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Abstract: The fast correlation attack (FCA) is a powerful cryptanalysis technique that 

targets stream ciphers based on linear feedback shift registers (LFSRs). Several FCAs 

were applied to small state stream ciphers (SSCs). In this paper, the idea of multiple 

sampling is proposed to use the available keystream bits more efficiently and decrease 

the data complexity of the attacks. This idea helps to overcome the limitation of SSCs 

on the number of output keystream bits. Moreover, we classify the parity check 

equations obtained from the different sampling rounds into different groups to ensure 

that the round keys used in these equations are the same. Our attack is applied to the 

Fruit-80 and reduces the data complexity from 256.82 to 249.82. This modified FCA can 

be applied to all SSCs with limited round key periods. Finally, we suggest a new design 

idea to strengthen SSCs against FCAs. 
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1 Introduction 
 

Stream ciphers are an essential class of cryptography that operate as symmetric key 

encryption algorithms. The generation of keystream bits usually includes initialization 

phase and keystreams generation phase (Halevi et al., 2002). During the initialization 

phase, the key and the initialization vector (IV) are combined to generate the initial 

states of the cipher. In the keystreams generation phase, the initial states are constantly 

updated to produce keystream bits for encryption.  

Mickey (Babbage et al., 2006), Trivium (Canniere, 2006), and the Grain family 

(Hell et al., 2006; Hell et al., 2007; Gren et al., 2011) are famous stream ciphers, which 

have internal states at least twice the security level to guarantee security against time-

memory-data trade-off (TMDTO) attacks (Hellman et al., 1980). However, this rule 

inevitably increases the occupied area of the cipher hardware, which is unsuitable for 

resource-constrained environments such as IoT and RFID. The pursuit of designing 

stream ciphers with smaller internal states and resistance to TMDTO attacks has 

become a popular research direction. Sprout is recognized as the pioneer in SSCs and 

was designed to resist TMDTO attacks (Armknecht et al., 2015). Compared to the 

previous stream ciphers (i.e., conventional stream ciphers), it has a smaller internal state 

and introduced an additional function known as the round key function. This function 

generates the round keys to update the internal state of the nonlinear feedback shift 

register (NFSR) during the keystreams generation phase. Regrettably, Sprout exhibited 

inadequate resilience against TMDTO attacks, leaving it vulnerable to potential security 

breaches (Lallemand et al., 2015; Esgin et al., 2016; Kara et al., 2018). Nevertheless, it 



laid the foundation for the development of other SSCs. Many SSCs, such as Plantlet 

(Mikhalev et al., 2016), Fruit-80 (Amin et al., 2018), and Atom (Banik et al, 2021), 

have been designed based on this idea and added some new functions to increase the 

security of ciphers. Due to their security and lower hardware requirements, SSCs have 

emerged as a leading research focus in cryptography. 

Siegenthaler et al.(1984) proposed the correlation attack, an important 

cryptanalysis method targeting stream ciphers utilizing LFSRs. This approach 

leverages the correlation between the LFSR's internal states and the keystream 

sequence to validate guessed initial states. Correct guesses yield a significant bias, 

whereas incorrect guesses yield seemingly random bias statistics. While exhaustive 

searching of all cipher internal states incurs greater time complexity than correlation 

attacks, Fast Correlation Attacks (FCAs) have been devised to mitigate this. Various 

methods have been used to reduce the number of variables in the parity check equations 

and reduce the time complexity of FCAs. For example, Chose et al. (2002) treated the 

guessing and evaluation process of the FCAs as the Walsh Hadamard transformation. 

They used the fast Walsh Hadamard transformation to accelerate the FCAs process and 

reduce the time complexity of the attacks. Zhang et al. (2006) omitted to guess some 

internal state variables of LFSR by employing XOR operations on two different parity 

check equations. Todo et al. (2018) discovered the "commutative" property of 

multiplying a matrix with a vector in finite fields and used it to construct new parity 

check equations. When the cipher has multiple linear masks with high biases, a new 

false initial state assumption is proposed to identify multiple internal states with high 

biases. Considering the inverse matrices generated by the linear masks and the 

statistical distribution of the internal states, the correct internal state can be recovered 

without checking all internal states of the cipher. 

Since round key functions are used to update the internal states of SSCs 

continuously, the round key bits are inevitably involved in parity check equations, 

considerably increasing the difficulty of the attacks. To solve this problem, Wang et al. 

(2019) took the period of the round key function as the sampling interval and obtained 

parity check equations with the same round key. They discovered that the round keys 

only affect the biases’ direction without changing their absolute value. This method 

helps eliminate the influence of the round keys on the bias of statistics and resolve the 

bottleneck in attacks on SSCs. 

However, as the round key period increases, the sampling interval for parity check 

equations also increases. The number of keystream bits required for the attacks is the 

number of parity check equations multiplied by the sampling interval. A larger sampling 

interval leads to a significant increase in data complexity. Meanwhile, many SSCs also 

limit the number of keystream bits generated by each key-IV pair, making it more 

challenging for attackers to obtain enough keystream bits for executing the attack 

algorithms. Another drawback of the above attacks is the wastage of obtained 

keystream bits, as only the sampled keystream bits are used in the attacks, and 

unsampled keystream bits are wasted. Then, improving the utilization of these 

unsampled keystream bits could reduce the data complexity of the attacks. 

Time and data complexity are important indices for assessing the performance and 



success of the attacks, which need to be considered comprehensively (Meier et al., 

1989). It is essential to acknowledge that the obtained keystream bits from the cipher 

are generally limited to a restricted range due to the LFSR's finite period of the ciphers. 

