Distributing Keys and Random Secrets
with Constant Complexity™

Benny Applebaum! and Benny Pinkas?

! Tel Aviv University, Isracl bennyap@post .tau.ac.il
2 Aptos Labs and Bar Ilan University benny@pinkas.net

Abstract. In the Distributed Secret Sharing Generation (DSG) problem
n parties wish to obliviously sample a secret-sharing of a random value
s taken from some finite field, without letting any of the parties learn
s. Distributed Key Generation (DKQG) is a closely related variant of the
problem in which, in addition to their private shares, the parties also
generate a public “commitment” g° to the secret. Both DSG and DKG
are central primitives in the domain of secure multiparty computation
and threshold cryptography.

In this paper, we study the communication complexity of DSG and DKG.
Motivated by large-scale cryptocurrency and blockchain applications, we
ask whether it is possible to obtain protocols in which the communication
per party is a constant that does not grow with the number of parties. We
answer this question to the affirmative in a model where broadcast com-
munication is implemented via a public bulletin board (e.g., a ledger).
Specifically, we present a constant-round DSG/DKG protocol in which
the number of bits that each party sends/receives from the public bul-
letin board is a constant that depends only on the security parameter
and the field size but does not grow with the number of parties n. In
contrast, in all existing solutions at least some of the parties send 2(n)
bits.

Our protocol works in the near-threshold setting. Given arbitrary pri-
vacy /correctness parameters 0 < 7, < 7. < 1, the protocol tolerates
up to mpn actively corrupted parties and delivers shares of a random
secret according to some T,n-private T.n-correct secret sharing scheme,
such that the adversary cannot bias the secret or learn anything about
it. The protocol is based on non-interactive zero-knowledge proofs, non-
interactive commitments and a novel secret-sharing scheme with special
robustness properties that is based on Low-Density Parity-Check codes.
As a secondary contribution, we extend the formal MPC-based treatment
of DKG/DSG, and study new aspects of Affine Secret Sharing Schemes.

1 Introduction
Consider the following secure multiparty computation problem: n parties wish
to obliviously sample a secret sharing of a random value s taken from some finite

* B. A. is supported by ISF grant no. 2805/21 and by the European Union (ERC-
2022-ADG) under grant agreement no.101097959 NFITSC.

field F without letting any of the parties learn the value of s. Roughly speaking,
given a privacy threshold and a correctness threshold ¢, < t., the protocol must
ensure that any adversary A that actively (aka maliciously) corrupts up to ¢,
parties learns nothing about the secret s and cannot bias it, and that any set of
t. honest parties can recover the secret even in the presence of A.

This task, hereafter referred to as Distributed Secret Sharing Generation
(DSG), can be viewed as a natural extension of Verifiable Secret Sharing (VSS),
with the difference being that in DSG the secret is obliviously sampled, whereas
in VSS it is chosen by a designated dealer. DSG plays an important role in many
secure multiparty computation protocols (MPC), especially in the online/offline
setting. It is also closely related to the problem of Distributed Key Generation
(DKG), in which, at the end of the sharing phase, the protocol publishes a
commitment to the secret (e.g., the value ¢g° where g is a generator of a cyclic
group of appropriate order)ﬂ (See, e.g. [4328/13112427|3TIARIBB6ITHI39].) DKG
protocols are typically employed to distribute a private key s and publish a cor-
responding public key for a threshold signature scheme or cryptosystem (e.g.,
ElGamal, ECDSA, Schnorr, and BLS). The rise of digital currencies and proof-
of-stake blockchains have lead to the deployment of DSG protocols for large
scale systems with hundreds and even thousands of users [32|I8]. As a result, an
extensive body of research is currently devoted to the study of DSG protocols
and their complexity. There are also many real-world implementations of DKG,
e.g. [AOASIAZROTIAITS].

