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Abstract. We provide explicit radical N -isogeny formulae for all odd
integers N . The formulae are compact closed-form expressions which
require one Nth root computation and O(N) basic field operations. The
formulae are highly efficient to compute a long chain of N -isogenies, and
have the potential to be extremely beneficial for speeding up certain
cryptographic protocols such as CSIDH. Unfortunately, the formulae are
conjectured, but we provide ample supporting evidence which strongly
suggests their correctness.
For CSIDH-512, we notice an additional 35% speed-up when using radical
isogenies up to N = 199, compared to the work by Castryck, Decru,
Houben and Vercauteren, which uses radical isogenies up to N = 19 only.
The addition of our radical isogenies also speeds up the computation of
larger class group actions in a comparable fashion.
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1 Introduction

Since the fall of SIDH [7, 19, 23], CSIDH [10] has become the most effi-
cient isogeny-based public-key exchange protocol. The scheme is nonin-
teractive and its mathematical framework has led to a variety of other
cryptographic primitives such as a signature scheme [4] and a verifi-
able delay function [16]. This general flexibility comes at the cost of
being slower by at least an order of magnitude compared to other post-
quantum cryptographic schemes that do not rely on isogenies. In par-
ticular, CSIDH also does not scale well for higher security levels, which
could be troublesome given that the initial security estimates may not
suffice [20]. Fortunately, CSIDH has undergone several noteworthy speed-
ups since its inception.

In 2020, Bernstein, De Feo, Leroux and Smith managed to improve the
asymptotic complexity of computing an N -isogeny from a kernel gen-
erator from O(N) to Õ(

√
N) field operations with their so-called

√
élu

isogeny formulae [3]. The original formulae requiringO(N) operations are
classical results due to Vélu [28], but the ones used in CSIDH are more
efficient versions on elliptic curves in Edwards or Montgomery form (see
for example [21]). The hidden constants in the asymptotic complexity
from the

√
élu isogeny formulae are not too large; they start outperform-

ing the fastest isogeny formulae for primes N ≈ 100 already, depending



on the chosen programming language. This benefits CSIDH considerably,
given that even on the most basic security level it already requires com-
puting isogenies up to prime degree N ≈ 400.

On the other end of the spectrum, improvements for computing the
lowest-degree isogenies have also appeared. In [5], Castryck and Decru
adjust the CSIDH-setting to allow using highly efficient 2-isogenies which
only require one square-root computation together with a handful of ad-
ditional arithmetic operations. This was then generalized in [9] to so-
called radical N -isogenies for slightly larger primes N > 2. These radical
isogenies allow an efficient computation of a cyclic Nk-isogeny by means
of iteratively drawingNth roots together with additional basic arithmetic
operations. The main advantage of these radical isogenies is that only
the initial N -isogeny requires the explicit computation of a point of order
N , which is a costly operation in the CSIDH setting. Unfortunately, this
additional overhead turns cumbersome rather quickly, and in a follow-up
work, the authors of [8] manage to find all radical isogeny formulae up
to N = 37, yet can only make them useful in the CSIDH setting for
N at most 19. Unlike the

√
élu isogeny formulae, these radical isogeny

formulae have less of an impact for larger parameter sets, since more
high prime-degree isogenies are required for those. Hitherto, all radical
isogeny formulae were derived and optimized ad hoc from parametriza-
tions of the modular curve X1(N); in particular the optimized equations
from Sutherland [27] were used to obtain relatively compact expressions.

Our contributions

Let N be an odd positive integer. We provide formulae which, on input of
an elliptic curve E and point P of order N , output an elliptic curve E′ =
E/⟨P ⟩ with a point P ′ ∈ E′ of order N such that P ′ is a kernel generator
of an N -isogeny which extends the former isogeny cyclically to an N2-
isogeny. Furthermore, the formulae benefit the following properties:
– they impose no further restrictions (e.g. they work over any field and
N need not be prime);

– they require O(N) basic field operations and one Nth root compu-
tation;

– by scaling these Nth roots with Nth roots of unity, they generate
all N -isogenies which extend the isogeny with kernel ⟨P ⟩ cyclically;

– they do not require a parametrization of the modular curve X1(N);
– they are an extension of classical Vélu formulae, whence can evaluate

points.
Our formulae are unfortunately still conjectured, but we provide ample
evidence supporting their correctness.
Our Magma implementation for CSIDH-512 benefits from radical isoge-
nies for N ≤ 199 and provides an additional 35% speed-up compared to
the radical isogeny implementation of [8], which only uses radical isoge-
nies for N ≤ 19. Our implementation also shows that the fastest way
to compute the class group action in CSIDH is a combination of radical
isogenies and

√
élu isogenies; i.e. “the gap is closed” and regular isogeny

formulae need not be used anymore. Finally, we show that our radical
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isogeny formulae scale well, providing a significant and fairly consistent
speed-up across several sizes of class groups.
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Notation

Throughout this entire discussion, we will assume N to be a positive
odd integer strictly greater than three unless specified otherwise. The
notations x(P ) and y(P ) refer to the x- respectively y-coordinate of an
affine point P . We denote the logarithm with base two as log.

2 Preliminaries

In this section we provide some of the necessary background related to
isogenies and cryptography. We refer the interested reader to the book
by Silverman [25] for a staple reference regarding elliptic curves and
isogenies in general, and to the lecture notes by De Feo [15] for isogenies
with a focus on cryptographic applications.

2.1 Isomorphisms and isogenies

An elliptic curve E/K is a smooth projective algebraic curve of genus one
over a field K. For the sake of clarity, elliptic curves are often given by
an affine representation where the only point at infinity OE is assumed
to be the neutral element for its group law. If we want to specify that
we consider L-rational points on E for a specific field L ⊇ K, we will
denote this by E(L). Elliptic curves come in several forms, such as the
Montgomery form

EA,B/K : By2 = x3 +Ax2 + x,

where A,B ∈ K and the discriminant B(A2 − 4) ̸= 0. Even though this
form has many practical applications in cryptography, it does impose
certain restrictions such as requiringK-rational 2-torsion and disallowing
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the field characteristic being two. In the most general setting, any elliptic
curve can be given by a Weierstraß equation

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where all ai ∈ K and the discriminant ∆ = −b22b8− 8b34− 27b26 +9b2b4b6
is nonzero, with

b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Two elliptic curves E/K and E′/K are K-isomorphic iff they have the
same j-invariant, which is an algebraic expression in the coordinates of
the curve. For an elliptic curve E/K in Weierstraß form, we have

j(E) =
(b22 − 24b4)

3

∆
.

