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Abstract. Interactive proofs are a cornerstone of modern cryptography
and as such used in many areas, from digital signatures to multy-party
computation. Often the knowledge error κ of an interactive proof is not
small enough, and thus needs to be reduced. This is usually achieved
by repeating the interactive proof in parallel t times. Recently, it was
shown that parallel repetition of any (k1, . . . , kµ)-special-sound multi-
round public-coin interactive proof reduces the knowledge error from
κ to κt, which is optimal. However, in many cases parallel repetitions
lead to a significant increase in transcript size. A common technique to
mitigate this drawback, which is often used in digital signatures obtained
by using the Fiat-Shamir transform, is to use fixed-weight challenges,
i.e. vectors of challenges having a constant number of entries equal to a
fixed value. While widely used, this method has not been fully assessed
from a security standpoint. In particular, the effect of the technique on
the knowledge error of the special-sound repeated interactive proof has
remained unstudied. In this work, we fill the gap and prove that a fixed-
weight repetition of a (k1, . . . , kµ)-special-sound multi-round public-coin
interactive proof is still knowledge sound. We provide an explicit bound
for the knowledge error of the protocol, proving that it matches with
the cheating probability of a dishonest prover. Our results apply to some
recently-proposed digital signatures which are supposed to be quantum
resistant, for example CROSS.

1 Introduction

Interactive Proofs. An interactive proof for a binary relation R ⊆ {0,1}∗ ×
{0,1}∗ allows a prover P to convince a verifier V that a statement x admits a
witness w, i.e. (x,w) ∈ R, or even that they know a witness. It is standard to
require an interactive proof to be complete and sound6. When an interactive

6 A verifier V accepts the proof produced by a honest prover P – having in input
(x,w) ∈ R – with high probability, and a verifier V rejects proofs for a statement x
which does not admit any witness with high probability, respectively.
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proof is meant to allow a prover to convince a verifier they know a witness,
it is further required to be knowledge sound. Informally, this means that any
dishonest prover who does not know a witness can only convince a verifier with
some small probability κ, which is called the knowledge error. This property is
formalised by requiring that there exists an efficient algorithm - the extractor -
that, given oracle access to a dishonest prover who succeeds with probability
ϵ > κ, outputs a witness with probability at least ϵ − κ up to a multiplicative
polynomial loss in the security parameter. In practice, it is usually easier to
verify that the interactive proof is special-sound, since this implies knowledge
soundness. A 3-round public-coin interactive proof is special-sound if there exists
an efficient algorithm that, given two valid transcripts (a, c, z) and (a, c′, z′)
relative to the same statement x and with distinct second messages (challenges)
c ≠ c′, outputs a witness w for x. This property can be generalised to (2µ + 1)-
round public-coin interactive proofs, leading to the notion of (k1, . . . , kµ)-special
soundness, which coincides with the standard special-soundness notion when
µ = 1 and k1 = 2.
Often the knowledge error κ of an interactive proof is not small enough security-
wise, and thus needs to be reduced. This is usually achieved by repeating the
interactive proof in parallel t times. Recently, Attema and Fehr [AF22] proved
that t parallel repetitions of a (k1, . . . , kµ)-special-sound multi-round public-coin
interactive proof reduces the knowledge error from κ to κt, which is optimal.

Digital signatures. With the threat of quantum computers looming ever
closer, the cryptographic community has reacted by developing alternative cryp-
tographic solutions supposed to be resistant even to quantum algorithms. This
collective effort has been further invigorated by the NIST call for standardisa-
tion [NIS17]. While the first standards covering key encapsulation and signatures
are about to be drafted, the situation with the latter is not considered fully
satisfactory, so NIST has launched an “on-ramp” process to standardise new
signature schemes [NIS23]. Looking at the numerous signatures submitted to
the NIST calls, two main generic design techniques stand out: the hash-and-sign
construction and the Fiat-Shamir one. Introduced by Fiat and Shamir in [FS87],
the Fiat-Shamir transform allows to turn any public-coin interactive proof into
a non-interactive proof and, consequently, into a digital signature. Informally,
the Fiat-Shamir transform replaces random challenges sent by the verifier with
outputs of a hash function. Many post-quantum digital signatures have been
designed exploiting this paradigm [Bar+21; Bal+23; Cho+23; BKV19; De +20;
Duc+18], which for some post-quantum areas has proven to be the only viable op-
tion (e.g. isogeny-based cryptography). Fiat-Shamir digital signatures inherit the
main security properties of the starting interactive proof, which almost always
enjoys special soundness. In particular, the security of the resulting signature
relates to the knowledge error determined by the special soundness. However,
many interactive proofs, with notable exceptions like SQISign [De +20], only
have very small (often binary) challenge spaces, which result in a big knowledge
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error. This is therefore one of those cases where the knowledge error is decreased
by performing t parallel repetitions of the base interactive proof.

The fixed-weight optimisation. Parallel repetition of the base interactive
proof significantly impacts the efficiency of the resulting scheme. A few generic
techniques have been proposed to mitigate this issue. Some of them aim at lim-
iting the number t of repetitions (e.g. the multiple-public-key optimisation like
in [BKV19; DG19]), obtaining an improvement in both execution time and tran-
script size at the cost, for example, of bigger public keys. Other techniques, on the
other hand, aim at reducing the transcript size at the cost of a slight increase in
execution time. This is particularly desired when storage or transmission latency
are the main concern. Among the latter techniques, one of the most common
optimisations is using fixed-weight challenge vectors7. The challenges are the
random coins sent by the verifier to the prover and here, by fixed-weight chal-
lenge vectors, we mean vectors of challenges having a constant number of entries
equal to a fixed value. This optimisation is particularly helpful when differ-
ent challenges have drastically different response sizes, like in [Bal+23; GPV24;
Bar+21; Cho+23; RST23; Beu+23; BKP20].

The security of this solution is well understood in the case of a 3-round,
public-coin, special-sound interactive proof, i.e. µ = 1 and k1 = 2. In fact, in this
case the special soundness of the base interactive proof is preserved by the fixed-
weight repeated interactive proof. However, the picture becomes fuzzy when µ =
1 and k1 > 2, and even more when µ > 1. In particular, in the case of (k1, . . . , kµ)-
special-sound multi-round public-coin interactive proofs with k1 > 2 it is not clear
whether the fixed-weight t-fold parallel repetition satisfies any useful notion of
special soundness. In light of this and the implications it would have on the
provable security of existing protocols like CROSS [Bal+23] or [GPV24] and
future signatures, the following research question naturally arises:

Does a fixed-weight repetition of a (k1, . . . , kµ)-special-sound multi-
round public-coin interactive proof enjoy knowledge soundness?

Our Contribution. Building on the results from [AF22] we positively answer
the question above by explicitly building a knowledge extractor and precisely
bounding the knowledge error.

More precisely, we prove that the t-fold repetition with fixed weight w of a
(k1, . . . , kµ)-special-sound multi-round proof is knowledge sound. We also pro-
vide an explicit expression for the knowledge error of the repeated interactive
proof, which coincides with the cheating probability of a dishonest prover, show-
ing that our result is optimal. In addition, it allows to formally prove the security
of the interactive proofs underlying some recent post-quantum signatures, such
as CROSS [Bal+23] and the recent SIDH-based signature of [GPV24].

7 This optimisation is sometimes also referred as the one with unbalanced challenge
vectors.
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One of the main results of [AF22] is a knowledge extractor E for k-special-
sound interactive proofs, whose success probability when applied to a dishonest
prover P∗ can be expressed in terms of a novel characterization of the power of
P∗. Specifically, the ability of P∗ to correctly answer to a random challenge is
measured by δk(P

∗), its worst-case success probability when k−1 challenges are
removed from the challenge space. This new framework is particularly convenient
when moving to the parallel-repetition of the interactive proof. In fact, starting
from a dishonest prover P∗ against the t-parallel repetition of a k-special-sound
proof, it is possible to build t provers P∗1 , . . . ,P

∗

t against the single instance of the
interactive proof. By applying the previous extractor in parallel to the provers
of the single instance, the probability of witness extraction can be expressed via
δk(P

∗

1 ) + . . . + δk(P
∗

t ). From this, an optimal bound on the knowledge error of
the parallel repetition is obtained.

The extraction algorithm E of [AF22] queries the dishonest prover on uni-
formly sampled challenges. Instead, when we consider fixed-weight repetitions,
challenges must be sampled according to a different distribution, i.e. that ob-
tained by taking the i-th component of a fixed-weight challenge vector. At the
core of our result is a generalisation of the knowledge extractor from [AF22]
which allows for the sampling of challenges according to an arbitrary distri-
bution D over the challenge space. More in detail, we show that the extraction
probability is given by δk(P

∗,D)/k for a k-special-sound interactive proof, where
the probability space is defined by the challenges being sampled according to D .
For fixed-weight repetitions, we can then apply a similar approach as before:
starting from a dishonest prover for the t-fold repetition with fixed weight w of
the interactive proof, we build t dishonest provers on the single instance of the
proof. By applying the generalised extractor in parallel, we obtain a bound on
the knowledge error of the repeated interactive proof. This bound is obtained
by combinatorial results which might be of independent interest.

Although the resulting expression cannot be expressed directly in terms of
the knowledge error of the individual instance, the obtained knowledge error
coincides with the trivial cheating probability of a dishonest prover, meaning
that our result is optimal. A similar strategy is then applied to prove knowl-
edge soundness of fixed-weight repetitions of generic (k1, . . . , kµ)-special-sound
multi-round interactive proofs. In particular, we first generalise the multi-round
extractor from [AF22] over arbitrary distributions and then apply it to the fixed-
weight repetitions.

The cheating probability of a dishonest prover is directly derived from the
maximum size of the set of challenges to which the prover can answer without
actually knowing a witness. We have translated the problem of computing these
sizes into finding upper bounds for the cardinality of particular subsets of the
Cartesian product of finite sets which satisfy some conditions on the components.
In particular, we compute the maximum size of a set of sequences when we limit
the number of different values that may appear in any single component. These
combinatorial results, from which a bound on the knowledge error of fixed-weight
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repetitions is deduced, may find application in independent scenarios, and so we
have formulated and proved them in full generality.