The communication complexity of DSG and DKG. In this work we study the
communication complexity of DSG and DKG. Motivated by recent applications,
we assume that the vast majority of the communication is performed via a
public ledger. That is, in the distribution protocol parties write messages on a
public bulletin board (BB) and read messages from the board, but cannot erase
anything. The communication to the BB is non-anonymous and authenticated
(e.g., via digital signatures and PKI). We also allow parties to send messages
via private authenticated channels though such channels can be emulated over
the public board assuming public-key encryption. Qualitatively, the BB can be
simply viewed as an implementation of a broadcast channel. However it allows
for a refined communication complexity measure. Specifically, we define the up-
stream complezity of a party as the number of bits that the party sends either
to the BB or via private channels, the downstream complerity as the number
of bits that a party reads from the BB or receives via private channels, and
refer to the sum of the upstream complexity and downstream complexity as the
communication complexity of the party. The total communication complexity is
the sum of the communication complexity of all parties. For example, if Alice

3 There are several definitions and variants of DSG and DKG. In particular, sometimes
the protocol is required to generate public commitments to the private shares, and,
typically, one should be able to securely recover the secret in the exponent of a given
group element h. To simplify the exposition, we postpone the formal definition, but
mention for now that our protocols support these features.

publishes 10 bits on the BB and Bob reads only the first 2 bits then Alice’s
communication complexity is 10 but Bob’s communication complexity is only 2.
When measuring the communication complexity of DSG and DKG we will focus
on the distribution phase and ignore the communication complexity of the task
of recovering the secret. Indeed, in all standard protocols (including the ones
in this paper) one can release the secret s (or a committed version of it) to a
receiver R via a single-round protocol with a linear communication complexity.
If only a few parties need to recover the secret, the reduction in the communi-
cation is effective. For example, in the setting of threshold signatures, where a
single client receives a signature on a document, only the client has to read O(n)
symbols from the BB whereas the n servers only have constant communication.

Ezisting solutions. The most common approach is to reduce the DSG problem
to n parallel calls to verifiable secret sharing (VSS), where in each call a different
party P; deals shares of a random secret according to some linear secret sharing
scheme (e.g., Shamir [47]), and where the final shares are defined by locally
summing-up the received shares. One can optimize the protocol a little bit by
using only ¢, + 1 dealers. Assuming that t,,¢. are both linear in n (which will
be taken to be our default setting), the total communication complexity of this
protocol is about §2(n?) field elements since 2(n) parties must each communicate
at least £2(n) field elements (even if the protocol is only passively secure). General
MPC solutions for computing the randomized sharing functionality also lead to
a similar communication cost. One can slightly improve the communication by
running the protocol over a small super-logarithmic size sub-committee that is
chosen at random via collective random coin-tossing. Ignoring the cost of the
coin-tossing protocol, this reduces the total communication to w(nlogn) field
elements although the communication overhead is unbalanced and some parties
still have a communication complexity of Q(n)ﬁ Finally, we mention that if
many instances of DSG are needed then one can amortize the communication
cost to O(1) per instance (e.g., via the use of hyper-invertible matrices [5]).
This approach is typically useful for MPC applications, but is less useful in the
DKG setting when the protocol is being used to set-up a single private key.
Our main goal is to understand whether a constant cost can be established in a
non-amortized setting. That is, we ask:

How does the communication complexity of DSG and DKG protocols
scale with the number of parties n? Specifically, is it possible to design a
protocol where the communication complexity of each party is a constant
that is independent of n?

The information bottleneck. All existing protocols suffer from the following “in-
formation bottleneck” which affects their communication overhead: There are

* In the standard model where there is no external source of randomness (e.g., random
beacon), coin-tossing protocols still have quadratic downstream communication since
£2(n) parties contribute randomness to the process and each party has to read these
contributions. Also, in the standard model, this solution is restricted to non-adaptive
adversaries that select the corrupted parties before the committee is established.

some (typically, 2(n)) parties whose input influences the outputs of 2(n) par-
ties. However, in a constant-round protocol with a constant communication over-
head per party each party can only affect the output of a constant number of
parties.

2 Our Results

We show that n parties can obliviously sample a secret sharing for a random
secret with constant communication complexity per party. Formally, we prove
the following theorem.

Theorem 1 (main theorem). Assuming the existence of NIZKs the following
holds. For any constants 0 < 7, < 7. < 1 and every field F of size super-
polynomial in the number of parties, there exists a constant-round n-party DSG
(resp., DKG) protocol over F with privacy threshold of Ton and recovery threshold
of Ten such that each party sends and receives only a constant number of field ele-
ments and a constant number of commitments and NIZK proofs for constant-size
relations. Moreover, each party computes only a constant number of arithmetic
operations and cryptographic operations.

