
Consistency-or-Die: Consistency for Key Transparency
Joakim Brorsson

Hyker
Malmö, Sweden
joakim@hyker.io

Elena Pagnin
Chalmers University of Technology and University of

Gothenburg
Gothenburg, Sweden
elenap@chalmers.se

Bernardo David
IT University of Copenhagen

Copenhagen, Denmark
bernardo@bmdavid.com

Paul Stankovski Wagner
Lund University
Lund, Sweden

paul.stankovski_wagner@eit.lth.se

ABSTRACT
In this paper we point out the problem of insufficient tools for pro-
tecting against split-view attacks in Key Transparency protocols,
and propose a solution to fill the void. We discuss why current
approaches are not suitable and then propose a novel notion, GOD-
less broadcast, that solves the issue. Like conventional notions of
broadcast, GOD-less broadcast guarantees consistency. However, it
does not provide Guaranteed Output Delivery (GOD). We provide
an efficient realization of this new notion using a hidden committee
of randomly selected and initially undisclosed users which endorse
the current view. We also introduce and analyze a new concept
of a quorum which ensures consistency among all honest active
users. Our GOD-less broadcast protocol is practical and applica-
ble to existing large scale Key Transparency systems, e.g. the Key
Transparency used in WhatsApp.

KEYWORDS
Key Transparency, Consistency, Transparency Logs, Broadcast

1 INTRODUCTION
A backbone to securing the web is the existence of a trustworthy
Certificate Authority (CA) infrastructure. The main role of a web
CA is to issue digital certificates to validate the authenticity of web-
sites. These certificates help establish secure connections between a
user’s browser and a website, ensuring that sensitive information is
encrypted and transmitted securely. Additionally, CAs are expected
to verify the identity of website owners and help prevent fraudulent
activities. Unfortunately, we have witnessed several incidents [42]
where incorrect or malicious certificates have successfully been
used. For example, Symantec was caught wrongfully issuing a cer-
tificate for google.com [38], and DigiNotar was fully compromised
by an unknown attacker which during the attack issued over 500
fake certificates [25], which were then used for spying on Iranian
citizens. These incidents are due to placing too much trust in the
CA infrastructure.

To remedy this situation, transparency logs for the web, called
Certificate Transparency logs (CT) [28], have been deployed to
ensure correct serving of TLS certificates. Many browsers currently
mandate their use and thus reduce the trust that needs to be placed
in CAs by making them transparent.

Intuitively, the transparency in transparency logs comes from
publicly recording all certificates issued by a CA. This allows for

greater visibility and accountability in the issuance of certificates,
helping to detect any unauthorized or fraudulent certificates. More
specifically, transparency logs are label-value data structures which
are publicly verifiable to be append-only, allowing no data to be
deleted or altered, and consistent, i.e. , serving all users the same
view of the current state of the data structure. These two properties
ensure that the same value (certificate) is delivered in response to
all queries for a specific label.

Recently, transparency logs have been applied to serving public
keys for end-to-end encryption messaging apps [10, 26, 29, 30, 32],
and deployed in mainstream apps such as WhatsApp [33], iMes-
sage [3] and Zoom [6]. In this case, the technique is called Key
Transparency (KT) logs.

Even though they have a similar aim in detecting potential at-
tacks connected to cryptographic material, CT and KT have a few
core differences. While CT logs are designed for detecting and
preventing issuance of fraudulent TLS certificates, KT protocols
focus on providing a secure and transparent way to manage and
distribute cryptographic keys. We provide further background on
transparency logs and their properties in Appendix A.

1.1 State-of-the-Art and Current Issues
Key Transparency research consists of protocols for ensuring append-
only, and protocols for ensuring consistency. Protocols for ensuring
append-only [10, 26, 29, 30, 32] constitute the largest body of works,
and these protocols have in recent years reached production level
maturity. However, protocols for consistency have received much
less attention, and current methods [7, 22, 30, 31, 44] are unsatis-
factory as they provide weak consistency guarantees.

In light of this, it is imperative to develop better consistency pro-
tocols. A KT log with weak consistency guarantees cannot protect
against split-view attacks (which break the consistency property)
and is thus of limited value for ensuring that the correct public keys
are served. The need is urgent. KT logs with no or weak consistency
guarantees have already been deployed in high profile systems (see
Section 1.1.2). At the same time, there have been a number of de-
tected split-view incidents in CT logs [39–41]. Such split-views risk
going undetected in current proposals for KT.

1.1.1 Academic Proposals. There are a three known methods for
achieving consistency in KT protocols; gossip protocols, blockchains

https://orcid.org/0000-0002-7804-6696

and designated witnesses. We here give an overview of these ap-
proaches, and provide further details and an extensive literature
review on existing KT consistency works in Appendix B.

Gossip protocols [12, 14, 35] achieve consistency by having users
gossip over the state of the log using Out-Of-Band (OOB) channels,
where the service provider cannot suppress messages. Gossiping es-
sentially consists of exchanging messages that endorse (or oppose)
a certain view. While this approach works for CT, it is problematic
for KT systems, since OOB channels are unworkable in real-world
KT scenarios (matching QR codes in person does not scale well to
a user base of, say, a billion users).

Blockchains have been suggested [7, 20, 44] as an alternative to
gossip protocols. By using a blockchain, consistency comes for free
since each record in a blockchain is cryptographically linked to
previous records, in a sequential and immutable manner. However,
relying on this technology implicitly implies accepting the costs
and assumptions that come with implementing it. We consider the
costs, e.g. , end users running full blockchain nodes, unrealistic
in most mainstream scenarios such as KT for large scale instant
messaging apps. Indeed, none of the existing KT deployments have
chosen to use blockchains for consistency.

External Committees of Consistency Auditors [18, 30] is the most
recent alternative for achieving efficient and scalable consistency
in KT. The idea is to appoint an external committee of auditors,
where each committee member endorses its view, and where at
last two thirds of the members are assumed to be honest. A user
can be assured of consistency of its own view if there is a large
enough set of committee members (other users) who agree with
this view. Security demands that such a committee be large and
untargetable, otherwise an adversary could simply corrupt all com-
mittee members. However, for efficiency and practical reasons, such
a committee should at the same time be small. First of all, because
users’ CPU and network overhead grow with the committee size.
Secondly, because finding a large number of trustworthy external
parties can be difficult in practice. Finding one size that fits all needs
is a delicate matter, and the numbers used in current proposals (10-
50 members [30]) are highly inadequate when dealing with high
profile deployments such as WhatsApp, iMessage or Zoom.

In summary, neither gossip, nor blockchains, nor external com-
mittees of consistency auditors are satisfying solutions to ensure
consistency for key transparency in high profile secure instant
messaging apps.

We note that concurrent work [22] explores another direction of
ensuring consistency for KT. The work in [22] provides a protocol
which does not use external parties for auditing consistency. This
is achieved by weakening the consistency guarantees of KT, so that
the protocol only ensures that split-views are detected by either the
party who queries for a key, or the key owner.

1.1.2 Practical Deployments. The drawbacks of state-of-the-art
academic proposals for Key Transparency consistency impact the
security of existing KT systems. Indeed, none of the systems we
consider currently provide a satisfactory consistency guarantee.

The consistency guarantees in iMessage come from gossip pro-
tocols [3], which due to the lack of proper OOB channels give
weak security guarantees. Zoom state that they “will partner with
independent external auditors” [6] for ensuring the consistency

guarantee, i.e. , they envision a future use of designated witnesses
but lack a solution at present. WhatsApp’s approach is to use an S3
bucket with a 5-year retention period [33]. This means that consis-
tency depends on a central third party, which is clearly undesirable
since KT is designed to avoid trust in third parties.

1.2 A Novel Approach to KT Consistency
As mentioned in Section 1.1.1, consistency comes trivially if one
is willing to accept the costs and assumptions associated with
blockchains [23, 34, 45], or more generally broadcast systems [24,
37].1 This is because by design such systems enjoy, among others,
two distinctive features:

(1) Consistency: each party can verify that they have a view of
an ordered list of data that is identical to the view of all other
parties,

(2) Guaranteed Output Delivery (GOD): each party has guaran-
teed access to any update of the list at specific time intervals.

We notice that for KT feature (1) suffices, and (2) is superfluous.
Hence one could attempt to dissect a blockchain as a broadcast
system, dispose of any machinery related to GOD, and extract just
what provides the consistency guarantees, in the hope of reducing
costs and assumptions. Unfortunately, consistency and GOD are not
easily separable – GOD enables consistency. Without guaranteed
output delivery, there is no machinery left to ensure that the same
value reaches all parties in the system, undermining consistency.

Since extracting a stand-alone mechanism for consistency is im-
possible, the next natural attempt is to design a novel mechanism
that replaces GOD while supporting consistency. This is precisely
the aim of gossip protocols and protocols relying on external com-
mittees, with the shortcomings for KT discussed in Section 1.1.1.

1.2.1 Contribution Summary. In this work, we follow a different
path. We define GOD-less broadcast, which is a protocol in which
each user can detect split view attacks by itself, and in such a case
immediately abort the protocol (die). We refer to this property
as “Consistency-or-Die” (CoD), and demonstrate that it can be
implemented without assuming GOD, OOB channels, or a trusted
committee of external reviewers. We further show that GOD-less
broadcast is efficient in practice, even for large scale applications
supporting a billion users. Our solution is both efficient and provides
much better security guarantees over billions of users in both theory
and practice compared to all previous works. Hence, GOD-less
broadcast represents the most promising candidate for providing
consistency for KT.

1.2.2 Overview of our Techniques. To guarantee consistency, we
employ a mechanism similar to external committees where each
member endorses its view, but with two significant novelties. The
first novelty is that the committee is neither external nor fixed.
Instead, for each epoch a fresh set of random and initially undisclosed
users is selected from all users in the system. This allows rooting
the distributed trust across the entire set of users rather than in a
small external committee, which a powerful adversary could easily
corrupt. The second novelty is that the data which constitutes the
view, e.g. a commitment to the current state by the identity provider,
1Although blockchains are not formally broadcast systems, they do implicitly provide
similar guarantees, and are often used as broadcast channels in the academic literature.

2

<latexit sha1_base64="K/UrSw1DMLl/yTpRf0rglkOz1U8=">AAAB9XicbVDLSgMxFL3js46vquDGTbAUXJUZEXVZ6sZlC05baIeSSTNtaCYzJhmlDP0OV4KCuBN/wj9w5cZvMX0stPVA4HDOvdyTEyScKe04X9bS8srq2npuw97c2t7Zze/t11WcSkI9EvNYNgOsKGeCepppTpuJpDgKOG0Eg6ux37ijUrFY3OhhQv0I9wQLGcHaSH47wrpPMM+8UYd18gWn5EyAFok7I4XyYe2bvVU+qp38Z7sbkzSiQhOOlWq5TqL9DEvNCKcju9hOFU0wGeAebRkqcESVn01Sj1DRKF0UxtI8odFEtX9tZDhSahgFZnKcUs17Y/E/r5Xq8NLPmEhSTQWZHgpTjnSMxhWgLpOUaD40BBPJTFhE+lhiok1RtmnBnf/zIqmfltzz0lnN1FGBKXJwBMdwAi5cQBmuoQoeELiFB3iCZ+veerRerNfp6JI12zmAP7DefwBgh5YY</latexit>Ui

<latexit sha1_base64="f+4gyW+NxjrEATrIwVxJJZuvTP0=">AAAB9XicbVDLSgMxFL3js7Y+qi7dBGvBVZkRUZdFNy4r2Ae0Q8mkmTY2kxmTTKUM/Q5XgoK4decP+Amu/BBdm2m70NYDgcM593JPjhdxprRtf1oLi0vLK6uZtWxufWNzK7+9U1NhLAmtkpCHsuFhRTkTtKqZ5rQRSYoDj9O6179I/fqASsVCca2HEXUD3BXMZwRrI7mtAOsewTypjNo37XzBLtljoHniTEmhfPD19j7IfVfa+Y9WJyRxQIUmHCvVdOxIuwmWmhFOR9liK1Y0wqSPu7RpqMABVW4yTj1CRaN0kB9K84RGYzX7ayPBgVLDwDOTaUo166Xif14z1v6ZmzARxZoKMjnkxxzpEKUVoA6TlGg+NAQTyUxYRHpYYqJNUVnTgjP753lSOyo5J6XjK1PHOUyQgT3Yh0Nw4BTKcAkVqAKBW7iHR3iy7qwH69l6mYwuWNOdXfgD6/UHPjSWvA==</latexit>Pj

<latexit sha1_base64="+hmA323gr2rpHWP/uaaB4Aogg8o=">AAACGHicbVDLSgNBEJz1bXxFPXoZEgRFCLsiKp6CevAYxUQhG8LspJMMmZ1dZ3rFsOQvcvJTPAkK4lVP+Rsnj4OvgoGiqrunu4JYCoOuO3Cmpmdm5+YXFjNLyyura9n1jYqJEs2hzCMZ6duAGZBCQRkFSriNNbAwkHATdM6G/s09aCMidY3dGGohaynRFJyhlerZgo/wgCrSIZNpqW0n0f0TegV3CRgUqkV3Uh+RnttNdG+3V8/m3YI7Av1LvAnJF3P+Xn9Q7Jbq2U+/EfEkBIVcMmOqnhtjLWUaBZfQy2z7iYGY8Q5rQdVSxUIwtXR0WI9uW6VBm5G2TyEdqZlvHSkLjemGga0MGbbNb28o/udVE2we11Kh4gRB8fFHzURSjOgwJdoQGjjKriWMa2GXpbzNNONos8zYFLzfN/8llf2Cd1g4uLRxnJIxFsgWyZEd4pEjUiQXpETKhJM+eSIv5NV5dJ6dN+d9XDrlTHo2yQ84H19uC6Lv</latexit>

Phase 2: Requesting (Distr)
<latexit sha1_base64="wSkFaa7MvS3T3KCqJ6Ydd2qM6J8=">AAACFnicbVDLSgMxFM34tr6qLt0ERVCUMqOi4qpYBJcVrAqdUjLpbRvMJENyRyxDf0Jc+CmuBAVxK7jq35i2LnwdCBzOuSfJPVEihUXf73kjo2PjE5NT07mZ2bn5hfzi0oXVqeFQ4VpqcxUxC1IoqKBACVeJARZHEi6j61Lfv7wBY4VW59hJoBazlhJNwRk6qZ7fDhFuUWkTM5mV2+4muntET1RDu4xq0Y0sRKQlMNjd7Nbza37BH4D+JcEXWSuuhlv3vWKnXM9/hA3N0xgUcsmsrQZ+grWMGRRcQje3HqYWEsavWQuqjioWg61lg7W6dN0pDdrUxh2FdKDmviUyFlvbiSM3GTNs299eX/zPq6bYPKxlQiUpguLDh5qppKhpvyPaEAY4yo4jjBvhPkt5mxnG0TWZcy0Ev3f+Sy52CsF+Ye/M1XFMhpgiK2SVbJCAHJAiOSVlUiGc3JFH8kxevAfvyXv13oajI95XZpn8gPf+CYsXoeY=</latexit>

