
Secret Key Recovery in a Global-Scale End-to-End Encryption System

Graeme Connell∗
Signal Messenger

Vivian Fang∗
UC Berkeley

Rolfe Schmidt∗
Signal Messenger

Emma Dauterman
UC Berkeley

Raluca Ada Popa
UC Berkeley

Abstract
End-to-end encrypted messaging applications ensure that an
attacker cannot read a user’s message history without their
decryption keys. While this provides strong privacy, it creates
a usability problem: if a user loses their devices and cannot
access their decryption keys, they can no longer access their
account. To solve this usability problem, users should be
able to back up their account information with the messaging
provider. For privacy, this backup should be encrypted and
the provider should not have access to users’ decryption keys.
To solve this problem, we present Secure Value Recovery 3
(SVR3), a secret key recovery system that distributes trust
across different types of hardware enclaves run by different
cloud providers in order to protect users’ decryption keys.
SVR3 is the first deployed secret key recovery system to split
trust across heterogeneous enclaves managedby different cloud
providers: this design ensures that a single type of enclave
does not become a central point of attack. SVR3 protects
decryption keys via rollback protection and fault tolerance
techniques tailored to the enclaves’ security guarantees. SVR3
costs $0.0025/user/year and takes 365ms for a user to recover
their key, which is a rare operation. A part of SVR3 has
been rolled out to millions of real users in a deployment with
capacity for over 500 million users, demonstrating the ability
to operate at scale.

1 Introduction

End-to-end encrypted messaging applications like Signal [92],
WhatsApp [27], and Messenger [65] are used by hundreds
of millions to billions of users. They provide end-to-end en-
cryption: user devices (the “ends”) encrypt user messages so
application servers receive only encrypted messages without
decryption keys. Only the users in a conversation can decrypt
the messages locally on their devices. This paradigm pro-
tects user messages even if the application provider or cloud
infrastructure is compromised.

*Equal contribution.

To provide this guarantee, end-to-end encrypted messaging
application providers must ensure that their users’ secret
keys and data are protected against a wide range of attacks
by malicious employees, cloud provider administrators, or
other privileged agents. Unfortunately, this creates a usability
problem: if a user loses their device, the user loses access to
their account information, metadata (e.g. address book, social
graph), and message history. The application provider cannot
directly store a backup of this information, as this would
violate the core principle of end-to-end encryption. Similarly,
if the application provider stores an encrypted backup of this
information it must not have access to the backup’s decryption
keys. Users who lose their devices should be able to recover at
least their account settings and metadata without the provider
gaining access to this protected data.
Shortcomings of many existing key recovery systems. A
potential strawman is to allow the user to download their
backup encryption key (e.g., print them on a piece of paper)
and store them in a safe place [46,53,66], but this places extra
burden on the user [83]. A more user-friendly approach to this
problem is to allow a user to use a password or a PIN to encrypt
their key [38]. Unfortunately, these are often vulnerable to
brute-force dictionary attacks [89, 90]. Furthermore, standard
safeguards (e.g., forcing the attack to be performed online)
can easily be circumvented by the application provider.

Current deployed systems [5, 50, 58,96,104,106] prevent
brute-force attacks by using secure hardware to limit the
number of PIN guesses. This approach provides a strong
protection against service provider administrators and cloud
providers. While these systems all represent significant ad-
vances in password-based key recovery, they rely on the secu-
rity guarantees of a single type of secure hardware. Although
secure hardware is a powerful tool for enhancing the secu-
rity of systems, it can eventually be subverted—attackers
have extracted user secrets from secure hardware in the
past [16, 18, 36, 40, 69, 82, 86, 94, 98, 99, 102, 103]. In these
systems, compromising just one type of secure hardware en-
ables an attacker to recover many users’ secret keys, which is
a catastrophic scenario for any popular encrypted system.

Intel SGX
SVR3

Nitro
SVR3

AMD SEV-SNP
SVR3

Application
Provider

② StoreSecret / ③ RecoverSecret

Authentication
Server

① Auth

UpdateAttest

UpdateCode

Unauthenticated Channel Authenticated Channel Update Channel

User Clients

!"
#️

Encrypted
Backup

④ Decryp
t

Figure 1: System architecture for n = 3 enclave clusters, with each
cluster using a different type of hardware enclave.

Key recovery without a single point of security failure.
In this paper, we contribute Secure Value Recovery 31, a
PIN-based secret key recovery system that prevents any one
type of enclave or cloud provider from becoming a central
point of attack. Our security properties are informed by the
observation that many vulnerabilities are quickly patched,
and so it is challenging for an attacker to find vulnerabilities
on every one of different enclave architectures within the
same time period between rekeying events. SVR3 proposes
a layered architecture, illustrated in Figure 1, consisting of
a tailored cryptographic multi-server key recovery protocol
that distributes trust across three different enclaves from three
distinct hardware vendors on three major clouds: Intel SGX in
Microsoft Azure, AMD SEV-SNP in Google Cloud, and Nitro
in AWS. SVR3 ensures that even if an attacker compromises
two of these enclave types and the respective clouds but not the
third, the attacker cannot reconstruct the user’s secrets due to
the cryptographic protocol. The attacker needs to compromise
the security of all of the clouds and all of the enclave types to
reach user secrets.

We implemented SVR3 as a production-ready system em-
bedded in Signal Messenger [92], an end-to-end encrypted
messaging application with tens of millions of users. We have
already deployed an initial version of SVR3’s implementation
to millions of users globally, and the fully featured system
is in the process of deployment at the time of publication. A
third-party auditor, NCC Group, audited the deployment of
Signal’s SVR2, a predecessor system currently in production

1This is the third generation of Signal’s SVR service and succeeds
SVR1 [58], which did not distribute trust across multiple types of secure
hardware. (SVR2 was a transition system consisting of a partial SVR3 design.)

and using SVR3’s consensus protocol on a single trust do-
main. In production, Signal intends to use SVR3 to improve
the protection of data currently protected by Signal’s SVR2
service, including account settings, contact lists, and group
membership information. SVR3 is open source [91] and can be
used by any end-to-end encrypted system that needs secret key
recovery (e.g., encrypted messaging [27,92], email [79, 81],
or storage [107]). To the best of our knowledge, SVR3 is the
first deployed cross-enclave, cross-cloud secret key recovery
system. The servers for SVR3 cost only $0.0025/user/year and
it takes 365ms for a user to recover their key, which is a rare
operation.
Design decisions. Our design choices were guided by the goal
of developing a real-world PIN-based key recovery system that
prevents dictionary attacks, is easy and affordable to maintain,
and provides security even if a particular enclave or cloud
provider is vulnerable. We summarize the key decisions below.
A layered security architecture (§2–§3). We aim to protect
users’ secrets against three major classes of attackers: cloud
attackers, an internal application provider attacker, and exter-
nal hackers. To achieve this, one strawman is to distribute
trust across multiple organizations. However, finding reliable
and trustworthy such organizations is difficult and expen-
sive [24, 57]. Instead, we introduce an architecture that layers
cryptographic security on top of hardware security by using
different types of enclaves in different clouds. The hardware
enclaves enable creating three separate trust domains, and the
cryptographic tools split secret keys across the trust domains.
PPSS to distribute trust (§4). Password Protected Secret
Sharing (PPSS) [7] provides password-based key recovery
while distributing trust across multiple backends and limiting
attackers to online dictionary attacks. Different PPSS schemes
have different deployment consequences, and we select the
construction by Jarecki et al. [42] primarily because it requires
no cross-trust domain communication and the server design
enables clients to use different secret sharing schemes if they
wish. We use this protocol to construct our one-round key
recovery protocol, where the servers receive no information
about whether the PIN guess was correct, and the servers
unconditionally delete key material after a fixed number of
PIN guesses (which can be refreshed by the clients). This is in
contrast to existing works [92,96,106],which rely on password-
based authentication and require multiple communication
rounds.
Rollback protection through enclave memory and consen-
sus (§5). Like Signal’s original SVR1 system [92], SVR3
protects against software rollback attacks by keeping all data
(e.g., guess counts) inside enclave memory. In order to prevent
data loss, we replicate data across multiple enclaves in the
same cloud. SVR1 uses the original Raft consensus proto-
col [73], which is not safe under physical rollback attacks. In
principle, an attacker with physical access (e.g., a DIMM in-
terposer [97]) to a single server in a vanilla Raft replica group

could take control of the group and roll back log entries. To
defend against such attacks, we develop a modified Raft [73]
protocol, Raft", that provides safety under physical rollback
attacks, as specified in §3.2. We prove its safety under a formal
TLA+ [52] model in the face of physical rollback attacks.

Secure code updates via auditing (§6). To enable code
updates while providing strong security, we allow clients to
audit the deployed code and explicitly disallow sharing of data
between different (server) binary versions. Data migration
between binary versions flows through the client, and clients
can determine whether or not to store their secret value on
each version of the binary.

Limitations. SVR3 relies on the underlying security guaran-
tees of the enclaves it employs; supporting a new enclave or
a new version of an existing enclave would require carefully
reasoning about how it fits into the threat model. Splitting
infrastructure across multiple cloud providers also incurs
higher monetary costs than deploying on a single provider,
but offers stronger security assurances. Furthermore, SVR3
does not support recovering the user PIN that is used in secret
key recovery (i.e., if a user forgets their PIN, they cannot
recover their key). We mitigate this in practice by periodically
prompting the user to re-enter their PIN on the messaging
client to prevent permanent lockout. Finally, we remark that
the scope of this paper is on how Signal currently implements
key recovery, and not the Signal system as a whole (e.g., how
the recovered key is used).

2 System overview

2.1 System architecture
Figure 1 shows the system architecture for an SVR3 deploy-
ment with three cloud providers, with the following entities:

Enclave clusters. The application owner deploys n enclave
clusters (in our deployment, n = 3). To strengthen security,
each enclave cluster should run on a different type of enclave
in a different cloud environment (see §3). We will refer to each
enclave cluster running on different hardware in a different
cloud as a trust domain. Enclave clusters maintain replicated
storage and respond to messages from clients. Each enclave
cluster consists of a load balancer, a discovery service, and a
geographically distributed replica group.

Authentication server. The authentication server establishes
authenticated channels between clients and enclave clusters.
The authentication server prevents malicious clients from
exhausting PIN attempts for honest users because a client
needs to authenticate to the authentication server (e.g., via an
SMS code) before interacting with the enclave clusters.

Clients. Clients (e.g., mobile phones or laptops) interact with
the authentication server and nodes in the enclave clusters in
order to back up and recover their secret keys.

Type IIType III

Intel SGXNitro AMD SEV-SNP
SVR3 SVR3 SVR3

Intel SGX

Type I

Figure 2: Types of attackers SVR3 protects against.

Application provider. The application provider will update
the software and run monitoring and maintenance to ensure
that the system is available and healthy.

2.2 System API
As shown in Figure 1, SVR3 exposes the following client API:
• Auth(client id,client cred) → auth token: Establishes au-

thenticated channel between client and server.
• StoreSecret(client id,auth token,val,pin): Backs up a

value val for an authenticated client using a human-
memorable PIN value pin and an authentication token
auth token.

• RecoverSecret(client id,auth token,pin) → {secret,⊥}:
Recovers the value secret for client if (and only if)

– auth token is valid for client id,
– pin matches the PIN provided at StoreSecret time for

client id, and
– the number of unsuccessfulRecoverSecret attempts for

client id does not exceed a set guess limit.
Otherwise, outputs ⊥.

The client can use their recovered secret to locate, authorize
access to, and decrypt their encrypted backup.

We describe how the developer updates SVR3 in §6.

3 Threat model and guarantees

SVR3’s goal is to protect users’s secrets. SVR3 provides
different security guarantees against three types of server
attackers, shown in Figure 2:
• Type I (Internal). This attacker compromises the organi-

zation deploying SVR3 (e.g., a malicious employee). This
attacker does not have physical access to the cloud deploy-
ment and has not compromised the clouds, but can freely
spin up and bring down machines and modify the software
being run.

• Type II (Cloud). This attacker represents an entity with
control over the physical infrastructure SVR3 is deployed
on (e.g., a single cloud provider). While this attacker does

not have access to the multi-cloud system deployment, it
can leverage physical access and tamper with the hardware
running SVR3.

• Type III (External). This attacker is external to the deploy-
ment of SVR3 (e.g., a hacker), and tries to break-in various
parts of an organization’s surface.
We express SVR3’s security guarantees at two levels: (1)

at the level of trust domains (§3.1), defining security in terms
of which trust domains are not compromised, and (2) at the
level of enclaves inside a trust domain (§3.2), specifying the
conditions under which a trust domain is not compromised.

Like other end-to-end encrypted systems [79, 81, 106], if a
user’s device is compromised, SVR3 provides no guarantees
to that user. For an uncompromised user device, we rely on the
trustworthiness of client code released by Signal; we enable
the community to scrutinize the client code and build trust in
it by making it open-source [62–64].

SVR3 does not hide the identity of clients or the timing of
backup and recovery requests.

3.1 Security across trust domains
SVR3 protects users’ secret keys if at most t out of n trust
domains are compromised. We assume that the odds of an
attacker identifying and exploiting vulnerabilities across > t
trust domains during the same time period between rekeys is
low, which motivates our threat model. The system enables
each user to rekey periodically, and deletes the old secret key.

In our deployment of SVR3, we set t = 2 and n = 3, so we
ensure security as long as ≤ 2 trust domains are compromised
(i.e., at least 1 trust domain is uncompromised). We limit PIN
guesses by selecting a parameter u , a server usage limit.

Theorem 1 (Informal). In an SVR3 deployment configured
withn trust domains, threshold t , and a usage limitu , assuming
a password-protected secret sharing scheme (defined in §4.2),
if an attacker compromises ≤ t trust domains, then SVR3
ensures that, for each secret key, the attacker only has

⌊ nu
t+1

⌋
PIN attempts and, after that, cannot recover the secret key.

We describe how SVR3 achieves Theorem 1 in §4.2.

3.2 Security within a trust domain
We now describe the threat model we consider when instan-
tiating the trust domains assumed in §3.1. Recall that each
trust domain consists of an enclave cluster and that each trust
domain should use a different type of enclave.

3.2.1 Enclave threat model

SVR3’s design is not tied to some specific enclave imple-
mentations. Different enclaves vary in design, so we abstract
out the security properties that we require from the enclaves

employed for SVR3’s security guarantees (§3.2.2) to hold. An
uncompromised enclave must provide:
(E1) Application-level attestation. The enclave can prove that

certain code is running before other systems interact
with it, and the attacker cannot alter the code during the
enclave’s execution.

(E2) Access control. Enclave memory is encrypted,and access
control is hardware-enforced to prevent all non-enclave
access.

(E3) Page-level rollback granularity. The attacker can replace
pages of data in the enclave’s memory with older pages
from the same physical location and can mix and match
old and new pages, thus violating global memory in-
tegrity. We assume that an attacker cannot mount these
attacks at a sub-page granularity (e.g., address level) ei-
ther because the enclave protects this or other protection
mechanisms are used in the enclave (see below).

Deviations from enclave threat model. We describe what
enclaves SVR3 uses at the time of writing this paper and how
they fit our threat model in §A. Some recent enclaves use
AES-XTS, which encrypts in 16B increments [19]. While our
design currently targets enclaves that can only be rolled back
at the page-level granularity (E3), we can implement atomic
regions (regions that are guaranteed to run without interruption
by an attacker) by utilizing the interrupt handler introduced
by AEX-Notify [21]. We describe how to do so in §5.3.
Given the changing landscape of enclave implementations
and the possibility that enclaves may not adhere to (E1)–(E3)
in the future, we assume that alternative mechanisms like
AEX-Notify can be developed to address such discrepancies
between real-world enclaves and our enclave threat model.

Attacks on enclaves. Enclaves are susceptible to attacks. We
list four categories here and then in §3.2.2, we discuss when
SVR3 hardens a trust domain against them.
(A1) Memory access pattern attacks. Enclaves do not hide

memory access patterns, enabling a large class of side-
channel attacks, including but not limited to cache at-
tacks [11, 37, 68, 87], branch prediction [55], paging-
based attacks [101,108], and memory bus snooping [54].

(A2) Software rollback attacks. Enclaves are also susceptible
to rollback attacks, also referred to as freshness or replay
attacks [76]. Software rollbackattacks occur from rolling
back persisted state outside of the enclave’s memory
(Type I attacker).

(A3) Hardware rollback attacks. An attacker with physical
access to the system bus can roll back enclave memory
at the page level without detection (Type II attacker),
for example, using a DIMM interposer [97].

(A4) Other attacks. Certain physical attacks allow an attacker
to break guarantees (E1)–(E3) of enclaves (e.g., leakage
due to power consumption [18, 69, 94] or denial-of-
service attacks due to memory corruptions [36, 40]).

Transient execution attacks [16, 82, 86, 98, 99, 102, 103]
exploit speculative execution to leak secret data.

3.2.2 Security guarantees

SVR3 hardens a trust domain against a set of attacks, rendering
the trust domain uncompromised despite those attacks. We
describe the conditions below:

(H1) SVR3’s memory-access patterns do not depend on user
secret content, and hiding which user is recovering their
key is a non-goal for SVR3, so it does not suffer from
memory-access patterns side-channel attacks (A1).

(H2) SVR3 defends against software rollback attacks (A2).
(H3) SVR3 defends against hardware rollback attacks (A3)

as long as ≤ s nodes in each cluster are rolled back,
where s is a fault-tolerance (“supermajority”) parameter
defined in §5.2.5. In our production deployment, we set
s = 2.

(H4) Within a trust domain, SVR3 does not guarantee pro-
tection against other attacks (A4), which could render
the trust domain compromised. In this case, SVR3 still
offers the cross-trust domain security guarantees in §3.1.

