsulation algorithm Enc returns a ciphertext c and a shared key k ∈ K.

k ← Dec(pks, skr, c): Given a sender’s public key pks, a receiver’s secret key skr, and a ciphertext c, the
deterministic decapsulation algorithm Dec returns a shared key k ∈ K, or a failure symbol ⊥.

The correctness error δ is defined as

δ := Pr

Dec(pks, skr, c) ̸= k

∣∣∣∣∣∣
(sks, pks)

$← Gen
(skr, pkr)

$← Gen
(c, k) $← Enc(sks, pkr)

 .
14

C(h1, . . . ,hn, c)

01 ℓ← 0

02 ℓ∗ $← [QH] // guess RO query

03 Q,H,P ← ∅
04 par $← Stp(κ)

05 for i ∈ [n]

06 (fi, gi,hi)
$← TpdGen

07 ski := (fi, gi)

08 pki := hi

09 (σ⋆, ρ⋆,m⋆) $← ASgn,H(par, pk1, . . . , pkn)

10 parse σ⋆ → (u⋆
1, . . . ,u

⋆
k)

11 parse ρ⋆ → {h⋆
1, . . . ,h

⋆
k}

12 for i ∈ [k]

13 c⋆i := u⋆
i ∗ h⋆

i

14 if (·, ρ⋆,m⋆) /∈ H
15 abort

16 v⋆ := H(m⋆, ρ⋆)−
∑

i∈[k] c
⋆
i

17 if Jρ⋆ ⊆ {pk1, . . . , pkn} ∧ ∥(u⋆
1, . . . ,u

⋆
k,v

⋆)∥2 ≤ β ∧ (ρ⋆,m⋆) /∈ QK
18 if H(m⋆, ρ⋆) ̸= c

19 return ⊥ //wrong guess

20 for i ∈ [n]

21 if ∃ j : hi = h⋆
j

22 ûi := u⋆
j

23 else

24 ûi := 0

25 return (û1,ûn,v
⋆) // return ISIS solution

26 return ⊥

H(m, ρ)

27 if ∃ h : (h,m, ρ) ∈ H
28 return h

29 h $←Rq

30 parse ρ→ {h′
1, . . . ,h

′
k}

31 if ρ ∩ {h1, . . . ,hn} ≠ ∅
32 i∗ := min{i | h′

i ∈ {h1, . . . ,hn}}
33 (ui∗ ,v)

$← DZ2N ,s

34 ci∗ := ui∗ ∗ h′
i∗ + v

35 for i ∈ [k] \ {i∗}
36 ui

$← DZN ,s

37 ci := ui ∗ h′
i

38 P ← P ∪ {(m, ρ,u1, . . . ,uk,v)}
39 h :=

∑
i∈[k] ci

40 if Query is not from Sgn

41 ℓ := ℓ+ 1 // count direct queries

42 if ℓ = ℓ∗

43 h := c // embed ISIS challenge

44 H ← H∪ {(h,m, ρ)}
45 return h

Oracle Sgn(i ∈ [n], ρ,m)

46 if pki /∈ ρ
47 return ⊥
48 if (ρ,m) ∈ Q
49 return ⊥
50 parse ρ→ (h′

1, . . . ,h
′
k)

51 require k ≤ κ
52 require ∃ j ∈ [k] : hi = h′

j

53 h := H(m, ρ)

54 for ℓ ∈ [k] \ {j}
55 uℓ

$← DZN ,s,0

56 cℓ := uℓ ∗ h′
ℓ

57 cj := h−
∑

ℓ∈[k]\{j} cℓ

58 (uj ,vj)
$← PreSmp(Bfi,gi , s, cj)

59 p← P : p = (m, ρ, . . .)

60 parse p→ (m, ρ,u1, . . . ,uk,v)

61 σ := (u1, . . . ,uk,v)

62 Q ← Q∪ {(ρ,m)}
63 return σ

Figure 7. Adversary C against R-ISIS simulating G3 for adversary A for the proof of Theorem 2.

Without loss of generality we assume the existence of an efficiently computable function µ such that for
all (sk, pk) ∈ Gen it holds µ(sk) = pk.

Confidentiality. We consider the strongest possible notion of CCA security for an AKEM, in particular
that of insider security [AJKL23]. The details have been deferred to Appendix C.

Authenticity. We explore two notions of authenticity, outsider and insider authenticity. The outsider
notion for AKEMs is taken from [ABH+21], the insider notion we adapt from the outsider notion. The
difference is in the challenge oracle, i.e. the oracle for which the adversary has to decide if they get the

15

real decapsulation or a randomly sampled key. In the outsider setting, an adversary can choose an arbitrary
sender’s public key along with an honest receiver. In contrast, an insider adversary can choose a receiver’s
secret key by themselves which models a scenario in which it should be hard to distinguish between a real and
a random decapsulation even for the designated receiver party. Note that the sender’s key cannot be chosen
by the adversary because otherwise distinguishing becomes trivial. While insider authenticity implies outsider
authenticity [DZ10], we focus on the latter because it remains achievable when also considering deniability.
We formalise the two notions via the games (n, QEnc, QChl)-Out-AutAKEM(A) (for outsider authenticity)
and (n, QEnc, QDec, QChl)-Ins-AutAKEM(A) (for insider authenticity) depicted in Figure 8 and define the
advantage of an adversary A as

Adv
(n,QEnc,QChl)-Out-Aut
AKEM,A :=

∣∣∣∣Pr [(n, QEnc, QChl)-Out-AutAKEM(A)⇒ 1]− 1

2

∣∣∣∣ and
Adv

(n,QEnc,QDec,QChl)-Ins-Aut
AKEM,A :=

∣∣∣∣Pr [(n, QEnc, QDec, QChl)-Ins-AutAKEM(A)⇒ 1]− 1

2

∣∣∣∣.

Games (n, QEnc, QChl)-Out-AutAKEM(A)
(n, QEnc, QDec, QChl)-Ins-AutAKEM(A)

01 for i ∈ [n]

02 (ski, pki)
$← Gen

03 D ← ∅
04 b $← {0, 1}
05 b′ $← AEncps,Chall(pk1, . . . , pkn) //Out-Aut

06 b′ $← AEncps,Decps,Chall(pk1, . . . , pkn) // Ins-Aut

07 return Jb = b′K

Oracle Chall(pk, r ∈ [n], c) //Out-Aut

08 if ∃ k : (pk, pkr, c, k) ∈ D
09 return k

10 k ← Dec(pk, skr, c)

11 if b = 0

12 continue

13 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
14 k $← K
15 D ← D ∪ {(pk, pkr, c, k)}
16 return k

Oracle Encps(s ∈ [n], pk)

17 (c, k) $← Enc(sks, pk)

18 D ← D ∪ {(pks, pk, c, k)}
19 return (c, k)

Oracle Decps(pk, r ∈ [n], c) // Ins-Aut

20 k ← Dec(pk, skr, c)

21 return k

Oracle Chall(s ∈ [n], sk, c) // Ins-Aut

22 if ∃ k : (pks, µ(sk), c, k) ∈ D
23 return k

24 k ← Dec(pks, sk, c)

25 if b = 0

26 continue

27 if b = 1 ∧ k ̸= ⊥
28 k $← K
29 D ← D ∪ {(pks, µ(sk), c, k)}
30 return k

Figure 8. Games defining Out-Aut and Ins-Aut for an authenticated key encapsulation mechanism AKEM with
adversary A making at most QEnc queries to Encps, at most QChl queries to Chall, and at most QDec queries to Decps

(for Ins-Aut).

4.2 Deniability for AKEMs

Deniability aims to model a scenario where a sender sends a potentially incriminating message to a receiver.
The aim is to prevent a third party, the judge (modelled as an adversary) from conclusively attributing,
potentially incriminating, messages to a particular sender. This means that authentication of the sender
should be non-transferable, allowing the sender to plausibly deny their involvement.

More formally, we assume the existence of a simulator Sim, which is capable of generating a ciphertext c
and key k that is indistinguishable from those generated by the encapsulation Enc procedure. Such a simulator

16

enables the sender to plausibly deny sending specific messages, as an adversary could have generated the
same messages using the simulator. Depending on the scenario, the simulator may have the secret key of
the receiver in addition to the public keys of the involved parties. This case represents the setting of a
potentially dishonest receiver which means that the receiver could have potentially forged the ciphertext
such that it looks like it came from the sender. If the simulator does not have access to the receiver’s secret
key, we consider an honest receiver and the judge knows about this fact. Note that this distinguishes the
two settings and security in the dishonest receiver setting does not imply security in the honest receiver
setting. 5 However, security in the honest setting implies security in the dishonest since the capabilities of
the simulator increases and the rest stays the same.

Furthermore, different notions of deniability exist, varying in strength depending on the capabilities of
the judge, modelled as the adversary A, and which secret keys are accessible to the judge. This results in
four distinct notions of deniability (for each setting of honest and dishonest receivers).

An overview of the deniability notions is presented in Table 1. For each column of the table, we observe
that the deniability notion at the bottom is stronger than the one above it, since the simulator is give the same
capabilities but judge A has more information (the secret key of the sender). For the same reason, in both the
honest and dishonest receiver settings, the right column is a stronger notion than the one to the left. Further,
one field in the honest setting implies the same field in the dishonest setting. Consequently, the deniability
notion at the bottom right of each setting is the strongest [CHMR23]. However, in the honest receiver
setting, authenticity and correctness of an AKEM imply that achieving this notion is impossible [DHM+20].
Instead, the strongest achievable notion in the honest setting is one where the sender’s key is leaked while
the receiver’s does not. This shows that it is still relevant to consider the dishonest setting since the bottom
right notion of the dishonest setting is not implied by any achievable notion of the honest setting.

Table 1. Different deniability notions for an authenticated key encapsulation mechanism AKEM for honest and
dishonest receivers. Notions where sks leaks imply those where sks does not leak, and similarly for skr. The strongest
notions are marked in green, while those not achievable are marked in red.

Honest Receiver Dishonest Receiver

skr does not leak skr leaks skr does not leak skr leaks

H
o
n
es
t
S
en

d
er

sk
s
d
o
es

n
o
t
le
a
k

Sim(∅),A(∅) Sim(∅),A(skr) Sim(skr),A(∅) Sim(skr),A(skr)

sk
s
le
a
k
s

Sim(∅),A(sks) Sim(∅),A(sks, skr) Sim(skr),A(sks) Sim(skr),A(sks, skr)

=
⇒

=
⇒

=
⇒

=
⇒

=⇒ =⇒

=⇒ =⇒

While our model primarily addresses the deniability of specific messages, our definitions focus on a KEM-
like primitive that returns a key/ciphertext pair, rather than a message. However, if the denial of a common
secret (the KEM key) is possible, the same applies to messages encrypted using that key. For all our security
notions, we consider the multi-user setting. We formally define the strongest achievable notions in the honest
and dishonest receiver setting in Figure 9. For an AKEM and a simulator Sim we define deniability in the
dishonest receiver setting via game (n, QChl)-DR-Den (for dishonest receiver deniability) and in the honest
receiver setting via game (n, QChl)-HR-Den (for honest receiver deniability) depicted in Figure 9 and define

5 For example, consider implicit authentication via a NIKE. In the dishonest setting the sender can always deny
since the receiver could have created the shared key. In the honest setting, the judge knows that the receiver does
not maliciously authenticate ciphertexts to themselves. Hence, if the judge sees a valid ciphertext the sender must
have created it.

17

the advantage of adversary A as

Adv
(n,QChl)-DR-Den
AKEM,A,Sim :=

∣∣∣∣Pr[(n, QChl)-DR-DenAKEM,Sim(A)⇒ 1]− 1

2

∣∣∣∣,
Adv

(n,QChl)-HR-Den
AKEM,A,Sim :=

∣∣∣∣Pr[(n, QChl)-HR-DenAKEM,Sim(A)⇒ 1]− 1

2

∣∣∣∣.

Games (n, QChl)-DR-DenAKEM,Sim(A)
(n, QChl)-HR-DenAKEM,Sim(A)

01 R, C ← ∅
02 for i ∈ [n]

03 (ski, pki)
$← Gen

04 b $← {0, 1}
05 b′ ← ARev,Chall(pk1, . . . , pkn)

06 if R∩ C ̸= ∅ //HR-Den

07 return b $← {0, 1} //HR-Den

08 return Jb = b′K

Rev(i ∈ [n])

09 R← R∪ {i}
10 return ski

Oracle Chall(s ∈ [n], r ∈ [n])

11 C ← C ∪ {r}
12 (c, k) $← Enc(sks, pkr)

13 if b = 0

14 continue

15 if b = 1

16 (c, k) $← Sim(pks, pkr, skr) //DR-Den

17 (c, k) $← Sim(pks, pkr) //HR-Den

18 return (c, k)

Figure 9. Games defining DR-Den and HR-Den for an AKEM AKEM and a simulator Sim for adversary A where
A makes at most QChl queries to Chall.

