
1

Low-Latency Linear Transformations with Small
Key Transmission for Private Neural Network on

Homomorphic Encryption
Byeong-Seo Min, and Joon-Woo Lee

Abstract—In the field of Artificial Intelligence (AI), convolution operations have primarily been used in Convolutional Neural Networks
(CNNs). However, its utility is increasing with the appearance of convolution integrated transformers or state space models where
convolution is a constituent element. In the field of private AI, generalized algorithm, multiplexed parallel convolution was recently
proposed to implement CNNs based on the Homomorphic Encryption scheme, residue number system variant Cheon-Kim-Kim-Song.
Multiplexed parallel convolution is highly applicable, but its usage has been partly limited due to requiring many rotation operations. In
this paper, we propose rotation optimized convolution, which reduces the rotation required for multiplexed parallel convolution, thus
lowering latency, enhancing usability, and additionally decreasing the required rotation key. We additionally reduce the size of rotation
keys by applying the hierarchical rotation key system, and our proposed small level key system. We also propose a new form of
matrix-vector multiplication called Parallel Baby-Step Giant-Step matrix-vector multiplication which also reduces the number of
rotations. In our experiment case, rotation optimized convolution achieved a maximum 70% reduction in execution time and 29×
reduction for rotation keys using our method. Also, our proposed matrix-vector multiplication method achieved a reduction of execution
time by up to 64%.

Index Terms—Cheon-Kim-Kim-Song (CKKS) schemes, Convolution, Fully homomorphic encryption, Hierarchical rotation key system,
Private artificial intelligence

✦

1 INTRODUCTION

A S artificial intelligence services advance in various
industries, but the issue of data privacy persists. Utiliz-

ing cloud-based AI systems requires clients to disclose their
data to cloud servers, raising concerns about data privacy
infringement. To address this, recent research has been con-
sistently focusing on homomorphic encryption-based pri-
vate AI models. Homomorphic encryption allows computa-
tions on encrypted data, enabling cloud servers to process
encrypted service results without knowing the underlying
data. However, designing efficient and high-performance
secure AI models requires consideration of the unique char-
acteristics of homomorphic encryption operations, which
differ significantly from conventional computations. Thus,
research on designing homomorphic encryption-based se-
cure AI models has been ongoing. Various efforts persist,
such as modifying AI models to align with the properties
of homomorphic encryption [1], [2], [3], [4], [5] or focuses
on devising efficient computation methods using homomor-
phic encryption without altering AI models [6], [7], [8], [9],
[10], [11], [12], [13].

In this paper, our focus will be on convolution op-
erations. Convolution has primarily been utilized in AI
model implementations, notably in CNNs. However, recent
research has seen efforts to integrate convolution operations
into newly developed AI models like transformers [14],
[15], [16]. Also, State Space Model (SSM) in [17], which

• Byeong-Seo Min, and Joow-Woo Lee are with the School of Computer
Science and Engineering, Chung-Ang University, Seoul 06974, South
Korea. E-mail: mbyeongseo@gmail.com, jwlee2815@cau.ac.kr

Corresponding author: Joon-Woo Lee

have recently garnered attention, convolution itself is a part
of the model. Consequently, the usability of convolution
operations in developing AI models is increasing. Therefore,
optimization of convolution operations is crucial in the
current and future development of AI models. Recently,
in [18], CNN was implemented using the well-known Ho-
momorphic Encryption(HE) scheme, residue number sys-
tem variant Cheon-Kim-Kim-Song (RNS-CKKS). The multi-
plexed parallel convolution in [18], integrated as part of this
CNN structure, aims to enable the implementation of high-
performing neural networks like ResNet without modifying
the AI model itself. Designed to be applicable in various
scenarios such as ResNet’s strided convolution, multiplexed
parallel convolution can be seen as a HE convolution tech-
nique that can be generally applied in neural networks
beyond just CNNs like ResNet.

However, currently, multiplexed parallel convolution
suffers from the drawback of heavy usage of rotation oper-
ations. Rotation operations tend to slow down significantly
as they progress in higher levels of ciphertext, making it
burdensome for multiplexed parallel convolution to be used
at higher levels. Indeed, in paper [18], efforts were made
to overcome this limitation by designing the network to
perform multiplexed parallel convolution at the lowest level
possible. While such measures may be feasible in the context
of [18], it cannot be guaranteed that similar measures will be
applicable to various present or future AI models. Therefore,
rather than focusing solely on optimizing AI models by
considering the level at which convolution is computed,
enhancing the performance of convolution itself is crucial
for its widespread usage. Also, multiplexed parallel convo-

2

lution utilizes various shifts of rotations, requiring a wide
range of rotation keys. As a result, there’s a significant
increase in the amount of key transmission from the client
to the server, placing a heavy burden on the client.

Therefore, to evolve the multiplexed parallel convolu-
tion technique into a more applicable method, we propose
rotation optimized convolution. This novel approach aims to
reduce the usage of rotation operations in multiplexed
parallel convolution, effectively both decreasing execution
time and lowering the number of required rotation keys. By
doing so, we enhance its usability and make it more suitable
for widespread adoption. Rotation optimized convolution
technique consists of three main approaches:

1) We suggest reconstructing the multiplexed parallel
convolution operation method to reduce the num-
ber of rotations. This improvement is achieved by
reducing the number of rotations required for com-
bining channels or adjusting the roles of each pro-
cess slightly. This approach reduces the execution
time, enhances their usability, and also reduces the
number of rotation keys by maintaining the same
depth consumption with multiplexed parallel con-
volution. As a result, compared to the conventional
multiplexed parallel convolution, it was possible to
reduce the execution time by up to around 43%.

2) We also propose a technique that reduces the num-
ber of rotation operations while consuming addi-
tional depth compared to the existing multiplexed
parallel convolution. Through this, we can further
decrease the execution time. It was observed that a
convolution consuming one additional depth com-
pared to the traditional convolution reduced the
execution time by up to approximately 66% while
consuming two additional depths could reduce the
execution time by up to 70%.

3) We propose a small level key system to decrease the
level of rotation keys, thereby additionally reducing
the size of each rotation key. Furthermore, by intro-
ducing a hierarchical rotation key system, we will
apply a technique to reduce the number of rotation
keys that clients need to generate and transmit by
allowing the server to create some of the necessary
rotation keys. Ultimately, we can reduce the size of
the rotation keys by approximately 29×.

Additionally, associated with rotation optimized convolu-
tion, we have reduced the number of rotation operations for
downsampling operations, thereby decreasing latency and
reducing the number of rotation keys required.

Furthermore, we also propose a new form of matrix-
vector multiplication called parallel Baby-Step Giant-
Step(BSGS) matrix-vector multiplication, applicable in
many scenarios such as the fully connected layer of AI
models. It supports multiplication operations between a
single plaintext square matrix and a ciphertext vector, which
reduces the number of rotation operations compared to
conventional methods that employ the Baby-step Giant-
Step (BSGS) algorithm with the diagonal method in [19].
Consequently, this further reduces latency and the number
of rotation keys, enhancing its usability. [19] is not only
applicable to matrix multiplication in a state of multiplexed

parallel packing but also can be efficiently applied in sce-
narios where multiple identical data are contained within a
single ciphertext. In our implementation, we were able to
achieve a maximum reduction in execution time of around
63%.

2 RELATED WORKS

There have been several recent papers that have conducted
research related to convolution operations. [20] achieved the
first implementation of ResNet targeting CIFAR-10 images.
Although convolution operations were implemented in [20],
efficient computation of operations like strided convolution
was not achieved. [18] proposed multiplexed parallel con-
volution, which is generally applicable in various scenarios
including strided convolution. In this paper, we mainly
focus on optimizing multiplexed parallel convolution.

[21] proposes a new CNN structure that using hybrid
packing, that combining various packing techniques includ-
ing multiplexed parallel packing. In this process, [21] use
modified multiplexed parallel convolution, which operates
at a higher level compared to [18]. [22] proposed a new
Graph Convolutional Network (GCN) model LinGCN, and
incorporates multiplexed parallel convolution as one of its
components. As seen in both [22] and [21], we can observe
the utilization of multiplexed parallel convolution across
various AI models, often at higher levels of ciphertext as
well. Since our propose algorithm reduces the number of
rotations compared to multiplexed parallel convolution, it
efficiently alleviates the burden of using convolution at a
higher level. In other words, AI models that incorporate
multiplexed parallel convolutions at higher levels would
likely see a more pronounced reduction in execution time
by applying our rotation optimized convolution technique.

[23] focused on group convolution, and the group con-
volution method suggested in [23] is orthogonal to multi-
plexed parallel convolution. This implies that by combining
these two techniques, we can achieve even higher perfor-
mance improvements. Using our rotation optimized convo-
lution, which builds upon the advancements of multiplexed
parallel convolution, can lead to even greater enhancements
in performance.

[13] proposed a technique to expedite the convolution
process by incorporating convolution midway through the
bootstrapping process. While this approach is applicable in
networks where convolution and activation functions are
simply repeated, such as ResNet, it becomes structurally
challenging to perform convolution operations freely within
complex networks due to the necessity of incorporating
them mid-bootstrapping. Therefore, to execute a convo-
lution block widely used across various networks in a
homomorphic encryption setting, it’s more appropriate to
utilize the multiplexed parallel convolution technique, a
conventional method for performing convolution in its nor-
mal packed state. Hence, we chose to optimize multiplexed
parallel convolution.

3 PRELIMINARIES

3.1 RNS-CKKS Fully Homomorphic Encryption
The residue number system variant Cheon-Kim-Kim-
Song (RNS-CKKS) is a Fully Homomorphic Encryption

3

(FHE) scheme that enables real number operations on en-
crypted data. In RNS-CKKS, all ciphertexts consist of one-
dimensional complex number data. Specifically, they are in
the form of (b, a) ∈ R2

Q, where Q is a product of some
prime numbers and RQ = ZQ[X]/⟨XN + 1⟩. A single
ciphertext contains N/2 slots, each slot consisting of a single
complex number. In this paper, N/2 is represented as nt.
All plaintext also has a one-dimensional shape, and for
all one-dimensional data including plaintext in this paper,
assuming there is a one-dimensional data A, A[i] denotes
the i-th data of A(where i starts from 0). Similarly, this
applies equally to higher-dimensional data. For instance, in
two-dimensional data A, the value at the i-th row and j-th
column is denoted as A[i][j].

In RNS-CKKS, there are three main homomorphic oper-
ations: addition, multiplication, and rotation. The addition
and multiplication operations correspond to addition and
multiplication between slots at the same positions within the
ciphertexts, respectively. Rotation involves cyclic shifting of
the values stored in each slot. In our paper, we will represent
these operations as follows: For ciphertexts Enc(m1) and
Enc(m2), which represent the encrypted plaintext messages
m1 and m2, respectively,

• Enc(m1)⊕ Enc(m2) = Enc(m1 +m2)
• Enc(m1)⊙m2 = m1 ⊙ Enc(m2) = Enc(m1 ·m2)
• Rot(Enc(m1); r) = Enc(PRot(m1; r)),

where m1 ·m2 denotes component-wise multiplication and
PRot(m1; r) denotes the cyclically shifted plaintext vector
of m1 by r to the left.

In this paper, the rotation operation of rotating a cipher-
text by r is denoted as rotation with r shift. Rotation with
the same shift requires the same rotation key during the
operation. This means that rotation operations with different
shifts require different rotation keys, and since the size of
these rotation keys can be quite large, reducing them can be
a part of the optimization process. Also, it should be noted
that in this paper, we only use plaintext multiplication,
means that multiplication occurs only between plaintext and
ciphertext, not between ciphertexts.

Every ciphertext has a unique positive integer, multi-
plicative level (abbreviated as mult level or level when there
is no confusion). The level of ciphertext represents the capac-
ity of further multiplication. When multiplying ciphertext
with levels l1 and l2, the resulting ciphertext will have a
level of min(l1, l2) − 1. Similarly, multiplication between
l1 level-ciphertext with plaintext, the resulting ciphertext
will have a level of l1 − 1. If the level becomes 0 due to
repeated multiplication operations, further multiplication
becomes impossible, and a bootstrapping operation is re-
quired to increase the level again. This operation is the most
computationally intensive operation in RNS-CKKS.