Repeated use of the same internal state of LFSR reduces cipher security. If the data 

complexity of the attacks is too large, the number of keystream bits required for the 

attacks exceeds the maximum number of keystream bits that the cipher can provide, 

resulting in the attacks on the cipher failing. Therefore, under certain circumstances, 

reducing data complexity is more meaningful than reducing time complexity for SSCs.  

This paper proposes an idea of multiple sampling on the parity check equations 

based on the round key period and applies this idea to FCA. Meanwhile, to enable the 

parity equations obtained from different rounds of sampling to be used together for 

attacks, we organize sampled parity check equations into different groups and add noise 

to these equations to ensure that all sampled parity equations have the same round key. 

Compared to previous single-round sampling, the improved attack with multiple 

sampling avoids increasing the data complexity of the attack with the growing period 

of the round key function, making better use of the obtained keystream bits to decrease 

data complexity. The data complexity of our multiple sampling FCA will gradually 

decrease with the increase in sampling rounds. According to the limitation of the cipher 

on the number of keystream bits, the number of sampling rounds can be adjusted to 

balance the time and data complexity better. To assess the feasibility of our attack, we 

apply it to analyze the Fruit-80. At the same time, we propose a new design principle 

to make SSCs resistant to our multiple sampling FCA and improve ciphers’ security. 

The paper is organized in the following way: Section 2 offers a concise overview 

of the general SSC model and the principle of FWT. Section 3 proposes an improved 

FCA based on multiple sampling. In Section 4, we introduce the Fruit-80 stream cipher 

and apply an improved attack on this cipher. Section 5 provides the countermeasures to 

strengthen SSCs. Finally, Section 6 concludes the paper. 

 

2  Preliminaries 

2.1  The general SSC model 

To facilitate the expression of attack algorithms in the subsequent sections, we refer to 

the previous stream cipher model (Wang et al., 2019) and propose a more general and 

comprehensive SSC model that includes the fundamental characteristics and modules 

of the SSCs such as Plantlet, Sprout, the Fruit-80, and Atom. The model diagram of the 

SSC is illustrated in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1  The general SSC model 



 

LFSR: Consider ( )

1( ,..., )t

t t mL l l + −=  as the internal state of the LFSR at time t and m as 

the length of LFSR. The LFSR’s update from ( )tL  to ( 1)

1( ,..., )t

t t mL l l+

+ +=  is decided by 

a linear feedback function f  with ( )( )t

t ml f L+ = . 

NFSR: Consider ( )

' 1( ,..., )t

t t mN n n + −=  as the internal state of the NFSR at time t 

and m’ as the length of NFSR. The NFSR’s update from ( )tN  to 
( 1)

1 '( ,..., )t

t t mN n n+

+ +=  

is determined by a nonlinear feedback function 
'g , 

' ( ) ' ( )

' ( ) ( )t t

t m t t tn g N l k c g N+ = =     (2.1) 

where 
tl  represents the output of the LFSR at time t, tc  denotes the counter bit at a 

fixed position of the counter 
cC  at time t, and 

cC  is a counter register with a known 

initial value and mode of operation. 
'

tk  is the round key bit at time t, generated from 

the round key function. 

Round key function: It is represented as RKF(K, t) and generating round keys 
'

tk  

to update the internal states of NFSR. Some SSCs, such as Fruit-80 and Atom, may 
employ another different round key function to generate additional round keys for 
updating the nonlinear filtering function h. Let 

0 1( ,..., )K k k−=  denote the cipher’s keys, 

where   represents the security level of the cipher. Two different round keys can be 

represented as 
' ( , )tk RKF K t=  and ** ( , )tk RKF K t= , respectively. The round key 

function essentially is a random selection or combination of keys at specific locations, 

and the indexes of the selected key are generally determined by the values of a counter 

or shift registers. 

Output Function: The input parameters of the output function include LFSR bits, 

NFSR bits, and the output of the nonlinear Boolean function h. The output function 

usually can be defined as follows: 
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where 
, 1 1

( ) ( ,..., )
h L s

t

T t tL l l + +=   is a subset of 
( )tL  with 

110 ... 1s m     − ,

, 1
2

( ) ( ,..., )
h L s

t

T t tN n n + +=  is a subset of ( )tN  with 
210 ... ' 1s m     − , 

11 1( ,..., )qB  =

represents the set of the LFSR taps with 
110 ... 1q m     − ,

22 1( ,..., )qB  =  

represents the set of the NFSR taps with 
210 ... ' 1q m     − , and 

, ,

( ) ( )( , )
h L h N

t t

T Th L N  is a 

nonlinear filtering function that is sometimes directly affected by the round keys 
** ( , )tk RKF K t= . 

Initialization phase: Let '0 1
( ,..., )

m m
IV iv iv

+ −
=  be the initial value used to generate 

the initial state of the cipher. The m initial state bits of the LFSR are loaded with the 

first m bits of the IV, i.e., i il iv= , 0 1i m  − , while m’ LFSR state bits are loaded 

with the remaining bits of the IV, denoted as n , ' 1i m iiv m i m m− =   + − . Compared to 

the keystream generation phase, the output function is fed back and XORed with the 

input of NFSR and LFSR in the initialization phase, i.e., ( )( )t

t m tl f L z+ =   and 

' ( ) ' ( )

' ( ) ( )t t

t m t t t tn g N l k c g N z+ = =     . Subsequently, the cipher is clocked g times 

without producing any keystream bits. Typically, the last few bits of the LFSR state are 

assigned a non-zero constant value to ensure that the output of the LFSR is not all 0. 