A Note on Authenticity and Deniability. The goal of deniable authentication is to achieve both
authenticity and deniability at the same time. Recall, that for an AKEM there are two different settings
for authenticity, the weaker outsider setting and the stronger insider setting. In the outsider setting, it is
possible to achieve the strongest notions for deniability, as shown in Table 1, without losing any authenticity
guarantees. However, in the insider setting, the strongest notion cannot always be achieved. For example,
simultaneously achieving Ins-Aut security andDR-Den for an AKEM is not always possible. This limitation
stems from the inherent conflict: if the scheme is DR-Den secure, there exists a simulator such that the
judge having all the secret keys cannot distinguish the simulated output from the real output. However, such
a simulator can be used to query the challenge in the Ins-Aut game and easily distinguish the output. Note
that this attack works because the adversary in game Ins-Aut can issue challenge queries on corrupted
receivers, i.e. choose the secret key of the receiver. For the honest setting it is not clear what authenticity
notions can be achieved. We leave this as an interesting open question.

4.3 Generic Construction

In the following, we show a construction of an AKEM AKEM[KEM,RSig,SyE,H] from a KEM
KEM := (Gen,Enc,Dec), a ring signature RSig := (Stp,Gen,Sgn,Ver), a symmetric encryption scheme
SyE := (Enc,Dec), and a keyed function H. The ring signature is applied with Stp(2).

Theorem 3 (KEM IND-CCA + H PRF =⇒ AKEM Ins-CCA). Let KEM be an IND-CCA secure
key encapsulation mechanism and H a PRF, then AKEM[KEM,RSig,SyE,H] as depicted in Figure 10 is an
Ins-CCA secure authenticated key encapsulation mechanism. In particular for any Ins-CCA adversary A
against AKEM[KEM,RSig,SyE,H] there exist a IND-CCA adversary B against KEM and a PRF adversary
C against H such that

Adv
(n,QEncQDec,QCSK,QChl)-Ins-CCA
AKEM[KEM,RSig,SyE,H],A ≤ Adv

(n,QDec,QChl)-IND-CCA
KEM,B +Adv

(QChl,QDec+QChl)-PRF
H,C .

The proof of Theorem 3 can be found in Appendix C.

18

Gen

01 (ksk, kpk) $← KEM.Gen

02 (ssk, spk) $← RSig.Gen

03 sk := (ksk, ssk)

04 pk := (kpk, spk)

05 return (sk, pk)

Enc(sks, pkr)

06 parse sks → (ksks, ssks)

07 parse pkr → (kpkr, spkr)

08 (kct, kk) $← KEM.Enc(kpkr)

09 m← (kct, µ(ksks), kpkr, spkr)

10 σ′ ← RSig.Sgn(ssks, {µ(ssks), spkr},m)

11 kk → kk1||kk2
12 σ ← SyE.Enckk1(σ

′)

13 c := (kct, σ)

14 k := H(kk2, σ, µ(ssks),m)

15 return (c, k)

Dec(pks, skr, c)

16 parse pks → (kpks, spks)

17 parse skr → (kskr, sskr)

18 parse c→ (kct, σ)

19 kk ← KEM.Dec(kskr, kct)

20 kk → kk1||kk2
21 σ′ ← SyE.Deckk1(σ)

22 m← (kct, kpks, µ(kskr), µ(sskr))

23 if RSig.Ver(σ′, ρ = {spks, µ(sskr)},m) ̸= 1

24 return ⊥
25 k := H(kk2, σ, spks,m)

26 return k

Figure 10. Authenticated Key Encapsulation Mechanism AKEM[KEM,RSig,SyE,H].

Theorem 4 (KEM IND-CCA + RSig UF-CRA1 + H PRF =⇒ AKEM Out-Aut). Let KEM be an
IND-CCA secure key encapsulation mechanism, RSig an UF-CRA1 secure ring signature scheme, and H
a PRF, then AKEM[KEM,RSig,SyE,H] as depicted in Figure 10 is an Out-Aut secure authenticated key
encapsulation mechanism. In particular, for any Out-Aut adversary A against AKEM[KEM,RSig,SyE,H]
there exist a UF-CRA1 adversary B against RSig, an IND-CCA adversary C against KEM, and a PRF
adversary D against H such that

Adv
(n,QEnc,QChl)-Out-Aut
AKEM[KEM,RSig,SyE,H],A ≤ Adv

(n,2,QEnc)-UF-CRA1
RSig,B +Adv

(n,QChl,QEnc)-IND-CCA
KEM,C

+Adv
(QEnc,QEnc+QChl)-PRF
H,D +Q2

Enc · γKEM.

Proof. Consider the sequence of games depicted in Figure 11.

Game G0. This is the Out-Aut game for AKEM[KEM,RSig,SyE,H] so by definition∣∣∣∣Pr[GA
0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QDec,QChl)-Out-Aut
AKEM[KEM,RSig,SyE,H],A.

Game G1. Here, several conceptual changes are introduced.
First, the encapsulation oracle is modified to store the signing results in a set Q which contains elements

of the form ({spks, spkr},m, σ′). Here, spks and spkr (this is spk in the encapsulation oracle) represent
the signature public keys for the sender and receiver, and m denotes the message to be signed (specifically,
m = kct||kpks||kpk||spk). The challenge oracle also populates the same set Q when the sender key is honest
and the signature is valid, as indicated on Line 47 and Line 54. In the challenge oracle, we extend the
bookkeeping set D (regardless of the challenge bit b) whenever the sender key pk is honest and k ̸= ⊥,
as shown on Line 48 and Line 55. Finally, a bookkeeping set H is introduced to store the inputs and the
output of the hash invocation of H. This is done in the Encps oracle if the receiver key is honest (Line 27
and in the Chall on Line 53, i.e. in case of honest sender keys and a new signature on an old message
(({spk, spkr,m, ·) ∈ Q). As these changes are just conceptual,

Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].

19

G0 − G6

01 for i ∈ [n]

02 (kski, kpki)
$← KEM.Gen

03 (sski, spki)
$← RSig.Gen

04 ski := (kski, sski)

05 pki := (kpki, spki)

06 D,Q,Q′, EKEM,H ← ∅
07 b $← {0, 1}
08 b′ $← AEncps,Chall(pk1, . . . , pkn)

09 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

10 parse pk → (kpk, spk)

11 (kct, kk) $← KEM.Enc(kpk)

12 if kpk ∈ {kpk1, . . . , kpkm} //G4 − G6

13 kk $← KKEM //G4 − G6

14 EKEM ← EKEM ∪ {(kpk, kct, kk)} //G4 − G6

15 m← kct||kpks||kpk||spk
16 if ({spks, spk},m) ∈ Q′ //G2 − G6

17 abort //G2 − G6

18 σ′ ← RSig.Sgn(ssks, {spks, spk},m)

19 Q ← Q∪ {({spks, spk},m, σ′)} //G1 − G6

20 Q′ ← Q′ ∪ {({spks, spk},m)} //G2 − G6

21 kk → kk1||kk2
22 σ ← SyE.Enckk1(σ

′)

23 c := (kct, σ)

24 k := H(kk2, σ||spks||m)

25 if kpk ∈ {kpk1, . . . , kpkn} //G1 − G6

26 k $← K //G6

27 H ← H∪ {(k, kk2, σ, spks,m)} //G1 − G6

28 D ← D ∪ {(pks, pk, c, k)}
29 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

30 Flag← false

31 if ∃ k : (pk, pkr, c, k) ∈ D
32 return k

33 parse pk → (kpk, spk)

34 parse c→ (kct, σ)

35 m← kct||kpk||kpkr||spkr
36 kk ← KEM.Dec(kskr, kct)

37 if ∃ kk′ : (kpkr, kct, kk′) ∈ EKEM //G4 − G6

38 kk ← kk′ //G4 − G6

39 Flag← true //G4 − G6

40 kk → kk1||kk2
41 k ← H(kk2, σ||spk||m)

42 σ′ ← SyE.Deckk1(σ)

43 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

44 k ← ⊥
45 elseif pk ∈ {pk1, . . . , pkn}∧({spk, spkr},m, ·) /∈ Q //G1−G6

46 abort //G3 − G6

47 Q ← Q∪ {({spk, spkr},m, σ′)} //G1 − G6

48 D ← D ∪ {(pk, pkr, c, k)} //G1 − G6

49 elseif pk ∈ {pk1, . . . , pkn} //G1 − G6

50 if ∃ k′ : (k′, kk2, σ, spk,m) ∈ H ∪HE //G5 − G6

51 abort //G5 − G6

52 k $← K //G6

53 H ← H∪ {(k, kk2, σ, spk,m)} //G1 − G6

54 Q ← Q∪ {({spk, spkr},m, σ′)} //G1 − G6

55 D ← D ∪ {(pk, pkr, c, k)} //G1 − G6

56 if b = 0

57 continue

58 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
59 k $← K
60 D ← D ∪ {(pk, pkr, c, k)}
61 return k

Figure 11. Games G0 − G6 for the proof of Theorem 4.

Game G2. In G2, the game aborts in the encapsulation oracle if a ring/message pair {spks, spk}/m is used
for the signature procedure which was used before. To this end, we store the inputs to the signing procedure
in a set Q′ (Line 20) and abort the game if the same query occurs again (Line 17).

Claim 5: ∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ Q2
Enc · γKEM.

Proof. For every query to the encapsulation oracle Encps, a new KEM ciphertext kct is created. Since kct is
part of the message m to be signed, the probability that a particular message occurs is at most γKEM. Set Q′
contains at most QEnc elements and the event can happen at most QEnc times. This yields the upper bound
of the claim. ■

20

Game G3. In G3, the game aborts if there is a query to the challenge oracle for which the signature verifies,
the sender’s public keys are honest, and there was no previous signature on the same ring and same message,
i.e. if the oracle reaches Line 46.

Claim 6: There exists a PPT adversary B against the UF-CRA1 security of RSig, such that∣∣Pr [GA
2 ⇒ 1

]
− Pr

[
GA
3 ⇒ 1

]∣∣ ≤ Adv
(n,2,QEnc)-UF-CRA1
RSig,B .

Proof. Adversary B is formally constructed in Figure 12. The number of signing queries equals the number
of queries to Encps and the forgery returned in Line 37 fulfils the winning condition for the unforgeability
game of B. The ring is a subring of honest users since we check for honest senders in Line 36 and we do
not query the signing oracle on the same combination of ring and message twice due to the abort in Line 13
which was introduced in Game G2. Moreover, the signature verifies due to the check in Line 34 and the
message ring combination was no input of a previous signing query which is check in Line 36.

BSgn(par, spk1, . . . , spkn)

01 for i ∈ [n]

02 (kski, kpki)
$← KEM.Gen

03 ski := (kski,⊥)
04 pki := (kpki, spki)

05 D,Q,Q′, EKEM,H ← ∅
06 b $← {0, 1}
07 b′ $← AEncps,Chall(pk1, . . . , pkn)

08 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

09 parse pk → (kpk, spk)

10 (kct, kk) $← KEM.Enc(kpk)

11 m← kct||kpks||kpk||spk
12 if ({spks, spk},m) ∈ Q′

13 abort

14 σ′ ← Sgn(s, {spks, spk},m) // signing query

15 Q ← Q∪ {({spks, spk},m, σ′)}
16 Q′ ← Q′ ∪ {({spks, spk},m)}
17 kk → kk1||kk2
18 σ ← SyE.Enckk1(σ

′)

19 c := (kct, σ)

20 k := H(kk2, σ||spks||m)

21 if kpk ∈ {kpk1, . . . , kpkn}
22 H ← H∪ {(k, kk2, σ, spks,m)}
23 D ← D ∪ {(pks, pk, c, k)}
24 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

25 if ∃ k : (pk, pkr, c, k) ∈ D
26 return k

27 parse pk → (kpk, spk)

28 parse c→ (kct, σ)

29 m← kct||kpk||kpkr||spkr
30 kk ← KEM.Dec(kskr, kct)

31 kk → kk1||kk2
32 k ← H(kk2, σ||spk||m)

33 σ′ ← SyE.Deckk1(σ)

34 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

35 k ← ⊥
36 elseif pk ∈ {pk1, . . . , pkn} ∧ ({spk, spkr},m, ·) /∈ Q
37 return (σ′, {spk, spkr},m) // return forgery

38 elseif pk ∈ {pk1, . . . , pkn}
39 H ← H∪ {(k, kk2, σ, spk,m)}
40 Q ← Q∪ {({spk, spkr},m, σ′)}
41 D ← D ∪ {(pk, pkr, c, k)}
42 if b = 0

43 continue

44 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
45 k $← K
46 D ← D ∪ {(pk, pkr, c, k)}
47 return k

Figure 12. Adversary B against UF-CRA1 security of RSig having access to oracle Sgn.

■

Game G4. In the encapsulation oracle Encps, the KEM key kk is replaced with a uniformly random value
from the KEM key space KKEM if the receiver key is honest, i.e. kpk ∈ {kpk1, . . . , kpkn}. Further, it is stored

21

alongside the receiver’s key and ciphertext in the set EKEM and the decapsulation oracle is changed to check
for a corresponding element in EKEM and the actual KEM key kk is replaced by the one stored in EKEM for
consistency. In this case, we also set Flag to true.