All homomorphic operations, including addition, mul-
tiplication, and rotation, are influenced by the level of the
ciphertexts. This means that operations performed at higher
levels require more time. The precise execution time of
each operation varies slightly depending on several initial
settings of CKKS, and in this paper, the time required for
each operation in our environment is depicted in Fig. 1.

As indicated in Fig.1, rotation operation takes the longest
time compared to addition and plaintext multiplication

Fig. 1: Execution time of RNS-CKKS basic operation - addi-
tion, plaintext multiplication, rotation.

operations, and it also exhibits the highest rate of increase
in execution time with respect to the level. Therefore, to
achieve optimization of execution time in programs utilizing
RNS-CKKS, it is effective to reduce the number of rotation
operations.

3.2 Multiplexed Parallel Convolution
Due to its feature of supporting real number operations in
an encrypted state, RNS-CKKS is widely used in Privacy-
Preserving Machine Learning (PPML). In [18], CNN, par-
ticularly ResNet, was implemented using RNS-CKKS, and
during this process, computations were performed in a
state where ciphertexts were multiplexed parallel packed.
Multiplexed parallel packing is a packing method proposed
to address situations involving convolutions with stride
values greater than 1. It possesses the property of being
multiplexed, meaning multiple channels are interleaved,
and also exhibits the parallel property where the same data
is replicated multiple times within a ciphertext.

The convolution algorithm, performed on ciphertext that
is multiplexed parallel packed, is proposed as multiplexed
parallel convolution in [18]. Multiplexed parallel convolu-
tion involves three main processes, denoted as SISOConv,
RotationSum, and ZeroOutCombine. To express each pro-
cess of multiplexed parallel convolution, various parameters
will be utilized. The precise definitions of each parameter
are documented in Appendix B. SISOConv process is based
on single-input single-output convolution proposed in [4],
[20]. From the perspective of the size of plaintext, assume
that the three-dimensional single input to this process is
denoted as A ∈ Rwi×hi×ci . For single kernel K , which
can be denoted as K ∈ Rfh×fw×ci , the result of SISOConv
process is B ∈ Rwo×ho×ci . The process of combining the
values at each position of the channels in B corresponds
to the RotationSum process. In this process, rotation and
addition operations are repeated log2 ci times to combine
the values. The result of the process can be denoted as
C ∈ Rwo×ho . In ZeroOutCombine process, since there are co
numbers of kernels, combining co numbers of C ∈ Rwo×ho ,
we can get final results as C ′ ∈ Rwo×ho×co . In particular,
the ZeroOutCombine process can be viewed as divided
into two subprocesses: the ZeroOut subprocess, which re-
moves invalid values, and the Combine subprocess, which

4

combines the results of each channel. Finally, to maintain
the characteristic of the parallel existence of identical data
within the ciphertext, the output is copied by a few rotation
and addition operations.

Since rotation operations are relatively computationally
intensive, the approximate performance of the algorithm
can be gauged by the number of rotation operations per-
formed. The number of rotations performed in each of
the processes SISOConv, RotationSum, ZeroOutCombine
and copying data are denoted as fhfw − 1, q(2⌈log2 ki⌉ +
⌈log2 ti⌉), co, and log2 po, respectively. Considering that
the number of rotations varies per level, let’s define the
execution time of rotation operations at level l as rl. When
multiplexed parallel convolution is executed on ciphertext
with level l′, the execution time can be summarized as
follows. rl′(fhfw−1)+rl′−1(q(2⌈log2 ki⌉+⌈log2 ti⌉+co)+
rl′−2(log2 po).

Fig. 3 simplifies the multiplexed parallel convolution
where each variable is defined as wi = hi = wo = ho =
1, fw = fh = 3, ci = co = 8, pi = po = 2, ki = ko = 2 and
multiplexed parallel packed ciphertext was drawn using
the expression of Fig. 2. The multiplexed parallel packed
ciphertext in Fig. 2 corresponds to the case where gap k

is 2. b(i1)j corresponds to the data of the jth channel when
input data of convolution is multiplied by the weight of i1th
kernel. And ci1 can be defined as ci1 =

∑8
j=1 b

(i1)
j .

In the input of the convolution, each ciphertext contains
two identical parallelly existing data, and each data is mul-
tiplied by different kernel weights. This corresponds to the
SISOConv process. In RotationSum process, each data has
eight channels, so with log2 8 = 3 rotations per ciphertext,
the values of the channels are summed. During this process,
meaningless values are generated which are denoted as ##
in Fig. 3. In the ZeroOutCombine process, these meaning-
less values are eliminated through multiplication operations
and rearranged to the correct positions through rotation
operations. Lastly, one rotation ensures that each ciphertext
maintains the structure of containing two identical parallelly
existing data.

Furthermore, in conventional [18], multiplexed paral-
lel convolution was tested in the situation of six convo-
lutions, which are CONV1, CONV2, CONV3s2, CONV3,
CONV4s2, and CONV4. To compare with this, our paper
also conducted several tests targeting these convolutions.
The parameters for each convolution can also be found
in Appendix B. In [18], function Vec often used to map
some three-dimension tensor to a vector to describe con-
volution. To avoid confusion, in our paper, Vec similarly
defined as, for some three-dimension tensor B ∈ Rhi×wi×ci ,
Vec(B) maps tensor B to a vector in Rnt . Vec(B) =
(b0, . . . , bnt−1) ∈ Rnt , where b can be defined as

b[i] =

B[⌊(i mod hiwi)/wi⌋]
[i mod wi][⌊i/hiwi⌋], if 0 ≤ i < hiwici
0, otherwise,

4 ROTATION OPTIMIZED CONVOLUTION

Multiplexed parallel convolution involves multiple rotation
operations, so the execution time at lower levels may be

Fig. 2: Notation of multiplexed parallel packed ciphertext in
this paper.

Fig. 3: Simple abstract example of multiplexed parallel con-
volution in [18] where wi = hi = wo = ho = 1, fw = fh =
3, ci = co = 8, pi = po = 2, ki = ko = 2.

Fig. 4: Execution time of multiplexed parallel convolution in
various multiplication levels.

relatively low, but usage at higher levels can be burden-

5

Convolution Process # RotationKey # Rotation
operation

CONV1
SISOConv 8 8
RotationSum 2 4
ZeroOutCombine 16 17

CONV2
SISOConv 8 8
RotationSum 4 32
ZeroOutCombine 16 17

CONV3s2
SISOConv 8 8
RotationSum 4 64
ZeroOutCombine 33 34

CONV3
SISOConv 8 8
RotationSum 5 40
ZeroOutCombine 33 34

CONV4s2
SISOConv 8 8
RotationSum 5 80
ZeroOutCombine 66 67

CONV4
SISOConv 8 8
RotationSum 6 48
ZeroOutCombine 66 67

TABLE 1: Number of rotation keys and rotation operations
during multiplexed parallel convolution.

some. As shown in Fig. 4, the execution time of various
multiplexed parallel convolutions varies significantly de-
pending on the level. Since multiplexed parallel convolution
consumes 2 depth, the minimum level at which operations
can be performed is 2. If the level is raised to 6, the execution
time of all multiplexed parallel convolutions approximately
doubles, and if the level is raised to 9, the execution time
triples. If operations are conducted at the maximum level,
the execution time becomes 11 times longer. As evident from
this, if convolution involves numerous rotation operations,
it can pose a burden when used across various levels.
Furthermore, in the scenario where the client sends the
key to the server, there is a notable burden on the total
size of rotation keys. For all six scenarios of multiplexed
parallel convolution (CONV1, CONV2, CONV3s2, CONV3,
CONV4s2, CONV4), the size of all rotation keys is currently
29100 MB. This is quite heavy in the actual client-server
relationship, indicating the need for optimization of rotation
keys.

In this section, we propose rotation optimized convolu-
tion, aiming to reduce the number of rotations used during
convolution to decrease execution time and rotation key
size. Focusing on this main technique, we will propose
techniques for further reducing the number of rotations by
exploring the rotation correlation between the RotationSum
process and the ZeroOutCombine process, therefore, reduc-
ing additional execution time. Lastly, we propose rotation
optimized convolution with consuming additional depth to
reduce further execution time.

4.1 High-level Idea

The number of rotation keys used and the number of
rotation operations in each process of multiplexed paral-
lel convolution are summarized in TABLE 1. Particularly,
ZeroOutCombine process stands out for its characteristic
of having almost the same number of rotation keys and
rotation operations. Since rotation operations with different
shifts require different types of rotation keys, we observe
that in ZeroOutCombine process, rotation operations with
different shifts are performed. Therefore, by reducing the

Fig. 5: Simple abstract example of rotation optimized con-
volution. Same condition as Fig. 3.

number of rotation operations in ZeroOutCombine process,
we can achieve a decrease in execution time and a reduction
in rotation key size simultaneously. We reduce the number
of rotation operations in ZeroOutCombine process by lever-
aging the characteristics of multiplexed parallel packing.

Multiplexed parallel-packed ciphertext inherently pos-
sesses two characteristics. Firstly, multiple channels exist
in a multiplexed state within a single ciphertext. Secondly,
identical data is arranged in a parallel manner within a
single ciphertext. An important key idea to reduce the num-
ber of rotation operations is to consider these multiplexed
parallel packed results arrangement when performing con-
volution. Fig. 3 illustrates the conventional multiplexed
parallel convolution method.

In Fig. 3, during the SISOConv process, different weights
are multiplied to the parallel existing identical data within
a ciphertext to produce multiple channels simultaneously.
However, in pairing these, the final positions were not con-
sidered, and the pairs were simply arranged in order. Also, it
can be seen that after the RotationSum process, the positions
of each channel are the same. As a result, rotation operations
with different shifts must be performed on multiple chan-
nels derived from a single ciphertext during ZeroOutCom-
bine process. More precisely, the ZeroOutCombine process
is divided into two subprocesses, ZeroOut and Combine.
Subprocess ZeroOut involves multiplication operations that
eliminate invalid values generated during the RotationSum
process, while in subprocess Combine, rotation operations

6

are performed. Therefore, in the Combine subprocess of the
ZeroOutCombine process, rotation operations with different
shifts are conducted.

To reduce the number of rotation operations, this method
can be modified as shown in Fig. 5. First, we adjust the
positions of channels derived from the RotationSum process
to match the final positions. In the original method, as
shown in Fig. 3, the positions of each channel derived from
the RotationSum process were all unified to the position of
the first channel. However, considering the characteristic of
multiplexed packing, this approach leads to unnecessary
rotation, such as in the case of a ciphertext containing c2.
Indeed, c2 is positioned in the second channel of the result,
but after the RotationSum process, its position is saved at the
first channel, necessitating a rotation operation. To optimize
this process, in Fig. 5, when deriving a ciphertext contain-
ing c2 and c6 during the RotationSum process, the result
channels are pre-arranged at the final positions. This can be
achieved by occasionally performing rotation operations in
the opposite direction during the RotationSum process.

The second modification involves arranging pairs of
channels produced in a single operation differently from
the original method which considers the parallel nature
of multiplexed parallel packing. In the SISOConv process,
pairs of channels operated on from the same ciphertext
are constructed such that the relative positional differences
between channels match those of the target positions. For
instance, Fig. 3 and Fig. 5 show different types of channels
within a ciphertext after the SISOConv process; c1 and c2
coexist in one ciphertext in Fig. 3, while c1 and c5 coexist
in one ciphertext in Fig. 5. From the perspective of parallel
data, in Fig. 3, the left data generates c1, c3, c5, c7 while the
right data generates c2, c4, c6, c8, whereas in Fig. 5, the left
data generates c1, c2, c3, c4 while the right data generates
c5, c6, c7, c8. This modification is made to maintain the same
relative positional differences between result channels after
the SISOConv process and after all convolution processes
have concluded.

With these two modifications, it is possible to generate
ciphertexts corresponding to specific parts of the outcome
after the RotationSum process. As a result, unlike in Fig. 3
where rotation operations were performed for each channel
separately in the ZeroOutCombine process, in Fig. 5, only a
few rotation operations, which combines the parallel data, is
performed. We denote these rotations as the CrossCombine
operation. That is, in contrast to multiplexed parallel convo-
lution, the subprocess Combine of ZeroOutCombine is mod-
ified as CrossCombine subprocess in rotation optimized
convolution. Unlike the multiplexed parallel convolution
where each channel had to be combined one by one in
the Combine subprocess, the CrossCombine process rotates
some parts of the results generated after the RotationSum
process all at once, reducing the number of rotation opera-
tions and, consequently, the number of rotation keys.