For an explicit isomorphism over K, we have the following proposition.

Proposition 1. Let E/K and E′/K be elliptic curves in Weierstraß
form. Then E and E′ are K-isomorphic iff there exist (u, r, s, t) ∈ K××
K3 such that the change of coordinates

(x, y) 7→ (u2x+ r, u3y + su2x+ t)

transforms E into E′. Such an isomorphism is called a Weierstraß iso-
morphism.

Proof. See [25, Proposition VII.1.3]. ⊓⊔

An isogeny φ : E → E′ is a nonzero surjective morphism with fi-
nite kernel. An isogeny with the same domain as codomain is called
an endomorphism. An example of this is the multiplication-by-N map
[N ] : E → E,P 7→ [N ]P . The kernel of [N ] is denoted by E[N ] and is
referred to as the N -torsion of E.
We will almost exclusively work with separable odd-degree cyclic isoge-
nies, for which the following computational result exists due to Vélu.

Theorem 1. Let C = ⟨P ⟩ be a finite subgroup of an elliptic curve

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where P is a point of order N , with N odd. Fix a partition C = {OE} ∪
C+ ∪ C− such that for any Q ∈ C+ it holds that −Q ∈ C−. For all
Q ∈ C+ define

gxQ = 3x(Q)2 + 2a2x(Q) + a4 − a1y(Q),

gyQ = −2y(Q)− a1x(Q)− a3,

uQ = (gyQ)
2, vQ = 2gxQ − a1gyQ

v =
∑

Q∈C+

vQ, w =
∑

Q∈C+

(uQ + x(Q)vQ),

A4 = a4 − 5v, A6 = a6 − (a21 + 4a2)− 7w.
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Then the separable isogeny φ with domain E and kernel C has codomain
E′ = E/C with Weierstrass equation

E′ : y2 + a1xy + a3y = x3 + a2x
2 +A4x+A6

over K. Furthermore, for R ∈ E we can compute the image of R as

x(φ(R)) = x(R) +
∑

Q∈C\{OE}

(x(R+Q)− x(Q))

y(φ(R)) = y(R) +
∑

Q∈C\{OE}

(y(R+Q)− y(Q)).

Proof. This follows from the classical formulae by Vélu [28]. ⊓⊔

Remark 1. Since we assume N to be odd, we can always take C+ to
be

{
P, [2]P, . . . ,

[
N−1

2

]
P
}

in Theorem 1, although this is not strictly
needed. Furthermore, the only situation where y-coordinates matter on
elliptic curves in Montgomery form, is if we want to compute the y-
coordinate of the image of a specific point, i.e. y(φ(R)). In particular, A4

and A6 only depend on the x-coordinates of [k]P for 1 ≤ k ≤ (N − 1)/2.

If φ : E → E′ is a separable isogeny, then the degree of φ is #kerφ. For
each such isogeny, one can construct the dual isogeny φ̂ : E′ → E as the
isogeny for which φ ◦ φ̂ = [#kerφ], as well as φ̂ ◦ φ = [#kerφ]. Up to
composition with an isomorphism, this dual isogeny is uniquely defined.

2.2 Tate normal form and Tate pairing

We are interested in elliptic curves E with a given point P of order N .
We can translate P to (0, 0) and after rescaling this allows us to always
assume E is given by a Tate normal form.

Lemma 1. Let E/K be an elliptic curve and let P ∈ E(K) be a point
of order N ≥ 4, then (E,P ) is isomorphic to a unique pair of the form

Eb,c : y2 + (1− c)xy − by = x3 − bx2, P = (0, 0)

with b, c ∈ K and

∆(b, c) = b3(c4 − 8bc2 − 3c3 + 16b2 − 20bc+ 3c2 + b− c) ̸= 0 .

Proof. See for example [26, Lemma 2.1]. ⊓⊔

By symbolically computing x([N ]P ) and y([N ]P ), we can require [N ]P
to equal OE for any given N . Together with the restriction that [k]P ̸=
OE for all 1 ≤ k < N and the nonvanishing of ∆(b, c), we obtain an
irreducible polynomial FN (b, c) ∈ Z[b, c] which expresses that P has exact
order N .

5



Remark 2. The modular curve X1(N) parametrizes pairs (E,P ), where
E is an elliptic curve and P is a point of order N (for a more formal
definition of X1(N), see for example [26]). Up to birational equivalence,
FN is a defining polynomial for X1(N). In [9, 8], they make extensive
use of FN , or - more specifically - the optimized versions of the defining
polynomials for X1(N) by Sutherland [27]. Unfortunately, this comes
with the drawback of working with massive equations rather quickly,
making it hard to manipulate any type of symbolic expressions. We will
not require explicitly computing FN at all.

Let N ≥ 4 be an integer and E/K an elliptic curve. The Tate pairing is
a bilinear map

tN : E(K)[N ]× E(K)/NE(K)→ K×/(K×)N : (P1, P2) 7→ tN (P1, P2)

which can be computed by means of a Miller function (see for exam-
ple [8]). The Tate pairing is compatible with isogenies; i.e. if φ : E → E′

is an isogeny then tN (φ(P1), P2) = tN (P1, φ̂(P2)) holds. For certain fields,
in particular for K = Fq, we have that the Tate pairing is nondegenerate.
Remark that the Tate pairing is only defined up to Nth powers, so one
must always choose a representative for concrete evaluations.