3.3 Availability
Like other end-to-end encrypted systems [79, 106], Signal
prioritizes security over availability of secret key recovery
because users’ secret keys are extremely sensitive and crucial
to safeguard in an end-to-end encrypted system. Nevertheless,
SVR3 provides availability to clients when at least t +1 trust
domains are operating correctly. By correct operation, we
mean that enclaves in the trust domain are online and none of
the enclaves in the trust domain are under attack. Therefore,
we expect the system to be available under normal operation.

SVR3 also does not defend against denial-of-service (DoS)
attacks from a Type I attacker (since this is the organization
that deploys SVR3 itself) or the authentication server.

SVR3 ensures that a malicious client cannot deny availabil-
ity for an honest user (e.g., by exhausting the number of PIN
attempts allowed) assuming that the attacker did not compro-
mise the client credentials or the authentication server (used
to Auth in Figure 1), and it did not otherwise compromise the
servers beyond the availability threshold above.

It is important to consider what users would experience if
trust domain(s) were to fail, leading to secret value loss. While
this is a significant event when viewed from the perspective
of the application provider, it will not lead to secret value
loss for the majority of clients in practice: clients cache their
SVR3-protected secret locally, and so clients can simply create
a backup at the new deployment. Thus data loss is only a
concern for users who lose their devices around when the old
deployment fails and before migration to the new deployment
completes.

4 Secret key backup and recovery protocols

We now describe the cryptographic protocols in SVR3.

4.1 Establishing enclave sessions
To interact with the SVR3 servers, the client must first au-
thenticate with the authentication server. If the user has lost
their devices, then the authentication server sends the client
an SMS code, and then the user enters the SMS code to re-
ceive a token. This process allows the authentication server
to prevent malicious clients from denying service to honest
users by exhausting all of their PIN attempts. Notably though,
the authentication server does not have any information about
user PINs. The client then uses this token to establish a se-
cure channel with a replica in each trust domain. As part of
the process of establishing a secure channel, the client runs
remote attestation [20] with the enclaves to ensure that it is
communicating with the expected enclaves.

4.2 PIN-protected secret sharing
In existing deployed PIN-based backup systems [50,58, 104,
106], a secure hardware device has access to users’ secret keys
and PINs or PIN-derived information in order to authenticate
users. This design means that an attacker that compromises the
secure hardware can, either directly or via a brute-force attack,
learn user PINs. This property is particularly problematic
when we consider the fact that many users re-use PINs across
services.

As a result, when designing our cross-enclave cross-cloud
solution, we cannot simply instantiate the above mechanism
in each trust domain. Any one compromised trust domain
would have access to the PIN, enabling the attacker to recover
the user’s secret key. Instead, we leverage the class of crypto-
graphic protocols called password-protected secret sharing
(PPSS) [7] protocols, which ensure that:
• An attacker that compromises ≤ t trust domains is still

limited to an online dictionary attack.
• If an attacker fully compromises > t trust domains, the

attacker does not immediately learn client secrets. The
attacker still must perform an offline dictionary attack on
user PINs.

Identifying a suitable PPSS scheme for SVR3. Different
PPSS schemes have different tradeoffs [1, 7, 41–43], so we
worked to identify the most suitable scheme for SVR3 and
then tailor it to our setting. Some prior work optimizes for
metrics that are not important to our deployment, but sacrifices
properties that are important to us.

For example, many of these works aim to reduce the number
of exponentiations to improve efficiency [1, 41–43]. However,
the number of exponentiations is not a bottleneck in our setting,
especially because the number of trust domains (3) is small.

The scheme with the fewest exponentiations [43] also requires
coordinated server initialization and necessitates choosing
secret sharing parameters at deployment time. Coordinated
initialization could require us to redeploy all trust domains
every time a single trust domain requires a security upgrade,
and cross-trust-domain communication with security against
Type I attackers is difficult. Choosing a secret sharing scheme
at deployment time tightly couples PPSS parameters with
clients and servers, removing the flexibility to modify client
PPSS parameters without also changing the servers.

With these priorities in mind, we identified the PPSS from
Jarecki et al. [42] as the most suitable because it is particularly
simple: each backend generates a new secret key for a client
when the client creates a new backup and then uses this key
to evaluate an oblivious pseudorandom function (OPRF) [32]
during secret reconstruction. Informally, a pseudorandom
function (PRF) is a keyed function Fk (·) that, for a randomly
chosen key k , appears to be random (indistinguishable from a
function chosen uniformly at random from all functions with
the same domain and range), even though it is deterministic
and efficiently computable. An oblivious PRF is a two-party
protocol where the server holds k and the client holds some
input x . The protocol enables the client to learn Fk (x) without
the server learning anything about x or Fk (x).

This PPSS scheme has several properties that are appealing
for a real-world deployment:
• The protocol is one-round and concretely efficient.
• Different trust domains do not communicate with each other.
• Servers need minimal configuration. In particular they do

not need any information about the threshold scheme being
used, and different clients can use the same server with
different threshold schemes.

• The protocol can use a standards-track OPRF with optional
verifiability [26].
We note that the WhatsApp key recovery system uses a

password-authenticated key agreement (PAKE) scheme [27,
106], and SVR3 does not. While PAKE protocols are a com-
monly cited application for PPSS schemes, we do not need to
establish a session between our client and a server. We only
need to recover a secret key, which is a simpler problem. Since
branching while fetching secret shares is not sensitive, we do
not need to layer oblivious data retrieval on top [25, 67].
Augmenting PPSS with usage limiting. Limiting attackers
to a fixed number of password guesses is a core requirement
for SVR3. While the application provider can use an authen-
tication server for access control and rate limiting, this only
restricts external users. SVR3 must limit powerful attackers
with full administrative and physical access to the servers to
the same finite number of guesses.

We solve this by leveraging our distributed-trust setting
to enforce a usage quota on OPRF evaluations. A standard
OPRF [32] allows a server with a PRF key to evaluate a PRF
on a client input without learning the input. SVR3 allows the

client to set a usage limit, u , at registration time, and each
honest trust domain will delete that client’s OPRF key after
u OPRF evaluations. In order to instantiate an honest trust
domain, we use enclaves to ensure that the server enforces
the usage limit. Note that the security guarantees provided by
PPSS and the heterogeneous enclaves are tightly coupled: the
enclaves are critical for instantiating trust domains, and PPSS
enables splitting a secret value across different trust domains.

In the below proposition, we bound the number of total
OPRF evaluations based on the threshold t and trust domains
n , providing the protection described in Theorem 1.

Proposition 1. For a (t ,n) instance of PPSS [42] with a
usage-limited OPRF configured to allow u evaluations, an
adversary has at most

⌊ nu
t+1

⌋
PIN attempts before the secret

cannot be recovered.

Proof. Only nu OPRF evaluations are possible in the system.
t +1 evaluations are needed to perform one PIN attempt. After⌊ nu

t+1
⌋

PIN attempts, (t + 1)
⌊ nu
t+1

⌋
OPRF evaluations have

been used. Only (t +1){nu/(t +1)} < t +1 more evaluations
are possible, where {} denotes the fractional part, that is,
{x } = x − ⌊x ⌋. This is not enough to reconstruct the secret. □

5 Building a SVR3 backend

We now describe SVR3’s system design within one trust
domain. Per our threat model in §3, each uncompromised
SVR3 trust domain consists of a cluster of machines, which we
assume behave correctly except for possible physical rollback
attacks and crash failures within a specified bound.

5.1 Design decisions
We first provide an overview of the design decisions behind
SVR3’s design to ensure fault tolerance and the security
guarantees in §3.2.2.
Use of enclaves. In order to protect server secrets and allow
clients to check the code that is processing their data, we run
the core part of the service in an attested, confidential enclave.
In-memory database to avoid sealing. Data sealing is a
mechanism whereby an enclave can encrypt internal state with
a key that is unique to the platform and enclave, persist the
encrypted data to disk, and then recover it if the enclave is
torn down and restarted. As noted in prior work [29, 105],
applications in commercially available enclaves that use data
sealing to store state externally and recover from crashes are
vulnerable to simple, software-based rollback attacks. Since
a core function of SVR3 is to faithfully maintain a per-user
OPRF evaluation count, rollback attacks would undermine the
system and could allow an attacker unlimited online password
guesses. To prevent this and achieve (H2), the enclave that
stores the database of client secrets and usage counters is kept
entirely in enclave-protected memory; it is never sealed and

written to untrusted memory or disk. We show that the database
fits entirely in memory without sharding users in §8.1.
Distributedconsensus. Without a data persistence mechanism
(e.g., data sealing), the servers cannot recover from crashes,
and data in any failed server will be lost. To ensure that data is
not lost, we build the service as a geographically distributed
database. To ensure split-brain or other attacks do not allow
excess PIN guesses, we use a distributed consensus protocol,
modified from Raft [73]. We give a high-level overview of
vanilla Raft in §5.2.1. Our modified Raft protocol, Raft",
which we describe in §5.2.3, hardens vanilla Raft against
physical rollback attacks and ensures that client requests and
usage count changes are committed before responding to client
queries. We describe in §5.3 how we use Raft" to achieve
global integrity across the database when assuming page-level
rollback granularity of enclaves (E3), achieving (H3).

5.2 Rollback-resistant consensus protocol
SVR3 already protects against the class of rollback attacks
that arise from storing state outside of the enclave by keeping
all state in memory. However, as discussed, machines can fail,
and so in order to tolerate failures without losing data, we
use Raft", a modified version of vanilla Raft across enclaves
from a cloud provider. A full TLA+ description of Raft" is
available in §E, and we provide a proof of safety based on the
TLA+ specification in §D.

In this paper, we use n to refer to the number of trust
domains and m to refer to the number of replica machines
within a trust domain.

5.2.1 Vanilla Raft background

Raft [73] is a consensus algorithm that manages a replicated
log across multiple nodes (replicas). It elects a single leader
replica that receives and replicates log entries to the other
follower replicas. The leader handles all client requests by
appending new log entries and sending an AppendEntriesRe-
quest to each follower for the duration of its term. Follower
replicas respond to requests from the leader to replicate log
entries. If the leader fails, a new leader is elected through a
leader election process. Log entries are identified by <index,
term>, where index is the log position and term is the cur-
rent term number. There is at most one leader in any given
term. A leader forces the followers’ logs to duplicate its own:
conflicting entries in follower logs (with some term t) will be
overwritten with entries from the leader’s log if the leader’s
term t ′ is ≥ t . For f crash failures, Vanilla Raft requires
m ≥ 2f +1 replicas in order to provide safety and liveness.

5.2.2 The physical rollback problem

While keeping the database in memory protects against soft-
ware rollback attacks, an attacker with physical access to

the system bus could roll back enclave memory at the page
level. Since such an attack is more expensive to perform than
software-based rollback attacks, we can significantly improve
security by requiring an attacker to perform these attacks si-
multaneously on multiple enclave replicas. With this context,
we note that the vanilla Raft protocol [73], as specified, will
allow an attacker who can roll back a Raft leader to make an
unlimited number of PIN attempts: the Raft protocol does not
look at log contents, so if a leader is rolled back and sends an
AppendEntriesRequest for a new <index, term> log entry
at an old log index, followers will accept it and allow the leader
to commit.

Prior work [29, 105] has addressed a problem close to this
one, but with important differences. First, they are designed for
data-sealing rollbacks, which do not affect SVR3 because we
do not use data sealing. Second, Raft" also defends against
physical rollback attacks, which prior works do not consider in
their threat model. Physical rollback attacks are more difficult
to detect than data-sealing rollback attacks: after a crash
recovery, the new enclave has to execute code that decrypts
the sealed data to rebuild the internal state and every data-
sealing rollback needs to have the enclave go through this code
path. The RR protocol [29] takes advantage of this process to
detect data-sealing rollback attacks. Finally, existing protocols
aim to ensure liveness in the face of rollback attacks, and this
is an explicit non-goal for SVR3 as mentioned in §3.3.

5.2.3 Rollback prevention in Raft"

Together, the following additions to the Raft protocol enable
us to prove safety of Raft" in the presence of an attacker who
can simultaneously mount physical rollback attacks against
≤ s nodes. For m Raft" servers in a trust domain, s must be
strictly smaller than m to ensure safety (§5.2.4). However, to
ensure fault tolerance and liveness in the face of crash failures,
s should be even smaller (§5.2.5).
Hash chain. Instead of using <index, term>
to identify a log entry, as in Raft, we use
<index, term, hashindex> where hashindex =

Hash(entrydata, index, term, hashindex-1),
entrydata is the contents of the log entry, and Hash
is a cryptographic hash function. When a follower receives an
AppendEntriesRequest, it computes the expected hash chain
value and verifies that it matches the value in the request. If
the values do not match, the follower rejects the request.

This prevents the simple rollback attack on Raft described
in §5.2.1. However, it is still possible for an attacker who can
roll back one server to gain unlimited password guesses by
triggering an election with a quorum of servers that did not
see the log entry for the first client request.
Supermajority. To ensure that an attacker capable of rolling
back a single server cannot gain extra password guesses by trig-
gering an election, we require quorums to have a supermajority
of replicas so that the intersection of any two quorums contains

more than s replicas, where s is a configurable parameter that
is included in the server’s attestation. This allows clients to
be certain of the value of s used by the service and decide
whether to accept it. We prove that an attacker must be able
to roll back more than s enclaves to roll back a log entry that
was committed by this Raft". This supermajority parameter
is comparable to PBFT’s Byzantine nodes value [14].
Promise round. We add a promise round to the protocol. Once
a quorum of servers acknowledges seeing a log entry, the leader
will “promise" this entry by advancing its promise idx to
the index of this entry. A promised entry is not committed, but
no replica will delete an entry that has been promised. This
completes the first round.

The leader now sends its promise idx to all followers in
its next AppendEntriesRequest, and followers will update their
own promise idx to match the leader’s when they process the
message. From this point, these followers have promised the
log entry and will not delete it. The followers send their current
promise idx with each AppendEntriesResponse. Once a
quorum of replicas has promised an entry, it is committed.

5.2.4 Safety

In order to achieve safety, the number of machines in the
enclave cluster must be larger than the number of rollback
attacks we want to tolerate (m > s). As liveness under rollback
attacks is a non-goal for SVR3 (an attacker with physical access
can easily deny service), we decouple the constraints on m
with respect to rollback attacks (s) and crash failures (fc). We
describe how s impacts liveness under crash failures in §5.2.5.
We prove that Raft" is safe under a bounded number (s) of
physical rollback attacks within a trust domain.

Theorem 2 (Informal). Let MR be the maximum number of
machines in an enclave cluster that can be rolled back and
s be our supermajority configuration parameter. If MR ≤ s ,
then under standard cryptographic assumptions, for every log
entry <index, term, hashindex> that has been applied to
the state machine of a server i , server i will never apply a
different log entry at this index.

Proof sketch. The argument follows the proof of safety in
Ongaro [72] and relies on the observation that any two quorums
will have an intersection that includes at least one server that
has not been rolled back. We must address the fact that in the
presence of rollbacks, Lemma 3 in Ongaro [72] does not hold.
This poses a significant challenge, and forces us to introduce
a new concept of live committed entries that is subtly different
from the prior notion of committed [72]. With our definition,
future leaders may not have a live committed entry in their
log, but if they do not then they will be unable to commit new
entries, so we retain safety at the expense of liveness. The
major point where the argument from Ongaro [72] breaks
down in our setting is in points 7.c.ii.B and 7.c.iii.B in the
proof of their Lemma 8. Our argument uses the hash chain and

promise index to show that there is a voter in the intersection
of two quorums that has not been rolled back and will not
replace the log entry. The complete proof of safety is in §D.

5.2.5 Liveness

We do not provide liveness for a trust domain under the
setting of an attacker mounting physical rollback attacks, as
the attacker could trivially deny client requests by taking
the entire enclave cluster offline. When assuming no attacks
within a trust domain, Raft" requires fc ≤ ⌊(m − s)/2⌋ crash
failures to be live under normal connectivity conditions, where
m denotes the number of replicas in a trust domain (enclave
cluster) and s denotes the supermajority parameter described
in §5.2.3. This is due to the quorum size being ⌊(m + s)/2⌋ +1
enclaves. It remains an open problem to prove liveness of Raft
in this setting (e.g., by formal verification [39]). Nevertheless,
as discussed in §3.3, SVR3 still provides availability to clients
when at least t +1 trust domains are operating correctly.

5.2.6 Self-healing for simple maintenance

We implement the process for replica group membership
changes described in the Raft paper [72] and add a layer of
automation. In Raft", a replica group has a configured target
number of voting members. For a healthy configuration, a
replica group in our system will have this number of voting
members as well as several non-voting members that stay up
to date and service client requests. If some voting member is
not seen by the leader after a configurable timeout, the leader
will initiate a membership change that demotes the missing
replica to non-voting status. After an additional timeout, it
will remove the replica from the group entirely.

Furthermore, whenever the number of voting members is
below the configured target, the leader will check to see if
a non-voting member is present and initiate a membership
change promoting a non-voting member to voting status.

With these mechanisms in place, administrators simply
need to launch new instances and direct them to the discovery
service with group information. The new server will then
request to join the group, be brought up to date by a peer, and
become a non-voting member. As needed, the voting members
may then promote this new replica to voting status.

5.3 Integrity across the database

Raft" provides protection against rollback attacks on the
contents of the log. However, our threat model (§3) assumes
page-level rollback granularity on memory inside the enclave,
which means that the attacker can replace pages of data in the
enclave’s memory with older pages from the same physical
location and can mix and match old and new pages, thus
violating global memory integrity.

Working page

Guess
database

Raft⟲ logLog entry ✔

Database row ✔

Log app counter ✔

Merkle root

Merkle tree

Figure 3: Integrity across database. In order to achieve global integrity,
updates are only applied when all state on the working page validates
under the same Merkle tree root.

In order to protect against rollback attacks on the backing
in-memory database, SVR3 keeps a Merkle tree across the
Raft" log, database, and log application counter.