Organisation. In Section 2 we provide some preliminaries and definitions about
interactive proofs, with a focus on multi-round ones. Next, in Section 3 we discuss
some combinatorial results that, while interesting on their own, will be essential
for Section 4 and Section 5, which contain the core cryptographic results of our
work. In particular, Section 4 deals with the easier case of Sigma protocols, while
Section 5 deals with the general multi-round case. Lastly, in Section 6 we identify
some applications and draw our conclusions.

2 Preliminaries

Notation. We denote by N∗ the set of non-zero natural numbers. For a finite set
X, we write ∣X ∣ for the cardinality of X and by ∣x∣ the number of bits necessary
to represent an element x ∈ X. We denote with {0,1}∗ the set of strings of
arbitrary length.

When s is a list or a vector, we write (s)i to denote the i-th element of s. If S
is a set whose elements are lists or vectors, we define (S)i ∶= {x : ∃s ∈ S : (s)i = x}.

Given µ finite sets Ch[1], . . . ,Ch[µ] and c ∈ Ch[1] × . . . × Ch[µ], we will write
c = (c[1], . . . , c[µ]) where c[i] ∈ Ch[i] for all i ∈ {1, . . . , µ}. Furthermore, given

t ∈ N∗ and c ∈ (Ch[1] × . . . × Ch[µ])t, we will write c = ((c)1, . . . , (c)t) where

(c)j ∈ Ch
[1]
×⋯ × Ch[µ] and (c)

[i]
j ∈ Ch

[i] for all j ∈ {1, . . . , t}, i ∈ {1, . . . , µ}.

Interactive Proofs. The aim of this work is proving knowledge soundness of
fixed-weight repetitions of (k1, . . . , kµ)-special-sound (2µ + 1)-round public-coin
protocols, which are specific instances of interactive proofs. In this section we
recall the definition of interactive proof, some related notions and usual security
requirements. Moreover, we describe the fixed-weight repetition of an interactive
proof.

Definition 1 (Binary relation). A binary relation is a finite set R ⊆ X ×
Y , where X,Y ⊆ {0,1}∗. Given (x, y) ∈ R, we say that y is a witness for the
statement x. The set LR = {x ∈ X ∣ ∃y ∈ Y s.t. (x, y) ∈ R} is called the set of
true statements for R, or its language.

Definition 2 (Interactive Proof). An interactive proof (P,V) for a binary
relation R ⊆X×Y is an interactive protocol between two probabilistic polynomial-
time machines P and V. The prover P takes as input a pair (x, y) ∈ R while
the verifier V takes as input x. As the output of the protocol - denoted by
(P(y),V)(x) - V either accepts (outputs 1) or rejects (outputs 0). We say that
a transcript, i.e. the set of all messages exchanged in a protocol execution, is
accepting (rejecting) if V accepts (rejects, respectively).

Definition 3 (Public-Coin). An interactive proof (P,V) is public-coin if all
V’s random choices are made public.
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Throughout this work we assume that, within an execution of an interactive
proof (P,V), the prover P always sends the first and the last message. Hence,
the number of communication rounds is odd, i.e. of the form 2µ+ 1 with µ ∈ N∗.
We refer to an interactive proof having 2µ + 1 communication rounds with the
name (2µ + 1)-round protocol. When µ = 1, and thus the rounds are only 3, we
call it Sigma protocol.

If an interactive proof is public-coin, the verifier needs to send to the prover
only their random choices. For this reason, we call challenges the messages sent
by the verifier and challenge set the set from which verifier’s messages are sam-
pled. In the case of a (2µ + 1)−round protocol, we define the challenge set Ch

as the Cartesian product of µ round challenge sets Ch[i], with i ∈ {1, . . . , µ},

meaning that the challenge for the i-th round is sampled from Ch[i].

Commonly, an interactive proof is required to satisfy completeness and sound-
ness, as per definitions below.

Definition 4 (Completeness). An interactive proof (P,V) for a binary rela-
tion R ⊆X × Y is complete if, for every (x, y) ∈ R, we have

Pr[(P(y),V)(x) = 0] ≤ ρ(x)

where the value ρ(x) - called completeness error - is negligible (in ∣x∣). If ρ(x) = 0
for all x ∈ LR, the protocol is said to be perfectly complete.

Definition 5 (Soundness). An interactive proof (P,V) for a binary relation
R ⊆X × Y is sound if, for every x /∈ LR and every prover P∗, we have

Pr((P∗,V)(x) = 1) ≤ σ(x)

where the value σ(x) - called soundness error - is negligible (in ∣x∣).

We note that an interactive proof which satisfies both the previous properties
allows a prover P to convince the verifier V that a statement x is true. It does
not guarantee anything about P’s knowledge of a witness y such that (x, y) ∈ R.
This stronger feature requires knowledge soundness.

Definition 6 (Knowledge Soundness). An interactive proof (P,V) for a bi-
nary relation R ⊆ X × Y is knowledge sound, with knowledge error κ, if there
exists an algorithm E that, given as input any x ∈X and rewindable oracle access
to a (potentially dishonest) prover P∗, runs in an expected polynomial time (in
∣x∣) and outputs a witness y ∈ Y for x with probability

Pr[(x,EP
∗
(x)) ∈ R] ≥

ε(x,P∗) − κ(x)

poly(∣x∣)
,

where ε(x,P∗) = Pr(V(P∗(x), x) = 1). The algorithm E is called knowledge
extractor.
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Remark 1. To simplify the subsequent analysis, where not otherwise specified,
we will assume that the prover P∗ is deterministic throughout the sections. In
fact, it is possible to show that the extractor is well-defined even when restricted
to deterministic provers only [AF22]. Indeed, suppose that P∗ is a probabilistic
prover, and denote by P∗[r] the deterministic prover obtained by setting the
randomness of P∗ to r. Then, it is easy to show that ε(x,P∗) = E[ε(x,P∗[r])]
and Pr[(x,EP

∗
(x)) ∈ R] = E[Pr[(x,EP

∗
[r](x)) ∈ R]], where the expected value

is taken over the random choice of r.

Definition 7 (Proof of Knowledge). An interactive proof (P,V) for a binary
relation R ⊆ X × Y which satisfies both completeness with completeness error ρ
and knowledge soundness with knowledge error κ is a proof of knowledge if
there exists a positive-definite polynomial p over the integers such that 1−ρ(x) ≥
κ(x) + 1

p(∣x∣)
for all x ∈X.

A common strategy to prove the knowledge soundness of a public-coin in-
teractive proof is showing that it enjoys special soundness, which means, infor-
mally, that there exists an extracting algorithm able to compute a witness given
enough accepting transcripts relative to a true statement x. While the definition
for Sigma protocols can be simply stated, for the general (2µ+1)-round case we
need to firstly introduce the notion of tree of transcripts.

a[1]

a
[2]
1

1a
[3]
1

1,...,1a
[µ+1]
1 1,...,1a

[µ+1]
kµ

1c
[2]
1

1a
[3]
k2

1c
[2]
k2

c
[1]
1

a
[2]
k1

k1a
[3]
1

k1c
[2]
1

k1a
[3]
k2

k1,...,kµ−1a
[µ+1]
1 k1,...,kµ−1a

[µ+1]
kµ

k1c
[2]
k2

c
[1]
k1

. . . . . . . . .

. . . . . . . . .

. . .

Fig. 1. Graphical representation of a (k1, . . . , kµ)−tree of transcripts for a (2µ +
1)−round public-coin protocol. Left subscripts represent the ancestor nodes, super-
scripts represent the corresponding round, while right subscripts are used to enumerate
edges originating from a node and their corresponding arrival nodes.

Definition 8 (Tree of Transcripts). Let k1, . . . , kµ,N1, . . . ,Nµ ∈ N∗, R ⊆
X × Y be a binary relation and (P,V) a (2µ + 1)−round public-coin protocol for

R, where V samples i−th challenges (i ∈ {1, . . . , µ}) from a set Ch[i] of cardinal-
ity Ni ≥ ki. A (k1, . . . , kµ)-tree of transcripts for (P,V) is a set of K = ∏

µ
i=1 ki

transcripts relative to a given statement x ∈ X, arranged in the following tree
structure, where nodes correspond to prover’s messages while edges to verifier’s
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challenges. From every node at level i, with i ∈ {1, . . . , µ}, exactly ki edges orig-

inate, corresponding to ki pairwise-distinct challenges belonging to Ch[i]. Then,
each of the K transcripts corresponds to exactly one path from the root node to
a leaf node.

A graphical representation of a tree of transcripts is provided in Figure 1,

where a[1] denotes prover’s first message, c
[1]
1 , . . . , c

[1]
k1

are sampled from Ch[1],
and so on.

Definition 9 ((k1, . . . , kµ)-Special Soundness). Let k1, . . . , kµ, N1, . . . ,Nµ ∈

N∗ and R ⊆ X × Y be a binary relation. A (2µ + 1)-round public-coin protocol

(P,V) for R, where V samples the i−th challenge (i ∈ {1, . . . , µ}) from a set Ch[i]

of cardinality Ni ≥ ki, is (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) special sound, or sim-
ply (k1, . . . , kµ)-special-sound, if there exists a polynomial-time algorithm that,
on input a true statement x ∈ X and a (k1, . . . , kµ)-tree of accepting transcripts
for (P,V) and relative to x, outputs a witness y ∈ Y for x.

In the case of a Sigma protocol, it is immediate to prove that k-out-of-N -
special soundness implies knowledge soundness with knowledge error (k − 1)/N .
The general (2µ + 1)−round case is much more involved, and it has only re-
cently been shown [ACK21] that (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ)-special sound-
ness tightly implies knowledge soundness, with knowledge error

κ = 1 −
µ

∏
i=1

(Ni − ki + 1)

Ni
.

A common solution to decrease the knowledge error of a (2µ + 1)-round
knowledge sound protocol (P,V) is to repeat it in parallel multiple times, i.e.
the prover and the verifier run t parallel executions of the protocol and the
verifier accepts if the resulting t transcripts are accepting. We denote by (Pt,Vt)

the t-fold parallel repetition of (P,V). While this technique has been broadly
adopted, it was only in 2022 that Attema and Fehr [AF22] proved that the t-
fold parallel repetition of any (k1, . . . , kµ)-special-sound multi-round public-coin
protocol optimally reduces the knowledge error from κ down to κt.