2.3 Class group actions and CSIDH

Let E/Fp be a supersingular elliptic curve with p ≡ 3 mod 4. Then the
ring of Fp-rational endomorphisms of E is isomorphic to either Z[

√
−p]

or Z[(1 +
√
−p)/2], with the isomorphism determined by mapping p-

Frobenius πp to
√
−p. In the former case, we say that E is on the floor,

whereas in the latter case E is said to be on the surface. Isogenies which
do not change the Fp-rational endomorphism ring are said to be hori-
zontal, whereas the ones that do are called vertical (for more info on this
isogeny volcano terminology, see [18]).

For CSIDH [10], fix the set of all supersingular elliptic curves E which
have an Fp-rational endomorphism ring isomorphic to Z[

√
−p]. For any

such E and any a ⊂ Z[
√
−p], we can associate the subgroup

E[a] =
⋂
α∈a

{P ∈ E | α(P ) = OE} ⊂ E,

where α must of course be seen as an endomorphism. The ideal-class
group Cl(Z[

√
−p]) then acts freely and transitively on this fixed set of

supersingular elliptic curves by mapping E to E/E[a], where [a] is the
class of an invertible ideal of the class group.

The underlying assumption in CSIDH is that this turns our setup into a
“hard homogenous space” when p is large enough, since #Cl(Z[

√
−p]) ≈√

p. For a formal definition of hard homogenous spaces, we refer to the
paper by Couveignes [14]. Informally, it means that given E and E/E[a],
it is conjectured to be hard to find [a] (or any equivalent ideal class).
The CSIDH setup should thus not be seen as an analogue of SIDH, but
rather as the supersingular variant of the CRS scheme [14, 24].
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Ideally, we would be able to sample elements from Cl(Z[
√
−p]) uniformly

at random to obtain a random curve from our fixed set, but in practice
this is unfeasible. Since we are working with supersingular elliptic curves,
however, we know that #E(Fp) = p+1 and can thus choose p such that
p + 1 has many small distinct prime factors ℓi. This in turn allows us
to efficiently evaluate the action of (ℓi, π − 1) (as well as its inverse)
with the help of ℓi-isogenies that have Fp-rational kernel generators. By
choosing sufficient small-degree isogenies, we can represent any element
of the class group and efficiently compute its action on a given curve E.
The CSIDH key exchange protocol then goes as follows. Alice chooses a
secret exponent vector (e1, . . . , en) corresponding to an ideal

a = (ℓ1, π − 1)e1 · . . . · (ℓn, π − 1)en .

From a given starting curve E, she computes EA = E/E[a] and sends
it to Bob. Bob chooses his own secret exponent vector and sends EB =
E/E[b] to Alice. They can now both compute EAB = E/E[ab] as their
shared secret.
As a final remark, note that one can also perform CSIDH on the sur-
face [5]; i.e. by using the supersingular elliptic curves with Fp-rational
endomorphism ring isomorphic to Z[(1 +

√
−p)/2]. The main advantage

is that in this setting, horizontal 2-isogenies are also available, allowing
a small speed-up.

3 Radical isogeny formulae

Let Eb,c/K be an elliptic curve in Tate normal form, with P = (0, 0) a
point of order N and N ≥ 5 odd.∗ Our goal is to efficiently compute a
cyclic Nk-isogeny starting from Eb,c, which can be done iteratively as
soon as we have an efficient method to extend the isogeny with kernel
⟨P ⟩ to a cyclic N2-isogeny. This extension may not be K-rational, but
we have the following theorem which also explains the term “radical
isogeny”.

Theorem 2. Let Eb,c/K be an elliptic curve in Tate normal form with
P a point of order N for some odd integer N ≥ 5. Let P ′ be such that
the composition

Eb,c
φ→ E′ = E/⟨P ⟩ φ′

→ E′′ = E′/⟨P ′⟩

is a cyclic N2-isogeny. Then the field extension K(P ′) equals K( N
√
ρ)

for an appropriately chosen N th root of the Tate pairing ρ = tN (P,−P ).

Proof. See [9, Theorem 5]. ⊓⊔

Remark 3. For any point P ′ from Theorem 2 it holds that φ̂(P ′) = [λ]P
for some 1 ≤ λ ≤ N−1. Points for which λ = 1 are called P -distinguished
points in [9] and we will also use this terminology.

∗For the separate case N = 3, see [9].
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In [9] they use explicit expressions of X1(N) to find the x-coordinates of
P ′ symbolically. From that, they then compute a Tate normal form of E′,
where P ′ = (0, 0) is now a kernel generator for an isogeny which extends
φ cyclically. This allows for an iterative function on the parameters b, c
(or more precisely, on a pair of optimized birational equivalent param-
eters). In [8] they push this further by means of interpolation methods
to find symbolic expressions for P ′, allowing explicit radical isogeny for-
mulae up to N = 37. We will use a different approach and skip a direct
formulation of P ′ altogether.
Consider

Eb,c
φ−→ E′ ι←−

∼
Eb′,c′ ,

where
– φ is the isogeny with kernel ⟨(0, 0)⟩, computed with the classical

Vélu formulae from Theorem 1;
– ι−1 is the Weierstraß isomorphism putting E′ into Tate normal form

such that φ̂(ι((0, 0)) = P . Or equivalently, ι((0, 0)) = P ′ for some
P -distinguished point P ′ ∈ E′.

From Theorem 1, it follows that the curve E′ is given by

E′ : y2 + (1− c)xy − by = x3 − bx2 + a4x+ a6,

where a4, a6 are obtained by formulae in function of the x-coordinates of
[k]P for k ∈ {1, 2, . . . , (N−1)/2}. The isomorphism ι is defined by a tuple
(u, r, s, t), which associates a point (u2x+ r, u3y+ su2x+ t) ∈ E′ to each
(x, y) ∈ Eb′,c′ . The pair (r, t) determines the P -distinguished point P ′

of order N on E′ since it is the image of (0, 0) ∈ Eb′,c′ . The parameters
(u, s) on the other hand rescale and rotate the curve E′. In general, it
can be shown that any two out of (u, r, s, t) completely determine ι, and
the following lemma provides us with the specific case which is of interest
to us.

Lemma 2. The Weierstraß isomorphism ι : Eb′,c′ → E′ from the prior
discussion is completely determined by (u, s) and (b, c,N).