5.3.1 Merkle tree

The log application counter keeps track of the latest log
entry that has been applied to the database. The Merkle tree
contains every database row, the hashchain of the most recently
committed log entry, and the log application counter. The
hashchain of the last committed log entry, as described in
§5.2.3, can be used to verify this entry and earlier entries in
the log. As shown in Figure 3, the Merkle leaves for database
rows and log application counter are updated each time the
underlying object changes, and the update only succeeds if the
current state of the Merkle tree is consistent with the previous
value of that data.

5.3.2 Applying committed log entries

We describe how we process committed log entries in Algo-
rithm 1. The executing thread holds a lock on the database,
log, and log application counter throughout execution, so no
honest process will have a thread outside this process change
the Merkle tree during that execution. When applying a com-
mitted log to the local database, a replica will begin by reading
the log application counter lac, the log entry at that index entry,
and the database row row referenced by that log entry onto
a single memory page, which we will call the working page.
When reading each of these items, it will verify its Merkle
proof (Πlac,Πentry,Πrow) and also copy the root of the Merkle
tree for each read onto the working page. After copying this
data, we verify that the Merkle roots associated with each
read are equal, determine whether the number of uses of this
row has surpassed the configured maximum, and update the
row by incrementing the usage count and deleting the OPRF
secret if the maximum usage count has been exceeded. We
then update the row in the database and increment the log
application counter, updating the Merkle tree entries for both,
then proceed with evaluating the OPRF, if the key is present,
and finally respond to the client.

If the attacker rolls back the database row to the contents
of a previous timestep, it first has to roll back every entry
from the row to the Merkle tree root. However, the root also
covers the log entries and log application counter, which
are modified when a database row is modified (how SVR3
achieves atomicity of this operation is described above). Thus,
the attacker will have to roll back the log as well; rolling back
the log is exactly what Raft" protects against.
Atomic regions. Because all of our working memory fits on a
single page, operations are atomic with respect to the attacker’s
ability to rollback memory at the page granularity. In order
to support more modern enclaves that only have cache line
granularity (e.g., 16B), we need to implement atomic regions
that are guaranteed to run without interruption by an attacker.
We describe in detail how to implement atomic regions on
SGX and SEV-SNP in §C by utilizing the interrupt handler
in AEX-Notify [21]. AEX-Notify mitigates SGX-Step, an
attack framework that makes it possible to single-step enclave
programs [100]. It does so by introducing an instruction set
architecture extension to support a custom handler on interrupt.
The SGX-Step mitigation leverages this handler to speed up
the next instruction so that the attacker is statistically unlikely
to ‘hit’ the next instruction’s execution with an APIC timer.
This mechanism also allows us to implement atomic regions,
in a similar fashion to restartable sequences [10]. At a high
level, we set a flag in a fixed register when an interrupt occurs,
and we check this flag at the end of the atomic region to
determine whether to restart the atomic region. If the flag is
set, we restart and retry until it runs without any interrupt. We
leave optimizing this approach in a secure manner to future
work.

6 Operations

Production systems need upgrades. This is a challenge for us
because we want to defend against malicious administrators: a
secure system can become completely insecure if a malicious
administrator can push arbitrary code to the system. At a high
level, we defend against malicious code updates by ensuring
that users can audit the code that is running; the code is open
source, and enclaves attest to the security-relevant server code
and configurations running.
Adding new servers. When a new server is launched in a trust
domain, it connects to a discovery service and registers a new
group if no replica group is registered. If there is an existing
replica group, the new server will select a peer in that group,
validate that its enclave measurements match, and create an
attested connection with that peer. By checking that enclave
measurements match, SVR3 ensures that an administrator
cannot add a server running different code. The new server
then requests to join the group, and the existing server transfers
all log entries and database rows to the new server. This is
done over a Noise protocol [78] channel with key resetting and

Algorithm 1 Applying a committed log entry. We describe in
text how we process committed log entries in §5.3.2.

1: workspaceR← (lac,Πlac,entry,Πentry, row,Πrow)

Atomic region.

⊲ Abort on any Verify failure.
2: failure← 0
3: Verify(Πlac.root

?
= Πentry .root

?
= Πrow .root)

4: Verify(entry.clientid ?
= row.clientid)

5: Verify(lac,Πlac);Verify(entry,Πentry);
Verify(row,Πrow)

6: if row.guess cnt < max guesses then
7: evaluated← OPRFEval(row.sk,blinded)
8: row.guess cnt← row.guess cnt+1
9: else

10: failure← 1
11: row.sk← 0, row.guess cnt← UINT MAX
12: end if
13: workspaceW ← (row,UpdatePrf (row,Πrow))

14: Π′row← UpdatePrf (row);Π′lac← UpdatePrf (lac)
15: Check that leaves on path in Π′row,Π

′
lac match Πrow,Πlac.

16: if failure then return MISSING
17: else return (OK,evaluated)
18: end if

hybrid post-quantum forward secrecy [77] to provide robust
forward secrecy. Once the transfer is complete, the replica
group goes through the membership change process to add
the new server (which requires a quorum).

Sometimes security-required microcode updates need to be
applied to all servers. Since all data is kept in volatile enclave
memory, there is no way to reboot the machine without losing
all replica data. In this situation, all members of the cluster
must be replaced. This can be done by sequentially adding new
servers on patched hardware, then terminating old servers.

Clients. Android, iOS, and desktop clients are deployed
through app stores with auditable, open-source code. Each
client contains hard-coded information about which enclave
measurements (for remote attestation), platform versions, and
cluster configurations to accept. If a client attempts to connect
to a SVR3 cluster and finds unexpected measurements or
configuration, it will abort the connection.

Service upgrades and data migration. Since server enclaves
can only communicate with peers that share the same enclave
measurements, there is no mechanism to migrate data directly
from an old version of an enclave-backed service to a new
one. Instead, data migration flows through the client. To
accomplish this, when a new version of a client is released
that contains measurements for the new enclave, this client
will recover its secret from the old servers (if it is not cached

Figure 4: Average latency vs. throughput.

in local storage), and then it will back up its secret to the next
version of the service. It takes approximately 90 days for a
new client software release to fully reach the user base, so
the new enclave-backed service must run alongside the older
version during this 90-day window.

7 Implementation

We implemented SVR3 in ∼8,800 lines of C++ for the enclave
and ∼5,300 lines of Go for the untrusted host. For the SGX
deployment we use the OpenEnclave framework v0.19 [74]
and Intel SGX v2.22. For the Nitro deployment we use the
Nitro Security Module library v0.4 [70]. We use a Noise pro-
tocol [78] channel on top of TCP for communication between
replicas and websockets for communication with clients. We
use protobuf [80] to define formats for all wire messages. In
addition to handling client and peer requests, the host offers a
control interface for administration as well as sophisticated
metrics collection that is integrated with our internal moni-
toring and reporting systems. Our implementation assumes
enclave page-level integrity, and we estimate overheads for
supporting 16B-level rollback granularity in §8.1. The imple-
mentation is open source and the consensus system is already
in production use. The full system is being deployed to pro-
duction at the time of publication. Production deployments
use 7 geographically distributed servers and a supermajority
parameter of 2. Full details about the production deployment
are in §B.

8 Evaluation

We investigate the overheads of running SVR3 (§8.1) and the
performance perceived by the end user (§8.2).
Evaluation setup. For the purposes of this paper, we evaluate
end-to-end performance on our organization’s staging system,
configured to handle 10 million users. This limit is due to
available enclave memory, not compute. Staging clusters are
configured with a supermajority parameter of 1 and consist of

(a) StoreSecret (b) RecoverSecret

Figure 5: Request latency CDF for AWS Nitro,
varying number of client threads, 10M users.

(a) StoreSecret (b) RecoverSecret

Figure 6: Request latency CDF for Intel SGX,
10M users.

(a) StoreSecret (b) RecoverSecret

Figure 7: Request latency CDF for AMD SEV-
SNP, 10M users.

(a) StoreSecret (b) RecoverSecret

Figure 8: Request latency for AMD SEV-SNP, 100M users.

(a) Request latency CDF. (b) Request latency breakdown. HS
= Noise handshake, Serial = serializ-
ing/deserializing protobufs, Apply =
applying log entry (§5.3.2).

Figure 9: SVR3 performance without network latency from Raft".

Enclave Network (B/user)
StoreSecret RecoverSecret

C↔ S S↔ S C↔ S S↔ S

SGX 20,717 288–1,276 20,717 224–1,212
SEV-SNP 4,406 288–1,276 4,406 224–1,212

Nitro 4,593 288–1,276 4,593 224–1,212

Table 10: Network usage for a single client request to a 3-replica
cluster. S=server, C=client. C↔ S for SEV-SNP is an estimate.

(a) Request (StoreSecret) latency
CDF.

(b) Client request latency break-
down.

Figure 11: End-to-end performance.

3 environments (trust domains), each with 5 replicas deployed
in the same region:

• AWS Nitro: m5.xlarge instances with 2 cores and 10 GB
RAM per enclave ($142/month/server).

• Intel SGX at Azure: DC2s v3 instances with 2 cores and 8
GB EPC RAM per enclave ($140/month/server).

• AMD SEV-SNP at GCP: 2 n2d-standard-2 instances
per enclave (one “confidential” and one for the un-
trusted host) with 2 cores and 8 GB RAM (2 · ($70) =
$140/month/server).

In total, the staging cluster costs $2,110/month to run
($0.0025/user/year). For microbenchmarking, we evaluate
on a testing cluster with the same machine types as our staging
cluster but with 3 replicas per trust domain instead of 5 and a
supermajority parameter of 0 instead of 1.

Our production infrastructure has more replicas (with more
cores and RAM per replica) and is set up to handle over 500
million users (more details in §B). We provision for 1 req/s/1M
users and ∼256B of RAM/user. Our experience operating this
system gives us confidence that evaluating on the staging
infrastructure is meaningful and that SVR3 scales gracefully.
To validate this claim, we also evaluate on an AMD SEV-
SNP cluster with 100 million users using n2d-standard-4
instances (4 cores and 16 GB RAM).

8.1 Microbenchmarks

Throughput. We plot an average latency vs. throughput curve
for write and recovery requests in Figure 4. We generate each
point by varying the number of client threads and measuring
the average latency and throughput of requests. Requests are
spread out across all 3 servers. For the 10M-user deployments,
the throughput of recovery requests levels off around 1,700
req/s for Nitro, 1,000 req/s for SGX, and 3,300 req/s for
SEV-SNP (for both 10M-user and 100M-user deployments).
Latency. We plot CDFs of the latency of write and recovery
requests in Figure 5, Figure 6, and Figure 7 for Nitro, SGX,
and SEV-SNP, respectively. Within each figure, we plot the
latency when requests are sent only to the leader,when requests
are sent only to followers, and when requests are sent to all
3 servers. Requests sent to followers are forwarded to the
leader, so the average latency of requests at followers is higher
than at the leader. The latency distribution of requests when
sending requests to all 3 servers improves compared to sending
requests to only followers. The latency distribution is better
than sending requests to only the leader for Nitro and SGX,
and the tail latency is worse than sending requests to only the
leader for SEV-SNP. At 100 client threads, the average latency
for requests sent to all servers for key recovery is 56.9ms for
Nitro, 98.3ms for SGX, and 32.3ms for SEV-SNP. We also
plot the CDFs of recovery request latency for the 100M-user
SEV-SNP deployment in Figure 8. The latency distribution
of the 100M-user deployment is very similar to the 10M-user
deployment and the average latency of the requests sent to all
3 servers for key recovery is 30.9ms.

We note that a majority of the latency is due to network
latency when appending to the Raft" log, which we validate
in Figure 9. We run the same experiment as above, but with 1
client thread and 1 SGX node (effectively disabling the network
requests of Raft"). We plot the CDF of request latencies under
this regime in Figure 9a, and the average latency of these
requests is 1.47ms. We also profile the server and plot the
percentage of CPU ticks in Figure 9b. On average, the Noise
handshake is about 35%, applying the log entry is about 21%,
and 13% is encrypting peer messages for Raft". The yellow
spikes are due to periodic updating of environment statistics,
which also contributes to the long tail request latencies in
SGX (Figure 6).
Impact of supporting 16B-granularity. Informed by latency
measurements, we can upper-bound the impact of latency
from achieving page-level integrity from 16B-granularity
using atomic regions (§5.3.2). Applying the log entry (which
we will conservatively make an entire atomic region) takes
1.47 ·0.21= 0.3ms. We could be interrupted by the APIC timer,
the end of a thread scheduling quantum, or by a page fault from
a memory access, of which there are 5 · log2 (100,000,000) =
120 (from the Merkle tree accesses in Algorithm 1). In the
worst case, we would repeat execution of the atomic region 122
times, resulting in a worst-case additional latency of 36.6ms.

Note that this is a (very) loose upper bound and is still below
user perceptibility.
Network usage. We measure the network usage of SVR3 run-
ning on each enclave type for a 3-replica cluster in Table 10.
There is a range of network usage for Server↔ Server because
it depends on how many requests have been batched into a
single Raft" append request. The network usage between
servers also depends on the number of servers in the cluster,
growing proportionally to m −1 for m servers. From a deploy-
ment perspective, we are more concerned with the Client↔
Server bandwidth, which is under 20KB for all enclave types.
This is because exchanging more data between the client and
the server can become a usability issue for users with limited
data plans.
Memory usage. We measured the memory usage of SVR3 on
SGX, varying the number of users in the system. Note that we
expect the memory usage to be similar for all enclave types,
since they are storing the same amount of data for each user.
We find that memory usage grows by ∼450B/user until we
start truncating the log at 100MB and then settles into a steady
170B/user added. At 100 million users, SVR3 uses 18.5GB of
memory on each server, which is 185B/user/server.

8.2 End-to-end performance
We measure the end-to-end performance of SVR3 by
running a client that stores its secret key by sending
a (sequential) request to a server in each enclave clus-
ter. For a more representative deployment, we geograph-
ically distribute the SGX cluster (centralus, eastus,
eastus2, southcentralus, westus), the SEV-SNP clus-
ter (us-central1, europe-west3, asia-southeast1,
europe-west4, europe-west3), and the Nitro clus-
ter (us-east-1, us-east-2, us-west-1, us-west-2,
eu-north-1). The performance for recovering a key is al-
most identical to the performance for storing a key, so we only
report the performance for storing a key. We plot the CDF
of the latency of these requests in Figure 11a. The average
end-to-end latency is 365ms, which is reasonable for a user
to wait for a key recovery or key backup request. We plot
the breakdown of the latency in Figure 11b. The majority of
the latency is from waiting for servers to respond (69.3%),
followed by remote attestation with the servers (29.9%).

9 Related work

Secret recovery systems. A number of companies have de-
ployed secret recovery systems using secure hardware: Apple
protects user iCloud data using hardware security modules
(HSMs) [5, 50], Google protects Android backups using se-
cure microcontrollers [104], and WhatsApp protects message
histories using HSMs [106]. WhatsApp runs vanilla Raft [72]
on a geographically distributed cluster of HSMs and uses

OPAQUE [44] for key recovery. WhatsApp’s consensus only
requires one round trip between the leader and the replicas
while SVR3 requires an extra round of communication (to
guarantee safety in the face of rollbacks). Davies et al. analyzed
the security of the WhatsApp encrypted backup protocol [27].
Like SVR3, all of these systems use secure hardware to allow
a user to recover a cryptographic secret using a low-entropy
secret (e.g., a 4-digit PIN). Unlike SVR3, they rely on a sin-
gle type of secure hardware: the compromise of one secure
hardware device can compromise many users’ secrets.

Juicebox [96] is a key recovery protocol that distributes trust
across one type of secure hardware and multiple trust domains
in the traditional manner (across organizations). SVR3 has
a simpler protocol that is not a multi-round PAKE as our
servers never learn whether the PIN is guessed correctly or
not (keys are deleted unconditionally when guesses run out).
Secret shares are also stored directly on the servers in Juicebox.
Thus, to prevent an attacker who compromises a threshold
number of trust domains from reconstructing all the secrets
without needing to mount a dictionary attack, they must mix
the reconstructed secret with the PIN to create an encryption
key that is then used to encrypt the target secret.

SafetyPin [23] is a PIN-based end-to-end encrypted backup
system that defends against an attacker that can adaptively
compromise some percent of HSMs. While SafetyPin pro-
tects against a more powerful attacker model, it requires a
comparatively large number of HSMs.

Tutamen [85], Acsesor [15], and CanDID [59] split trust
across multiple entities to allow users to recover their secrets
(among other operations). Chen et al. [17] use cloud storage
for secret recovery. These systems do not use secure hardware;
the use of enclaves in SVR3 provides additional security and
requires us to design for their limitations (e.g., rollback attacks).
CALYPSO [49] also shards user secrets across different entities
but, unlike SVR3, uses a blockchain. PreVeil [79] shards secret
keys across other peers in a social or work graph, but requires
manual setup from the user.

Another line of work has taken a more theoretical approach
to the problem of secret key backups. Benhamouda et al. [9] use
a proof-of-stake blockchain to allow users to store secrets while
protecting against an attacker that can adaptively compromise
a percent of the stake. Subsequent work improves efficiency
in this model via batching [35].

Orisini et al. [75] also describe a scheme for end-to-end
encrypted backups, but in their scheme, the user does not need
to remember a PIN or something similar. Instead, clients must
refute illegitimate recovery attempts. While this approach is
appealing in that it eliminates the PIN, it does not work for
our setting where clients may go offline for extended periods
of time.