Fixed-Weight Repetition. Parallel repetition of knowledge sound protocol
improves security at the price of bigger transcripts. When responses to different
challenges have very unbalanced sizes and compactness is a bigger concern than
computational efficiency, it can be beneficial to use fixed-weight challenges.

Definition 10 (Weight). Let Ch be a finite set, t ∈ N∗ and c̃ ∈ Ch. For an
element c = ((c)1, . . . , (c)t) ∈ Ch

t, we define the weight of c with respect to c̃ as

wtc̃(c) ∶= ∣{j ∈ {1, ..., t} : (c)j = c̃}∣
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Definition 11. Let t,w,µ ∈ N∗ such that t ≥ w, let Ch[1], . . . ,Ch[µ] be finite sets
and let c̃ ∈ Ch[µ]. Given Ch = Ch[1] × . . . × Ch[µ], we denote by Cht,wc̃ the set of

elements of Cht for which wtc̃ ((c)
[µ]
1 , . . . , (c)

[µ]
t ) = w, i.e.

Cht,wc̃ ∶= {c = ((c)
[µ]
1 , . . . , (c)

[µ]
t ) : wtc̃(c) = w} .

When c̃ is clear from the context, we will simplify the notation and write Cht,w

instead of Cht,wc̃ . Furthermore, when Ch is not a Cartesian product but a simple

set (i.e., µ = 1 and so Ch = Ch[µ]), we will simply denote by Cht,wc̃ the set

{c = ((c)1, . . . , (c)t) ∈ Ch
t : wtc̃(c) = w} .

Definition 12 (Fixed-weight Repetition). Let k1, . . . , kµ, N1, . . . ,Nµ ∈ N∗,
R ⊆X×Y be a binary relation and (P,V) be a (2µ+1)−round public-coin protocol

for R, where V samples the i−th challenge (i ∈ {1, . . . , µ}) from a set Ch[i] of

cardinality Ni ≥ ki. Therefore, the challenge set of (P,V) is Ch =∏
µ
i=1 Ch

[i]. Let

c̃ be a given element of Ch[µ]. A (t,w)-fixed-weight parallel repetition of (P,V)
with respect to c̃, which we denote by (Pt,w,Vt,w), is a t-fold parallel repetition
of (P,V) whose challenge set is Cht,wc̃ .

Throughout this work, we will consider fixed-weight repetitions only for
(2µ + 1)−round public-coin protocols for which there exists a unique element

c̃ ∈ Ch[µ] such that, for every possible c = (c[1], . . . , c[µ]) ∈ Ch[1] × ⋯ × Ch[µ],
the response size when c[µ] = c̃ is significantly higher than when c[µ] ≠ c̃. Under
this assumption, a fixed-weight repetition can lead to a more compact protocol
compared to a plain parallel repetition, as it is the case for [GPV24; Bar+21;
Bal+23; Cho+23; RST23].

Remark 2. In Definition 12, we choose to consider the fixed element c̃ as an
element of Ch[µ] rather than in the challenge set of previous rounds or a Cartesian
product of (a subset of) them. This is consistent with the applications of the
fixed-weight technique listed above.

Although the fixed-weight-repetition technique can be considered well estab-
lished among cryptosystem designers, to the best of our knowledge, its knowledge
soundness has not been formally investigated so far. More precisely, when µ = 1
and k1 = 2, 2-special soundness is trivially preserved by the optimisation tech-
nique. However, the picture becomes much fuzzier as soon as k1 > 2 and, even
more, when µ > 1. For these cases, no formal proof of the knowledge soundness
has been provided so far. In Sections 4 and 5 we fill this gap with a positive
result, but some preliminary mathematical results are necessary, which will be
the focus of the next section.

3 Combinatorial Bounds

To prove that a fixed-weight repetition still enjoys knowledge soundness, we will
rely on some combinatorial bounds. These bounds appear to be of independent
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interest, and for this reason we will state and prove them in full generality in
this section. Nevertheless, as they will find a natural application in Sections 4
and 5, we will try to use the same notation that will be used there as much as
we can.

Let us consider a finite set Ch with a fixed element c̃ ∈ Ch, and three positive
integers k, t,w such that ∣Ch∣ ≥ k ≥ 2 and t ≥ w. Our first result regards the
maximum cardinality of particular sets S ⊆ Cht,wc̃ .

Proposition 1. Given S ⊆ Cht,wc̃ such that ∣(S)i∣ < k for all i ∈ {1, . . . , t}, we
have that, if t ≥ w(k − 1):

∣S∣ ≤ (
w(k − 1)

w
)(k − 2)w(k−2)(k − 1)t−w(k−1),

and otherwise:

∣S∣ ≤ (
t

w
)(k − 2)t−w.

Proof. Since k = 2 trivially implies ∣S∣ ≤ 1 = (w
w
)001t−w, in the remainder we

suppose k ≥ 3.
For s ∈ S, let us define Z(s) as the set of indices i ∈ {1, . . . , t} such that the

i-th entry of s is equal to c̃. The set Z(S) ∶= ⋃s∈S Z(s) is therefore formed by
all indices i for which at least one element of S has c̃ as i-th entry. We denote
∣Z(S)∣ by hS , for which holds hS ≥ w by definition of Cht,wc̃ . As our goal is
providing an upper bound for the cardinality of S, we can assume that, for each
i ∈ {1, . . . , t}, it holds that ∣(S)i∣ = k − 1, with c̃ ∈ (S)i if and only if i ∈ Z(S).
Every element s of S can be thought as constructed by the following strategy.
Choose a subset R of cardinality w from Z(S) and, for every i ∈ R, set the i-th
entry of s to c̃ ; for every i ∈ Z(S) ∖R choose a value in (S)i ∖ {c̃}; finally, for
every i ∈ {1, . . . , t}∖Z(S), choose a value in (S)i. This means that ∣S∣ is bounded
above by:

f(hS) ∶= (
hS

w
)(k − 2)hS−w(k − 1)t−hS . (1)

We note that (hS

w
)(k − 2)hS−w is monotonically increasing with ratio:

(
hS+1
w
)(k − 2)hS+1−w

(
hS

w
)(k − 2)hS−w

=
hS + 1

hS + 1 −w
(k − 2),

while (k − 1)t−hS is monotonically decreasing with ratio:

(k − 1)t−hS

(k − 1)t−(hS+1)
= k − 1.

This means that f is increasing as long as

hS + 1

hS + 1 −w
(k − 2) > k − 1 ⇐⇒ hS < w(k − 1) − 1.
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In conclusion, since f(w(k − 1) − 1) = f(w(k − 1)), if t ≥ w(k − 1) we have

∣S∣ ≤ f(w(k − 1)) = (
w(k − 1)

w
)(k − 2)w(k−2)(k − 1)t−w(k−1).

On the other hand, if t < w(k − 1), then f is increasing up to t, so:

∣S∣ ≤ f(t) = (
t

w
)(k − 2)t−w.

We now want to generalise the above result to a setting where the set Ch
is replaced by the Cartesian product of µ finite sets Ch[1], . . . ,Ch[µ], i.e. Ch ∶=

∏
µ
ℓ=1 Ch

[ℓ], and we fix an element c̃ in Ch[µ]. We formalise such generalisation in
the following definitions, by introducing the concept of acceptable set.

In the remainder of this section k1, . . . , kµ,N1, . . . ,Nµ will denote positive

integers such that ∣Ch[ℓ]∣ = Nℓ ≥ kℓ ≥ 2 ∀ℓ ∈ {1, . . . , µ}.

Definition 13. For any S ⊆ Ch, ℓ ∈ {2, . . . , µ} and (s1, . . . , sℓ−1) ∈ ∏
ℓ−1
j=1 Ch

[j],
we define:

Sℓ(s1, . . . , sℓ−1) ∶= {s ∈ Ch
[ℓ] : ∃ (s1, . . . , sℓ−1, s, rℓ+1, . . . , rµ) ∈ S}.

Informally, Sℓ(s1, . . . , sℓ−1) denotes the set of ℓ-th entries of the elements of S
with the first ℓ − 1 entries equal to (s1, . . . , sℓ−1).

Definition 14. Given S ⊆ Ch, for any (a1, . . . , aµ) ∈ Ch we define the predicate
PS,µ as follows:

PS,µ((a1, . . . , aµ)) ⇐⇒ (a1, . . . , aµ) ∈ S.

For ℓ ∈ {1, . . . , µ − 1}, the predicate PS,ℓ((a1, . . . , aℓ)) is true if and only if:

∣{(a1, . . . , aℓ, aℓ+1) : aℓ+1 ∈ Sℓ+1(a1, . . . , aℓ) ∧ PS,ℓ+1(a1, . . . , aℓ+1)}∣ ≥ kℓ+1.

Definition 15 (Acceptable Set). Given A ⊆ Cht,wc̃ , we say that it is a
(k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) acceptable set if the following condition holds:

∣{a1 : a1 ∈ (A)
[1]
i ∧ P(A)i,1(a1)}∣ < k1 ∀i ∈ {1, . . . , t}.

Remark 3. The definition of acceptable set is meant to capture the notion of set
of challenges which does not define a (k1, . . . , kµ)-tree of accepting transcripts
in the context of Definition 8.

Given an acceptable set A, it is possible to associate to A a set of t-sequences

{(d(A)1,b1 , . . . , d(A)t,bt) : (b1, . . . , bt) ∈ (Ch
[µ]
)
t,w
c̃ }, where we define:

d(A)i,bi ∶= ∣ {(a)i ∈ (A)i : (a)
[µ]
i = bi} ∣ ∀i ∈ {1, . . . , t}.

The result below provides a first upper bound on the cardinality of an ac-
ceptable set by building on the t-sequences defined above.
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Lemma 1. For every (k1, . . . , kµ)-out-of-(N1, . . . ,Nµ) acceptable set A there ex-
ists another acceptable set Ā ⊇ A such that, ∀i ∈ {1, . . . , t}:

∑
x∈Ch[µ]

d(Ā)i,x =
µ

∑
ℓ=1

⎛

⎝

µ

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
; (2)

d(Ā)i,c̃ ≥
µ−1

∑
ℓ=1

⎛

⎝

µ−1

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
; (3)

and ∣Ā∣ = ∑b∈(Ch[µ])t,w
c̃
∏

t
i=1 d(Ā)i,(b)i .