The key difference so far is, that while the objectives
of other processes remain unchanged, only the Combine
subprocess of the ZeroOutCombine process has been modi-
fied to the CrossCombine process, resulting in a change in
the number of rotations. To express it precisely in terms of
equations, in the ZeroOutCombine process of multiplexed
parallel convolution, the number of rotations is co, whereas

in rotation optimized convolution, the number of rotations
is pc − 1. Where co was approximately 16, 32, 64 in the
previously mentioned six convolution scenarios, and pc was
around 2, 4, 8, it is evident that the number of rotations
decreases significantly. Especially, as co, the number of chan-
nels in the output, increases, the performance difference
becomes more prominent. The comparison of exact execu-
tion time has been summarized in Section 7. To summarize
again, defining the execution time of rotation operations
at level l as rl, executing the rotation optimized convolu-
tion on ciphertext with level l′, the execution time can be
summarized as follows: rl′(fhfw− 1)+ rl′−1(q(2⌈log2 ki⌉+
⌈log2 ti⌉) + rl′−2(pc − 1 + log2 po).

4.2 Using correlation of RotationSum process and
CrossCombine process
The objectives of the three processes in multiplexed parallel
convolution are clear. In SISOConv, the operation involves
computing the product of data and kernel weights. The
RotationSum process aggregates values from each channel,
while the ZeroOutCombine process filters out meaningless
values generated during RotationSum, rotates valid values,
and rearranges them into the correct positions in the final
output. Among these processes, it’s possible to optimize
additional rotation operations by merging channels less
during the RotationSum stage and combining them in the
CrossCombine process.

In this subsection, we will introduce a technique for
reducing the execution time of rotation optimized convo-
lution by leveraging the relationship between the number
of rotations in RotationSum and CrossCombine. The key
idea of this technique is to exploit the characteristics of the
CrossCombine process. In the conventional RotationSum
process, each rotation and addition operation combines
values corresponding to two channels, resulting in a total of
log2 co rotations per ciphertext. If we reduce the number of
rotations conducted per ciphertext by one, we can decrease
the total number of rotations by the number of ciphertexts,
q. However, the required number of rotations in the Ze-
roOutCombine process roughly doubles. It’s challenging to
achieve optimization through this process in conventional
multiplexed parallel convolution because the number of
rotations in ZeroOutCombine is approximately co, which is
significantly larger than q.

However, in rotation optimized convolution, the rota-
tions in ZeroOutCombine are for CrossCombine. The num-
ber of rotation operations here is approximately pc, which
is relatively small compared to q. Therefore, the technique
we propose for optimization is leveraging the relationship
between RotationSum and CrossCombine to perform fewer
rotations in the RotationSum stage, merging fewer channels,
and combining them in CrossCombine.

Figure 6 provides a simple example of using the correla-
tion of RotationSum and CrossCombine. Here, b(i)j1,j2,j3,j4

is
defined as follows: b(i)j1,j2,j3,j4

= b
(i)
j1

+ b
(i)
j2

+ b
(i)
j3

+ b
(i)
j4

. After
the SISOConv, data existing in parallel has 8 channels each.
Hence, in the RotationSum process, it previously required
log2 8 = 3 rotations to merge these channels. However, in
this process, one rotation is saved, and instead, the number
of data to be merged through CrossCombine increases from

7

Fig. 6: Simple abstract example of using correlation of
RotationSum and CrossCombine during rotation optimized
convolution.

2 to 4. As a result, the number of rotations in CrossCombine
changes from 1 to 3.

Comparing the overall number of rotations in Fig. 5 and
6, in Fig. 5, 3 × 4 = 12 rotations were performed in the
RotationSum process, and 1 rotation was performed in the
CrossCombine process, totaling 12+1 = 13 rotations. In Fig.
6, 2 × 4 = 8 rotations were performed in the RotationSum
process, and 3 rotations were performed in the CrossCom-
bine process, totaling 8 + 3 = 11 rotations. It’s evident that
by utilizing the correlation of RotationSum and CrossCom-
bine, the number of rotations can be reduced. However, it is
not fixed how many times rotation should be performed for
the RotationSum process in rotation optimized convolution
to achieve the optimal result. This is because the rotation
operation occurs at different ciphertext levels between the
RotationSum process and the zero-out and combine pro-
cess. Generally, performing rotation operations at a higher
ciphertext level results in longer computation time, but the
difference in computation time may vary depending on the
implementation environment.

Therefore, we provide an equation that can help
find the optimal situation when using correlation. In the
RotationSum process, let’s denote the number of rotations
each ciphertext needs to undergo as x. And also denotes
the time required for rotation operations at mult level l′ of
the ciphertext as rl′ . When the 2-depth consuming rotation
optimized convolution begins at level l, we can calculate x
as follows:

argmin
x

(rl−1q(log2 ci − x) + rl−2(2
xpc − 1)) (1)

4.3 Convolution with additional depth

One of the key features of the CKKS scheme is the consid-
eration of the level of ciphertexts during operations. Each
ciphertext has mult levels, if all levels are consumed, heavy
operations- bootstrapping need to be used to increase the
level of the ciphertext. Simply setting a maximum level
highly can’t be a solution either, as rotation, addition, and
multiplication conducted on a higher level consume more
execution time. Therefore, it’s important to set the maximum
level appropriately and efficiently use the levels to minimize
the number of bootstrappings required.

Due to these characteristics, when various operations are
proposed in the CKKS scheme, there are often suggestions
for minimizing level consumption while also providing
additional trade-offs between the consumption of levels
and other benefits such as execution time and accuracy,
depending on the situation. For instance, [24] organizes the
trade-off of consuming additional depth and execution time
in SlotToCoeff and CoeffToSlot operations in bootstrapping.,
and [25] organizes the trade-off of consuming additional
depth and accuracy in relu operation.

In this section, we propose a novel technique that intro-
duces additional depth in rotation optimized convolution to
further shorten the execution time, which is not present in
multiplexed parallel convolution, thus offering a new trade-
off. The key idea of this technique is to combine cipher-
texts that require the same rotation during the RotationSum
process. When looking at the conventional multiplexed
parallel convolution in Fig. 3, this kind of optimization is
challenging to employ. Because all ciphertexts undergo the
same rotation operation during the RotationSum process,
the positions where valid values exist are the same for all
ciphertexts. Therefore, additional operations are required to
combine them.

In contrast, in Fig. 5, rotation-optimized convolution
rotates ciphertexts in different directions during the Rota-
tionSum processes, resulting in varied positions where valid
values exist. Therefore, leveraging this aspect, optimization
as Fig. 6 can be achieved. In the RotationSum process,
ciphertexts requiring a rotation of +2 and those needing -
2 are combined separately and then subjected to rotation
operations. Since the valid positions of each ciphertext are
different, no additional operations are necessary. However,
to combine each ciphertext, invalid values must be filtered
out, necessitating the use of multiplication operations and
an additional level.

For an exact comparison, compared to the 2-depth con-
suming rotation optimized convolution in Fig. 5, the number
of rotations used during RotationSum process and ZeroOut-
Combine process reduced by 13 to 9. It can be observed that
using additional depth can reduce the number of rotation
operations. Moreover, from the perspective of rotation keys,
when combining ciphertexts that require the same shift and
then performing rotation operations, the number of rotation
operations decreases without altering the shifts of rotation
operations. Therefore, using convolution with additional
depth is unrelated to the number of rotation keys.

Furthermore, the key idea for reducing rotation counts
lies in combining ciphertexts requiring the same rotation
during the RotationSum process. Therefore, the additional

8

Fig. 7: Simple abstract example of using additional depth for
rotation optimized convolution.

depth available for rotation optimized convolution is re-
lated to the number of ciphertexts passing through the
RotationSum processes, denoted as q in this paper. More
precisely, when combining two ciphertexts into one during
the RotationSum process, it can be repeated a maximum of
log2 q − 1 times. Since the original rotation optimized con-
volution consumes 2 depths, if convolution with additional
depth is used, it allows for the use of convolution with a
maximum depth of log2 q + 1.

Similar to the correlation of RotationSum and Cross-
Combine technique in Subsection 4.2, rotations occur at
various mult levels within the RotationSum process. Hence,
the optimal scenario may vary depending on the imple-
mentation environment. Therefore, we provide the guide
equation to find the optimal scenario considering both the
correlation of RotationSum and CrossCombine and addi-
tional depth-consuming convolution techniques. If a convo-
lution consuming d + 1(d ≥ 2) depth is utilized, starts at
multilevel l(l ≥ d + 1) then the approximate performance
of this convolution in the RotationSum, and CrossCombine
processes can be expressed as the following equation:

rl−1(x1q) +
d∑

m=2

rl−m

(
xmq∏m−1
j=1 qj

)
+ rl−d−1(2

xpc − 1) (2)

where variables defined as
∏d

m=1 qm = q, log2 ci − x =∑d
m=1 xm and xm ≥ log2 qm for all m. x represents the same

as in Subsection 4.2. In other words, log2 ci − x denotes the
number of rotation and addition operations needed for Ro-
tationSum process. In the RotationSum process, the variable

determining how many times rotation and addition should
be performed before the m-th combining of the ciphertexts
is denoted as xm, and the number of ciphertexts being
combined is denoted as qm. Since xm rotation and addition
combines 2xm data in ciphertext, maximum 2xm ciphertexts
can be combined during m-th combining. Therefore, value
of qm is bounded by xm as xm ≥ log2 qm.

Providing guidelines to use additional depth in rotation
optimized convolution, first, the value of d, which specifies
how many depths will be consumed during convolution,
has to be determined. Then, while satisfying the following
conditions

∏d
m=1 qm = q, log2 ci − x =

∑d
m=1 xm and

xm ≥ log2 qm for all m, x, xm and qm within the range
1 ≤ m ≤ d to minimize Equation 2 has to be selected. Since
the number of combinations satisfying all conditions and
the simplicity of Equation 2 allow for brute force, finding its
minimum value is not a burdensome task. Moreover, x, xm

and qm are values pre-determined during the implementa-
tion process of rotation optimized convolution, not during
the operation itself. Therefore, determining the minimum
value of Equation 2 doesn’t impact performance, whereas
identifying the accurate value does.

4.4 Algorithm Description

In presenting the main idea of rotation optimized convolu-
tion, we focused on reducing the number of rotations re-
quired in the ZeroOutCombine process to reduce execution
time and the size of rotation keys. Also, by leveraging the
relationship between RotationSum and CrossCombine, as
well as using convolution with additional depth, we were
able to achieve further execution time reduction. In this
section, the focus is on explaining the algorithm of rotation
optimized convolution, taking into account such ideas.

Through our high-level idea proposed in Subsection 4.1,
it is evident that optimization of computations is feasible.
However, due to the nature of the idea, which involves
considering the arrangement of results, the method of car-
rying out computations is not unique. For instance, Fig. 8
is a modified convolution of Fig. 5. Upon observation, it
can be seen that although the batch of kernels and types of
rotations may vary slightly, the output of the convolution
remains the same, and the number of rotations is also iden-
tical. These modifications in the rotation optimized convolu-
tion algorithm do not affect the performance, which means
the number of rotations or size of rotation keys doesn’t
change and it only changes the shift of rotation operation.
Indeed, the rotation optimized convolution algorithm is not
unique and possesses a heuristic aspect. Thus, we will not
statically generalize how kernel weights are arranged and
what rotation operations are employed in the RotationSum
process and CrossCombine process; rather, we will provide
blueprints in detailing these aspects.

These blueprints are written about the kernel placement,
and shift of rotation to use during RotationSum, and Cross-
Combine processes. There are four types of blueprints as
follows: ’2-depth Conv’, ’3-depth Conv’, ’4-depth Conv’,
and ’5-depth Conv’. All these blueprints are created con-
sidering the correlation of RotationSum and CrossCom-
bine. ’2-depth Conv’ blueprints are basic rotation optimized
convolutions that only consume 2-depth. The blueprints

9

Fig. 8: Showing the non-uniqueness property of rotation
optimized convolution. Same condition, and same perfor-
mance as Fig. 5, but the kernel arrangement and shift
amount of rotation are different.

consuming 3, 4, and 5 depths correspond to ’3-depth Conv’,
’4-depth Conv’, and ’5-depth Conv’ respectively. For single
blueprint, there are three components, KernelBP, Rotation-
SumBP, and CrossCombineBP. KernelBP represents the ker-
nel weight arrangement in input data, and shift of rotation
during RotationSum process are saved in RotationSumBP.
Lastly, information on shift number of rotation used during
CrossCombine saved in CrossCombineBP. The precise val-
ues for each blueprint used in our experiments can be found
in Appendix A.