Phase 3: Endorsing (Cert)

Phase 4: Consistency (Ver)
<latexit sha1_base64="EBgMeH23hn2octPZjEeDjJ0Ubks=">AAAB9HicbVDLSgMxFL1TX3V8VV26CZaCqzIjom7EYjduhAr2AZ2hZNK0Dc3MhCRTKEN/w5WgUNz6G36AC/FvzLRdaPVA4HDOvdyTEwjOlHacLyu3srq2vpHftLe2d3b3CvsHDRUnktA6iXksWwFWlLOI1jXTnLaEpDgMOG0Gw2rmN0dUKhZHD3osqB/ifsR6jGBtJM8LsR4QzNPq3aRTKDplZwb0l7gLUrx+t6/E9NOudQofXjcmSUgjTThWqu06QvsplpoRTid2yUsUFZgMcZ+2DY1wSJWfzkJPUMkoXdSLpXmRRjPV/rGR4lCpcRiYySykWvYy8T+vnejepZ+ySCSaRmR+qJdwpGOUNYC6TFKi+dgQTCQzYREZYImJNj3ZpgV3+c9/SeO07J6Xz+6dYuUG5sjDERzDCbhwARW4hRrUgYCAR3iGF2tkPVlT63U+mrMWO4fwC9bbN+CFlSE=</latexit>CM

<latexit sha1_base64="S/kuCFOPceiWbfwDlZV45RdRG1A=">AAAB9nicbVDLSgNBEOz1GddX1KOXwRDwFHZF1IsY9OJRwRghWcPs7GwyZHZmmZlVw5L/8CSoiFf/wg/wIP6Nk8dBowUNRVU33V1hypk2nvflTE3PzM7NFxbcxaXlldXi2vqllpkitEYkl+oqxJpyJmjNMMPpVaooTkJO62H3ZODXb6jSTIoL00tpkOC2YDEj2FjpOm/qGEXyVnCJo36rWPIq3hDoL/HHpHT07h6mz5/uWav40YwkyRIqDOFY64bvpSbIsTKMcNp3y81M0xSTLm7ThqUCJ1QH+fDsPipbJUKxVLaEQUPV/TGR40TrXhLazgSbjp70BuJ/XiMz8UGQM5FmhgoyWhRnHBmJBhmgiClKDO9Zgoli9lhEOlhhYmxSrk3Bn/z5L7ncqfh7ld1zr1Q9hhEKsAlbsA0+7EMVTuEMakBAwT08wpNz5zw4L87rqHXKGc9swC84b9+TNJYc</latexit>

download

<latexit sha1_base64="K/UrSw1DMLl/yTpRf0rglkOz1U8=">AAAB9XicbVDLSgMxFL3js46vquDGTbAUXJUZEXVZ6sZlC05baIeSSTNtaCYzJhmlDP0OV4KCuBN/wj9w5cZvMX0stPVA4HDOvdyTEyScKe04X9bS8srq2npuw97c2t7Zze/t11WcSkI9EvNYNgOsKGeCepppTpuJpDgKOG0Eg6ux37ijUrFY3OhhQv0I9wQLGcHaSH47wrpPMM+8UYd18gWn5EyAFok7I4XyYe2bvVU+qp38Z7sbkzSiQhOOlWq5TqL9DEvNCKcju9hOFU0wGeAebRkqcESVn01Sj1DRKF0UxtI8odFEtX9tZDhSahgFZnKcUs17Y/E/r5Xq8NLPmEhSTQWZHgpTjnSMxhWgLpOUaD40BBPJTFhE+lhiok1RtmnBnf/zIqmfltzz0lnN1FGBKXJwBMdwAi5cQBmuoQoeELiFB3iCZ+veerRerNfp6JI12zmAP7DefwBgh5YY</latexit>Ui

<latexit sha1_base64="o0oyauD2g6s44NDRYiJRg7rc+wA=">AAAB9XicdVDLSgNBEJyNrxhfUY9eBkPAU9iVmMct6EGPEc0DkiXMTnqTwdnZdWZWCUu+w5OgIF79GE/+jZNkBRUtaCiquunu8iLOlLbtDyuztLyyupZdz21sbm3v5Hf32iqMJYUWDXkoux5RwJmAlmaaQzeSQAKPQ8e7OZv5nTuQioXiWk8icAMyEsxnlGgjuUlf+fgKYHgOYjrIF+xS3XbqJ1W8ILVySip17JTsOQooRXOQf+8PQxoHIDTlRKmeY0faTYjUjHKY5or9WEFE6A0ZQc9QQQJQbjK/eoqLRhliP5SmhMZzNfdtIiGBUpPAM50B0WP125uJf3m9WPs1N2EiijUIuljkxxzrEM8iwEMmgWo+MYRQycyxmI6JJFSboHImha9X8f+kfVxyKqXyZbnQOE3zyKIDdIiOkIOqqIEuUBO1EEW36AE9oWfr3nq0XqzXRWvGSmf20Q9Yb59wepJ4</latexit>

SeedGen

<latexit sha1_base64="Snu7MsMk7BnUgc4Bps2N9VuxmCU=">AAAB8nicdVDLSsNAFL2prxpfVZduBkvBVUmk9rErunFZ0T6wDWUynbSDk0mYmQgl9C9cCQri1r9x5d84bSOo6IELh3Pu5d57/JgzpR3nw8qtrK6tb+Q37a3tnd29wv5BR0WJJLRNIh7Jno8V5UzQtmaa014sKQ59Trv+3cXc795TqVgkbvQ0pl6Ix4IFjGBtpNt0oAJ0zcZiNiwUnXLDcRtnNbQk9UpGqg3klp0FipChNSy8D0YRSUIqNOFYqb7rxNpLsdSMcDqzS4NE0RiTOzymfUMFDqny0sXJM1QyyggFkTQlNFqo9reJFIdKTUPfdIZYT9Rvby7+5fUTHdS9lIk40VSQ5aIg4UhHaP4/GjFJieZTQzCRzByLyARLTLRJyTYpfL2K/ied07JbLVeuKsXmeZZHHo7gGE7AhRo04RJa0AYCAh7gCZ4tbT1aL9brsjVnZTOH8APW2ydhWZFQ</latexit>

Sign
<latexit sha1_base64="NKHEyVqgko92IYaf/EiWHx1wq4k=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LJaCp5JIUY9FETxWsLWQhrLZbNqlm92wuxFK6M/wJCiIV3+NJ/+N2zYHbX0w8Hhvhpl5YcqZNq777ZTW1jc2t8rblZ3dvf2D6uFRV8tMEdohkkvVC7GmnAnaMcxw2ksVxUnI6WM4vpn5j09UaSbFg5mkNEjwULCYEWys5Pd1jG5FJJWmg2rNbbhzoFXiFaQGBdqD6lc/kiRLqDCEY619z01NkGNlGOF0Wqn3M01TTMZ4SH1LBU6oDvL5zVNUt0qEYqlsCYPmauXXRI4TrSdJaDsTbEZ62ZuJ/3l+ZuKrIGcizQwVZLEozjgyEs0CQBFTlBg+sQQTxeyxiIywwsTYmCo2BW/551XSPW94F43mfbPWui7yKMMJnMIZeHAJLbiDNnSAgIRneIU3J3NenHfnY9FacoqZY/gD5/MHaaGRQQ==</latexit>

Endorse

<latexit sha1_base64="y+eN+rS0l/VZGtHvMy2bfYADP8c=">AAAB/nicbVDLSsNAFJ3UV42v+Ni5GWwLrkpSRF0W3bisYB/QhjKZTtqhkwczN0oMBT/FlaAgbv0PV/6N0zYLbT1w4XDOvdx7jxcLrsC2v43Cyura+kZx09za3tnds/YPWipKJGVNGolIdjyimOAhawIHwTqxZCTwBGt74+up375nUvEovIM0Zm5AhiH3OSWgpb519MBhhGMZecTjgkOKy3G5b5Xsqj0DXiZOTkooR6NvffUGEU0CFgIVRKmuY8fgZkQCp4JNzEovUSwmdEyGrKtpSAKm3Gx2/gRXtDLAfiR1hYBnqvlrIiOBUmng6c6AwEgtelPxP6+bgH/pZjyME2AhnS/yE4EhwtMs8IBLRkGkmhAquT4W0xGRhIJOzNQpOIs/L5NWreqcV89ua6X6VZ5HER2jE3SKHHSB6ugGNVATUfSIntErejOejBfj3fiYtxaMfOYQ/YHx+QM99JT6</latexit>

with probability p

<latexit sha1_base64="W/xLRTw4HQ0lO8lgvpWe33PY7hU=">AAAB9HicdVDLSsNAFL2prxpfVZduBkvBVUik9rErunFZ0T6gCWUynbSDkwczk0IJ/Q1XgoK49Wdc+TdO2wgqeuDC4Zx7ufceP+FMKtv+MApr6xubW8Vtc2d3b/+gdHjUlXEqCO2QmMei72NJOYtoRzHFaT8RFIc+pz3//mrh96ZUSBZHd2qWUC/E44gFjGClJTdzZYBuKadEzYelsm01bad5UUcr0qjmpNZEjmUvUYYc7WHp3R3FJA1ppAjHUg4cO1FehoVihNO5WXFTSRNM7vGYDjSNcEilly2PnqOKVkYoiIWuSKGlan6byHAo5Sz0dWeI1UT+9hbiX94gVUHDy1iUpIpGZLUoSDlSMVokgEZM6Hf5TBNMBNPHIjLBAhOlczJ1Cl+vov9J99xyalb1plpuXeZ5FOEETuEMHKhDC66hDR0gkMADPMGzMTUejRfjddVaMPKZY/gB4+0T7cSSMw==</latexit>

Select

<latexit sha1_base64="K/UrSw1DMLl/yTpRf0rglkOz1U8=">AAAB9XicbVDLSgMxFL3js46vquDGTbAUXJUZEXVZ6sZlC05baIeSSTNtaCYzJhmlDP0OV4KCuBN/wj9w5cZvMX0stPVA4HDOvdyTEyScKe04X9bS8srq2npuw97c2t7Zze/t11WcSkI9EvNYNgOsKGeCepppTpuJpDgKOG0Eg6ux37ijUrFY3OhhQv0I9wQLGcHaSH47wrpPMM+8UYd18gWn5EyAFok7I4XyYe2bvVU+qp38Z7sbkzSiQhOOlWq5TqL9DEvNCKcju9hOFU0wGeAebRkqcESVn01Sj1DRKF0UxtI8odFEtX9tZDhSahgFZnKcUs17Y/E/r5Xq8NLPmEhSTQWZHgpTjnSMxhWgLpOUaD40BBPJTFhE+lhiok1RtmnBnf/zIqmfltzz0lnN1FGBKXJwBMdwAi5cQBmuoQoeELiFB3iCZ+veerRerNfp6JI12zmAP7DefwBgh5YY</latexit>Ui

<latexit sha1_base64="opBluWmSY8yZINh5KkJ1PEeA3Do=">AAACAXicbVDLSgMxFL1TX3V8jbpw4SZYCq7KjBR1WXTjzir2Ae1QMmmmDc1MhiQjlNJu/BRXgoK49TNc+Tem7Sy09UDgcM595J4g4Uxp1/22ciura+sb+U17a3tnd8/ZP6grkUpCa0RwIZsBVpSzmNY005w2E0lxFHDaCAbXU7/xSKViIn7Qw4T6Ee7FLGQEayN1nKO2ChERsTKraKwnt/cTHAipO07BLbkzoGXiZaQAGaod56vdFSSNzBDCsVItz020P8JSM8Lp2C62U0UTTAa4R1uGxjiiyh/NLhijolG6KBTSvFijmWr/6hjhSKlhFJjKCOu+WvSm4n9eK9XhpT9icZKa88h8UZhypAWaxoG6TFKi+dAQTCQzn0WkjyUm2oRmmxS8xZuXSf2s5J2XynflQuUqyyMPx3ACp+DBBVTgBqpQAwJjeIZXeLOerBfr3fqYl+asrOcQ/sD6/AHPxZcZ</latexit>

consistent OR abort

<latexit sha1_base64="TloMJyhwd/1kUxdmbkNoUUEiFIc=">AAAB+nicdVDLSgMxFM3UVx1foy7dBNuCqzJTtNPuim5cVrCt0JaSSW/b0ExmSDKFMvZPXAkK4tY/ceXfmD4EFT1w4XDOvcm9J4g5U9p1P6zM2vrG5lZ2297Z3ds/cA6PmipKJIUGjXgk7wKigDMBDc00h7tYAgkDDq1gfDX3WxOQikXiVk9j6IZkKNiAUaKN1HMciCM6wnnIY6WJ1Krn5Nyi73rViwpeEr+6ImUfe0V3gRxaod5z3jv9iCYhCE05UartubHupuYtRjnM7EInURATOiZDaBsqSAiqmy5Wn+GCUfp4EElTQuOFan+bSEmo1DQMTGdI9Ej99ubiX1470YNKN2UiTjQIuvxokHCsIzzPAfeZBKr51BBCJTPLYjoiklBt0rJNCl+n4v9Js1T0ysXzm1KudrnKI4tO0Ck6Qx7yUQ1dozpqIIom6AE9oWfr3nq0XqzXZWvGWs0cox+w3j4BcVGTdw==</latexit>

epoch e starts

<latexit sha1_base64="/eiR4TruVhxya7ZmUtNZH8LuMZ4=">AAAB9nicdVBNS8NAEN34WetX1aOXxbbgqSRFm/ZW9OKxgv2ANpbNZtou3WzC7kYspf/Dk6AgXv0vnvw3btsIKvpg4PHeDDPz/JgzpW37w1pZXVvf2MxsZbd3dvf2cweHLRUlkkKTRjySHZ8o4ExAUzPNoRNLIKHPoe2PL+d++w6kYpG40ZMYvJAMBRswSrSRbiGO6AgXoIBBBKqfy9sl13Zq51W8JG4tJRUXOyV7gTxK0ejn3ntBRJMQhKacKNV17Fh7UyI1oxxm2WIvURATOiZD6BoqSAjKmy7OnuGiUQI8iKQpofFCzX6bmJJQqUnom86Q6JH67c3Fv7xuogdVb8pEnGgQdLlokHCsIzzPAAdMAtV8YgihkpljMR0RSag2SWVNCl+v4v9Jq1xyKqWz63K+fpHmkUHH6ASdIge5qI6uUAM1EUUSPaAn9GzdW4/Wi/W6bF2x0pkj9APW2yct2pI7</latexit>