Proof. Let A be a (k1, . . . , kµ)-out-of (N1, . . . ,Nµ) acceptable set, to construct
Ā ⊆ Cht,wc̃ we first build (Ā)i for every i ∈ {1, . . . , t}. In particular, we initially
set (Ā)i ∶= ∅ and then iteratively add elements to it.

Let us define Bi(⦸) ∶= {a1 : a1 ∈ (A)
[1]
i ∧ P(A)i,1(a1)}, where ⦸ denotes the

empty sequence. By definition of acceptable set, we have that ∣Bi(⦸)∣ ≤ k1 − 1,

so let B̄i(⦸) ⊆ Ch
[1] be a set such that Bi(⦸) ⊆ B̄i(⦸) and ∣B̄i(⦸)∣ = k1 − 1. We

add to the set (Ā)i the following set of elements:

sati(⦸) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(a1, a2, . . . , aµ) : a1 ∈ B̄i(⦸) ∧ (a2, . . . , aµ) ∈
µ

∏
j=2

Ch[j]
⎫⎪⎪
⎬
⎪⎪⎭

.

Note that ∣sati(⦸)∣ = (k1 − 1) ⋅∏
µ
j=2Nj .

For each a1 ∈ Ch
[1]
∖B̄i(⦸), let Bi(a1) ∶= {a2 : a2 ∈ (A)

[2]
i ∧ P(A)i,2((a1, a2))}.

Again, by definition of acceptable set, we have that ∣Bi(a1)∣ ≤ k2 − 1, so let

B̄i(a1) ⊆ Ch
[2] be a set such that Bi(a1) ⊆ B̄i(a1) ∧ ∣B̄i(a1)∣ = k2 − 1. We add to

the set (Ā)i the following set of elements:

sati((a1)) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

(a1, a2, a3, . . . , aµ) : a2 ∈ B̄i(a1) ∧ (a3, . . . , aµ) ∈
µ

∏
j=3

Ch[j]
⎫⎪⎪
⎬
⎪⎪⎭

.

Note that ∣sati((a1))∣ = (k2 − 1) ⋅∏
µ
j=3Nj and ∣Ch[1] ∖ B̄i(⦸)∣ = N1 − k1 + 1.

In general, for ℓ ∈ {2, . . . , µ − 1} and any aℓ ∈ Ch[ℓ] ∖ B̄i((a1, . . . , aℓ−1)),

define Bi((a1, . . . , aℓ)) ∶= {aℓ+1 : aℓ+1 ∈ (A)
[ℓ+1]
i ∧ P(A)i,ℓ+1((a1, . . . , aℓ, aℓ+1)}. As

before, we have that ∣Bi((a1, . . . , aℓ))∣ ≤ kℓ+1 − 1, so it is possible to build a set

B̄i((a1, . . . , aℓ)) ⊆ Ch
[ℓ+1] such that:

Bi((a1, . . . , aℓ)) ⊆ B̄i((a1, . . . , aℓ)) ∧ ∣B̄i((a1, . . . , aℓ))∣ = kℓ+1 − 1.

Again, we add to the set (Ā)i the set of elements:

sati((a1, . . . , aℓ)) ∶= {(a1, . . . , aℓ, aℓ+1, aℓ+2, . . . , aµ) :

aℓ+1 ∈ B̄i((a1, . . . , aℓ)) ∧ (aℓ+2, . . . , aµ) ∈
µ

∏
j=ℓ+2

Ch[j]}.
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In order to count how many elements we are adding to (Ā)i, we observe that:

∣sati((a1, . . . , aℓ))∣ = (kℓ+1 − 1) ⋅
µ

∏
j=ℓ+2

Nj ,

∣Ch[ℓ] ∖ B̄i((a1, . . . , aℓ−1))∣ = Nℓ − kℓ + 1.

The building of (Ā)i ends after µ steps, i.e. when ℓ = µ − 1. By construction,
(Ā)i contains (A)i. Furthermore, the intersection with (Ā)i of the sets that
we are adding to it is always empty. Consequently, at the ℓ-th step, we are

adding∏
ℓ−1
j=1(Nj−kj+1) sets sati((a1, . . . , aℓ−1)), each adding (∏

µ
j=ℓ+1Nj) (kℓ−1)

elements to (Ā)i. This results in the following relation:

∣(Ā)i∣ =
µ

∑
ℓ=1

⎛

⎝

µ

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
. (4)

To construct Ā starting from the sets (Ā)i, with i ∈ {1, . . . , t}, we take every
element ((y)1, . . . , (y)t) ∈∏

t
i=1(Ā)i⋂Cht,wc̃ . By construction, A ⊆ Ā and Ā is an

acceptable set. Moreover, for every i ∈ {1, . . . , t}, we have that:

∣(Ā)i∣ = ∑
x∈Ch[µ]

d(Ā)i,x,

as for every (y)i ∈ (Ā)i there exist (y)1, . . . , (y)i−1, (y)i−, . . . , (y)t such that
((y)1, . . . , (y)t) ∈ Ā. A direct consequence of this is that ∣Ā∣ = ∑b∈St,w∏

t
i=1 d(Ā)i,(b)i .

Finally, for any i ∈ {1, . . . , t} we have that:

d(Ā)i,c̃ ≥
µ−1

∑
ℓ=1

⎛

⎝

µ−1

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
,

as the right-hand side corresponds to the number of saturated branches in (Ā)i,

i.e. the number of elements ((y)
[1]
i , . . . , (y)

[µ−1]
i ) ∈∏

µ−1
i=1 Ch[i] such that, for every

x in Ch[µ], the element ((y)
[1]
i , . . . , (y)

[µ−1]
i , x) belongs to (Ā)i.

Lemma 2. Let w ≤ t, N,Z0, Z1, Z2 be positive integers and consider t sequences
of non-negative integers (di,0, . . . , di,N)i∈{1,...,t} such that, for every i ∈ {1, . . . , t},
it holds that:

di,0 ∈ {Z0, Z2} ,
N

∑
j=0

di,j = Z1.

Let α ∶= ∣ {i ∶ di,0 = Z0} ∣, ℓ0 ∶=max(0,w − t + α), and ℓ1 ∶=min(w,α). Then:

∑
b∈St,w

t

∏
i=1

di,bi =
ℓ1

∑
ℓ=ℓ0

(
α

ℓ
)(

t − α

w − ℓ
)Zℓ

0 (Z1 −Z0)
α−ℓ
(Z2)

w−ℓ
(Z1 −Z2)

t−α−w+ℓ, (5)

where St,w ∶= {0, . . . ,N}
t,w
0 (see Definition 11).
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Proof. Given b ∈ St,w, let us define four support sets:

B1,b ∶= {i ∈ {1, . . . , t} : bi = 0 ∧ di,0 = Z0},

B2,b ∶= {i ∈ {1, . . . , t} : bi = 0 ∧ di,0 = Z2},

B3,b ∶= {i ∈ {1, . . . , t} : bi ≠ 0 ∧ di,0 = Z0},

B4,b ∶= {i ∈ {1, . . . , t} : bi ≠ 0 ∧ di,0 = Z2}.

It clearly holds that t = ∣⊔4
j=1Bj,b∣, α = ∣B1,b⊔B3,b∣, w = ∣B1,b⊔B2,b∣. Therefore,

we have:

∑
b∈St,w

t

∏
i=1

di,bi = ∑
b∈St,w

4

∏
j=1

⎛

⎝
∏

i∈Bj,b

di,bi
⎞

⎠

= ∑
b∈St,w

∏
i∈B1,b

di,0 ∏
i∈B2,b

di,0 ∏
i∈B3,b

di,bi ∏
i∈B4,b

di,bi

= ∑
b∈St,w

∏
i∈B1,b

Z0 ∏
i∈B2,b

Z2 ∏
i∈B3,b

di,bi ∏
i∈B4,b

di,bi .

Now let us consider two disjunct sets B1,B2 ⊆ {1, . . . , t}, with ℓ ∶= ∣B1∣. In order
for the set B′ ∶= {b ∈ St,w : B1,b = B1 ∧B2,b = B2} to be non-empty, we have that
ℓ ≤ min(w,α), and also ∣B2∣ = w − ℓ ≤ t − α, i.e., ℓ ≥ max(0,w − t + α). Now, we
have that:

∑
b∈B′

t

∏
i=1

di,bi = ∑
b∈B′

∏
i∈B1,b

Z0 ∏
i∈B2,b

Z2 ∏
i∈B3,b

di,bi ∏
i∈B4,b

di,bi

= ∑
b∈B′
(Z0)

ℓ
(Z2)

w−ℓ
∏

i∈B3,b

di,bi ∏
i∈B4,b

di,bi .

It is straightforward to see that, for any i′ ∈ {1, . . . , t}, the equality below holds:

St,w =
⎛

⎝
⊔

b′∈St−1,w

N

⊔
j=1

{(b′1, . . . , b
′

i′−1, j, b
′

i′ , . . . , b
′

t−1)}
⎞

⎠

⊔

⎛

⎝
⊔

b′∈St−1,w−1
{(b′1, . . . , b

′

i′−1,0, b
′

i′ , . . . , b
′

t−1)}
⎞

⎠
.

Now we want to adapt this partition to our set B′ ⊆ St,w by considering an
index i′ in {1, . . . , t} ∖ (B1⊔B2). Let us define an index-translation function
fi′ ∶ {1, . . . , t − 1}Ð→ {1, . . . , t} ∖ {i

′}:

fi′(i) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

i if i < i′;

i + 1 if i ≥ i′.

Then, we can define:

B1(i
′
) ∶= {i : fi′(i) ∈ B1}, B2(i

′
) ∶= {i : fi′(i) ∈ B2},
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and introduce the set:

B′(i′) ∶= {b ∈ St−1,w :{i ∈ {1, . . . , t − 1} : bi = 0 ∧ dfi′(i),0 = Z0} = B1(i
′
)∧

∧{i ∈ {1, . . . , t − 1} : bi = 0 ∧ dfi′(i),0 = Z2} = B2(i
′
)}.

We have that:

B′ = ⊔
b′∈B′(i′)

N

⊔
j=1

{(b′1, . . . , b
′

i′−1, j, b
′

i′ , . . . , b
′

t−1)} .