2.2 Walsh-Hadamard Transform  

The time complexity of basic FCA is ( 2 )mO N , where N is the number of parity check 

equations used for checking the correct initial state, and m is the size of the cipher’s 

initial state. Chose et al. (2002) utilize the guess and evaluation procedure of the attacks 

as a Walsh-Hadamard transform (WHT) To decrease the FCAs’ time complexity further. 

The fast Walsh-Hadamard transform (FWHT) can be applied to this procedure and 

accelerate recovery of the cipher’s initial state. FWHT can be used to reduce the time 

complexity of FCA from ( 2 )mO N  to ( 2 )mO N m+  . The following illustrates the 

transformation of the parity check equations used for the attacks into the form of WHT. 

Given a function :{0,1}mw Z→ , the WHT of w  is defined as 
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The general form of parity check equations is shown as ,  t

t te s z=    , where  is 

a linear mask, ts  is the internal state of LFSR at time t, tz  is keystream bit generated 

from the cipher at time t, and te  represents the noise introduced by the linear mask 
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Consequently, the FWHT can be applied to the above parity check equations. When 

initial states 0s  are correctly guessed, statistic 
1

0

( 1) t

N
e

t

−

=

−  can exhibit a high bias. 

3  Multiple Sampling FCA Algorithm 

In this section, we first discuss the existing issue of the previous FCA on SSCs and 

subsequently explore how multiple sampling can efficiently solve this issue. Secondly, 

we propose an improved FCA algorithm by applying the idea of multiple sampling to 

FCA. 

3.1 The idea of multiple sampling for parity check equations 

Since the SSCs involve the round key function, obtaining suitable linear approximate 

equations without round keys is challenging. A previous FCA used the idea of sampling 

to eliminate the impact of the round keys on parity check equations. This method allows 

to construct the parity check equations without round keys, facilitating the recovery of 

the cipher’s internal state (Wang et al., 2019). However, because FCA with sampling 

requires more keystream bits to construct enough parity check equations, this approach 

dramatically increases the data complexity of the attacks, resulting in significant data 

waste. We assert that the data complexity of an attack on a cipher should be determined 

by all keystream bits required for the attack rather than the number of discontinuous 

keystream bits used for the attack. Because attackers can't get only discrete keystream 

bits. In the case of a round key function with a period of 80, the previous FCA with 

single round sampling only selects 1 bit from every 80 keystream bits to construct parity 

check equations for the attack, leaving 79 keystream bits unused in each period of round 

key function. Although these 79 keystream bits have not been effectively used for the 

attack, we cannot ignore them when calculating data complexity. Thus, the total data 

complexity should include these 79 keystream bits in each period. Our method will 

result in a remarkably low data utilization rate and greater data complexity. As the round 

key period of the cipher increases, these problems will worsen. 

To address the problems of FCA mentioned above, we consider increasing the 

number of sampling rounds to use more keystream bits that have yet to be sampled or 

used to construct parity check equations. In single-round sampling, keystream bits at a 

fixed order in each cycle are selected to ensure that the equations constructed with these 

keystream bits have the same round key, eliminating the influence of the round keys on 

the bias absolute value of the statistical test. Thus, these parity check equations acquired 

during each sampling period have the same round key. Since the value of the round key 

is either 0 or 1, the probability of the parity check equations obtained from two sampling 

positions of different rounds with the same round key is 1/2. An intuitive explanation 



of the multiple sampling process is provided in Figure 2.  

Figure 2  Multiple sampling of parity-check equation 

 

 

The values in the boxes represent the values of round keys at clocks, which are cycled 

continuously to participate in the parity check equations. The first and second positions’ 

values of each round key period are sampled separately, and the parity check equations 

with the sampled round keys are employed to recover the initial state of the cipher. We 

put the parity check equations from the first round of sampling into Group 1 and the 

parity check equations from the second round of sampling into Group 2 to ensure that 

parity check equations in the same group share the same round key. Considering the 

probability of 1/2 that two groups of parity check equations share the same round key. 

If both groups of parity check equations involve the same round key, these equations 

can be directly used to restore the correct initial state of LFSR by hypothesis testing. 

However, if the two groups of parity check equations involve different round keys, two 

groups of equations cannot be directly employed together to attack the cipher. 

Parity check equations obtained from different rounds of sampling may involve 

different round keys. However, when the round key is a fixed constant, it can only affect 

the direction of the bias within parity check equations without altering the absolute 

value of the bias. Therefore, by assessing the directions of biases, we can determine 

whether the round key values in Group 1 and Group 2 are the same. Considering the 

situation that the round keys within one group of parity check equations differ from 

those in the other group, to eliminate the round keys’ influence on the biases of sampled 

parity check equations, we can XOR all parity check equations of Group 2 with 1 to get 

new Group 3 of equations. We can see that if the biases’ directions of the equations in 

Group 1 and Group 2 are different, the directions of those in Group 1 and Group 3 must 

be the same. Consequently, we can get two groups of equations with the same bias value, 

and then these two groups of equations can be used together to verify the correct initial 

state. 

Sampling the parity check equations in multiple rounds has advantages over 

single-round sampling. Our method optimizes the utilization of the keystream bits at 

different locations in each period, efficiently reducing data complexity by increasing 

the number of sampling rounds. For instance, the cipher has a round key period of 80, 

and an attack requires at least 1000 parity check equations to analyze this cipher 



successfully. The data complexity in a previous FCA with single-round sampling is 

80×1000. However, our improved FCA with two-round sampling uses two keystream 

bits in each period of the round key function to construct the parity check equations. 