epoch e ends

<latexit sha1_base64="bPXz+V1U7GlJLhsy1HQMOjOLmzw=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LJaCp5JIUY9FLx4r2FZsQ9lsN+3SzSbsToQS+i88CQri1X/jyX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGP9EFDDpVC8hQIlf0g0p1EgeScY38z8zhPXRsTqHicJ9yM6VCIUjKKVHnsmJNYW4aRfrrg1dw6ySrycVCBHs1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9L1V5qeELZmA5511JFI278bH7ylFStMiBhrG0pJHO19Gsio5ExkyiwnRHFkVn2ZuJ/XjfF8MrPhEpS5IotFoWpJBiT2f9kIDRnKCeWUKaFPZawEdWUoU2pZFPwln9eJe3zmndRq9/VK43rPI8inMApnIEHl9CAW2hCCxgoeIZXeHPQeXHenY9Fa8HJZ47hD5zPH+gXkPw=</latexit>

verify
<latexit sha1_base64="1LzjMTU1uHYzwWIBelpVm0qrQT8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBEvBVZmRoi6L3bisYB/QDiWT3mlDM5khyRTK0N9wJSiIW3/GlX9j+lho64HA4ZxzuTcnSATXxnW/ndzW9s7uXn6/cHB4dHxSPD1r6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WBcn/vtCSrNY/lkpgn6ER1KHnJGjZV6PR2S+giZTcp+seRW3AXIJvFWpAQrNPrFr94gZmmE0jBBte56bmL8jCrDmcBZodxLNSaUjekQu5ZKGqH2s8XRM1K2yoCEsbJPGrJQC78mMhppPY0Cm4yoGel1by7+53VTE975GZdJalCy5aIwFcTEZN4AGXCFzIipJZQpbo8lbEQVZcb2VLAteOt/3iSt64p3U6k+Vku1+1UfebiAS7gCD26hBg/QgCYwSOAZXuHNmTgvzrvzsYzmnNXMOfyB8/kD192ReQ==</latexit>

CheckCon

<latexit sha1_base64="dQqVT8BgwBxhJOA2+PjlD1Gncjw=">AAACFnicbVDLSgMxFM3UV62vqks3oaVQUcqMiIqrohuXFewDOqVk0rQNzWSG5I5Yhv6EuPBTXAkK4lZw1b8x03ahrQcCh3PuTXKOFwquwbbHVmppeWV1Lb2e2djc2t7J7u7VdBApyqo0EIFqeEQzwSWrAgfBGqFixPcEq3uD68Sv3zOleSDvYBiylk96knc5JWCkdvbYBfYAMlA+EXGlb27CziU2e4LRZAIXYxcgEUaHo3Y2b5fsCfAicWYkX865R0/j8rDSzn67nYBGPpNABdG66dghtGKigFPBRpmCG2kWEjogPdY0VBKf6VY8iTXCBaN0cDdQ5kjAEzXzayMmvtZD3zOTPoG+nvcS8T+vGUH3ohVzGUbAJJ0+1I0EhgAnHeEOVya9GBpCqOLms5j2iSIUTJMZ04Izn3mR1E5Kzlnp9NbUcYWmSKMDlENF5KBzVEY3qIKqiKJH9ILe0Lv1bL1aH9bndDRlzXb20R9YXz90VKHX</latexit>

Phase 1: Collection (Col)

Figure 1: Illustration of core components and phases of GOD-
less broadcast.

needs to be delivered before the identities of the committee members
become known. This makes users tasked with endorsing a view
untargetable for an adversary.

Figure 1 illustrates the core mechanisms of our approach. Time
in the protocol proceeds in consecutive epochs. Each epoch is di-
vided into four non-overlapping phases. In the first phase (Col),
the channel maintainer CM collects data from publishing parties
P𝑗 . In the second phase (Distr), CM organizes the collected data
into what we call the view for the current epoch, and distributes
the signed view as a reply to download queries from usersU𝑖 . In
the third phase (Cert), users independently run a mechanism for
selecting a committee of endorsers that will certify the view of
the epoch in a way that is cryptographically sound and does not
reveal the identity of committee members until they publish an
endorsement to the CM (using a hidden committee [15, 16, 23, 27],
see Section 2). In our mechanism, users get a common seed and
evaluate a Verifiable Random Function (VRF) (see Definition 2.1)
on the seed – using their own secret VRF key. If the VRF output is
below a fixed threshold value, they endorse the view they received
in the previous phase by signing it and sending it to CM along
with the VRF proof for public audit of their selection as the cur-
rent epoch’s endorsers. This mechanism is essential in our security
analysis. In the fourth and final phase Ver, each user verifies the
consistency of the view received in the second phase. This entails
downloading a set of endorsements from the CM, and verifying
that it contains a quorum of legitimately selected endorsers forU𝑖 ’s
view. Setting the quorum value is another core part of our security
analysis. If this consistency check fails, the user aborts and ceases
to participate in the protocol for all future epochs, i.e. it “dies”.

In contrast to gossip protocols, our approach enables immediate
detection of split-view attacks, by the user itself, provides strong
detection guarantees where all split-views are detected, and is com-
patible with the in-band communication pattern with an adversarial
central party present in Key Transparency. Compared to external
committee consistency protocols, it roots the consistency guaran-
tee in the honest majority of the entire population of users (i.e. in
billions of users in the case of WhatsApp) rather than a small set
of targetable external auditors.

1.3 Contributions
Motivated by the lack of satisfactory solutions for consistency in
KT, we propose a novel solution. Along the journey to our concrete
construction, we make contributions at different levels.

(1) We introduce and formalize the notion of GOD-less broadcast
(Section 3), i.e., a broadcast mechanism without the GOD
property, but still complete and consistent.

(2) We provide a generic construction of a GOD-less broad-
cast protocol that makes black box use of standard building
blocks: a PKI, a signature scheme and a hidden committee
protocol (Section 4).

(3) We discuss how to efficiently instantiate our GOD-less broad-
cast protocol using well-known cryptographic schemes and
provide estimate benchmarks for the heaviest procedures to
argue feasibility of the overall construction.

(4) We provide an extensive security analysis of our GOD-less
broadcast protocol. Notably existing security approaches in
the field rely on the guaranteed output delivery property
of broadcast channels and hence cannot be applied to our
construction. Our analysis leverages results from combina-
torics that have not been employed in previous work [4, 17]
and reveals a concrete mechanism to identify optimal quo-
rum values. A quorum is a concept introduced in this work
related to preventing split view attacks.

(5) As a minor contribution, we also show how our novel se-
curity analysis can be applied to broadcast systems with
guaranteed output delivery, and draw connections between
split view attacks in the GOD-less setting and honest major-
ity committees in broadcast systems with GOD.

2 PRELIMINARIES
VRFs A Verifiable Random Function [19] (VRF) allows a prover to,
given a seed, output a value which is verifiably random to a verifyer.
It is defined as in Definition 2.1.

Definition 2.1 (Verifiable Random Function). A VRF consists
of the following procedures:
KeyGen(𝜆) → (sk, pk): This procedure on input a security parameter
𝜆 outputs a secret key sk and a public key pk.
Prove(sk, s) → (𝑟, 𝜋𝑟): This procedure on input a secret key sk and a
seed s, outputs a value 𝑟 and a proof 𝜋𝑟 .
Verify(pk, s, 𝑟 , 𝜋𝑟) → 0/1: This procedure, on input a public key pk,
a seed s, a value 𝑟 , and a proof 𝜋𝑟 , outputs 1 if the proof verifies, and
0 otherwise.

A VRF is secure if it has uniqueness, i.e. for each (pk, 𝜋𝑟) there
is a single 𝑟 which will verify, it has provability, i.e. a correctly
produced 𝑟 and 𝜋𝑟 will always verify, and it has pseudorandomness,
i.e. a computationally bounded adversary has a negligible advantage
in distinguishing 𝑟 from randomness. For formal definitions of these
properties we refer to [19].

The above properties which are the common ones required for a
VRF however do not account for malicious key generation, which
if not accounted for can impact the output of the VRF to skew the
distribution. In our scenario, we must account for this and therefore
require a VRFwith unpredictability under malicious key generation.
Informally, this guarantees that regardless of how the public key
was generated, the output of the VRF must be random. For formal
definitions we refer to [16].

Hidden Committees Hidden committee protocols [15, 16, 23,
27] are protocols for selecting a subset of users from a universe of

3

users in a way so that: (1) users are selected at random, (2) the iden-
tity of each selected user is anonymous to all parties except the user
itself (including other selected users), and (3) any selected user can
choose to reveal itself as selected in a verifiable way. Such protocols
make it hard both for selected committee members to collude, and
for adversaries to target committee members for corruption. Hid-
den committees have been used both in Proof-of-Stake [16, 23, 27]
and in You Only Speak Once (YOSO) style protocols [4, 8, 9, 21]. In
order to facilitate black box use of hidden committee schemes, we
will use the following syntax.

Definition 2.2 (Hidden Committees). A Hidden Committee
selection protocol (HC) has the following procedures:
KeyGen(𝜆) → (sk, pk): This procedure on input a security parameter
𝜆 outputs a secret key sk and a public key pk to the calling user.
Select(sk, s,𝑇) → (𝛽,𝑦, 𝜋): This procedure on input a secret key sk,
the seed s, and a threshold for selection 𝑇 , outputs values 𝛽,𝑦 and 𝜋 ,
where 𝛽 indicates whether𝑦 < 𝑇 , and 𝜋 is a proof that𝑦 was correctly
computed from s and sk.
Verify(pk, s, 𝑦,𝑇 , 𝜋) → 0/1: This procedure on input a public key pk,
a seed s, a value 𝑦, a threshold 𝑇 , and a proof 𝜋 , outputs 1 if 𝑦 < 𝑇

and 𝜋𝑖 is a valid proof with respect to s and pk𝑖 . Else it outputs 0.

Informally, a hidden committee selection scheme is correct if
for all honestly generated (𝛽,𝑦, 𝜋) ← Select(sk, s,𝑇) it holds that
Verify(pk, s, 𝑦,𝑇 , 𝜋) = 𝛽 with probability 1.

Informally, we say that an HC scheme is secure if it is: (1) anony-
mous, i.e. that an adversary given a public key of an honest user and
a seed has a negligible advantage in predicting whether the user
will be selected, and (2) unforgeable, i.e. that an adversary cannot
forge a proof of selection except with negligible probability.

3 INTRODUCING GOD-LESS BROADCAST
We introduce GOD-less broadcast: a lightweight version of a broad-
cast channel that can be realized in a concretely efficient way,
and without relying on complex blockchain ecosystems. Efficiency
comes by replacing the distributed system (typical in blockchains)
with an untrusted central party (typical in transparency logs), and
by relaxing some properties;

• GOD-less broadcast achieves the same consistency guaran-
tees as broadcast,
• differently from broadcast, GOD-less broadcast makes no
guarantees on message delivery, i.e. it provides neither cen-
sorship resistance nor guaranteed output delivery (as is the
case in transparency logs),
• instead, GOD-less broadcast provides abort upon discovery
of an inconsistent view (honest parties that discover an in-
consistency will abort and become inactive).

3.1 Model
We now formally model GOD-less broadcast.

3.1.1 Entities, Roles, and States. A GOD-less broadcast system
consists of the following entities (input/output processes):

• A channel maintainer CM, which maintains a list of pub-
lished messages, and answers queries for these messages.

• A set of 𝑁 ∈ N users, each user denotedU𝑖 , which receives
broadcast messages via CM. The set of users is allowed to
evolve over time.
• A set of publishers, each publisher denoted P𝑗 , which can
broadcast messages via CM. A publisher can be an external
party, the CM, or a user.

At specific points in time a number 𝑛 ≪ 𝑁 of users are assigned
an e𝑛𝑑𝑜𝑟𝑠𝑒𝑟 role. The role of an endorser is to ensure that CM
presents a consistent view of published messages to all U𝑖 . At
any point in time honest users are in one of two possible states;
consistent, meaning that their view equals the one of all other users
in the consistent state, or abort, meaning that the user discovered a
discrepancy in their view (which may happen due to the GOD-less
broadcast property) and should cease to participate in the protocol.

3.1.2 Architecture. GOD-less broadcast relies on a central main-
tainer. Publishers have interfaces to send to-be-broadcast messages
to the maintainer. Users have interfaces to receive (query) the cur-
rent view and endorsements from the maintainer, and to endorse a
view (when acting as an endorser).

3.1.3 Infrastructure. Our protocol implementing a GOD-less broad-
cast system relies upon a public key infrastructure (PKI) that binds
identities to keys. This means that the PKI stores a publicly accessi-
ble directory containing label-value records of the form (username,
public key) for every party in the system. In our case, we will have
a channel maintainer record (CM, 𝑝𝑘CM), and user records of the
form (U𝑖 , pk𝑖). It is assumed that each user has a single identity
key registered in the PKI. Keys are allowed to be updated.

3.1.4 Time, Epochs and Phases. GOD-less broadcast does not in-
clude any notion of time per se, as natively it is an asynchronous
system. However, we do need a notion of time to decide whether
a message is simply delayed or completely suppressed. We do so
by using epochs as an abstract time-unit, and collect and distribute
messages in epoch-batches.

Epochs progress in an incremental way via a nextep() mecha-
nism. Each epoch is divided into four phases: data collection, data
distribution, data certification, and data verification. The syntax of a
GOD-less broadcast protocol follows these four phases. First, during
the data collection phase Col, publishers submit data to the channel
maintainer CM which collects these messages into a list M𝑒 . Sec-
ond, during the data distribution phase Distr, CM distributes M𝑒

to users. Third, during the data certification phase Cert, a special
subset of users act as endorsers by sending an endorsement of their
view, which CM collects into E𝑒 , Fourth and finally, during the
data verification phase Ver, all users query for E𝑒 and verify their
view against the endorsements in E𝑒 , so that all honest parties in
the consistent state have the same view.

The system can tolerate a certain fraction of users which are
offline in each epoch (in fact, there is no way of telling whether a
user is offline or is targeted by adversarial message suppression).
Users are thus not expected to maintain any state across epochs
except for their own key pairs and some fixed public parameters.
That is, any party can securely participate in epoch 𝑒 without having
obtained any of the messages sent during epoch 𝑒 − 1.

