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Abstract. As blockchain technology continues to transform the realm
of digital transactions, scalability has emerged as a critical issue. This
challenge has spurred the creation of innovative solutions, particularly
Layer 2 scalability techniques like rollups. Among these, ZK-Rollups
are notable for employing Zero-Knowledge Proofs to facilitate prompt
on-chain transaction verification, thereby improving scalability and effi-
ciency without sacrificing security. Nevertheless, the intrinsic complexity
of ZK-Rollups has hindered an exhaustive evaluation of their efficiency,
economic impact, and performance.
This paper offers a theoretical and empirical examination aimed at com-
prehending and evaluating ZK-Rollups, with particular attention to ZK-
EVMs. We conduct a qualitative analysis to break down the costs linked
to ZK-Rollups and scrutinize the design choices of well-known imple-
mentations. Confronting the inherent difficulties in benchmarking such
intricate systems, we introduce a systematic methodology for their as-
sessment, applying our method to two prominent ZK-Rollups: Polygon
zkEVM and zkSync Era. Our research provides initial findings that illu-
minate trade-offs and areas for enhancement in ZK-Rollup implementa-
tions, delivering valuable insights for future research, development, and
deployment of these systems.
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1 Introduction

Blockchain technology, with leading chains such as Bitcoin [22] and Ethereum [37],
has introduced novel solutions for finance and various applications, reshaping the
landscape of digital transactions by removing the need for centralized entities.
However, the surge in their adoption has brought to light a critical challenge:
scalability. The inherent limitation in the number of transactions these networks
can process per second has prompted an effort within the blockchain community
to seek and develop a plethora of innovative solutions [40].

Two dominant strategies have enjoyed practical adaptation in recent years
to address scalability. The first involves the creation of new, modern blockchains



2 S. Chaliasos et al.

designed from the ground up to process transactions more efficiently than their
predecessors [38,5], albeit at the cost of missing the established security and net-
work effects of blockchains like Ethereum. The second strategy revolves around
Layer 2 (L2) solutions, or off-chain scalability solutions, with rollups being the
most promising and widely adopted in practice [35]. Rollups work by executing
transactions on a faster, secondary blockchain (L2) and then posting the result-
ing state root, along with transaction data, back to the main blockchain — Layer
1 (L1). This ensures the integrity of the rollup’s state is verifiable and secure,
leveraging the underlying blockchain’s security.

Among the various rollup approaches, two stand out: optimistic [16] and
ZK-Rollups [3]. Optimistic rollups rely on a system of trust and fraud proofs to
validate state transitions, which introduces a delay in withdrawals due to the
required challenge period. In contrast, ZK-Rollups utilize Zero-Knowledge Proofs
(ZKPs) for immediate on-chain verification of state transitions, enhancing both
scalability and efficiency without compromising the security of the L1 chain.
Despite their advantages, ZK-Rollups introduce additional complexity and, to
date, there has been limited research focused on a thorough evaluation of their
overall efficiency, limitations, and economics.

Benchmarking ZK-Rollups presents a multifaceted challenge. The deploy-
ment of these systems is inherently complex, and their diverse design choices
complicate direct comparisons. Further, identifying common payloads for bench-
marking and establishing appropriate metrics are non-trivial tasks. In response
to these challenges, this work embarks on a comprehensive theoretical and em-
pirical analysis of ZK-Rollups. We dissect the operational and per-transaction
costs of ZK-Rollups, examine the design decisions of prominent implementations,
and propose a methodology for their benchmarking. This includes addressing the
challenges inherent in benchmarking these systems, defining key research ques-
tions, and developing a reproducible methodology to ensure that our findings
are publicly accessible and verifiable.

The results of this study aim to illuminate the trade-offs inherent to different
ZK-Rollup implementations, offering insight into their advantages and areas in
need of improvement. By providing a deeper understanding of the economics
underpinning these systems, we hope to inform efforts to decentralize currently
centralized systems. Furthermore, as Rollups as a Service continues to grow, our
analysis seeks to arm users and buyers with the knowledge necessary to make
their decisions, enabling them to compare different rollups using our benchmark-
ing infrastructure tailored to their specific needs.

Research Questions. Next, we outline a series of research questions that will
shape our analysis of ZK-Rollups. These questions are designed to uncover criti-
cal insights into the performance, cost structure, and overall efficiency and prof-
itability margins of ZK-Rollups. Our investigation aims to provide a comprehen-
sive understanding of these systems.

RQ1 Fixed Costs: What are the fixed costs associated with ZK-Rollups?
Specifically, what are the expenses related to settling on L1, such as
committing batches and verifying proofs? Additionally, what is (if any)
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the constant proving cost per batch (e.g., aggregation or compressing a
Scalable Transparent Argument of Knowledge (STARK) into a Succinct
Non-interactive Argument of Knowledge (SNARK))?

RQ2 Marginal Costs: How long does it take to prove a batch, and what is
the cost associated with proving a batch? What are the data availability
(DA) costs in terms of bytes posted? How do state diffs compare to posting
transaction data?

RQ3 Trade-off Between Fast Finality and Cost Minimization: In ZK-
Rollups, achieving transaction finality requires verifying the proof of the
batch that includes the transaction on L1. This necessitates producing
the proof first. There is a trade-off between having large, compact batches
that are slower to prove and smaller batches that are faster to prove but
potentially lead to less amortization of costs.

RQ4 Cost Breakdown: How are costs distributed across different components
of a ZK-Rollup transaction, including DA, proof generation, L1 posting,
and verification? Understanding this distribution is crucial for identifying
areas for optimization.

RQ5 Impact of EIP-4844: How has the introduction of EIP-4844 influenced
the cost dynamics of ZK-Rollups? This question explores the effects of
EIP-4844 on the cost efficiency and practicality of ZK-Rollups.

1.1 Contributions

– Qualitative Analysis of ZK-Rollups’ design choices: We conduct a
comprehensive theoretical analysis of ZK-Rollups, detailing the costs associ-
ated with processing transactions and examining the diverse design choices
across different implementations.

– Towards Benchmarking ZK-Rollups: Addressing the significant chal-
lenges inherent in benchmarking ZK-Rollups, we develop and present a struc-
tured methodology for their evaluation. This includes the implementation of
our benchmarking approach on prominent implementations such as Polygon
ZK-EVM and zkSync Era, providing a blueprint for systematic assessment
of ZK-Rollups’ efficiency and costs.

– Results and Insights: Offering findings from our benchmarking efforts,
we aim to contribute to the ongoing discourse on ZK-Rollups by identifying
key factors that influence their development and pinpointing areas in need of
improvement. These preliminary results are intended to guide future research
and development efforts in the field.

2 Background

2.1 Scaling Blockchain and Rollups

Blockchain scalability has been a persistent challenge, particularly for estab-
lished networks like Ethereum [37], which processes only tens of transactions per
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second.5 Efforts to enhance scalability have focused on two primary strategies:
base layer scaling and L2 scaling solutions. Base layer scaling, which includes
techniques such as sharding and novel consensus protocols, involves either the
modification of existing blockchains — a complex and daunting task — or the
development of new blockchain architectures. Although modern blockchains such
as Solana [38] and Sui [5] have shown success, they often lack the established
security, liquidity, and comprehensive ecosystem found in legacy blockchains like
Ethereum.6

L2 scaling solutions, on the other hand, offer a promising avenue for scala-
bility without altering the base layer, i.e., L1. Among these solutions, payment
channels [1,2,19,34], Plasma [29], and rollups [35] have been the most prevalent
solutions. Payment channels enable instant, bi-directional payments between two
parties by establishing a network of interconnected channels, exemplified by Bit-
coin’s Lightning Network. However, they require capital lockup and constant
base layer monitoring, making them suitable for specific, long-term use cases.
Plasma attempted to solve various issues in different ways. Sguanci et al. [33]
provides an overview of the main types of Plasma constructions. However, every
attempt at Plasma had some trade-off that resulted in a poor user experience.