To describe the proposed algorithms in this paper, it is
required to define a valid value-selecting tensor, S, S′, S′′.
S(r) filter serves to select a valid value from ciphertext
which is rotated by r. S(r) = (S(r)[i1])0≤i1<nt

∈ Rnt

S(r)[i1] =

1, if (r > 0 and (i1 mod 2r) < r) and

(r < 0 and (i1 mod |2r|) ≥ |r|)
0, otherwise,

for 0 ≤ i1 < nt. S′(k,l) filters out parallel data in the cipher-
text. For ciphertext which has l identical data parallelly, filter
S′(k,l) select k-th data. S′(k,l) = (S′(k,l)[i1])0≤i1<nt

∈ Rnt

S′(k,l)[i1] =

{
1, if ntk/l ≤ i1 < nt(k + 1)/l

0, otherwise,

for 0 ≤ i1 < nt. S′′ filters out data considering when
the stride value of convolution is bigger than 1. S′′ =

(S′′[i1])0≤i1<nt
∈ Rnt

S′′[i1] =

{
1, if i1 mod k2owo < kikowo and i1modko < ki
0, otherwise,

for 0 ≤ i1 < nt.

Before description of ROTOPTCONV in detail, it
is also required to define ParMultWgt(U ; i1, i2, i3).
ParMultWgt(U ; i1, i2, i3) maps weight tensor
U ∈ Rhi×wi×ci×co to an element of Rnt . To
define ParMultWgt, parallelly multiplexed shifted
weight tensor U

′′(i1,i2,i3) also has to be defined.
U

′′(i1,i2,i3)
= (U

′′(i1,i2,i3)
[i5][i6][i7]) ∈ Rkihi×kiwi×tipi

where 0 ≤ i5 < kihi, 0 ≤ i6 < kiwi, 0 ≤ i7 < tipi for
0 ≤ i1 < fh, 0 ≤ i2 < fw, and 0 ≤ i3 < q can be defined as
follows:

U
′′(i1,i2,i3)

[i5][i6][i7] =

0, if k2i (i7modti) + ki(i5modki)
+ i6modki ≥ ci

or ⌊i7/ti⌋+ pii3 ≥ co

or ⌊i5/ki⌋ − (fh − 1)/2

+ i1 /∈ [0, hi − 1]

or ⌊i6/ki⌋ − (fw − 1)/2

+ i2 /∈ [0, wi − 1],

U [i1][i2][i8][i9] otherwise,

for 0 ≤ i5 < kihi, 0 ≤ i6 < kiwi, 0 ≤ i7 < tipi.
Other variables are defined as i8 = k2i (i7 mod ti) +
ki(i5 mod ki) + i6 mod ki and i9 = KernelBP[pii3][⌊i7/ti⌋].
Then, ParMultWgt is defined as ParMultWgt(U ; i1, i2, i3) =

Vec(U
′′(i1,i2,i3)

).
Since RotationSum process used in ROTOPTCONV, have

different rules, we redefine the SumSlots algorithm in [18]
to ADAPTSUMSLOTS, which contains RotationSum process
and also SISOConv. The AdaptSumSlots algorithm incorpo-
rates many algorithms related to the structure of blueprints
because it utilizes blueprints. The opType refers to the type
of operation according to the blueprint. If opType is 0, for
example, the blueprint might be [0, 2048], indicating rotat-
ing the ciphertext by 2048 and then performing an addition
operation. When opType is 1, it signifies performing a Com-
bine operation in the middle of RotationSum, meaning using
additional depth. An example blueprint for this would be
[1, 4, 1, 32], indicating rotating each of the four ciphertexts
by +1+32, -1+32, +1-32, and -1-32, respectively, then filtering
out invalid values and combining them. When opType is 2,
it represents operations before the CrossCombine stage after
the RotationSum process. Similar to opType 1, in this case,
multiplication is carried out as many times as the number of
data involved in the CrossCombine during the filtering pro-
cess to classify each data separately in parallel. Furthermore,
as a detailed rule, RotationSumBP[0][0] stores the maximum
index of RotationSumBP, and RotationSumBP[i][0] contains
information about the i-th opType. If opType is 1 or 2, then
RotationSumBP[i][1] contains information about how many
ciphertexts will be merged.

For ROTOPTCONV algorithm, the CrossCombineBP is
used, indicating a simple form where each ciphertext at
the i-th position is rotated by CrossCombineBP[i] during

10

Algorithm 1 ADAPTSUMSLOTS(i′, d, ct′α, U)

1: Input: Indicating the order of ciphertext i′, Rotated
parallely multiplexed tensor ciphertexts ct′α, Current
location within RotationSumBP d, and weight tensor U

2: Output: Tensor ciphertext ctb and filter of ctb that apply
zero out Sb.

3: ctb ← ctzero
4: Sb ← Sone
5: opType← RotationSumBP[d][0]
6: if d = 0 then
7: for i1 ← 0 to fh − 1 do
8: for i2 ← 0 to fw − 1 do
9: ctb ← ctb ⊕ ct

′(i1,i2)
α ⊙ ParMultWgt(U ; i1, i2, i

′)
10: end for
11: end for
12: end if
13: if d > 0 then
14: if opType = 0 then
15: cta, Sa ← ADAPTSUMSLOTS(i′, d− 1, ct′α, U)
16: r′ ← RotationSumBP[d][1]
17: ctb ← cta ⊕ Rot(cta; r′)
18: Sb ← Sa ⊙ S(r′)

19: end if
20: if opType = 1 then
21: SumNum← RotationSumBP[d][1]
22: for i′′ ← SumNum× i′ to (SumNum+1)× i′−1 do
23: cta, Sa ← ADAPTSUMSLOTS(i′′, d− 1, ct′α, U)
24: for j ← 2 to log2(SumNum) + 1 do
25: r′ ← RotationSumBP[d][j]
26: if ((i′′ >> (j − 2))&1) = 1 then
27: cta ← cta ⊕ Rot(cta;−r′)
28: Sa ← Sa ⊙ S(−r′)

29: else
30: cta ← cta ⊕ Rot(cta; r′)
31: Sa ← Sa ⊙ S(r′)

32: end if
33: end for
34: ctb ← ctb ⊕ (cta ⊙ Sa)
35: end for
36: end if
37: if opType = 2 then
38: ctb, Sb ← ADAPTSUMSLOTS(i′, d− 1, ct′α, U)
39: for j ← 2 to log2(RotationSumBP[d][1]) + 1 do
40: r′ ← RotationSumBP[d][j]
41: if ((i′ >> (j − 2))&1) = 1 then
42: ctb ← ctc ⊕ Rot(ctb;−r′)
43: Sb ← Sb ⊙ S(−r′)

44: else
45: ctb ← ctc ⊕ Rot(ctb; r′)
46: Sb ← Sb ⊙ S(r′)

47: end if
48: end for
49: Sb ← Sb ⊙ S′′

50: end if
51: end if
52: Return ctb, Sb

CrossCombine process. As a detail, CrossCombineBP[0]
stores the number of data to be combined in CrossCombine

Algorithm 2 ROTAOPTCONV(ct′a, U)

1: Input: Parallelly multiplexed tensor ciphertext ct′a and
weight tensor U .

2: Output: Parallelly multiplexed tensor ciphertext ct′c
3: ct′c ← ctzero
4: for i1 ← 0 to fh − 1 do
5: for i2 ← 0 to fw − 1 do
6: ct

′(i1,i2)
α ← Rot(ct′a; k

2
iwi(i1 − (fh − 1)/2) + ki(i2 −

(fw − 1)/2))
7: end for
8: end for
9: CrossNum← CrossCombineBP[0]

10: for i3 ← 0 to CrossNum− 1 do
11: ct

′(i3)
β ← ctzero

12: end for
13: BPlen← RotationSumBP[0][0]
14: for i4 ← 0 to RotationSumBP[BPlen][1]− 1 do
15: ct′b, Sa ← ADAPTSUMSLOTS(i4,BPlen, ct

′
α, U)

16: for i3 ← 0 to CrossNum− 1 do
17: ct

′(i3)
β ← ct

′(i3)
β ⊕ ct′b ⊙ (Sa ⊙ S′(i3,CrossNum))

18: end for
19: end for
20: for i1 ← 0 to CrossNum− 1 do
21: ct′c ← ct′c ⊕ Rot(ct′(i1)β ;CrossCombineBP[i1 + 1])
22: end for
23: for j ← 0 to log2 po − 1 do
24: ct′c ← ct′c ⊕ Rot(ct′c;−2j(nt/po))
25: end for
26: Return ct′c

process. For intuitive understanding, in the case of Fig.
8 as an example, based on the order of ciphertexts and
the order of kernels within each ciphertext, KernelBP =
[[1,3],[2,4],[5,7],[6,8]]. Additionally, during the RotationSum
process, a rotation operation with a shift of +2 is commonly
applied to each ciphertext, while rotations with shifts of
±1 or ±4 vary across ciphertexts. Moreover, after rotations
with shifts of±1 or±4, ZeroOut considering CrossCombine
should be applied, hence opType becomes 2. Thus, Rotation-
SumBP = [[2],[0,4],[2,4,1,4]]. In the CrossCombine process,
since the second data is combined with a rotation operation
of shift +6, CrossCombineBP = [2,0,6].

A comparison of the performance of rotation optimized
convolution and multiplexed parallel convolution centered
around rotation operations can be summarized as follows.
Still, the time required for rotation operations at mult level
l′ of the ciphertext is denoted as rl′ . For conventional
multiplexed parallel convolution, assuming that operations
start at level l, its performance can be represented as fol-
lows: rl(fhfw − 1) + rl−1(q(2⌈log2 ki⌉ + ⌈log2 ti⌉) + co) +
rl−2(log2 po)

For 2-depth consuming rotation optimized convolution
which prioritizing minimizing execution time, assuming
that operations start at level l, its performance can be
represented as follows: min(rl(fhfw − 1) + rl−1q(log2 ci −
x) + rl−2(2

xpc − 1 + log2 po)) for 0 ≤ x ≤ log2 ci.
For 3 or more depth consuming rotation optimized

convolutions which prioritize minimizing execution time,
assuming that operations start at level l, its performance can

11

be represented as follows: min(rl(fhfw − 1) + rl−1(x1q) +∑d
m=2 rl−m(xm

q∏m−1
j=1 qj

)+rl−d−1(2
xpc−1+log2 po)) where∏d

m=1 qm = q, log2 ci − x =
∑d

m=1 xm and xm ≥ log2 qm
for all m.

Once again, in our paper, we do not provide a fixed algo-
rithm of rotation optimized convolution due to its heuristic
nature. However, through the equations mentioned above, it
is possible to achieve the expected optimal performance for
each convolution situation. If the detailed implementation
produces the expected performance as predicted by these
equations, then it can be considered a correctly implemented
rotation optimized convolution.

4.5 Rotation Optimized Downsampling
When implementing ResNet, one of the necessary opera-
tions is downsampling for the residual connection when a
convolution with a stride greater than 1 is applied. For in-
stance, let’s consider data with a width and height of 32 and
16 channels. After passing through a convolutional layer
with a stride of 2, the data becomes 16×16 with 32 channels.
In this scenario, to implement the residual connection, a
downsampling operation is required to reduce the data from
32× 32 with 16 channels to 16× 16 with 16 channels. While
downsampling is a simple operation in plaintext, it be-
comes somewhat complex in Fully Homomorphic Encryp-
tion (FHE) environments. That’s why in conventional [18],
an algorithm called multiplexed parallel downsampling is
introduced to handle this downsampling process efficiently
in such environments. Multiplexed parallel downsampling
operations are not particularly heavy computations, but
similarly, since rotation operations are used during compu-
tation, the execution time increases rapidly when performed
at higher levels. In this section, similar to rotation optimized
convolution, we propose rotation optimized downsampling,
which optimizes the multiplexed parallel downsampling
operation in [18].