Let us define also:

B3(i
′
) ∶= {i ∈ {1, . . . , t − 1} : fi′(i) ∉ B1⊔B2 ∧ dfi′(i),0 = Z0};

B4(i
′
) ∶= {i ∈ {1, . . . , t − 1} : fi′(i) ∉ B1⊔B2 ∧ dfi′(i),0 = Z2}.

We can use this partition in our sum. We first assume di′,0 = Z0, which leads to:

∑
b∈B′

t

∏
i=1

di,bi = (Z0)
ℓ
(Z2)

w−ℓ
∑
b∈B′

⎛

⎝
∏

i∈B3,b

di,bi ∏
i∈B4,b

di,bi
⎞

⎠

= (Z0)
ℓ
(Z2)

w−ℓ
∑

b′∈B′(i′)

N

∑
j=1

⎛

⎝
di′,j ∏

i∈B3(i′)
dfi′(i),b′i ∏

i∈B4(i′)
dfi′(i),b′i

⎞

⎠

= (Z0)
ℓ
(Z2)

w−ℓ
∑

b′∈B′(i′)

⎛

⎝

N

∑
j=1

di′,j
⎞

⎠

⎛

⎝
∏

i∈B3(i′)
di,b′i ∏

i∈B4(i′)
di,b′i
⎞

⎠

= (Z0)
ℓ
(Z2)

w−ℓ
∑

b′∈B′(i′)

⎛

⎝

⎛

⎝

N

∑
j=0

di′,j
⎞

⎠
− di′,0

⎞

⎠

⎛

⎝
∏

i∈B3(i′)
dfi′(i),b′i ∏

i∈B4(i′)
dfi′(i),b′i

⎞

⎠

= (Z0)
ℓ
(Z2)

w−ℓ
∑

b′∈B′(i′)
(Z1 −Z0)

⎛

⎝
∏

i∈B3(i′)
dfi′(i),b′i ∏

i∈B4(i′)
dfi′(i),b′i

⎞

⎠

= (Z0)
ℓ
(Z2)

w−ℓ
(Z1 −Z0) ∑

b′∈B′(i′)

⎛

⎝
∏

i∈B3(i′)
dfi′(i),b′i ∏

i∈B4(i′)
dfi′(i),b′i

⎞

⎠
.

Note that in this way we have effectively extracted the factor corresponding to
the index i′ without affecting the other indices, and note also that in the case
where di′,0 = Z2, the only difference is that we can factor out (Z1 − Z2) instead
of (Z1 − Z0). If we repeat this technique starting from B′(i′) (whose elements
have length t−1) instead of B′ (whose elements have length t), we can factor out
another index. This means that, by repeating the same partition and factoring
technique for every i′ ∈ {1, . . . , t} ∖ (B1⊔B2), and remembering that for any
b ∈ B′ we have ∣B3,b∣ = α − ℓ and ∣B4,b∣ = t − α −w + ℓ, we obtain:

∑
b∈B′

t

∏
i=1

di,bi = (Z0)
ℓ
(Z2)

w−ℓ
(Z1 −Z0)

α−ℓ
(Z1 −Z2)

t−αw+ℓ.
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To conclude, note that for ℓ fixed there are (α
ℓ
) possible choices for B1 and

(
t−α
w−ℓ
) possible choices for B2, and that by varying ℓ, the set of all the possible

B′ forms a partition of St,w.

Proposition 2. Denote with nt,w the maximal cardinality of a (k1, . . . , kµ)-out-
of-(N1, . . . ,Nµ) acceptable set. Then, nt,w is the maximum of the expression:

min(w,α)

∑
ℓ=max(0,w−t+α)

(
α

ℓ
)(

t − α

w − ℓ
)Zℓ

0 (Z1 −Z0)
α−ℓ
(Z2)

w−ℓ
(Z1 −Z2)

t−α−w+ℓ,

where the maximum is taken over α ∈ {0, . . . , t} and

Z0 ∶=

µ−1

∏
ℓ=1

Nℓ; (6)

Z1 ∶=

µ

∑
ℓ=1

⎛

⎝

µ

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
; (7)

Z2 ∶=

µ−1

∑
ℓ=1

⎛

⎝

µ−1

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
. (8)

Proof. Notice that, thanks to Lemma 1 we can always limit ourselves to consider
acceptable sets Ā such that for every i ∈ {1, . . . , t} the following conditions hold:

∑
x∈Ch[µ]

di,x(Ā) = Z1, di,c̃(Ā) ≥ Z2, (9)

with Z1, Z2 respectively as in Eq. 7 and 8. Then,

nt,w ∶=max
A
{∣A∣} =max

Ā
{∣Ā∣} =max

Ā

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∑
b∈(Ch[µ])t,w

c̃

t

∏
i=1

d(Ā)i,(b)i

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (10)

For simplicity of notation we remove below the dependence from Ā, we biject the
elements of Ch[µ] with the set {0, . . . ,Nµ−1} mapping c̃ to 0, and again we define
St,w ∶= {0, . . . ,Nµ − 1}

t,w
0 . We will also denote with {(d̄i,0, . . . , d̄i,Nµ−1)}i∈{1,...,t}

a generic set that respects the conditions imposed by Equation (9). We would
therefore like to find a valid assignment of (d̄i,j)i,j that maximizes the expression
above. We show that it is sufficient to consider sets such that, for each index
i ∈ {1, . . . , t},

(d̄i,0,
Nµ−1

∑
j=1

d̄i,j) ∈ {(Z0, Z1 −Z0), (Z2, Z1 −Z2)} . (11)
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Consider the case i = 1 (the extension to the generic case i ≠ 1 is immediate) and
notice that:

nt,w =max{d̄1,0 ∑
(b2,...,bt)∈St−1,w−1

t

∏
i=2

d̄i,bi+

+
⎛

⎝

Nµ−1

∑
j=1

d̄1,j
⎞

⎠
∑

(b2,...,bt)∈St−1,w

t

∏
i=2

d̄i,bi}.

It is straightforward to see that the best way to maximize nt,w is to maximize

either d̄1,0 or ∑
Nµ−1
j=1 d̄1,j . In particular, if we have that:

∑
(b2,...,bt)∈St−1,w−1

t

∏
i=2

d̄i,bi ≥ ∑
(b2,...,bt)∈St−1,w

t

∏
i=2

d̄i,bi ,

then the maximum is obtained when we take d̄1,0 = Z0 (and consequently

∑
Nµ−1
j=1 d̄1,j = Z1 − Z0). Otherwise, since d̄1,0 is always greater or equal than

Z2, the best way to maximize the expression is to choose ∑
Nµ−1
j=1 d̄1,j = Z1 − Z2

and d̄1,0 = Z2.
Since we can consider only sets of this type when maximizing Eq. 10, Lemma 2

applies with Z0, Z1 and Z2 respectively as in Eq. 6, 7 and 8, N ∶= Nµ − 1. This
concludes the proof.

4 Fixed-Weight Repetition of a k-Special-Sound Sigma
Protocol

Let (P,V) be a k-special-sound Sigma protocol, with challenge space Ch. We
make a two-fold assumption on the protocol:

– the knowledge error (k − 1)/N is not negligible in the security parameter;
– the response size for a specific challenge c̃ ∈ Ch significantly exceeds the

response sizes for the other challenges.

To reduce the knowledge error while limiting the increase in the overall re-
sponse size, a common technique is to repeat the protocol in parallel t times,
with exactly w repetitions using the unfavourable challenge c̃. We denote by
(Pt,w,Vt,w) the resulting protocol. In this section, we want to prove that such
scheme is knowledge sound. To this end, we first slightly generalize the notation
and results in [AF22] by, at times, replacing the uniform distribution with an
arbitrary one.

A dishonest prover against the Sigma protocol (P,V) can be described as an
arbitrary (possibly probabilistic) algorithm A∶Ch→ {0,1}∗. Let V∶Ch×{0,1}∗ →
{0,1} be a verification function. Throughout this section D will denote a proba-
bility distribution over Ch with support Ch. We define the D-success probability
of A as
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εV(A,D) = Pr[V(C,A(C)) = 1],

where the probability space is defined by C being sampled from Ch according
to the probability distribution D and the randomness of A. When not specified,
we assume D is the uniform distribution over Ch and we write εV(A). Similarly,
we adapt the worst-case success probability of A for a random challenge when
k − 1 challenges are removed from Ch, as follows:

δVk (A,D) = min
S⊂Ch∶∣S∣=k−1

Pr[V(C,A(C)) = 1 ∣C /∈ S ].

It is easily seen that δV1 (A,D) = ε
V(A,D). Moreover, in the following lemma we

prove that δVk (A,D) is a decreasing function in k for any choice of D .

Lemma 3. Let D be a probability distribution over Ch. Then, for all k ∈ N∗,

δVk+1(A,D) ≤ δ
V
k (A,D).

Proof. Let C be a random variable distributed as D and let S ⊆ Ch be such that
it minimizes δVk (A,D). Moreover, let S̄ = Ch∖S and S̄′ = {c ∈ S̄ ∣ V(c,A(c)) = 1}.
Then, for any c′ ∈ S̄′, we have

δVk+1(A,D) ≤ Pr[V(C,A(C)) = 1 ∣C /∈ S ∪ {c
′
}] =

(∑c∈S̄′ Pr[C = c]) −Pr[C = c
′]

(∑c∈S̄ Pr[C = c]) −Pr[C = c′]

≤
∑c∈S̄′ Pr[C = c]

∑c∈S̄ Pr[C = c]
= δVk (A,D).

In the following, we also consider the restriction D ∣S of D to a subset S ⊆ Ch.

Definition 16 (Distribution Restriction). Let D be a probability distribu-
tion over Ch and let X ∼ D . For any subset S ⊆ Ch, the restriction D ∣S of D to
S is defined by the following density function

Pr[X ∣S = x] =
Pr[X = x]

∑x′∈S Pr[X = x′]
, for all x ∈ S.

A simple adaptation of [AF22, Lemma 2] proves the existence of an extrac-
tion algorithm EA(D), with oracle access to A and that samples challenges from
Ch following the distribution D , which runs in expected polynomial time and
succeeds with probability at least δVk (A,D)/k. The extraction algorithm is de-
scribed in Figure 2.