4

3.1.5 Adversary. We consider a malicious adversaryA which con-
trols the communication network. In particular, A intercepts all
protocol messages and can arbitrarily suppress messages to and
from CM. In addition, the adversary can corrupt up to a fraction
𝑓 < 1

3 of active users in the system in an adaptive way. Corruption
needs to happen within the first two phases of each epoch.

3.2 Syntax
Definition 3.1 provides the syntax of a GOD-less broadcast protocol.
To reflect the nature of most centralized systems, all interactive
procedures are initiated by a user or publisher. If one wishes, it
is trivial to change the model so that the central party initiates
procedures. GOD-less broadcast relies on a few external resources;
• a public key infrastructure (PKI) that collects the public
keys needed in the system,
• a mechanism to advance epochs nextep(), e.g., one can
think that epochs are advanced every 20 seconds,
• amechanism to advance phaseswithin an epoch nextph(),
e.g., phases last 5 seconds,
• and a hidden committee protocol HC.

Definition 3.1 (GBC). A GOD-less broadcast protocol (GBC) is
defined for a channel maintainer CM, a set of users U1, . . . ,U𝑁 ,
and a set of publishers P1, . . . ,P𝑚 . In each epoch CM has an ini-
tially empty list of published messages M𝑒 , and an initially empty
endorsement list E𝑒 . GBC is defined by the following procedures.

Setup(1𝜆) → (pp): The setup procedure takes as input a security
parameter 𝜆 and the PKI information. It outputs public parameters
pp that are implicit input to all subsequent algorithms. The public
parameters include at least; the description of all public parameters
of the external resources; a starting epoch counter 𝑒 = 0; an initial
phase Col; a threshold 𝑇 for selection of endorsers (by HC); and a set
of user identifiersU𝑖 and publisher identifiers P𝑖 .

Send = ⟨P𝑗 (data, 𝑒);CM(M𝑒′ , 𝑒
′)⟩: This interactive procedure

can be run multiple times during phase Col, and is initiated by a
publisher P𝑗 , who sends its epoch value 𝑒 and data for publication
to CM. The CM compares the user’s epoch counter 𝑒 with its own
𝑒′. If equal, CM accepts, stores the data for publication inM𝑒′ and
returns “ok” to P𝑗 .

Get = ⟨U𝑖 (𝑒);CM(skCM ,M𝑒′ , 𝑒
′)⟩: This interactive procedure

is initiated by every active user in the system, who during Distr
sends its epoch 𝑒 to CM. If 𝑒 = 𝑒′, CM computes a token 𝜎𝑒′ (e.g. a
signature) which binds it toM𝑒′ and sends (M𝑒′ , 𝜎𝑒′) toU𝑖 .

Endorse = ⟨U𝑖 (sk𝑖 ,M𝑒 , 𝜎𝑒 , 𝑒);CM(E𝑒′ ,M𝑒′ , 𝑒
′)⟩: In phase Cert,

this interactive procedure is initiated once by every active user, who
holds its secret key sk𝑖 , its channel view M𝑒 , a binding token 𝜎𝑒
(obtained during the Distr phase), and its epoch counter. The user
first checks if it is an endorser in epoch 𝑒 (via HC), and if so sends an
endorsement of its view to CM. CM verifies if 𝑒 = 𝑒′ and if the user
is an endorser. If true it stores the endorsement in E𝑒′ .

CheckCon = ⟨Ui (Me, 𝜎e, e);CM(Ee′ , e′)⟩: In phase Ver, this
interactive procedure is initiated by every user, who holds its channel
viewM𝑒 and token 𝜎𝑒 (obtained during the Distr phase) for epoch
𝑒 . U𝑖 requests the endorsements for epoch 𝑒 from CM. If 𝑒 = 𝑒′,
CM replies with the list of endorsements E𝑒′ . Upon receiving E𝑒′ ,U𝑖

checks its validity. If the check failsU𝑖 sets it state to abort and stops
participating in the protocol, elseU𝑖 considersM𝑒 valid.

3.3 Properties
GOD-less broadcast enjoys completeness and consistency.

Completeness ensures that if parties involved in the protocol be-
have honestly, the verification procedure will leave users in a consistent
state. This property holds for every epoch, under the assumption
that each procedure is executed solely in the designated phase, and
there is no temporal overlap between phases.

Consistency, on the other hand, guarantees that there exists a
unique view which is shared among all honest users in the consis-
tent state. We formalize this security property as follows:

Definition 3.2 (Consistency). For any 2 distinct honest users
U𝑖 andU𝑗 , 𝑖 ≠ 𝑗 , the event whereU𝑖 holds view M𝑒 ,U𝑗 holds view
M
∗
𝑒 , M

∗
𝑒 ≠ M𝑒 , and both users end up in the consistent state at the

end of epoch 𝑒 , has a negligible probability of happening.

This property holds for every epoch, under the assumptions that
each procedure is executed solely in the designated phase, there is
no temporal overlap between phases, and that the building blocks
used in GBC are secure.

4 CONSTRUCTING GOD-LESS BROADCAST
In this section we show how to construct a secure GBCfrom black
box use of a few building blocks. Our security analysis is generic
and relies on the properties of the different building blocks.

4.1 Building Blocks
We make black-box use of the standard building blocks of a PKI, a
signature scheme, and a hidden committee protocol.

4.1.1 SeedGen. We also rely on black box use of a function s𝑒 ←
SeedGen(𝑒) which takes an epoch counter 𝑒 as input and outputs
the seed s𝑒 of the epoch. A SeedGen is correct if all honest parties
in the consistent state receive an identical output, except with a
negligible probability. It is secure if it is unpredictable, meaning that
an adversary has a negligible advantage in predicting its output
s𝑒 before the time 𝑒 − 𝛿 (𝑒 being the current epoch and 𝛿 being a
number of epochs or phases). The period between 𝑒 − 𝛿 and 𝑒 is
referred to as the leaky period. There are multiple ways to realize
such a function, which we detail in Section 4.5.

4.2 Our GBC Protocol
Our GBC protocol is presented in Protocol 1. In addition to the
security parameter, the protocol takes as input a threshold, 𝑇 , that
sets the probability for a user being selected as an endorser. The
protocol also takes as input the quorum size 𝑘 which is a positive
integer cutoff value that sets the number of needed endorsements
for a view to be accepted.

4.2.1 Assumptions. In this section, we will assume that 𝑇 and 𝑘
are set to secure values. How to securely set them is discussed in
depth in Section 5.

To save on notation, Protocol 1 makes no explicit calls to obtain
public keys from the PKI, and instead assumes that they are readily
available from the PKI. It is also assumed that public keys which are
updated in the PKI are not considered valid until after a time equiv-
alent to the leaky period of SeedGen. Functionality for efficiently
checking when a key in the PKI was updated is present in PKIs

5

with append-only properties, which is the case in our intended use
case of KT (see further details in Section 6.1).

We assume a one time setup in which all the necessary public
parameters are generated, all public keys of the initial users are
collected in a PKI, all lists are initialized to ∅ (at epoch 𝑒 = 0), and
every userU𝑖 is set in a consistent state.

4.2.2 Protocol Description. To keep in line with the design of mes-
saging apps, all procedures are initiated by users or publishers who
send requests or upload data to the channel maintainer CM. The
channel maintainer, in turn, checks that each request is for the
current epoch before acting on it (e.g. in line 2 in the Send proce-
dure). Each time a user initiates a procedure it starts with checking
whether it is still in a consistent state, or if it has detected a split
view and entered the abort state and shall thus not participate in
the protocol any further.

The Send procedure takes place during the Col phase and can be
initiated by a publisher who wishes to upload data for publication.
The CM stores any such data it receives.

The rest of the procedures must be initiated by all honest active
users in each epoch.

The Get procedure takes place during the Distr phase. Here, all
active honest users request the data published during the current
epoch from CM (line 3). CM in turn constructs a token in the
form of a signature (line 5), and responds each request with the
data and the token (line 6). The purpose of the token is to allow users
who later are selected as endorsers to prove that their view was
actually given by the CM and not falsified by a corrupt endorser.
It also allows non-selected users to efficiently compare their views
with endorsed views. Note that at this point the consistency of the
published data is not yet audited and thus it should not be trusted.

The Endorse procedure takes place during the Cert phase. Here
all users first check if they are selected as endorsers (line 3 and 4).
If not (line 5), they end the procedure for this epoch. If they are
selected, they create an endorsement of their view using their secret
key and the token obtained from CM in the Get procedure (line 8
and 9), and send their endorsement and proof of being selected as a
witness to the CM (line 10). When the CM obtains the message, it
checks if it comes from a valid endorser in the current epoch (line
12 and 13), and in that case stores the endorsement (line 14).

TheCheckCon procedure takes place during the Ver phase. Here
all users verify whether they have a consistent view of the data
sent over GBC for the current epoch. Each user requests the en-
dorsements for this epoch from CM (line 3), who responds with all
endorsements it has received (line 5). Each user then filters out any
endorsements which are not from a valid endorser of this epoch
(lines 8-10). It then checks if the set of endorsements from valid
endorsers is sufficiently large (line 12), and if all the endorsements
agree with the view of the user (13). If true, the user sets its state
to consistent. Otherwise it has detected a split view or a failure in
obtaining sufficiently many valid endorsements. In either of those
cases, the user sets its state to abort and ceases to participate for
all future epochs.

4.3 Analysis of Protocol 1
4.3.1 Completeness. An honest CM distributes the same view
M𝑒′ with the same signature 𝜎𝑒′ to all parties. Hence, all honest

Protocol 1 – Our GOD-less broadcast Protocol (GBC)
from: SeedGen, PKI, Sig, HC, 𝑘 ∈ N.

Entities: CM channel maintainer; P𝑗 publishers; U𝑖 users.
Notation: sk.𝑋𝑖 is U𝑖 ’s secret key for protocol 𝑋 (sk𝑖 contains all sk.𝑋𝑖 ’s).

Send = ⟨P𝑗 (data, 𝑒);CM(M𝑒′ , 𝑒
′)⟩ Col

1: P𝑗 sends (send, data, 𝑒) to CM.
2: if 𝑒 = 𝑒′ then:
3: CM appends data toM𝑒′ and sends “ok” to P𝑗 .

Get = ⟨U𝑖 (𝑒);CM(skCM ,M𝑒′ , 𝑒
′)⟩ Distr

1: if U𝑖 is in the abort state then
2: end procedure here.
3: U𝑖 sends (download, 𝑒) to CM.
4: if 𝑒 = 𝑒′ then
5: CM computes 𝜎𝑒′ ← Sig.Sign(sk.SigCM ,M𝑒′ , 𝑒

′)
6: CM sends (view,M𝑒′ , 𝜎𝑒′) toU𝑖 .
7: Upon receiving (view,M𝑒′ , 𝜎𝑒′) U𝑖 checks:
8: if 0 = Sig.Verify(pkCM , (M𝑒′ , 𝑒), 𝜎𝑒′) then
9: U𝑖 sets its state to abort.

Endorse = ⟨U𝑖 (sk𝑖 ,M𝑒 , 𝜎𝑒 , 𝑒);CM(E𝑒′ ,M𝑒′ , 𝑒
′)⟩: Cert

1: if U𝑖 is in abort state then
2: U𝑖 ends here.
3: U𝑖 obtains s𝑒 ← SeedGen(𝑒)
4: U𝑖 computes (𝛽,𝑦𝑖 , 𝜋𝑖) ← HC.Select(sk.HC𝑖 , s𝑒)
5: if 𝛽 = 0 then
6: U𝑖 ends here.
7: else (U𝑖 has e𝑛𝑑𝑜𝑟𝑠𝑒𝑟 role in epoch 𝑒)
8: U𝑖 sets view𝑖 ← (𝑒,M𝑒 , 𝜎𝑒)
9: U𝑖 lets 𝜖𝑖 ← Sig.Sign(sk.Sig𝑖 , view𝑖)
10: U𝑖 sends (endorse,𝑤𝑖 = (𝑦𝑖 , 𝜋𝑖 , 𝜖𝑖 , 𝑒)) to CM.
11: On input (endorse,𝑤𝑖), CM parses𝑤𝑖 as (𝑦𝑖 , 𝜋𝑖 , 𝜖𝑖 , 𝑒)
12: CM obtains s𝑒′ ← SeedGen(𝑒′)
13: if 𝑒 = 𝑒′ ∧ 1 = HC.Verify(pk.HC𝑖 , s𝑒′ , 𝑦𝑖 ,𝑇 , 𝜋𝑖) then
14: CM lets E𝑒′ = E𝑒′ ∪ {(𝑦𝑖 , 𝜋𝑖 , 𝜖𝑖)}.

CheckCon = ⟨Ui (Me, 𝜎e, e);CM(Ee′ , e′)⟩: Ver

1: if U𝑖 is in abort state then
2: U𝑖 ends here.
3: U𝑖 sends (verify, 𝑒) to CM.
4: if 𝑒 = 𝑒′ then
5: CM sends (verify , E𝑒′) toU𝑖 .
6: Upon receiving (verify , E𝑒′),U𝑖 lets 𝑉 ← ∅
7: U𝑖 obtains s𝑒 ← SeedGen(𝑒)
8: for𝑤 𝑗 = (𝑦 𝑗 , 𝜋 𝑗 , 𝜖 𝑗) ∈ 𝐸𝑒′ do
9: if 1 = HC.Verify(pk.HC𝑗 , s𝑒 , 𝑦 𝑗 ,𝑇 , 𝜋 𝑗) then
10: U𝑖 lets 𝑉 ← 𝑉 ∪ {pk.Sig𝑗 , 𝜖 𝑗 }
11: U𝑖 sets view← (𝑒,M𝑒 , 𝜎𝑒)
12: if (|𝑉 | ≥ 𝑘) then (Quorum Check)
13: if ∀ (pk𝑖 , 𝜖𝑖) ∈ 𝑉 , 1 = Sig.Verify(pk𝑖 , view, 𝜖𝑖) then
14: U𝑖 sets its state as consistent.
15: else
16: U𝑖 sets its state to abort.

6

parties share the same, consistent view. Since SeedGen and HC are
correct, an honest CM will accept all endorsements from honest
endorsers during the Cert phase. Recall that the quorum parameter
𝑘 is set so that CM will collect at least 𝑘 endorsements of the same
view (more details on this in Section 5). Moreover, when the set
of endorsements is sent to a user in the Ver phase, each endorsing
signature verifies (due to Sig being correct, and the endorsements
coming from honest parties). This means that, at each epoch, all
honest users that start in a consistent state are left in a consistent
state, proving the protocol complete.