Then, the data complexity is reduced to 80×500. Increasing the number of sampling 

rounds allows more keystream bits to be effectively employed in constructing parity 

check equations. This approach can significantly reduce the data complexity of the 

attack. 

3.2 Improved FCA based on multiple sampling  

This section introduces how to use the improved multiple sampling FCA algorithm to 

construct enough parity check equations and apply it to the general model of SSC. 

Most SSCs are designed to enhance the security of ciphers against FCA by 

improving nonlinear filtering functions and integrating additional functions into ciphers. 

It is a challenge to find the correlation between individual internal state bits and 
corresponding keystream bits. Therefore, this paper searches for the high correlation 

between the sum of some internal state bits and corresponding keystream bits. This 
approach can increase the number of available linear masks and the probability of 

discovering linear masks with high biases. Firstly, we conduct linear approximation on 

the sum of keystream bits and assume the index values of the sum of SSC bits are on 
set 

zT , set 
zT will be determined later. Then, we can derive the following equation, 

, , 1 2
1 1 2 2

( ( , ) )
h L h N

z z

t i t i

t i T T t i b t i b
i T i T b B b B
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+ + + + +
   

  =     (3.1) 

To eliminate state bits of the NFSR from equations and independently recover the initial 

state of the LFSR, an appropriate linear approximation is required for the update 

function of the NFSR. The approximate equation of NFSR with bias *g
  is depicted 

below. 
'

'  
g

t m t t t t i
i I

n k c l n+ +


     (3.2) 

where gI  represents the set comprising the indices of the linear terms for the NFSR 

update function. Then, we select a suitable { '}
Z gT I m=  to ensure that 

2
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has a high bias while reducing the number of the NFSR state bits in equations. Then, 
the sum of NFSR bits can be denoted as 
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where *( ) ( )
g

t t

t i
i I

g N n g N+


=   and its bias is *g
 . 

Then, we consider the linear approximation of the nonlinear filtering function 
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The dot operator   between a column vector and a row vector represents the inner 

product in GF(2). There are zT  h functions that require approximation. Thus, the 

total linear masks for all linear approximations of zT  connected h can be represented 

as 1 2( )
{0,1} z

z

s s T

Ta
+ 

 . As the piling-up lemma, the total biases of linear masks 
zTa  

are calculated as 1
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To present different types of terms in the linear approximation equation more 

clearly, we organize the equation into the following form,  
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The part of the equation involving the LFSR’s internal states and keys needs to be 

guessed in our attack, and tc  is the counter bit at a fixed position of the counter Cc
, 

which is known. Therefore, if we can ensure the term that involves the internal state of 
the NFSR has a high bias, our improved FCA can be adopted. Let  
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and this bias is independent of 1( [1],  ... , [ ])i ia a s . If *
2,
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a  is high enough for fixed  

zTa , we can derive the following linear approximation equation with bias value 
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The internal state of LFSR at time t can be denoted as 
( ) (0)t tL L F=   , where

(0)L  
represents the initial internal state of the LFSR, and F is the state transition matrix of 

the LFSR, which is determined by the taps of the feedback function of the LFSR. Then, 

the above linear approximation equation can be simplified into the following form :  

2 2

(0) '

2 2 2 2

( ( ))
z

t

t i T t b t b
zi T b B b B
z L F U a k c+ + +

  
        (3.8) 

where 

1 , 2
1

[ ]

1 1 2 2{1,..., }
( ) [ ]

z h LT i b i i T j b
zi T b B j s b B

U a g a j g+ +
   

=      （ ） g  (3.9) 

where qg  is the first column of the matrix 
qF , , [ ]h LT j  is the jth element of ,h LT . By 

using the above equations, we can derive the linear approximation equation with a 
linear mask u, 
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where {0,1}mu is a column vector of length m. If different 
zTa  derive the same 



linear mask u through U(.), the bias of u is the sum of all corresponding biases, 
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can be discovered, we can obtain r distinct linear approximation equations with the 

guessed variables (0)
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with linear 

mask ju and satisfies ,

1
Pr[ 0]

2
t j je = = + ,

uj  . 

According to the “communitive” property in the finite field (Todo et al., 2018), we 
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where 1 1[ , ,..., ]
j

m

u j j jF u F u F u−=   , m is the length of the initial state (0)L , and t
g  is 

the first column vector of the matrix
tF . 

When multiple linear masks with high bias are available, obtaining more initial 
states with high bias statistical characteristics is possible. The parity check equations, 

constructed using the “communitive” property, break the conventional false initial state 

hypothesis. This approach facilitates recovery of the correct initial state of the cipher 

without the need to guess all initial state bits of LFSR. We can ignore   bits of the 

initial state and only guess remaining m −  bits. Due to the existence of multiple 

initial states with high biases, even if some initial states are omitted, the correct initial 

state can still be obtained. Flexible selection of   can effectively balance time and 

data complexity of attack. 

Assuming that the round key function of the cipher is periodic and the period of 

round keys is d, denoted as 
'

00

' '
tt dt

k k
+

= for 0 0,..., 1t d= −  and ' 0t  . We can generate 

many parity check equations with unknown variables 
(0)

0 1( ,..., )mL l l −=  and 0k


, along 

with r linear mask, 

0

' '' 0'0 00 0

(0)

,

t'=0,..., 1, 1,..., , 0,..., 1

( )  

                               

t dt t dtj t dt
tu t dt j

j r t d

L F g z c k e+ +

  

+ +

− = = −

     =
 (3.14) 

where   represents the number of parity check equations required for getting the 

correct initial state of LFSR with a high probability. The range of quantities for   is 

obtained from the Skellam distribution, 
2

2

2 ( 1) ln 2m

r






+
+

  , where   is the number 

of omitted variables of the initial state (Wang et al., 2019). The period of round key 
function is used as the period of sampling to collect parity check equations. Although 

this method can obtain parity check equations with the same round key, it inevitably 



leads to the wastage of keystream bits and increased data complexity of the attack. 
Consequently, we adopt multiple rounds of sampling to construct the parity check 

equations. When 0t =0 or 1, the following two groups of equations can be derived; we 

consider them as Group 1 and Group 2 separately. 