End-to-end encrypted backups can be vulnerable to injec-
tion attacks where changes in the backup size can allow the
attacker to infer information from sensitive metadata [30].
This paper focuses on backing up cryptographic keys, and

these type of injection attacks are important to consider in the
context of the larger system using SVR3.
Multi-party computation and secure hardware. Cryptocur-
rency wallets protect user secrets by distributing them across
hardware enclaves or HSMs [31, 33, 48, 84, 88]. Cryptocur-
rency wallets are designed to avoid materializing the key in a
single location rather than to enable users to recover secrets.
Myst provides security by splitting trust across many hardware
devices and operations like signing and decryption [61]. More
broadly, prior work has examined composing multi-party com-
putation and secure hardware for efficiency [8, 28, 51, 71].
Our use of secure hardware with multi-party computation is
tailored to encrypted backups and, while this line of work uses
secure hardware to reduce the costs of multi-party computa-
tion, we use it to augment the security of the system. In prior
work [24], we observed that heterogeneous secure hardware
hosted by different clouds can be useful for deploying systems
that split user secrets, including encrypted backups, but we
had not yet worked through and built out such a deployment.
Rollback prevention in enclaves. There has been a rich line
of work on preventing rollback attacks in enclaves. Mem-
oir [76] and Ariadne [93] store a small amount of state inside
non-volatile memory (NVRAM) and use that to reconstruct
application state during recovery. Both approaches are scoped
to single machines, and do not provide availability in the event
of a machine permanently failing. ROTE [60] uses a broadcast
algorithm across enclaves to maintain a distributed counter,
but requires NVRAM to update group membership, whereas
we use our Raft" log to update membership. Additionally,
the abstraction that ROTE offers is one of a counter instead of
generic log entries. Engraft [105] examines the safety issues
of running off-the-shelf consensus inside enclaves. They use
an underlying broadcast protocol similar to ROTE to maintain
a distributed counter and introduce additional mechanisms to
support node recoverability. However, in our setting, we can
simply start a new node in the event of a node failure, so we
do not need to support node recoverability.

Nimble [4] is a lightweight replication protocol that provides
a freshness-guaranteed ledger. The ledger can be used to keep
track of the state of untrusted storage, enabling applications
that run on enclaves to persist their state to external (untrusted)
storage and detect potential rollbacks on that storage. Note that
our system is already protected against the class of rollback
attacks on external storage described in §1 of [4] because all
data is stored and maintained in memory. Nimble’s threat
model does not include physical rollback attacks on the enclave
(both endorser and application). However, minimizing SVR3’s
trusted computing base (TCB) is an interesting and important
future direction, and we discuss potential design decisions
and open challenges in §10.

TrInc [56] shows that a secure log can be implemented
with a secure counter. However, realizing a secure counter
on enclaves is difficult. We cannot write PCRs to the TPM
from inside an SGX enclave, and additionally, TPMs can limit

the speed of counter updates (§6.1.1, [93]). CPU registers are
written to the SSA, which can be rolled back. On SGX there is
no CPU register where only an enclave can write to it. We are
unaware of an (efficient) secure counter primitive on newer
enclaves after consulting with Intel.
Consensus protocols. As Dinis et al. [29] point out, rollback
behavior can be considered a subset of Byzantine behavior,
so the Byzantine fault tolerant (BFT) model is stronger than
necessary for our setting. Consequently, Raft" is lighter
weight than BFT flavors of Raft protocols like Tangoroa [22]
which requires O (m2) communication scaling in the number
of replicas. The supermajority parameter in Raft", which
increases the quorum size, is comparable to PBFT’s [14]
Byzantine nodes value. Engraft [105] and RR (TEEMS) [29]
address data-sealing (software) rollback attacks. SVR3 not
only defends against these data-sealing rollback attacks, but
also defends against physical rollback attacks.

10 Discussion

Consensus in the enclave. Nimble [4] is able to maintain a
secure log while removing the consensus mechanism from the
TCB, and an important future direction for SVR3 would be to
similarly minimize its TCB. However, it is not entirely straight-
forward, and there are interesting design and engineering
challenges to address. First, Nimble will need to be hardened
against physical rollback attacks, which seems straightforward
to do. More significant is that since this log—which contains
OPRF secrets—will be held in untrusted storage, it must be
encrypted. This has important consequences for our system
as we describe below, and addressing them may result in
significant additional complexity (and thus increase the TCB).

First, we note that we will need enclaves similar to the ones
we have today to handle client requests. These enclaves will
now need to share a common encryption key to encrypt and
decrypt these log messages. This shared key becomes a new
single point of failure for the system. To maintain the forward
secrecy we have today due to our use of Noise protocol [78]
channels with rekeying between enclaves, it seems the enclaves
will need to participate in some sort of continuous group key
agreement (CGKA) [2] to rotate the key periodically and on
membership changes.

Second, if this new system aims to keep the TCB small
by maintaining the database state outside of the enclave, as
with Juicebox [96] or WhatsApp [106], then the encryption
key for the database becomes another single point of failure,
but in this case it is not clear how we can achieve forward
secrecy without periodically re-encrypting the entire database.
If, on the other hand, we maintain the database in enclave
memory, as we do now, then the use of CGKA to protect the
encrypted log means that new members of a replica group will
not be able to read old log messages to construct the database
state. While we have a state transfer mechanism in our current

system to handle truncated logs, we will need to refine it to
ensure that new members are correctly initialized.

Taken together, we see removal of the consensus mecha-
nism from the TCB as a project that requires careful design
and analysis and significant engineering work that adds its
own complexity. We note that the consensus protocol is a
relatively small (1,541 LOC in C++) and well-understood part
of our current codebase, so we need—and hope to find—clear
rationale for its removal.
In-memory vs. disk-based storage. While disk-based storage
solutions are cheaper than keeping the entire database of
key recovery shares in memory, they are more susceptible to
rollback attacks because the secrets are taken out of the enclave,
and even enable rollback attacks that are software-based and
can be performed without physical access.
Data privacy compliance. In general, a multi-cloud deploy-
ment may complicate compliance with data privacy laws. The
design of SVR3, however, keeps compliance simple since by
preventing any user data from being processed by our servers
and blocking our administrators from accessing sensitive keys.
Malicious clients. SVR3 provides security guarantees for
users using our clients, which we assume are well-behaved.
Our client code is open source [62–64], and scrutinized by the
community. If the user’s client is compromised and malicious
(e.g., the user has malware), it can affect the security of that
user, but not the security or experience of other users with
uncompromised clients.
Honest cloud providers? If we could assume that most cloud
operators are honest, then that could change the parameteriza-
tion of SVR3 (e.g., setting the number of trust domains that
can be compromised t to 1), though this would also require
assuming that the enclaves were not susceptible to any future
vulnerabilities that could be exploited remotely. We would
still use enclaves to prevent malicious system administrators
from running arbitrary server code.
Future and ongoing work. SVR3 could be modified to
support a transparency log so that users have a means of
monitoring key recovery requests (similar to SafetyPin [23])
and changes in replica group membership. Currently, clients
can rekey in SVR3 by reentering the user’s PIN. We will
eliminate the requirement for user interaction and explore an
approach closer to proactive security [13], where keys can
be rotated more frequently without client involvement. The
OPRFs that SVR3’s cryptographic protocol relies on are not
quantum-safe; hardening SVR3 against an attacker that will
have eventual access to a quantum computer and can harvest
now, decrypt later (HNDL) [95] is also ongoing work.

11 Conclusion

SVR3 demonstrates the potential of systems that provide
security through a combination of cryptography and a diverse
set of hardware enclaves and clouds, without putting trust

in any single hardware component. Using different types of
enclaves leads to an array of deployment challenges stemming
from heterogeneous attacker models. SVR3 is a powerful
defense against the evolving landscape of enclave security:
by distributing trust across enclaves and clouds through a
cryptographic protocol, even if a new threat arises in one
type of enclave, user secrets are still secure. SVR3 costs
$0.0025/user/year and takes 365ms for a user to recover their
key, which is a rare operation.
Acknowledgments. We are very grateful to our shepherd, Jay
Lorch, for his detailed feedback, as well as to the collective
OSDI reviewers for their suggestions, which greatly improved
the presentation of this paper. Mark Johnson helpeddevelop the
early stages of this project. Ravi Khadiwala contributed signif-
icantly to SVR3’s implementation. We thank Natacha Crooks,
Christopher Fletcher, Matthew Green, Jack Humphries, Ian
Miers, and the Sky security students for their helpful feedback.
The UC Berkeley authors are supported by NSF Graduate
Research Fellowships, a Microsoft Ada Lovelace Fellowship,
and gifts from Accenture, AMD, Anyscale, Google, IBM,
Intel, Microsoft, MBZUAI, Samsung SDS, SAP, Uber, and
VMware.

References

[1] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David
Pointcheval. Robust password-protected secret sharing. In
ESORICS, 2016.

[2] Joël Alwen, Sandro Coretti, Daniel Jost, and Marta Mularczyk.
Continuous group key agreement with active security. In TCC,
2020.

[3] AMD SEV-SNP: Strengthening VM isolation with
integrity protection and more, 2020. https:
//www.amd.com/content/dam/amd/en/documents/
epyc-business-docs/white-papers/SEV-SNP-
strengthening-vm-isolation-with-integrity-
protection-and-more.pdf.

[4] Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger,
Stella Lau, Srinath Setty, and Sudheesh Singanamalla. Nimble:
Rollback protection for confidential cloud services. In OSDI,
2023.

[5] Apple. iCloud Keychain security overview, 2021. https:
//support.apple.com/guide/security/icloud-
keychain-security-overview-sec1c89c6f3b/.

[6] Asynchronous Enclave Exit Notify and the EDECCSSA
user leaf function. https://www.intel.com/content/
www/us/en/content-details/736463/white-paper-
asynchronous-enclave-exit-notify-and-the-
edeccssa-user-leaf-function.html.

[7] Ali Bagherzandi, Stanislaw Jarecki,Nitesh Saxena, and Yanbin
Lu. Password-protected secret sharing. In CCS, 2011.

[8] Raad Bahmani, Manuel Barbosa, Ferdinand Brasser, Bernardo
Portela, Ahmad-Reza Sadeghi, Guillaume Scerri, and Bogdan
Warinschi. Secure multiparty computation from SGX. In FC,
2017.

[9] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai
Halevi, Hugo Krawczyk, Chengyu Lin, Tal Rabin, and Leonid
Reyzin. Can a public blockchain keep a secret? In TCC, 2020.

[10] Brian N Bershad, David D Redell, and John R Ellis. Fast
mutual exclusion for uniprocessors. In ASPLOS, 1992.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware grand exposure: SGX cache attacks are practical. In
WOOT, 2017.

[12] David Brown. Confidential computing: an AWS perspec-
tive,2021. https://aws.amazon.com/blogs/security/
confidential-computing-an-aws-perspective/.

[13] Ran Canetti, Rosario Gennaro, Amir Herzberg, and Dalit Naor.
Proactive security: Long-term protection against break-ins.
RSA Laboratories’ CryptoBytes, 1997.

[14] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, 1999.

[15] Melissa Chase, Hannah Davis, Esha Ghosh, and Kim Laine.
Acsesor: A new framework for auditable custodial secret
storage and recovery. Cryptology ePrint Archive 2022/1729,
2022.

[16] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. SgxPectre: Stealing Intel secrets
from SGX enclaves via speculative execution. In EuroS&P,
2019.

[17] Long Chen, Ya-Nan Li, Qiang Tang, and Moti Yung. End-
to-same-end encryption: Modularly augmenting an app with
an efficient, portable, and blind cloud storage. In USENIX
Security, 2022.

[18] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean,
David Oswald, and Flavio D. Garcia. VoltPillager: Hardware-
based fault injection attacks against Intel SGX enclaves using
the SVID voltage scaling interface. In USENIX Security,
2021.

[19] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman
Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and
James Bottomley. Intel TDX demystified: A top-down ap-
proach. arXiv preprint arXiv:2303.15540, 2023.

[20] George Coker, Joshua Guttman, Peter Loscocco, Amy Her-
zog, Jonathan Millen, Brian O’Hanlon, John Ramsdell, Ariel
Segall, Justin Sheehy, and Brian Sniffen. Principles of remote
attestation. In ISeCure, 2011.

[21] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao,
Cedric Xing, Ilya Alexandrovich, Taesoo Kim, Frank Piessens,
Mona Vĳ, and Mark Silberstein. AEX-Notify: Thwarting
precise single-stepping attacks through interrupt awareness
for Intel SGX enclaves. In USENIX Security, 2023.

[22] Christopher Copeland and Hongxia Zhong. Tan-
garoa: a Byzantine fault tolerant Raft, 2016.
https://www.scs.stanford.edu/14au-cs244b/
labs/projects/copeland_zhong.pdf.

[23] Emma Dauterman, Henry Corrigan-Gibbs, and David Maz-
ières. SafetyPin: Encrypted backups with human-memorable
secrets. In OSDI, 2020.

[24] Emma Dauterman, Vivian Fang, Natacha Crooks, and
Raluca Ada Popa. Reflections on trusting distributed trust. In
HotNets, 2022.

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/
https://support.apple.com/guide/security/icloud-keychain-security-overview-sec1c89c6f3b/
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://www.intel.com/content/www/us/en/content-details/736463/white-paper-asynchronous-enclave-exit-notify-and-the-edeccssa-user-leaf-function.html
https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf

[25] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha
Crooks, and Raluca Ada Popa. Snoopy: Surpassing the
scalability bottleneck of oblivious storage. In SOSP, 2021.

[26] Alex Davidson, Armando Faz-Hernandez, Nick Sullivan, and
Christopher A. Wood. Oblivious pseudorandom functions
(OPRFs) using prime-order groups. https://www.ietf.
org/id/draft-irtf-cfrg-voprf-21.html.

[27] Gareth T. Davies,Sebastian Faller,Kai Gellert,Tobias Handirk,
Julia Hesse, Máté Horvárth, and Tibor Jager. Security analy-
sis of the WhatsApp end-to-end encrypted backup protocol.
Cryptology ePrint Archive 2023/843, 2023.

[28] Daniel Demmler, Thomas Schneider, and Michael Zohner.
Ad-hoc secure two-party computation on mobile devices using
hardware tokens. In USENIX Security, 2014.

[29] Baltasar Dinis, Peter Druschel, and Rodrigo Rodrigues. RR:
A fault model for efficient TEE replication. In NDSS, 2023.

[30] Andrés Fábrega, Carolina Ortega Pérez, Armin Namavari,
Ben Nassi, Rachit Agarwal, and Thomas Ristenpart. Injection
attacks against end-to-end encrypted applications. In 2024
IEEE Symposium on Security and Privacy (SP), pages 82–82.
IEEE Computer Society, 2023.

[31] Fireblocks. https://www.fireblocks.com/platforms/
mpc-wallet/.

[32] Michael J Freedman, Yuval Ishai, Benny Pinkas, and Omer
Reingold. Keyword search and oblivious pseudorandom
functions. In TCC, 2005.

[33] Gemini. Cold storage, keys & crypto: How Gemini keeps
assets safe. https://www.gemini.com/blog/cold-
storage-keys-crypto-how-gemini-keeps-assets-
safe.

[34] Oded Goldreich. Foundations of Cryptography: Volume 1,
Basic Tools. Cambridge University Press, 2006.

[35] Vipul Goyal,Abhiram Kothapalli, Elisaweta Masserova,Bryan
Parno, and Yifan Song. Storing and retrieving secrets on a
blockchain. In PKC, 2022.

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin,
Jonas Juffinger, Sioli O’Connell, Wolfgang Schoechl, and
Yuval Yarom. Another flip in the wall of rowhammer defenses.
In IEEE S&P, 2018.

[37] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-
resolution side channels for untrusted operating systems. In
USENIX ATC, 2017.

[38] Feng Hao and Paul C van Oorschot. SoK: Password-
authenticated key exchange–theory, practice, standardization
and real-world lessons. In AsiaCCS, 2022.

[39] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R
Lorch, Bryan Parno, Michael L Roberts, Srinath Setty, and
Brian Zill. IronFleet: Proving practical distributed systems
correct. In SOSP, 2015.

[40] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim.
SGX-Bomb: Locking down the processor via rowhammer
attack. In SysTEX, 2017.

[41] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk.
Round-optimal password-protected secret sharing and T-
PAKE in the password-only model. In ASIACRYPT, 2014.

[42] Stanislaw Jarecki,Aggelos Kiayias,Hugo Krawczyk, and Jiayu
Xu. Highly-efficient and composable password-protected
secret sharing (or: How to protect your bitcoin wallet online).
In EuroS&P, 2016.

[43] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and
Jiayu Xu. TOPPSS: Cost-minimal password-protected secret
sharing based on threshold OPRF. In ACNS, 2017.

[44] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE:
an asymmetric PAKE protocol secure against pre-computation
attacks. In EUROCRYPT, 2018.

[45] Simon Johnson, Raghunandan Makaram, Amy San-
toni, and Vinnie Scarlata. Supporting Intel SGX on
multi-socket platforms. https://www.intel.com/
content/dam/www/public/us/en/documents/white-
papers/supporting-intel-sgx-on-mulit-socket-
platforms.pdf.

[46] Your Keybase account. https://book.keybase.io/
account.

[47] Hormuzd Khosravi. Runtime encryption of memory
with Intel Total Memory Encryption - Multi-Key, 2022.
https://www.intel.com/content/dam/www/central-
libraries/us/en/documents/2022-10/intel-total-
memory-encryption-multi-key-whitepaper.pdf.

[48] Knox. Knox custody. https://www.knoxcustody.com/
security.

[49] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser,
Philipp Jovanovic,Ewa Syta, and Bryan Ford. Calypso: Private
data management for decentralized ledgers. Cryptology ePrint
Archive 2018/209, 2018.

[50] Ivan Krstic. Behind the scenes with iOS secu-
rity, 2016. https://www.blackhat.com/docs/us-16/
materials/us-16-Krstic.pdf.

[51] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. CrypTFlow: Se-
cure TensorFlow inference. In IEEE S&P, 2020.

[52] Leslie Lamport. Specifying systems: The TLA+ language
and tools for hardware and software engineers. 2002.