Rollups have emerged as hybrid L2 solutions, distinguishing themselves by
offloading computation off-chain while retaining data on-chain, thus addressing
the data availability issue while inheriting L1’s security. Rollups batch and exe-
cute transactions on an auxiliary L2 blockchain that uses the same VM as L1 or
a different one. This separation of transaction execution from consensus allows
rollups to process significantly more transactions per second than their L1 coun-
terparts. By submitting a summary of the rollup’s state — typically, the root of
a Merkle tree — to a smart contract in the underlying blockchain, rollups not
only ensure data availability, but also inherit the security properties of the L1
network. Altering the L2 state recorded on L1 would require breaking the secu-
rity of L1, making it both difficult and costly. This architecture enables rollups
to offer an efficient, secure scaling solution for legacy blockchains. Notably, this
model, i.e., rollup-centric scaling,7 has gained traction as the principal method
for scaling Ethereum, with two predominant variants: optimistic rollups [16] and
ZK-Rollups [3].8

Optimistic rollups operate on a principle of trust, where state transitions
are accepted without immediate verification, relying instead on fraud proofs
to challenge incorrect state updates. This approach, while efficient, requires a
challenge period, introducing a delay in withdrawals. In contrast, ZK-Rollups
leverage ZKPs to verify state transitions on-chain, offering a more immediate

5 https://l2beat.com/scaling/activity
6 According to https://defillama.com/chains (accessed: 10/5/2024), Ethereum
has 57.85% of the total TVL for all chains, while Solana has only 4.46%.

7 https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/469

8
8 As of 18/3/2024, rollups have more than 34B USD TVL according to https://l2

beat.com.

https://l2beat.com/scaling/activity
https://defillama.com/chains
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://ethereum-magicians.org/t/a-rollup-centric-ethereum-roadmap/4698
https://l2beat.com
https://l2beat.com
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Fig. 1: High-level simplified overview of transaction processing in ZK-Rollups.

and efficient validation process without the need for a challenge period. This
method not only improves the scalability and efficiency, but also maintains the
integrity and security of the L1 chain.

2.2 ZK-Rollup Components and Transaction Lifecycle

In this section, we outline the main components of a ZK-Rollup. For simplicity,
we abstract out certain details, including bridging and forced transactions [14].
In addition, we do not discuss various sequencing methodologies, such as de-
centralized or shared sequencers [21]. Figure 1 illustrates the key components
involved in processing transactions within a ZK-Rollup. Users initiate the pro-
cess by signing and submitting transactions to the L2 network. A sequencer
then undertakes the tasks of processing, ordering, executing, and batching these
transactions. In some architectures, these functions may be distributed across
different components. Subsequently, the sequencer forwards these batches to a
relayer, which posts their resultant state to the L1 rollup contract. Concurrently,
the sequencer sends the batch to a coordinator (or aggregator), which, in turn,
sends the batch to the prover. In most ZK-Rollups, the coordinator consolidates
multiple proofs into a single aggregated proof (i.e., a proof of proofs) and sub-
mits this final proof to the rollup contract. The contract then verifies the proof,
finalizing the state of the L2 as immutable and verified in the L1.

Components.

– Sequencer. The sequencer provides users with the first confirmation of
transaction inclusion and ordering. It is the entity that aggregates user trans-
actions into blocks and batches, either by providing them with a transaction
submission endpoint or by pulling transactions from the mempool. It pro-
vides the canonical sequence of transactions that will be fed into the state
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transition function. Currently, for the systems discussed in this work, se-
quencer implementations rely on a trusted operator that provides this service
and to which users submit their transactions. Many of the projects discussed
are working on decentralizing their sequencer design, but the design space
remains nascent.

– Execution. For most existing rollups, execution is typically done by the
same entity as the sequencer. The transaction batch created by the sequencer
is taken as input to the rollup’s state transition function (STF), which is ex-
ecuted to create both the resulting block(s) and related state root(s), as well
as the transaction batches, and potentially the intermediate state snapshots
(state diffs) that are required for proof generation.

– Data Availability. Data availability (DA) refers to the ability of clients of
the blockchain protocol to retrieve the data required to verify the validity of
a given batch. Traditionally provided as part of the consensus algorithm that
underlies a blockchain system, the modular architecture used by rollup-based
blockchain systems separates the guarantees provided by the L1 blockchain
from those provided by the rollup operators. Relying on L1 for the rollup’s
liveness, the data required to assert safety must be posted on the L1. DA
data involve any execution artifacts required by the settlement logic for
verifying the validity proof, such as transaction data or the state diff of the
transactions, as well as all data required to reproduce the state of the L2.

– Prover. The prover is responsible for generating validity proofs for the exe-
cuted batches. Given the execution artifacts, the prover creates the required
witness data and executes a SNARK or STARK proof to prove the validity
of the execution. Note that when a STARK is used, it is typically wrapped
into a SNARK to enable efficient verification.

– Settlement Logic. The generated proofs are then posted to the L1 smart
contract responsible for settling a given batch. An executed batch must be
agreed upon as “valid” in order to coordinate between decentralized actors
(the blockchain’s users). This is done by providing a block’s resulting state,
proof of that state’s validity, and the inputs required for verifying the proof.

Transaction Lifecycle Status.

– Pending: A user has signed and submitted the transaction to the L2 net-
work.

– Preconfirmed: The sequencer has processed the transaction and included
it in a block. If users trust the sequencer, they can regard the transaction as
processed. Currently, reliance on centralized sequencers enables near-instant
preconfirmation, yet this raises the challenge of maintaining such efficiency
without centralization. Preconfirmation significantly enhances user experi-
ence, allowing users to treat most transactions as effectively complete. How-
ever, it is important to note that for withdrawals from L2, users must await
the finalization of transactions.



Analyzing and Benchmarking ZK-Rollups 7

– Committed: The transaction is part of a batch committed to the L1 con-
tract, allowing others to reconstruct the L2 state, including this transaction
from the L1 data.

– Verified/Finalized: The batch containing the transaction has been proven,
and the proof has been verified in the L1 contract, marking the transaction
and its batch’s state on L2 as immutable.

2.3 Costs of ZK-Rollups

Next, we analyze the costs associated with processing a transaction within a ZK-
Rollup. Specifically, we distinguish between costs that are transaction-specific
and those that are constant per batch, meaning they apply to each processed
batch regardless of the number of transactions that are included in it.

We also separate out all costs associated with the transaction’s fee mech-
anism, as these can be temporal in nature, and add an orthogonal dimension
to the physical costs that are incurred per transaction (and which are a direct
result of the system’s design choices). To this end, we quantify costs in terms of
the underlying empirical variable measured: for example, data availability costs
are presented in terms of bytes rather than their actual L1 gas cost.

Fixed Batch Costs. Each batch carries inherent fixed costs that must be paid
regardless of the number of transactions it includes.

1. Settlement: This involves (a) calling the Ethereum L1 contract to commit
to a specific batch, and (b) submitting proofs and executing the verifier logic
(e.g., SNARK verifier) for the committed batches.

2. Proof Compression: Some constructions involve compressing (or convert-
ing) the block’s proof from one proof system to another. This typically in-
volves proving the verification of the aggregated proof in a cheaper (with
regards to the verification cost) proof system (e.g., Groth16) so that the
cost of settlement is lower.