Claim 7: There exists a PPT adversary C against the IND-CCA security of KEM, such that∣∣Pr [GA
3 ⇒ 1

]
− Pr

[
GA
4 ⇒ 1

]∣∣ ≤ Adv
(n,QChl,QEnc)-IND-CCA
KEM,C .

Proof. Adversary C is formally constructed in Figure 13. In the real case, C is simulating Game G3, in the
random case, they simulate G4. Adversary C needs at most QChl queries to the decapsulation oracle and at
most QEnc queries to the challenge oracle.

CDec,Chl(kpk1, . . . , kpkn)

01 for i ∈ [n]

02 (sski, spki)
$← RSig.Gen

03 ski := (⊥, sski)
04 pki := (kpki, spki)

05 D,Q,Q′, EKEM,H ← ∅
06 b $← {0, 1}
07 b′ $← AEncps,Chall(pk1, . . . , pkn)

08 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

09 parse pk → (kpk, spk)

10 (kct, kk) $← KEM.Enc(kpk)

11 if ∃ i : kpk = kpki

12 kk ← Chl(i) // challenge query

13 m← kct||kpks||kpk||spk
14 if ({spks, spk},m) ∈ Q′

15 abort

16 σ′ ← RSig.Sgn(ssks, {spks, spk},m)

17 Q ← Q∪ {({spks, spk},m, σ′)}
18 Q′ ← Q′ ∪ {({spks, spk},m)}
19 kk → kk1||kk2
20 σ ← SyE.Enckk1(σ

′)

21 c := (kct, σ)

22 k := H(kk2, σ||spks||m)

23 if kpk ∈ {kpk1, . . . , kpkn}
24 H ← H∪ {(k, kk2, σ, spks,m)}
25 D ← D ∪ {(pks, pk, c, k)}
26 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

27 if ∃ k : (pk, pkr, c, k) ∈ D
28 return k

29 parse pk → (kpk, spk)

30 parse c→ (kct, σ)

31 m← kct||kpk||kpkr||spkr
32 kk ← Dec(r, kct) // decapsulation query

33 kk → kk1||kk2
34 k ← H(kk2, σ||spk||m)

35 σ′ ← SyE.Deckk1(σ)

36 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

37 k ← ⊥
38 elseif pk ∈ {pk1, . . . , pkn} ∧ ({spk, spkr},m, ·) /∈ Q
39 abort

40 Q ← Q∪ {({spk, spkr},m, σ′)}
41 D ← D ∪ {(pk, pkr, c, k)}
42 elseif pk ∈ {pk1, . . . , pkn}
43 H ← H∪ {(k, kk2, σ, spk,m)}
44 Q ← Q∪ {({spk, spkr},m, σ′)}
45 D ← D ∪ {(pk, pkr, c, k)}
46 if b = 0

47 continue

48 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
49 k $← K
50 D ← D ∪ {(pk, pkr, c, k)}
51 return k

Figure 13. Adversary C against IND-CCA security of KEM having access to oracles Dec and Chl.

■

Game G5. Game G5 aborts if there is a challenge query for which the signature verifies, the sender keys are
honest, there already exists a signature on the same ring/message pair in Q, and there already was a hash
query on H on the same inputs before, i.e. the game reaches Line 51.

22

Claim 8:

Pr[GA
4 ⇒ 1] = Pr[GA

5 ⇒ 1].

Proof. We argue that the probability of winning the games is the same by showing that the abort in Line 51
can never be reached. Assume that abort is reached which means that there is an element of the form
(·, kk2, σ, spk,m) in H where m = kct||kpk||kpkr, spkr. For each time an element is added to H, an element
is added to D. This element is determined by the element of H (except for the final AKEM key) and has the
form

((kpk, spk), (kpkr, spkr), (kct, σ), ·).

However, if such an element exists in D, the challenge oracle Chall returns in Line 32 and never reaches the
abort in Line 51. ■

Game G6. Game G6 is modified such that in the Encps oracle the AKEM key k is replaced by a uniformly
random value if the receiver is honest (Line 26). It is also replaced in the Chall oracle if the key is not ⊥
(as in Line 44), the game did not abort, and the sender key is honest (Line 52).

Claim 9: There exists a PPT adversary D against the PRF security of H such that∣∣Pr [GA
5 ⇒ 1

]
− Pr

[
GA
6 ⇒ 1

]∣∣ ≤ Adv
(QEnc,QEnc+QChl)-PRF
H,D .

Proof. Adversary D is formally constructed in Figure 14. Note that the evaluation query in Line 54 on
index ℓ̂ is well defined for the following reason. It is not possible to reach Line 54 with Flag = false: if the
algorithm reaches Line 54, it means that the condition in Line 47 which implies that there must exist an
element of the form ({spk, spkr},m, ·) in Q. This means there was a query to Encps on the same m which
equals kct||kpk||kpkr||spkr. Hence, the receiver’s KEM public key in this particular encapsulation query was
kpkr which is an honest KEM public key. However, if the encapsulation oracle was queried on an honest
receiver key, an element is added to set EKEM in Line 16 and thus Flag must be set to true in the current
Chall query.

Adversary D simulates Game G5 in their own real case of the PRF game. It remains to show that they
actually simulate G6 in the random case of the PRF game. In Game G6, the AKEM key is always random
but the evaluation oracle Eval returns the same key for the same PRF key and PRF input. However, in
oracle Encps a new index is chosen and in oracle Chall there was no previous query to the same key and
input due to the abort in Line 53.

■

Eventually, Game G6 is independent of challenge bit b since in case b = 0 the output of the challenge
oracle is either ⊥ or uniformly random for honest sender keys or otherwise the game aborts. However, case
b = 1 only triggers for keys k ̸= ⊥ and honest sender keys which makes the output indepent of the challenge
bit.

Pr[G6 ⇒ 1] =
1

2
.

Collecting all the terms yields the stated bound. ■

Theorem 5 (RSig MC-Ano =⇒ AKEM DR-Den). Let RSig be a ring signature which is multi-challenge
anonymous under full key exposure, then AKEM[KEM,RSig,SyE,H] as depicted in Figure 10 is an DR-Den
secure authenticated key encapsulation mechanism. In particular, for any DR-Den adversary A against
AKEM[KEM,RSig,SyE,H] there exists a simulator Sim and a MC-Ano adversary B against RSig such that

Adv
(n,QChl)-DR-Den
AKEM[KEM,RSig,SyE,H],A,Sim ≤ Adv

(n,QChl)-MC-Ano
RSig,B .

The proof of Theorem 5 can be found in Appendix C.

23

DEval

01 ℓ← 0

02 for i ∈ [n]

03 (kski, kpki)
$← KEM.Gen

04 (sski, spki)
$← RSig.Gen

05 ski := (kski, sski)

06 pki := (kpki, spki)

07 D,Q,Q′, EKEM,H ← ∅
08 b $← {0, 1}
09 b′ $← AEncps,Chall(pk1, . . . , pkn)

10 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

11 parse pk → (kpk, spk)

12 (kct, kk) $← KEM.Enc(kpk)

13 if kpk ∈ {kpk1, . . . , kpkm}
14 kk $← KKEM

15 ℓ← ℓ+ 1 // new index

16 EKEM ← EKEM ∪ {(kpk, kct, ℓ)} // store index

17 m← kct||kpks||kpk||spk
18 if ({spks, spk},m) ∈ Q′

19 abort

20 σ′ ← RSig.Sgn(ssks, {spks, spk},m)

21 Q ← Q∪ {({spks, spk},m, σ′)}
22 Q′ ← Q′ ∪ {({spks, spk},m)}
23 kk → kk1||kk2
24 σ ← SyE.Enckk1(σ

′)

25 c := (kct, σ)

26 k := H(kk2, σ||spks||m)

27 if kpk ∈ {kpk1, . . . , kpkn}
28 k ← Eval(ℓ, σ||spks||m) // evaluation query

29 H ← H∪ {(k, kk2, σ, spks,m)}
30 D ← D ∪ {(pks, pk, c, k)}
31 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

32 Flag← false

33 if ∃ k : (pk, pkr, c, k) ∈ D
34 return k

35 parse pk → (kpk, spk)

36 parse c→ (kct, σ)

37 m← kct||kpk||kpkr||spkr
38 kk ← KEM.Dec(kskr, kct)

39 if ∃ ℓ′ : (kpkr, kct, ℓ′) ∈ EKEM // recover index

40 ℓ̂← ℓ′

41 Flag← true

42 kk → kk1||kk2
43 k ← H(kk2, σ||spk||m)

44 σ′ ← SyE.Deckk1(σ)

45 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

46 k ← ⊥
47 elseif pk ∈ {pk1, . . . , pkn} ∧ ({spk, spkr},m, ·) /∈ Q
48 abort

49 Q ← Q∪ {({spk, spkr},m, σ′)}
50 D ← D ∪ {(pk, pkr, c, k)}
51 elseif pk ∈ {pk1, . . . , pkn}
52 if ∃ k′ : (k′, kk2, σ, spk,m) ∈ H
53 abort

54 k ← Eval(ℓ̂, σ||spk||m) // evaluation query

55 H ← H∪ {(k, kk2, σ, spk,m)}
56 Q ← Q∪ {({spk, spkr},m, σ′)}
57 D ← D ∪ {(pk, pkr, c, k)}
58 if b = 0

59 continue

60 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
61 k $← K
62 D ← D ∪ {(pk, pkr, c, k)}
63 return k

Figure 14. Adversary D against PRF security of H having access to oracle Eval.

Theorem 6 (KEM IND-CPA + SyE PRP =⇒ AKEM HR-Den). Let KEM be an IND-CPA
secure key encapsulation mechanism and SyE a symmetric encryption scheme, then AKEM[KEM,RSig,SyE,H]
as depicted in Figure 10 is a HR-Den secure authenticated key encapsulation mechanism in the honest
receiver setting. In particular, for any HR-Den adversary A against AKEM[KEM,RSig,SyE,H] there exists
a simulator Sim, a IND-CPA adversary B against KEM, and a PRP adversary C against SyE such that

Adv
(n,QChl)-HR-Den
AKEM[KEM,RSig,SyE,H],A,Sim ≤ Adv

(n,QChl)-IND-CPA
KEM,B +Adv

(QChl,QChl)-PRP
SyE,C .

The proof of Theorem 6 can be found in Appendix C.

24

Table 2. Parameter selection for ring signature scheme Gandalf.

Parameter Description Value

λ security parameter 128

QSgn maximum number of signing queries 264

N dimension of R := Z[X]/(XN + 1) 512

ϵ Smoothing parameter order 1√
QSgn·λ

δKL maximum KL-divergence of PreSmp 2ϵ

a Rényi order 2λ

Ra maximum Rényi divergence of PreSmp 1 + 2aϵ2

α quality of NTRU trapdoor 1.15

q prime modulus 12289

s standard deviation of Gaussian sampler 1
π
·
√

ln(4N(1+1/ϵ))
2

· α · √q
τ tailcut rate of signatures [1.08, 1.22]

κ maximum size of signing ring ≥ 2

|ρ| = k size of signing ring [2, κ]

β maximum norm of signatures τ · s ·
√

(κ+ 1)N

|pk| verification key size (bytes) 896

|σ| signature size (bytes) 606 · k + 24

5 Instantiations

Signature Instantiation. For Gandalf we instantiate the trapdoor generation algorithm TpdGen using
Antrag [ENS+23] and the preimage sampling algorithm PreSmp using the MitakaZ sampler [EFG+22]
that avoids floating point arithmetic. This yields our choice for ϵ which we set to 1/

√
QSgn · λ. The Antrag

signature scheme, which combines the trapdoor generation procedure from [ENS+23] and the Gaussian
sampler from [EFG+22], requires a 40 byte salt in every signature, which is needed in the hash when verifying
a signature. The remainder of a signature consists of a single ring element, with coefficients distributed
around 0 according to a discrete Gaussian distribution of standard deviation s. A näıve implementation of
the Antrag signature scheme would need 40 + ⌈log2(q)⌉ · N bytes. However, compression techniques, as
seen in Falcon and discussed in [ETWY22], offer a substantial reduction in storage requirements. Antrag
uses such techniques, resulting in signature sizes of 646 bytes, including the non-compressible 40 byte salt.
For Gandalf, only a 24 byte salt is required to amplify security (assuming a security parameter of 128 and
264 signing queries). More details can be found in Appendix B.2. Therefore, Gandalf has a total signature
size of 606 · k+24 bytes. An overview of all relevant parameters can be found in Table 2. The runtime of the
signing algorithm for Gandalf is (necessarily) linear in the size of the ring. As a rough estimate, a näıve
implementation would be more efficient than the runtime of one Falcon signing per user in the ring, as
we only require the preimage sampling to be done once for each signature. The runtime of the verification
algorithm is even more efficient as this only involves linear operations and a norm check. To obtain concrete
security estimates for Gandalf, consider an adversary’s advantage in the unforgeability game Theorem 2.
The following Lemma shows that, for our specific choice of ϵ = 1/

√
QSgn · λ, applying the Rényi divergence

results in a constant loss of at most 6 bits of security. Therefore, applying Lemma 8 to Theorem 2 yields an
overall loss of c ≤ 78.