' '
' '

(0)
0

,
( )

1
 t'=0,..., , 1,...,

2ju dt
dt dt

dt j
L F g z c k e j r

  

 
−

   = =  (3.15) 

' '
' '

(0)
1 1 1

1 1,
( )

1
 t'=0,..., , 1,...,

2j
dt dtu dt dt j

L F g z c k e j r+ +

  

+ +
 

−
   = =  (3.16) 

The values 0k


 and 1k


 are constant and only influence the bias directions without 

changing the absolute value of the bias. When employing two groups of parity check 

equations simultaneously to verify the correct initial state, it is imperative to ensure that  

0k


 and 1k


 are equal. Suppose the round keys of two groups of parity check 

equations differ, the biases calculated by the correct initial state for the two groups of 
parity check equations will be opposite, causing the total bias approach to be 0. Then, 

the initial state of the cipher cannot be restored successfully. To resolve this issue, we 

construct  Group 3 of equations, derived from all equations in Group 1 XOR 1. The 
Group 3 of equations is as follows, 

' '
' '

(0)
0

,
( )

1
1 1,  t'=0,..., , 1,...,

2j
dt dtu dt dt j

L F g z c k e j r
  

 
−

    =  =  (3.17) 

Equations from Groups 1 and 2 are employed together for statistical analysis, while 

equations from Groups 2 and 3 are utilized similarly. Consequently, two groups of 
parity check equations that display biases in opposite directions are discarded. 

Conversely, the remaining two groups of parity equations exhibit the bias in the same 

direction, making them suitable for being used together to determine the correct initial 
state. Assuming equations from Groups 1 and 2 have different round keys, and we can 

XOR 1 with equations from Groups 1 to get equations of Group 3, then equations from 

Groups 2 and 3 have the same round key, i.e., 1 0 1k k
 

=  . 

' 1 ' 1 1

' ' 0

(0)
' '1 1,

(0)
' ',

1
( )   t'=0,..., , 1,...,

2
1

( ) 1 1   t'=0,..., , 1,...,
2

{
dt dt

dt dt

u j dt dt j

u j dt dt j

L F g z c k e j r

L F g z c k e j r

+ +

 

+ +
 

−
     = =

−
      =  =

 (3.18) 

We can merge and simplify the above two groups of equations as follows, 

' '

0 1( ),..., , t=0,..., 1t t tml gl z c k
  

−     −  (3.19) 

where 
'(0) ' '

0 1( ,..., )mL l l −=  represents the guessed value of (0)

juL F  . We introduce an 

indicator for all parity check equations as 

' ' ' '

0 1 0 1( ) ( ),..., ,..., t t tt m ml l gl l z c k
  

− − =      (3.20) 

If the value of '(0)L  is guessed as (0)

juL F  and the round key k


 is guessed correctly, 

then we can get 
'(0)

,( ) ,  1,...t t jL e j r = =  and 
'(0)

Pr[
1

( ) 0]
2

t jL  = = + . If the value of 

'(0)L  is guessed as (0)

juL F  and k


 is guessed wrongly, then 
'(0)

,( ) 1,t t jL e =   

1,...,j r=   and 
'(0)

Pr[
1

( ) 0]
2

t jL  = = −  . If the guessed initial state 
'(0)L  does not 



belong to the set (0){ , 1,..., }
juL F j r = , then '(0)( )t L  is generally assumed to perform 

randomly and '(0)
Pr[

1
( ) 0]

2
t L = = . Given (0){ , 1,..., }

jh uS L F j r=  =  and {0,1} \m

l hS S=  , 

we define the statistic   of bias of indicator as 

' '
0 1

1
' '

0 1

0

( ,..., )
( ,..., ) ( 1) t m

m

t

l l
l l −

−

−

=


= −  (3.21) 

According to the central limit theorem and value of k


, we can obtain representations 

of the statistic, 

'(0) 2( ) ( , (1 )) ( , )L N N     −     (3.22) 

or 

'(0)( ) ( , )L N  −   (3.23) 

when 
'(0)

hL S  , where ( , )N    represents the normal distribution with variance and 

expectation parameters, 2  is small enough to be disregarded, and 

 '(0)( ) (0, )L N   (3.24) 

when '(0)

lL S . To further reduce the time complexity of the attack, we apply FWHT to 

the guessing and evaluation process of the cipher’s initial state. The details of FWHT 

are introduced in Section 2. 

4  Application of the attack on Fruit-80 

4.1 Brief description of Fruit-80  

Fruit-80 is a bit-oriented SSC with an 80-bit key 0 79
( ,..., )K k k=  and a 70-bit known 

initial vector 0 69( ,... )IV iv iv= . It includes four main parts: a 43-bit LFSR whose state at 

time t is denoted as 
( )

42
( ,..., )

t

t t
l lL

+
= , a 37-bit NFSR whose state at time t is denoted as

( )

36
( ,..., )

t

t t
N n n

+
=  , an 80-bit register used for storing fixed key, and a 7-bit counter 

register denoted as 
0 6,...,( )t tcC cc=  used for the update of round key functions. 