Lemma 4. Let k ∈ N∗, Ch be a finite set with cardinality N ≥ k, V∶Ch×{0,1}∗ →
{0,1} an arbitrary function and D an arbitrary probability distribution over Ch.
Then there exists an algorithm EA(D) so that, given oracle access to any (prob-
abilistic) algorithm A∶Ch → {0,1}∗, EA(D) requires an expected number of at
most 2k − 1 queries to A and, with probability at least δVk (A,D)/k, it outputs k
pairs (c1, y1), (c2, y2), . . . , (ck, yk) ∈ Ch × {0,1}

∗ with V(ci, yi) = 1 for all i and
ci ≠ cj for all i ≠ j.
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Input: k ∈ N∗, Ch a finite set with ∣Ch∣ = N ≥ k and S ⊆ Ch with ∣S∣ ≥ k.
Oracle access: algorithm A∶Ch → {0,1}∗ and verification function
V∶Ch × {0,1}∗ → {0,1}.
Output: if successful, (c1, y1), . . . , (ck, yk) ∈ Ch × {0,1}

∗ with V(ci, yi) = 1 for all
i and ci ≠ cj for i ≠ j, otherwise �.

1: Sample c1 ∈ S according to D ∣S and obtain y1 ← A(c1)
2: if V(c1, y1) = 0 then abort and output �

3: if V(c1, y1) = 1 and k = 1 then output (c1, y1) ∈ Ch × {0,1}
∗

4: else
5: repeat
6: set S′ = S ∖ {c1} and run EA(D ∣S′)
7: set coin← V(d,A(d)) with d ∈ S sampled according to D ∣S
8: until EA(D ∣S′) outputs (c2, y2), . . . , (ck, yk) or coin = 1

9: if coin = 1 then return �
10: else return (c1, y1), . . . , (ck, yk)

Fig. 2. Extractor EA(D ∣S)

Proof. The proof is similar to the proof of [AF22, Lemma 2]. In the original
proof, the extractor samples the challenges uniformly from a subset S ⊆ Ch.
Here, we need to consider the natural restriction of D to S as per Definition 16.
Since we are assuming that D has support equal to Ch, the restriction is well-
defined. Then Lemma 3 is enough to adapt the proof of [AF22, Lemma 2] and
obtain the claim.

4.1 Knowledge Soundness of Fixed-Weight Repetitions

We now consider the (t,w)-fixed-weight repetition (Pt,w,Vt,w) of a k-out-of-N
special-sound Sigma protocol (P,V). With reference to Definitions 10 and 12,
we assume that the challenge space for (P,V) is Ch = {0, . . . ,N − 1} and the
unfavourable challenge in c̃ = 0, and we write wt(c) in place of wt0(c).

The uniform distribution on Cht,w = Cht,w0 induces t probability distribu-
tions Di on Ch, obtained by taking the i-th component of a challenge uniformly
sampled from Cht,w.

Definition 17. For every i ∈ {1, . . . , t} we define the probability distribution Di

over Ch as the probability distribution having the following density function:

Pr[Xi = a] =
∣{c ∈ Cht,w ∣ (c)i = a}∣

∣Cht,w ∣
.

An adversary against (Pt,w,Vt,w) is described by a (possibly probabilistic)
algorithm A∶Cht,w → {0,1}∗. The success probability of A is defined as

εV (A) = Pr[V(C,A(C)) = 1],
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for some verification algorithm V∶Cht,w × {0,1}∗ → {0,1}, where C is a random
variable uniformly distributed over Cht,w.

From A, we can define t algorithms A1, . . . ,At, considering only a single
invocation of (P,V). In particular, each Ai takes as input a challenge ci ∈ Ch
and runs y ← A(c = (ci, c̄)), where c̄ is sampled uniformly at random from
Cht−1,w−1 if ci = 0 or from Cht−1,w otherwise, and A appropriately reorder its
input so that ci is the i-th component of c (i.e. (c)i = ci). Finally, Ai returns y
along with c̄.

Notice that, when the input challenge ci for Ai is sampled according to the
probability distribution Di over Ch (see Definition 17), then the inputs passed
to A are uniformly distributed over Cht,w. In this case, for each Ai, we can run
the extractor EAi(Di) of Figure 2. From Lemma 4, the extraction succeeds with
probability at least δVk (Ai,Di)/k, where

δVk (Ai,Di) = min
Si⊂Ch∶∣Si∣=k−1

Pr[V(Di,A(Di)) = 1 ∣Di /∈ Si ],

Di is distributed as Di and V appropriately reorder its input8.
In the following lemma we show that, when executed in parallel, at least

one of the extractors EAi(Di) succeeds with high probability in producing k
challenge-response pairs that verify V and such that the i-th components of the
challenges are all distinct.

Lemma 5. Let k, t ∈ N∗, 1 ≤ w ≤ t and Ch a finite set with cardinality N ≥ k.
Let V∶Cht,w × {0,1}∗ → {0,1} and let A be a (probabilistic) algorithm that takes
as input c ∈ Cht,w and returns a string y ∈ {0,1}∗. Then

t

∑
i=1

δVk (Ai,Di) ≥
εV (A) − κt,w

1 − κ(1)
,

where

– κ(1) =min{w
t
+ (k − 2) t−w

t(N−1)
, (k − 1) t−w

t(N−1)
};

– κt,w = (
t
w
)
−1 ηt,w

(N−1)t−w , with

ηt,w =

⎧⎪⎪
⎨
⎪⎪⎩

(
w(k−1)

w
)(k − 2)w(k−2)(k − 1)t−w(k−1) if t ≥ w(k − 1)

(
t
w
)(k − 2)t−w otherwise

.

Proof. Let (C)i be the i-th component of the random variable C uniformly
distributed over Cht,w and let Λ denote the event V(C,A(C)) = 1. Therefore
Pr[Λ] = εV(A). For i ∈ {1, . . . , t}, let Si ⊂ Ch be such that it minimizes δVk (Ai,Di).
Then,

t

∑
i=1

δVk (Ai,Di) =
t

∑
i=1

Pr[V(Di,Ai(Di)) = 1 ∣Di /∈ Si ] =
t

∑
i=1

Pr[Λ ∣ (C)i /∈ Si ]

8 The verification function for Ai is the same V considered for A, but seen as a function
of the form Ch × (Cht−1 × {0,1}∗).
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as, for any i ∈ {1, . . . , t}, Di and (C)i are identically distributed and it holds
that

Pr[V(Di,Ai(Di)) = 1 ∣Di /∈ Si ] = Pr[V((C)i,Ai((C)i)) = 1 ∣ (C)i /∈ Si ] =

= ∑
c∈Cht,w

Pr[V((c)i,Ai((c)i)) = 1 ∣C = c ]Pr[C = c ∣ (C)i /∈ Si ]

= ∑
c∈Cht,w

Pr[V(c,A(c)) = 1 ∣C = c ]Pr[C = c ∣ (C)i /∈ Si ] = Pr[Λ ∣ (C)i /∈ Si ].

From elementary probability, it follows that

t

∑
i=1

Pr[Λ ∣ (C)i /∈ Si ] =
t

∑
i=1

Pr[Λ ∧ (C)i /∈ Si]

Pr[(C)i /∈ Si]
=

t

∑
i=1

Pr[Λ ∧ (C)i /∈ Si]

1 −Pr[(C)i ∈ Si]

≥
Pr[Λ ∧⋃i(C)i /∈ Si]

1 −Pr[(C)1 ∈ S1]
≥
Pr[Λ] −Pr[⋂i(C)i ∈ Si]

1 −Pr[(C)1 ∈ S1]
,

where in the first inequality we can take 1/(1−Pr[(C)1 ∈ S1]) out of the sum by
observing that, for any i ∈ {1, . . . , t},

Pr[(C)i ∈ Si] =

⎧⎪⎪
⎨
⎪⎪⎩

w
t
+ (k − 2) t−w

t(N−1)
if 0 ∈ Si

(k − 1) t−w
t(N−1)

otherwise
.

In addition, Pr[(C)i ∈ Si] ≥minS1 Pr[(C)1 ∈ S1] =∶ κ
(1).

Moreover, let us define

κt,w = max
S1,...,St

Pr[(C)1 ∈ S1 ∧ (C)2 ∈ S2 ∧ . . . ∧ (C)t ∈ St],

where the maximum is over all sets Si ⊂ Ch with ∣Si∣ = k − 1. Notice that, equiv-
alently, κt,w = Pr[C ∈ S], where S ⊂ Cht,w depends on the sets S1, . . . , St that
maximize the probability. The maximal size ηt,w of S is computed in Proposi-
tion 1 as

ηt,w =

⎧⎪⎪
⎨
⎪⎪⎩

(
w(k−1)

w
)(k − 2)w(k−2)(k − 1)t−w(k−1) if t ≥ w(k − 1)

(
t
w
)(k − 2)t−w otherwise

.

Therefore

κt,w = Pr[C ∈ S] ≤
ηt,w

∣Cht,w ∣
= (

t

w
)
−1 ηt,w

(N − 1)t−w
,

which completes the proof.

In light of Lemma 5, we can bound the probability that at least one extractor
EAi(Di) is successful as follows:

max
1≤i≤t

δVk (Ai,Di) ≥
1

t

t

∑
i=1

δVk (Ai,Di) ≥
εV(A) − κt,w

t(1 − κ(1))
.

As a consequence, the (t,w)-fixed-weight repetition (Pt,w,Vt,w) of a k-special-
sound Sigma protocol (P,V) is knowledge sound with knowledge error κt,w.
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Theorem 1 (Fixed-Weight Repetition of a k-Special-Sound Sigma Pro-
tocol). Let (P,V) be a k-out-of-N special-sound Sigma protocol. Let (Pt,w,Vt,w)

be the (t,w)-fixed-weight repetition of (P,V), where k, t ∈ N∗ and 1 ≤ w ≤ t. Then
(Pt,w,Vt,w) is knowledge sound with knowledge error κt,w, where

κt,w = (
t

w
)
−1 ηt,w

(N − 1)t−w
,

with

ηt,w =

⎧⎪⎪
⎨
⎪⎪⎩

(
w(k−1)

w
)(k − 2)w(k−2)(k − 1)t−w(k−1) if t ≥ w(k − 1)

(
t
w
)(k − 2)t−w otherwise

.