4.3.2 Consistency: Recall that by definition a GOD-less broadcast
protocol is consistent if at each epoch, there is a negligible proba-
bility that two honest users –who start in a consistent state– end
up in the state consistent after the Cert phase, while holding two
distinct views M∗𝑒 ≠ M𝑒 . For conciseness we refer to this condi-
tion as the split view attack. This property should hold under the
presence of an adaptive adversary A which can drop and inject
messages, and can corrupt a fraction of the parties, including the
channel maintainer CM. In what follows we argue that the split
view attack can only occur with negligible probability.

Assume the setting of the split view attack and denote the two
honest users asU and Û, and their views obtained during the Distr
phase as (M𝑒 , 𝜎𝑒) and (M̂𝑒 , 𝜎𝑒) respectively. After the completion of
the Ver phase,U and Û are both in a consistent state andM𝑒 ≠ M̂𝑒

We distinguish two cases depending on whether or not A cor-
rupts the channel maintainer.

The case of an honest CM: If CM is honest, at each epoch,
it distributes one consistent signed view (M𝑒 , 𝜎𝑒). Hence the split
view attack happens only if the adversary drops the messages from
the channel maintainer and injects one or more alternative views.
However, since CM is honest, A would need to successfully forge
a valid signature 𝜎𝑒 for an alternative view M̂𝑒 , which contradicts
the security assumption on the signature scheme Sig.

The case of a corrupt CM: This case is more delicate, since now
A can produce several views. We consider here an adversary that
corrupts parties before the Cert phase of each epoch (we discuss
how to remove this simplifying assumption in 4.3.3).

First, we observe that A cannot learn the identity of honest
endorsers and thus cannot target them for corruption. This is due
to the fact thatA needs to corrupt before it sees endorse messages
(line 10 in Endorse), and to the fact that given only users’ public
keys and the seed,A cannot guess who will have the e𝑛𝑑𝑜𝑟𝑠𝑒𝑟 role
in the current epoch, since otherwise this will break the anonymity
property of the hidden committee scheme. Second, we observe that
for an unpredictable SeedGen, and since HC selection is unpre-
dictable (a predictable selection would contradict the anonymity
property), the adversary has no advantage in adversarially gen-
erating the public keys to be selected by HC. These observations
guarantee that any one corrupt party has the same probability of
being selected as endorser as any one honest party.

Since CM is corrupt, it has the power to split the universe of
users into multiple non-intersecting subsets, and distribute a dif-
ferent view to each subset. Notice that while honest endorsers in
each subset will only endorse the signed view they received, each
corrupt endorser can send endorsements of multiple views to CM.
A corrupt CM can then choose which of the multiple endorsements

for different views from a corrupt endorser it should forward to
different subsets of users to fulfill the verification checks in the
CheckCon procedure. To prevent such an attack from succeed-
ing, i.e. preventing the situation where two honest users accepts
different views, in the Ver phase, users perform a quorum check
(lines 12, 13, and 9 in the CheckCon procedure). There are three
essential ingredients in this check; (1) the cutoff value 𝑘 , (2) valid
signatures/endorsements, and (3) legitimate endorsers. Legitimate
selection of endorsers is guaranteed by the properties of the HC
scheme, since unforgeability ensures that no corrupt user can fake
being selected as an endorser, and anonymity ensures A cannot
target honest endorsers for corruption. Since endorsements are sig-
natures, valid endorsements are guaranteed by the unforgeability
of the signature scheme. Security from split view attacks is then
guaranteed when the cutoff parameter 𝑘 is set so that, given the
fraction of corrupt users, the probability that the number of hon-
est endorsers in a subset (honest endorsers with the same view as
a “victim”) plus the number of corrupt endorsers selected by the
HC.Select functionality does not reach 𝑘 (except with extremely
small probability).

Clearly the most successful way to implement the split view
attack is to divide the users into two sets and dispatch (M𝑒 , 𝜎𝑒)
to the first bucket and (M̂𝑒 , 𝜎𝑒) to the second. Let 𝑀 denote the
adversary’s corruption budget, i.e.,A can corrupt𝑀 users (in addi-
tion to CM), and let 𝐻 denote the number of total honest active
users in the system. We provide a detailed mathematical analysis
of how to set 𝑘 in Section 5. The outcome of the analysis is that
for any 𝑀 < 𝐻 , it is possible to find a quorum value 𝑘 for which
the probability of a split view attack is negligible, and at the same
time, the probability of liveness (to have at least 𝑘 endorsers of one
single view) is overwhelming. This forces even a corrupt CM to
dispatch a single consistent view across all users.

4.3.3 Dealing With a Rushing Adversary. In Protocol 1, the CM
gets to see endorsements before passing them on to other users (line
10 of Endorse). If CM is corrupt, this reveals the identities of en-
dorsers toA. An adaptive adversary could then rush to corrupt the
honest endorsers before passing on the endorsements, and instead
have the (now corrupt) endorsers sign any view using their signing
keys. A small quorum value 𝑘 ≪ 𝑀 renders the scheme vulnera-
ble to an attack where A can corrupt sufficiently many “hidden”
endorsers at multiple epochs without violating any assumptions
of the corruption ratio. In order to solve this issue, we adopt the
strategy of Ouroboros Praos [16], where forward secure signatures
are employed to thwart this exact attack. Employ a key evolving
signature scheme Sig in Protocol 1 and assume secure erasures. In
an evolving signature scheme, each signature is generated with
a signing key corresponding to a given time slot, which can be
“evolved” to obtain the signing key for the next time slot. Signatures
are also verified with respect to a specific time slot. In this setting,
parties sign their view using the key evolving signature scheme
instead of a standard EUF-CMA secure signature scheme. Before
sending their message, the parties evolve their signing key and
securely erase the previous signing key, achieving forward security.
Parties who are not in the current committee simply evolve their
signing keys and securely erase the previous signing key. Even if
the A immediately corrupts all parties in a committee when they

7

make themselves known (with the endorse message in line 10 of
Endorse), it cannot sign a different view using the signing key corre-
sponding to the previous time slot, since it has been securely erased.
Hence, a rushing adaptive adversary cannot affect the security of
our protocol.

4.4 Realizing HC

We present an efficient and scalable instantiation of a hidden com-
mittee protocol that can be used in our GOD-less broadcast con-
struction. Our approach is inspired by the cryptographic sortition
techniques in e.g. [4, 16, 23], and describes a generic way to build
HC from any strong VRF. Next to the generic construction, we
present a concrete and efficient realization that employs the VRF
with unpredictability under malicious key generation from [16]
(see Protocol 2). Since the VRF is publicly verifiable, committee
members can convince anyone of their role at any later point in
time (in particular after endorsing a view).

Protocol 2 works as follows. Let 𝑇 be a public parameter of the
scheme denoting a public integer threshold value (that will influ-
ence the probability of being selected as endorser). Given as public
input the seed s, and as private input the user’s secret key sk𝑖 , our
selection process requires userU𝑖 to compute VRF.Prove(sk𝑖 , s) →
(𝑦, 𝜋). Interpret 𝑦 as an integer, if this value is below the public
threshold 𝑇 , the userU𝑖 is in the committee of endorsers.

Note that 𝜋 is a publicly verifiable proof that 𝑦 is the output of
the VRF evaluated byU𝑖 (the holder of sk𝑖) on the public input s.
Hence a user can keep private the fact that it is selected as part of
the committee, but prove that they were selected when it is time to
act according with a task given to the committee.

Protocol 2 – HC Protocol (instantiation with [16])

public parameters: threshold 𝑇 , seed s

(two hash functions H : {0, 1}∗ → G,H′ : {0, 1}∗ → G)

HC.KeyGen(𝜆):

1: (sk, pk) ← VRF.KeyGen(𝜆) (sk← Z𝑞 , pk = 𝑔sk)

HC.Select(sk, s):

1: VRF.Prove
sk
(s) → (𝑦, 𝜋)
(𝑦 = (𝑟,𝑢) where 𝑢 = H

′ (s)sk, 𝑟 = H(s,𝑢) ; 𝜋 = (𝑢, 𝜋 ′)
where 𝜋 ′ = DLEQ.Prove(𝑙𝑜𝑔

H
′ (s) (𝑢) = 𝑙𝑜𝑔𝑔 (pk)))

2: if 𝑦 < 𝑇 then (𝑀𝑎𝑝2𝑖𝑛𝑡 (𝑟) < 𝑇 ,𝑀𝑎𝑝2𝑖𝑛𝑡 : G→ Z𝑞)
3: 𝛽 = 1 (and set current role to e𝑛𝑑𝑜𝑟𝑠𝑒𝑟)
4: else 𝛽 = 0
5: return (𝛽,𝑦, 𝜋)

HC.Verify(pk, s, 𝑦, 𝜋):

1: Compute VRF.Verify
pk
(s, 𝑦, 𝜋) → 𝛽

(𝑦 =? (H(s,𝑢),𝑢) ∧DLEQ.Verify(pk, s, 𝜋) =? 1 ∧ 𝑀𝑎𝑝2𝑖𝑛𝑡 (𝑟) <? 𝑇)
2: return 𝛽 .

4.5 Realizing SeedGen
As defined in Section 4.1.1, a secure SeedGen needs to be unpre-
dictable. Without an unpredictable seed, an adversary could target

a (any) given future epoch and use the time until that epoch arrives
to pre-compute key pairs that are selected by the HC for this seed.
This would undermine the quorum check of Protocol 1, since the
adversary could then compute sufficiently many adversarial keys to
form a quorum. Seed unpredictability prevents such adversarial key
generation attacks by making sure that the adversary gets no (zero)
time for pre-computation. Thus, keys in the PKI can only be trusted
for HC selection based on the seed s𝑒 , if the keys were registered
in the PKI before the leaky period for SeedGen’s computation of
s𝑒 began. That is, in a secure GBC the seed that selects an endorser
must not be older than an endorser’s public key (which is assumed
in Section 4.2.1). With this in mind, we now give realizations of
SeedGen under different assumptions, first by assuming GOD in
a pre-existing external system, then internally realized without
GOD but with simplifying assumptions, and finally the general case
assuming neither GOD nor other simplifications.

4.5.1 Using an External Randomness Beacon with GOD. One way
of realizing SeedGen is to use an external randomness beacon [11]
which provides a fresh random nonce in each epoch. Such protocols
allow for any parties to publicly verify that each output has been
generated correctly, ensuring that the output is unbiased and un-
predictable. In order to achieve such strong properties, randomness
beacons generally require standard broadcast with GOD, which
we want to avoid. However, notice that randomness beacons are
readily available in a number of Proof-of-Stake based blockchain
protocols that intrinsically execute them as sub-protocols, e.g. [27].
Hence, instead of executing a randomness beacon protocol, parties
can rely on an existing beacon and leverage its public verifiability
properties to validate its random outputs relative to each epoch.

4.5.2 Using an Internal Beacon Without GOD (With Simplifying
Assumptions). Let us now describe how to realize SeedGen via the
bounded bias beacon of Ouroboros Praos [16], without relying on
GOD for security. We refer to this realization as SeedGenPraos (𝑒).
In the model of [16], the adversary is allowed to reset the beacon
(resample randomness) a bounded number of times during the
leaky period which is a specific time interval before epoch 𝑒 . Such
a beacon can be realized internally in GBC by having every user in
theGBC protocol provide not only an endorsement signature 𝜖𝑖 and
a VRF output/proof pair (𝑦𝑖 , 𝜋𝑖), but also an extra VRF output/proof
pair (𝑠𝑖 , 𝜋 ′𝑖), obtained by each party in the endorser committee
by evaluating the VRF on the seed s𝑒−1 from epoch 𝑒 − 1. When
computing SeedGenPraos (𝑒), the seed s𝑒 is derived by verifying all
pairs (𝑠𝑖 , 𝜋 ′𝑖) from epoch 𝑒 − 1, and computing s𝑒 = 𝐻 (𝑠1 | . . . |𝑠𝑛)
from valid VRF outputs 𝑠1, . . . , 𝑠𝑛 , where 𝐻 is modeled as a random
oracle.

Provided that the VRF key pairs are fixed in the PKI before the
randomness generation starts, we can follow the analysis from [16].
If we make the simplifying assumption that keys are fixed in the
PKI (no updated or added keys throughout the protocol), then the
adversary can only introduce a bounded amount of bias in s𝑒 by
selectively adding or removing pairs 𝑠𝑖 , 𝜋 ′𝑖 from the view of honest
users (i.e. refusing to deliver pairs generated by honest parties
or refusing to generate pairs that should have been generated by
corrupted parties). In other words, the committee election for epoch
𝑒 uses randomness s𝑒 generated from VRF outputs from epoch 𝑒 − 1
and elects committee members whose keys were already registered

8

in the PKI before epoch 𝑒 − 1 started. Thus s𝑒 is unpredictable if at
least one of the 𝑠𝑖 ’s used to compute the SeedGen was delivered by
an honest party, which can be statistically guaranteed with high
probability by choosing an appropriate committee size.

4.5.3 General Construction (Without Simplifying Assumptions). We
now provide a general realization SeedGenGen that neither relies
on GOD nor assumes fixed keys in the PKI.

In the above realization, SeedGenPraos, the seed s𝑒 is computed
from the VRF outputs 𝑠1, . . . , 𝑠𝑛 from epoch 𝑒 − 1, with proofs
𝜋 ′1, . . . , 𝜋

′
𝑛 that are verified against the seed s𝑒−1. The seed s𝑒−1

has, in turn, been constructed from VRF outputs from epoch 𝑒 − 2,
with proofs that are verified against the seed s𝑒−2, and so on. When
keys are allowed to be updated in the PKI, this chaining of seeds
becomes a problem for users which resume after being offline.
Resuming users can not rely on the unpredictability of such a chain
of seeds to guard against adversarial key generation, because they
were asleep when the seeds were fresh. Thus, resuming users do
not know how old the seeds in the chain are – they can even be
older than when these users were last online. Securely evaluating
SeedGenPraos (𝑒) requires that keys used in the evaluation are fixed
when randomness generation starts. Randomness generation in
SeedGenPraos (𝑒) can start as soon as the seed is known. However,
without any guarantees for seed freshness, there is no way to set a
point in time for when to fix keys.