[53] Ledger. How Ledger device generates 24-word recov-
ery phrase. https://support.ledger.com/hc/en-
us/articles/4415198323089-How-Ledger-device-
generates-24-word-recovery-phrase, November
2023.

[54] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and
Raluca Ada Popa. An off-chip attack on hardware enclaves
via the memory bus. In USENIX Security, 2020.

[55] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. Inferring fine-grained control
flow inside SGX enclaves with branch shadowing. In USENIX
Security, 2017.

[56] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas
Moscibroda. TrInc: Small trusted hardware for large dis-
tributed systems. In NSDI, 2009.

[57] Yehuda Lindell, David Cook, Tim Geoghegan, Sarah Gran,
Rolfe Schmidt, Ehren Kret, Darya Kaviani, and Raluca Ada
Popa. The deployment dilemma: Merits & challenges of
deploying MPC, 2023. https://mpc.cs.berkeley.edu/
blog/deployment-dilemma.html.

https://www.ietf.org/id/draft-irtf-cfrg-voprf-21.html
https://www.ietf.org/id/draft-irtf-cfrg-voprf-21.html
https://www.fireblocks.com/platforms/mpc-wallet/
https://www.fireblocks.com/platforms/mpc-wallet/
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe
https://www.gemini.com/blog/cold-storage-keys-crypto-how-gemini-keeps-assets-safe
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://book.keybase.io/account
https://book.keybase.io/account
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/2022-10/intel-total-memory-encryption-multi-key-whitepaper.pdf
https://www.knoxcustody.com/security
https://www.knoxcustody.com/security
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Krstic.pdf
https://support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-device-generates-24-word-recovery-phrase
https://support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-device-generates-24-word-recovery-phrase
https://support.ledger.com/hc/en-us/articles/4415198323089-How-Ledger-device-generates-24-word-recovery-phrase
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html
https://mpc.cs.berkeley.edu/blog/deployment-dilemma.html

[58] Joshua Lund. Technology preview for secure value recov-
ery, 2019. https://signal.org/blog/secure-value-
recovery/.

[59] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-
Louis, Alexander Frolov, Tyler Kell, Tyrone Lobban, Christine
Moy, Ari Juels, and Andrew Miller. Candid: Can-do decen-
tralized identity with legacy compatibility, Sybil-resistance,
and accountability. In IEEE S&P, 2021.

[60] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar,
David Sommer, Arthur Gervais, Ari Juels, and Srdjan Capkun.
ROTE: Rollback protection for trusted execution. In USENIX
Security, 2017.

[61] Vasilios Mavroudis, Andrea Cerulli, Petr Svenda, Dan Cvrcek,
Dusan Klinec, and George Danezis. A touch of evil: High-
assurance cryptographic hardware from untrusted components.
In CCS, 2017.

[62] Signal Messenger. Signal Android client. https://github.
com/signalapp/Signal-Android.

[63] Signal Messenger. Signal desktop client. https://github.
com/signalapp/Signal-Desktop.

[64] Signal Messenger. Signal iOS client. https://github.
com/signalapp/Signal-iOS.

[65] Meta. End-to-end encryption on Messenger explained,
2024. https://about.fb.com/news/2024/03/end-to-
end-encryption-on-messenger-explained/.

[66] Microsoft. Bitlocker whitepaper Windows 10.
https://scdn.rohde-schwarz.com/ur/pws/dl_
downloads/dl_firmware/pdf_3/Bitlocker_White_
Paper_Windows_10.pdf, 2018.

[67] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro
Chiesa, and Raluca Ada Popa. Oblix: An efficient oblivious
search index. In IEEE S&P, 2018.

[68] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
Cachezoom: How SGX amplifies the power of cache attacks.
In CHES, 2017.

[69] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-
based fault injection attacks against Intel SGX. In IEEE S&P,
2020.

[70] Nitro secure module. https://github.com/aws/aws-
nitro-enclaves-nsm-api/tree/v0.4.0.

[71] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa.
Oblivious multi-party machine learning on trusted processors.
In USENIX Security, 2016.

[72] Diego Ongaro. Consensus: Bridging theory and practice.
Stanford University, 2014.

[73] Diego Ongaro and John Ousterhout. In search of an under-
standable consensus algorithm. In USENIX ATC, 2014.

[74] Open Enclave SDK. https://github.com/
openenclave/openenclave/tree/v0.19.0.

[75] Chris Orsini, Alessandra Scafuro, and Tanner Verber. How
to recover a cryptographic secret from the cloud. Cryptology
ePrint Archive 2023/1308, 2023.

[76] Bryan Parno, Jacob R Lorch, John R Douceur, James Mickens,
and Jonathan M McCune. Memoir: Practical state continuity
for protected modules. In IEEE S&P, 2011.

[77] Trevor Perrin. KEM-based hybrid forward secrecy for Noise.
2018. https://github.com/noiseprotocol/noise_
hfs_spec/blob/master/output/noise_hfs.pdf.

[78] Trevor Perrin. The Noise protocol framework. 2018.
[79] PreVeil: Encrypted email and file sharing. https://www.

preveil.com/.
[80] Protocol buffers - Google’s data interchange format. https:

//github.com/protocolbuffers/protobuf.
[81] Proton Mail. https://proton.me/mail.
[82] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos,

and Cristiano Giuffrida. CrossTalk: Speculative data leaks
across cores are real. In IEEE S&P, 2021.

[83] Ken Reese, Trevor Smith, Jonathan Dutson, Jonathan
Armknecht, Jacob Cameron, and Kent Seamons. A usability
study of five two-factor authentication methods. In SOUPS,
2019.

[84] Riddle&Code. Hardware security modules vs. secure multi-
party computation in digital asset custody: The drawback
of choosing just one and what happens when you combine
them. https://www.riddleandcode.com/blog-posts/
hardware-security-modules-vs-secure-multi-
party-computation-in-digital-asset-custody.

[85] Andy Sayler, Taylor Andrews, Matt Monaco, and Dirk Grun-
wald. Tutamen: A next-generation secret-storage platform. In
SoCC, 2016.

[86] Michael Schwarz,Moritz Lipp,Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. Zom-
bieLoad: Cross-privilege-boundary data sampling. In CCS,
2019.

[87] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware guard extension:
Using SGX to conceal cache attacks. In DIMVA, 2017.

[88] Sepior. https://sepior.com/products/advanced-
mpc-wallet.

[89] Pavitra Shankdhar. Popular tools for brute-force at-
tacks. https://resources.infosecinstitute.com/
topics/hacking/popular-tools-for-brute-force-
attacks/, 2020.

[90] Rob Shirley. Internet security glossary, version 2. https:
//datatracker.ietf.org/doc/html/rfc4949.

[91] Signal Messenger. Secure Value Recovery Ser-
vice v2/3. https://github.com/signalapp/
SecureValueRecovery2.

[92] Signal Messenger. https://signal.org/.
[93] Raoul Strackx and Frank Piessens. Ariadne: A minimal

approach to state continuity. In USENIX Security, 2016.
[94] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.

CLKSCREW: Exposing the perils of security-oblivious en-
ergy management. In USENIX Security, 2017.

[95] Kevin Townsend. Solving the quantum decryption ‘har-
vest now, decrypt later’ problem. 2022. https://www.
securityweek.com/solving-quantum-decryption-
harvest-now-decrypt-later-problem/.

[96] Nora Trapp. Key to simplicity: Squeezing the hassle out of
encryption key recovery, 2024. https://www.juicebox.
xyz/blog/key-to-simplicity-squeezing-the-
hassle-out-of-encryption-key-recovery.

https://signal.org/blog/secure-value-recovery/
https://signal.org/blog/secure-value-recovery/
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-Desktop
https://github.com/signalapp/Signal-iOS
https://github.com/signalapp/Signal-iOS
https://about.fb.com/news/2024/03/end-to-end-encryption-on-messenger-explained/
https://about.fb.com/news/2024/03/end-to-end-encryption-on-messenger-explained/
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.pdf
https://scdn.rohde-schwarz.com/ur/pws/dl_downloads/dl_firmware/pdf_3/Bitlocker_White_Paper_Windows_10.pdf
https://github.com/aws/aws-nitro-enclaves-nsm-api/tree/v0.4.0
https://github.com/aws/aws-nitro-enclaves-nsm-api/tree/v0.4.0
https://github.com/openenclave/openenclave/tree/v0.19.0
https://github.com/openenclave/openenclave/tree/v0.19.0
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://github.com/noiseprotocol/noise_hfs_spec/blob/master/output/noise_hfs.pdf
https://www.preveil.com/
https://www.preveil.com/
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://proton.me/mail
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://www.riddleandcode.com/blog-posts/hardware-security-modules-vs-secure-multi-party-computation-in-digital-asset-custody
https://sepior.com/products/advanced-mpc-wallet
https://sepior.com/products/advanced-mpc-wallet
https://resources.infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-attacks/
https://resources.infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-attacks/
https://resources.infosecinstitute.com/topics/hacking/popular-tools-for-brute-force-attacks/
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://github.com/signalapp/SecureValueRecovery2
https://github.com/signalapp/SecureValueRecovery2
https://signal.org/
https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/
https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/
https://www.securityweek.com/solving-quantum-decryption-harvest-now-decrypt-later-problem/
https://www.juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://www.juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery
https://www.juicebox.xyz/blog/key-to-simplicity-squeezing-the-hassle-out-of-encryption-key-recovery

[97] Anna Trikalinou and Dan Lake. Taking DMA attacks to the
next level. 2017.

[98] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient
out-of-order execution. In USENIX Security, 2018.

[99] Jo Van Bulck,Daniel Moghimi,Michael Schwarz,Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar,
Daniel Gruss, and Frank Piessens. LVI: Hĳacking transient
execution through microarchitectural load value injection. In
IEEE S&P, 2020.

[100] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step:
A practical attack framework for precise enclave execution
control. In SysTEX, 2017.

[101] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets without
page faults: Stealthy page table-based attacks on enclaved
execution. In USENIX Security, 2017.

[102] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund,
Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. RIDL: Rogue in-flight data load. In
IEEE S&P, 2019.

[103] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking data on Intel
CPUs via cache evictions. arXiv preprint arXiv:2006.13353,
2020.

[104] Shabsi Walfish. Google Cloud Key Vault Service.
Google, 2018. https://developer.android.com/
about/versions/pie/security/ckv-whitepaper.

[105] Weili Wang, Sen Deng, Jianyu Niu, Michael K Reiter, and
Yinqian Zhang. Engraft: Enclave-guarded Raft on Byzantine
faulty nodes. In CCS, 2022.

[106] WhatsApp. Security of end-to-end encrypted backups, 2021.
https://www.whatsapp.com/security/WhatsApp_
Security_Encrypted_Backups_Whitepaper.pdf.

[107] Kyle Wiggers. Apple launches end-to-end encryption for
iCloud data. TechCrunch, 2022.

[108] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In IEEE S&P, 2015.

A Properties of different enclaves

Intel SGX. Intel Scalable SGX (also known as SGX) attains
confidentiality through hardware-based access control and
encryption. The access control is obtained by placing all
enclave memory inside processor reserved memory that cannot
be accessed by software outside the enclave, including the
OS and hypervisor. Additionally, enclave data memory is
encrypted using Intel TME, which employs hardware-based
AES-XTS encryption to all data pages before they leave the
processor [47]. The access control provides protection for
enclave data on-chip and the encryption provides protection
from cold-boot and other attacks. SGX guarantees integrity

in the presence of software-based attacks across the entire
memory region, but does not provide this guarantee in the
presence of physical attacks [45]. The use of hardware-based
AES-XTS encryption of all memory pages yields ciphertexts
at the 16B block level that cannot be moved but can be replayed
by attackers with physical access to the system bus.

SGX provides application-level attestation. When creating
an SGX enclave the system loads a dynamic library into
protected memory and measures the layout of this memory,
along with security flags associated with these memory pages.
This measurement is provided to clients in a signed document
that allows clients to confirm that the enclave is running
the code expected by the client on an up-to-date platform.
Thus the TCB of an SGX application includes the application
library and the platform firmware. As of June 2024, SVR3 is
deployed on DCsv3 instances at Microsoft Azure, which use
Intel Icelake processors.
AMD SEV-SNP. AMD SEV-SNP has memory protection
that is similar to Intel SGX. All varieties of AMD SEV
use hardware-based AES encryption to protect memory off
chip. Additionally, with SEV-SNP, AMD adds hardware based
access control and integrity and freshness guarantees. SEV
uses AES-XEX memory encryption that, like Intel SGX,
produces ciphertexts at the block level that cannot be moved
but could be replayed [3].

SEV-SNP provides attestation at the VM level, so to ob-
tain application-level attestation engineers must produce a
restricted VM image that can only run the target application
code. Thus the attested code base includes an entire VM image
and hence is much larger than the attested code base for a
Scalable SGX enclave running the same application. As of
June 2024, SVR3 is deployed on n2d-highmem-16 at GCP,
which use AMD Rome or AMD Milan processors.
AWS Nitro. AWS Nitro enclaves run on dedicated cores
and use hardware-based access control to protect enclave
memory. The use of dedicated cores differs from SGX and
SEV-SNP, reducing exposure to some side channel attacks.
The memory protection provides integrity in the presence of
software-based attacks across the entire memory region. Nitro
enclaves running on Graviton 2 and 3 chips provide memory
encryption [12]. While the details of this memory encryption
are not public, it claims to guard against cold-boot attacks but
makes no claims about security in the presence of physical
attackers. Thus we expect that the implementation is similar
to those of Scalable SGX and AMD SEV-SNP.

AWS Nitro has a larger TCB (the Nitro cards, security chip,
and hypervisor) than Intel SGX and AMD SEV-SNP. While
it is designed for application level attestation and does not
present the engineering challenges that SEV-SNP does, it still
requires attestation of an entire Docker image rather than the
single application library attested by SGX. As of June 2024,
SVR3 is deployed on m5 instances at AWS, which use either
Intel Skylake-SP or Cascade Lake processors, and we are
evaluating a move to Graviton-based instances.

https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://developer.android.com/about/versions/pie/security/ckv-whitepaper
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp_Security_Encrypted_Backups_Whitepaper.pdf

B Production deployment

Production clusters will use 7 replicas with at least 128 GB of
enclave memory and a supermajority parameter of 2. We will
estimate bandwidth costs assuming 500 requests per second,
a reasonable estimate for 500 million users. To deploy this at
published rates will cost:
• AWS Nitro: m5.12xlarge (48 cores, 192 GiB memory)

$1,535.62/month:
– Compute: $10,749.34 /month
– Bandwidth: 6150 GB client-server at $0.09/GB =

$553/month
• SGX at Azure: DC24sv3 (24 cores, 192 GiB memory)

$1,681.92/month
– Compute: $11,773.44/month
– Bandwidth: 27,744 GB at $0.087/GB = $2,414/month

• SEV at GCP: n2d-highmem-16 x 2 (32 cores total, 256
GiB RAM total, 128 for the TEE) $1,528.76 / month:

– Compute: $10,701.32/month
– Bandwidth: 13,392 GB at $0.11/GB = $1,473/month

• Total cost: $37,663/month. This deployment will comfort-
ably support over 500 million users, giving an operating
cost of $0.0009/user/year.

C Atomic regions

To prevent attackers from exploiting gaps between time-of-
check and time-of-use data, we need a way to guarantee
that a segment of code runs without interruption and that
certain working data is non-volatile during its execution. We
accomplish this on the SGX and SEV-SNP platforms using
custom interrupt handlers, but we do not currently have a
means to implement atomic regions for AWS Nitro.

SGX Implementation. The key observation that allows us
to implement atomic regions on the SGX platform is that the
AEX-Notify ISA extensions [6] let us implement a custom
AEX-Notify handler that performs the SGX-Step mitigation
of [21] and also sets a flag in a fixed register which we will
denote IR to notify the application that it was interrupted. We
can then implement atomic regions as follows:
1. Enable AEX-Notify and register a custom AEX Notifi-

cation handler that performs the single-step mitigations
of [21], sets the value of IR to 0x1 in the atomic prefetch-
ing phase, and loads two arrays of workspace data - one
for reading and one for writing - into L1 cache.

2. Begin an atomic region by setting IR to 0x0 and setting
the memory of the read/write workspace array to zero.

3. Implement the functionality of the atomic region in a way
that does not modify IR and that only reads memory from
the workspace arrays, and only writes to registers or to

the read/write workspace array.
4. At the end of the atomic region, check IR. If it is set, then

jump back to step 2, otherwise leave the atomic block and
continue execution.

Thus the atomic block only completes if no interruption occurs
during its execution, and the data in the read-only workspace
array will be unchanged throughout an uninterrupted execution.
Note, however, that an attacker could modify the workspace
data between execution attempts so there is no guarantee that
the atomic region will process the same input data on each
execution attempt.

With simultaneous multithreading (SMT) disabled, an at-
tacker cannot evict workspace data from the cache and force a
read from the DIMMs without interrupting the process. Thus
even if an attacker attempts to rollback memory in the DIMMs
during execution of the atomic region, it will not be seen in
the processing.

An attacker is capable of rolling back registers by interrupt-
ing the process, rolling back the SSA to an earlier version, then
resuming the process. Note that the attacker cannot use this to
clear IR since our handler will reset it after every interruption.

SEV-SNP Implementation The TCB for SEV-SNP includes
the operating system (OS), as attestation is at the VM level. To
implement a AEX-Notify style handler on SEV-SNP, we can
modify the trusted OS to handle APIC interrupts and carry
out the steps described above.

D Raft" safety proofs

Lemma 1 (Fundamental Lemma). If Len(RollbackServer) ≤
s ,where s is the rollback tolerance parameter, then the intersec-
tion of any two quorums contains at least one non-rolled-back
server.