Lemma 8 (Bounding Rényi Divergence (adapted from [Pre17, Sec. 3.3])). Assume that
Ra(PreSmp || D) ≲ 1 + 2aϵ2 for all a ∈ (1,+∞], all 0 < ϵ ≤ 1√

q·λ , and all q, λ ∈ N. Then

R2λ(PreSmp || D)q ≲ 55.

25

Proof. Setting ϵ ≤ 1√
q·λ and a = 2λ gives Ra(PreSmp || D) ≲ 1 + 4

q , which yields

R2λ(PreSmp || D)q ≲

(
1 +

4

q

)q

≤ e4.

In total we get

R2λ(PreSmp || D)q ≲ e4 ≤ 55,

which is a loss of log(e4) ≤ 6 bits in total. ■

In order to estimate the hardness of LWE and SIS, we use the Lattice-Estimator tool [APS15b,APS15a] 6.
For our parameter choices, the LWE advantage can safely be ignored, and the term c

|Rq| is approximately

2−6948. Hence, the SIS advantage dominates the security bound.
The norm bound for Gandalf is ∥(u1, . . . ,uk,v)∥2 ≤ β, with β = τ · s

√
(k + 1) ·N . This means that

that the security degrades as the ring size k increases, because the SIS instance becomes easier.
Conversely, Lemma 7 shows that correctness increases with larger ring sizes. We balance this trade-off by
setting the tailcut rate τ based on the required maximal ring size, which may vary depending on the
application. A larger τ improves correctness but only marginally reduces security. We aim for a correctness
error of at most 2−80. Thus, we choose τ to be the smallest value that meets the correctness goal while
maximising security. Our concrete parameter proposals are detailed in Table 3 up to a maximal ring size of
26, the largest value for which the signature size remains smaller than smile Figure 1. The security column
in Table 3 only shows the SIS advantage. Note that there is an additional 7-bit loss due to the Rényi
argument (Theorem 2) and the reduction is non-tight.

Deniable AKEM. We instantiate the IND-CCA secure KEM with NTRU-A from [DHK+23]. For
concrete parameters see Table 6 in Section 5. Our AKEM construction uses Gandalf with κ = 2. The
resulting scheme has ciphertexts and public keys of size 2004 and 1664 bytes, respectively. Refer to Table 4
for an overview. The computational overhead of the AKEM is not significantly impacted by the KEM
NTRU-A, as its operations are linear and its noise sampling form a centred binomial distribution is highly
efficient. The efficiency of the resulting AKEM is primarily dominated by the ring signature scheme. To
provide a comprehensive comparison of our AKEM construction with existing ones from the literature, we
present an overview in Table 5. The Diffie-Hellman AKEM (DH-AKEM), formalised in [ABH+21], is
instantiated with Curve25519. The AKEMs from [AJKL23] are black-box constructions from a KEM and a
signature and a NIKE, respectively. For a fair comparison, we instantiate construction EtStH using
NTRU-A [DHK+23] and Antrag [ENS+23]. The NIKE-AKEM is instantiated with Swoosh [GdKQ+23],
a lattice-based NIKE. For the ciphertext size and the public key size of NIKE-AKEM we only present a
lower bound since [GdKQ+23] only presents the parameters for their passive secure NIKE (without the size
of a NIZK proof). For further details on the security notions of FrodoKEX+, we refer to [CHDN+24].

Acknowledgements. The authors thank the anonymous reviewers for their valuable feedback, Guilherme
Rito for helpful discussions on deniability, and Thomas Prest for pointers to related work. Phillip Gajland was
supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC 2092 CASA - 390781972. Jonas Janneck was supported by the European Union
(ERC AdG REWORC - 101054911). Eike Kiltz was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2092 CASA - 390781972,
and by the European Union (ERC AdG REWORC - 101054911).

References

[ABB+13] Carlos Aguilar-Melchor, Slim Bettaieb, Xavier Boyen, Laurent Fousse, and Philippe Gaborit. Adapting
Lyubashevsky’s signature schemes to the ring signature setting. In Amr Youssef, Abderrahmane Nitaj,

6 Commit: f18533a

26

Table 3. Definition of function ψ(κ) for κ ∈ [2, 26] and resulting parameters. The last column shows the size of a
signature for a ring of maximum size |ρ| = k = κ. For smaller rings the signature size is correspondingly smaller.

max ring size
κ

tailcut rate
τ = ψ(κ)

correctness error
− log2 (δ(κ))

norm bound
β

security
− log2

(
AdvR-ISIS

m,q,α,β

) signature size
(in bytes)
|σ| for k = κ

2 1.2 83 6 384 142 1 244

3 1.17 81 7 372 137 1 850

4 1.16 90 8 242 133 2 456

5 1.14 83 9 029 130 3 062

6 1.13 84 9 752 128 3 668

7 1.12 82 10 426 126 4 274

8 1.12 92 11 058 124 4 880

9 1.11 86 11 656 123 5 486

10 1.11 95 12 225 121 6 092

11 1.1 86 12 769 120 6 698

12 1.1 93 13 290 119 7 304

13 1.09 81 13 792 118 7 910

14 1.09 87 14 276 117 8 516

15 1.09 93 14 744 116 9 122

16 1.09 99 15 198 115 9 728

17 1.08 83 15 639 115 10 334

18 1.08 88 16 067 114 10 940

19 1.08 92 16 485 113 11 546

20 1.08 97 16 892 112 12 152

21 1.08 101 17 289 112 12 758

22 1.07 81 17 678 111 13 364

23 1.07 85 18 058 111 13 970

24 1.07 88 18 430 111 14 576

25 1.07 92 18 795 110 15 182

26 1.07 96 19 153 109 15 788

Table 4. Schemes used for instantiating our AKEM construction. Cells marked with “—” indicate that a particular
parameter is not applicable to the scheme.

Primitive Scheme (variant) Security Assumption Model
Size (in bytes)
σ c pk

RSig Gandalf [Figure 5] UF, Ano R-NTRU, R-ISIS ROM 1 236 — 896

KEM NTRU-A [DHK+23] IND-CCA R-NTRU, R-LWE2 ROM/QROM — 768 768

AKEM AKEM [Figure 10]
Ins-Aut, Ins-CCA
HR-Den, DR-Den

R-NTRU, R-ISIS, R-LWE2 Standard — 2 004 1 664

Table 5. Comparison of different AKEMs along with their security notions and whether they are post-quantum
secure (PQ). Deniability properties marked with a “∗” have not been formally proven in the respective work.

Scheme (variant) Confidentiality Authenticity Deniability PQ
Size (in bytes)
c pk

DH-AKEM (Curve25519) [ABH+21] Ins-CCA Out-Aut DR-Den∗ ✗ 32 32

EtStH-AKEM (NTRU-A+Antrag) [AJKL23] Ins-CCA Out-Aut — ✓ 1 414 1 664

NIKE-AKEM (Swoosh7) [AJKL23] Ins-CCA Out-Aut DR-Den∗ ✓ > 221 184 > 221 184

FrodoKEX+ [CHDN+24] IND-1BatchCCA UNF-1KCA DR-Den ✓ 72 21 300

AKEM (NTRU-A + Gandalf) [Figure 10] Ins-CCA Out-Aut HR-Den & DR-Den ✓ 2 004 1 664

and Aboul Ella Hassanien, editors, AFRICACRYPT 13: 6th International Conference on Cryptology

27

Table 6. Parameter selection for key encapsulation mechanism KEM, using NTRU-A [DHK+23]. The bit security is
the same as Kyber512 [SAB+20]

Parameter Description Value

λ bit security (quantum) 118− 140
δ decryption error 2−197

q prime modulus 3329
N dim of R := Zq[X]/(XN + 1) 512
|pk| public key size (bytes) 768
|c| ciphertext size (bytes) 768

in Africa, volume 7918 of Lecture Notes in Computer Science, pages 1–25, Cairo, Egypt, June 22–24,
2013. Springer, Heidelberg, Germany. 1

[ABH+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen Riepel. Analysing
the HPKE standard. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology
– EUROCRYPT 2021, Part I, volume 12696 of Lecture Notes in Computer Science, pages 87–116,
Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany. 2, 4, 15, 26, 27

[ACL+22] Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Krishnan
Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recursively composable
- (extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, Part II, volume 13508 of Lecture Notes in Computer Science, pages 102–132, Santa
Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany. 4

[AJKL23] Joël Alwen, Jonas Janneck, Eike Kiltz, and Benjamin Lipp. The pre-shared key modes of HPKE. In
Jian Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, Part VI, volume
14443 of Lecture Notes in Computer Science, pages 329–360, Guangzhou, China, December 4–8, 2023.
Springer, Heidelberg, Germany. 2, 4, 15, 26, 27

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. 1-out-of-n signatures from a variety of keys.
In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture
Notes in Computer Science, pages 415–432, Queenstown, New Zealand, December 1–5, 2002. Springer,
Heidelberg, Germany. 1

[APS15a] Martin R. Albrecht, Rachel Player, and Sam Scott. Lattice estimator. https://github.com/malb/

lattice-estimator, 2015. Commit: f18533a19433f6fb1d9fb396006f462adc6b8ad3. 26
[APS15b] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning with errors.

Journal of Mathematical Cryptology, 9(3):169–203, 2015. 26
[Ban93] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische

Annalen, 296(1):625–635, December 1993. 7
[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp, and Christopher A. Wood. Hybrid Public

Key Encryption. RFC 9180, February 2022. 2, 4
[BBR+23] Richard Barnes, Benjamin Beurdouche, Raphael Robert, Jon Millican, Emad Omara, and Katriel Cohn-

Gordon. The Messaging Layer Security (MLS) Protocol. RFC 9420, July 2023. 2
[BCG23] David Balbás, Daniel Collins, and Phillip Gajland. WhatsUpp with sender keys? Analysis,

improvements and security proofs. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology
– ASIACRYPT 2023, Part V, volume 14442 of Lecture Notes in Computer Science, pages 307–341,
Guangzhou, China, December 4–8, 2023. Springer, Heidelberg, Germany. 4

[BFG+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila. Towards post-
quantum security for Signal’s X3DH handshake. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn, editors, SAC 2020: 27th Annual International Workshop on Selected Areas in Cryptography,
volume 12804 of Lecture Notes in Computer Science, pages 404–430, Halifax, NS, Canada (Virtual
Event), October 21-23, 2020. Springer, Heidelberg, Germany. 4

[BFG+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila. Post-quantum
asynchronous deniable key exchange and the Signal handshake. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022: 25th International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 13178 of Lecture Notes in Computer Science, pages 3–34,
Virtual Event, March 8–11, 2022. Springer, Heidelberg, Germany. 2, 4, 35

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003,

28

https://github.com/malb/lattice-estimator
https://github.com/malb/lattice-estimator

volume 2656 of Lecture Notes in Computer Science, pages 416–432, Warsaw, Poland, May 4–8, 2003.
Springer, Heidelberg, Germany. 1

[BK10] Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signatures, ring signatures and
identity based encryption in the standard model. Cryptology ePrint Archive, Report 2010/086, 2010.
https://eprint.iacr.org/2010/086. 1, 3

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of
Cryptography Conference, volume 3876 of Lecture Notes in Computer Science, pages 60–79, New York,
NY, USA, March 4–7, 2006. Springer, Heidelberg, Germany. 3

[BKM09] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. Journal of Cryptology, 22(1):114–138, January 2009. 2, 3,
4, 9, 10, 35

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. Calamari and Falafl: Logarithmic (linkable)
ring signatures from isogenies and lattices. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in Computer Science, pages
464–492, Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany. 1, 4

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Steinfeld. Improved security
proofs in lattice-based cryptography: Using the Rényi divergence rather than the statistical distance.
In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, Part I,
volume 9452 of Lecture Notes in Computer Science, pages 3–24, Auckland, New Zealand, November 30 –
December 3, 2015. Springer, Heidelberg, Germany. 7

[BLO18] Carsten Baum, Huang Lin, and Sabine Oechsner. Towards practical lattice-based one-time linkable
ring signatures. In David Naccache, Shouhuai Xu, Sihan Qing, Pierangela Samarati, Gregory Blanc,
Rongxing Lu, Zonghua Zhang, and Ahmed Meddahi, editors, ICICS 18: 20th International Conference
on Information and Communication Security, volume 11149 of Lecture Notes in Computer Science,
pages 303–322, Lille, France, October 29–31, 2018. Springer, Heidelberg, Germany. 1

[BR04] Mihir Bellare and Phillip Rogaway. Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Report 2004/331, 2004. https://eprint.iacr.org/2004/331.
5

[BSS02] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring signatures and applications to
ad-hoc groups. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 465–480, Santa Barbara, CA, USA, August 18–22, 2002. Springer,
Heidelberg, Germany. 1

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld, John M.
Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu Saito, Takashi Yamakawa,
and Keita Xagawa. NTRU. Technical report, National Institute of Standards and
Technology, 2020. available at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions. 4

[CHDN+24] Daniel Collins, Löıs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge Vaudenay.
K-waay: Fast and deniable post-quantum x3dh without ring signatures. Cryptology ePrint Archive,
Paper 2024/120, 2024. https://eprint.iacr.org/2024/120. 4, 5, 26, 27