Two key ideas were utilized for optimization, with the
first being identical to what was used in rotation optimized
convolution. The characteristic of the multiplexed parallel
packing structure was leveraged, and the intermediate steps
were conducted considering the positions of the results. The
second key idea leveraged the utilization of downsampling
operations in the process of the residual connection. For ex-
ample, in conventional [18], downsampling was applied to
the output before the convolution operation and then added
to the output after the convolution operation. Since multi-
plexed parallel convolution operations consume 2 depths,
for instance, downsampling is applied to ciphertexts with a
level 2 and produces results that will be added to ciphertexts
with a level 0. Due to this characteristic, although multi-
plexed parallel downsampling originally consumed 1 depth,
even when consuming 2 depths, there is no difference in
the overall level of consumption. We took advantage of this
aspect, and rotation optimized downsampling was designed
to consume 2 depths.

The advantage of consuming 2 depths instead of 1 depth
in the downsampling process is that it enables rotating
channels located in similar positions in the output simulta-
neously. In other words, with 1-depth consumed downsam-
pling, multiplication simply consumes a level for extracting

each channel. However, by using 2 depths, unnecessary val-
ues can be removed with a single multiplication, and then
channels that are identical to parts of the output are placed
through rotation and addition operations into the created
empty spaces. Afterward, by extracting each gathered chan-
nel within the ciphertext through another multiplication, the
number of rotation operations can ultimately be reduced.

For comparison, we conducted experiments in scenarios
DOWNSAMP1 and DOWNSAMP2, identical to those in
[18]. In these scenarios, we were able to achieve a constant
reduction in the number of rotations regardless of the input
and output shapes. In other words, unlike the conventional
multiplexed parallel downsampling, when using rotation
optimized downsampling, the execution times for DOWN-
SAMP1 and DOWNSAMP2 remained the same. Detailed
experimental results can be found in Section 7, and detailed
parameters used in DOWNSAMP1 and DOWNSAMP2 are
organized in Appendix B. We provide ROTOPTDOWNSAMP
algorithm for implementing rotation optimized downsam-
pling for DOWNSAMP1 and DOWNSAMP2.

To define the ROTOPTDOWNSAMP algorithm, we should
define new filters, S, S

′
, which filter out invalid values after

rotation and addition operation. S = (S[i1])0≤i1<nt
∈ Rnt

S
(j)

[i1] =

1, if (i1 > 4096j and i1 < 4096(j + 1))

or (i1 > 4096(j + 4) and i1 < 4096(j + 5))

0, otherwise,

for 0 ≤ i1 < nt. And for S
′
, S

′
= (S

′
[i1])0≤i1<nt

∈ Rnt

S
′(j)

[i1] =

1, if j′′mod8 = j′ and

(i1 > 1024j′′ and i1 < 1024(j′′ + 1))

0, otherwise,

for 0 ≤ i1 < nt, 0 ≤ j′′ < 32. Another variable is defined as
j′ = j + 2⌊j/2⌋.

Algorithm 3 ROTOPTDOWNSAMP(ct′′a)

1: Input: Parallelly multiplexed tensor ciphertext ct′′a
2: Output: Parallelly multiplexed tensor ciphertext ct′′c
3: ct′′c ← ctzero
4: ct′′a ← ct′′a ⊙ S′′

5: ct′′a ← ct′′a ⊕ Rot(ct′′a ; kiwi⌊kimodk2i /ki⌋ +
k2i hiwi⌊ki/k2i ⌋ − ki)

6: ct′′a ← ct′′a ⊕ Rot(ct′′a ; 2k
2
i hiwi − k2iwi)

7: ct′′b ← ctzero
8: for j ← 0 to 3 do
9: if ki = 1 then

10: ct′′b ← ct′′a ⊙ S
(j)

11: ct′′c ← ct′′c ⊕ Rot(ct′′b ; k
2
iwihi(4kii1 − (i1 + 2)))

12: else
13: i2 ← i1modki + k2i ⌊i1/ki⌋
14: ct′′b ← ct′′a ⊙ S

′(j)

15: ct′′c ← ct′′c ⊕Rot(ct′′b ; k
2
iwihi(i2)− (kiwi(i1mod2)+

k2iwihi(⌊i1/2⌋+ 1)))
16: end if
17: end for
18: ct′′c ← Rot(ct′′c ;−nt/po)
19: Return ct′′c

12

5 PARALLEL BSGS MATRIX-VECTOR MULTIPLI-
CATION

Matrix-vector multiplication, including inference of fully
connected layers of neural networks, is a common operation
in FHE. Several methods have been devised for matrix-
vector multiplication ([19], [26], [27], [28], [29], [30]). One
of the famous methods to multiplicate plaintext matrix and
ciphertext vector is a diagonal method from [19] and ap-
plying the Baby-step Giant-step(BSGS) algorithm to further
reduce the number of rotations to reduce latency. [18] also
implemented the fully connected layer by applying the
BSGS algorithm to the diagonal method (hereinafter referred
to as the BSGS diagonal method). [31]

The characteristic of the BSGS diagonal method is that
it determines the number of slots used only based on the
lengths of the matrix and vector, regardless of the length
of the ciphertext. For instance, when implementing ResNet
targeting the CIFAR-10([32]) images in [18], the length of
the ciphertext used is 32768. The fully connected layer of
this ResNet involves a matrix-vector multiplication with
a matrix of size 10 × 64 and a ciphertext containing 64
valid values. Due to the characteristics of multiplexed par-
allel packing, this operation starts with eight identical data
within a single ciphertext. However, the BSGS diagonal
method does not take this into account and operates only on
one data, using only around 72 slots for the matrix-vector
multiplication. In other words, it does not efficiently utilize
the ciphertext.

The scenario where multiple identical data exist within
a single ciphertext is not exclusive to multiplexed parallel
packing; it applies to various structures in FHE. Bootstrap-
ping is one of the heaviest operations in FHE, and therefore,
sparse slot bootstrapping [18], [31] is widely used as an ef-
ficient method for utilizing bootstrapping. Since sparse slot
bootstrapping requires a structure where multiple identical
data are present within a single ciphertext, in many FHE
structures utilizing sparse slot bootstrapping, such a struc-
ture with multiple identical data within a single ciphertext is
employed. Similarly, when using the BSGS diagonal method
in such environments, matrix-vector multiplication does not
effectively utilize the length of the ciphertext.

One of the problems arising from not effectively utilizing
the length of the ciphertext, is the inability to perform
operations in parallel, necessitating additional rotation op-
erations. This imposes a burden on using matrix-vector
multiplication at higher levels, which reduces its usability.
Thus, if the number of rotation operations can be reduced,
optimization to decrease it is necessary. An example with a
matrix size of 512 × 512 and vector size is 512 × 1 further
demonstrates the importance of this. Applying the BSGS
diagonal method here would require 47 rotations. However,
using the algorithm that we will propose, involves creating
32 copies within a single ciphertext, leveraging a substantial
portion of the ciphertext for computation, and reducing the
number of rotations to 26. The second issue is the excessive
amount of plaintext used. When performing multiplication
for an n×n matrix and an n×1 vector, the required number
of plaintexts is n, with approximately n valid values in each
plaintext. For the plaintext to ciphertext multiplication, the
length of the plaintext must match that of the ciphertext,

Fig. 9: A simple illustration of diagonal method([19]) for
matrix-vector multiplication.

Fig. 10: A simple illustration of BSGS diagonal method.

and since the length of the ciphertext cannot change, the
plaintext must also match the ciphertext length. This means
that there is a disadvantage of requiring plaintexts with a
much larger capacity than the actual valid values available.

Therefore, in this section, we propose parallel BSGS
matrix-vector multiplication, which supports the multipli-
cation of a single plaintext square matrix and ciphertext
vector. Parallel BSGS matrix-vector multiplication optimizes
the number of rotations required compared to BSGS diago-
nal method, especially when ciphertext can contain numer-
ous identical data parallel, including multiplexed parallel
packed ciphertext. To explain parallel BSGS matrix-vector
multiplication, knowledge of both the conventional diag-
onal method and the BSGS diagonal method is required.
For an intuitive explanation, we will offer images for an
example of the multiplication of an n×n matrix and an n×1
ciphertext where n = 64. Here, the matrix is represented
as M , the n × 1 vector as v, and the result as w. In other
words, w = Mv. Since w and v are ciphertexts in actual
implementation, a ciphertext that has the value of v in the
front is denoted as ctv and a ciphertext that has the value of
w in the front is denoted as ctw. Both ctv and ctw has same
nt length.

Fig.9 illustrates the diagonal method introduced in [19].
For diagonals of M , d is defined as di[j] = A[j][j + i]
for 0 ≤ i < n, 0 ≤ j < n. And each di ’s length is
nt, which is the same as ctv . As shown in Fig.9, we can
get ctw by integrating the multiplication of each di and
Rot(ctv; i). More precisely, it can be expressed as follows.

13

Fig. 11: A simple illustration of parallel BSGS diagonal
method.

ctw =
⊕n−1

i=0 (di ⊙ Rot(ctv; i)). Since the number of rota-
tions and plaintexts needed during the diagonal method is
determined by the number of di, it can be observed that
n− 1 = 63 rotations and n = 64 plaintexts are required.

By applying the BSGS algorithm to Fig.9, we can ex-
amine examples of BSGS diagonal method as Fig.10. The
idea leverages the fact that dis are plaintexts and pre-
computation of plaintext is possible. Therefore, optimiza-
tion is achieved by pre-rotating dis. To represent BSGS
diagonal method, several additional parameters need to
be defined. For n1, n2, n = n1n2. And for d′, d′i =⊕n1i+n1−1

j=n1i
(PRot(dj ;−n1i)⊙ Rot(ctv; j mod n1)) for 0 ≤

i < n2. ctw can also be defined as follows. ctw =⊕n2−1
i=0 Rot(d′i;n1i). The number of rotations needed is de-

termined by n1 = 8 and n2 = 8. It can be observed that
n1 − 1 + n2 − 1 = 14 rotations are required. The number of
plaintexts needed is still the same as the diagonal method.
It needs n = 64 plaintexts.

The example applying our proposed algorithm, parallel
BSGS matrix-vector multiplication, can be seen in Fig.11.
In Fig.11, we showcase the scenario where parallel BSGS
matrix-vector multiplication is applied to the fully con-
nected layer of Resnet (for CIFAR-10 Images) implemen-
tation of [18]. In the input ciphertext ctv , 8 identical data
are located parallelly, and the length of the ciphertext
is nt = 32768. Unlike the conventional BSGS diagonal
method, which only utilizes the leftmost data, we utilize
all 8 data. To further clarify the concept, additional defini-
tions are necessary to explain Fig.11. Here, pi signifies that
there are pi identical data within one ciphertext, specifically,
pi within ctv is 8. (|v0|v1|v2|v3|v4|v5|v6|v7|) indicates that
within one ciphertext, the value of vi is located at positions
int/8. D represents the arrangement of multiple d’s within
one ciphertext. It can be precisely defined as follows:

Di =(|di|PRot(di+n1
;−n1)|PRot(di+2n1

;−2n1)| . . .
. . . |PRot(di+(n2−1)n1

;−(n2 − 1)n1)|)
(3)

for 0 ≤ i < n1. In other words, D is obtained by arranging

n2 number of d’s within one ciphertext at equal intervals.
D′ represents a similar arrangement where multiple d’s
exist within the ciphertext: D′ = (|d′0|d′1| . . . |d′n2−1|) As
observed in Fig.11, D′ can be obtained as the sum of the
multiplications of D and the rotated ctv . Ultimately, D′ is
generated through three rotations and additions to combine
d′, thus reducing the number of rotations during the process
of combining d′.

The key idea of the concept is to modify the plaintext
such that, unlike the conventional structure where there
was only one d within one ciphertext, multiple d’s exist,
as illustrated by D. This idea increases the number of valid
values within the plaintext and reduces the total number of
plaintexts required. Additionally, by repetitively applying
rotation and addition operations to the ciphertext after
computation, d′ can be effectively combined. In practice,
the advantage is evident in the reduced number of rotations
required, as observed in Fig.11 where the rotation is reduced
to 2 log2 n2+n1−log2 pi = 11 where n = 64 = n1n2 = 8×8.
Furthermore, the required number of plaintexts is reduced
to n1 = 8.