Figure 3  The Block Diagram of Fruit-80 

 



Update function of LFSR:  

 ( )

43 8 18 23 28 37( )t

t t t t t t tl f L l l l l l l+ + + + + += =       (4.1) 

Update function of NFSR:  
' ( )

37

'

10 20 12 3

14 25 5 23 31

8 18 28 30 32 34

( )

        =

        

        

t

t t t

t t t t t t t

t t t t t

t t t t t t

n k l g N

k l n n n n n

n n n n n

n n n n n n

+

+ + + +

+ + + + +

+ + + + + +

=  

    

 

 

 (4.2) 

Round key functions:  

'

16 48 16 16 48 48 16( , )t r p q r p p q r q pk RKF K t k k k k k k k k k k+ + + + + + += =      (4.3) 

*

16 16 48 48 16 48*( , )t r p p q r q r p qk RKF K t k k k k k k k k k+ + + + + += =       (4.4) 

where
0 1 2 3( )t t t tr c c c c= , 1 2 3 4 5( )t t t t tp c c c c c= , 2 3 4 5 6( )t t t t tq c c c c c= . 

Nonlinear filtering function:  

 
, ,

( ) ( ) * *

36 19 6 15

1 22 35 27 1 24

1 33 42

( , , ) ( )

                          

                          

h L h N

t t

T T t t t t t t

t t t t t t

t t t

h L N k k n l l l

l l n l n n

n n l

+ + + +

+ + + + + +

+ + +

=  

  



 (4.5) 

where 
,

( )

1 6 15 19 22 27 42( , , , , , , )
h L

t

T t t t t t t tL l l l l l l l+ + + + + + += ,
,

( )

1 24 33 35 36( , , , , )
h N

t

T t t t t tN n n n n n+ + + + += . 

Keystream output function： 

, ,

( ) ( ) *

38 7 19

29 36

( , , )

      

h L h N

t t

t T T t t t t t

t t

z h L N k l n n n

n n

+ + +

+ +

=    

 
 (4.6) 

The initialization phase： 

It connects 1000000000 in front of the IV bits to extend the length of the IV to 80 

bits, i.e., 0 1 68 69
' (1000000000 )...IV iv iv iv iv= . Then keys are separately loaded into 

the LFSR and NFSR, i.e., (
0 0 1 1 36 36 37 0 38 1 79 42, ,... , , ,...,k n k n k n k l k l k l→ → → → → → ). 

Additionally, the counter Cc denoted as
0 1 5 6

0 0 0 0( ... )c c c c  are set to 0. Firstly, the XOR of the 

output bits and IV bits are fed into the NFSR and LFSR (
' ,0 79i iz v i   ), and then the 

cipher is clocked 80 times. The counter Cc(
0 1 5 6

80 80 80 81 80 85 80 80, ,..., ,c n c n c n c l= = = = ) is 

updated using the NFSR and LFSR, and the 80l  is set to 1. Finally, the cipher is 

clocked 80 times without any feedback during the LFSR and NFSR update process. 
The output generated during the initialization phase is not used as keystream bits to 

encrypt information. The initialization phase aims to provide a secure internal state for 

the cipher. 

4.2 Attack on Fruit-80 

The overall round key period of Fruit-80 is determined by its round keys 
*

tk  and 
'

tk , 

which is the least common multiple (LCM) of the two round key periods. The period 

of two round keys can be calculated individually. Due to periods of 
*

tk  and 
'

tk  are 



both 128, the overall round key period of Fruit-80 is 128. Then, we can analyze the 
internal structure of Fruit-80 and apply the improved FCA in Section 3 to it. 

The linear approximation of the NFSR’s update function is presented below, and 

its bias is calculated as 4.62− . 

' 3

37 10 20t t t t t t tn k l n n n c+ + +       (4.7) 

To eliminate the NFSR terms in the parity check equations as much as possible and 
make the bias higher, we choose the set of keystream indexes as {0,10,20,37}zT = . Then, 

the keystream bits of Fruit-80 can be expressed as 

, ,

( ) ( ) *

38

* ( ) ' 3
           

( , , )

( )

h L h N
z z z

t i t i

t i t i t b T T t
i T i T b B i T

t b

t b t b
b B b B b B

z l l h L N k

g N k c

+ +

+ + + +
   

+

+ +
  



  

 =   

  
 (4.8) 

where B={0,7,19,29,36}, * ( ) ( )

10 20( ) ( )t t

t t tg N n n n g N+ +=     and

* ( ) 4.61
Pr[ ( 0)] 2

2

t
g N

−
= = + . 

Let ( [0],..., [11])i i ia a a=  denote the linear mask of the h function at time t+i. The 

linear approximation of the h function can be expressed as 

, , , ,

( ) ( ) ( ) ( )( , ) ( [0],..., [6]) ( ) ( [7],..., [11]) ( )
h L h N h L h N

t i t i t i T t i T

T T i i T i i Th L N a a L a a N+ + + +     (4.9) 

with the biases 
6 7

, ( ) 2 , 2h i ia − −=   or 0. Due to the 
z

t i
i T

z +

  having 4 h functions, each 

function needs to be approximated separately. We denote 0 10 20 37( , , , )
zTa a a a a=  as the 

linear mask, connected with four linear masks of length 12. According to the pilling-up 

lemma, the bias of 4 h functions’ connected approximations can be calculated as 
3

, ,( ) 2 ( )
z z zh T T i T h i ia a =   (4.10) 

To exclude the NFSR terms in the parity check equations, the bias * ,
( )

zTg B
a  for all 

NFSR terms in these equations is computed. 