[CHMR23] Suvradip Chakraborty, Dennis Hofheinz, Ueli Maurer, and Guilherme Rito. Deniable authentication
when signing keys leak. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, Part III, volume 14006 of Lecture Notes in Computer Science, pages 69–100,
Lyon, France, April 23–27, 2023. Springer, Heidelberg, Germany. 17

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, Advances in
Cryptology – EUROCRYPT’91, volume 547 of Lecture Notes in Computer Science, pages 257–265,
Brighton, UK, April 8–11, 1991. Springer, Heidelberg, Germany. 1

[DG05] Mario Di Raimondo and Rosario Gennaro. New approaches for deniable authentication. In
Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM CCS 2005: 12th Conference on
Computer and Communications Security, pages 112–121, Alexandria, Virginia, USA, November 7–11,
2005. ACM Press. 4

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication and key exchange.
In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th
Conference on Computer and Communications Security, pages 400–409, Alexandria, Virginia, USA,
October 30 – November 3, 2006. ACM Press. 4

29

https://eprint.iacr.org/2010/086
https://eprint.iacr.org/2004/331
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2024/120

[DHK+23] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler, and Dominique
Unruh. A thorough treatment of highly-efficient NTRU instantiations. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023: 26th International Conference on Theory and Practice of
Public Key Cryptography, Part I, volume 13940 of Lecture Notes in Computer Science, pages 65–94,
Atlanta, GA, USA, May 7–10, 2023. Springer, Heidelberg, Germany. 3, 26, 27, 28

[DHM+20] Ivan Damg̊ard, Helene Haagh, Rebekah Mercer, Anca Nitulescu, Claudio Orlandi, and Sophia
Yakoubov. Stronger security and constructions of multi-designated verifier signatures. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference, Part II, volume
12551 of Lecture Notes in Computer Science, pages 229–260, Durham, NC, USA, November 16–19,
2020. Springer, Heidelberg, Germany. 17

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Nicolosi, and Victor Shoup. Anonymous identification
in ad hoc groups. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 609–626, Interlaken,
Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany. 1

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based encryption over NTRU
lattices. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 22–41, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Heidelberg, Germany. 2, 6, 7

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In 30th Annual ACM
Symposium on Theory of Computing, pages 409–418, Dallas, TX, USA, May 23–26, 1998. ACM Press.
4

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM, 51(6):851–898, nov
2004. 4

[DZ10] Alexander W. Dent and Yuliang Zheng, editors. Practical Signcryption. Springer Berlin Heidelberg,
2010. 2, 4, 16

[EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi
Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: A simpler, parallelizable, maskable variant of falcon.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
Part III, volume 13277 of Lecture Notes in Computer Science, pages 222–253, Trondheim, Norway,
May 30 – June 3, 2022. Springer, Heidelberg, Germany. 25

[ENS+23] Thomas Espitau, Thi Thu Quyen Nguyen, Chao Sun, Mehdi Tibouchi, and Alexandre Wallet. Antrag:
Annular NTRU trapdoor generation - making mitaka as secure as falcon. In Jian Guo and Ron
Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, Part VII, volume 14444 of Lecture
Notes in Computer Science, pages 3–36, Guangzhou, China, December 4–8, 2023. Springer, Heidelberg,
Germany. 3, 25, 26

[ESS+19] Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu. Short lattice-based
one-out-of-many proofs and applications to ring signatures. In Robert H. Deng, Valérie Gauthier-
Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS 19: 17th International Conference on Applied
Cryptography and Network Security, volume 11464 of Lecture Notes in Computer Science, pages 67–88,
Bogota, Colombia, June 5–7, 2019. Springer, Heidelberg, Germany. 1, 4

[ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter hash-and-sign lattice-
based signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology –
CRYPTO 2022, Part II, volume 13508 of Lecture Notes in Computer Science, pages 245–275, Santa
Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany. 25

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the one-per-message unforgeability of (EC)DSA
and its variants. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography
Conference, Part II, volume 10678 of Lecture Notes in Computer Science, pages 519–534, Baltimore,
MD, USA, November 12–15, 2017. Springer, Heidelberg, Germany. 3

[FM15] Marc Fischlin and Sogol Mazaheri. Notions of deniable message authentication. In Proceedings of the
14th ACM Workshop on Privacy in the Electronic Society, WPES ’15, page 55–64, New York, NY,
USA, 2015. Association for Computing Machinery. 5

[FR23] Thibauld Feneuil and Matthieu Rivain. Threshold computation in the head: Improved framework for
post-quantum signatures and zero-knowledge arguments. Cryptology ePrint Archive, Paper 2023/1573,
2023. https://eprint.iacr.org/2023/1573. 4

[GdKQ+23] Phillip Gajland, Bor de Kock, Miguel Quaresma, Giulio Malavolta, and Peter Schwabe. Swoosh:
Practical lattice-based non-interactive key exchange. Cryptology ePrint Archive, Report 2023/271,
2023. https://eprint.iacr.org/2023/271. 26

30

https://eprint.iacr.org/2023/1573
https://eprint.iacr.org/2023/271

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th Annual ACM
Symposium on Theory of Computing, pages 197–206, Victoria, BC, Canada, May 17–20, 2008. ACM
Press. 2, 6, 7

[HKKP22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. An efficient and generic
construction for Signal’s handshake (X3DH): Post-quantum, state leakage secure, and deniable. Journal
of Cryptology, 35(3):17, July 2022. 5

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public key cryptosystem.
In Third Algorithmic Number Theory Symposium (ANTS), volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, Heidelberg, Germany, June 1998. 2, 7

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. Raptor: A practical lattice-based (linkable) ring signature.
In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa, and Moti Yung, editors, ACNS 19: 17th
International Conference on Applied Cryptography and Network Security, volume 11464 of Lecture
Notes in Computer Science, pages 110–130, Bogota, Colombia, June 5–7, 2019. Springer, Heidelberg,
Germany. 1, 2, 4

[LLNW16] Benôıt Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-knowledge arguments for lattice-
based accumulators: Logarithmic-size ring signatures and group signatures without trapdoors. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 1–31, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. 1

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knapsacks are collision resistant.
In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP 2006: 33rd
International Colloquium on Automata, Languages and Programming, Part II, volume 4052 of Lecture
Notes in Computer Science, pages 144–155, Venice, Italy, July 10–14, 2006. Springer, Heidelberg,
Germany. 9

[LNS21] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. SMILE: Set membership from ideal
lattices with applications to ring signatures and confidential transactions. In Tal Malkin and Chris
Peikert, editors, Advances in Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in
Computer Science, pages 611–640, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany.
1, 4

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in
Computer Science, pages 738–755, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.
7

[MP16a] Moxie Marlinspike and Trevor Perrin. The double ratchet algorithm, 2016. 4
[MP16b] Moxie Marlinspike and Trevor Perrin. The x3dh key agreement protocol, 2016. 2, 4
[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures.

SIAM Journal on Computing, 37(1):267–302, 2007. 7
[MW17] Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient, generic,

constant-time. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science, pages 455–485, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany. 7

[Nao02] Moni Naor. Deniable ring authentication. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 481–498, Santa Barbara,
CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany. 1, 4

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical
report, National Institute of Standards and Technology, 2022. available at https://csrc.nist.gov/

Projects/post-quantum-cryptography/selected-algorithms-2022. 2
[Pre15] Thomas Prest. Gaussian sampling in lattice-based cryptography. PhD thesis, Ecole normale supérieure-

ENS PARIS, 2015. 7
[Pre17] Thomas Prest. Sharper bounds in lattice-based cryptography using the Rényi divergence. In Tsuyoshi

Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, Part I, volume
10624 of Lecture Notes in Computer Science, pages 347–374, Hong Kong, China, December 3–7, 2017.
Springer, Heidelberg, Germany. 7, 8, 12, 25

[ROSW23] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS Encrypted Client Hello.
Internet-Draft draft-ietf-tls-esni-16, Internet Engineering Task Force, April 2023. Work in Progress. 2

31

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor, Advances
in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 552–565,
Gold Coast, Australia, December 9–13, 2001. Springer, Heidelberg, Germany. 1, 4, 9

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical
report, National Institute of Standards and Technology, 2020. available at https://csrc.nist.

gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/

round-3-submissions. 28
[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding. CRYSTALS-
KYBER. Technical report, National Institute of Standards and Technology, 2022. available at
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. 4

[SM04] Willy Susilo and Yi Mu. Non-interactive deniable ring authentication. In Jong In Lim and Dong Hoon
Lee, editors, ICISC 03: 6th International Conference on Information Security and Cryptology, volume
2971 of Lecture Notes in Computer Science, pages 386–401, Seoul, Korea, November 27–28, 2004.
Springer, Heidelberg, Germany. 4

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-quantum TLS without handshake signatures.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020: 27th
Conference on Computer and Communications Security, pages 1461–1480, Virtual Event, USA,
November 9–13, 2020. ACM Press. 4

[UG15] Nik Unger and Ian Goldberg. Deniable key exchanges for secure messaging. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, ACM CCS 2015: 22nd Conference on Computer and Communications
Security, pages 1211–1223, Denver, CO, USA, October 12–16, 2015. ACM Press. 4, 5

[UG18] Nik Unger and Ian Goldberg. Improved strongly deniable authenticated key exchanges for secure
messaging. Proceedings on Privacy Enhancing Technologies, 2018(1):21–66, January 2018. 4, 5

[Wha20] WhatsApp. WhatsApp Encryption Overview Technical white paper, v.3, oct 2020. https://www.

whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf. 4
[YEL+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and Zhimin Ding. DualRing: Generic

construction of ring signatures with efficient instantiations. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer Science,
pages 251–281, Virtual Event, August 16–20, 2021. Springer, Heidelberg, Germany. 1, 2, 4

[Zhe97] Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption) ≪ cost(signature)
+ cost(encryption). In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume
1294 of Lecture Notes in Computer Science, pages 165–179, Santa Barbara, CA, USA, August 17–21,
1997. Springer, Heidelberg, Germany. 2

[ZK02] Fangguo Zhang and Kwangjo Kim. ID-based blind signature and ring signature from pairings. In
Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 533–547, Queenstown, New Zealand, December 1–5, 2002. Springer,
Heidelberg, Germany. 1

32

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

A Appendix for Section 2 (Preliminaries)

A.1 Pseudorandom Function

Definition 12 (Pseudorandom Function). A keyed function F with a finite key space K, and finite
output range R is a function F : K× {0, 1}∗ → R. We formalise the notion of pseudorandomess for a keyed
function F via the game (n,QEval)-PRF depicted in Figure 15 and define the advantage of adversary A as

Adv
(n,QEval)-PRF
F,A :=

∣∣∣∣Pr [(n,QEval)-PRFF (A)⇒ 1]− 1

2

∣∣∣∣.

Game (n,QEval)-PRFF (A)

01 for i ∈ [n]

02 ki
$← K

03 fi
$← {f | f : {0, 1}∗ →R}

04 b $← {0, 1}
05 b′ ← AEval

06 return Jb = b′K

Oracle Eval(i ∈ [n], x)

07 if b = 0

08 return F (ki, x)

09 if b = 1

10 return fi(x)

Figure 15. Game defining PRF for a keyed function F with adversary A making at most QEval queries to Eval.

A.2 Key Encapsulation Mechanism

Definition 13 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM is defined as
a tuple KEM := (Gen,Enc,Dec) of the following PPT algorithms.

(sk, pk) $← Gen: The probabilistic key generation algorithm Gen returns a key pair (sk, pk) implicitly defining
a shared key space K.

(c, k) $← Enc(pk): The probabilistic encapsulation algorithm Enc takes as input a public key and returns a
ciphertext c and a shared key k ∈ K.

k ← Dec(sk, c): The deterministic decapsulation algorithm Dec takes as input a secret key sk and a
ciphertext c and returns a shared key k ∈ K or a failure symbol ⊥.

The correctness error δ is defined as

δ := Pr

[
Dec(sk, c) ̸= k

∣∣∣∣ (sk, pk) $← Gen
(c, k) $← Enc(pk)

]
.

We also assume (without loss of generality) the existence of an efficiently computable function µ such
that for all (sk, pk) ∈ Gen it holds µ(sk) = pk.

The γ-spreadness of a KEM is defined as

γKEM := max
(sk,pk)∈Gen

c∈C

Pr [Enc(pk) = (c, ·)] .

We formalise the notion of ciphertext indistinguishability for a key encapsulation mechanism KEM via
the game (n,QDec, QChl)-IND-CCAKEM(A) depicted in Figure 16 and define the advantage of adversary A
as

Adv
(n,QDec,QChl)-IND-CCA
KEM,A :=

∣∣∣∣Pr [(n,QDec, QChl)-IND-CCAKEM(A)⇒ 1]− 1

2

∣∣∣∣.
33

Game (n,QDec, QChl)-IND-CCAKEM(A)

01 for i ∈ [n]

02 (ski, pki)
$← Gen

03 b $← {0, 1}
04 b′ ← ADec,Chall(pk1, . . . , pkn)

05 return Jb = b′K

Oracle Dec(r ∈ [n], c)

06 if ∃ k : (pkr, c, k) ∈ D
07 return k

08 k ← Dec(skr, k)

09 return k

Oracle Chl(r ∈ [n])

10 (c, k) $← Enc(pkr)

11 if b = 0

12 continue

13 if b = 1

14 k $← K
15 D ← D ∪ {(pkr, c, k)}
16 return (c, k)

Figure 16. Game defining IND-CCA for a key encapsulation mechanism KEM with adversary A making at most
QDec queries to Dec and at most QChl queries to Chl.