Proof. Recall that E′ is given by

E′ : y2 + (1− c)xy − by = x3 − bx2 + a4x+ a6,

where a4 and a6 are explicit expressions in b, c,N obtained by the classi-
cal Vélu formulae from Theorem 1. We now want to use an isomorphism
ι : Eb′,c′ → E′ to put this into the form

Eb′,c′ : y
2 + (1− c′)− b′y = x3 − b′x2.

Applying the map ι(x, y) = (u2x+ r, u3y + su2x+ t) to the equation of
Eb′,c′ results in the expression

u6y2 + (1− c′ + 2s)u5xy − (b′ + c′r − r − 2t)u3y

= u6x3 − (b′ − c′s− 3r + s2 + s)u4x2

− (2b′r − b′s− c′rs− c′t− 3r2 + rs+ 2st+ t)u2x

− (b′r2 − b′t− c′rt− r3 + rt+ t2).
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The statement then follows by equating the coefficients of this expression
to the ones of E′. A condensed version of the resulting expressions are
given by:

a1 = 1− c, f1 =
3u− a1

2
, f2 =

b− u(b+ s(a1 + s))

2
,

f3 = 2b+ a1s, f4 = 2s+ a1, f5 = f3 + f1f4,

f6 = bs+ a4 − f2f4, f7 = 3(f1(a1 + f1) + b)− f5,
f8 = f5f7 + 3f6 − 9(a4 − a1f2 + f1(b− 2f2)),

r =
f6f7 + 9(a6 + f2(b− f2))

f8
,

c′ = 1− f4
u
, b′ =

f3 − b− 3r + s2

u2
.

⊓⊔

As mentioned earlier, instead of giving explicit formulae for Eb′,c′ using
P ′ = (r, t), we will use (u, s) instead which is allowed due to Lemma 2.
However, we will first settle on a choice of ρ since the Tate pairing is
only defined modulo Nth powers. Define ϖ0 = 2 and for all i ≥ 1 define

ϖi =

i∏
k=1

x([k]P ),

where we use the conventions x(P ) = 1 = x(−P ) and x([N ]P ) = b2.

Proposition 2. Let Eb,c be an elliptic curve in Tate normal form with
P = (0, 0) a point of odd order N . Then the Tate pairing tN (P,−P ) can
be represented by

τN := −(b2ϖN )−1.

Proof. This is a porism from [8, Theorem 14]. ⊓⊔

With the notation from above, we now formulate the main contribution
of this paper, where we repeat some of the terminology to keep it more
self-contained.

Conjecture 1 Let N ≥ 5 be an odd integer and Eb,c/K an elliptic
curve in Tate normal form with P = (0, 0) a point of order N . Let
φ : Eb,c → E′ be the isogeny with kernel ⟨P ⟩, where E′ is computed by
means of the classical Vélu formulae (i.e. Theorem 1). Let α be an N th
root of the Tate pairing tN (P,−P ), where we choose the representative
τN from Proposition 2. Define

u = 1 + 3b

N−2∑
i=1

ϖiα
i −

N−1∑
i=1,i ̸=N−3

ϖiϖi+1ϖi+2α
3i,

s = b

N−2∑
i=1

ϖiα
i − b3τ2N

N−1∑
i=2

ϖ2iϖ2i+1ϖN−i−1ϖN−iα
2i.
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Let ι : Eb′,c′ → E′ be the Weierstrasß isomorphism determined by (u, s)
in the sense of Proposition 1 and Lemma 2, where Eb′,c′ is a curve in Tate
normal form. Then ι((0, 0)) is a P -distinguished point and - consequently
- the isogeny φ′ : Eb′,c′ → E′′ with kernel ⟨(0, 0)⟩ is such that φ′ ◦ ι−1 ◦φ
is a cyclic N2-isogeny. Furthermore, varying the choice of α, i.e. scaling
it with N th roots of unity, provides the formulae for all other N-isogenies
for which the kernel intersects ker φ̂ trivially.

From φ and ι, one can then easily deduce a map (b, c) 7→ (b′, c′), which
- when applied k times iteratively - results in a cyclic Nk-isogeny. If
one wants to also push points through this isogeny chain instead of
merely computing the new codomain curves, it suffices to postcompose
the x(ϕ(R)) and y(ϕ(R)) from Theorem 1 with the map (x, y) 7→ (u2x+
r, u3y + su2x + t) for every point R ∈ Eb,c at each step of the isogeny
chain.

Before providing supporting evidence for this conjecture, we first note
its compactness, which likely comes from (at least) the following choices
made along the way:

– The specific representation τN of the Tate pairing; this was already
alluded on in [8] to conjure the most compact expressions.

– The use of classical Vélu formulae, which are normalized isogenies;
i.e. φ∗(ωE′) = ωEb,c where ω denotes the invariant differential of an
elliptic curve.

– The choice of a P -distinguished point P ′ to compute an isomorphism
to put E′ back into Tate normal form.

Remark 4. For N even, the expression for u in Conjecture 1 seems to also
be correct, but the expression for s is not. Unfortunately, we were unable
to find a correct expression for s for even N . For cryptographic purposes
however, the most relevant composite even-degree radical isogenies are
undoubtedly the powers of two, for which the most relevant ones are
already covered in [9, 8].

Finding the formulae

Throughout this subsection, it is important to remark that u and s are
elements in

Q(b, c, α)

(FN (b, c), αN − τN )
,

where the polynomial FN (b, c) expresses that P has exact order N . An
algebraic software package will symbolically express such elements as
polynomials of degree at most N − 1 in Q(b, c)[α].† Furthermore, the
coefficients of these polynomials are not uniquely defined, since they
must be seen modulo FN (b, c).