Marginal Transaction Costs. In addition to the batch-specific costs, each
transaction included in a rollup’s block incurs the following additional costs:

1. Data Availability: This is measured in bytes of the transaction’s call-
data. The calldata needs to be posted to the data availability provider, e.g.,
Ethereum L1, so that the rollup’s state can be reconstructed.

2. Proving Costs: These are divided into the following: (a) Additional witness
generation work required. (b) Proof generation for the transaction’s execu-
tion. (c) Some constructions incorporate a final step, aggregating batches of
proofs into a single proof. Additional transactions may require more aggre-
gation work in this context.

3. L2 Execution Costs: These include computing the state transition re-
sulting from the transaction along with any related costs due to associated
long-term storage requirements. Can be thought of as the costs of operating
the rollup’s infrastructure: sequencing, execution, and relaying.
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ZK-Rollups

Polygon
ZK-EVM

Scroll zkSync Era Starknet RISC0 Zeth Aztec

VM zkEVM zkEVM zkEVM General Purpose
zkVM

General Purpose
zkVM

Privacy-Focused

zkVM

Proof System STARK +
FFLONK1

Halo2-KZG Boojum +
PLONK-KZG1

STARK + FRI STARK + FRI HONK +
Protogalaxy +

Goblin PLONK +

UltraPlonk

Published Data TX Data TX Data State Diffs State Diffs N/A N/A

Compatibility EVM-Compatible EVM-Compatible Solidity-
Compatible

N/A N/A N/A

Hardware CPU-based /
>128-cores /
>1TB RAM

GPU-based / 4
GPUs / >48-cores
/ >192GB RAM

Many GPU-based /
1 GPU / 16-cores /

64GB RAM

N/A N/A N/A

Fig. 2: High-level comparison of different ZK-Rollups. 1: In those ZK-EVMs, the
last step moves from a STARK-based proof system to a SNARK proof.

3 Qualitative Analysis

In this section, we examine the fundamental components and design choices
influencing the performance, efficiency, and complexity of various ZK-Rollups.
Figure 2 summarizes a qualitative overview of ZK-Rollups.

3.1 Proof System

Recent advancements in proof systems have led to a significant acceleration of
ZK-VMs and ZK-EVMs, with research focusing on developing proof systems to
optimize for better performance and efficiency of the proving algorithm. No-
table developments include zkASM [28] and PIL [27] ZK languages, developed
by Polygon for their ZK-EVM; Boojum [20], developed for zkSync Era; and the
halo2 KZG fork [32] implemented by the Scroll team, among others. A common
strategy in ZK-VM design is to also apply recursion, a technique in which one
ZK proof is verified inside of another, allowing the usage of cheaper verifica-
tion circuits at the settlement phase while using more complex proof systems in
the proving process. For example, Polygon ZK-EVM leverages a STARK proof
to initially prove batch correctness, which is then compressed via recursion be-
fore being encapsulated in a SNARK proof for submission to L1. This method
benefits from SNARKs’ efficient verification and constant proof size. Similar
methodologies are used in various ZK-EVM platforms.

However, the choice of a proof system and its specific implementation can lead
to some important trade-offs, particularly between the speed of proof generation
and the computational resources required. This balance is crucial, as it can
influence the overall performance and user experience of ZK-Rollups.

3.2 Transaction Data vs. State Diffs

In L1 blockchains, all transactions in a block are stored along with the Merkle
root of the final state. This information is disseminated across the network
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through a “gossiping” protocol [17], and the root of trust is established through
re-execution and validation of the state root by the participants. For example, in
proof-of-stake networks, validators stake their tokens and vote on the resulting
state to ensure consensus [8].

ZK-Rollups, in contrast, establish their root of trust through the verifica-
tion of a ZKP [3]. The ZKP attests to the correctness of the final state, and its
validation is sufficient for participants to accept a batch of blocks as canonical.
Verifying the final state requires publicly available inputs, typically either the
transaction data included in the batch or intermediate state transition snap-
shots, known as “state diffs.” Each method has its trade-offs. State diffs are
more cost-effective because they omit signatures and publish only the final state
changes after multiple transactions, thus allowing for better cost amortization.
However, this approach does not preserve a complete transaction history and
can complicate the mechanisms of enforcing transactions and reproducing the
state through data posted in the L1. Currently, ZK-Rollups such as zkSync Era
and Starknet utilize state diffs due to their efficiency benefits, while solutions
like Polygon ZK-EVM and Scroll opt for publishing transaction data to main-
tain data completeness. Both approaches are exploring innovative compression
techniques to further optimize cost efficiency.

3.3 EVM Compatibility

Buterin identifies four main categories of ZK-EVMs [7], which are implemen-
tations of ZKP circuits that validate the correctness of Ethereum Virtual Ma-
chine (EVM) execution, ranging from fully Ethereum-equivalent to language-
compatible. Fully Ethereum-equivalent ZK-EVMs replicate the EVM’s behavior
and data structures precisely, ensuring seamless operation for existing Ethereum
applications. EVM-equivalent ZK-EVMs maintain core functionalities but intro-
duce slight variations in data structures while ensuring identical behavior when
executing EVM-bytecode. EVM-compatible approaches might exclude certain
precompiles or slightly modify the gas metering mechanism, which could affect
the execution of specific transactions in edge cases.

The most flexible, language-compatible ZK-EVMs, utilize compilers to trans-
late Solidity into different targets, optimizing efficiency and potentially enhanc-
ing functionality beyond strict EVM equivalence. This spectrum of compatibility
reflects a trade-off between maintaining strict adherence to the EVM and pur-
suing efficiency gains or advanced features through innovation. For instance,
the Polygon ZK-EVM aims for a close EVM equivalence to balance compati-
bility with performance improvements, while zkSync Era opts for a language-
compatible approach with its zksolc compiler, prioritizing efficiency and adapt-
ability.

Another approach, not described in Buterin’s classification, is employed by
RISC0’s Zeth [31]. Based on a prover for the RISC-V Instruction Set Architec-
ture (ISA), Zeth leverages Rust and its LLVM-based compiler toolchain to utilize
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Fig. 3: High-level overview of ZK-Rollup compilation pipelines.

a suite of robust crates, such as revm9, ethers10, and alloy11, enabling the proof
of execution for EVM-based transactions and blocks without the need for ad-
ditional domain-specific implementation circuits by leveraging RISC0’s prover.
This approach diverges from traditional ZK-EVM designs by proving the cor-
rectness of computations at the ISA level rather than focusing exclusively on
EVM bytecode. The use of RISC-V as the underlying architecture allows for a
high degree of flexibility and the potential to leverage a broader range of pro-
gramming languages supported by the LLVM ecosystem. This approach results
in a fully EVM-equivalent ZK-EVM.

The landscape of ZK-EVMs has seen a rapid evolution of innovative ap-
proaches in recent years, though not all are “EVM compatible” to the same
degree. Several implementations discussed in this section were not included in
our direct performance comparison due to differing definitions of compatibility.
We further discuss “EVM compatibility in Appendix A.

3.4 ZK-Rollups Prover Implementations

At a high level, there are two primary approaches for ZK-Rollup prover de-
sign: assembly-based and EVM opcode-based implementations, each offering a
distinct approach to handling computations and proofs. Assembly-based VMs
implement a specific Instruction Set Architecture (ISA), focusing on proving the
correctness of lower-level execution steps that express abstractions around the

9 https://github.com/bluealloy/revm
10 https://github.com/gakonst/ethers-rs
11 https://github.com/alloy-rs/alloy

https://github.com/bluealloy/revm
https://github.com/gakonst/ethers-rs
https://github.com/alloy-rs/alloy
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underlying proof system. This method closely aligns with traditional hardware
architectures, where each instruction within the set is designed to perform well-
defined atomic operations [13,31]. In contrast, opcode-based ZK-EVMs rely on
specific circuits that each prove the execution of an EVM opcode or an EVM
state transition, with the specific goal of proving the validity of the execution
of an EVM transaction. Figure 3 provides an overview of the compilation and
proving process followed by different ZK-Rollups.