We define IND-CPA security with corruptions of a KEM via the game (n,QChl)-IND-CPAKEM(A)
depicted in Figure 17 and define the advantage of adversary A as

Adv
(n,QChl)-IND-CPA
KEM,A :=

∣∣∣∣Pr [(n,QChl)-IND-CPAKEM(A)⇒ 1]− 1

2

∣∣∣∣.

Game (n,QChl)-IND-CPAKEM(A)

01 for i ∈ [n]

02 (ski, pki)
$← Gen

03 b $← {0, 1}
04 b′ ← AChall,Rev(pk1, . . . , pkn)

05 return Jb = b′ ∧R ∩ C = ∅K

Oracle Rev(i ∈ [n])

06 R← R∪ {i}
07 return ski

Oracle Chl(r ∈ [n])

08 C ← C ∪ {r}
09 (c, k) $← Enc(pkr)

10 if b = 0

11 continue

12 if b = 1

13 k $← K
14 return (c, k)

Figure 17. Game defining IND-CPA for a key encapsulation mechanism KEM with adversary A making at most
QChl queries to Chl.

A.3 Symmetric Encryption

We recall the syntax and security of a symmetric encryption scheme.

Definition 14 (Symmetric Encryption). A symmetric encryption SyE is defined as a tuple SyE :=
(Enc,Dec) of the following PPT algorithms.

c← Enck(m): The determinsitic encryption algorithm Enc parametrized by a symmetric key k takes as input
a message m and outputs a ciphertext c.

m← Deck(c): The deterministic decryption algorithm Dec parametrized by a symmetric key k takes as input
a ciphertext c and outputs a message m.

We define security in the sense of a pseudo random permutation via the advantage of adversary A having
access to an oracle Eval. The advantage for adversary A issuing at most Q queries to the evaluation oracle
is defined as

Adv
(n,Q)-PRP
SyE,A :=

∣∣∣Pr[b← AEval0(i∈[n],·)]− Pr[b← AEval1(i∈[n],·)]
∣∣∣ ,

where Eval0(i,m) returns Encki
(m) for randomly chosen secret keys ki

$← K, and PRP1(i,m) returns πi(m)
for randomly chosen permutations πi, i ∈ [n].

34

B Appendix for Section 3 (Ring Signatures)

B.1 Counter Example

The notions from [BKM09] and [BFG+22] are repeated in Figure 18. W.l.o.g. we ignore the Stp algorithm
here since these notions do not use a setup.

Game (n,QSgn)-AnoRSig(A) [BKM09]

01 for i ∈ [n]

02 (ski, pki)
$← Gen

03 (m⋆, ρ⋆, i0, i1)
$← ASgn

1 (pk1, . . . , pkn)

04 b $← {0, 1}
05 σ⋆ $← Sgn(skib , ρ

⋆,m⋆)

06 b′ $← ASgn
2 (σ⋆, sk1, . . . , skn)

07 return Jb = b′ ∧ pki0 ∈ ρ⋆ ∧ pki1 ∈ ρ⋆K

Game (n,QChl)-AnoRSig(A) [BFG+22]

08 for i ∈ [n]

09 (ski, pki)
$← Gen

10 b $← {0, 1}
11 b′ $← AChl((sk1, pk1), . . . , (skn, pkn))

12 return Jb = b′K

Oracle Sgn(i ∈ [n], ρ,m)

13 if pki ∈ ρ
14 σ $← Sgn(ski, ρ,m)

15 return σ

16 else

17 return ⊥

Oracle Chl(i0 ∈ [n], i1 ∈ [n], ρ,m)

18 if pki0 ∈ ρ ∧ pki1 ∈ ρ
19 σ $← Sgn(skib , ρ,m)

20 return σ

21 else

22 return ⊥

Figure 18. Games defining Ano in [BKM09] and [BFG+22].

For both, we have advantage

Adv
(n,·)-Ano
RSig,A :=

∣∣∣∣Pr[(n, ·)-AnoRSig(A)⇒ 1]− 1

2

∣∣∣∣.
The claim of [BFG+22] is that the previous notion implies the new notion for QChl = 1.

Claim 10: There exists a counterexample to the claim of [BFG+22, Sec 2.2].

Proof. Let RSig := (Gen,Sgn,Ver) be an unforgeable ring signature scheme secure under full key exposure
anonymity [BKM09]. We construct another ring signature scheme RSig′ := (Gen,Sgn′,Ver) such that
Sgn′(sk, ρ,m) outputs ⊥ if queried on m = sk and Sgn(sk, ρ,m) otherwise. Sgn′ is also secure under the old
anonymity notion, and we show this by constructing an adversary B = (B1,B2) against RSig using
adversary A = (A1,A2) against RSig

′ depicted in Figure 19. If the underlying ring signature is unforgeable,
the probability of correctly guessing a secret key should be negligible only giving the public keys and
signatures. Thus, the abort conditions trigger with only negligible probability and the ring signature
scheme RSig′ is also anonymous under full key exposure.

However, it is evident that RSig′ is not secure under the new notion. This is because the adversary obtains
the secret keys in advance and can query the challenge onm = ski0 and check if the result is ⊥ or not directly
winning the game with probability 1. This shows that the new notion of [BFG+22] is not implied by the old
notion of [BKM09]. ■

Theorem 1 (Gandalf MC-Ano). For any adversary A, making at most QChl challenge queries, against
the MC-Ano security of Gandalf, depicted in Figure 5, it holds

Adv
(n,κ,QChl)-MC-Ano
Gandalf,A ≤ QChl · δKL.

Proof. Consider the sequence of games depicted in Figure 20.

35

BSgnB
1 (pk1, . . . , pkn)

01 (m⋆, ρ⋆, i0, i1)
$← ASgn1

1 (pk1, . . . , pkn)

02 if ∃ pki : µ(m⋆) = pki

03 abort

04 return (m⋆, ρ⋆, i0, i1)

Oracle Sgn1(i ∈ [n], ρ,m)

05 if ∃ pki : µ(m) = pki

06 abort

07 if pki ∈ ρ
08 σ $← Sgn(ski, ρ,m)

09 return σ

10 else

11 return ⊥

BSgnB
2 (σ⋆, sk1, . . . , skn)

12 b′ $← ASgn2
2 (σ⋆, sk1, . . . , skn)

13 return b′

Oracle Sgn2(i ∈ [n], ρ,m)

14 if pki ∈ ρ
15 σ $← Sgn(ski, ρ,m)

16 return σ

17 else

18 return ⊥

Figure 19. Adversary B against RSig anonymity using an adversary A against RSig′ anonymity.

Game G0. This is the multi-challenge anonymity with full key exposure game for RSig so by definition

Pr[GA
0 ⇒ 1] = Adv

(n,κ,QChl)-MC-Ano
Gandalf,A .

G0 − G1

01 par $← Stp(κ)

02 for i ∈ [n]

03 (fi, gi,hi)
$← TpdGen

04 ski := (fi, gi)

05 pki := hi

06 b $← {0, 1}
07 b′′ $← {0, 1} //G1

08 b′ $← AChl(par, (sk1, pk1), . . . , (skn, pkn))

09 return Jb = b′K

Oracle Chl(i0 ∈ [n], i1 ∈ [n], ρ,m)

10 if ρ ⊆ {pk1, . . . , pkn} ∧ pki0 ∈ ρ ∧ pki1 ∈ ρ
11 σ $← Sgn(skib , ρ,m)

12 σ $← Sgn(skib′′ , ρ,m) //G1

13 return σ

14 else

15 return ⊥

Figure 20. Games G0 − G1 for the proof of Theorem 1.

Game G1. In this game, the signatures of the challenge oracle are constructed using the secret key of user
ib′′ instead of user ib where b′′ $← {0, 1} is a random bit chosen independently of b.

Claim 11: ∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QChl · δKL.

Proof. To prove the claim, we distinguish two cases. First, if b′′ = b, the output distributions is exactly
the same and the change cannot be distinguished. This occurs with probability 1

2 . In the other case, we
compare the distribution of the output of the signing oracle in case of two different senders. Let the ring
be ρ = {h′1, . . . ,h′k} and consider the case of hi0 ,hi1 ∈ ρ (otherwise the output is ⊥). W.l.o.g assume that
h′1 = hi0 and h′2 = hi1 .

The view of adversary A consists of u1, . . . ,uk (the output of the signing oracle), as well as the output
of the hash function satisfying

v := H(m, ρ)−
∑
i∈[k]

h′iui

as well as
∥(u1, . . . ,uk,v)∥2 ≤ β with probability δ,

36

for a δ-correct ring signature scheme.

Case b′′ = 0: If user 1 is the signer, ui ∼ DZN ,s,0 for 2 ≤ i ≤ k and (u1,v)
$← PreSmp(·, ·,H(m, ρ) −∑

i∈[k]\{1} h
′
iui) by construction. Next, we use the property of the preimage sampler that the output is close

to values sampled from DZ2N ,s,0 conditioned on v = H(m, ρ)−
∑

i∈[k] h
′
iui:

(u1,v) ∼ DZ2N ,s,0 | v = H(m, ρ)−
∑
i∈[k]

h′iui.

To obtain a concrete bound, we apply Corollary 1 for an upper bound on the KL divergence δKL between
the output of the sampler and the conditional Gaussian. For QChl queries, this yields QChl · δKL.

Case b′′ = 0: If user 2 is the signer, we apply the same procedure as before and obtain ui ∼ DZN ,s,0 for
i = 1 and 3 ≤ i ≤ k as well as

(u2,v) ∼ DZ2N ,s,0 | v = H(m, ρ)−
∑
i∈[k]

h′iui.

Again, we obtain the bound QChl · δKL.
If the hash value H(m, ρ) was not known to A, the KL divergence of the joint distributions of both cases

from
(u1, . . . ,uk,v) ∼ DZ(k+1)N ,s,0

is close. However, the knowledge of H(m, ρ) does not help in distinguishing since in both cases it holds

H(m, ρ) =
∑
i∈[k]

h′iui + v.

Further, the norm bound is at most β with the same probability δ since the values are sampled according to
a Gaussian and with the tailcut lemma we can use the same results as in Lemma 7.

We recall that the changes can only be distinguished if b ̸= b′′ yielding an overall bound of

1

2
· 2 ·QChl · δKL.

■

Note that G1 is independent of challenge bit b. hence, we obtain the stated bound.
■

B.2 Enhancing security.

To boost one-per-message unforgeability to full unforgeability, i.e. allowing for arbitrary singing queries,
we present a generic compiler which introduces only a small constant overhead. The compiler transforms a
UF-CRA1 ring signatures scheme RSig := (Stp,Gen,Sgn,Ver) into aUF-CRA ring signature RSig′[RSig] :=
(Stp,Gen,Sgn′,Ver′) and is depicted in Figure 21. The drawback of the compiler is that the size of the
signature increases by ν bits. However, this constant term is quite small compared to the signature.

Theorem 7. Let RSig be a UF-CRA1 secure ring signature, then RSig′[RSig] as depicted in Figure 21 is
a UF-CRA secure ring signature. In particular, for any UF-CRA adversary A against RSig′[RSig] there
exists a UF-CRA1 adversary B against RSig such that

Adv
(n,κ,QSgn)-UF-CRA

RSig′,A ≤ Adv
(n,κ,QSgn)-UF-CRA1
RSig,B +

QSgn(QSgn − 1)

2ν+1
.

Proof. We define two games in Figure 22.

37

Sgn′(sk, ρ,m)

01 r $← {0, 1}ν

02 σ $← RSig.Sgn(sk, ρ,m||r)
03 σ′ ← (σ, r)

04 return σ′

Ver′(σ′, ρ,m)

05 parse σ′ → (σ, r)

06 return RSig.Ver(σ, ρ,m||r)

Figure 21. Generic Compiler RSig′[RSig] := (Stp,RSig, Sgn′,Ver′).

G0 − G1

01 Q,R← ∅
02 par $← Stp(κ)

03 for i ∈ [n]

04 (ski, pki)
$← Gen

05 (σ⋆, ρ⋆,m⋆) $← ASgn(par, pk1, . . . , pkn)

06 return Jρ⋆ ⊆ {pk1, . . . , pkn} ∧ Ver′(σ⋆, ρ⋆,m⋆) = 1 ∧ (ρ⋆,m⋆, σ⋆) /∈ QK

Oracle Sgn(i ∈ [n], ρ,m)

07 r $← {0, 1}ν

08 if r ∈ R //G1

09 abort //G1

10 R ← R∪ {r} //G1

11 σ $← Sgn(ski, ρ,m||r)
12 σ′ ← (σ, r)

13 Q ← Q∪ {(ρ,m, σ′)}
14 return σ′

Figure 22. Games G0 − G1 for the proof of Theorem 7

Game G0. This is the UF-CRA game for RSig′ so by definition

Pr[GA
0 ⇒ 1] = Adv

(n,κ,QSgn)-UF-CRA

RSig′,A .