In contrast, existing protocols fail to achieve constant communication even if the
downstream complexity is ignored and broadcasting a bit is counted as a unit
cost operation. We proceed with some comments.

1. (About the thresholds) The protocol guarantees that even if the adversary
actively corrupts up to t, = 7Tpn parties, at the end of the protocol the
(honest) parties hold shares of a random secret according to t,-private .-
correct secret-sharing scheme for t. = 7.n. For example, we can assume
that every un-corrupted party will be participating in the reconstruction
procedure and so we can take t, = n — t. (e.g., t, = n/3 and t. = 2n/3).
We note that the theorem is still meaningful even when ¢, + t. # n. (For
example, to support the case of some honest parties being offline and not
participating in the reconstruction of the secret, the parameters can be set
such that t,+t. < n,e.g., t, = n/3 and t. = 0.5n to support up to n/6 honest
parties being offline. As another example, to support the case of parties that
are passively dishonest and thus leak their shares while still participating
in the reconstruction, the parameters can set such that ¢, +¢. > n, e.g,
tp = 0.6n and t. = 0.7n.)| It should be emphasized that, unlike Shamir-
based schemes, we do not get an exact threshold of ¢, = ¢, + 1, rather we
only get near-threshold secret sharing.

2. (The field size) The limitation on the field size being super-polynomial in n
can be completely waived at the expense of allowing a large constant gap
between the parameters 7. and 7,. That is, for any finite field (including
the binary field) the theorem can be proved for some constants 7. < 7.

5 Formally, we capture this property via the use of a mized adversary [23] that applies
different types of corruptions (active, passive, and fail-corrupt). See Section

(See Remark @) We focus on large fields since this is the natural setting for
DKG applications (e.g., when the secret is taken to be the private key of a
DLOG-based system).

. (Formalizing security) Despite the popularity of DKG, there is no single
canonical definition for its security. Building on Katz [37] and Gennaro et
al. [28], we formalize security via an MPC framework by presenting ab-
stract DSG/DKG functionalities that are independent of any concrete se-
cret sharing scheme (similarly to the abstract definition of a commitment
functionality). We assume that the network is synchronous and consider
computationally-bounded, rushing, non-adaptive adversaries. Simple vari-
ants of our protocol achieve adaptive security assuming secure erasures and
perfect commitments. Our simulators are straight-line black-box, so given
UC-secure building blocks the protocol can be proved to be UC-secure.

. (Round complexity) The number of rounds is a constant that grows linearly
with the privacy-to-correctness gap 7. — 7,. We can optimize the round com-
plexity and get 3 rounds if we allow a larger correctness-to-privacy gap (i.e.,
settle on some universal constants 7, < 7). For DSG, we can even reduce the
round complexity to 2, assuming a public-key infrastructure. This two-round
solution can be also applied to DKG at the expense of a slight relaxation of
the functionality (see Section [6.2).

. (Concrete communication) Using DLOG-based primitives (e.g., ElGamal
commitments and RO-based NIZK), each party communicates a constant
number of elements from F and the underlying group G, where the con-
stant is determined by information-theoretic objects (the sparsity of some
low-density parity-check matrices). A concrete instantiation is described in
Section [7] It therefore seems likely that one can get competitive practical
results, at least for some range of parameters. We leave this direction for
future work.

. (The cost of recovering of the secret) Our DSG protocol generates O(n)
public elements on the BB. To recover the secret (either directly or taken
to the power of some public group element h) one has to read these values
from the BB and receive O(1) values from each of at least ¢, honest parties.
Other existing protocols typically suffer from a similar cost as they have to
read some certificates for the validity of the submitted shares (e.g., commit-
ments). However, unlike other protocols, in our setting such access to the
BB is necessary even if the adversary remains silent and only valid honestly-
generated shares are being used. Put differently, our protocol suffers from
the non-standard caveat that the local shares of authorized coalitions of size
t. have no information about the secret, and recovery is possible only when
these shares are accompanied by the public values that are published on the
BB. Similarly, in the context of DKG, computing the “public key” g° requires
reading {2(n) public values that are available on the BB. Of course, such a
computation can be done once and for all, and can be verified later by any-
one based on public values. So in terms of usability, this property does not
seem very limiting. Interestingly, it turns out that this non-standard prop-

erty is mecessary for bypassing the aforementioned information bottleneck,
as we prove in Appendix [A]