One example of an assembly-based ZK-VM is Starkware’s Cairo. Built as
an abstraction on top of Algebraic Intermediate Representation (AIR), Cairo
assembly generates polynomial constraints over a table of field elements that
represent the state throughout the program’s execution. This table serves as
the trace (or witness) for the STARK-based prover, which then proves whether
the trace satisfies Cairo’s semantics [13]. While the Cairo framework allows one
to generate application-specific circuits, in practice, it is used in Starknet to
generate circuits for a single set of constraints for the von Neumann architecture-
based Cairo CPU. The Cairo CPU is an AIR-generated STARK for a Cairo
program that implements a register-based general-purpose VM.

Another example of an assembly-based implementation is RISC0’s RISC-V-
based ZK-VM. This approach involves compiling a Rust program to RISC-V ISA,
referred to as the Guest Program. The Guest Program is executed to produce
an execution trace, corresponding to the intermediate states of the RISC-V VM
throughout the execution. The trace is then used as a witness by the RISC-
V prover, which provides proof that the execution follows RISC-V semantics.
Unlike Cairo, which uses a novel ISA tailored for STARK, RISC0 builds a prover
for the existing RISC-V ISA. Using the LLVM compiler tool-chain, RISC0 can
execute and prove any language that can be compiled to RISC-V ISA [30]. Using
that approach, you can pass an EVM implemented in Rust as the guest program
and prove EVM transactions, as demonstrated by Zeth [31] (c.f. Section 3.3).

In contrast to assembly-based ZK-VMs, the most common approach is to
directly target EVM bytecode. While the former approaches rely on an interme-
diate ZK-VM for circuit implementation, many mature ZK-Rollups have cho-
sen to implement specialized circuits that directly prove the execution of EVM
bytecode, or close to EVM bytecode. Currently, all major ZK-Rollups beyond
Starknet utilize specialized circuit-based ZK-EVM implementations.

For instance, zkSync Era, Polygon’s zkEVM, and Scroll implement a ZK-
EVM to prove the execution of transactions, but employ slightly different meth-
ods. Polygon and Scroll use Solidity’s compiler to allow existing programs written
in Solidity to be deployed, executed, and proved on a ZK-Rollup by implement-
ing specialized circuits that validate EVM traces. In contrast, zkSync Era takes
a higher-level approach by compiling Solidity directly to ZK-EVM bytecode (us-
ing zksolc), which is then executed and proved using circuits designed to verify
the ZK-EVM bytecode’s correctness instead of the EVM bytecode.

Another approach is Aztec’s Abstract Circuit Intermediate Representation
(ACIR) and Private Execution Environment (PXE)-based system. Aztec’s smart
contracts are written in Noir [24], a domain-specific language developed by Aztec
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Labs for SNARK-based proving systems. Noir compiles to ACIR, an interme-
diate representation used to generate circuits for proving. Due to additional
features provided by Aztec, specifically the support for nullifier-based private
transactions, Aztec’s execution model separates the handling of private data
from the processing of public transactions. Transactions are first executed and
proved locally by users inside the PXE, only propagating the public components
of a transaction and a ZKP of the validity of its privately executed components
to rollup nodes. This ZKP ensures the validity of private transactions, while the
execution of their public components ensures the validity of the block.

3.5 Target Hardware and Prover Architecture

The hardware configurations required for ZK-VM providers vary significantly
between projects, reflecting the diverse computational demands of their proof
systems. Our analysis divides prover designs by target hardware and paralleliza-
tion strategies into the following categories:

1. Single CPU-optimized implementations such as Polygon’s ZK-EVM, which
demands a high-capacity setup with a 96-core CPU and at least 768 GB of
RAM.

2. Single GPU and CPU proving, such as Scroll’s system, which parallelizes
the execution of multiple blocks using a single GPU but then aggregates the
proofs into a single proof that is posted on the chain using a CPU.

3. Cluster-based approaches: both zkSync and Risc0’s systems rely on two
stages. At first, the state transitions are divided into segments and proved
in parallel, after which the proofs are aggregated and also in parallel. The
key difference with Scroll’s approach is that aggregation is also parallelized
across a large cluster of GPUs or CPUs.

This highlights an essential consideration: Each ZK-VM implementation is metic-
ulously optimized for specific hardware configurations, rendering direct perfor-
mance comparisons on identical machines less meaningful. Furthermore, ongoing
research on hardware acceleration for ZK-EVMs aims to further enhance proving
times and system performance.

4 Experimental Evaluation

In this section, we delve into our methodology for benchmarking and analyzing
the costs associated with ZK-Rollups. Benchmarking these systems is essential
because it sheds light on the areas most in need of optimization. With many
ZK-Rollups projects that aim to decentralize their core components, this anal-
ysis offers a timely opportunity to assess the costs involved and explore how
these systems can achieve profitability and sustainability. Additionally, we con-
sider projects interested in deploying specialized, application-specific rollups us-
ing existing infrastructure, aiming to discern the cost-related trade-offs of each
stack.
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Fig. 4: Overview of the benchmarking procedure.

4.1 Benchmarking and Analyzing ZK-Rollups

Our analysis is designed to simplify the understanding of how external factors
influence the costs and, consequently, the fees associated with ZK-Rollups. We
begin by identifying the primary challenges in benchmarking ZK-Rollups, par-
ticularly focusing on their core component: the ZK-EVM. Then, we present our
methodology and the decisions made to navigate these challenges, and finally,
we answer the targeted research questions (c.f. Section 1).

Challenges and methodology. In this subsection, we outline the inherent
challenges in benchmarking ZK-Rollups and detail our methodology for address-
ing these challenges. The benchmarking process, depicted in Figure 4, provides
a high-level overview of how we evaluate ZK-Rollups.

Initially, transactions from the selected payload are processed using the se-
quencer and any auxiliary tools provided by the ZK-Rollup to create a batch.
This step can be performed on standard hardware without the need for special-
ized, expensive machines. Subsequently, this batch is fed into the prover pipeline
within an instrumented environment designed to capture the necessary metrics.
The proving phase generally consists of at least two steps, though this can vary.
The final phase involves calculating the total costs, incorporating L1 data, batch
posting and batch verification costs on L1, and hardware expenses. By integrat-
ing both the offline and the online analyses, we generate a comprehensive report
that breaks down the costs.

Metrics. Determining appropriate metrics is a fundamental challenge. We focus
on straightforward metrics that facilitate a basic comparison between different
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systems, making it easier for teams to integrate their ZK-EVMs into our bench-
marking framework. In future work, we plan to expand our metrics to include
power consumption, RAM usage, and GPU/CPU time. The primary metrics in
this preliminary study are as follows:

– Seconds per Proof : The time required to generate a proof.

– USD per Proof : The cost of generating a proof, calculated by multiplying
the clock time by the rate for using a cloud service like AWS or GCP.

– USD per Proving a Transaction: The cost associated with proving a
single transaction.