In Fig.11, using the structure where there are 8 identical
data within the ciphertext remains unchanged during the
process. However, increasing the number of identical data
within the ciphertext as needed could be a method to
reduce the number of rotation operations. For instance, let’s
consider increasing the number of identical data within the
ciphertext to 16 by setting n1 = 4 and n2 = 16 and applying
ctv = ctv ⊕ Rot(ctv; 2048). In this scenario, when applying
parallel BSGS matrix-vector multiplication, the required ro-
tation count reduces to 2 log2 n2 + n1 − log2 pi = 9. The
required number of plaintexts also decreases to n1 = 4.
Thus, depending on how n1 and n2 are set, performance
can vary. Therefore, we provide an equation to determine n2

and n1 = n/n2 for a given n, which minimizes the rotation
when using parallel BSGS matrix-vector multiplication.

argmin
n2

(2 log2 (n2) + (n/n2)− log2 pi) (4)

At first glance, it may seem that increasing the value of
n2, which determines the number of d in a single cipher-
text, indefinitely could lead to more optimization. However,
since the length of a single ciphertext is limited, the num-
ber of identical data that can exist within the ciphertext
is also limited. In other words, in the equation 4, n2 is
bounded as pi ≤ n2 ≤ nt/(2n). With the determined
values of n1 and n2 obtained in this manner, we can employ
our parallel BSGS matrix-vector multiplication algorithm,
PARBSGSMATVECMUL. ParBSGSMatVecMul’s input, the
parallel diagonal plaintext D can be further generalized as
follows: Di =

∑n2−1
j=0 PRot(d[jn1 + i];−jn1− (nt/n2)j) for

0 ≤ i < n1.
Finally, in terms of guidance for practical usage, to

effectively utilize PARBSGSMATVECMUL, it is necessary
for there to be multiple identical data within a single ci-
phertext. Therefore, to use PARBSGSMATVECMUL, 1) the
number of slots for ciphertexts and plaintexts should be
large relative to the size of the matrix and vector, and
2) multiple instances of the same data should be allowed
within a ciphertext. Additionally, if there are already mul-
tiple identical data within a ciphertext (denoted as pi), the

14

effectiveness of PARBSGSMATVECMUL can be enhanced,
although the value of piis not critical to performance. For
instance, in a scenario where pi = 1, ParBSGSMatVecMul
can still be effectively utilized as long as the ciphertext
size is sufficient, even though there may be a performance
difference of three rotations compared to the case where
pi = 8. Therefore, PARBSGSMATVECMUL can be effectively
utilized even in cases where pi = 1, as long as the ciphertext
size is adequate. Applying PARBSGSMATVECMUL could
be even easier in other situations that already utilize BSGS
diagonal method.([33], [34]) It also should be noted that
the presence of pi identical data within a single ciphertext
in algorithm PARBSGSMATVECMUL is assumed to occur
with each data positioned at equal intervals, as expressed in
ctv of Fig.11

Algorithm 4 PARBSGSMATVECMUL(D, ctv, n1, n2, pi)

1: Input: Plaintexts of parallelly located diagonals of n×n
matrix D, Parallelly multiplexed tensor ciphertext that
contains n valid value ctv, number of identical data in
ctv pi, n1 and n2 that satisfy n = n1n2.

2: Output: Parallelly multiplexed tensor ciphertext that
contains n valid value ctw.

3: ctw ← ctzero
4: ctv ← ctv ⊕ Rot(ctv;−n1n2)
5: for i1 ← 1 to log2 (n2/pi) do
6: ctv ← ctv ⊕ Rot(ctv;−(nt/pi)/2

i1)
7: end for
8: for i1 ← 0 to n1 − 1 do
9: ctw ← ctw ⊕D[i1]⊙ Rot(ctv; i1)

10: end for
11: for i1 ← 0 to log2 (n2)− 1 do
12: ctw ← ctw ⊕ Rot(ctw; 2i1(n1 + nt/n2))
13: end for
14: Return ctw

6 ROTATION KEY REDUCTION

While proposing rotation optimized convolution, we sig-
nificantly reduced the number of rotations and effectively
decreased the number of rotation keys by about one-third.
In this section, we aim to further minimize the size of the
rotation keys that need to be transmitted from the client
to the server using additional methods. We introduce the
hierarchical rotation key system from [35]. The hierarchical
rotation key system organizes computation keys into hier-
archical levels, reducing the size of the keys that need to be
transmitted from the client to the server. If computation keys
with key-level 0 are required for operations at the server,
the client only sends computation keys with key-level 1.
Then, the server generates 0 key-level keys from the 1 key-
level keys. This system, known as the two-level hierarchical
rotation key system, allowed us to further reduce the size of
computation keys. We applied this technique to the rotation
keys required for rotation optimized convolution, where the
rotation keys needed for rotation optimized convolution
correspond to the 0-level keys. Since 0-level keys can be
generated by 1-level keys, the keys that the client needs to
transmit to the server are indeed 1-level keys. By applying

this, we were able to additionally reduce the size of rotation
keys.

Furthermore, additional optimization is possible by
leveraging the structure of rotation keys. In CKKS, rotation
keys have a combined structure supporting rotation opera-
tions from level 0 up to the maximum mult level in CKKS
parameters to ensure support for rotation operations at all
mult levels. However, if we know precisely at which mult
level rotation operations occur, we can transmit only the
keys relevant to that mult level, reducing the transmission
volume. When applied to rotation optimized convolution
technology, by default, 2 levels are consumed during rota-
tion optimized convolution operations. Therefore, transmit-
ting only the rotation keys corresponding to these levels can
reduce the transmission volume of rotation keys. We define
the technique that reduces the size of the rotation key by
limiting the rotation key to support rotation operations at a
limited level as small level key system. We ultimately extended
this to a two-level hierarchical rotation key system.

In all 2-level key systems, the size of a 1-level key is
proportional to the size of a 0-level key. Since the size of
small level keys is smaller than that of the original 0-level
key, the size of the 1-level key that needs to be transmitted
from the client to the server has also decreased. A simple
illustration of this is in Fig. 12. 0-level key in Fig, 12 rep-
resents conventional rotation key. L denotes the maximum
level that the ciphertext can have, and K corresponds to
the special modulus. In our implementation environment, L
and K are 24 and 5, respectively. L′, the combined length
of L and K, representing the highest level, constitutes the
form of a 1-level key. This characterizes the hierarchical
rotation key system, and an example of applying it to a
small level key system is also provided. Unlike the previous
requirement of rotation keys for all L levels, the small
level key system contains only the rotation keys for the
specific level where the rotation operation will be used.
This significantly reduces its size compared to before. By
applying the hierarchical rotation key system to the small
level key in a situation consuming 2-depth in rotation opti-
mized convolution, the l value of the 1-level key is K + 2,
which confirms that the size of the 1-level key can be greatly
reduced.

TABLE 2 represents the experiment results of applying
a two-level hierarchical rotation key system and small level
key system to reduce the size of rotation keys required for
rotation optimized convolution. As mentioned in Subsection
4.3, utilizing additional depth is unrelated to the number of
rotation keys. Therefore, experiments were conducted using
the 2-depth Conv blueprint. By applying the hierarchical
rotation key system and small level key system to the
rotation keys transmitted in rotation optimized convolution,
we were able to reduce the size of the final transmitted
rotation keys by approximately 29× compared to [18].

7 EXPERIMENTAL RESULTS

In this section, we will compare the execution time and
size of rotation keys of the various operations proposed by

15

Fig. 12: A simple and abstract illustration of applying the
hierarchical rotation key system and small level key system
to rotation key.

Method Conven-
tional [18]

ROTOPT-
CONV

ROTOPTCONV
+Hierarchical
rotation
key system

ROTOPTCONV
+Hierarchical
rotation
key system+
Small level
key system

Rotation
key size 29100 MB 8250 MB 2100 MB 1100 MB

TABLE 2: Comparison of rotation key size

us with those of the conventional method. 1 The numer-
ical analyses are conducted on the representative Lattigo
v5(lattice-based homomorphic encryption library, [36]) on
AMD Ryzen 9 7900X at 3.2 GHz (24 cores) with 124 GB
RAM, running the Ubuntu 20.04 operating system. We set
Lattigo main CKKS parameter as follows: N = 216, logQ =
[51, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46,
46, 46, 46, 46, 46, 46, 46, 46], logP = [60, 60, 60, 60, 60]. P
denotes the special modulus and length of special modulus
correspondence to the length of logP . Using terminology
borrowed from [18], six representative examples of multi-
plexed parallel convolution- CONV1, CONV2, CONV3s2,
CONV3, CONV4s2, CONV4—appear, depending on the
size of the convolution’s input, the number of kernels,
and the stride value. We measured and compared the
performance of these six convolution examples to evaluate
rotation optimized convolution.

We measured the performance of each convolution us-
ing four blueprints, 2-depth Conv, 3-depth Conv, 4-depth
Conv, and 5-depth Conv. Each blueprint corresponds to
minimizing execution time in consuming each depth. Fig.
13 summarizes the execution time according to the starting
mult level of the operation for each type of convolution. As
seen in the graph, the effect of time reduction is evident,
and the difference in execution time is more pronounced
at higher levels due to the characteristics of the rotation
operation. Speaking in precise numbers, in experiments
using 2-depth Conv, the decrease in execution time ranged

1. All experiments we conducted in this paper are reproducible
by referencing the README in our github link: https://github.com/
byeongseomin51/FHE Conv MatVecMul

from a minimum of 20% to a maximum of 43%, with an
average of 36%. With 3-depth Conv, the decrease ranged
from a minimum of 40% to a maximum of 66%, with an
average of 51%. For 4-depth Conv, the decrease ranged from
a minimum of 41% to a maximum of 70%, with an average
of 56%. It was observed that the effect of rotation optimized
convolution depends on the situation of the convolution
implemented as well as the implementation environment. In
our implementation, 5-depth Conv showed little improve-
ment compared to 4-depth Conv. Although the reduction
rate increased from 4-depth Conv to 3-depth Conv, it was
not significant enough. Therefore, in our implementation
environment, using 3-depth Conv seems to provide the
most significant reduction in execution time compared to
the consumption of depth.

Furthermore, the extent of performance improvement in
convolution varies depending on the convolution situation.
As highlighted in Subsection 4.1, when the Combine process
is modified to CrossCombine, the number of rotations re-
quired changes from co to pc− 1. Therefore, we can observe
that the greater the difference, the greater the degree of
performance improvement, particularly in convolution situ-
ations where this difference is significant. In other words,
since the values of pc are not extremely large, typically
around 2, 4, or 8, the effectiveness of rotation optimized
convolution tends to be greater as the output channel count,
represented by co, increases. Hence, we can note that the
performance improvement tends to be more significant for
CONV1 and CONV2 with co of 16, CONV3s2 and CONV3
with co of 32, and CONV4s2 and CONV4 with co of 64, in
ascending order. This also applies equally to convolutions in
other scenarios. For instance, in ResNet targeting ImageNet,
there exists a convolution with an input and output size
of 7 × 7 × 512, and due to the large number of channels
(512), our convolution demonstrates even greater effective-
ness. By simply calculating the number of rotations using
formulas, while multiplexed parallel convolution requires
2825 rotations, rotation optimized convolution requires only
about 776 rotations without additional depth consumption.
This once again confirms the potential of rotation optimized
convolution for utilization in various AI models.

We also provide TABLE 3, which contains informa-
tion on the number of rotation operations performed at
each stage of rotation optimized convolution. The differ-
ence between multiplexed parallel convolution and rotation
optimized convolution lies in the substitution of subpro-
cess Combine of ZeroOutCombine process with subprocess
CrossCombine. In TABLE 3, for the sake of simplicity in
comparison, the processes of ZeroOut and Combine in mul-
tiplexed parallel convolution and the subprocesses of Ze-
roOut and CrossCombine in rotation optimized convolution
are both denoted as ZeroOutCombine.