2.1 Technical overview

To prove Theorem we will try to design a special-purpose secret-sharing
scheme (SS) that natively supports distributed sampling. This requirement is
satisfied if the shares are independently distributed. On the other hand, the cor-
rectness requirement implies that shares must be highly correlated. To bypass
this problem, we design a scheme in which the shares are sampled independently
at random and the correlation is achieved by publishing global public informa-
tion that depends on all the shares. For example, think of the following variant of
Shamir’s scheme where each party i locally samples a random field element y; as
its share. We can think of these shares as defining a polynomial f of degree n—1
for which f(i) = y;,Vi € [n]. To add redundancy, the parties securely evaluate
the polynomial f in additional m = n —t points n+1, ..., n +m and publish the
resulting vector y = (Yn41, - - -, Yntm) o0 the BB as a “public header”. Given this
information, every set of ¢ parties can recover the secret f(0). Now, our goal is
to securely compute a function that takes a single field element from each party
and publishes O(n) field elements on the BB. At least in terms of information
(ignoring secrecy), this may be doable by using O(1) communication per party.
While it is not clear how to do it securely, at least we do not face the previous
information bottleneck.

The AFS abstraction. Let us abstract the above idea. Our goal is to design a
secret-sharing with public header y that is available to all parties such that (1)
a random sharing « = (x1,...,x,) can be sampled by letting each party sample
her share z; uniformly at random, and (2) the header y can be securely computed
based on 2. We note that any linear secret sharing (LSS) X can be brought to this
form. To see this, observe that a random sharing © = (z1, ..., z,) € F* according
to X is a random vector in the Kernel of some m x n “constraint” matrix M (i.e.
M -2 = 0), and the secret s associated with x can always be written as some
linear combination v € F” of the shares, i.e., s =), v;x;. Consider a new secret
sharing scheme in which z = (z1,...,z,) are sampled uniformly at random,
rather than be sampled subject to M - x = 0, and where the public header
y € F™ is taken to be the “syndrome” M - z. It is not hard to see that a set T" of
parties can reconstruct the secret in the new scheme (given y) if and only if it can
reconstruct the secret in the original scheme Y. Thus, any LSS, specified by M
and v, gives rise to an affine secret sharing scheme (AFS) with similar privacy
and correctness thresholds. More generally, the scheme remains secure for any
fixing of the public header y when the vector of shares x is sampled uniformly
subject to Mz = y. (See Section [4] for formal definitions and statements.)

Computing the public header efficiently. Our goal now is to find an MPC-friendly
AFS such that the mapping F : x — y given by y = Mz can be securely com-
puted with low communication. (The output of F should also consist of commit-

ments to the private shares z;, but let us ignore this for simplicity.) The func-
tionality F takes a single field element from each party and publishes m = 2(n)
elements, and generic protocols for this task consume £2(n?) communication even
in the presence of a broadcast channel. To cope with this problem, we employ a
concrete secret-sharing scheme in which the constraint matrix M is sparse, i.e.,
each row and column have only a constant number of ones. Such a scheme was
recently suggested by [3] based on Low-Density-Parity-Check Codes (LDPC).
We extend their construction and show that such secret-sharing schemes can
achieve near-threshold parametersEI Since the matrix is sparse, each output y;
depends on a constant number of inputs, and each party ¢ affects a constant
number of outputs. In the passive (aka semi-honest) setting, this immediately
leads to a highly efficient protocol for computing the public header y. For in-
stance, to compute an output y; = x1+...+x4, the d relevant parties collectively
generate an additive sharing of zero, with shares r1, ..., 74 given to the d parties,
and post to the BB the values z; + r; that sum-up to y;. (To generate a sharing
of zero we let each relevant party additively share the value zero and take the
sum of these shares.)