†One can also express them as polynomials in Q(b, α)[c] by constructing the exten-
sions in a different order. This avenue did not result in fruitful insights.
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In [9, 8], they obtain the parameters (r, t) by means of direct symbolical
computation and interpolation methods. From this, they compute ex-
pressions for b′ and c′ and try to optimize those. Along the way however,
they compute (u, s) since they make use of the isomorphism ι as well.
When printing out the expression for u for small N , the term

3b

N−2∑
i=1

ϖiα
i

partly stands out due to the factor 3 at all coefficients. Initially it is
most clear that by splitting u into these two terms, the coefficients of
the separate terms of u ∈ Q(b, c)[α] are supported on the modular units
Fk as defined in [26], which are related to the irreducible polynomials
FN (b, c).
While trying to spot a pattern for coefficients for increasing powers of
α, it becomes clear that certain modular units almost always show up
together. The ones that show up together most often have noncoprime
indices; e.g. when F15 is a factor of a coefficient, F3 and F5 are as well.
However, when computing the x-coordinate of [k]P , these combined fac-
tors are exactly the ones that appear since one must also take into account
the nonvanishing of [k]P for k < N . Indeed, for N > 15 we have that
[15]P must never equal OEb,c , for any specification of the field, thus a
factor F3F5F15 in the denominator is to be expected.
With this in mind, the term with the factor 3 can easily be deduced since
the coefficients are exactly the ϖi. The term

N−1∑
i=1,i ̸=N−3

ϖiϖi+1ϖi+2α
3i

is somewhat trickier however. Initially it seemed to depend on the value
of the exponent modulo 3 when expressed in terms of modular units.
But given that αN = τN is also supported on the modular units, the
case distinction can be unified by allowing the exponents to “overflow”
and express it as a polynomial of degree 3(N − 1).
Finding the expression for s is easier once u is found, since the first term
of s is the same apart from the factor 3. The other term is again trickier
since the coefficients seem to require a case distinction between the odd
and even powers of α. Similarly as for u however, it can be unified if we
express the term as a polynomial of degree 2(N − 1).
Remark that the splitting of u in those two terms is the “hard” part
since little logic can be found in the coefficients of the combined sum.
The coefficient at α6 for example is 3bϖ6 − ϖ2ϖ3ϖ4, but this is not
supported on the modular units and is a fairly complicated expression
in Q(b, c)/(FN (b, c)) already.

Supporting evidence for Conjecture 1

To support the conjecture, we provide the following argumentation:
– These new radical formulae coincide with the radical formulae for all

odd integers N ≤ 37 from [8], in the sense that the (u, s) parameters
give rise to the same (b′, c′) from [8], which were verified symbolically.
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– In Section 4, these formulae are used to correctly compute class
group actions in the CSIDH setting for all prime-degree isogenies up
to N = 1523.

– The file conjecture_test in [17] furthermore provides verification
for these formulae for distinct starting curves over various fields for
all odd (not necessarily prime) integers N ≤ 3999.

Attempts at proving Conjecture 1

We discuss two distinct avenues that may be used to try to prove Conjec-
ture 1. Unfortunately, both of them come with separate issues preventing
us from proving it.

Algebraic approach. From (u, s), one can determine the other two
parameters (r, t) which fully define the isomorphism ι. In fact, the explicit
expressions for b′ and c′ in Lemma 2 compute r along the way. Looking
at the image of ι, it follows immediately that (r, t) is the P -distinguished
point P ′ ∈ E′, which gets mapped to (0, 0) ∈ Eb′,c′ .
With this in mind, one can compute the N -division polynomial ψN (x) of
E′. This polynomial vanishes exactly on the x-coordinates of all points
of E′[N ]. Proving that ψN (r) = 0 would essentially prove Conjecture 1,
with some minor caveats. One would also need to show that (r, t) and
not −(r, t) is the P -distinguished point, although from a cyclic Nk-
isogeny point of view this doesn’t matter since ⟨P ′⟩ = ⟨−P ′⟩. Further-
more, one would need to show that (r, t) is not a kernel generator of
the dual of φ : Eb,c → E′. This follows from the fact that φ is rational,
hence φ̂ is as well, so a kernel generator for φ̂ would be defined over
Q(b, c, ζN )/(FN (b, c), ζNN − 1) instead of Q(b, c, α)/(FN (b, c), αN − τN ).
Finally, one would also still need to argue that (r, t) is a point of (full)
order N , and not a point of order k | N .
Unfortunately, proving that ψN (r) = 0 seems highly nontrivial. While
the symbolic expressions for u and s are not too bad, the derived ones for
r would include summations in the denominator stemming from u and
s so verifying the polynomial vanishes is not easy. Furthermore, con-
structing ψN (x) requires using induction, on top of the expression for
E′ already containing somewhat elaborate summations stemming from
Vélu formulae. A first step in trying to use this approach to prove Con-
jecture 1 would be to find a clean expression for r itself, similar to the
ones for u and s. Note that this may lead to faster arithmetic as well,
since one could use an x-only arithmetic approach on the Kummer line
Eb,c/[−1].

Geometric approach. The parameters (u, r, s, t) of the isomorphism
ι can also be interpreted geometrically. The P -distinguished point P ′ =
(r, t) is a translation in the plane, whereas u represents a scaling factor
and s a rotation. Even though this may not lead to proving the for-
mulae directly, our formulae may be compatible with another geometric
interpretation, namely theta coordinates (see [22]).

12



For simplicity, assume that N is an odd prime and suppose we have a
triplet (Eb,c, P,Q), whereQ is such that ⟨P,Q⟩ = E[N ]. On the one hand,
our isogeny φ : Eb,c → E′ with kernel ⟨P ⟩ gives rise to a pair (E′, φ(Q)),
where φ(Q) = λP ′ for some nonzero scalar λ. On the other hand, we
can also construct a map to “forget” P and end up with a pair (Eb,c, Q).
Starting from just (Eb,c, P ), the former can be seen as constructing the
preimages φ̂−1(P ) in terms of theta coordinates of level 2N ; see for
example [22, Proposition 5.2.2]. Remark that the constants Cei,ej from
the accompanying equation (5.8) in [22] can be shown to equal the Tate
pairings TN (ei, ej) using [22, Corollary 3.3.3]. This argument essentially
leads to a higher-dimensional analogue of Theorem 2. In terms of theta
coordinates, the “forget” map can be constructed by descending from
level 2N to level 2; i.e. express the points of φ̂−1(P ) in theta coordinates
of level 2 as discussed in [22, Subsection 2.10.3].