The execution time tests for algorithms ROTOPTDOWN-
SAMP is also provided in Fig.14 We tested two down-
sampling operations within a ResNet targeting CIFAR-10
images, which corresponds to DOWNSAMP1 and DOWN-
SAMP2 in the conventional method [18] for accurate com-
parison. The precise situations for DOWNSAMP1 and
DOWNSAMP2 can be found in TABLE 8. In both scenar-
ios, meaningful time reductions were observed using the
proposed method for downsampling operations. Moreover,

https://github.com/byeongseomin51/FHE_Conv_MatVecMul
https://github.com/byeongseomin51/FHE_Conv_MatVecMul

16

Convolution Process Multiplexed parallel convolution 2-depth Conv 3-depth Conv 4-depth Conv 5-depth Conv

CONV1

SISOConv 8 8 - - -
RotationSum 4 4 - - -
ZeroOutCombine 17 2 - - -
Total 29 14 - - -

CONV2

SISOConv 8 8 8 8 -
RotationSum 32 24 16 14 -
ZeroOutCombine 17 4 4 4 -
Total 57 36 28 26 -

CONV3s2

SISOConv 8 8 8 8 8
RotationSum 64 64 40 32 30
ZeroOutCombine 34 5 5 5 5
Total 106 77 53 45 43

CONV3

SISOConv 8 8 8 8 -
RotationSum 40 32 22 18 -
ZeroOutCombine 34 9 5 5 -
Total 82 49 35 31 -

CONV4s2

SISOConv 8 8 8 8 8
RotationSum 80 64 44 36 32
ZeroOutCombine 67 10 6 6 6
Total 155 82 58 50 46

CONV4

SISOConv 8 8 8 8 -
RotationSum 48 48 24 20 -
ZeroOutCombine 67 10 10 10 -
Total 123 66 42 38 -

TABLE 3: Comparison of number of rotations used in each process of convolution.

Fig. 13: Execution time comparison of proposed(rotation op-
timized convolution) and conventional(multiplexed parallel
convolution in [18]) convolution.

the proposed method achieved a constant runtime reduc-
tion in DOWNSAMP1 and DOWNSAMP2, ensuring that
the execution times for downsampling operations in both
scenarios were equal. Downsampling is not an excessively
time-consuming operation, so the difference may not be eas-

Fig. 14: Execution time comparison of proposed(rotation
optimized downsampling) and conventional(multiplexed
parallel downsampling in [18]) downsampling for DOWN-
SAMP1 and DOWNSAMP2 situation.

ily noticeable. However, it can be observed that employing
downsampling at higher levels is less burdensome with the
ROTOPTDOWNSAMP algorithm, which mitigated the usage
burden across various levels. Downsampling is associated
with convolution operations, therefore, it can also contribute
to increasing the flexibility of convolution operation usage
at various levels.

To clearly observe the effectiveness of parallel BSGS
matrix-vector multiplication, we conducted computations
under various scenarios, and the results can be seen in
Fig.15. In the first scenario, we compared the execution time
of applying the conventional BSGS diagonal method and
the proposed parallel BSGS matrix-vector multiplication to
a fully connected layer as used in [18]. In this scenario,
n = 64, pi = 8 and nt = 32768. Across most levels, it was
observed that the execution time differed by approximately
a factor of two, indicating a clear advantage of the proposed
method. In another scenario, we experimented with the
multiplication of an n×n matrix and an n× 1 vector across
various values of n. In this case, the proposed algorithm
was executed with pi = 1 for all scenarios. This implies
that if pi values were higher, we could potentially observe
even greater reductions in execution time compared to the
graphs. For instance, if the implementation already includes

17

Fig. 15: Execution time comparison of parallel BSGS matrix-
vector multiplication and BSGS diagonal method.

Scenario Criteria
BSGS
diagonal
method

Proposed

Fully
Connected in [18]

Rotation 15 9
Plaintext 64 2

n = 32
Rotation 11 10
Plaintext 32 2

n = 64
Rotation 15 12
Plaintext 64 2

n = 128
Rotation 23 14
Plaintext 128 2

n = 256
Rotation 31 16
Plaintext 256 4

n = 512
Rotation 47 26
Plaintext 512 16

TABLE 4: Comparison of the number of rotation and plain-
text required during matrix-vector multiplication between
BSGS diagonal method and proposed algorithm, PARBS-
GSMATVECMUL. The scenario is same as Fig.15. Assume
matrix size as n× n, and vector size as n× 1

α identical data parallelly within the ciphertext, we can
predict a reduction in the number of rotations by log2 α
compared to the depicted graph.

When n = n1n2 the number of rotations differs between
the BSGS diagonal method and the parallel BSGS diagonal
method. In the former, it’s approximately n1 + n2 − 1 while
in the latter, it’s 2 log2 (n2) + n1 − log2 pi. As evidenced by
the equation, as n becomes larger, the effect becomes more
pronounced due to the logarithmic nature of the expres-
sion. This property is clearly observed in Fig.15, where the
execution time decreases as n increases. To provide an accu-
rate performance comparison of the parallel BSGS diagonal
method, we’ve summarized the number of rotations and
plaintexts required for each scenario presented in Fig.15 in
TABLE 4.

The number of rotation keys used at each stage of
rotation optimized convolution is summarized in TABLE 5.
We compared the number of rotation keys for 2-depth Conv

Convolution Process Conve-
ntional

2-depth
Conv

CONV1

SISOConv 8 8
RotationSum 2 3
ZeroOutCombine 16 2
Total 26 13

CONV2

SISOConv 8 8
RotationSum 4 6
ZeroOutCombine 16 4
Total 28 18

CONV3s2

SISOConv 8 8
RotationSum 4 8
ZeroOutCombine 33 5
Total 45 21

CONV3

SISOConv 8 8
RotationSum 5 7
ZeroOutCombine 33 9
Total 46 24

CONV4s2

SISOConv 8 8
RotationSum 5 8
ZeroOutCombine 66 10
Total 79 26

CONV4

SISOConv 8 8
RotationSum 6 9
ZeroOutCombine 66 10
Total 80 27

TABLE 5: Comparison of number of rotation keys used in
each process of convolution.

blueprint with the multiplexed parallel convolution. It is
evident that compared to conventional methods, a signifi-
cant reduction in rotation keys has been achieved during the
ZeroOutCombine process. blueprint for convolution with
additional depth is not included, as the usage of convolution
with additional depth is unrelated to the number of rotation
keys.

8 CONCLUSION AND FUTURE WORKS

In this paper, we proposed rotation optimized convolution,
which reduces the number of rotation operations in mul-
tiplexed parallel convolution in [18]. The decrease in the
number of rotation operations led to a reduction in latency.
As the execution time of rotation operations significantly
increases as the ciphertext level rises, rotation optimized
convolution also alleviates the burden of performing con-
volution operations at various levels. We also define the
relationship between the consumed depth and execution
time of rotation optimized convolution. By reducing the
number of rotation keys while using a hierarchical rotation
key system and small level key system, we can also reduce
the size of rotation keys transmitted between the client
and server for rotation optimized convolution. Rotation
optimized downsampling and parallel BSGS matrix-vector
multiplication operations are also proposed. Specifically,
parallel BSGS matrix-vector multiplication was utilized in
this paper to implement a fully connected layer on cipher-
texts in a state of multiplexed parallel packing. However,
even if the ciphertexts are not multiplexed and parallel-
packed, the technique can be directly applied as long as
multiple identical data are present in parallel within a single
ciphertext.

Recently, various AI models, including SSM or convo-
lution operations integrated transformers, have been lever-
aging convolution operations. Consequently, we opted to

18

optimize the multiplexed parallel convolution for general
applicability. Through the optimization process, we reduced
the number of rotation operations, thereby alleviating the
burden of conducting convolutions at different levels. This
opens up many possibilities for implementing a wide range
of AI models as private AI in the future. We plan to uti-
lize rotation optimized convolution to implement cutting-
edge models like SSM or convolution operations integrated
transformers as private AI going forward.

REFERENCES

[1] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “Chet: an optimizing compiler
for fully-homomorphic neural-network inferencing,” in Proceed-
ings of the 40th ACM SIGPLAN conference on programming language
design and implementation, 2019, pp. 142–156.

[2] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “ngraph-
he: a graph compiler for deep learning on homomorphically
encrypted data,” in Proceedings of the 16th ACM international con-
ference on computing frontiers, 2019, pp. 3–13.

[3] Q. Lou and L. Jiang, “Hemet: a homomorphic-encryption-friendly
privacy-preserving mobile neural network architecture,” in Inter-
national conference on machine learning. PMLR, 2021, pp. 7102–7110.

[4] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“{GAZELLE}: A low latency framework for secure neural
network inference,” in 27th USENIX security symposium (USENIX
security 18), 2018, pp. 1651–1669.

[5] A. Brutzkus, R. Gilad-Bachrach, and O. Elisha, “Low latency pri-
vacy preserving inference,” in International Conference on Machine
Learning. PMLR, 2019, pp. 812–821.

[6] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to en-
crypted data with high throughput and accuracy,” in International
conference on machine learning. PMLR, 2016, pp. 201–210.

[7] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-
Fei, “Faster cryptonets: leveraging sparsity for real-world en-
crypted inference. corr abs/1811.09953 (2018),” arXiv preprint
arXiv:1811.09953, 2018.

[8] A. Al Badawi, C. Jin, J. Lin, C. F. Mun, S. J. Jie, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, “Towards the
alexnet moment for homomorphic encryption: Hcnn, the first ho-
momorphic cnn on encrypted data with gpus,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1330–1343, 2020.

[9] J. Lee, E. Lee, Y.-S. Kim, Y. Lee, J.-W. Lee, Y. Kim, and J.-S.
No, “Optimizing layerwise polynomial approximation for efficient
private inference on fully homomorphic encryption: a dynamic
programming approach,” arXiv preprint arXiv:2310.10349, 2023.

[10] H. Chabanne, A. De Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” Cryp-
tology ePrint Archive, 2017.

[11] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference system for neural networks,”
in Proceedings of the 2020 Workshop on Privacy-Preserving Machine
Learning in Practice, 2020, pp. 27–30.

[12] J. Park, M. J. Kim, W. Jung, and J. H. Ahn, “Aespa: Accuracy
preserving low-degree polynomial activation for fast private in-
ference,” arXiv preprint arXiv:2201.06699, 2022.

[13] D. Kim and C. Guyot, “Optimized privacy-preserving cnn infer-
ence with fully homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 18, pp. 2175–2187, 2023.

[14] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented transformer for speech recognition,” arXiv preprint
arXiv:2005.08100, 2020.

[15] Y. Liu, G. Sun, Y. Qiu, L. Zhang, A. Chhatkuli, and L. Van Gool,
“Transformer in convolutional neural networks,” arXiv preprint
arXiv:2106.03180, vol. 3, 2021.

[16] H. Yan, Z. Li, W. Li, C. Wang, M. Wu, and C. Zhang, “Contnet:
Why not use convolution and transformer at the same time?” arXiv
preprint arXiv:2104.13497, 2021.

[17] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[18] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and W. Choi,
“Low-complexity deep convolutional neural networks on fully ho-
momorphic encryption using multiplexed parallel convolutions,”
in International Conference on Machine Learning. PMLR, 2022, pp.
12 403–12 422.

[19] S. Halevi and V. Shoup, “Algorithms in helib,” in Advances in
Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34.
Springer, 2014, pp. 554–571.

[20] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim et al., “Privacy-preserving machine learn-
ing with fully homomorphic encryption for deep neural network,”
IEEE Access, vol. 10, pp. 30 039–30 054, 2022.

[21] D. Kim, J. Park, J. Kim, S. Kim, and J. H. Ahn, “Hyphen: A
hybrid packing method and its optimizations for homomorphic
encryption-based neural networks,” IEEE Access, 2023.

[22] H. Peng, R. Ran, Y. Luo, J. Zhao, S. Huang, K. Thorat, T. Geng,
C. Wang, X. Xu, W. Wen et al., “Lingcn: Structural linearized
graph convolutional network for homomorphically encrypted in-
ference,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[23] R. Ran, X. Luo, W. Wang, T. Liu, G. Quan, X. Xu, C. Ding,
and W. Wen, “Spencnn: orchestrating encoding and sparsity for
fast homomorphically encrypted neural network inference,” in
International Conference on Machine Learning. PMLR, 2023, pp.
28 718–28 728.

[24] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for
approximate homomorphic encryption,” in Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 2019, pp. 34–54.

[25] E. Lee, J.-W. Lee, J.-S. No, and Y.-S. Kim, “Minimax approximation
of sign function by composite polynomial for homomorphic com-
parison,” IEEE Transactions on Dependable and Secure Computing,
vol. 19, no. 6, pp. 3711–3727, 2021.

[26] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced
matrix computation and application to neural networks,” in Pro-
ceedings of the 2018 ACM SIGSAC conference on computer and com-
munications security, 2018, pp. 1209–1222.

[27] W.-j. Lu, S. Kawasaki, and J. Sakuma, “Using fully homomorphic
encryption for statistical analysis of categorical, ordinal and nu-
merical data,” Cryptology ePrint Archive, 2016.