Proof. A quorum is comprised of ⌊(m + s)/2⌋ + 1 servers.
Two quorums have a total of > m + s servers, so they must
overlap in more than s servers. At most s of these servers can
be rolled back, so the intersection of these two quorums must
contain at least one non-rolled-back server. □

Lemma 2. A server’s currentTerm monotonically increases
:
if
::
it

::
is

:::
not

:::::
rolled

::::
back

::
in

:::
this

:::::::::
transition:

∀i ∈ Server :
∀s : ¬Rollback(i, s) =⇒
currentTerm[i] ≤ currentTerm′ [i]

Proof. This follows from the specification. □

Lemma 3. There is at most one leader per term:

∀e , f ∈ elections :
e.eterm = f .eterm =⇒ e.eleader = f .eleader

Proof sketch. This follows from Lemma 1. It takes votes from
a quorum to become leader, voters may only vote once per
term, and any two quorums overlap in a

:::::::::::::
non-rolled-back

::::
voter.

Lemma 4. A
:::::::::::::
non-rolled-back leader’s log monotonically

grows during its term:

∀e ∈ elections
∧ e.leader ∉ RollbackServer
∧ currentTerm[e.leader] = e.term =⇒
∀index ∈ 1 . . .Len(log[e.leader]) :

log′ [e.leader] [index] = log[e.leader] [index]

Proof. The proof corresponds exactly to the proof of Lemma
3 in [72]. □

Lemma 5.
::::::
Assume

:::::
that

:::
the

:::::
hash

::::::::
function

:::::
used

:::
is

::
a

::::::::::::::
collision-resistant

:::::
hash

::::::::
function

:::::
[34].

::::::
Then,

:::::
there

:::::
exists

:
a
:::::::::

negligible
:::::::::

function
::::
𝜈(·)

:::::
such

:::::
that

::::
the

:::::
hash

:::
of

:::
an

::::::::::::::::::::
⟨index, term,value,hash⟩

:::::
tuple

::::::::
identifies

::
a
:::
log

::::::
prefix

::::
with

:::::::::
probability

:::::::
1− 𝜈(𝜆):

∀l ,m ∈ allLogs
⟨index, term,value,hash⟩ ∈ l :
⟨index, term′,value′hash⟩ ∈ m :
∀pindex ∈ 1 . . . index :

l[pindex] = m[pindex]

Proof sketch. Only leaders create entries, and they assign
the new entries term numbers that will never be assigned
again by other leaders (Lemma 3). When followers accept
AppendEntriesRequest from the leader, they check that the
values of hash match. The probability of a collision for some
other index′, term′, i.e., the follower appends a different entry
with the same hash to its log is 𝜈(𝜆).

Proof. We prove this inductively on an upper bound for
index. For index ≤ 1 violating the property requires find-
ing ⟨index, term,value,hash⟩, ⟨index, term′,value′hash⟩ such
that

Hash(index, term,value,0) = Hash(index, term′,value′,0)

Since the hash function is collision resistant this implies
term = term′ and value = value′ with high probability, proving
our base case.

Now assume that for some N the result is true whenever
index < N . A server only appends ⟨index, term,value,hash⟩
to its log l if Hash(index, term,value, l[index−1] .hash) =
hash. Hence if ⟨index, term,value,hash⟩ ∈ l
and ⟨index, term′,value′,hash⟩ ∈ m then
Hash(index, term,value, l[index−1] .hash) = hash =

Hash(index, term′,value′,m[index−1] .hash). This is a
negligible probability unless term = term′,value = value′,
and l[index−1] .hash = m[index−1] .hash. Thus

l[index] = m[index] with high probability. Further-
more, since l[index−1] .hash = m[index−1] .hash with
high probability, the inductive hypothesis implies
∀pindex ∈ 1 . . . index : l[pindex] = m[pindex], complet-
ing the induction. □

Lemma 6. When a follower processes an
AppendEntriesRequest and does not reject it, then
after processing, part of its log is a prefix of the leader’s log
at the time the leader sent the AppendEntriesRequest:

∀i , j ∈ Server,∀m ∈ domain messages :
∧ HandleAppendEntriesRequest(i,j,m)
∧ ∃ rsp ∈ domain messages :
∧ Reply(rsp,m)
∧ rsp.msuccess = true =⇒
∀index ∈ 1 . . .m.mcommitIndex :
∧ log′ [i] [index] = m.mlog[index]

Proof sketch. The follower only appends
⟨index, term,value,hash⟩ if its hash chain is consistent
with the follower’s current log. Similarly the leader computed
hash in ⟨index, term,value,hash⟩ to be consistent with its
own log. We can use Lemma 5 to m.mlog and log′ [i] since
both are in allLogs.

Proof. Since rsp.msuccess = true it follows that the
intermediate expression logOk in the definition of
HandleAppendEntriesRequest evaluates to true.

If no entries were added by this request then
m.mprevLogIndex ≥ m.mcommitIndex. Further, logOk =

true implies that m.mlog[m.mprevLogIndex] .hash =

log[i] [m.mprevLogIndex] .hash, thus Lemma 5 implies
m.mlog matches log[i] up to m.mprevLogIndex >

m.mprevIndex ≥ m.mcommitIndex.
If entries were added to log[i], then logOk = true implies

that the hash chain value of the added log value matches the
hash chain value corresponding entry in m.mlog. Applying
Lemma 5 now shows that log′ [i] is now a prefix of m.mlog
and the result follows.

□

Lemma 7. A server’s currentTerm is at least as large as the
terms in its log:

∀i ∈ Server :
⟨index, term,value,hash⟩ ∈ log[i] :

term ≤ currentTerm[i]

Proof sketch. Without rollbacks, prove by induction in
Lemma 6 of [72]. A server can only be rolled back into
a state where the inductive hypothesis is true.

Lemma 8. Servers never remove promised entries without
rollback:

∀i ∈ Server \RollbackServer :
∧ ⟨index, term,value,hash⟩ ∈ log[i]
∧ step = s0
∧ index ≤ promiseIndex[i] =⇒
∀s1 ≥ s0 :
∧ step = s1
∧ ⟨index, term,value,hash⟩ ∈ logs[i]

Proof. This follows immediately from the specification, since
the promise index increases monotonically and promised
entries are not removed. □

Lemma 9. If an entry is not in a leader’s log, then there is
an earlier election for this leader and this term that does not
have the entry in the election log.

∧ isLeader(leader)
∧ ⟨i, t,v,h⟩ ∉ logs[leader] =⇒
∃e ∈ elections :
∧ e.estep ≤ step
∧ e.eterm = currentTerm[leader]
∧ ⟨i, t,v,h⟩ ∉ e.elog

Proof.
1. Assume

∧ isLeader(leader)
∧ ⟨idx, t ,v ,h⟩ ∉ logs[leader]

2. Define
(a) goodSteps ≜ {s : isLeader(leader,s) ∧
⟨idx, t ,v ,h⟩ ∉ states[s] [leader] .log ∧
states[s] [leader] .term = currentTerm[leader]}

This is the set of all steps (state transitions) within
a term where the leader of that term does not have
⟨idx, t ,v ,h⟩ in its log.

(b) step1 ≜ min(goodSteps). This is well defined since
by our assumption step ∈ goodSteps so goodSteps ≠
∅. Furthermore step1 ≤ step.

3. It follows that ∨¬ isLeader(leader, step1 − 1) ∨
states[step1−1] [leader] .term < currentTerm[leader] ∨
⟨idx, t ,v ,h⟩ ∈ states[step1−1] [leader] .log

In order for step1 to be the minimal goodStep, one of
the above clauses must be true about step1−1 because
step1−1 ∉ goodSteps.

(a) If ⟨idx, t ,v ,h⟩ ∈ states[step1−1] [leader] .log then
the action that led to step1 removed ⟨idx, t ,v ,h⟩
from the log. Thus it was either a rollback or a
HandleAppendEntriesRequest.

i. If leader processed a
HandleAppendEntriesRequest at this

step then it was not a leader at step1− 1 since
leaders do not process these. Furthermore since
it processed a HandleAppendEntriesRequest
and not a BecomeLeader or rollback, it
could not become leader at step1. This is a
contradiction.

ii. If the action from step1 − 1 to step1 was a
rollback to an earlier state at some step0 then
we must have step0 ∈ goodSteps∧step0 < step1.
This is a contradiction.

iii. Thus ⟨idx, t ,v ,h⟩ ∉ states[step1 −
1] [leader] .log.

(b) If states[step1 − 1] [leader] .term <

currentTerm[leader] then the action that led
to step1 was either a rollback to an earlier goodStep,
which is impossible since step1 is the earliest
goodStep, or an ElectionTimeout(leader) which
would imply that ¬isLeader(leader, step1). This
is a contradiction.

(c) Thus it must be ¬isLeader(leader, step1−1).

4. There are two actions that could allow leader to become
a leader at step1:
(a) A rollback to an earlier goodStep, but this is impos-

sible because step1 is the earliest goodStep.
(b) BecomeLeader(leader) could occur. This does not

change the log and it adds an election e′ to elections
with:

∧ e ′.estep < step
∧ e ′.eterm = currentTerm[leader]
∧ e ′.log = states[step1−1] [leader] .log

Since ⟨i, t,v,h⟩ ∉ states[step1−1] [leader] .log it fol-
lows that ⟨i, t,v,h⟩ ∉ e′.elog. This proves the result.

□

Definition 1. An entry ⟨index, term,value,hash⟩ is immedi-
ately committed if it is acknowledged by a quorum (including
the leader) during term

::
and

:::
all

::::::::
members

::
of

:::
that

:::::::
quorum

::::
have

::
the

:::::
same

:::::
value

:::
for

::::
hash.

immediatelyCommitted ≜ {⟨index, term,value,hash⟩ ∈ anyLog :
∧ anyLog ∈ allLogs
∧ ∃leader ∈ Server, subquorum ∈ subset Server :
∧ subquorum∪ {leader} ∈ Quorum
∧ ∀i ∈ subquorum :
∃m ∈ messages:
∧ m.mtype = AppendEntriesResponse
∧ m.msource = i
∧ m.dest = leader
∧ m.term = term
:::::::::::::::::::::::
∧ m.mPromiseIndex ≥ index
:::::::::::::::::::::::::::::::::::::
∧ log[leader] [m.mMatchIndex] .hashChain =

::::::::::::::::::
m.mMatchHashChain

::::::::::::::::::::::::::::::::::
∧ ⟨index, term,value,hash⟩ ∈ log[leader] }

Note that ⟨index, term,value,hash⟩ ∈ log[leader] enforces
that ⟨index, term,value,hash⟩ is indeed in the log instead
of some ⟨index, term,value,hash′⟩. Our definition of immedi-
ately committed differs from [72]. In particular, we introduce
a promise index and a hash chain. We also prove committed
under live terms, which we define next.

Definition 2. A live term is a term in which some log entry
is immediately committed:

liveTerms ≜ {term :
∃ ⟨index, term,value,hash⟩ ∈ immediatelyCommitted}

Definition 3. An entry ⟨index, term,value,hash⟩ is live com-
mitted at term term if it is present in every leader’s log in
live terms following term:

liveCommitted(term) ≜ {⟨index, term,value,hash⟩ :
∀election ∈ elections :
∧ election.eterm > term
∧ election.eterm ∈ liveTerms =⇒
⟨index, term,value,hash⟩ ∈ election.elog}

Lemma 10. Immediately-committed entries are live commit-
ted:

∀⟨index, term,value,hash⟩ ∈ immediatelyCommitted :
⟨index, term,value,hash⟩ ∈ liveCommitted(term)

Proof.
1. Let ⟨index, term,value,hash⟩ be an entry that is immedi-

ately committed.
2. Define

BadElections ≜ { election ∈ elections :
∧ election.eterm > term
∧ ⟨index, term,value,hash⟩ ∉ election.log }

3. Let election be an element in BadElections with a minimal
eterm field. If there is more than one election in the same
term, choose the election with the minimal estep field.

4.
::::
WTS

:::::::::::
BadElections

::::
does

:::
not

:::::::
contain

:::
any

:::::::
elections

::
e

::::
with

::::::::::::::::
e.eterm ∈ liveTerms.

5. Let voter be any server that both votes in election, contains
⟨index, term,value,hash⟩ in its log during term,

::
and

::::
has

:::
not

::::
been

:::::
rolled

::::
back. Such a server must exist since:

(a) A quorum of servers voted in election for it to suc-
ceed.

(b) A quorum contains ⟨index, term,value,hash⟩ in its
log during term since it is immediately committed.
:::::::
Because

::::::::::::::::::
m.mMatchHashChain

:::::
must

:::::
match

::::::
across

::
all

:::::::
servers

::
in

::::
this

::::::::
quorum,

:::
all

:::::::
quorum

::::::::
members

::::
agree

::::
with

:::
the

:::::
leader

::::
(and

::::
each

:::::
other)

:::::
w.h.p.

::
at
:::::
index

:::::::::
(Lemma 5).

(c) Any two quorums overlap in a server that
:::
has

:::
not

::::
been

:::::
rolled

::::
back (Lemma 1).

6. Let voterLog ≜ election.evoterLog[voter], the voter’s log
at the time it cast its vote.

7. WTS ⟨index, term,value,hash⟩ ∈ voterLog:
(a) ⟨index, term,value,hash⟩ was in the voter’s log dur-

ing term.
(b) The voter must have stored the entry in term before

voting in election.term since:
i. election.eterm > term
ii. The voter rejects requests for index with terms

smaller than its current term, and its current term
monotonically increases (Lemma 2).

(c) The voter couldn’t have removed the entry before
voting:
C-1: No AppendEntriesRequest with mterm ≤

term removes the entry from the voter’s log,
since currentTerm[voter] ≥ term upon stor-
ing the entry (Lemma 7) and the voter does
not remove entries from requests with terms
≤ currentTerm[voter].

C-2: No AppendEntriesRequest with mterm >

term removes the entry from the voter’s log,
since:
C-A: mterm > election.eterm: the voter

would have been prevented in voting
in election.eterm.

C-B: mterm = election.eterm:
::
In

::::::
order

::
for

::::
the

:::::::
leader

:::
to
::::::

have
:::::

sent
::::

an
::::::::::::::::::::
AppendEntriesRequest

:::::::::::
for

:::::::::::::::::::::
⟨index, term,value,hash′⟩,

::::
the

::::::
leader

:::
did

:::
not

::::
have

:::::::::::::::::::::
⟨index, term,value,hash⟩

::
in

::::
its

::::::
log,

:::
so

::::::
there

::::::
was

::::
an

:::::
earlier

::::::::
election

:::::
that

::::
did

::::
not

:::::
have

::::::::::::::::::::
⟨index, term,value,hash⟩

:::
in

:::
its

:::::
elog

:::::::::
(Lemma 9),

::::::
which

::
is

:
a
::::::::::::
contradiction.

C-C: mterm < election.eterm: The leader of
mterm must have the entry, otherwise by
Lemma 9 it has an earlier election that
does not have the entry in its log. This
contradicts the assumption that e is the
minimal elelection in BadElections.

8. Since voter voted during election:

∨ LastTerm(election.elog) > LastTerm(voterLog)
∨ ∧ LastTerm(election.elog) = LastTerm(voterLog)
∧ Len(election.elog) ≥ Len(voterLog)

9. Case: LastTerm(election.elog) = LastTerm(voterLog)
∧ Len(election.elog) ≥ Len(voterLog):
(a) Let Q denote the quorum of servers that immediately

committed ⟨index, term,value,hash⟩.
(b) Consider a live term t > term with election

e, e.eterm = t, and an entry ⟨i, t,v,h⟩ immedi-
ately committed by quorum Q′. We prove that
⟨index, term,value,hash⟩ ∈ e.elog:

i. By Lemma 1 there ∃server ∈ Q ∩ Q′ :
server ∉ RollbackServer.

ii. Let s0 denote the step at which server created
the AppendEntriesResponse involved in the
commitment of ⟨index, term,value,hash⟩. Let
s1 denote the step at which server created the
AppendEntriesResponse involved in the com-
mitment of ⟨i, t,v,h⟩.

iii. Since t > term Lemma 2 implies s1 > s0.
iv. Since server had promiseIndex[server] ≥

index at some step before s0 and
server ∉ RollbackServer, Lemma 8 implies that
⟨index, term,value,hash⟩ ∈ log[server] at all
steps after s0.

v. Thus when server created its message imme-
diately committing ⟨i, t,v,h⟩ at step s1 it had
⟨index, term,value,hash⟩ in its log.

vi. Since every member of quorum Q′ had
⟨i, t,v,h⟩ in its log in term t, Lemma 5 im-
plies that every member of quorum Q′ had
⟨index, term,value,hash⟩ in its log in term t.

vii. Since e.eleader ∈ Q′ we know that
⟨index, term,value,hash⟩ was in
logs[e.eleader] during term t.

viii. Since term < t, ⟨index, term,value,hash⟩ could
not be added during term t it follows that
⟨index, term,value,hash⟩ ∈ e.elog.

10. Case: LastTerm(election.elog) > LastTerm(voterLog):
(a) LastTerm(voterLog) ≥ term since
⟨index, term,value,hash⟩ ∈ voterLog and terms
in non-rolled-back servers grow monotonically
(Lemma 2).

(b) election.eterm > LastTerm(election.elog) since
servers increment their currentTerm when starting
an election and by Lemma 7 a server’s current term
is at least as large as the terms in its log.

(c) Let prior be the last election with prior.eterm =

LastTerm(election.elog). Such an election must ex-
ist since LastTerm(election.elog) > 0 and a server
must win an election before creating an entry.

(d) By transitivity we have term ≤
LastTerm(voterLog) < LastTerm(election.elog) =
prior.eterm < election.eterm.

(e) LastTerm(election.elog) = prior.eterm implies
∃ ⟨i0,prior.eterm,v0,h0⟩ ∈ election.elog.