Remark 4. Recently, [AFR23] considered a further generalisation, named Γ -
special soundness, of the notion of k-special soundness, where the subset of
challenges from which it is possible to extract a witness is determined by an ar-
bitrary access structure Γ , i.e. a monotone set of subsets of the challenge space.
The authors proved that, for any Γ -special-sound Sigma protocol, it is possible
to build an extractor that has knowledge error κΓ and an expected running time
that scales with tΓ , where κΓ , tΓ are positive integers determined by Γ . Then, if
tΓ is polynomial, Γ -special-soundness implies knowledge soundness. Moreover,
they showed that both a k-special-sound Sigma protocol and its t-fold parallel
repetition are Γ -special sound for a suitable access structure Γ , which led them
to re-discover the results of [AF22].
The (t,w)-fixed-weight repetition of a k-special sound protocol can also be de-
scribed within this framework, and the results of Theorem 1 can be obtained
by techniques similar to that of [AFR23]. Unfortunately, it is not possible to
find an access structure that suitably describes the (t,w)-fixed-weight repetition
of a (k1, . . . , kµ)-special sound protocol. Therefore, with the goal of providing
a clearer intuition, we have made the description of the extractor for Sigma
protocols explicit, building on the techniques of [AF22] rather than those of
[AFR23].

5 Fixed-Weight Repetition of a (k1, . . . , kµ)-Special-Sound
Interactive Proof

In the following, we extend the result of Section 4 to multi-round protocols. Let
(P,V) be a (k1, . . . , kµ)-special-sound multi-round interactive proof with chal-

lenge space Ch[1] ×⋯×Ch[µ]. We define K =∏
µ
i=1 ki and write c = (c[1], . . . , c[µ])

for an element c ∈ Ch[1] ×⋯ × Ch[µ].
Similarly to the case of 3-round protocols, with the aim of reducing the knowl-

edge error while limiting the increase in the overall response size, we consider the
t-fold parallel repetition of the protocol (P,V), where exactly w repetitions use
the unfavourable challenge c̃ in the last round. (Pt,w,Vt,w) is the resulting pro-
tocol. To show that this protocol is knowledge sound, we again start by slightly
generalising the notation and results in [AF22].
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A dishonest prover against (P,V) can be described as an arbitrary (proba-

bilistic) algorithm A∶Ch[1]×⋯×Ch[µ] → {0,1}∗. Let V∶Ch[1]×⋯×Ch[µ]×{0,1}∗ →
{0,1} be a verification function and D = (D [1], . . . ,D [µ]) a collection of proba-

bility distributions, where D [i] is over D[i] ⊆ Ch[i] with ∣D[i]∣ ≥ ki. We define the
D-success probability of A as

εV (A,D) = Pr[V(C,A(C)) = 1],

where C = (C[1], . . . ,C[µ]) is a random variable, with C[i] being distributed

as D [1]. If C is uniformly distributed over Ch[1] × ⋯ × Ch[µ], we write εV (A).
Similarly, we adapt the punctured success probability of A as

δVk(A,D) = min
S[1],S[2](⋅),...,S[µ](⋅)

Pr[V(C,A(C)) = 1 ∣C
[1]
/∈S[1]∧C[2]/∈S[2](C[1])∧⋯

⋯∧C[µ]/∈S[µ](C[1],...,C[µ−1])
],

where the minimum is over all sets S[1] ∈ Ch[1]∣k1−1, and over all functions

S[i]∶Ch[1] ×⋯×Ch[i−1] → Ch[i]∣ki−1, with i = 2, . . . , µ. Here, for any i ∈ {1, . . . , t},

Ch[i]∣ki−1 denotes the set of subsets of Ch[i] with cardinality ki − 1.
Next, we define an extraction algorithm EA(D) with oracle access to A

that samples the challenges according to the distribution D . Building on [AF22,
Lemma 4], it is possible to show that EA(D) runs in expected polynomial time
and succeeds with probability at least δVk (A,D)/K.

Lemma 6. Let k1, . . . , kµ ∈ N∗, K = ∏
µ
i=1 ki, Ch[1], . . . ,Ch[µ] finite sets with

Ch[j] having cardinality Nj ≥ kj, V∶Ch
[1]
×⋯×Ch[µ]×{0,1}∗ → {0,1} an arbitrary

function and D = (D [1], . . . ,D [µ]) a collection of probability distributions D [j]

with support equal to Ch[j]. Then, there exists an algorithm EA(D) that, given

oracle access to a (probabilistic) algorithm A∶Ch[1] × ⋯ × Ch[µ] → {0,1}∗, with
an expected number of at most 2µK queries to A and with probability at least
δVk(A,D)/K, it outputs K pairs (c1, y1), . . . , (cK , yK) ∈ Ch

[1]
×⋯×Ch[µ]×{0,1}∗

with V(ci, yi) = 1 for all i ∈ {1, . . . , µ} and such that the vectors ci form a
(k1, . . . , kµ)-tree of transcripts.

Proof. The proof resembles that of [AF22, Lemma 4], with the only difference
that the single-instance extractor used internally is an instantiation of the one
described in Figure 2.

5.1 Knowledge-Soundness of Fixed-Weight Repetitions

Let (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition – with respect to an un-

favourable challenge c̃ ∈ Ch[µ] – of a (k1, . . . , kµ)-special-sound proof (P,V) with

challenge space Ch = Ch[1] ×⋯Ch[µ].
For ease of notation, in the following we assume that the challenge space for

the i-th round of (P,V) is Ch[i] = {0, . . . ,Ni−1} while the unfavourable challenge
for the last round is c̃ = 0.
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Definition 18. For each j ∈ {1, . . . , µ − 1}, let U [j] be the uniform distribution

over Ch[i]. For every i ∈ {1, . . . , t}, let D
[µ]
i be the probability distribution having

the following density function:

Pr[Xi = k] =
∣{c ∈ (Ch[µ])t,w0 ∣ (c)i = k}∣

∣(Ch[µ])t,w0 ∣
.

Finally, let Di = (U
[1], . . . ,U [µ−1],D

[µ]
i ).

An adversary against (Pt,w,Vt,w) is described as a (possibly probabilis-
tic) algorithm which, on input a row c = ((c)1, . . . , (c)t) of columns (c)i =

((c)
[1]
i , . . . , (c)

[µ]
i ) ∈ Ch

[1]
×⋯×Ch[µ] of challenges such that wt0((c)

[µ]
1 , . . . , (c)

[µ]
t ) =

w, outputs a string y ∈ {0,1}∗. The success probability of A is defined as

εV (A) = Pr[V(C,A(C)) = 1],

for some verification algorithm V∶Cht,w0 ×{0,1}
∗ → {0,1}, with C being a random

variable uniformly distributed over Cht,w0 .
Such an algorithm A induces t algorithms A1, . . . ,At, analogous to those

considered in the context of a single repetition of (P,V). Each Ai takes as input

a column (c)i ∈ Ch
[1]
× ⋯ × Ch[µ]. Then Ai runs y ← A(c = ((c)i, c̄)), where

c̄ is sampled uniformly at random from Cht−1,w−10 if (c)
[µ]
i = 0 or from Cht−1,w0

otherwise, and A is understood to appropriately reorder its input so that (c)i is
the i-th component of c. Finally Ai returns y along with c̄.

Notice that, when the input challenge for Ai is sampled according to the

probability distribution Di = (U
[1], . . . ,U [µ−1],D

[µ]
i ) over Ch[1] × ⋯ × Ch[µ],

then the inputs passed to A are uniformly distributed over Cht,w0 . Hence, for
each Ai, we can consider the extractor EAi(Di) of Lemma 6, which succeeds
with probability at least δVk(Ai,Di)/K, where

δVk(Ai,Di) = min
S
[1]
i ,S

[2]
i (⋅),...,S

[µ]
i (⋅)

Pr[V(Di,Ai(Di)) = 1 ∣
D
[1]
i /∈S

[1]
i ∧D

[2]
i /∈S

[2]
i (D

[1]
i )∧⋯

⋯∧D
[µ]
i /∈S

[µ]
i (D

[1]
i ,...,D

[µ−1]
i )

],

and Di is distributed as Di.
In the following lemma we show that, when executed in parallel, at least one

of the extractors EAi(Di) succeeds with high probability in producing ∏
µ
i=1 ki

challenge-response pairs that verify V and such that the challenges form a
(k1, . . . , kµ)-tree of transcripts.

Lemma 7. Let k1, . . . , kµ, t,w ∈ N∗ such that 1 ≤ w ≤ t and let Ch[1], . . . ,Ch[µ]

be finite sets with Ch[j] having cardinality Nj ≥ kj. Let V∶Ch
t,w
0 ×{0,1}

∗ → {0,1}
and let A be a (probabilistic) algorithm that takes as input an element c of Cht,w0

and outputs a string y ∈ {0,1}∗. Then

t

∑
i=1

δVk(Ai,Di) ≥
εV (A) − κt,w

1 − κ(1)
,
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where κt,w is the maximum, taken over α ∈ {0, . . . , t}, of the expression:

∑
min(w,α)

ℓ=max(0,w−t+α)
(
α
ℓ
)(

t−α
w−ℓ
)Zℓ

0 (Z1 −Z0)
α−ℓ
(Z2)

w−ℓ(Z1 −Z2)
t−α−w+ℓ

∣Cht,w0 ∣
,

where ∣Cht,w0 ∣ = (
t
w
)(Nµ − 1)

t−w(∏
µ−1
i=1 Ni)

t and

Z0 ∶=

µ−1

∏
ℓ=1

Nℓ,

Z1 ∶=

µ

∑
ℓ=1

⎛

⎝

µ

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
,

Z2 ∶=

µ−1

∑
ℓ=1

⎛

⎝

µ−1

∏
j=ℓ+1

Nj

⎞

⎠
(kℓ − 1)

⎛

⎝

ℓ−1

∏
j=1

(Nj − kj + 1)
⎞

⎠
.

Moreover, it holds that

κ(1) ≥ 1 −
⎛

⎝

µ−1

∏
j−1

Nj − kj + 1

Nj

⎞

⎠
(
Nµ − kµ + 1

Nµ − 1

t −w

w
+
w

t
) .