One can handle active (malicious) adversaries by applying the GMW com-
piler (or cheaper variants of it). That is, we let the parties publicly commit
to their inputs and randomness, send private messages publicly via the use of
public-key encryption, and use NIZK to prove the consistency of their messages
with the committed values and the previous rounds. The communication per
party remains constant. One may worry that the adversary chooses its shares in
a non-uniform way, however, it is not hard to show that such an attack does not
violate the security of the secret. (The adversary still has no control or knowl-
edge about the secret.) A more serious problem arises when the adversary aborts
some of the outputs. Indeed, if a corrupt party aborts then it is impossible to
compute any output y; that depends on the input of that party.

Handling aborts. Assuming an honest majority, a naive solution for aborts is to
force parties to share their inputs at the beginning of the protocol, and later
when a party aborts have the other parties reveal the corresponding input. This
solution has a linear communication cost per party and is therefore not applicable
in our context. Alternatively, since the aborts in our case are identifiable [35)
(i.e., we can identify a corrupted party that misbehaves) we can repeat the
computation for an aborted output y; without the corrupted parties. It is possible
to implement this solution with low communication. However, it can be shown
that the adversary can force a linear number of rounds by corrupting only a
single party in each “correction round”EI To derive a constant round solution,

5 Along the way, we prove that, over large fields, LDPC codes can approach the sin-
gleton bound — a result that may be of independent interest. See Remark

" Such a protocol has an “optimistic’ constant round complexity (when there are
no aborts), and a “pessimistic” linear round complexity. Moreover, if the adversary
delays the protocol by r < ¢, rounds it must publicly reveal 2(r) corrupted parties.
Assuming some penalty mechanism, such a protocol may be acceptable in practice.

we take a different route and require the underlying AF'S to be robust against a
bounded number of erasuresff]

Robust AFS. Roughly speaking, in robust AFS, we want the secret to be re-
coverable even if the adversary erases some subset B C [m] of the entries of
y = (Y1,---,Ym). (Think of |B| as a small constant fraction of m.) Intuitively,
this means that a subset of t. honest parties T that holds the shares (z;)ier
should be able to recover the secret s =). v;x; given only some of the public
shares (y;);¢p. Unfortunately, when the matrix is sparse such a strong level of
robustness cannot be achieved since the adversary can erase all the O(1) equa-
tions in which, say, the first honest party participates. This means that an hon-
est coalition that does not contain the first honest party cannot recover x; and
thus cannot reconstruct the secret s = >, v;z;. Indeed, erasures can effectively
remove all the information about the shares of some of the (possibly honest)
parties. We solve the problem by compromising on the following weaker notion
of robustness: After the removal of B it should be possible to efficiently locate
a set A of parties such that after their removal, the residual scheme (M’ y',v")
obtained by removing (more precisely zero-ing) the B entries of y, the A entries
of v, and the B x A submatrix of M, still supports recovery for a sufficiently
large correctness threshold ¢.. This means that we can “sacrifice” the B entries
of y and still recover the newly defined secret s’ = Zi¢ 4 Vi%;. Observe that the
adversary effectively shifts the secret to s’, moreover, the adversary (which is
rushing) can choose which subset B to abort after seeing the entire vector of
pubic shares y. The robustness definition takes this into account and guarantees
that even after such an attack security holds (i.e., the secret remains private and
independent of the adversary’s attack). To make this approach work, we show
that sparse matrices can be used to derive robust AFS. We also need to carefully
define ideal functionalities that capture the adversary’s behavior and show that,
when instantiated with robust-AFS; they realize the abstract DSG and DKG
functionalities.

Organization. Following some preliminaries in Section [3} we devote Section [4]
to the study of AFS including definitions, properties, and sparse constructions.
In Section [5| we formalize DSG and DKG protocols in an MPC framework and
show how to realize these notions based on appropriate protocols for robust-
AFS. Communication-efficient protocols for distributing a secret according to a
sparse robust-AFS are presented in Section [l and a concrete instantiation of this
protocol appears in Section

3 Preliminaries

General notation. We let [n] denote the set of integers {1,...,n}. For an m x n
matrix M = (M;;)jcim],icq) and sets R C [m] and C C [n], we let M[R;C]

8 The term robustness here refers to erasures of the public header, and should not be
confused with the standard notion of robust secret sharing tolerating faulty shares.

denote the m x n matrix whose (7,4)th entry is M;; if (j,7) € R x C and zero
otherwise. We also let M[; C] := M[[m]; C] be the matrix that agrees with M on
the columns in C' and takes the value zero in all other columns. The complement
of aset T C [n] is denoted by T'. For random variables X and Y, we write X =Y
to denote that X and Y are identically distributed.