Again, this approach has some subtleties that would need to be ad-
dressed, such as the case for composite N , as well as the translation from
theta coordinates to Weierstraß equations. The biggest hurdle however,
would stem from the fact that the descent part of the approach seems
to fundamentally rely on whether N is a sum of two squares or not. If
not, one would derive more convoluted expressions which at least differ
by a constant factor in complexity. Assuming one could derive explicit
formulae for radical isogenies for all odd N by using this geometric ap-
proach, they seem to be incompatible with the ones from Conjecture 1
due to this distinction.

4 Cryptographic applications

Our main focus for cryptographic applications will be CSIDH. Other
protocols may benefit from these formulae as well of course; in particular
CSIDH’s ordinary variant CRS [14, 24] should yield similar results.

Operation count for cyclic Nk-isogenies

By means of iteration, our radical isogeny formulae allow efficient compu-
tations of long chains of cyclic Nk-isogenies for any odd integer N ≥ 5.
In general, however, it is not known whether τN admits an Nth root
over the ground field altogether, possibly requiring us to go to a degree-
N extension at every next iteration. For isogeny-based cryptographic
purposes, we can often assume to work over a finite field Fq such that
gcd(q−1, N) = 1. In this case, the map Fq → Fq : a 7→ aN is a bijection,
and thus every τN admits a unique Nth root over Fq. Moreover, we can
efficiently compute N

√
τN as τµN , where µ ≡ N−1 mod (q − 1).

This condition is not rare since it holds for our main application CSIDH,
or can be chosen to hold for various other applications as well (e.g.
CRS [14, 24] and the VDF from [16]). Furthermore, in the context of
the CSIDH framework, these are also the correct isogenies to compute,
as shown in the following proposition.
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Proposition 3. Let E/Fq be an elliptic curve and N ≥ 5 an odd in-
teger such that gcd(q − 1, N) = 1 and char(Fq) ∤ N , and assume that
Conjecture 1 is true. Then the cyclic Nk-isogeny obtained by iteratively
using the formulae from Conjecture 1 corresponds to the action of the
ideal class [(N,πq − 1)k]. Furthermore, this Nk-isogeny can be computed
in 2k log(q) +O(kN) basic Fq-operations.

Proof. The first part of the statement is simply [9, Lemma 8]. As for the
operation count, the cost of each iteration is dominated by the summa-
tion and the computation of the Nth root. The former requires O(N)
basic Fq-operations, whereas the latter can be computed as a (full) expo-
nentation given that gcd(q − 1, N) = 1. Using square-and-multiply, this
can be done in log(q) squarings and (at most) log(q) multiplications. ⊓⊔

Remark 5. The realistic cost for theNth root is closer to 1.5k log(q) basic
Fq-operations since the Hamming weight of N−1 mod (q−1) is typically
(q−1)/2 for concrete parameters. In practice, this exponentation is often
slightly faster, and one could even pick parameters (q,N) to minimize
this, but we will not elaborate on this.

We will now provide a more precise count for the required number of
arithmetic operations to compute a single radical N -isogeny starting
from a given Tate normal form. We will simplify the expression by count-
ing a squaring as a multiplication, and by ignoring additions as well as
small scalar multiplications, the latter which we justify by only having
single-digit constants in all our formulae. To limit the number of in-
versions, we will use projective coordinates as much as possible. To the
best of our knowledge, no explicit formulae appear anywhere in the lit-
erature that describe the multiple scalars of (0, 0) on a curve in Tate
normal form, so we provide them here. We omit the formulae for the
y-coordinates since these are not needed to compute an isogeny (see the
remark following Theorem 1).

Lemma 3. Let Eb,c be an elliptic curve in Tate normal form with P =
(0 : 0 : 1) the point of order N . Writing [k]P = (Xk : Yk : Zk), we have
that [2]P = (b : bc : 1) and for 3 ≤ k ≤ N − 1 it holds that

Xk = bZk−2Zk−1(bZk−1+(c−1)Xk−1)−Xk−2X
2
k−1, Zk = X2

k−1Zk−2.

Proof. This easily follows from a direct computation using differential
addition. ⊓⊔

We will write E for an exponentiation, I for an inversion and M for a
(full) multiplication. The following steps are made and the corresponding
arithmetic can be verified in [17]. For the sake of simplicity, we will
assume N > 9 as to not have to deal with exceptional operation counts
for N ∈ {5, 7, 9}.
– Computing the (X,Z)-coordinates of all multiples of (0, 0) has a cost

of 7N−65
2

M.
– Computing all ϖi has a cost of I+ 7N−25

2
M.

– Computing the Nth root of the Tate pairing τN costs E.

14



– Computing the u and s from Conjecture 1 has a cost of I+(7N−2)M.
– Computing the codomain curve E′ or - more precisely - the a4 and
a6 from Theorem 1 costs (2N + 2)M.

– Computing b′ and c′ from Lemma 2 has a cost of I+ 20M.

Combining all of this, we get a total cost of E + 3I + (16N − 25)M to
compute a single radical N -isogeny. The hidden constant for the O(N)
operation count is hence 16 for the number of multiplications. As can
be seen in Figure 1, our new formulae start outperforming the work
from [8] for N ≥ 19. Unfortunately, there is currently too much overhead
to outperform the optimizations for the smallest odd N . In particular, it
seems unlikely that the radical 5-, 7- and 9-isogenies from [9] could ever
be improved upon since X1(N) is one-parametrizable for those values of
N .

5 7 9 11 13 15 17 19 21 23
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Work of [8]

This work

Fig. 1. Comparison of the number of multiplications that are needed to compute a
radical N -isogeny between the previous state-of-the-art and this work. In [8], no general
formulae were given but the required arithmetic clearly scales superlinearly.

Potential impact on CSIDH

We are now ready to discuss our improvements of CSIDH. We start
by giving a brief overview of the algorithmic aspects of the class group
action. Recall that Alice wants to compute the action of(

2,
1 +
√
−p

2

)e1

(3, π − 1)e2(5, π − 1)e3 . . . (ℓn, π − 1)en

on a supersingular elliptic curve E/Fp for some (secret) exponent vector
(e1, e2, . . . , en). Each of these ideals correspond to computing an Fp-
rational ℓi-isogeny. For the sake of simplicity, assume all ei ≥ 0 (if not,
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one simply needs to compute an isogeny starting from the twist which is
just a sign swap). Our implementation builds upon the work of [8] and
computes the class group action as follows:
– We first compute the 2e1 -isogeny as a chain of 8-isogenies, if neces-

sary followed by a single 2- or 4-isogeny depending on e1 mod 3. The
formulae used here are the ones from [8].