Proof. Let (C)i be the i-th component of the random variable C uniformly dis-
tributed over Cht,w0 and let Λ be the event V(C,A(C)) = 1. Therefore Pr[Λ] =

εV (A). For i ∈ {1, . . . , t}, let S
[1]
i and S

[2]
i (⋅), . . . , S

[µ]
i (⋅) be such that they min-

imize δVk(Ai,Di). Moreover, we denote by Γi the event

(C)
[1]
i /∈ S

[1]
i ∧ (C)

[2]
i /∈ S

[2]
i ((C)

[1]
i )∧⋯∧ (C)

[µ−1]
i /∈ S

[µ−1]
i ((C)

[1]
i , . . . , (C)

[µ−2]
i )

and by Ωi the event (C)
[µ]
i /∈ S

[µ]
i ((C)

[1]
i , . . . , (C)

[µ−1]
i ). Moreover, we consider

the probability distributionDi which is distributed as Di = (U
[1], . . . ,U [µ−1],D

[µ]
i )

over Ch[1]×⋯×Ch[µ]. Therefore, similarly to the proof of Lemma 5, Di and (C)i
are identically distributed for any i ∈ {1, . . . , t} and, by construction of the Ai’s,
it holds that

t

∑
i=1

δVk(Ai,Di) =
t

∑
i=1

Pr[V(Di,Ai(Di)) = 1 ∣
D
[1]
i /∈S

[1]
i ∧D

[2]
i /∈S

[2]
i (D

[1]
i )∧⋯

⋯∧D
[µ]
i /∈S

[µ]
i (D

[1]
i ,...,D

[µ−1]
i )

]

=
t

∑
i=1

Pr[Λ ∣Γi ∩Ωi ].

From elementary probability, it follows that

t

∑
i=1

Pr[Λ ∣Γi ∩Ωi ] =
t

∑
i=1

Pr[Λ ∧ (Γi ∩Ωi)]

Pr[Γi ∩Ωi]
=

t

∑
i=1

Pr[Λ ∧ (Γi ∩Ωi)]

Pr[Γ1 ∩Ω1]

≥
Pr[Λ ∧⋃i(Γi ∩Ωi)]

Pr[Γ1 ∩Ω1]
≥
Pr[Λ] −Pr[⋂i (Γi ∩Ωi)]

Pr[Γ1 ∩Ω1]
,
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where the second equality is obtained by observing that Pr[Γ1 ∩Ω1] = ⋯ =

Pr[Γt ∩Ωt].

Now, let κt,w = Pr[⋂
t
i=1 (Γi ∩Ωi)]. For any i ∈ {1, . . . , t}, the set S

[1]
i and the

maps S
[2]
i (⋅), . . . , S

[µ]
i (⋅) identify a subset (Ā)i of Ch

[1]
×⋯×Ch[µ] defined in the

following way. The set S
[1]
i dictates that (Ā)i contains

⎧⎪⎪
⎨
⎪⎪⎩

(c[1], c[2], . . . , c[µ]) : c[1] ∈ S
[1]
i ∧ (c

[2], . . . , c[µ]) ∈
µ

∏
j=2

Ch[j]
⎫⎪⎪
⎬
⎪⎪⎭

.

Furthermore, the set S
[1]
i and the map S

[2]
i (⋅) dictate that (Ā)i also contains

⎧⎪⎪
⎨
⎪⎪⎩

(c[1], c[2], . . . , c[µ]) : c[1] /∈ S
[1]
i ∧ c

[2]
∈ S
[2]
i (c

[1]
) ∧ (c[3], . . . , c[µ]) ∈

µ

∏
j=3

Ch[j]
⎫⎪⎪
⎬
⎪⎪⎭

.

By iterating this argument, we deduce that the sets (Ā)i have a form identical to
the sets in the proof of Lemma 1 which have the same names, the only difference
being that within that proof the sets (Ā)i were determined by a starting accept-

able set A, while here they are determined by S
[1]
i and S

[2]
i (⋅), . . . , S

[µ]
i (⋅). As a

consequence, κt,w corresponds to the probability of belonging to the set Ā, which
is defined as the set containing every element ((y)1, . . . , (y)t) ∈∏

t
i=1(Ā)i which

respects the first condition of Definition 15, i.e. ((y)
[µ]
1 , . . . , (y)

[µ]
t ) ∈ (Ch

[µ]
)
t,w
0 .

By applying (the proof of) Proposition 2 to the set Ā, we conclude that the
probability κt,w is exactly the one in the claim.

Finally, let κ(1) = 1−Pr[Γ1 ∩Ω1] and write Pr[Γ1 ∩Ω1] = Pr[Γ1]⋅Pr[Ω1 ∣Γ1 ].
Notice that

Pr[Γ1] =

µ−1

∏
j=1

Nj − kj + 1

Nj
.

Moreover, observe that Pr[Ω1 ∣Γ1 ] = Pr[(C)
[µ]
1 /∈ S

[µ]
1 ] for some set S

[µ]
1 ⊂ Ch[µ]

with ∣S
[µ]
1 ∣ = kµ − 1. Now, let S̄

[µ]
1 = Ch[µ] ∖ S

[µ]
1 , then

Pr[(C)
[µ]
1 /∈ S

[µ]
1 ] = Pr[(C)

[µ]
1 ∈ S̄

[µ]
1 ] =

η1

∣(Ch[µ])t,w0 ∣
,

where the value of η1 is given by the size of a maximal S̄ ⊆ (Ch[µ])t,w0 such that
∣(S̄)1∣ ≤ Nµ − kµ + 1. Following the same techniques of Proposition 1, we can

explicitly compute η1 depending on whether 0 ∈ S̄
[µ]
1 . It holds that

η1 =max

⎧⎪⎪
⎨
⎪⎪⎩

(
t−1
w
)(Nµ − kµ + 1)(Nµ − 1)

t−w−1 If 0 /∈ S̄
[µ]
1

(
t−1
w
)(Nµ − kµ)(Nµ − 1)

t−w−1 + (
t−1
w−1
)(Nµ − 1)

t−w If 0 ∈ S̄
[µ]
1

⎫⎪⎪
⎬
⎪⎪⎭

≤ (
t − 1

w
)(Nµ − kµ + 1)(Nµ − 1)

t−w−1
+ (

t − 1

w − 1
)(Nµ − 1)

t−w

= (
t

w
)(Nµ − 1)

t−w
(
Nµ − kµ + 1

Nµ − 1

t −w

w
+
w

t
) .
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Since ∣(Ch[µ])t,w0 ∣ = (
t
w
)(Nµ − 1)

t−w, we obtain

Pr[Γ1 ∩Ω1] ≤
⎛

⎝

µ−1

∏
j=1

Nj − kj + 1

Nj

⎞

⎠
(
Nµ − kµ + 1

Nµ − 1

t −w

w
+
w

t
) .

As for the fixed-weight repetition of a Sigma protocol, following Lemma 7 we
can bound the probability that at least one extractor EAi(Di) is successful:

max
1≤i≤t

δVk(Ai,Di) ≥
1

t

t

∑
i=1

δVk(Ai,Di) ≥
εV(A) − κt,w

t ⋅ (1 − κ(1))
.

It follows that the (t,w)-fixed-weight repetition (Pt,w,Vt,w) of a (k1, . . . , kµ)-
special-sound proof (P,V) is knowledge sound with knowledge error κt,w.

Theorem 2 (Fixed-Weight Repetition of a (k1, . . . , kµ)-Special-Sound
Multi-Round Proof). Let (P,V) be a (k1, . . . , kµ)-special-sound interactive
proof and (Pt,w,Vt,w) be the (t,w)-fixed-weight repetition of (P,V), where k, t ∈
N∗ and 1 ≤ w ≤ t. Then (Pt,w,Vt,w) is knowledge sound with knowledge error
κt,w, where κt,w is the maximum, taken over α ∈ {0, . . . , t}, of the expression

∑
min(w,α)

ℓ=max(0,w−t+α)
(
α
ℓ
)(

t−α
w−ℓ
)Zℓ

0 (Z1 −Z0)
α−ℓ
(Z2)

w−ℓ(Z1 −Z2)
t−α−w+ℓ

(
t
w
)(Nµ − 1)t−w(∏

µ−1
i=1 Ni)

t
,

where Z0, Z1, Z2 are defined as in Lemma 7.

6 Applications and Conclusions

In this paper, we have established a positive result about the security of fixed-
weight parallel repetitions of special-sound multi-round interactive proofs. We
have given an in-depth description of the optimal strategy of a dishonest prover
attacking the fixed-weight repetition of the protocol. In particular, we provided
an explicit expression of the adversary’s cheating probability, for both the three-
round and multi-round cases. Next, we generalized the knowledge extractor from
[AF22], applying it to the (t,w)-fixed-weight repetition of a (k1, . . . , kµ)-special-
sound multi-round interactive proof. We obtained a strong result on the knowl-
edge soundness of the fixed-weight optimization, proving that the knowledge
error of the protocol matches the optimal cheating probability of a dishonest
prover. To the best of our knowledge, this is the first time the security of this
standard optimization has been analysed, beyond 2-special-sound Sigma proto-
cols.

Our work gives direct, tight results on the security of the protocols underlying
many recent signatures. For instance, they provide an explicit knowledge error
for the fixed-weight repetition of q2-identification schemes [Che+16], such as the
5-round protocol underlying CROSS [Bal+23]. Similarly, they can be applied
to k-special-sound Sigma protocols, with k > 2, such as the recent SIDH-based
signature of [GPV24].
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When dealing with multi-round proofs, our results cover the fixed-weight op-
timization of challenges in the last round. This is a seemingly arbitrary choice, as
we might consider fixed-weight challenges in intermediate rounds or in a subset
of multiple rounds, but it is closely tailored to concrete applications of interac-
tive proofs for building digital signatures. Indeed, fixed-weight optimization is
motivated by the presence of challenges with larger response sizes, while inter-
mediate rounds have typically constant-size responses. However, an extension of
our results to a “generalized” fixed-weight optimization might be of interest for
future protocols with different approaches from the current ones.

On the negative side, our result does not directly translate to the non-
interactive case. As shown in [AFK22], the Fiat-Shamir transform of a t-fold
parallel repetition of a (k1, . . . , kµ)-special-sound interactive proof incurs in a
security loss that is exponential in the number of rounds. While the attack of
[AFK22] does not specifically target fixed weight repetitions, the same heuristic
could be applied to our scenario. Adapting the attack to find precise bounds
for the security loss is an interesting aspect for future research, since they are
crucial to determine precisely the parameters of multi-round-based signatures,
such as CROSS [Bal+23].
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