[28] S. Wang and H. Huang, “Secure outsourced computation of mul-
tiple matrix multiplication based on fully homomorphic encryp-
tion,” KSII Transactions on Internet and Information Systems (TIIS),
vol. 13, no. 11, pp. 5616–5630, 2019.

[29] W.-j. Lu, S. Kawasaki, and J. Sakuma, “Using fully homomorphic
encryption for statistical analysis of categorical, ordinal and nu-
merical data,” Cryptology ePrint Archive, 2016.

[30] H. Huang and H. Zong, “Secure matrix multiplication based on
fully homomorphic encryption,” The Journal of Supercomputing,
vol. 79, no. 5, pp. 5064–5085, 2023.

[31] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrap-
ping for approximate homomorphic encryption,” in Advances in
Cryptology–EUROCRYPT 2018: 37th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29-May 3, 2018 Proceedings, Part I 37. Springer, 2018,
pp. 360–384.

[32] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[33] J. H. Ju, J. Park, J. Kim, D. Kim, and J. H. Ahn, “Neujeans: Private
neural network inference with joint optimization of convolution
and bootstrapping,” arXiv preprint arXiv:2312.04356, 2023.

[34] A. Ebel, K. Garimella, and B. Reagen, “Orion: A fully homo-
morphic encryption compiler for private deep neural network
inference,” arXiv preprint arXiv:2311.03470, 2023.

[35] J.-W. Lee, E. Lee, Y.-S. Kim, and J.-S. No, “Rotation key reduction
for client-server systems of deep neural network on fully homo-
morphic encryption,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2023,
pp. 36–68.

[36] “Lattigo,” https://github.com/tuneinsight/lattigo/tree/v5.0.2,
2023, ePFL-LDS, Tune Insight SA.

https://github.com/tuneinsight/lattigo/tree/v5.0.2

19

APPENDIX A
ROTATION OPTIMZIED CONVOLUTION BLUEPRINT

This section provides four blueprints for use in the rotation
optimized convolution algorithm: 2-depth Conv, 3-depth
Conv, 4-depth Conv, and 5-depth Conv. All blueprints are
designed with consideration for the relationship between
the RotationSum and CrossCombine process in rotation
optimized convolution, and all blueprints are designed with
the goal of minimizing time. These blueprints may not
be the only blueprints in each convolution scenario. There
could be other blueprints with different values, but they
are unlikely to have better performance than our blueprint.
In other words, there are many correct blueprints, but not
all of them are optimal. You can test other various correct
blueprints in our github link.

Rotation optimized convolution has some heuristics na-
ture, so here’s a simple guide for creating blueprints. Firstly,
rather than focusing on the correlation between processes
RotationSum and CrossCombine, create the blueprint back-
ward from the final output of the convolution. In other
words, decide how to divide the final output of the con-
volution for CrossCombine, then determine the order for
performing RotationSum to move each channel to its po-
sition, and finally, decide on the order of kernel weights.
This approach makes it easier to create the initial blueprint.
Subsequently, you can further optimize the blueprint using
the correlation between processes RotationSum and Cross-
Combine. Or if consuming additional depth is allowed,
you can combine ciphertext that requires the same shift
of rotation during RotationSum for further optimization on
execution time.

The reason why there is no information available for
some CONV1 situations and some convolution situations
in 5-depth Conv blueprint is that the maximum depth that
can be consumed in techniques using additional depth in
convolution is log2 q + 1. Therefore, blueprints that cannot
exist according to this criterion have not been defined.

It should be noted that in all expressions related to
blueprint algorithms, the x-th element of a 1-dimensional
blueprint A is denoted as A[x], and for some 2-dimensional
blueprint B, the y-th element of B[x] is denoted as B[x][y].
The index of the first value of blueprint is 0, for instance, the
first value of 1-dimensional blueprint A is A[0]. KernelBP
is set to be consistent regardless of how many depths the
convolution uses, for the sake of simplicity.

APPENDIX B
PARAMETERS

Various parameters such as hi, ho, wi, wo, ci, co, fh, fw, s,
ki, ko, ti, to, pi, po, pc and q are determined differently for
each component such as rotation optimized convolution
algorithm and downsampling. TABLE 8 shows the values of
parameters that are used in each component of the proposed
algorithm. These parameters are also defined to represent
the multiplexed parallel convolution described in [18], to
avoid confusion, a similar notation as in [18] was used.

Parameters wi, hi, and ci respectively represent the
width, height, and channel numbers of the three-
dimensional input data of convolution. Similarly, wo, ho,

Conv-
olution RotationSumBP CrossCombineBP

CONV1
[[2],
[0, 2048],
[2, 2, 1024]]

[2, 0, 14336]

CONV2 [[1],
[2, 8, 1024, 2048, 4096]]

[4, 0, 8192,
8192, 16384]

CONV3s2 [[1],
[2, 16, 1024, 2048, 4096, 8192]]

[4, 0, 8191,
16352, 24543]

CONV3
[[2],
[0, 2048],
[2, 8, 1, 32, 1024]]

[8, 0, 4096,
6144, 10240,
12288, 16384,
18432, 22528]

CONV4s2 [[1],
[2, 16, 1, 32, 1024, 2048]]

[8, 0, 4096,
8190, 12286,
16320, 20416,
24510, 28606]

CONV4

[[4],
[0, 64],
[0, 1024],
[0, 2048],
[2, 8, 1, 2, 32]]

[8, 0, 4032,
7168, 11200,
14336, 18368,
21504, 25536]

TABLE 6: 2-depth Conv blueprint

Conv-
olution RotationSumBP CrossCombineBP

CONV2
[[2],
[1, 2, 1024],
[2, 4, 2048, 4096]]

[4, 0, 8192, 8192, 16384]

CONV3s2
[[2],
[1, 4, 1024, 2048],
[2, 4, 4096, 8192]]

[4, 0, 8191, 16352, 24543]

CONV3

[[4],
[1, 4, 1, 32],
[0, 2048],
[0, 4096],
[2, 2, 1024]]

[4, 0, 6144, 12288, 18432]

CONV4s2

[[3],
[1, 4, 1, 32],
[0, 4096],
[2, 4, 1024, 2048]]

[4, 0, 8190, 16320, 24510]

CONV4

[[5],
[1, 4, 1, 2],
[0, 64],
[0, 1024],
[0, 2048],
[2, 2, 32]]

[8, 0, 4032, 7168, 11200,
14336, 18368, 21504, 25536]

TABLE 7: 3-depth Conv blueprint

and co respectively represent the width, height, and channel
numbers of the three-dimensional output data of convolu-
tion. fh, fw are height and width numbers of kernel data,
and s represents stride value of convolution. ki, ko are gaps
of input and output ciphertext of convolution, respectively.
Other variable can be defined as ti = ⌈ ci

k2
i
⌉, to = ⌈ cok2

o
⌉,

pi = 2
⌊log2(

nt
k2
i
hiwiti

)⌋
, po = 2

⌊log2(
nt

k2
ohowoto

)⌋
, and q = ⌈ copi

⌉.
Specifically, pi and po represent the number of identical
parallelly existing data within input ciphertext, and output
ciphertext, respectively.

The parameter pc is a new parameter proposed to denote
the essential number of parallel data to be merged in Cross
Combine. It is influenced by pi and po, which can be defined
as follows:

pc =

{
pi, if s > 1 and cip

2
i /copo ≥ 1

po, otherwise,

20

Component CONV1 CONV2 CONV3s2 CONV3 CONV4s2 CONV4 DOWNSAMP1 DOWNSAMP2
fh 3 3 3 3 3 3 - -
fw 3 3 3 3 3 3 - -
s 1 1 2 1 2 1 - -
hi 32 32 32 16 16 8 32 16
ho 32 32 16 16 8 8 16 8
wi 32 32 32 16 16 8 32 16
wo 32 32 16 16 8 8 16 8
ci 3 16 16 32 32 64 16 32
co 16 16 32 32 64 64 32 64
ki 1 1 1 2 2 4 1 2
ko 1 1 2 2 4 4 2 4
ti 3 16 16 8 8 4 16 8
to 16 16 8 8 4 4 8 4
pi 8 2 2 4 4 8 2 4
po 2 2 4 4 8 8 4 8
pc 2 2 4 4 4 8 - -
q 2 8 16 8 16 8 - -

TABLE 8: Parameters that are used in each ROTOPTCONV or ROTOPTDOWNSAMP process

Conv-
olution RotationSumBP CrossCombineBP

CONV2

[[3],
[1, 2, 1024],
[1, 2, 2048],
[2, 2, 4096]]

[4, 0, 8192, 8192, 16384]

CONV3s2

[[3],
[1, 2, 1024],
[1, 2, 2048],
[2, 4, 4096, 8192]]

[4, 0, 8191, 16352, 24543]

CONV3

[[5],
[1, 2, 1],
[1, 2, 32],
[0, 2048],
[0, 4096],
[2, 2, 1024]]

[4, 0, 6144, 12288, 18432]

CONV4s2

[[4],
[1, 2, 1],
[1, 2, 32],
[0, 4096],
[2, 4, 1024, 2048]]

[4, 0, 8190, 16320, 24510]

CONV4

[[6],
[1, 2, 1],
[1, 2, 2],
[0, 64],
[0, 1024],
[0, 2048],
[2, 2, 32]]

[8, 0, 4032, 7168, 11200,
14336, 18368, 21504, 25536]

TABLE 9: 4-depth Conv blueprint

Conv-
olution RotationSumBP CrossCombineBP

CONV3s2

[[4],
[1, 2, 1024],
[1, 2, 2048],
[1, 2, 4096],
[2, 2, 8192]]

[4, 0, 8191, 16352, 24543]

CONV4s2

[[5],
[1, 2, 1],
[1, 2, 32],
[1, 2, 1024],
[0, 4096],
[2, 2, 2048]]

[4, 0, 8190, 16320, 24510]

TABLE 10: 5-depth Conv blueprint

Convolution KernelBP

CONV1 [[0, 4, 8, 12, 2, 6, 10, 14],
[1, 5, 9, 13, 3, 7, 11, 15]]

CONV2 [[0, 8], [1, 9], [2, 10], [3, 11],
[4, 12], [5, 13], [6, 14], [7, 15]]

CONV3s2

[[0, 2], [4, 6], [8, 10], [12, 14],
[16, 18], [20, 22], [24, 26], [28, 30],
[1, 3], [5, 7], [9, 11], [13, 15],
[17, 19], [21, 23], [25, 27], [29, 31]]

CONV3

[[0, 8, 16, 24], [1, 9, 17, 25],
[2, 10, 18, 26], [3, 11, 19, 27],
[4, 12, 20, 28], [5, 13, 21, 29],
[6, 14, 22, 30], [7, 15, 23, 31]]

CONV4s2

[[0, 2, 8, 10], [1, 3, 9, 11],
[4, 6, 12, 14], [5, 7, 13, 15],
[16, 18, 24, 26], [17, 19, 25, 27],
[20, 22, 28, 30], [21, 23, 29, 31],
[32, 34, 40, 42], [33, 35, 41, 43],
[36, 38, 44, 46], [37, 39, 45, 47],
[48, 50, 56, 58], [49, 51, 57, 59],
[52, 54, 60, 62], [53, 55, 61, 63]]

CONV4

[[0, 8, 16, 24, 32, 40, 48, 56],
[1, 9, 17, 25, 33, 41, 49, 57],
[2, 10, 18, 26, 34, 42, 50, 58],
[3, 11, 19, 27, 35, 43, 51, 59],
[4, 12, 20, 28, 36, 44, 52, 60],
[5, 13, 21, 29, 37, 45, 53, 61],
[6, 14, 22, 30, 38, 46, 54, 62],
[7, 15, 23, 31, 39, 47, 55, 63]]

TABLE 11: KernelBP blueprint

	Introduction
	Related Works
	Preliminaries
	RNS-CKKS Fully Homomorphic Encryption
	Multiplexed Parallel Convolution

	Rotation Optimized Convolution
	High-level Idea
	Using correlation of RotationSum process and CrossCombine process
	Convolution with additional depth
	Algorithm Description
	Rotation Optimized Downsampling

	Parallel BSGS Matrix-Vector Multiplication
	Rotation Key Reduction
	Experimental Results
	Conclusion and Future Works
	References
	Appendix A: Rotation Optimzied Convolution blueprint
	Appendix B: Parameters