– Similarly, we compute the 3e2 -isogeny as a chain of 9-isogenies with
the formulae from [8], followed by a single 3-isogeny if e2 is odd.

– Next, we successively compute the 5e3 -isogenies, 7e4 -isogenies, 11e5 -
isogenies, 13e6 -isogenies and 17e7 -isogenies with the formulae from [8].

– Then, we successively compute the ℓeii -isogenies for all 19 ≤ ℓi ≤
ℓj by iterating the formulae from Conjecture 1, for some chosen j
depending on the parameter set.

– Finally, we finish by computing the ℓ
ej+1

j+1 . . . ℓenn -isogeny by means of

the
√
élu isogeny formulae from [3].

For each initial radical isogeny computation, we require a point of exact
order ℓi to start our chain. Since sampling torsion points is by far most
efficient on Montgomery curves, we swap to those forms in-between the
Tate normal forms. At the start and end of the class group action we
resort to curves of the form E/Fp : y2 = x3 + Ax2 − x since these allow
both easy verification in our CSIDH (on the surface) setting and the use
of horizontal 2-isogenies (for more details on this, see [5]).
It is natural to wonder why we only use prime power degrees to compute
the chains of 2- and 3-isogenies since the formulae from Conjecture 1
also work for - say - N = 25. While this is indeed the case, it also means
that in the CSIDH setting it must hold that 25 | p + 1 instead of just
5 | p + 1. This implies that all arithmetic for the class group action
now needs to be performed over a field with characteristic at least 2 bits
more. In practice, the impact of this trade-off is negligible, even for the
largest tested parameter set, so we opted to not use it. Computing the
3e2 -isogeny as a chain of 27-isogenies instead of 9-isogenies is even worse,
since this could only improve the speed for this part of the computation
by a factor of 3/2 instead of 2.

We use the prime characteristic

p512 = 24 · 3 · (3 · 5 · . . . · 367)︸ ︷︷ ︸
72 consecutive primes

· 379 · 409− 1,

which is the same as in [8]. Note that p512 ≈ 2514 such that the corre-
sponding class group has size approximately 2257. To compare with the√
élu isogeny formulae, we will sample from the class group in that set-

ting using integer exponents from [−5; 5] since log(1174) ≈ 2256. We also
make a second comparison with the

√
élu isogeny formulae, using a skew

sampling interval stemming from the optimal strategies of [12]. For the
sake of simplicity, we used the same p512 for all benchmarks. Without
making use of 2k-isogenies, one could restrict to the original CSIDH-512
prime p for which 4 | p + 1 but 8 ∤ p + 1. This would come at a cost of
computing 587-isogenies instead of 409-isogenies however, undoing any
(very minor) gains.
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To choose an optimal maximal exponent vector for our radical isogeny
implementation we proceeded as follows. For each ℓi | p+1 we computed
a long chain of radical ℓi-isogenies to assign an averaged weight to a
single radical ℓi-isogeny. Then, for every fixed ℓi and varying (integer)
λj , we determined what the optimal maximal exponent vector would
need to be based on these weights to reach 2λi possible ending curves
from a class group action exclusively using radical isogenies up to ℓi. For
instance, if ℓi = 5 and λj = 10, we would look at how to best reach
210 ending curves using only radical 2-, 3- and 5-isogenies. The integer
exponent vectors (e1, e2, e3) could be drawn from

[−9; 9]× [−5; 5]× [−2; 2],

since 19·11·5 ≈ 210 and computing radical isogenies is faster for smaller ℓi
given Proposition 3. For each pair (ℓi, λj), we then determined optimal
maximal exponent vectors for the primes ℓi+1, . . . , ℓn such that these
isogenies could reach 2λ−λj possible ending curves, where 2λ is the size
of the class group. This was done by assigning weights to each prime
according to the

√
élu isogeny formulae. Finally, for each pair (ℓi, λj) we

let our implementation compute the class group action for the maximal
exponent vector and choose the fastest out of those options.
The choice for the maximal exponent vector instead of an average one
is that it is a more apt benchmark. Indeed, due to side-channel attacks,
a concrete implementation of CSIDH would need to run at least in con-
stant time, for which the maximal exponent vector is an obvious lower
bound since we can always pretend to be computing the maximal-degree
isogeny with dummy variables. Unfortunately, the techniques used in
CTIDH [1] do not translate to radical isogeny formulae since they batch
isogeny degrees together, whereas we explicitly use long chains of fixed-
degree isogenies starting from a curve in their respective Tate normal
forms. For some more discussion concerning side-channel analysis re-
garding CSIDH, see for example [11, 2]. We currently see no way to turn
this into a dummy-free constant-time implementation unfortunately, and
leave this for future work.
Unsurprisingly, the optimal maximal exponent vector is heavily skewed
towards computing many more small-degree isogenies. We found that
over half of all isogenies are best computed as radical isogenies; more
precisely, 46 out of the 75 prime degrees make use of radical isogeny for-
mulae for the fastest class group action computation. The skew interval
is displayed below.

[ 129, 90, 45, 44, 36, 33, 25, 21, 19, 16, 16, 14, 13, 12,

12, 11, 10, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5,

5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1 ]

Remark that the
√
élu isogeny formulae are only used from ℓ47 = 211

onward, and at most two isogenies for each of those primes are required
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for the class group action computation. Given that the
√
élu isogeny

formulae already start outperforming regular isogeny formulae in the
original CSIDH implementation from N ≈ 100, it is clear that “the
gap is closed” and the class group action computation is fastest with a
combination of radical isogenies and

√
élu isogeny formulae.