Configuration. Choosing the right hardware configuration for benchmarking
is another significant challenge. Ideally, different systems should be tested on
identical or at least similar hardware specifications. However, this is nearly un-
feasible for ZK-EVMs, as they are designed with distinct objectives in mind and
optimized for vastly different hardware setups. Thus, we chose to benchmark the
systems according to the hardware specifications recommended by each team for
production use. This decision aims to capture the optimal cost-time efficiency
based on each system’s specific optimizations. Additionally, different proving
systems have different requirements for resources (e.g., RAM) and different op-
tions for optimizations (e.g., through parallelization), meaning that it is even
more difficult to compare to standardized machines.

Payloads. Deciding on the appropriate payloads for benchmarking is also chal-
lenging. Given the varying degrees of compatibility EVM between systems, se-
lecting a common payload for comparative analysis is difficult. Moreover, the
complexity of these systems further complicates setup and benchmarking efforts
with specific payloads. Ideally, benchmarking would utilize historical Ethereum
blockchain data, but the lack of necessary tooling in most ZK-Rollups compli-
cates this approach. Instead, we focus on benchmarking common smart contract
functionalities, including native transfers, ERC-20 transfers, contract deploy-
ment, native Solidity/YUL hashing, and the Keccak precompile.

These payloads represent typical blockchain operations, though future work
may expand this list for more detailed analysis (e.g., token swaps, DAO voting,
and NFT mints). Finally, note that we parameterized all payloads to different
sizes, e.g., 1 ETH transfer vs. 10 ETH transfers vs. 100 ETH transfer, meaning
that we have benchmarked 3 different batches of size 1, 10, and 100. Nevertheless,
we recognize the necessity for additional research to develop more comprehensive
workloads for benchmarking those systems.

Reproducibility. Ensuring reproducibility is crucial. Regardless of the metrics,
configurations, and payloads, it is essential that the benchmarking process be
designed so that third parties can validate the results. To accomplish this goal,
we publish all configurations, scripts, and instructions used in our benchmarking
process. This includes detailed specifications of the machines used, scripts for
setting up the environment, and step-by-step instructions for running tests with
the specified payloads. Our goal is for others to be able to replicate our findings
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by following our documentation, thus reinforcing the validity and reliability of
our results while being able to easily extend our benchmarks.

L1 Data. To obtain data from L1 for our analyses, we selected a period from
April 10, 2024 (block 19621224), to May 10, 2024 (block 19835630). During this
period, we crawled the main contracts of the selected ZK-Rollups and retrieved
the required information: gas consumption for committing batches to L1 (exclud-
ing the gas cost related to Data Availability) and batch verification costs, i.e.,
the cost for verifying the proof and updating the smart contracts. This informa-
tion is essential for comprehending fixed costs and is not connected to variable
costs. Instead of our local payloads, we utilized on-chain data to determine the
typical configurations employed by the rollups, including batch sizes.

Threats to Validity. Our study faces some validity threats that should be
considered when interpreting the results. Firstly, our chosen payloads may not
fully represent the range of real-world scenarios. We focused on providing easily
executable payloads that are highly relevant, such as ETH and ERC-20 trans-
fers, contract deployments, and SHA-256 hashes, commonly seen in other ZKP
benchmarks [12]. However, this selection may overlook other important transac-
tion types and interactions. Secondly, the results for certain components might
be biased due to the specific payloads used. For instance, our payloads tend to
favor state diffs as they primarily involve interactions with a single contract,
which may not accurately reflect more complex and diverse batches. We have
made efforts to clearly state any potential biases in the relevant sections of the
paper. Finally, there are cases where parts of the systems are not fully open-
sourced or could not be run in a controlled sandboxed environment. In those
instances, we decided not to include our results for those systems in the anal-
ysis, as these results could not be independently verified by us. To ensure the
quality and reliability of our findings, we narrowed our results to systems for
which we could provide high-quality data.

4.2 Results

In this section, we present the results of our benchmarking and analysis of ZK-
Rollups. We begin by detailing the systems we analyzed and the hardware config-
urations used for our tests. Following this, we dive into each research question,
providing comprehensive answers based on our findings. Our goal is to offer
information on the performance, costs, and trade-offs of different ZK-Rollup
implementations.

Selected ZK-Rollups. For our analysis, we selected zkSync Era and Polygon
ZK-EVM. The primary reason for choosing these two is that they are the only
ZK-Rollups that are both EVM-compatible and fully open-sourced among the
popular deployed ZK-Rollups. While Scroll is also EVM-compatible and widely
used, we excluded it from our study because its GPU-prover is closed-source,
which limits our ability to conduct a thorough and transparent analysis. By
focusing on zkSync Era and Polygon ZK-EVM, we ensure that our benchmarking
is based on systems with relatively stable code bases and deployed on a large
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ZK-Rollup Commit Hardware Configuration Hourly Cost

Polygon zkEVM d37e826 r6i.metal (128 vCPUs, 1024GB
RAM)

$8.06

zkSync Era 4794286 g2-standard-32 (32 vCPUs, 1
NVIDIA L4 GPU, 128 GB RAM)

$1.87

Fig. 5: Selected ZK-Rollups and Hardware Configurations. The Polygon ZK-
EVMmachine is hosted on AWS, while the zkSync Era is on GCP. Both machines
have 1 TB SSD disk space. Note that spot prices could reduce the hourly cost
significantly.

scale. Figure 5 summarizes the specific versions (commits) of the ZK-Rollups we
analyzed and the hardware configurations used for our experiments. Note that
we selected those machines after advising the teams developing the analyzed
systems.

Benchmarking zkSync Era’s Prover. We could only manage to run zkSync
Era as a black-box system where multiple processes exchange messages, perform
computations, and write logs. This is because Era is designed to run as a mini-
cluster. Additionally, the instructions and configurations on how to set up this
cluster are not publicly available. Since we were unable to run the prover compo-
nents independently in a sandboxed environment and measure the performance
ourselves, we decided not to include the prover time and cost in our analysis.
Unfortunately, given the current state of the prover and its limited documenta-
tion, it was quite complicated to instrument the system for benchmarking as we
intended. However, we were still able to reliably obtain proof compression time,
and DA costs for Era. We leave as future work a fine-grained benchmarking of
the Era prover.

4.3 Fixed Costs

The results presented in Figure 6 highlight the fixed costs for zkSync Era and
Polygon ZK-EVM based on historical data from 10 April 2024 to 10 May 2024.
The fixed costs encompass gas costs for committing and verifying batches, and
proof compression costs. Note that zkSync Era has an additional transaction
for finalizing transactions and enabling withdrawals, which we also consider a
fixed cost. The two solutions employ different approaches: zkSync Era supports
significantly larger batches, while Polygon ZK-EVM utilizes smaller batches and
employs aggregation to derive a final proof. Both systems convert a STARK proof
into a SNARK, incurring a fixed proving cost that remains constant regardless
of the input size.