Cryptographic definitions and primitives. We use the standard notion of a non-
interactive commitment scheme Comesem(; k) where crscm is a random refer-
ence string crscm, z is a message and k is a random commitment key k. (See
Appendix [B| for a definition.) To simplify notation, we typically omit the ref-
erence string crscm from the description of the commitment algorithm. Such
commitments can be constructed based on one-way functions [34/4T].

We employ Non-interactive zero-knowledge proofs of knowledge (NIZK). Specif-
ically, following [37], we rely on ID-based simulation-sound NIZK proof system
(see also [44l[38]). Syntactically, this means that proofs are generated with re-
spect to an identifier. Roughly, zero-knowledge requires that simulated proofs
are indistinguishable from real proofs even for adaptively chosen statements.
Simulation soundness requires that if an adversary who is given an access to
simulated proofs with respect to a set of identities H, can generate a valid proof
with respect to any identity outside H, then a valid witness can be extracted.
The formal definition appears in Definition

We assume familiarity with standard MPC definitions (see, e.g., [2912]).
Throughout the paper we let C denote the set of corrupted parties and H denote
the set of honest parties.

The BB model. We assume that parties have an access to a public bulletin
board (BB) that is abstracted as an array or dictionary with random access.
The array is partitioned to sections, and each party has an exclusive write-once
permission for her section, i.e., only party ¢ can write an element to the ith
sub-array and once an element was written to cell number j, this value remains
unchanged forever. We view the elements on the BB as publicly available to
all the parties, that is, all the parties have read permission to all sections. Our
protocols naturally define for every message an address (or a key) in which it
is stored, and instruct each party which addresses to read from the BB in each
step. (Malicious parties can, of course, read everything.) For the sake of clarity,
when describing a protocol, we typically treat the BB as a broadcast channel
(keeping the mapping between messages and their addresses implicit), and only
later analyze the fine-grained communication and see how many elements a party
reads/writes during the protocol.

4 Secret Sharing

4.1 Definitions and Basic Facts

Through the paper, we assume that F is a finite field or a family F = {F,}
of finite fields whose size grows with the security parameter or the number of

parties. In the latter case, we assume that field operations can be implemented
in polynomial time, and keep the dependency in n implicit.

We use a slightly non-standard variant of the notion of Linear Secret Sharing
schemes. Roughly, (1) we assume that the share of each party is a single field
element and (2) we replace linearity with affinity. (See Remark [2| for an expla-
nation about the usage of affinity.) In addition, for convenience, our definition
is centered around the process of sampling a random secret sharing vector that
corresponds to a random secret, as opposed to sharing a given secret. (This dif-
ference is mainly syntactic and one can easily move between these two variants.)

Definition 1 (AFS: Semantics). An n-party (tp,t.) Affine Secret Sharing
Scheme (AFS) over a finite field F is a pair (X, Rec) where X is a probability dis-
tribution of sampling shares over an affine subspace of F™ and Rec is a recovery
algorithm that takes a subset T C [n] and a vector of shares x[T] = (z;);er € FIT!
and outputs a secret s € F with the following properties:

— tc-Correctness: For every subset T C [n] of size at least t. (hereafter referred
to as “authorized”) it holds that

Pr [Rec(T, z[T]) = s(x)] = 1,

R
X

where s(x) = Rec([n], z) is referred to as the secret associated with the vector
of sharing x. Furthermore, for every fixing of T the mapping Rec(T,-) :
FITl = F is a linear mapping.

— tp-Privacy: For every set T C [n] of size at most t, (hereafter referred to as
“unauthorized”), we have

(@[T], s(x)) = (2[T], s),
where © & Y, and s & F is chosen independently and uniformly.