Game G1. In Game G1, the signing oracle is changed by storing the randomness which is chosen to sign
together with the original message. Further, the game aborts if the same randomness is used twice.

Claim 12: ∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QSgn(QSgn − 1)

2ν+1
.

Proof. The randomness is chosen uniformly random and independent for each query to the signing oracle
from a set of size |2ν |. Hence, the claim follows directly by applying the birthday bound. ■

Reduction to G1. We can now make a reduction from UF-CRA1 security of the underlying ring signature
scheme RSig to Game G1, i.e. there exists an adversary B such that

Claim 13:

Pr[GA
1 ⇒ 1] ≤ Adv

(n,κ,QSgn)-UF-CRA1
RSig,B .

Proof. Adversary B against UF-CRA1 security of RSig simulating the UF-CRA game for an adversary
A against RSig is formally constructed in Figure 23. Due to the abort from Game G1, the queried messages
to Sgn in Line 12 must be unique such that adversary B can simulate the signing oracle Sgn′ properly. If A
returns a valid forgery, the forgery B returns must also be valid: by construction of the scheme, it verifies
iff A forgery verifies, the ring ρ⋆ is the same and thus a subset of the challenge public keys, and the output
triple cannot be in the bookkeeping set of B’s game because in this case it was also in A’s by construction
of the ring signature scheme. ■

Combining the two losses, we obtain the stated bound. ■

38

BSgn(pk1, . . . , pkn)

01 Q,R← ∅
02 par $← Stp(κ)

03 (σ⋆, ρ⋆,m⋆) $← ASgn′(par, pk1, . . . , pkn)

04 if Ver′(σ⋆, ρ⋆,m⋆) = 1 ∧ ρ⋆ ⊆ {pk1, . . . , pkn} ∧ (ρ⋆,m⋆, σ⋆) /∈ Q
05 σ⋆ → (σ, r)

06 return (σ, ρ⋆,m⋆||r) // return forgery

07 return ⊥

Oracle Sgn′(i ∈ [n], ρ,m)

08 r $← {0, 1}ν

09 if r ∈ R
10 abort

11 R← R∪ {r}
12 σ $← Sgn(i, ρ,m||r) // unique message

13 σ′ ← (σ, r)

14 Q ← Q∪ {(ρ,m, σ′)}
15 return σ′

Figure 23. Adversary B against UF-CRA1 security of RSig having access to oracle Sgn simulating G1 for adversary
A from the proof of Theorem 7.

C Appendix for Section 4 (Deniable AKEM)

We formalise the notion of ciphertext indistinguishability for an authenticated key encapsulation
mechanism AKEM via the game (n, QEnc, QDec, QCSK, QChl)-Ins-CCAAKEM(A) depicted in Figure 24 and
define the advantage of adversary A as

Adv
(n,QEnc,QDec,QCSK,QChl)-Ins-CCA
AKEM,A :=

∣∣∣∣Pr [(n, QEnc, QDec, QCSK, QChl)-Ins-CCAAKEM(A)⇒ 1]− 1

2

∣∣∣∣.

Game (n, QEnc, QDec, QCSK, QChl)-Ins-CCAAKEM(A)

01 for i ∈ [n]

02 (ski, pki)
$← Gen

03 b $← {0, 1}
04 b′ ← AEncps,Decps,Chall,CorSK(pk1, . . . , pkn)

05 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

06 (c, k) $← Enc(sks, pk)

07 return (c, k)

Oracle Decps(pk, r ∈ [n], c)

08 if ∃ k : (pk, pkr, c, k) ∈ D
09 return k

10 k ← Dec(pk, skr, c)

11 return k

Oracle CorSK(i ∈ [n], sk)

12 ski ← sk

13 pki ← µ(pk)

14 C ← C ∪ {i}

Oracle Chall(s ∈ [n], r ∈ [n])

15 if r ∈ C
16 return ⊥
17 (c, k) $← Enc(sks, pkr)

18 if b = 0

19 continue

20 if b = 1

21 k $← K
22 D ← D ∪ {(pks, pkr, c, k)}
23 return (c, k)

Figure 24. Game defining Ins-CCA for an authenticated key encapsulation mechanism AKEM with adversary A
making at most QEnc queries to Encps, at most QDec queries to Decps, at most QCSK queries to CorSK, and at most
QChl queries to Chall.

Theorem 3 (KEM IND-CCA + H PRF =⇒ AKEM Ins-CCA). Let KEM be an IND-CCA secure
key encapsulation mechanism and H a PRF, then AKEM[KEM,RSig,SyE,H] as depicted in Figure 10 is an
Ins-CCA secure authenticated key encapsulation mechanism. In particular for any Ins-CCA adversary A
against AKEM[KEM,RSig,SyE,H] there exist a IND-CCA adversary B against KEM and a PRF adversary
C against H such that

Adv
(n,QEncQDec,QCSK,QChl)-Ins-CCA
AKEM[KEM,RSig,SyE,H],A ≤ Adv

(n,QDec,QChl)-IND-CCA
KEM,B +Adv

(QChl,QDec+QChl)-PRF
H,C .

Proof of Theorem 3. Consider the sequence of games depicted in Figure 25.

39

Game G0. This is the Ins-CCAAKEM(A) game for AKEM[KEM,RSig,SyE,H] so by definition∣∣∣∣Pr[GA
0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QEncQDec,QCSK,QChl)-Ins-CCA
AKEM[KEM,RSig,SyE,H],A .

Games G0 − G2

01 for i ∈ [n]

02 (kski, kpki)
$← KEM.Gen

03 (sski, spki)
$← RSig.Gen

04 ski := (kski, sski)

05 pki := (kpki, spki)

06 b $← {0, 1}
07 b′ ← AEncps,Decps,Chall,CorSK(pk1, . . . , pkn)

08 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

09 parse pk → (kpk, spk)

10 (kct, kk) $← KEM.Enc(kpk)

11 m := kct||kpks||kpk||spk
12 σ′ ← RSig.Sgn(ssks, {spks, spk},m)

13 kk → kk1||kk2
14 σ ← SyE.Enckk1(σ

′)

15 c := (kct, σ)

16 k := H(kk2, σ||spks||m)

17 return (c, k)

Oracle Decps(pk, r ∈ [n], c)

18 if ∃ k : (pk, pkr, c, k) ∈ E
19 return k

20 parse pk → (kpk, spk)

21 parse c→ (kct, σ)

22 m← kct||kpk||kpkr||spkr
23 kk ← KEM.Dec(kskr, kct)

24 kk → kk1||kk2
25 k := H(kk2, σ||spk||m)

26 σ′ ← SyE.Deckk1(σ)

27 if ∃ kk′ : (kpkr, kct, kk′) ∈ EKEM //G1 − G2

28 kk′ → kk1||kk2 //G1 − G2

29 k := H(kk2, σ||spk||m) //G1 − G2

30 σ′ ← SyE.Deckk1(σ) //G1 − G2

31 k $← K //G2

32 E ← E ∪ {(pk, pkr, kct, k)} //G2

33 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

34 return ⊥
35 return k

Oracle Chall(s ∈ [n], r ∈ [n])

36 if r ∈ R
37 return ⊥
38 (kct, kk) $← KEM.Enc(kpkr)

39 kk $← KKEM //G1 − G2

40 EKEM ← EKEM ∪ {(kpkr, kct, kk)} //G1 − G2

41 m := kct||kpks||kpkr||spkr
42 σ′ ← RSig.Sgn(ssks, {spks, spkr},m)

43 kk → kk1||kk2
44 σ ← SyE.Enckk1(σ

′)

45 c := (kct, σ)

46 k := H(kk2, σ||spks||m)

47 k $← K //G2

48 if b = 0

49 k := k

50 if b = 1

51 k $← K
52 E ← E ∪ {(pks, pkr, c, k)}
53 E ← E ∪ {(pks, pkr, c, k)} //G2

54 return (c, k)

Oracle CorSK(i ∈ [n], sk)

55 ski ← sk

56 pki ← µ(sk)

57 R ← R∪ {i}

Figure 25. Games G0 − G2 for the proof of Theorem 3.

40

Game G1. In the challenge oracle, the KEM key kk is replaced with a uniformly random value from the
KEM key space KKEM, and stored alongside the receiver’s key and ciphertext in the set EKEM. Additionally,
the decapsulation oracle is changed to check for a corresponding element in EKEM and the actual KEM key
kk is replaced by the one stored in EKEM.

Claim 14: There exists a PPT adversary B against the IND-CCA security of KEM, such that∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ Adv
(n,QDec,QChl)-IND-CCA
KEM,B .

Proof. Adversary B is formally constructed in Figure 26. ■

BDecKEM,ChallKEM(kpk1, . . . , kpkn)

01 for i ∈ [n]

02 (sski, spki)
$← RSig.Gen

03 ski := (⊥, sski)
04 pki := (kpki, spki)

05 b $← {0, 1}
06 b′ ← AEncps,Decps,Chall,CorSK(pk1, . . . , pkn)

07 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

08 return G0.Encps(s, pk)

Oracle Decps(pk, r ∈ [n], c)

09 if ∃ k : (pk, pkr, c, k) ∈ E
10 return k

11 parse pk → (kpk, spk)

12 parse c→ (kct, σ)

13 kk ← DecKEM(r, kct) // call decapsualtion

14 m← kct||kpk||kpkr||spkr
15 kk → kk1||kk2
16 σ′ ← SyE.Deckk1(σ)

17 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

18 return ⊥
19 k := H(kk2, σ||spk||m)

20 return k

Oracle Chall(s ∈ [n], r ∈ [n])

21 if r ∈ R
22 return ⊥
23 (kct, kk) $← ChallKEM(r) // call challenge

24 m := kct||kpks||kpkr||spkr
25 σ′ ← RSig.Sgn(ssks, {spks, spkr},m)

26 kk → kk1||kk2
27 σ ← SyE.Enckk1(σ

′)

28 c := (kct, σ)

29 k := H(kk2, σ||spks||m)

30 if b = 0

31 k := k

32 if b = 1

33 k $← K
34 E ← E ∪ {(pks, pkr, c, k)}
35 return (c, k)

Oracle CorSK(i ∈ [n], sk)

36 ski ← sk

37 pki ← µ(sk)

38 R ← R∪ {i}

Figure 26. Adversary B against IND-CCA security of KEM having access to oracles DecKEM and ChallKEM simulating
G1/G2 for adversary A from the proof of Theorem 3.

Game G2. In the challenge oracle, the output of H is replaced with a random value from the key space
K. Furthermore, regardless of the challenge bit’s value (0 or 1), the challenge query outcome is stored in
the bookkeeping set E . The same changes are applied to the decapsulation oracle, but only when there is a
matching element in the set EKEM as indicated by Line 27.

Claim 15: There exists a PPT adversary C against PRF security of H, such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ Adv
(QChl,QDec+QChl)-PRF
H,C .

41

Proof. The adversary C is formally constructed in Figure 27. The first observation is that adding the elements
to the bookkeeping set E does not impact the winning probability but ensures consistent outputs when
changing k. Due to the changes in the previous game, the first input to H, kk2, is uniformly random aligning
exactly with the PRF game. Thus, an adversary C can simulate G1 or G2 (depending on their challenge bit)
by selecting a new PRF key for each call to the challenge oracle. To correctly simulate the decapsulation
oracle, they must identify the required PRF key. This is done in the same way as in the original game G1/G2

by storing results in the set EKEM but using an index ℓ instead of the actual key, which remains unknown to
the PRF adversary.

CEval

01 ℓ← 0

02 for i ∈ [n]

03 (kski, kpki)
$← KEM.Gen

04 (sski, spki)
$← RSig.Gen

05 ski := (kski, sski)

06 pki := (kpki, spki)

07 b $← {0, 1}
08 b′ ← AEncps,Decps,Chall,CorSK(pk1, . . . , pkn)

09 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

10 return G0.Encps(s, pk)

Oracle Decps(pk, r ∈ [n], c)

11 if ∃ k : (pk, pkr, c, k) ∈ E
12 return k

13 parse pk → (kpk, spk)

14 parse c→ (kct, σ)

15 m← kct||kpk||kpkr||spkr
16 kk ← KEM.Dec(kskr, kct)

17 kk → kk1||kk2
18 k := H(kk2, σ||spk||m)

19 if ∃ ℓ′ : (kpkr, kct, ℓ′) ∈ EKEM // check for index

20 k ← Eval(ℓ′, σ||spk||m) // query oracle

21 E ← E ∪ {(pk, pkr, kct, k)}
22 σ′ ← SyE.Deckk1(σ)

23 if RSig.Ver(σ′, {spk, spkr},m) ̸= 1

24 return ⊥
25 return k

Oracle Chall(s ∈ [n], r ∈ [n])

26 if r ∈ R
27 return ⊥
28 (kct, kk) $← KEM.Enc(kpkr)

29 kk $← KKEM

30 ℓ← ℓ+ 1 // new key index

31 EKEM ← EKEM ∪ {(kpkr, kct, ℓ)} // store index

32 m := kct||kpks||kpkr||spkr
33 σ′ ← RSig.Sgn(ssks, {spks, spkr},m)

34 kk → kk1||kk2
35 σ ← SyE.Enckk1(σ

′)

36 c := (kct, σ)

37 k ← Eval(ℓ, σ||spks||m) // query oracle

38 if b = 0

39 k := k

40 if b = 1

41 k $← K
42 E ← E ∪ {(pks, pkr, c, k)}
43 E ← E ∪ {(pks, pkr, c, k)}
44 return (c, k)

Oracle CorSK(i ∈ [n], sk)

45 ski ← sk

46 pki ← µ(sk)

47 R ← R∪ {i}

Figure 27. Adversary C against PRF security of H having access to oracle Eval simulating G1/G2 for adversary A
from the proof of Theorem 3.