,
*

( ) * ( )

,

1
Pr[ (( [7],..., [11]) ( ) ) ( ) 0]

2
( )

h Nz

t i T t b

i i TTg B
zi T b B

a a N g Na + +

 
=   = −   (4.11) 

This bias remains independent on ( [0]ia ,…, [6]ia ) for zi T . Then, we refer to the linear 

masks 
zTa  with non-zero biases * ,

( )
zTg B

a  found in (Wang et al., 2019) and present 

a portion of them in the following Table 1, where * represents 0 or 1.Then, linear 

approximation equations of 
z

t i
i T

z +

  can be derived for any 

zTa , 

,

( ) '

38 ( [0],..., [6]) ( )
h L

z z z

t i T

t i t i t b i i T t b
i T i T b B i T b B

z l l a a L k+

+ + + + +
    

         (4.12) 

and its bias is calculated as , *,2 ( ) ( )
z zz T Th T g Ba a   .The above linear approximation 

equation can be simplified to : 
(0) '( )

z

t

t i t b
i T b B

z L F u k+ +
 

      (4.13) 

where 
43{0,1}u  are linear masks. If different 

zTa  are transformed by ( )U   into the 



same linear mask u, the biases of these 
zTa  should be added to obtain the bias of linear 

mask u. The bias u  can be expressed as  

, *,
{ ( )}

2  ( ) ( )
z zz

T Tz z

u T Th T g B
a u U a

a a  
=

=    (4.14) 

where 

1 6 15 19

22 27 42 38

( ) (( [0] [1] [2] [3]

[4] [5] [6] ) )

z
z

T i i i i i i i i
i T

i i i i i i i b
b B

U a a g a g a g a g

a g a g a g g g

+ + + +


+ + + +


=       

       




 (4.15) 

By exhaustively searching all [0,...,6]
zTa , we can get r=

202  u with absolute values of 

biases greater than 31.622
2

th
 −= = . 

Table 1 Biases of linear masks when [7 :11],  i za i T are fixed 

𝑎0[8] 𝑎0[9] 𝑎0[10] 𝑎10[8] 𝑎10 [9] 𝑎20[7] 𝑎20[8] 𝑎20[9] 𝑎37[7] 𝑎37[8] 𝑎37[9] 
* ,g B

  
0 0 0 0 0 0 0 0 0 0 0 +2-13.28 

1 0 0 0 0 0 0 0 0 0 0 +2-17.80 

0 1 0 0 0 0 0 0 0 0 0 +2-13.28 

1 1 0 0 0 0 0 0 0 0 0 +2-17.80 

0 0 0 1 0 0 0 0 0 0 0 +2-14.86 

1 0 0 1 0 0 0 0 0 0 0 +2-19.39 

0 1 0 1 0 0 0 0 0 0 0 +2-14.86 

1 1 0 1 0 0 0 0 0 0 0 +2-19.39 

0 0 0 0 1 0 0 0 0 0 0 +2-13.28 

1 0 0 0 1 0 0 0 0 0 0 +2-17.80 

0 1 0 0 1 0 0 0 0 0 0 -2-13.28 

1 1 0 0 1 0 0 0 0 0 0 -2-17.80 

0 0 0 1 1 0 0 0 0 0 0 +2-14.86 

1 0 0 1 1 0 0 0 0 0 0 +2-19.39 

0 1 0 1 1 0 0 0 0 0 0 -2-14.86 

1 1 0 1 1 0 0 0 0 0 0 -2-19.39 

0 0 0 0 0 1 0 0 0 0 0 +2-15.26 

1 0 0 0 0 1 0 0 0 0 0 +2-18.06 

0 1 0 0 0 1 0 0 0 0 0 +2-15.26 

1 1 0 0 0 1 0 0 0 0 0 +2-18.06 

0 0 0 1 0 1 0 0 0 0 0 +2-15.99 

1 0 0 1 0 1 0 0 0 0 0 +2-18.80 

0 1 0 1 0 1 0 0 0 0 0 +2-15.99 

1 1 0 1 0 1 0 0 0 0 0 +2-18.80 

… … … … … … … … … … … … 

* * 1 * * * * * * * * 0 

* * * * * * * * 1 * * 0 

 

From the analysis presented in Section 2, we require at least 
2

2

2 ( 1) ln 2m

r






+
+

 =  

parity check equations to recover the correct LFSR’s initial state with high probability. 

The probability of a wrong state considered as the correct initial state is smaller than  

2-m-1. According to Theorem 3(Wang et al., 2019), the data and time complexity are 

separately 
2

2

2 ( 1) ln 2m

r
D k






+
+

=   and 
2

2

12 ( 1) ln 2
2mk m

r
T rk p







+

+ −+
= +   in FCA 



with single round sampling, where 
1

1 2(( 2 (43 1) ln 2) )p Q r  −= + , k is period of round 

key function and   represents the number of LFSR’s initial state bits that can be 

omitted. ( )Q x  is the tail distribution function of the standard normal distribution, i.e., 
2

2
1

( )
2

y

xQ x e dy


−
=  . In our multiple sampling FCA, assuming the number of sampling 

rounds is denoted as n. The data complexity of our attack is shown as 
2

2

2 ( 1) ln 21 m

r

k
D D

n n






+
+

= =                                     (4.16) 

Because our attack can use n keystream bits to construct the parity check equation in 
each round key cycle. In contract, single round sampling only uses one keystream bit 

per cycle, the number of keystream bits required for our attack is only 1/n of the single 
round sampling. The time complexity of our attack is shown as 

2

2

12 ( 1) ln 22( 1) 1 1
(2 ) 2mk m

r

n
T T rk p

n n







+

+ −+− +
= = −  +（ ）           (4.17) 

The parity check equation required for our FCA with n rounds of sampling comprises 

n groups of parity check equations obtained from different rounds of sampling, and the 

number of equations in each group is 
n

 . Considering that different groups of 

equations may have different round keys, we use the round key of the first group of 

equations as a reference and construct additional (n-1) groups of equations by 
performing the XOR operation between 1 and the remaining (n-1) groups of equations, 

to ensure the existence of   parity check equations with the same round key. 
Therefore, the time complexity of n round sampling should include calculation time for 
2( 1) 1n

n

− +
  equations compared to single round sampling. 