A heuristic for meeting the key fixation requirement in our
case is for a resuming user evaluating SeedGenPraos (𝑒) to make
sure that the seed used for evaluating the 𝑠𝑖 ’s is not older than
when the user was last online (and ignore any keys updated after
that time). In order to solve this, we can define SeedGenGen (𝑒) as
𝐻 (s𝑒−1, SeedGenPraos (𝑒)) and have a user compute s𝑒−1 as follows.
The user obtains s𝑘 and SeedGenPraos (𝑘) from the CM for all
epochs 𝑒 − 𝑗 < 𝑘 < 𝑒 for which the user was sleeping (two hashes
per offline epoch). Then, it reconstructs the hash chain defined
by SeedGenGen (𝑒) from s𝑒− 𝑗 and SeedGenPraos (𝑒 − 𝑗) (when it
was last online) up to s𝑒−1. Since the user knows that s𝑒− 𝑗 was
unpredictable for epoch 𝑒 − 𝑗 , and due to the preimage resistance
of 𝐻 , then s𝑒−1 is by construction more recent than epoch 𝑒 − 𝑗 . No
keys registered in the PKI before epoch 𝑒 − 𝑗 could thus have been
adversarially generated to be selected from s𝑒−1.

4.6 Implementation Efficiency Estimates
Protocol 1 employs only lightweight cryptographic tools. The heav-
iest computational tasks for users is in GBC.CheckCon, where they
have to verify selection proofs (line 9) and verify endorsements
(line 13), since for these tasks the CPU overhead scales linearly with
the size of the quorum. We here provide an efficiency estimation of
these parts when concretely instantiating selection proofs from a
VRF, as in Protocol 2, and endorsements as ECDSA signatures.

Our main use case for GOD-less broadcast is consistency in key
transparency, and thus we evaluate the performance on mobile
phones. We have implemented the VRF of [16] in C using OpenSSL
1.1.1w. Internally this VRF depends on a hash, which we instantiate
as SHA256, and on group operations, which we instantiate over the
P256 curve. We compiled for iOS, and executed tests of VRF and
ECDSA on the mid-tier phone iPhone 12 with iOS 17.3.1 installed.
CPU time was measured using themach_absolute_time function in

<mach/mach_time.h>. This timer provides high resolution measure-
ments (nanoseconds) of CPU ticks. The code of the implementation
and tests is available at [1]. The results are available in Table 1.

To obtain the overhead of these operations in different scenarios,
one can multiply the values in the sec/eval column in Table 1 with
the quorum sizes from Figure 3b. Practical execution times are in
the range of roughly a second to a minute, depending on system pa-
rameters. A refined discussion with concrete examples of execution
times for different system parameters is given in Section 5.3.

If a forward secure signature scheme is chosen instead of ECDSA
(for reasons explained in Section 4.3.3), the performance will be
slightly worse for signature verification. This performance penalty
is evaluated in [13], where the verification time of ECDSA based
forward-secure signatures is roughly double to plain ECDSA.

sec/eval Time for 1,000 endorsements
ECDSA 0.000549738 0.55s
VRF 0.001450149 1.45s

Table 1: CPU speed for VRF and ECDSA verification.

5 HOW TO SET THE QUORUM SIZE
We now provide a new and improved statistical analysis, which
is motivated by the fact that the stochastic nature of the sortition
process makes it impossible for a system user to know the size
of the endorsement committee. That is, in any epoch, the actual
number of users that are selected as endorsers in that epoch is not
a number that is revealed or can be made available to the system
users. This makes it more involved to define security guarantees
for an honest majority of endorsers or split view defense, further
motivating our quorum concept. Compared to the analyses in, e.g.,
[4, 17], our statistical analysis is also more flexible regarding how
to model passive users, which may be considered actively malicious
or simply inactive depending on the situation.

The security analysis of our GOD-less broadcast protocol (Proto-
col 1) relies on having an opportune quorum size 𝑘 that identifies
the minimal number of endorsements – signatures for the same
view generated by distinct users – which together guarantee, with
high probability, the existence of a unique view across all users
who are in a consistent state.

Our goal here is to develop a well-definedmechanism to compute
𝑘 for any given GOD-less broadcast system given the following
three parameters; (1) the probability of being selected as an endorser
by a hidden committee protocol HC (denoted by 𝑝); (2) the total
number of honest active users (denoted by 𝐻); and (3) the total
number of malicious active users (denoted by𝑀).

Let 0 < 𝑝 < 1 denote the probability that any one user is selected
as an endorser. That is, 𝑝 is the probability that any given user
is selected for jury duty on the hidden committee of endorsers.
Note that all users in the system are selected cryptographically
at random (with probability 𝑝), in a publicly verifiable way, and
independently from other users. This is done using the function
HC.Select (employed for Endorse in GOD-less broadcast), which
returns as part of its output a selection bit 𝛽 ∈ {0, 1} to indicate if
a user is selected as an endorser. Intuitively this selection process

9

simulates a coin flip that returns “heads” (output 1) with probability
𝑝 . The selection bit 𝛽 output by HC.Select is therefore accurately
modeled as a Bernoulli random variable with parameter 𝑝 . Since
the user selection trials are independent of one another, the overall
sortition process runs across the whole population of 𝑁 users is
distributed as a Binomial random variable 𝐵(𝑁, 𝑝).2

For the novelty in our analysis, we adapt a partition–and–cut
methodology in which we first partition users into different classes,
and then we exploit statistical properties of these classes to find a
cutoff point that in some sense maximizes the differences between
those classes of users.

Let us first partition the 𝑁 users in the system into three subsets;
𝐻 honest users,
𝑀 malicious users,
𝑆 silent (non-responsive) users,

so that we have 𝑁 = 𝐻 + 𝑀 + 𝑆 with 𝐻,𝑀, 𝑆 ≥ 0. Note that for
the 𝑆 silent users we do not care why they are silent. They can be
actively suppressed by an adversary or they may simply be off-line
and temporarily not interacting in the system.

This partitioning approach enables us to (conceptually) separate
actively malicious users from users that are inactive in a given
epoch (which can typically be a non-negligible fraction of the pop-
ulation when considering large scale, world-wide adopted systems)
to provide more accurate security estimates.

At each epoch, we expect to have 𝐻 +𝑀 active users running
HC.Select. We recall a known fact about Binomial distributions,
which follows directly from Chu–Vandermonde identity: 𝐵(𝐻 +
𝑀, 𝑝) = 𝐵(𝐻, 𝑝) + 𝐵(𝑀, 𝑝). This means that we can analyse the
selection of active malicious users and of active honest users inde-
pendently. In particular, 𝐵(𝑀, 𝑝) identifies a well-defined discrete
probability distribution that is different, in shape, from 𝐵(𝐻, 𝑝) if
𝑀 ≠ 𝐻 . In short, our analysis is based on this shape difference.

For the sake of understanding our analysis, it is easier to first
consider the simplified case of selecting a committee that, with high
probability, has an honest majority. This is what more intuitively
corresponds to a quorum in the traditional setting where we have
a channel with GOD. We present this in Section 5.1, and the reader
may note that this part in itself also serves as a new and more
accurate analysis of the setting in [4].

In Section 5.2 we will then make our analysis more involved
for the GOD-less channel quorum case to provide high probability
guarantees that the system is additionally protected against split
view attacks, which is harder to accomplish since it requires more
than just an honest majority in the endorsement committee.

5.1 Warmup: Quorum in Broadcast with GOD –
Protection Relying on an Honest Majority

In GOD channels, everyone that speaks will he heard, so a quorum
in this setting is a committee that, with high probability, has an
honest majority.

Let us denote 𝑍 ∼ 𝐵(𝑀, 𝑝) and 𝑌 ∼ 𝐵(𝐻, 𝑝), so that 𝑍 and 𝑌
respectively correspond to the number of malicious and honest

2Recall that the Binomial random returns the number of successes in a sequence of
𝑁 independent experiments, each with its own Boolean-valued outcome, and the
probability of a successful output is 𝑝 . The probability mass function of obtaining
exactly 𝑘 success is Pr(𝐵 (𝑁, 𝑝) = 𝑘) =

(𝑁
𝑘

)
𝑝𝑘 (1 − 𝑝)𝑁 −𝑘 .

users that have been selected as endorsers. While the endorsement
committee additionally consists of a number𝑊 ∼ 𝐵(𝑆, 𝑝) of silent
users, they are not active in the endorsement process and need not
be considered further in this analysis.

The readermay note that𝑍 and𝑌 are not available3 to the system
users, so they do not know the size of the actual endorsement
committee for the (or any) given epoch. Our analysis therefore
focuses on finding a value 𝑘 ∈ {1, . . . , 𝑀} such that both Pr(𝑍 ≥ 𝑘)
and Pr(𝑌 ≤ 𝑘) are negligible. In other words, in our practical
application we need a cutoff value which guarantees that, with
high probability, the following two bad events do not occur:

A) there are 𝑘 or more malicious endorsers, and
B) there are 𝑘 or fewer honest endorsers on the committee.

Intuitively, we are thus comparing the right tail area of 𝐵(𝑀, 𝑝)
with that of the left tail area of 𝐵(𝐻, 𝑝), and require both of them
to be small. If such a cutoff value 𝑘 exists, then the act of verifying
𝑘 valid signatures on one and the same view provides a provable
guarantee that more honest than malicious users endorse the view.

To see that such a 𝑘 always exists, first note that the probability
𝑝 is a parameter that directly determines the expected size of the
endorsement committee. Given any fixed probability 𝑝 , let the value
𝑘′ ∈ {1, . . . , 𝑀} denote the smallest value 𝑖 for which Pr(𝑋 ≥ 𝑖) ≤
Pr(𝑌 ≤ 𝑖). It is clear that 𝑘′ exists and is uniquely defined since
𝑀 < 𝐻 . Note that for 𝑘′ we have Pr(𝑋 ≥ 𝑘′) ≈ Pr(𝑌 ≤ 𝑘′),
and 𝑏′ = − log(Pr(𝑌 ≤ 𝑘′)) can be interpreted as the bit security
level of the probability 𝑝 , as 2−𝑏

′
is the probability of endorsement

committee failure in terms of the bad events A or B above.
In order to find a suitable cutoff value 𝑘 that is optimal in this

metric4 for any given bit security level 𝑏, we take the cutoff value
𝑘′ corresponding to the minimal probability 𝑝 (minimal expected
committee size) with bit security level 𝑏′ ≥ 𝑏.

These computations are indeed practical, even for our extreme
case target of systems with 𝑁 = 1, 000, 000, 000 users. We provide
concrete values for realistic scenarios in Section 5.2.1, and we also
provide code that can be used to compute these values [2].

5.2 Quorum in GOD-less broadcast –
Protecting Against Split View Attacks

While our description above focused on explaining the statistical
mechanisms of obtaining a committee with an honest majority, we
now proceed to our target quorum case, which requires stronger
guarantees. As discussed in Section 4.3, for the case of a malicious
CM, the adversary A’s highest chance to succeed in a split view
attack is to divide the honest users into two disjoint sets of equal size.
This translates to having half of the honest endorsers endorsing
the same view, regardless of which view the malicious users choose
to endorse. In statistical terms, we thus need to compare 𝑋 ∼
𝐵(𝑀 + 𝐻

2 , 𝑝) to 𝑌 ∼ 𝐵(𝐻, 𝑝). The intuitive reasoning is identical
to the explanation above, except that the peaks of the probability
distributions are now closer together to reflect that safe-guarding
against split view attacks is harder than ensuring an honest majority.
However, the procedure for finding an optimal cutoff value 𝑘 for a

3In the case where the system users have additional knowledge of the committee size,
it is possible to further improve the analysis, but this is left for future work.
4Our analysis permits many alternative metrics to be used, in particular, our method
is quite flexible in regard to the employed metric.

10

given bit security 𝑏 is precisely the same, and the act of verifying 𝑘
valid signatures on one and the same view now provides a provable
guarantee of the consistency property of the KT log. And this 𝑘
value is precisely our quorum size that we set out to determine,
which completes our main goal for this part.

The probability distributions we are discussing closely resemble
the ones plotted in Figure 2. The optimal cutoff value𝑘′ corresponds
to a vertical line that separates the two bumps. The bit security
level 𝑏 intuitively corresponds to the log of the tail areas beyond
the cutoff value 𝑘′. Figure 2 further illustrates how the probability
distributions change shape as wemodify the probability 𝑝 (expected
endorsement committee size).

From our statistical analysis it follows that the limit of efficiency
is approached as the number of malicious users 𝑀 approaches 𝐻

2 .
When 𝑀 ≥ 𝐻

2 , there exists no hope of efficiently protecting the
system against split view attacks, but for reasonable 𝑀 < 𝐻

2 , we
can actually compute concrete values for relevant parameter sets.

5.2.1 Some OptimalQuorum Size Computations. For some realistic
parameter sets, consider a large scale application with one billion
(1,000,000,000) users, where we allowing for a 20% portion of the
users to be silent/non-responsive. In Figure 3 we present optimal
quorum sizes for parameter sets with varying degrees of honesty
and maliciousness in the remaining population.

5.3 About Grinding
We handle adversarial seed tampering for the cryptographic sorti-
tion similarly to [4]. This approach gives the adversary power to
choose the seed. However, since epochs have time limitation, and
the adversary is computationally bounded, only up to 𝑇 = 2𝑡 seed
resets are allowed. In our analysis, this corresponds to having𝑇 sam-
plings from 𝑋 . Since each sampling (new seed) corresponds to an
independent event, the overall probability of succeeding in finding a
seed that yields a larger committee is

∑𝑇
𝑖=1 Pr(𝑋 ≥ 𝑘) = 𝑇 · Pr(𝑋 ≥

𝑘). To make this latter probability negligible, it is enough to select
a 𝑘 for which Pr(𝑋 ≥ 𝑘) = 2−(𝑏+𝑡) . In other words, using our
methodology, it is possible to explicitly account for grinding by ad-
justing the metric to weight the respective tail areas of 𝐵(𝑀 + 𝐻

2 , 𝑝)
and 𝐵(𝐻, 𝑝) accordingly.

5.3.1 A Practical Perspective on Grinding vs. Epoch Duration. It
is practically possible to eliminate the grinding attack vector by
setting a bit security level of, say, 256 bits as per Figure 3b. However,
this gives slightly larger quorum sizes than what an optimized
approach would give.

Higher grinding tolerance implies larger quorums, which, in
turn, implies longer verification times. However, let us put these
things into perspective with a concrete imaginable use-case.

If we consider the worst case highly malicious population as
given in Figure 3, setting cryptographic level strength 𝑏 to 256
bits does avoid the grinding problem entirely, but the resulting
quorum size implies about 80 seconds of processing time for ver-
ification. While this can be considered an upper bound estimate
on the amount of processing time that is needed for view verifica-
tions on a device, it is still very reasonable in practical applications
that use, say, one-day epochs. And do recall that the scale that we
consider here is a population size of 1,000,000,000 users/devices.