For zkSync Era, the data show a median batch size of 3,895 transactions,
resulting in a median batch cost of $18.93 and a cost per transaction of approx-
imately $0.0047. The large batch sizes in zkSync Era allow for the costs to be
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Metric Era Polygon

Batch Size
Median Batch Size (Min/Max) 3,895 (485/5,000) 27 (1/158)

Theoretical Max Batch Size 5,000 498

Commit Batches
Median Gas Cost 230,686 324,088

Median Batches Per Tx (Min/Max) 1 (1/1) 8 (1/15)

Verify Batches
Median Gas Cost 458,527 378,461

Median Batches Per Tx (Min/Max) 1 (1/1) 20 (1/160)

Execute Batches
Median Gas Cost 3,303,634 -

Median Batches Per Tx (Min/Max) 26 (4/45) -

Proof Compression
Median Time in Seconds (USD Cost) 1,075 (0.56) 311 (0.70)

Median Batches per Proof 1 20

Normalized Costs

Median Gas Per Batch (USD) 816,275 (18.37) 59,434 (1.34)

Median Batch Cost USD 18.93 1.38

Median Gas Per Tx (USD) 209 (0.00471) 2,201 (0.04962)

Median Tx Cost USD 0.00486 0.05111

Median Gas Per Tx – Full Batches (USD) 163 (0.00367) 119 (0.00268)

Median Cost Per Tx – Full Batches USD 0.00378 0.00275

Fig. 6: Fixed costs breakdown for ZK-Rollups using historical data. The USD cost
of gas is based on 7.5 Gwei, and an Ether price of $3,000. Compression costs are
derived from Figure 5. For Polygon ZK-EVM we also include the batch proof
aggregation costs in proof compression. In zkSync Era, the execution of batches
signifies L1 finality, thus fully finalizing the batch and allowing fund withdrawals
from the system. The numbers are crawled from on-chain data from 10 April 2024
to 10 May 2024.

distributed across a greater number of transactions, thereby reducing the cost
per transaction. In contrast, Polygon ZK-EVM processes smaller batches, with a
median batch size of 27 transactions. This leads to a median batch cost of $1.38
and a cost per transaction of $0.0511. Notably, in their ideal scenario where the
batches are completely full, both systems can achieve negligible fixed costs per
transaction (i.e., less than $0.004).

One critical insight derived from the analysis is that filling batches to their
maximum capacity is essential to minimize fixed costs per transaction. This
strategy allows the cost to be amortized over many transactions. However, it may
negatively impact the finality if L2 does not have sufficient usage. Furthermore,
even with enough usage, the marginal costs or proving time might increase,
leading to slower finality. These trade-offs and their implications will be further
examined in subsequent subsections.



18 S. Chaliasos et al.

E
th

T
ra

n
sf

er
S

am
e

-
1

E
th

T
ra

n
sf

er
S

am
e

-
10

E
th

T
ra

n
sf

er
S

am
e

-
10

0

E
th

T
ra

n
sf

er
S

am
e

-
20

0

E
th

T
ra

n
sf

er
D

iff
er

en
t

-
10

E
th

T
ra

n
sf

er
D

iff
er

en
t

-
10

0

E
th

T
ra

n
sf

er
D

iff
er

en
t

-
20

0

E
rc

T
ra

n
sf

er
S

am
e

-
1

E
rc

T
ra

n
sf

er
S

am
e

-
10

E
rc

T
ra

n
sf

er
S

am
e

-
10

0

E
rc

T
ra

n
sf

er
S

am
e

-
20

0

E
rc

T
ra

n
sf

er
D

iff
er

en
t

-
10

E
rc

T
ra

n
sf

er
D

iff
er

en
t

-
10

0

E
rc

T
ra

n
sf

er
D

iff
er

en
t

-
20

0

C
on

tr
ac

t
D

ep
lo

y
-

1

C
on

tr
ac

t
D

ep
lo

y
-

10

C
on

tr
ac

t
D

ep
lo

y
-

10
0

C
on

tr
ac

t
D

ep
lo

y
-

20
0

S
h

a2
56

S
ol

id
it

y
-

1

S
h

a2
56

S
ol

id
it

y
-

10

S
h

a2
56

S
ol

id
it

y
-

30

K
ec

ca
k

P
re

co
m

p
ile

-
1

K
ec

ca
k

P
re

co
m

p
ile

-
10

K
ec

ca
k

P
re

co
m

p
ile

-
30

Payload and Input Size

0

20000

40000

60000

80000

D
A

B
yt

es

Era

Polygon

Fig. 7: Comparison of DA (Data Availability) requirements for various payloads
between zkSync Era, which uses state diffs, and Polygon ZK-EVM, which posts
transaction data.

4.4 Marginal Costs

The incremental costs of ZK-Rollups are essential to grasp their scalability and
effectiveness. This section explores the duration required to produce a proof for
a batch, the related expenses, and the data availability (DA) expenses in bytes
needed for submission to the L1. Furthermore, we evaluate the efficiency of state
differences as opposed to uploading full transaction data.

The design of the provers for Polygon and zkSync Era shows marked differ-
ences. The prover for zkSync Era is designed to support the processing of large
batches, supporting up to 5,000 transactions, and operates on more affordable
hardware. On the other hand, the architecture of Polygon’s prover is geared to-
wards quick-proof generation, albeit at the cost of requiring pricier equipment.
We noticed that the time it takes for zkSync Era to generate proofs extends
with larger input sizes. In Figure 11 in Appendix B, we show some prelimi-
nary measurements that demonstrate this pattern. In contrast, Polygon’s prover
maintains a consistent output time of either 190 or 200 seconds, independent of
input size. While Polygon’s prover offers speed advantages for smaller batches,
this comes at the trade-off of requiring expensive hardware. Nevertheless, with
increasing batch sizes, Polygon’s prover becomes more cost-effective, as it takes
the same time to prover different number of transactions. This demonstrates
another difference in the design: Era’s prover is more elastic as smaller batches
will be faster, and larger ones will be slower, whereas in Polygon batches proving
will be either 190 or 200 seconds.

Figure 7 illustrates the data availability (DA) needs in bytes for both Polygon
and zkSync Era. A primary distinction is zkSync Era’s use of state diffs, in
contrast to Polygon’s approach of posting entire transaction data. The state
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Fig. 8: Trade-off between proving/compression times (affecting finality) and cost
per transaction for Polygon ZK-EVM.

Size
Fixed Costs Marginal Costs Total Cost Per Tx (USD)

Commit Verify Proof Comp. Proving DA-Blob DA-Calldata w/ Blob w/ Calldata

100 44%/36% 52%/42% 1%/1% 3%/2% 0% 20% 0.16 0.20
498 44%/20% 52%/23% 1%/1% 3%/1% 0% 55% 0.03 0.07
996 43%/13% 50%/15% 1%/0% 5%/2% 0% 70% 0.02 0.06
2,490 40%/6% 46%/7% 2%/0% 12%/2% 0% 84% 0.01 0.05

Fig. 9: Cost breakdown for ETH transfers in Polygon ZK-EVM. The blob price
per byte is 1 wei, the normal gas price is 7.5 Gwei, the ETH price is $3,000, and
we use the costs of the machines from Figure 3 for the provers. We also capture
the cost per byte, i.e., for blobs, we do not charge for the whole blob if it is less
than the blob size. The first percentage is when we consider blobs as DA, and
the second is for calldata.

diffs used by zkSync Era result in notably superior compression, making the
DA requirements disparity more pronounced as the input size grows. The cost-
effectiveness of zkSync Era’s state diffs is due to this enhanced compression. It
is crucial to acknowledge that our payloads are naturally advantaged by state
diffs since our transactions usually engage with a specific contract, enhancing
compression potential. Although the actual difference may be smaller in practical
scenarios, it remains considerable. Future investigations into this subject are
recommended.

4.5 Trade-off Between Fast Finality and Cost Minimization

Figure 8 demonstrates the trade-off between fast finality and cost minimization
in Polygon ZK-EVM, using benchmarks of 100, 498, 996, and 2490 ETH trans-
fers. As depicted in Figure 8, Polygon’s prover time increases linearly. Note that,
as mentioned before, Polygon’s prover always takes 190-200 seconds per batch.
So, to prove 996 transactions, we are required to prove two batches and aggre-
gate them. Further, the cost per transaction amortized better when using larger
inputs, demonstrating a trade-off between fast proving (i.e., faster finality) or
processing larger inputs and achieving better cost-effectiveness.
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Size in Bytes Calldata Blobs

Input Era Polygon Era Polygon Era Polygon

ERC-20 Transfers (200) 10,999 70,357 $23.05 $136.96 $3.3× 10−11 $2.11× 10−10

Contract Deployment (100) 17,087 84,369 $35.97 $182.43 $5.1× 10−11 $2.53× 10−10

ETH Transfer (2,490) 88,693 283,905 $194.53 $661.95 $2.66× 10−10 $8.52× 10−10

Fig. 10: Impact of EIP-4844. The gas cost used is 50 Gwei (representing pre-
Dencun upgrade prices), the ETH price is $3,000, and the blob gas cost is 1
wei. Note that for blobs, typically, you have to pay for a full blob, but here, we
compute the cost only for the required bytes.