In Table 1 we show the results of our implementation. We chose for an
implementation in Magma to make a fair comparison to the work al-
ready done in [9, 8] which was also done in Magma exclusively. As can
be seen in Table 1, a sizeable part of the improvement for CSIDH-512
was due to their work, although our new radical isogeny formulae do
improve it by another 35%, from 0.5705 to 0.3724. Since Magma uses a
lot of internal machinery, we also display the number of multiplications
used since those impact the running time most significantly. The mul-
tiplications include squarings, as well as the multiplications needed for
the exponentiation (which were counted exactly as square-and-multiply
and differ very little from the expected 512 + 256). The multiplication
count seems to follow the relative timing rather accurately, given that
the number of inversions is limited (1231 for this work and 9352 for the
work of [8]) and the inversion/multiplication ratio in this setting is only
approximately 8 in Magma. The accompanying code can be found in [17],
more precisely in the file csidh_512. It can be easily adapted for other
prime characteristics, although in that case the exponent vectors would
of course no longer be optimal (or even have the correct length for that
matter).

We stress that our implementation is merely useful as a tool to com-
pare to the radical isogenies already found and implemented in [9, 8],
and is in no way meant as a practical version of CSIDH. Indeed, the
constant-time implementation of for example [12] already outperforms
our variable-time one with a factor of (approximately) two when it comes
to multiplication count, without using any radical isogenies. This differ-
ence stems from the fact that certain subroutines in the implementation
of [9, 8] are unoptimised; e.g. both their Vélu and

√
élu isogeny imple-

mentations still require multiple inversions on top of several additional
multiplications as well. To the best of our knowledge, there is no practi-
cal CSIDH implementation using radical isogenies, and it is unclear how
well our speed-ups would carry over to a more optimised version (for
instance, the cut-off for using radical isogenies for all ℓi ≤ 199 may dif-
fer). Ideally, such optimised version is a dummy-free and constant-time
one, computing everything projectively and using at most one inversion
at the end. Even though some initial attempts have been made in this
regard in [11], they do not translate easily to our formulae, so we leave
this part for future work.

Larger parameter sets

To show the scaling potential of our radical isogeny formulae on CSIDH,
we elect to opt for 2 larger sets of parameters. The primes p1024 and p2048
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Relative timing Multiplications√
élu + uniform interval [3] 1 4464062√
élu + skew interval [12] 0.7877 3485937
√
élu + limited radicals [8] 0.5705 2481875√
élu + N

√
élu (this work) 0.3724 1615371

Table 1. Relative cost of computing a class group action with maximal coefficients in
the CSIDH-512 setting by adding our N

√
élu isogeny formulae compared to only using

the
√
élu isogeny formulae from [3]. For a more fair comparison, we also include a row

to demonstrate how a skew sampling interval [12] can already benefit CSIDH with just√
élu isogeny formulae. The result using radical N -isogenies up to N = 19 from [8] is

also displayed. All tests were done in Magma v2.28-5 using an Intel Xeon Gold 6248R
CPU at 3.00GHz.

are as follows:

p1024 = 24 · 3 · (3 · 5 · . . . · 727)︸ ︷︷ ︸
128 consecutive primes

· 743 · 773− 1,

p2048 = 24 · 3 · (3 · 5 · . . . · 1439)︸ ︷︷ ︸
227 consecutive primes

· (1451 · . . . · 1471)︸ ︷︷ ︸
4 consecutive primes

· 1523− 1.

Note that p1024 ≈ 21023 and p2048 ≈ 22051 resulting in corresponding
class groups of size approximately 2512 and 21025. We do not try to make
claims about the security for these larger parameter sets. For a discussion
regarding that, see for instance [20]. We merely want to showcase how
well our radical isogeny formulae scale when using them to compute the
class group actions stemming from larger class groups, since the formulae
from [9, 8] had been (rightfully) criticized to have less of an impact for
larger parameters (see for instance [11]). In particular, the primes p1024
and p2048 do not target any specifc NIST security level.

To compare with the
√
élu isogeny formulae, we sample from the class

group in that setting by using integer exponents from respectively [−7; 7]
and [−10; 10] since log(15132) ≈ 516 and log(21232) ≈ 1019. Given
that [8] provides no higher parameter set implementations, we merely
compare the uniform sampling interval applied to

√
élu isogeny formu-

lae with our new isogeny formulae. For CSIDH-1024, the optimal class
group action computation uses our radical isogeny formulae for 74 out of
131 primes, whereas for CSIDH-2048 this is 133 out of 233 primes. Their
respective relative speed-ups are 1 : 0.3667 and 1 : 0.3623. Overall, the
radical isogeny formulae exhibit potential to scale up CSIDH relatively
stably for all parameter sets. The accompanying code can be found in
csidh_1024 and csidh_2048 in [17].

Again, it is unclear what the impact of radical isogenies would be on
practical implementations of CSIDH for larger parameter sets. However,
we are convinced that these formulae showcase that they are not merely
somewhat useful for the lowest security level, but that they offer enough
potential for further research for all security levels.
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5 Conclusion

We provide radical N -isogeny formulae for all odd integers N ≥ 5, which
allow us to efficiently compute a cyclic Nk-isogeny as a chain of k N -
isogenies. These contribute an additional 35% speed-up for the CSIDH-
512 parameters compared to the partial radical isogeny results from [8].
In general, our new radical isogeny formulae scale well for higher parame-
ter sets of CSIDH as well, providing a significant and consistent speed-up
across all levels compared to not using radical isogenies.

Unfortunately, our formulae are only conjectured, so from a mathemati-
cal point of view, their proof is an open research question. Additionally,
the case for radical N -isogeny formulae for even N is only partially an-
swered, with one out of two parameters found. With the partial shift of
focus of isogeny-based cryptographic protocols to higher dimensions, it is
an interesting question whether similar results for the multiradical isoge-
nies from [6] exist. Of course these would need to be within the framework
of theta constants due to the lack of Vélu formulae in higher dimensions
(see for instance [13]). Finally, a dummy-free constant-time implemen-
tation of these formulae in the CSIDH framework would be required to
make them practical for concrete cryptographic implementations.
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28. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de
l’Académie des Sciences, Série I 273, 238–241 (1971), in French

22