Another way of looking at it is to shorten the epoch times to, say,
1 minute. Then grinding is much less of an issue and 𝑏 can be set
lower, e.g. 𝑏 = 80. The revised worst case estimate for the required
processing time for per-device view verification is then reduced to
24 seconds – clearly below a target epoch duration of 1 minute.

While these crude estimates can be considered very conservative,
they illustrate that our techniques are not limiting in practice, not
even for large scale applications. And furthermore, more optimized
approaches can give even better performance guarantees in practice,
for example, as we suggested in Section 5.3, by recomputing the
optimal quorum sizes using different metrics that explicitly include
a grinding factor that is suitable for the target use-case application.

6 DISCUSSION & CONCLUSION
6.1 Key Transparency from GOD-less broadcast
We here give an overview for how a KT protocol which provides
both append-only and consistency guarantees can be straightfor-
wardly constructed from black-box use of a Verifiable Key Direc-
tory [10, 30] (VKD) and our GOD-less broadcast protocol GBC.
Such a KT protocol works a follows.

A single maintainerM maintains: (1) a directory Dir, of label-
value pairs binding each user to a public key, (2) a VKD instance for
auditing the append-only of Dir, and (3) a GBC channel instance
for auditing the consistency of the append-only log provided by
the VKD. To be clear, the single maintainerM will act as both IdP
for the VKD and CM for GBC. The PKI which GBC is defined to
take as input during setup is defined as Dir.

Time must proceed in non-overlapping phases as described in
Section 3.1.4. Throughout the execution of the 𝐾𝑇 protocol, the
maintainer collects registrations and updates of public keys from
users for inclusion in Dir. Once per epoch, in the Col phase,M will
include these new keys in the label-value directory Dir, commit to
its new state via the VKD, and submit it to the GBC instance. (for
future distribution in the Distr phase). Thus, the only publishing
party on the GBC instance is the maintainer itself, and the only
published data onGBC is the append-only commitment of the VKD
instance maintained byM itself.

In the rest of the phases of an epoch, the maintainer follows
the protocol specifications of VKD and GBC in a straightforward
manner. There is no interaction between the protocols in these
phases. Each user must participate in auditing the consistency of
the𝐾𝑇 protocol according to how auditing works inGBC and VKD.

6.2 Bootstrapping
In the first epoch of Protocol 1, there are neither any keys registered
in the PKI nor any seed or endorsements of a previous epoch. To
get around this issue, one can introduce a special bootstrapping
epoch, 𝑒 = −1, to be executed before anything else in the protocol.
In this epoch, all users who exist at that time should first enroll
their keys in the PKI. After that, a seed trusted to not have been pre-
computed (e.g. by using a hash of a current stock market valuation,
or an MPC computed value) can be published by the CM to be
used for selecting the endorsers of this special epoch.

11

400 450 500 550 600 650 700 750 800
k

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Pr
ob

ab
ilit

y
of

 e
xa

ct
ly

 k

X
Y

pdfs for X and Y with p = 0.000001

(a) Smaller Committee Size

4000 4500 5000 5500 6000 6500 7000 7500 8000
k

0.000

0.001

0.002

0.003

0.004

0.005

Pr
ob

ab
ilit

y
of

 e
xa

ct
ly

 k

X
Y

pdfs for X and Y with p = 0.00001

(b) Larger Committee Size

Figure 2: Probability distribution function (pdf) visualization for population with 60% honest, 20% malicious and 20% silent
users.

0 10000 20000 30000 40000
Quorum Size

0

50

100

150

200

250

Bi
t S

ec
ur

ity
 L

ev
el

 (b
)

79% honest, 1% malicious
75% honest, 5% malicious
70% honest, 10% malicious
65% honest, 15% malicious
60% honest, 20% malicious

(a) Plotted

𝑏 Quorum Size
79% 75% 70% 65% 60% Honest
1% 5% 10% 15% 20% Malicious

256 3,133 4,329 7,141 14,145 41,816
128 1,541 2,127 3,509 6,951 20,537
80 944 1,306 2,152 4,260 12,584
30 329 454 750 1,481 4,365

(b) Tabulated

Figure 3: Optimal quorum sizes for split view defense in a 1,000,000,000 population in which 20% of the users are silent, with a
varying degrees of honesty level in the remaining population.

6.3 Privacy
Some protocols for the append-only guarantee, e.g. CONIKS [32],
SEEMless [10] and Parakeet [30] (but not all e.g. Merkle2 [26])
provide a notion of privacy which limits information leaks such
as the number of registered keys, when keys where updated and
information about other keys than the one which was queried for
during lookups. However, these protocols do leak, and must leak,
information about what keys are registered in the system. This is
since their main purpose is to provide append-only for key lookup.
The identities of users and their public keys are public information
in key lookup systems. Any privacy regarding the identities of
registered users is thus necessarily weak. While Protocol 1 does not

directly undermine many of the privacy guarantees of a VKD, GBC
relies on an certain fraction of honesty among the users. Thus, to
boost confidence in this assumption, it is natural for the identities
in the PKI to be public. Since this is the normal case for a PKI,
and since privacy guarantees of VKD are necessarily weak in the
above sense, we argue that publishing the list of identities of users
is sensible since membership of a system is in fact already public
information.

6.4 Silent User Churn
While new users joining the system and old users explicitly leaving
the system is not a problem in Protocol 1, some users might silently

12

stop participating in the protocol without notification. For this to
not affect the liveliness of the protocol (by overrunning the capacity
for offline parties), such users need to be removed from the system.

6.5 Conclusions
We have provided the first consistency protocol for key trans-
parency which – contrary to all previous work – simultaneously
avoids to rely on small external committees of auditors, on OOB
channels, and does not resort to using full broadcast systems or
blockchains. We have further shown that our construction is prac-
tical for large scale applications such as WhatsApp and iMessage,
capable of supporting billions of users.

ACKNOWLEDGMENTS
Joakim Brorsson was supported by theWallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and
AliceWallenberg Foundation. Bernardo David was supported by the
Independent Research Fund Denmark (IRFD) grant numbers 9040-
00399B and 0165-00079B. Paul Stankovski Wagner was supported
by the Swedish Foundation for Strategic Research grant RIT17-0035,
and the Swedish Research Council grant 2019-04166.

REFERENCES
[1] Anonymous. 2024. Code for implementation estimates. https://anonymous.4open.

science/r/SpeedTestCoD-0286/README.md
[2] Anonymous. 2024. Code for statistical analysis. https://anonymous.4open.science/

r/quorum-stats-1742/README.md
[3] Apple. 2023. Advancing iMessage security: iMessage Contact Key Verification.

https://security.apple.com/blog/imessage-contact-key-verification/. (2023). [Ac-
cessed 12-02-2024].

[4] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Pub-
lic Blockchain Keep a Secret?. In TCC 2020, Part I (LNCS, Vol. 12550), Rafael
Pass and Krzysztof Pietrzak (Eds.). Springer, Heidelberg, 260–290. https:
//doi.org/10.1007/978-3-030-64375-1_10

[5] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana
Raykova. 2022. On the (in)Security of ROS. Journal of Cryptology 35, 4 (Oct.
2022), 25. https://doi.org/10.1007/s00145-022-09436-0

[6] Josh Blum, Simon Booth, Brian Chen, Oded Gal, Maxwell Krohn, Julia Len, Karan
Lyons, Antonio Marcedone, Mike Maxim, Merry Ember Mou, et al. 2022. Zoom
Cryptography Whitepaper. https://raw.githubusercontent.com/zoom/zoom-e2e-
whitepaper/master/zoom_e2e.pdf. (2022).

[7] Joseph Bonneau. 2016. EthIKS: Using Ethereum to audit a CONIKS key trans-
parency log. In International Conference on Financial Cryptography and Data
Security. Springer, 95–105.

[8] Joakim Brorsson, Bernardo David, Lorenzo Gentile, Elena Pagnin, and
Paul Stankovski Wagner. 2023. PAPR: Publicly auditable privacy revocation for
anonymous credentials. In Cryptographers’ Track at the RSA Conference. Springer,
163–190.

[9] Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. 2022. YOLO
YOSO: Fast and Simple Encryption and Secret Sharing in the YOSO Model. In
ASIACRYPT 2022, Part I (LNCS, Vol. 13791), Shweta Agrawal and Dongdai Lin
(Eds.). Springer, Heidelberg, 651–680. https://doi.org/10.1007/978-3-031-22963-
3_22

[10] Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.
SEEMless: Secure End-to-End Encrypted Messaging with less Trust. In ACM CCS
2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz
(Eds.). ACM Press, 1639–1656. https://doi.org/10.1145/3319535.3363202

[11] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed Random-
ness Beacons. In 2023 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 75–92. https://doi.org/10.1109/SP46215.2023.10179419

[12] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and Eran Messeri.
2015. Efficient gossip protocols for verifying the consistency of certificate logs.
In 2015 IEEE Conference on Communications and Network Security (CNS). IEEE,
415–423.

[13] Eric Cronin, Sugih Jamin, Tal Malkin, and Patrick Drew McDaniel. 2003. On the
Performance, Feasibility, and Use of Forward-Secure Signatures. In ACM CCS
2003, Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger (Eds.). ACM Press,
131–144. https://doi.org/10.1145/948109.948130

[14] Rasmus Dahlberg, Tobias Pulls, Jonathan Vestin, Toke Høiland-Jørgensen, and
Andreas Kassler. 2018. Aggregation-based certificate transparency gossip. arXiv
preprint arXiv:1806.08817 (2018).

[15] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfig-
urable Consensus and Applications to Provably Secure Proof of Stake. In FC 2019
(LNCS, Vol. 11598), Ian Goldberg and Tyler Moore (Eds.). Springer, Heidelberg,
23–41. https://doi.org/10.1007/978-3-030-32101-7_2

[16] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake
Blockchain. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821), Jesper Buus Nielsen
and Vincent Rijmen (Eds.). Springer, Heidelberg, 66–98. https://doi.org/10.1007/
978-3-319-78375-8_3

[17] Bernardo David, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel
Tschudi. 2022. GearBox: Optimal-size Shard Committees by Leveraging the Safety-
Liveness Dichotomy. In ACM CCS 2022, Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi (Eds.). ACM Press, 683–696. https://doi.org/10.1145/3548606.
3559375

[18] Alexandra Dirksen, David Klein, Robert Michael, Tilman Stehr, Konrad Rieck, and
Martin Johns. 2021. LogPicker: Strengthening Certificate Transparency Against
Covert Adversaries. Proc. Priv. Enhancing Technol. 2021, 4 (2021), 184–202.

[19] Yevgeniy Dodis and Aleksandr Yampolskiy. 2005. A Verifiable Random Function
with Short Proofs and Keys. In PKC 2005 (LNCS, Vol. 3386), Serge Vaudenay (Ed.).
Springer, Heidelberg, 416–431. https://doi.org/10.1007/978-3-540-30580-4_28

[20] Lukasz Dykcik, Laurent Chuat, Pawel Szalachowski, and Adrian Perrig. 2018.
BlockPKI: An automated, resilient, and transparent public-key infrastructure. In
2018 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE,
105–114.

[21] Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen, and Sophia
Yakoubov. 2021. Random-Index PIR and Applications. In TCC 2021, Part III (LNCS,
Vol. 13044), Kobbi Nissim and Brent Waters (Eds.). Springer, Heidelberg, 32–61.
https://doi.org/10.1007/978-3-030-90456-2_2

[22] Esha Ghosh and Melissa Chase. 2024. Weak Consistency mode in Key Trans-
parency: OPTIKS. Cryptology ePrint Archive (2024).

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51–68.

[24] Martin Hirt and Vassilis Zikas. 2010. Adaptively Secure Broadcast. In EURO-
CRYPT 2010 (LNCS, Vol. 6110), Henri Gilbert (Ed.). Springer, Heidelberg, 466–485.
https://doi.org/10.1007/978-3-642-13190-5_24

[25] Team Hans Hoogstraaten, Daniël Niggebrugge, Danny Heppener, Frank Groe-
newegen, Janna Wettinck, Kevin Strooy, Pascal Arends, Paul Pols, Robbert Kou-
prie, SteffenMoorrees, et al. 2012. Black Tulip. Technical Report. Tech. Rep.(Fox-IT
BV, 2012).

[26] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, and
Raluca Ada Popa. 2021. Merkle2: A Low-Latency Transparency Log System.
In 2021 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
285–303. https://doi.org/10.1109/SP40001.2021.00088

[27] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In
CRYPTO 2017, Part I (LNCS, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.).
Springer, Heidelberg, 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[28] Ben Laurie, Adam Langley, Emilia Kasper, Eran Messeri, and Rob Stradling.
2021. Certificate Transparency Version 2.0. RFC 9162. https://doi.org/10.17487/
RFC9162

[29] Julia Len, Melissa Chase, Esha Ghosh, Kim Laine, and Radames Cruz Moreno.
2023. OPTIKS: An Optimized Key Transparency System. Cryptology ePrint
Archive, Paper 2023/1515. https://eprint.iacr.org/2023/1515 https://eprint.iacr.
org/2023/1515.

[30] Harjasleen Malvai, Lefteris Kokoris-Kogias, Alberto Sonnino, Esha Ghosh, Ercan
Oztürk, Kevin Lewi, and Sean Lawlor. 2023. Parakeet: Practical key transparency
for end-to-end encrypted messaging. Cryptology ePrint Archive (2023).

[31] BrendanMcMillion. 2024. Key Transparency Architecture. Internet-Draft draft-ietf-
keytrans-architecture-00. Internet Engineering Task Force. https://datatracker.
ietf.org/doc/draft-ietf-keytrans-architecture/00/ Work in Progress.

[32] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. 2015. CONIKS: Bringing Key Transparency to End Users.
In USENIX Security 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associ-
ation, 383–398.

[33] Meta. 2023. WhatsApp Key Transparency Overview. https://www.whatsapp.
com/security/WhatsApp-Key-Transparency-Whitepaper.pdf. (2023). [Accessed
12-02-2024].

[34] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized business review (2008).

[35] Linus Nordberg, Daniel Kahn Gillmor, and Tom Ritter. 2018. Gossiping in CT.
Internet-Draft draft-ietf-trans-gossip-05. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/ Work in Progress.