4.6 Cost Breakdown

Figure 9 provides a detailed cost breakdown for ETH transfers across different
batch sizes, showing the distribution of fixed and marginal costs. For small batch
sizes, fixed costs such as committing, verifying, and proof compression dominate
the total cost per transaction. As batch sizes increase, DA costs become more
significant, particularly when blobs are used instead of calldata. In addition, for
larger batch sizes, proving costs become increasingly relevant.

One interesting observation is that Polygon has optimized for fast proving
time, leading to very fast and relatively cheap proving prices. In our preliminary
investigation of Era, we noticed that orthogonal to Polygon, they have optimized
more for data compression. In both systems, proof compression takes a fraction of
the cost 1% and can be ignored, demonstrating that the use of such compression
techniques is essentially free of non-trivial additional computational burdens.

In the context of blob pricing, proving time takes up merely 5% of the total
cost incurred on Polygon. Furthermore, we observe that where blobs are used
for DA, marginal costs of proving over the underlying batch size grow at a
higher rate. When using calldata as DA, the situation changes: in this case,
the marginal costs for calldata usage are non-trivial for Polygon. Nevertheless,
the cost of proving remains at almost negligible levels (less than 2% of the cost
of a full batch) at all batch sizes when using calldata DA. However, the vast
majority of costs in Polygon (around 97% of the total cost for a batch of 2,490
transactions) stem from its DA requirements to store full transaction records.

4.7 Impact of EIP-4844

The introduction of EIP-4844 has significantly influenced the cost dynamics
of ZK-Rollups, particularly in terms of DA costs. As illustrated in Figure 10,
EIP-4844 has generally minimized DA costs by allowing for more efficient data
posting. However, it is important to note that for blob transactions, rollups are
required to pay for an entire blob of approximately 125 KB.

This implies that for rollups required to frequently submit small batches to
L1, utilizing calldata could be more economically viable than using blobs. This
underscores the importance of additional research into the existing constraints of
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blobs and how the market might evolve as demand grows. Moreover, the present
low pricing of blobs has not fully realized market price discovery. It is important
to consider that sustained low prices might establish impractical expectations,
which could result in substantial price hikes as the market realigns.

More specifically, given a shift to blob-based pricing that significantly re-
duces DA costs for ZK-Rollups across the board, the recorded results allow for
projecting on the relative costs of transaction processing at large batch sizes for
each of the two assessed systems.

Given that Polygon has not yet implemented blob-aware logic, we expect
that any marginal changes to its transaction cost model will occur after the
new DA market matures. To this end, the ratio of the relative marginal costs of
proving on Era and Polygon respectively goes from 20× (= 39%/2%) to 5× (=
52%/12%), suffering a 4× drop. This is indicative that, upon subsidizing DA
costs through blobs, the large relative DA cost for transactions on Polygon is
much less pronounced (relative to Era) than before. This can be expected as the
Era prover is “already” more constrained by proving (given its more efficient use
of state-diffs) and thus sees a lower marginal cost benefit from the DA repricing.
This is also reflected in how marginal proving costs go from 39% to 52% (increase
by a third) on Era due to blobs, while they almost triple (from 2% to 5%) on
Polygon.

The above implies that Polygon could marginally benefit more by blob repric-
ing, lowering its DA cost bottleneck, and moving in the direction of proving its
main (marginal) cost. The latter regime seems to already be the case with Era
where, although the new blob pricing system will provide benefits, they will not
be affecting the substantial proving costs and thus will have lower relative im-
pact. As DA costs continue to fall, we also expect that both (all) ZK-Rollups
systems converge to respective “maximal” marginal proving costs (relative to
DA), at which point DA will be a comparatively much smaller part of the over-
all cost structure and will not need to be further subsidized.

4.8 Lessons Learned

Below we revisit the original research questions from Section 1.

– Trade-off between Fast Finality and Cost Efficiency (RQ1–RQ3):
Our experiments highlight a primary trade-off between achieving fast final-
ity (i.e., rapid proving time) and maximizing cost efficiency through cost
amortization. Filling batches fully allows for better cost amortization per
transaction, impacting both fixed and marginal costs. While fixed costs be-
come less significant for large batches, they dominate the costs for smaller
batches, making efficient batch filling crucial for overall cost efficiency. This
creates a dynamic where rollups perform better at higher utilization levels,
somewhat paradoxically. This insight raises questions about designing an
optimal metering mechanism for ZK-Rollups.

– State Diffs Efficiency (RQ2): Our preliminary benchmarking indicates
that state diffs are highly cost-efficient in reducing data availability costs
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for ZK-Rollups. By publishing only the state changes instead of complete
transaction data, state diffs offer significant compression benefits, especially
as the input size increases.

– Importance of Sequencing (RQ4): The proving process benefits greatly
from efficiently filling batches with transactions. It is essential to match the
transactions to the capabilities of the underlying prover. For example, Poly-
gon’s prover can handle a limited number of Keccak operations per proof.
Proving a single Keccak costs the same as proving the maximum number of
Keccak operations the prover can handle in a batch. Therefore, sequencing
transactions to fit the prover’s optimal capabilities can significantly reduce
the cost per transaction. This highlights the importance of developing sophis-
ticated sequencing strategies and suggests a need for further research into
the topic to guide the development of efficient sequencing for ZK-Rollups.

– Impact of EIP-4844 (RQ5): The Dencun upgrade has substantially re-
duced DA costs, enabling near-zero cost transactions for ZK-Rollups. How-
ever, as blob prices may increase in the future, optimizing ZK-Rollups for
cost efficiency remains critical. Additionally, strategies such as blob-space
sharing or selectively using calldata instead of blobs during periods of high
blob prices or for small batches could be viable options under certain cir-
cumstances and specific requirements.

5 Open RQs and Future Work

In this section, we present the open questions that remain unanswered in our
current work and sketch a roadmap for future research. These questions not only
underscore the complexities inherent in ZK-Rollups but also highlight areas that
require further exploration.

– Decentralization’s Impact on Costs: A pivotal question revolves around
how decentralizing L2 core components will influence transaction processing
costs. Specifically, we seek to understand whether the decentralization will
lead to negligible cost implications or if it will significantly alter the economic
landscape of ZK-Rollups. Another related open question but beyond the
scope of this work is L2 MEV and cross-chain MEV.

– Batch Size and Sequencing Optimization: The size of transaction batches
is a critical factor affecting proving costs. Future iterations of our work will
delve into how variations in batch size and executed opcodes in a batch in-
fluence the cost per transaction and the overall proving time. While current
systems may operate with an optimal batch size tailored to their specific
needs, emerging forks (e.g., app-chains) may require adjustments to accom-
modate different priorities. This analysis aims to provide valuable insights
for optimizing batch size and contents in response to evolving requirements.

– Metering Mechanism Evaluation: Another area of interest is the ex-
amination of the metering mechanisms employed by ZK-EVMs, which tra-
ditionally mirror those of the EVM [37]. Given that proving certain EVM
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opcodes might be relatively more costly than their execution, we plan to
investigate potential discrepancies in pricing. Through micro-benchmarks,
we will explore whether such mismatches pose significant challenges, such as
the under-pricing of specific opcodes that could lead to DoS attacks.