The time and data complexity of our attack on Fruit-80 for different   and n are 

presented below. The data provided in the corresponding positions of the following two 

tables denote the time and data complexity of the same attack. 

Table 2 Time complexity with different n  and   

n /   0 1 2 3 Source 

1 69.992  
68.992  

67.982  
66.982  (Wang et al. ,2016) 

2 70.572  
69.572  

68.562  
67.562  Our work 

3 70.722  
69.722  

68.712  
67.712  Our work 

4 70.802  
69.802  

68.792  
67.792  Our work 

 

Table 3 Data complexity with different n  and   

n /   0 1 2 3 Source 

1 56.822  
57.822  

58.822  
59.822  (Wang et al. ,2016) 

2 55.822  
56.822  

57.822  
58.822  Our work 

3 55.232  
56.232  

57.232  
58.232  Our work 

4 54.822  
55.822  

56.822  
57.822  Our work 

 

In Table 2 and Table 3, the first rows of data are related to the time and data 

complexities of previous attacks (Wang et al., 2019), respectively. Other rows are our 



improved attacks’ results for different numbers of sampling rounds. We compared the 
results of our multiple sampling attacks with data in the first row; when the time 

complexity approximates 270, the data complexity of our attack is half of the previous 
attack; the corresponding data in the table are marked in bold. Meanwhile, the minimum 

data complexity of our attack with 128 rounds of sampling can be reduced from 
56.822  

to 
49.822 compared with the previous attack. When the available keystream bits are very 

limited, the reduction in the data complexity of the attack is more meaningful than the 

reduction in the time complexity. There are limitations over the number of produced 

keystream bits under a fixed key and IV on every stream cipher, and this point is more 
restricted in SSCs. Thus, our idea implements FCA over SSCs whenever enough 

keystream is unavailable. Meanwhile, our multiple sampling FCA can better balance 
time and data complexity by adjusting the number of sampling rounds and omitted 

states. This method can ensure that the lower time complexity of the attack can be 

obtained with enough keystream bits. 

5  A countermeasure to strengthen SSCs 

The fundamental requirement for implementing our improved attack is that the 

cipher’s round key period is finite. This characteristic is typically found in most Grain-

like SSCs. Therefore, SSCs with limited round key periods will lead to security 

vulnerabilities related to our multiple sampling FCA. To overcome this problem, we 

recommend increasing the round key function’s period of SSCs 

Due to the sampling interval of our attack for the parity check equations being 

equal to the period of the round key function, when the period of the round key function 

is large enough, more keystream bits are needed to implement this attack successfully. 
If the number of keystream bits used in the attack is more than that the cipher can 

provide, we believe that this attack is invalid for the cipher. We assume that the round 
key period of Fruit-80 is increased to t, and the data complexity of multiple sampling 

FCA is 
2

2

2 ( 1) ln 2m

r

t
D

n






+
+

=  . For the number of omitted internal state bits   and 

sampling rounds n of the attack are 0 and 3, if the period of the round key is more than 

232, the data complexity of multiple sampling FCA on Fruit-80 will increase to 280, 
making the multiple sampling FCA ineffective.  

Therefore, we propose a new design principle of SSCs that the round key function 

period should be set large enough. By observing the periods of the two round key 

functions of Fruit-80, we found that their periods are both 128, and their LCM is 

themselves, which leads to a very small total round key period. Therefore, we consider 

changing the period of one of the round key functions to increase the total round key 

period. For example, one of the round key functions selects 79 key bits in a loop. 

Although the period of the single round key function is reduced, the overall round key 

period is greatly increased because the LCM of 79 and 128 is 79 ×128. The other 

representative design idea originated from Fruit-F. Since the LFSR and NFSR of the 

ciphers have large periods, the internal state bits of them are used to update the round 

key function. The round key bits are obtained from several bits of the NFSR and the 

LFSR (Amin et al., 2023). For Fruit-80, the period of the LFSR is 243-1, and the period 

of NFSR is the multiple of 243-1. Thus, the period of the new round key function is at 

least 243-1, which is much larger than the previous period. Since most stream ciphers 

contain the parts of LFSR and NFSR, this design idea can apply to other SSCs to 



increase the round key function period, improving SSCs’ security against multiple 

sampling FCA. 

6  Conclusion  

This paper proposed a new idea of employing multiple sampling for parity check 

equations in FCA, overcoming the SSCs’ limitation on the number of output keystream 
bits. The proposed attack can use available keystream bits more efficiently and decrease 

the data complexity of the FCAs. Compared to the previous attack on Fruit-80, the 

suggested attack with four rounds of sampling reduced data complexity from 
56.822  to 

55.822 over the similar time complexity. Our improved FCA with 128 rounds of sampling 

can reduce the data complexity to 
49.822 , which is the minimum data complexity of all 

attacks on Fruit-80. Meanwhile, our idea of multiple sampling can also be applied to 
other FCAs and SSCs. Furthermore, to ensure the SSCs’ security, we suggested 

increasing the round key period of SSCs to resist the described attacks and improve 

ciphers’ security. 
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