(f) Since ⟨index, term,value,hash⟩ ∉ election.elog

Lemma 5 implies that ⟨index, term,value,hash⟩
was not in the log of prior.eleader when it
created the AppendEntriesRequest that added
⟨i0,prior.eterm,v0,h0⟩.

(g) Lemma 9 implies that there was
an earlier election, badElection, with
badElection.eleader = prior.eleader and
badElection.eterm = prior.eterm such that
⟨index, term,value,hash⟩ ∉ badElection.elog.

(h) Thus badElection ∈ BadElections and is earlier than
election, a contradiction.

□

Definition 4. An entry ⟨index, term,value,hash⟩ is prefix
committed at term t if there is another entry that is live
committed at term t following it in some log.

prefixCommitted(term) ≜ {⟨index, term,value,hash⟩ ∈ anyLog :
∧ anyLog ∈ allLogs
∧ ∃ ⟨rindex, rterm, rvalue, rhash⟩ ∈ anyLog:
∧ index < rindex
∧ ⟨rindex, rterm, rvalue, rhash⟩ ∈ liveCommitted(t)}

Lemma 11. Prefix committed entries are live committed in
the same term.

Proof. The argument is identical to the proof of Appendix B
Lemma 9 [72], mutatis mutandis. □

Theorem 3. Servers only apply entries that are committed in
their current term:

∀i ∈ Server :
∧ commitIndex[i] ≤ Len(log[i])
∧ ∀⟨index, term,value,hash⟩ ∈ log[i] :

index ≤ commitIndex[i] =⇒
⟨index,term,value,hash⟩ ∈ liveCommitted(currentTerm[i])

This is a restatement of Theorem 2 in the paper.

Proof. The proof closely follows the proof of the State Ma-
chine Safety Property in [72].

::
We

::::
first

::::
note

:::
that

:::
for

::
an

::::::
infinite

::::::::
execution

:::::
which

::::
has

::
no

:::::::::
liveTerms

::::
after

::::
step,

:::
all

::::::
entries

:::
are

::::::
trivially

:::::::::::::
liveCommitted

::
at

::::
step

::::::
making

:::
the

:::::
result

::::::
trivial.

:::
So

::
we

::::
may

:::::::
assume

:::
that

:::::
there

:::::
exists

:
a
::::
live

::::
term

::::
after

:::
the

::::::
current

::::
step.

We prove by induction on an execution.
1. Initial state: the property trivially holds for empty logs

and commitIndex[i] = 0.
2.

:::::::
Inductive

:::::
step:

::
A

:::::::
rollback

::::::
occurs:

(a) Once an entry is live committed at currentTerm[i],
all leaders of subsequent live terms will have the
entry in their log.

(b) Thus the set of live-committed entries at
currentTerm[i] grows monotonically and the roll-
back cannot shrink this set.

(c) A rollback can only decrease commitIndex[i], thus
the inductive hypothesis implies that the invariant
holds.

(d) In the remainder of this proof we will now assume
that the transition was not due to a rollback.

3. Inductive step: The set of entries live committed at
currentTerm[i] changes:
(a) As shown above the set of committed entries at

currentTerm[i] grows monotonically.
(b) So no entry with index ≤ commitIndex[i] could be

removed from committed(currentTerm[i]) in this
step, and the inductive hypothesis remains true.

4. Inductive step: commitIndex[i] changes:
(a) If commitIndex[i] decreases, the inductive hypothe-

sis suffices to show the invariant holds.
(b) When commitIndex[i] increases, it covers entries

present in i’s log that are committed:
i. Case: Follower completes accepting
AppendEntriesRequest m:
A. Upon processing m the follower’s log is a

prefix of a prior version of the leader’s log
m.mlog by Lemma 6.

B. Every entry through commitIndex′ [i] in
m.mlog is committed by the inductive hy-
pothesis since they were committed in the
leader’s log when it sent the request.

ii. Case: leader i processes an
AppendEntriesResponse:
A. If the leader sets a new

commitIndex then the conditions
in the specification ensure that
logs[i] [commitIndex′ [i]] ∈ immediatelyCommitted.

B. Every entry in the leader’s log up to
CommitIndex′ [i] is prefix committed.

C. Lemma 10 and Lemma 11 imply that
all entries in the leader’s log up to
commitIndex′ [i] are live committed.

5. Inductive step: currentTerm[i] changes:
(a) Since this is not a rollback, by Lemma 2

currentTerm′ [i] ≥ currentTerm[i].
(b) liveCommitted(currentTerm[i]) ⊆

liveCommitted(currentTerm′ [i]) by the defi-
nition of liveCommitted.

(c) Thus the inductive hypothesis suffices to show that
the invariant holds.

6. Inductive step: logs change in one of the following ways:
(a) Case: A leader adds one entry due to

ClientRequest:

i. Newly created entries are not marked committed,
so the invariant holds.

(b) Case: a follower removes one entry due to
AppendEntriesRequest m:

i. Assume that ⟨index, term,value,hash⟩ was re-
moved from logs[i].

ii. By Lemma 8 and the fact that this transition
is not a rollback we conclude that index >

promiseIndex[i].
iii. Since promiseIndex[i] ≥ commitIndex[i] it fol-

lows that index > commitIndex[i].
iv. Hence the entry was not committed and the

invariant holds.
(c) Case: a follower adds one entry due to

AppendEntriesRequest m:
i. Case: the new entry is not marked committed on

the follower: The inductive hypothesis suffices
to show the invariant holds.

ii. Case: the new entry is marked committed on the
follower: commitIndex[i] must increase, which
was handled above.

□

E TLA+ specification of Raft"

module Raft"

Based on is the formal specification for the Raft consensus algorithm
(Diego Ongaro, 2014) which is licensed under the Creative Commons Attribution-4.0
International License https://creativecommons.org/licenses/by/4.0/

extends Naturals , FiniteSets , Sequences , TLC , Randomization

The set of server IDs
constants Server

The set of IDs of servers that are rolled back
constants RollbackServer

Server states.
constants Follower , Candidate , Leader

A reserved value.
constants Nil

Message types:
constants RequestVoteRequest , RequestVoteResponse,
AppendEntriesRequest , AppendEntriesResponse

Maximum number of client requests
constants MaxClientRequests

constants MaxSteps

constants RollbackTolerance

Global variables

A bag of records representing requests and responses sent from one server
to another. TLAPS doesn’t support the Bags module, so this is a function
mapping Message to Nat.

variable messages

A history variable used in the proof. This would not be present in an
implementation.
Keeps track of successful elections, including the initial logs of the
leader and voters’ logs. Set of functions containing various things about
successful elections (see BecomeLeader).

variable elections

A history variable used in the proof. This would not be present in an
implementation.
Keeps track of every log ever in the system (set of logs).

variable allLogs

a step counter used to model Rollback
variable step

a map from Server to a sequence of server states - one for each step.
variable serverStates

A hash function used to compute a hash chain
variable hash

The following variables are all per server (functions with domain Server).

The server’s term number.
variable currentTerm

The server’s state (Follower, Candidate, or Leader).
variable state

The candidate the server voted for in its current term, or
Nil if it hasn’t voted for any.

variable votedFor
serverVars Δ

= ⟨currentTerm , state , votedFor⟩

The set of requests that can go into the log
variable clientRequests

A Sequence of log entries. The index into this sequence is the index of the
log entry. Unfortunately, the Sequence module defines Head(s) as the entry
with index 1, so be careful not to use that!

variable log
The latest entry that each follower has promised the leader to commit.
This is used to calculate commitIndex on the leader.

variable promiseIndex
The index of the latest entry in the log the state machine may apply.

variable commitIndex
variable promisedLog
variable promisedLogDecrease

The index that gets committed
variable committedLog

Does the commited Index decrease
variable committedLogDecrease
logVars Δ

= ⟨log , commitIndex , promiseIndex , clientRequests , committedLog , committedLogDecrease , promisedLog ,
promisedLogDecrease⟩

The following variables are used only on candidates:
The set of servers from which the candidate has received a RequestVote
response in its currentTerm.

variable votesSent
The set of servers from which the candidate has received a vote in its
currentTerm.

variable votesGranted
A history variable used in the proof. This would not be present in an
implementation.
Function from each server that voted for this candidate in its currentTerm
to that voter’s log.

variable voterLog
candidateVars Δ

= ⟨votesSent , votesGranted , voterLog⟩

The following variables are used only on leaders:
The next entry to send to each follower.

variable nextIndex

The latest entry that each follower has acknowledged is the same as the
leader’s. This is used to calculate promiseIndex on the leader.

variable matchIndex
variable ackedPromiseIndex
leaderVars Δ

= ⟨nextIndex , matchIndex , ackedPromiseIndex , elections⟩

End of per server variables.

All variables; used for stuttering (asserting state hasn’t changed).
vars Δ

= ⟨messages , allLogs , serverVars , candidateVars , leaderVars , logVars , hash , serverStates , step⟩

Hash function setup

BitString256 Δ
= [1 . . 256→ boolean]

Helpers

The set of all quorums. This just calculates simple majorities, but the only
important property is that every quorum overlaps with every other.

Quorum Δ
= {i ∈ subset (Server) : Cardinality (i) ∗2 > RollbackTolerance +Cardinality (Server)}

The term of the last entry in a log, or 0 if the log is empty.
LastTerm (xlog) Δ

= if Len (xlog) = 0 then 0 else xlog [Len (xlog)] .term

Helper for Send and Reply. Given a message m and bag of messages, return a
new bag of messages with one more m in it.

WithMessage (m , msgs) Δ
=

if m ∈ domain msgs then
[msgs except ! [m] = if msgs [m] < 2 then msgs [m] +1 else 2]
else

msgs @@ (m :> 1)

Helper for Discard and Reply. Given a message m and bag of messages, return
a new bag of messages with one less m in it.

WithoutMessage (m , msgs) Δ
=

if m ∈ domain msgs then
[msgs except ! [m] = if msgs [m] > 0 then msgs [m] −1 else 0]
else

msgs

ValidMessage (msgs) Δ
=

{m ∈ domain messages : msgs [m] > 0}

SingleMessage (msgs) Δ
=

{m ∈ domain messages : msgs [m] = 1}

Add a message to the bag of messages.
Send (m) Δ

= messages ′ = WithMessage (m , messages)

Remove a message from the bag of messages. Used when a server is done
processing a message.

Discard (m) Δ
= messages ′ = WithoutMessage (m , messages)

Combination of Send and Discard
Reply (response, request) Δ

=

messages ′ = WithoutMessage (request , WithMessage (response, messages))

Return the minimum value from a set, or undefined if the set is empty.

Min (s) Δ
= choose x ∈ s : Ay ∈ s : x ≤ y

Return the maximum value from a set, or undefined if the set is empty.
Max (s) Δ

= choose x ∈ s : Ay ∈ s : x ≥ y

The current state of server i
CurrentFollowerState (i) Δ

= [
sslog ↦→ log [i],
sscurrentTerm ↦→ currentTerm [i],
ssvotedFor ↦→ votedFor [i],
ssstate ↦→ state [i],
sspromiseIndex ↦→ promiseIndex [i],
sscommitIndex ↦→ commitIndex [i]]
CurrentLeaderState (i) Δ

= [
sslog ↦→ log [i],
sscurrentTerm ↦→ currentTerm [i],
ssvotedFor ↦→ votedFor [i],
ssstate ↦→ state [i],
sspromiseIndex ↦→ promiseIndex [i],
sscommitIndex ↦→ commitIndex [i],
ssnextIndex ↦→ nextIndex [i],
ssmatchIndex ↦→matchIndex [i],
ssackedPromiseIndex ↦→ ackedPromiseIndex [i]]

CurrentCandidateState (i) Δ
= [

sslog ↦→ log [i],
sscurrentTerm ↦→ currentTerm [i],
ssvotedFor ↦→ votedFor [i],
ssstate ↦→ state [i],
sspromiseIndex ↦→ promiseIndex [i],
sscommitIndex ↦→ commitIndex [i],
ssvotesSent ↦→ votesSent [i],
ssvotesGranted ↦→ votesGranted [i]]

CurrentState (i) Δ
= if state [i] = Follower then CurrentFollowerState (i)

else if state [i] = Candidate then CurrentCandidateState (i)
else CurrentLeaderState (i)

RecordStates Δ
= let currentState Δ

= [i ∈ Server ↦→ CurrentState (i)]
in serverStates ′ = [serverStates except ! [step] = currentState]

Define initial values for all variables

InitHistoryVars Δ
= ∧ elections = {}

∧allLogs = {}
∧ voterLog = [i ∈ Server ↦→ [j ∈ {} ↦→ ⟨⟩]]
∧ serverStates = [s ∈ 0 . . MaxSteps ↦→ [i ∈ Server ↦→ ⟨⟩]]
InitServerVars Δ

= ∧ currentTerm = [i ∈ Server ↦→ 1]
∧ state = [i ∈ Server ↦→ Follower]
∧ votedFor = [i ∈ Server ↦→Nil]
InitCandidateVars Δ

= ∧ votesSent = [i ∈ Server ↦→ false]
∧ votesGranted = [i ∈ Server ↦→ {}]
The values nextIndex[i][i] and matchIndex[i][i] are never read, since the
leader does not send itself messages. It’s still easier to include these
in the functions.

InitLeaderVars Δ
= ∧nextIndex = [i ∈ Server ↦→ [j ∈ Server ↦→ 1]]

∧matchIndex = [i ∈ Server ↦→ [j ∈ Server ↦→ 0]]
∧ackedPromiseIndex = [i ∈ Server ↦→ [j ∈ Server ↦→ 0]]

InitLogVars Δ
= ∧ log = [i ∈ Server ↦→ ⟨⟩]

∧ commitIndex = [i ∈ Server ↦→ 0]
∧promiseIndex = [i ∈ Server ↦→ 0]
∧ clientRequests = 1
∧ committedLog = ⟨⟩
∧ committedLogDecrease = false
∧promisedLog = ⟨⟩
∧promisedLogDecrease = false

RollbackServersAreServers Δ
=

∧ IsFiniteSet (RollbackServer)
∧RollbackServer ⊆ Server

Init Δ
= ∧messages = [m ∈ {} ↦→ 0]

∧ InitHistoryVars
∧ InitServerVars
∧ InitCandidateVars
∧ InitLeaderVars
∧ InitLogVars
∧ step = 0
∧hash = [x ∈ {} ↦→Nil]
∧RollbackServersAreServers

Define state transitions

Server i times out and starts a new election.
Timeout (i) Δ

= ∧ state [i] ∈ {Follower , Candidate}
∧ state ′ = [state except ! [i] = Candidate]
∧ currentTerm ′ = [currentTerm except ! [i] = currentTerm [i] +1]
Most implementations would probably just set the local vote
atomically, but messaging localhost for it is weaker.
∧ votedFor ′ = [votedFor except ! [i] = Nil]
∧ votesSent ′ = [votesSent except ! [i] = false]
∧ votesGranted ′ = [votesGranted except ! [i] = {}]
∧ voterLog ′ = [voterLog except ! [i] = [j ∈ {} ↦→ ⟨⟩]]
∧unchanged ⟨messages , leaderVars , logVars , hash⟩

Rollback server i to its state at step s
Rollback (i , s) Δ

= let restoreState Δ
= serverStates [s] [i]

in ∧ i ∈ RollbackServer
∧ log ′ = [log except ! [i] = restoreState .sslog]
∧ currentTerm ′ = [currentTerm except ! [i] = restoreState .sscurrentTerm]
∧ votedFor ′ = [votedFor except ! [i] = restoreState .ssvotedFor]
∧ state ′ = [state except ! [i] = restoreState .ssstate]
∧promiseIndex ′ = [promiseIndex except ! [i] = restoreState .sspromiseIndex]
∧ commitIndex ′ = [commitIndex except ! [i] = restoreState .sscommitIndex]
∧ ∨ ∧ restoreState .ssstate = Follower
∨ ∧ restoreState .ssstate = Candidate
∧ votesSent ′ = [votesSent except ! [i] = restoreState .ssvotesSent]
∧ votesGranted ′ = [votesGranted except ! [i] = restoreState .ssvotesGranted]
∨ ∧ restoreState .ssstate = Leader
∧nextIndex ′ = [nextIndex except ! [i] = restoreState .ssnextIndex]

∧matchIndex ′ = [matchIndex except ! [i] = restoreState .ssmatchIndex]
∧ackedPromiseIndex ′ = [ackedPromiseIndex except ! [i] = restoreState .ssackedPromiseIndex]
∧unchanged ⟨messages , elections , clientRequests , committedLog , committedLogDecrease , promisedLog ,

promisedLogDecrease , ackedPromiseIndex , matchIndex , nextIndex , voterLog , votesGranted , votesSent , hash⟩

Candidate i sends j a RequestVote request.
RequestVote (i , j) Δ

=

∧ state [i] = Candidate
∧Send ([mtype ↦→ RequestVoteRequest ,
mterm ↦→ currentTerm [i],
mlastLogTerm ↦→ LastTerm (log [i]),
mlastLogIndex ↦→ Len (log [i]),
msource ↦→ i ,
mdest ↦→ j])
∧unchanged ⟨serverVars , votesGranted , voterLog , leaderVars , logVars , votesSent , hash⟩

Leader i sends j an AppendEntries request containing up to 1 entry.
While implementations may want to send more than 1 at a time, this spec uses
just 1 because it minimizes atomic regions without loss of generality.