– Proving Market Mechanisms: We also intend to explore various proving
market mechanisms and assess how they might influence the cost dynamics of
proof generation [36]. This exploration could shed light on potential economic
models conducive to more efficient and cost-effective proving processes.

– Throughput Limitations: Identifying the maximum transactions per sec-
ond (TPS) each rollup can achieve, based solely on proving and DA on
Ethereum and excluding other market dynamics, is another critical inquiry.
This analysis will help quantify the scalability limits of current ZK-Rollup
implementations.

In addition to addressing these open questions, our future work will expand the
scope of our benchmarks. We aim to conduct micro-benchmarks at the opcode
level to gain a finer-grained understanding of proving costs. Moreover, we plan
to introduce macro benchmarks with diverse payloads beyond those presented
in this study. Furthermore, by replaying blocks of Ethereum on different ZK-
Rollups, we aspire to provide deeper insight into their performance and cost-
efficiency. We also plan to analyze ZK-VM-based ZK-Rollups and compare them
with native ZK-Rollups to shed more light on the debate between specialized
circuit implementations versus using generic VMs to produce ZKPs.

6 Related Work

Benchmarking Blockchains and EVM Implementations. Benchmarking
blockchains has garnered significant attention from both academic and practi-
tioner communities. Gramoli et al. [15] developed a comprehensive benchmark
suite for six popular blockchains with smart contract capabilities, conducting an
extensive evaluation using five realistic decentralized application payloads across
various configurations for each blockchain. Their primary objective was to assess
latency and throughput. In a subsequent study, Nasrulin et al. [23] introduced
Gromit, a tool focusing on blockchains with various consensus algorithms, with
both studies focusing on the overall performance of the blockchains under ex-
amination rather than specific aspects such as execution node implementations.

In this work, our focus shifts to benchmarking the core components of ZK-
Rollups, paralleling efforts such as those of Cortes-Goicoechea et al. [10], who
benchmarked the five most prominent Ethereum consensus clients to evaluate
their resource consumption. Similarly, Zhang et al. [39] employed simple mi-
crobenchmarks to compare the efficiency of WASM EVM nodes against Geth
and Openethereum. Our future endeavors include conducting micro-benchmarks
to gain deeper insights into ZK-EVM implementations. Furthermore, both aca-
demic and industry efforts have explored benchmarking EVM nodes using either
straightforward macro benchmarks [11], like ERC-20 transfers, or fuzzy tech-
niques [25] to assess the performance characteristics of EVM implementations
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comprehensively. Mirroring this approach, we utilized macro benchmarks to eval-
uate the performance of ZK-EVM implementations, with plans to adapt tools
such as flood [25] for future ZK-EVM benchmarking. Busse et al. [6] evaluate
EVMs on various machines to pinpoint any noticeable differences.

While our current analysis does not extend to testing various machines for
each ZK-Rollup, our objective is to perform such analyses to determine the most
cost-effective hardware configurations for running each ZK-EVM and to identify
the most optimized setup for each prover. Lastly, Perez, and Livshits [26] evalu-
ated the EVM’s metering mechanism, identifying potential DoS attack vulnera-
bilities. Inspired by their findings, we plan to conduct stress tests on ZK-EVM
implementations to uncover any mispricing in the proving costs of specific EVM
opcodes.

Benchmarking ZKPs. Benchmarking efforts for ZKPs play a crucial role in
improving the understanding and performance of cryptographic libraries and
primitives. Benarroch et al.[4] highlighted the inherent challenges and outlined
best practices for implementing benchmarks for ZKP Domain Specific Languages
(DSLs). Building upon this foundation, our work outlines the specific challenges
of benchmarking ZK-Rollups, particularly focusing on ZK-EVMs, and proposes
a comprehensive methodology to tackle these challenges. Ernstberger et al. [12]
introduced zk-Bench, a detailed benchmarking framework and estimator tool
designed for evaluating the performance of low-level public-key cryptography
libraries and SNARK DSLs.

Our research complements these efforts by focusing on ZK-EVMs, which rep-
resent some of the most complex systems employing SNARKs. In addition to
these efforts from academia, the Celer Network published a blog post12 that
benchmarks the time and memory costs of proving SHA 256 circuits across var-
ious ZKP tools. Parallel to our efforts, Delendum has developed a framework13

dedicated to benchmarking ZK-VMs. An interesting future work could be to
compare the performance of ZK-VM-based ZK-EVMs versus native solutions.

Analyzing Rollups and ZK-Rollups. Chaliasos et al. [9] provided a tax-
onomy of security issues that might occur in systems utilizing ZKPs including
ZK-Rollups. Thibault et al. [35] have conducted an extensive survey on the
use of rollups as a scalability solution for the Ethereum blockchain, discussing
the various types, highlighting key implementations, and offering a qualitative
comparison between optimistic rollups and ZK-Rollups. Koegl et al. [18] have
compiled a comprehensive list of known attacks on rollup systems, shedding
light on their potential impacts. In contrast, our work delves into ZK-Rollups,
providing a detailed overview and explanation of their characteristics through a
qualitative analysis. In addition, we focus on the empirical benchmarking of ZK-
Rollups and the meticulous analysis of their associated costs. This dual approach
not only enriches the understanding of ZK-Rollups as a scalability solution but

12 https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-p

roof-development-frameworks/
13 https://github.com/delendum-xyz/zk-benchmarking

https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/07/14/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://github.com/delendum-xyz/zk-benchmarking
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also underscores the economic viability and technical challenges of implementing
ZK-Rollups.

7 Conclusions

In this paper, we have undertaken a comprehensive analysis of ZK-Rollups, fo-
cusing on their scalability, efficiency, and economic implications. Our theoretical
and empirical evaluations of Polygon ZK-EVM and zkSync Era reveal the in-
herent trade-offs in their design and implementation, providing critical insights
into their operational costs and performance.

Addressing the challenges of benchmarking ZK-Rollups, we have developed a
structured methodology that allows for a thorough evaluation of these systems.
Our results highlight possible improvements and suggest directions for future
research. This research not only improves the understanding of ZK-Rollups, but
also aims to guide and influence the development of more efficient rollups.
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tasy Romero, Ignasi Ramos, Héctor Masip Ardevol, and Carlos Matallana for
their insightful feedback and help with technical issues. We thank the Ethereum
Foundation and TL;DR Research for supporting this work. We thank Cristina
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Fig. 11: Proving time increases depending on input size for the Era prover. Note
that this result is not complete and does not count for potential parallelization.

– Support for Ethereum’s smart contract standards (e.g., ERC-20) and pre-
compiles (e.g., keccak).

– Support for Ethereum’s existing wallet infrastructure.
– Support for Ethereum’s existing development infrastructure.

B Proving Time for Era

Figure 11 provides an overview of the increase of proving time in zkSync Era
given different batch sizes of various inputs. This highlights a design orthogonal
to Polygon ZK-EVM where, for each batch, the time needed to be proved is
either 190 or 200 seconds. It is important to note that both systems optimize for
various aspects. For example, zkSync optimizes for data compression through
its state diffs mechanism, whereas Polygon optimizes for fast proving times. It
is important to note that Figure 11 is not complete. Due to the complexity of
the system, its modular architecture, and the lack of documentation, we did
not manage to measure the complete proving time precisely. Finally, note that
the setup for Era can be improved by: (1) using more machines to parallelize
computation and reduce finality time, (2) using cheaper machines for non-GPU
computations, e.g., witness generation, to reduce proving costs.
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