Standard representation. By default, we assume that the AFS works as follows:

— The AFS is specified by an m x n constraint matriz M, a column offset
vector y € F™, and a row vector v € F" referred to as the extraction vector.

— The sampling algorithm X, , samples a uniform solution z € F™ to the
set of equations Mz = y. (When y is the all zero vector the scheme is linear
as opposed to affine.)

— The underlying secret s(xz) =) . x;v; is taken to be the inner-product be-
tween the vector of shares z and the extraction vector v.

— The recovery algorithm expresses the missing shares as a linear combination
of the existing shares, and outputs the multiplication of v by the vector of
shares. More precisely, the recovery algorithm Recys (T, z[T]) finds a row

vector a € F™ such that o~ M[;T] = v[T], and outputs >, viz; + - y.
If there is no such vector «, i.e., v[T] is not in the row-span of M| ;T],
the recovery algorithm fails. Note that both X' and Rec can be computed

efficiently by making poly(n) number of arithmetic operations over F.

10

The following simple fact characterizes the correctness and privacy in linear
algebraic terms. (This is a straightforward generalization of the well-known linear
algebraic characterization of linear secert sharing to the affine setting).

Fact 2 (linear-algebraic characterization of privacy and correctness).
Let M € F™ " oy € F™ and v € F", and assume that the offset vector y is
a vector in the image of the constraint matriz M. Let x be a uniformly chosen
solution to the system Mz =y and let s(x) = Y, x;v; denote the random variable
induced by the choice of x. For every set T C [n], if v[T] € rowspan(M| ;T])
then

I?Er[RecM)%z(T,x[T}) =s(z) =1,

and otherwise,
(@[T}, s(z)) = (2[T],s)

where s’ is uniform over F. Consequently, (Xnry.0, Recar,y) is te-correct (resp.,
to-private) if and only if for every set T C [n] of size t. (resp., tp) the vector
v[T] is spanned (resp., not spanned) by M| ;T)].

We say that (M, y, v) is tc-correct (resp., tp-private) if the AFS (Xas 4,0, Recar,y. o)
is tc-correct (resp., tp-private). By Fact [2} the offset vector y plays no role in the
privacy/correctness of the scheme as long as it is in the image of M. We will
always assume that the offset vector y is in the image of the constraint matrix
M, and accordingly refer to (M,v) as tc-correct (resp., tp-private) if (M, y,v) is
te-correct (resp., tp-private) for every y is in the image of M.

From codes to an affine secret sharing scheme (AFS). It is not hard to see that
the correctness property can be based solely on the error correction properties
of the constraint matrix M, regardless of the choice of v. Formally, define the
dual distance of M, denoted by dd(M), to be the smallest number of linearly
dependent columns of M (over F). Note that this means that for every subset
T C [n] of size at most dd(M) the matrix M| ;7] is of rank at least |T| and
so v[T] € rowspan(M][;T]) for every vector v € FITl. Therefore, the tuple
(M,y,v) is (n — dd(M) + 1)-correct no matter how the extraction vector v is
chosen. Privacy now boils down to the selection of the extraction vector. We say
that the extraction vector v is t,-private for M (over F) if for every t,-subset
T C [n], it holds that v[T] ¢ rowspan(M] ;T]). Then, we have the following
immediate claim (whose proof is implicit in [3] and is closely related to the
general transformation of [17]).

Claim 3. For every m x n matrix M, vector y € F™ in the image of M
and extraction vector v € F"™ which is ty-private for M, the tuple (M,y,v)
is (n — dd(M) + 1)-correct and ty-private. Moreover, except with probability

|F|—(n=m—te) (Z), a randomly chosen vector v EFnis tp-private for M.

Proof. The first part follows from the above discussion and Fact [2] The “More-
over” part, follows by noting that for any fixed ¢y,-subset T' C [n], the rank of

11

M][;T)] is m, and therefore, the probability that v[T] € rowspan(M[;T]) is at
most |F|™/|F|*~*. By applying a union-bound over all possible t,-subsets, we
get a failure probability of |F|~(»~t—m) (t”), as required. O

Remark 1 (Near-threshold AFS). Assuming that the field size grows asymptoti-
cally with the number of parties (e.g., [F| > w(1)) we can take t, = (1—¢)(n—m)
for an arbitrary small constant € > 0, and still get a negligible failure probabil-
ity of 272 P|If the distance of the code approaches the singleton bound, i.e.,
dd(M) > (1 —€)m, then t. = (1 +¢)(n —m). Altogether, we get an almost-tight
privacy-to-correctness gap tc — ¢, < 2e(n —m).