13

https://anonymous.4open.science/r/SpeedTestCoD-0286/README.md
https://anonymous.4open.science/r/SpeedTestCoD-0286/README.md
https://anonymous.4open.science/r/quorum-stats-1742/README.md
https://anonymous.4open.science/r/quorum-stats-1742/README.md
https://security.apple.com/blog/imessage-contact-key-verification/
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/s00145-022-09436-0
https://raw.githubusercontent.com/zoom/zoom-e2e-whitepaper/master/zoom_e2e.pdf
https://raw.githubusercontent.com/zoom/zoom-e2e-whitepaper/master/zoom_e2e.pdf
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1145/3319535.3363202
https://doi.org/10.1109/SP46215.2023.10179419
https://doi.org/10.1145/948109.948130
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1145/3548606.3559375
https://doi.org/10.1145/3548606.3559375
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-030-90456-2_2
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1109/SP40001.2021.00088
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.17487/RFC9162
https://doi.org/10.17487/RFC9162
https://eprint.iacr.org/2023/1515
https://eprint.iacr.org/2023/1515
https://eprint.iacr.org/2023/1515
https://datatracker.ietf.org/doc/draft-ietf-keytrans-architecture/00/
https://datatracker.ietf.org/doc/draft-ietf-keytrans-architecture/00/
https://www.whatsapp.com/security/WhatsApp-Key-Transparency-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Key-Transparency-Whitepaper.pdf
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip/05/

[36] Michael Oxford, David Parker, and Mark Ryan. 2020. Quantitative verification of
certificate transparency gossip protocols. In 2020 IEEE Conference on Communi-
cations and Network Security (CNS). IEEE, 1–9.

[37] Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement
in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980), 228–234.

[38] Blog Post. 2015. Improved Digital Certificate Security. https://security.googleblog.
com/2015/09/improved-digital-certificate-security.html. [Accessed 12-02-2024].

[39] Forum Post. 2016. Upcoming CT Log Removal: Izenpe— groups.google.com. https:
//groups.google.com/a/chromium.org/g/ct-policy/c/qOorKuhL1vA. [Accessed
01-02-2024].

[40] Forum Post. 2017. Upcoming Log Removal: Venafi CT Log Server —
groups.google.com. https://groups.google.com/a/chromium.org/g/ct-policy/c/
KMAcNT3asTQ. [Accessed 01-02-2024].

[41] Forum Post. 2020. Trust Asia 2021 has produced inconsistent STHs —
groups.google.com. https://groups.google.com/a/chromium.org/g/ct-policy/c/
VJaSg717m9g. [Accessed 01-02-2024].

[42] sslmate. 2024. Timeline of Certificate Authority Failures. https://sslmate.com/
resources/certificate_authority_failures. [Accessed 12-02-2024].

[43] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping
authorities" honest or bust" with decentralized witness cosigning. In 2016 IEEE
Symposium on Security and Privacy (SP). Ieee, 526–545.

[44] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient Non-equivocation
via Bitcoin. In 2017 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 393–409. https://doi.org/10.1109/SP.2017.19

[45] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

A EXTENDED BACKGROUND ON
TRANSPARENCY LOGS

Transparency logs are publicly verifiable label-value data structures
maintained by a central party called the Identity Provider (IdP).

The most widely deployed transparency log system is Certificate
Transparency [28] (CT) which ensures correct distibution of TLS-
certificates. For example Google, Cloudflare and Let’s Encrypt each
host their own Certificate Transparency log, and inclusion in a log
is mandatory for Chrome and Safari to accept a TLS certificate.
There also exist major deployments [3, 6, 33] of Key Transparency
(KT), which ensures correct distribution of public keys. Significant
works on key transparency include CONIKS [32], Merkle2 [26],
SEEMless [10], Parakeet [30] and OPTIKS [29]. These build on the
same core principles as CT, but are tailored for the use case of
key transparency by using different underlying data structures,
e.g. prefix trees rather than chronological trees, and assuming a
different communication pattern with all communication going via
a central party.

A.1 Verifiability of Transparency Logs
Transparency logs are verifiable to be append-only, i.e. nothing
inserted into the log can be deleted or altered, and consistent, i.e.
the same view of the monitored data structure is given to all users.

A.1.1 Verifiability of Append-Only. Intuitively, append-only means
that a value, once assigned to a label, should never change. This
prevents an Identity Provider from e.g. temporarily changing a
public key associated with a specific identity during an attack, and
then change it back later to avoid detection.

To prove that a data structure is append-only, the maintainer
publishes a signed digest, sometimes called a commitment, of the
log state for each epoch in the system. Each commitment binds the
current state of a label-value data structure (exactly what labels
exist and what are their values). The small commitment can then be
distributed to all users. Users can verify whether a given value for

a label is consistent with a commitment, and whether the updates
to the data structure was append-only for two consecutive commit-
ments. This is formalized as Verifiable Key Directories (VKD) [10]
and Private Authenticated History Dictionaries (PAHD) [29].

A.1.2 Split-View Attacks. As describe above, VKDs and PAHDs
provide append-only guarantees in relation to a sequence of com-
mitments. They do however not provide any guarantees for the
consistency of these commitments. Thus, when relying solely on
a VKD/PAHD, there is no guarantee that the IdP does not keep
separate versions of the VKD/PAHD for different users, serving dif-
ferent commitments to each user. If that is the case, even though a
VKD/PAHD guarantees that values cannot be changed over time for
each user, different users might have different views of the correct
VKD/PAHD, and thus get different values for the same label. Such
an attacks where the IdP keeps separate versions of the VKD/PAHD,
are called split-view attacks, and allow the IdP to e.g. serve malicious
public keys to targeted users, while serving the correct key to all
other users to avoid detection.

Since transparency logs require both append-only and consis-
tency properties, and VKDs and PAHDs only provide append-only
guarantees, VKDs and PAHDs cannot be used by themselves to
construct a transparency log. Instead they need to be paired with a
protocol for verifible consistency.

B EXTENDED DISCUSSION AND LITERATURE
REVIEW OF CONSISTENCY PROTOCOLS

There are different ways suggested in the literature to achieve
consistency for transparency logs:

B.1 Consistency Via Blockchains
One suggested way is to rely on blockchains. Blockchains [23,
34, 45] solve the problem of securely handling financial transac-
tions without involving any central party, and have broadcast-like
properties. Thus, one can store data such as commitments for a
VKD/PAHD on a blockchain to obtain consistency guarantees. Since
blockchains come with extended security assumptions and perfor-
mance penalties, one can argue that adding them only to use them
for consistency is unnecessarily expensive.

Dykcik et al. [20], presents a straightforward scheme which in-
corporates a transparency log into a smart contract on a blockchain.
Tomescu and Devadas in their Cathena system [44] design a scheme
which leverages Bitcoin to provide consistency. Performance im-
provements over a straightforward blockchain for the entire log
is presented. Bonneau in EthIKS [7] proposes to put CONIKS in-
side an Ethereum contract, allowing to piggyback on Ethereum’s
consensus protocol for security guarantees.

B.2 Consistency Via Gossip Protocols
Gossiping over OOB channels are the suggested method of achiev-
ing consistency by Certificate Transparency [28] and in a recent
internet draft for Key Transparency [31]. In a gossip protocol, con-
sistency guarantees are achieved by the log maintainer signing
a commitment to the log state at recurring intervals, and then
providing these signatures to users. Users of a log exchange these
signatures and compare them. Inconsistencies between these signed

14

https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://security.googleblog.com/2015/09/improved-digital-certificate-security.html
https://groups.google.com/a/chromium.org/g/ct-policy/c/qOorKuhL1vA
https://groups.google.com/a/chromium.org/g/ct-policy/c/qOorKuhL1vA
https://groups.google.com/a/chromium.org/g/ct-policy/c/KMAcNT3asTQ
https://groups.google.com/a/chromium.org/g/ct-policy/c/KMAcNT3asTQ
https://groups.google.com/a/chromium.org/g/ct-policy/c/VJaSg717m9g
https://groups.google.com/a/chromium.org/g/ct-policy/c/VJaSg717m9g
https://sslmate.com/resources/certificate_authority_failures
https://sslmate.com/resources/certificate_authority_failures
https://doi.org/10.1109/SP.2017.19

commitments can thus be detected during comparison, and con-
stitutes cryptographic proof of misbehaviour which can be be re-
ported. Comparing signed commitments by the log maintainer is
on a voluntary basis and occurs over OOB channels.

This approach, while avoiding blockchains and its drawbacks,
only give statistical probabilities for detecting split-views (which
are quite low as discussed below) rather than formal guarantees
about consistency. Further, gossiping is done retroactively, mean-
ing that split-view attacks will only be detected after they have
occurred. Gossiping proactively would not be practical due to the
"soft" guarantees and long waiting times. While this makes unde-
tected split-view attacks harder, it does not rule them out, and users
thus do not have guarantees that a public key is safe to use.

A further drawback of gossip protocols in the context of key
transparency, is that they rely upon using OOB channels. If OOB
channels are not used, an adversary controlling the network can
suppress messages from targeted users to evade detection of an
attack (or even alter them through Meddler-in-the-Middle attacks
as we discuss below). This is problematic since OOB channels are
not available at scale where KT protocols are deployed.

Chuat et al. [12] propose the first gossip protocols for Certifi-
cate Transparency and present results for how signed views are
distributed using a simulation based on real Internet traffic traces at
a 0.1% gossiping rate (the fraction of parties volunteering to gossip).
In their results, after 24 hours, 11% of the users holds a signed view
signed during this period. No results for the probability and speed
of detection of log inconsistencies are presented.

The Chuat et al. gossip protocols are also evaluated in [36] by
Oxford et al. Assuming a gossiping rate of 100%, the measure data
dissemination (as also done by Chuat et al.), probability of split-
view detection and rate of such detections. In their analysis, after
20 gossiping rounds the latest view is disseminated to all users, and
a split-view attack is detected with 40% probability. They also show
that if one makes the extra assumption of server-to-server gossip,
these numbers can be improved.

Dahlberg et al. [14] explore how the network infrastructure such
as routers and switched can provide gossiping as a service.

Nordberg et al. [35] proposes an Internet-Draft where gossiping
takes place between a server and a client, so that if a meddler-in-
the-middle attack occurs, it will be detected once it ends and the
client established contact directly with the correct server.

We note that Apple’s approach to gossiping in iMessage [3],
where they piggyback gossip data on end-to-end encrypted mes-
sages over in-band channels (i.e. via Apple), does not solve this issue
of in-band gossiping. Even though the gossip data is now encrypted,
the IdP (Apple) can execute a split-view attack where it replaces
public keys given to the victim, and act as a Meddler-in-the-Middle
which alters gossiping data. Such an attack can be sustained indefi-
nitely (assuming it does not break append-only guarantees). To the
best of the authors knowledge, Apple has not provided an analysis
for the security of this approach.

B.3 Consistency Via External Committees of
Consistency Auditors

To avoid both the cost of blockchains and weak guarantees of gossip
protocol, one can instead opt to use a set of external consistency

auditors. These external auditors are centrally selected as a static set
of parties. During the protocol execution, the IdP sends the signed
commitment to all consistency auditors in each epoch. The auditors
then sign these. So, instead of comparing commitments directly as
in gossiping, users can compare their view with the signed views of
the consistency auditors to see if it corresponds with a majority of
the auditors. This approach provides both pro-active (immediate)
detection of misbehaviour as well as formal guarantees, as long as
the set of auditors has a sufficiently large fraction of honest parties.

The drawback however, is that it sacrifices the distributed na-
ture of using blockchains or gossiping. Consistency guarantees in
blockchains and gossiping is rooted in the honest of a very large set
of users (all miners/stakers or all KT users). It is unlikely that even
a powerful adversary can corrupt the majority of such large sets of
users. The same can not be said about a small and well known set
of consistency auditors. Current proposals suggest committee sizes
of roughly 50 [30] auditors. A powerful adversary (say e.g. a state
sponsored adversary) can realistically corrupt most, if not all, of a
set of auditors of this size.

Parakeet by Malvai et al. [30], presents a simple protocol for a
fixed set of external auditors which all sign their view, (up to 50
auditors are simulated in the paper). The identity provider needs to
obtain a threshold of two thirds of such certifications agreeing on a
single view to present to users in order to prove that no split-view
attack is ongoing.

Dirksen et al. [18] lets a set of Certificate Transparency logs act
as consistency auditors for each other by pitting them against each
other, where for each cert, it is included in one log only and the
other logs are expected to audit this log.

While increasing the number of external auditors would some-
what increase the resilience against split-view attacks, it would
still not achieve the distribution of blockchains or gossip protocols,
and thus not live up to the same level of resilience. Further, scaling
up the number of auditors is non-trivial. Firstly, it is a problem in
practice to find a large set of auditors which all users actually trust
to have an honest majority. Second, it poses an efficiency problem
for users which have to validate authenticity and correctness of
the auditors’ statements. For example, the overhead of parakeet’s
consistency protocol scales linearly with the number of auditors.

We note that Syta et al. [43] proposed a protocol for auditor
cosigning with sublinear verification overhead, where auditors in-
teract with each other to combine their signatures into a single
multisignature. This protocol has however since been broken [5],
and even if it were secure it would only scale to thousands of audi-
tors, compared to millions or billions in blockchains or gossiping.

B.4 Weaker Versions of Consistency
[22] explores another direction of ensuring consistency for KT.
The work in [22] provides a protocol which does not use external
parties for auditing consistency. This is achieved by weakening the
consistency guarantees of KT, so that the protocol only ensures
that split-views are detected by either the party who queries for a
key, or the key owner.

15

	Abstract
	1 Introduction
	1.1 State-of-the-Art and Current Issues
	1.2 A Novel Approach to KT Consistency
	1.3 Contributions

	2 Preliminaries
	3 Introducing GOD-less broadcast
	3.1 Model
	3.2 Syntax
	3.3 Properties

	4 Constructing GOD-less broadcast
	4.1 Building Blocks
	4.2 Our GBC Protocol
	4.3 Analysis of Protocol 1
	4.4 Realizing HC
	4.5 Realizing SeedGen
	4.6 Implementation Efficiency Estimates

	5 How to set the Quorum Size
	5.1 Warmup: Quorum in Broadcast with GOD – Protection Relying on an Honest Majority
	5.2 Quorum in GOD-less broadcast –Protecting Against Split View Attacks
	5.3 About Grinding

	6 Discussion & Conclusion
	6.1 Key Transparency from GOD-less broadcast
	6.2 Bootstrapping
	6.3 Privacy
	6.4 Silent User Churn
	6.5 Conclusions

	Acknowledgments
	References
	A Extended Background on Transparency Logs
	A.1 Verifiability of Transparency Logs

	B Extended Discussion and Literature Review of Consistency Protocols
	B.1 Consistency Via Blockchains
	B.2 Consistency Via Gossip Protocols
	B.3 Consistency Via External Committees of Consistency Auditors
	B.4 Weaker Versions of Consistency