AppendEntries (i , j) Δ
=

∧ i ≠ j
∧ state [i] = Leader
∧let prevLogIndex Δ

= nextIndex [i] [j] −1
prevLogTerm Δ

= if prevLogIndex > 0 then
log [i] [prevLogIndex] .term
else

0
prevLogHash Δ

= if prevLogIndex > 0 then
log [i] [prevLogIndex] .hashChain
else

0
Send up to 1 entry, constrained by the end of the log.

lastEntry Δ
= Min ({Len (log [i]), nextIndex [i] [j]})

entries Δ
= SubSeq (log [i], nextIndex [i] [j], lastEntry)

in Send ([mtype ↦→AppendEntriesRequest ,
mterm ↦→ currentTerm [i],
mprevLogIndex ↦→ prevLogIndex ,
mprevLogTerm ↦→ prevLogTerm ,

mprevLogHash ↦→ prevLogHash ,
mentries ↦→ entries ,

mlog is used as a history variable for the proof.
It would not exist in a real implementation.

mlog ↦→ log [i],
mcommitIndex ↦→Min ({commitIndex [i], lastEntry}),
mpromiseIndex ↦→Min ({promiseIndex [i], lastEntry}),
msource ↦→ i ,
mdest ↦→ j])
∧unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

Candidate i transitions to leader.
BecomeLeader (i) Δ

=

∧ state [i] = Candidate
∧ votesGranted [i] ∈ Quorum
∧ state ′ = [state except ! [i] = Leader]
∧nextIndex ′ = [nextIndex except ! [i] =

[j ∈ Server ↦→ Len (log [i]) +1]]
∧matchIndex ′ = [matchIndex except ! [i] =

[j ∈ Server ↦→ 0]]
∧ackedPromiseIndex ′ = [ackedPromiseIndex except ! [i] =
[j ∈ Server ↦→ 0]]
∧ elections ′ = elections ∪
{[eterm ↦→ currentTerm [i],
eleader ↦→ i ,
elog ↦→ log [i],
evotes ↦→ votesGranted [i],
evoterLog ↦→ voterLog [i],
estep ↦→ step]}

∧unchanged ⟨messages , currentTerm , votedFor , candidateVars , logVars , hash⟩

Leader i receives a client request to add v to the log.
ClientRequest (i) Δ

=

∧ state [i] = Leader
∧ clientRequests < MaxClientRequests
∧let index Δ

= Len (log [i])
hashInput Δ

= [hiindex ↦→ index , hiterm ↦→ currentTerm [i], hivalue ↦→ clientRequests , hilastHash ↦→ log [i] [Len (log [i])]]
hashValue Δ

= if [hiindex ↦→ index , hiterm ↦→ currentTerm [i], hivalue ↦→ clientRequests ,
hilastHash ↦→ log [i] [Len (log [i])]] ∈ domain hash then

hash [[hiindex ↦→ index , hiterm ↦→ currentTerm [i], hivalue ↦→ clientRequests , hilastHash ↦→ log [i] [Len (log [i])]]]
else

RandomElement (BitString256)
entry Δ

= [term ↦→ currentTerm [i],
hashChain ↦→ hash [hashInput],
value ↦→ clientRequests]
newLog Δ

= Append (log [i], entry)
in ∧ log ′ = [log except ! [i] = newLog]

Make sure that each request is unique, reduce state space to be explored
∧ clientRequests ′ = clientRequests +1
∧hash ′ = [hash except ! [hashInput] = hashValue]
∧unchanged ⟨messages , serverVars , candidateVars ,
leaderVars , commitIndex , promiseIndex , committedLog , committedLogDecrease , promisedLog , promisedLogDecrease⟩

Leader i advances its promiseIndex.
This is done as a separate step from handling AppendEntries responses,
in part to minimize atomic regions, and in part so that leaders of
single-server clusters are able to mark entries committed.

AdvancePromiseIndex (i) Δ
=

∧ state [i] = Leader
∧let The set of servers that agree up through index.
Agree (index) Δ

= {i } ∪ {k ∈ Server :
matchIndex [i] [k] ≥ index }

The maximum indexes for which a quorum agrees
agreeIndexes Δ

= {index ∈ 1 . . Len (log [i]) :
Agree (index) ∈ Quorum}

New value for commitIndex’[i]
newPromiseIndex Δ

=

if ∧agreeIndexes ≠ {}
∧ log [i] [Max (agreeIndexes)] .term = currentTerm [i]
then

Max (agreeIndexes ∪ {promiseIndex [i]})
else

promiseIndex [i]
newPromisedLog Δ

=

if newPromiseIndex > 1 then
[j ∈ 1 . . newPromiseIndex ↦→ log [i] [j]]
else
⟨⟩

in ∧promiseIndex ′ = [promiseIndex except ! [i] = newPromiseIndex]
∧promisedLogDecrease ′ = ∨ (newPromiseIndex < Len (promisedLog))
∨∃ j ∈ 1 . . Len (promisedLog) : promisedLog [j] ≠ newPromisedLog [j]
∧promisedLog ′ = newPromisedLog
∧unchanged ⟨messages , serverVars , candidateVars , leaderVars , log , clientRequests , commitIndex , committedLog ,

committedLogDecrease , hash⟩

Leader i advances its commitIndex.
This is done as a separate step from handling AppendEntries responses,
in part to minimize atomic regions, and in part so that leaders of
single-server clusters are able to mark entries committed.

AdvanceCommitIndex (i) Δ
=

∧ state [i] = Leader
∧let The set of servers that agree up through index.
Agree (index) Δ

= {i } ∪ {k ∈ Server :
ackedPromiseIndex [i] [k] ≥ index }

The maximum indexes for which a quorum agrees
agreeIndexes Δ

= {index ∈ 1 . . Len (log [i]) :
Agree (index) ∈ Quorum}

New value for commitIndex’[i]
newCommitIndex Δ

=

if ∧agreeIndexes ≠ {}
∧ log [i] [Max (agreeIndexes)] .term = currentTerm [i]
then

Max (agreeIndexes)
else

commitIndex [i]
newCommittedLog Δ

=

if newCommitIndex > 1 then
[j ∈ 1 . . newCommitIndex ↦→ log [i] [j]]
else
⟨⟩

in ∧ commitIndex ′ = [commitIndex except ! [i] = newCommitIndex]
∧ committedLogDecrease ′ = ∨ (newCommitIndex < Len (committedLog))
∨∃ j ∈ 1 . . Len (committedLog) : committedLog [j] ≠ newCommittedLog [j]
∧ committedLog ′ = newCommittedLog
∧unchanged ⟨messages , serverVars , candidateVars , leaderVars , log , clientRequests⟩
∧unchanged ⟨promiseIndex , promisedLog , promisedLogDecrease , hash⟩

Message handlers
i = recipient, j = sender, m = message

Server i receives a RequestVote request from server j with
m.mterm <= currentTerm[i].

HandleRequestVoteRequest (i , j , m) Δ
=

let logOk Δ
= ∨m .mlastLogTerm > LastTerm (log [i])

∨ ∧m .mlastLogTerm = LastTerm (log [i])

∧m .mlastLogIndex ≥ Len (log [i])
grant Δ

= ∧m .mterm = currentTerm [i]
∧ logOk
∧ votedFor [i] ∈ {Nil , j }
in ∧m .mterm ≤ currentTerm [i]
∧ ∨ grant ∧ votedFor ′ = [votedFor except ! [i] = j]
∨¬grant ∧unchanged votedFor
∧Reply ([mtype ↦→ RequestVoteResponse,
mterm ↦→ currentTerm [i],
mvoteGranted ↦→ grant ,

mlog is used just for the ‘elections’ history variable for
the proof. It would not exist in a real implementation.

mlog ↦→ log [i],
msource ↦→ i ,
mdest ↦→ j],
m)
∧unchanged ⟨state , currentTerm , candidateVars , leaderVars , logVars , hash⟩

Server i receives a RequestVote response from server j with
m.mterm = currentTerm[i].

HandleRequestVoteResponse (i , j , m) Δ
=

This tallies votes even when the current state is not Candidate, but
they won’t be looked at, so it doesn’t matter.
∧m .mterm = currentTerm [i]
∧ ∨ ∧m .mvoteGranted
∧ votesGranted ′ = [votesGranted except ! [i] =

votesGranted [i] ∪ {j }]
∧ voterLog ′ = [voterLog except ! [i] =

voterLog [i]@@ (j :> m .mlog)]
∧unchanged ⟨votesSent⟩
∨ ∧¬m .mvoteGranted
∧unchanged ⟨votesSent , votesGranted , voterLog⟩
∧Discard (m)
∧unchanged ⟨serverVars , votedFor , leaderVars , logVars , hash⟩

Server i receives an AppendEntries request from server j with
m.mterm <= currentTerm[i]. This just handles m.entries of length 0 or 1, but
implementations could safely accept more by treating them the same as
multiple independent requests of 1 entry.

HandleAppendEntriesRequest (i , j , m) Δ
=

let hashInput Δ
= [hiindex ↦→m .mprevLogIndex +1,

hiterm ↦→m .mentries [1] .term ,

hivalue ↦→m .mentries [1] .value ,
hilastHash ↦→ log [i] [m .mprevLogIndex] .hashChain]

hashValue Δ
= if hashInput ∈ domain hash then

hash [hashInput]
else

RandomElement (BitString256)
logOk Δ

= ∨m .mprevLogIndex = 0
∨ ∧m .mprevLogIndex > 0
∧m .mprevLogIndex ≤ Len (log [i])
∧m .mprevLogTerm = log [i] [m .mprevLogIndex] .term
∧m .mprevLogHash = log [i] [m .mprevLogIndex] .hashChain
∧ ∨ ∧Len (m .mentries) = 0
∧unchanged hash

∨ ∧m .mprevLogIndex < Len (log [i])
∧unchanged hash
∧ ∨m .mentries [1] .hashChain = log [i] [m .mprevLogIndex +1] .hashChain
∨ there’s a conflict on a promised entry
∧Len (m .mentries) > 0
∧ log [i] [m .mprevLogIndex +1] .term ≠ m .mentries [1] .term
∧promiseIndex [i] = Len (log [i])
∨ ∧m .mprevLogIndex = Len (log [i])
∧m .mentries [1] .hashChain = hashValue
∧hash ′ = [hash except ! [hashInput] = hashValue]

in ∧m .mterm ≤ currentTerm [i]
∧ ∨ ∧ reject request
∨m .mterm < currentTerm [i]
∨ ∧m .mterm = currentTerm [i]
∧ state [i] = Follower
∧¬logOk
∧Reply ([mtype ↦→AppendEntriesResponse ,
mterm ↦→ currentTerm [i],
msuccess ↦→ false,
mackedPromiseIndex ↦→ 0,
mmatchIndex ↦→ 0,
msource ↦→ i ,
mdest ↦→ j],
m)
∧unchanged ⟨serverVars , logVars⟩
∨ return to follower state
∧m .mterm = currentTerm [i]
∧ state [i] = Candidate
∧ state ′ = [state except ! [i] = Follower]
∧unchanged ⟨currentTerm , votedFor , logVars , messages⟩
∨ accept request
∧m .mterm = currentTerm [i]
∧ state [i] = Follower
∧ logOk
∧let index Δ

= m .mprevLogIndex +1
in ∨ already done with request
∧ ∨m .mentries = ⟨⟩
∨ ∧m .mentries ≠ ⟨⟩
∧Len (log [i]) ≥ index
∧ log [i] [index] .term = m .mentries [1] .term
This could make our commitIndex decrease (for
example if we process an old, duplicated request),
but that doesn’t really affect anything.
∧ commitIndex ′ = [commitIndex except ! [i] =

m .mcommitIndex]
∧promiseIndex ′ = [promiseIndex except ! [i] =

Max ({m .mpromiseIndex , promiseIndex [i]})]
∧Reply ([mtype ↦→AppendEntriesResponse ,
mterm ↦→ currentTerm [i],
msuccess ↦→ true,
mmatchIndex ↦→m .mprevLogIndex +

Len (m .mentries),
mmatchHash ↦→ log [i] [m .mprevLogIndex +Len (m .mentries)] .hashChain ,
mpromiseIndex ↦→m .mpromiseIndex ,

msource ↦→ i ,
mdest ↦→ j],
m)
∧unchanged ⟨serverVars , log , clientRequests , committedLog , promisedLog , committedLogDecrease ,

promisedLogDecrease⟩
∨ conflict: remove 1 entry
∧m .mentries ≠ ⟨⟩
∧Len (log [i]) ≥ index
∧ log [i] [index] .term ≠ m .mentries [1] .term
∧promiseIndex [i] < Len (log [i])
∧let new Δ

= [index2 ∈ 1 . . (Len (log [i]) −1) ↦→
log [i] [index2]]

in log ′ = [log except ! [i] = new]
∧unchanged ⟨serverVars , commitIndex , promiseIndex , messages , clientRequests , committedLog ,

committedLogDecrease⟩
∧unchanged ⟨promisedLog , promisedLogDecrease⟩
∨ no conflict: append entry
∧m .mentries ≠ ⟨⟩
∧Len (log [i]) = m .mprevLogIndex
∧ log ′ = [log except ! [i] =
Append (log [i], m .mentries [1])]
∧unchanged ⟨serverVars , commitIndex , promiseIndex , messages , clientRequests , committedLog ,

committedLogDecrease⟩
∧unchanged ⟨promisedLog , promisedLogDecrease⟩
∧unchanged ⟨candidateVars , leaderVars⟩

Server i receives an AppendEntries response from server j with
m.mterm = currentTerm[i].

HandleAppendEntriesResponse (i , j , m) Δ
=

∧m .mterm = currentTerm [i]
∧ ∨ ∧m .msuccess successful
∧m .mmatchHash = log [i] [m .mmatchIndex] .hashChain
∧nextIndex ′ = [nextIndex except ! [i] [j] = m .mmatchIndex +1]
∧matchIndex ′ = [matchIndex except ! [i] [j] = m .mmatchIndex]
∧ackedPromiseIndex ′ = [ackedPromiseIndex except ! [i] [j] = Max ({m .mpromiseIndex , @})]
∨ ∧¬m .msuccess not successful
∧nextIndex ′ = [nextIndex except ! [i] [j] =

Max ({nextIndex [i] [j] −1, 1})]
∧unchanged ⟨matchIndex ⟩
∧Discard (m)
∧unchanged ⟨serverVars , candidateVars , logVars , elections , hash⟩

Any RPC with a newer term causes the recipient to advance its term first.
UpdateTerm (i , j , m) Δ

=

∧m .mterm > currentTerm [i]
∧ currentTerm ′ = [currentTerm except ! [i] = m .mterm]
∧ state ′ = [state except ! [i] = Follower]
∧ votedFor ′ = [votedFor except ! [i] = Nil]
messages is unchanged so m can be processed further.
∧unchanged ⟨messages , candidateVars , leaderVars , logVars , hash⟩

Responses with stale terms are ignored.
DropStaleResponse (i , j , m) Δ

=

∧m .mterm < currentTerm [i]
∧Discard (m)

∧unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

Receive a message.
Receive (m) Δ

=

let i Δ
= m .mdest

j Δ
= m .msource

in Any RPC with a newer term causes the recipient to advance
its term first. Responses with stale terms are ignored.
∨UpdateTerm (i , j , m)
∨ ∧m .mtype = RequestVoteRequest
∧HandleRequestVoteRequest (i , j , m)
∨ ∧m .mtype = RequestVoteResponse
∧ ∨DropStaleResponse (i , j , m)
∨HandleRequestVoteResponse (i , j , m)
∨ ∧m .mtype = AppendEntriesRequest
∧HandleAppendEntriesRequest (i , j , m)
∨ ∧m .mtype = AppendEntriesResponse
∧ ∨DropStaleResponse (i , j , m)
∨HandleAppendEntriesResponse (i , j , m)

End of message handlers.

Network state transitions

The network duplicates a message
DuplicateMessage (m) Δ

=

∧Send (m)
∧unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

The network drops a message
DropMessage (m) Δ

=

∧Discard (m)
∧unchanged ⟨serverVars , candidateVars , leaderVars , logVars , hash⟩

Defines how the variables may transition.
Next Δ

= ∧ ∨∃ i ∈ Server : Timeout (i)
∨∃ i , j ∈ Server : RequestVote (i , j)
∨∃ i ∈ Server : BecomeLeader (i)
∨∃ i ∈ Server : ClientRequest (i)
∨∃ i ∈ Server : AdvancePromiseIndex (i)
∨∃ i ∈ Server : AdvanceCommitIndex (i)
∨∃ i , j ∈ Server : AppendEntries (i , j)
∨∃ i ∈ Server : ∃s ∈ 1 . . (step −1) : Rollback (i , s)
∨∃m ∈ ValidMessage (messages) : Receive (m)
∨∃m ∈ SingleMessage (messages) : DuplicateMessage (m)
∨∃m ∈ ValidMessage (messages) : DropMessage (m)
History variable that tracks every log ever:
∧allLogs ′ = allLogs ∪ {log [i] : i ∈ Server }
∧RecordStates
∧ step′ = step +1

The specification must start with the initial state and transition according
to Next.

Spec Δ
= Init ∧□[Next]vars

	1 Introduction
	2 System overview
	2.1 System architecture
	2.2 System API

	3 Threat model and guarantees
	3.1 Security across trust domains
	3.2 Security within a trust domain
	3.2.1 Enclave threat model
	3.2.2 Security guarantees

	3.3 Availability

	4 Secret key backup and recovery protocols
	4.1 Establishing enclave sessions
	4.2 PIN-protected secret sharing

	5 Building a SVR3 backend
	5.1 Design decisions
	5.2 Rollback-resistant consensus protocol
	5.2.1 Vanilla Raft background
	5.2.2 The physical rollback problem
	5.2.3 Rollback prevention in Raft34
	5.2.4 Safety
	5.2.5 Liveness
	5.2.6 Self-healing for simple maintenance

	5.3 Integrity across the database
	5.3.1 Merkle tree
	5.3.2 Applying committed log entries

	6 Operations
	7 Implementation
	8 Evaluation
	8.1 Microbenchmarks
	8.2 End-to-end performance

	9 Related work
	10 Discussion
	11 Conclusion
	A Properties of different enclaves
	B Production deployment
	C Atomic regions
	D Raft34 safety proofs
	E TLA+ specification of Raft34