■

In G2, the output distribution of the challenge oracle is now independent of challenge bit b an thus

Pr[GA
2 ⇒ 1] =

1

2
.

42

Adding up the analysed bounds yields the bound stated in the Theorem. ■

Theorem 5 (RSig MC-Ano =⇒ AKEM DR-Den). Let RSig be a ring signature which is multi-challenge
anonymous under full key exposure, then AKEM[KEM,RSig,SyE,H] as depicted in Figure 10 is an DR-Den
secure authenticated key encapsulation mechanism. In particular, for any DR-Den adversary A against
AKEM[KEM,RSig,SyE,H] there exists a simulator Sim and a MC-Ano adversary B against RSig such that

Adv
(n,QChl)-DR-Den
AKEM[KEM,RSig,SyE,H],A,Sim ≤ Adv

(n,QChl)-MC-Ano
RSig,B .

Proof. We show the existence of a simulator Sim such that the upper bound on the advantage holds. The
simulator is depicted in Figure 28.

Sim(pks, pkr, skr)

01 parse pks → (kpks, spks)

02 parse pkr → (kpkr, spkr)

03 parse skr → (ksks, ssks)

04 (kct, kk) $← KEM.Enc(kpkr)

05 m← (kct, kpks, kpkr, spkr)

06 σ $← RSig.Sgn(sskr, {spks, spkr},m)

07 c := (kct, σ)

08 k := H(kk, σ, spks,m)

09 return (c, k)

Figure 28. Simulator for the proof of Theorem 5.

Consider the sequence of games depicted in Figure 29.

Game G0. This is the (n, QChl)-DR-Den game for AKEM[KEM,RSig,SyE,H] and simulator Sim as described
in Figure 28 so by definition ∣∣∣∣Pr[GA

0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QChl)-DR-Den
AKEM[KEM,RSig,SyE,H],A,Sim.

Game G1. In this game, the signature in the challenge oracle is now created with the receiver’s signing key
instead of the sender’s.

Claim 16: There exists a PPT adversary C against the MC-Ano security of RSig, such that∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ Adv
(n,QChl)-MC-Ano
RSig,B .

Proof. The adversary is formally constructed in Figure 30. Adversary B perfectly simulates Game G0 in their
own case b = 0 and Game G1 in case b = 1. Note that calls from the AKEM challenge oracle automatically
fulfill all the requirements of the challenge oracle from the anonymity game by default.

■

In Game G1, judge A cannot distinguish the challenge bit b anymore since the output of the challenge is
independent of b. We obtain

Pr[GA
1 ⇒ 1] =

1

2
.

■

43

Games G0 − G1

01 for i ∈ [n]

02 (kski, kpki)
$← KEM.Gen

03 (sski, spki)
$← RSig.Gen

04 ski := (kski, sski)

05 pki := (kpki, spki)

06 b $← {0, 1}
07 b′ ← ARev,Chall(pk1, . . . , pkn)

08 return Jb = b′K

Rev(i ∈ [n])

09 return ski

Oracle Chall(s ∈ [n], r ∈ [n])

10 (kct, kk) $← KEM.Enc(kpkr)

11 m← (kct, kpks, kpkr, spkr)

12 σ $← RSig.Sgn(ssks, {spks, spkr},m)

13 σ $← RSig.Sgn(sskr, {spks, spkr},m) //G1

14 c := (kct, σ)

15 k := H(kk, σ, spks,m)

16 if b = 0

17 continue

18 if b = 1

19 (kct, kk) $← KEM.Enc(kpkr)

20 m← (kct, kpks, kpkr, spkr)

21 σ $← RSig.Sgn(sskr, {spks, spkr},m)

22 c := (kct, σ)

23 k := H(kk, σ, spks,m)

24 return (c, k)

Figure 29. Games G0 − G1 for the proof of Theorem 5.

BChlRSig((ssk1, spk1), . . . , (sskn, spkn))

01 for i ∈ [n]

02 (kski, kpki)
$← KEM.Gen

03 ski := (kski, sski)

04 pki := (kpki, spki)

05 b $← {0, 1}
06 b′ ← ARev,Chall(pk1, . . . , pkn)

07 return Jb = b′K

Rev(i ∈ [n])

08 return ski

Oracle Chall(s ∈ [n], r ∈ [n])

09 (kct, kk) $← KEM.Enc(kpkr)

10 m← (kct, kpks, kpkr, spkr)

11 σ $← ChlRSig(s, r, {spks, spkr},m)

12 c := (kct, σ)

13 k := H(kk, σ, spks,m)

14 if b = 0

15 continue

16 if b = 1

17 (kct, kk) $← KEM.Enc(kpkr)

18 m← (kct, kpks, kpkr, spkr)

19 σ $← RSig.Sgn(sskr, {spks, spkr},m)

20 c := (kct, σ)

21 k := H(kk, σ, spks,m)

22 return (c, k)

Figure 30. Adversary B against MC-Ano security of RSig having access to oracle ChlRSig simulating G0/G1 from
the proof of Theorem 5.

Theorem 6 (KEM IND-CPA + SyE PRP =⇒ AKEM HR-Den). Let KEM be an IND-CPA secure
key encapsulation mechanism and SyE a symmetric encryption scheme, then AKEM[KEM,RSig,SyE,H] as
depicted in Figure 10 is a HR-Den secure authenticated key encapsulation mechanism in the honest
receiver setting. In particular, for any HR-Den adversary A against AKEM[KEM,RSig,SyE,H] there exists
a simulator Sim, a IND-CPA adversary B against KEM, and a PRP adversary C against SyE such that

Adv
(n,QChl)-HR-Den
AKEM[KEM,RSig,SyE,H],A,Sim ≤ Adv

(n,QChl)-IND-CPA
KEM,B +Adv

(QChl,QChl)-PRP
SyE,C .

Proof. We show that the existence of a simulator Sim such that the upper bound on the advantage holds.
The simulator is depicted in Figure 31.

44

Sim(pks, pkr)

01 parse pks → (kpks, spks)

02 parse pkr → (kpkr, spkr)

03 (kct, kk) $← KEM.Enc(kpkr)

04 m← (kct, kpks, kpkr, spkr)

05 kk → kk1||kk2
06 σ $← S
07 c := (kct, σ)

08 k := H(kk2, σ, spks,m)

09 return (c, k)

Figure 31. Simulator for the proof of Theorem 6.

Consider the sequence of games depicted in Figure 32.

Game G0. This is the (n, QChl)-HR-Den game for AKEM[KEM,RSig,SyE,H] in the honest receiver setting
and simulator Sim as described in Figure 31 so by definition∣∣∣∣Pr[GA

0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QChl)-HR-Den
AKEM[KEM,RSig,SyE,H],A,Sim.

Games G0 − G2

01 R, C ← ∅
02 for i ∈ [n]

03 (kski, kpki)
$← KEM.Gen

04 (sski, spki)
$← RSig.Gen

05 ski := (kski, sski)

06 pki := (kpki, spki)

07 b $← {0, 1}
08 b′ ← ARev,Chall(pk1, . . . , pkn)

09 if R∩ C ̸= ∅
10 return r $← {0, 1}
11 return Jb = b′K

Rev(i ∈ [n])

12 R← R∪ {i}
13 return ski

Oracle Chall(s ∈ [n], r ∈ [n])

14 C ← C ∪ {r}
15 (kct, kk) $← KEM.Enc(kpkr)

16 kk $← KKEM //G1 − G2

17 m← (kct, kpks, kpkr, spkr)

18 σ′ $← RSig.Sgn(ssks, {spks, spkr},m)

19 kk → kk1||kk2
20 σ ← SyE.Enckk1(σ

′)

21 σ $← S //G2

22 c := (kct, σ)

23 k := H(kk2, σ, spks,m)

24 if b = 0

25 continue

26 if b = 1

27 (kct, kk) $← KEM.Enc(kpkr)

28 m← (kct, kpks, kpkr, spkr)

29 kk → kk1||kk2
30 σ $← S
31 c := (kct, σ)

32 k := H(kk2, σ, spks,m)

33 return (c, k)

Figure 32. Games G0 − G2 for the proof of Theorem 6.

45

Game G1. In Game G1, the KEM key is replaced by a uniformly random value from the KEM key space
KKEM.

Claim 17: There exists a PPT adversary B against the IND-CPA security of KEM, such that∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ Adv
(n,QChl)-IND-CPA
KEM,B .

Proof. Adversary B is formally constructed in Figure 33. Note that adversary A of Game G0/G1 is able to
reveal secret keys via the Rev oracle. However, if they reveal a secret key corresponding to a receiver index
of a Chall query, the game will be lost. Thus, the output of games with such an adversary is 0 anyway and
it only remains to show the difference for adversaries without the knowledge of the receiver’s secret keys.

BChl,RevKEM(kpk1, . . . , kpkn)

01 R, C ← ∅
02 for i ∈ [n]

03 (sski, spki)
$← RSig.Gen

04 ski := (⊥, sski)
05 pki := (kpki, spki)

06 b $← {0, 1}
07 b′ ← ARev,Chall(pk1, . . . , pkn)

08 if R∩ C ̸= ∅
09 return r $← {0, 1}
10 return Jb = b′K

Rev(i ∈ [n])

11 R← R∪ {i}
12 kski ← RevKEM(i) //KEM key corruption

13 return (kski, sski)

Oracle Chall(s ∈ [n], r ∈ [n])

14 C ← C ∪ {r}
15 (kct, kk)← Chl(r) // challenge query

16 m← (kct, kpks, kpkr, spkr)

17 σ′ $← RSig.Sgn(ssks, {spks, spkr},m)

18 kk → kk1||kk2
19 σ ← SyE.Enckk1(σ

′)

20 c := (kct, σ)

21 k := H(kk2, σ, spks,m)

22 if b = 0

23 continue

24 if b = 1

25 (kct, kk) $← KEM.Enc(kpkr)

26 m← (kct, kpks, kpkr, spkr)

27 kk → kk1||kk2
28 σ $← S
29 c := (kct, σ)

30 k := H(kk2, σ, spks,m)

31 return (c, k)

Figure 33. Adversary B against IND-CPA security of KEM having access to oracles Chl and RevKEM simulating
G0/G1 from the proof of Theorem 6.

■

Game G2. In Game G2, the output of the symmetric encryption in the Chall is replaced by a uniformly
random value of the signature space S (Line 21).

Claim 18: There exists a PPT adversary C against the PRP security of SyE, such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ Adv
(QChl,QChl)-PRP
SyE,C .

Proof. Adversary C is formally constructed in Figure 34. For the real case (b = 0 in the PRP game), the
reduction simulates G1 for adversary A. For the random case (b = 1), they simulate G2. The total number
of instances as well as oracle queries to Eval is QChl.

■

The output distribution of Chall in G2 is now the same in case of b = 0 and b = 1, thus it holds

Pr[GA
2 ⇒ 1] =

1

2
.

46

CEval

01 ℓ← 0

02 R, C ← ∅
03 for i ∈ [n]

04 (kski, kpki)
$← KEM.Gen

05 (sski, spki)
$← RSig.Gen

06 ski := (kski, sski)

07 pki := (kpki, spki)

08 b $← {0, 1}
09 b′ ← ARev,Chall(pk1, . . . , pkn)

10 if R∩ C ̸= ∅
11 return r $← {0, 1}
12 return Jb = b′K

Rev(i ∈ [n])

13 R← R∪ {i}
14 return ski

Oracle Chall(s ∈ [n], r ∈ [n])

15 C ← C ∪ {r}
16 (kct, kk) $← KEM.Enc(kpkr)

17 kk $← KKEM

18 m← (kct, kpks, kpkr, spkr)

19 σ′ $← RSig.Sgn(ssks, {spks, spkr},m)

20 kk → kk1||kk2
21 ℓ← ℓ+ 1 // new index

22 σ ← Eval(ℓ, σ′) // query PRP oracle

23 c := (kct, σ)

24 k := H(kk2, σ, spks,m)

25 if b = 0

26 continue

27 if b = 1

28 (kct, kk) $← KEM.Enc(kpkr)

29 m← (kct, kpks, kpkr, spkr)

30 kk → kk1||kk2
31 σ $← S
32 c := (kct, σ)

33 k := H(kk2, σ, spks,m)

34 return (c, k)

Figure 34. Adversary C against PRP security of SyE having access to oracle Eval simulating G1/G2 from the proof
of Theorem 6.

■

47

	