For small fields (including the case of the binary field), we cannot hope to
get arbitrarily small gap [10]. Still for a code with constant relative distance and
constant rate, we still get, except with negligible probability, some non-trivial
constants 0 < ¢, < t. < 1 that are bounded-away from zero and one.

Collections of AFS. A (1, 7.)-AFS collection with error £(-) is specified by a
randomized algorithm Z that given 1™ samples an index z = (M, y, v) such that,
except with probability e(n), the pair (X,,Rec,) forms an n-party (7p,n,7.n)-
AFS. By default, we assume that the error parameter ¢ is negligible in n. We may
also assume that Z samples only the constraint matrix M and the extraction
vector v since any y in the image of M can be used. We say that an AFS
collection is sparse if the number of non-zero elements in every row and column
of the constraint matrix is bounded by a fixed constant that does not grow with
n.

Remark 2 (Why should we use affine schemes?). By Fact [2l privacy and cor-
rectness depend only on the constraint matrix M and the extraction vector v,
and any offset vector y (in the column span of M) can be used. For this reason,
the standard choice in the literature is to focus on LSS (as opposed to AFS) and
assume that y is the all-zero vector. Still, for computational efficiency, it will be
beneficial to employ a non-zero y since, in some cases sampling x conditioned
on Mz = 0 is more expensive than sampling a uniform = and setting y = Mx.
In particular, in a distributed setting, each party can sample its own share z;
independently at random, and then the parties reveal y via MPC. This approach
will be used in our DSG and DKG constructions. Getting back to the informa-
tion bottleneck mentioned in the introduction, the use of a non-zero vector y is
in fact necessary for achieving our results.

Remark 3 (From affine to linear). In many applications of secret sharing affinity
provides a sufficiently good substitute for linearity. Moreover, if this is not the
case then one can easily turn an affine sharing = of a random secret s under the
AFS z = (M,y,v) into a linear sharing of a random secret s’ under the linear
secret sharing scheme (M, 0). This can be done by letting each party i locally
redefine its share to z; — x; where 2’ € F" is some canonical vector for which

9 If the field is exponentially large (which is a reasonable scenario in the context of
threshold cryptography), we can even take t, = (n — m).

12

Max' = y. It is not hard to verify that the resulting sharing vector x — 2’ is a
random sharing under the scheme 2z’ = (M, 0, v) of the shifted secret s —s” where
s' = >, wiv; is the secret associated with ¢/ under z = (M, y,v). Moreover, if
(M,y,v) is (tp, tc)-AFS then the scheme (M,0,v) is an (p, tc)-LSS.

4.2 AFS from Expanders

In this section we define a certain expansion property for matrices, use existing
techniques (Fact[4)) to sample matrices with this property, and prove (Theorem
that such expanders can be used to construct a near-threshold sparse-AFS.

Matrices, sparsity, and expansion. Let M = (Mj ;) je[m),ic[n) be an mxn matrix.
We say that M is d-sparse if every column of M has at most d non-zero elements,
and say that it is (d,r)-sparse if, in addition, every row of M has at most r
elements. We say that M is (¢,e) column-ezpanding (or just expanding) if for
every set S of at most ¢ columns, the submatrix M[;S] has at least e - |S|
non-zero rows. Let n.(M) denote the largest ¢ for which M is (¢, e) expanding.
Note that 7.(M) is monotonically decreasing with e and, for d-sparse matrices,
Ne(M) = 0 for any e > d. It is well known (see, e.g., [50, Problem 5.5.]) that for
(d, r)-sparse matrices and every a > d/2,

Ua(M)de(M)—lém(M)7 (1)

where the equation holds regardless of the choice of the finite field F over
which the dual-distance is computed. That is, expansion beyond half-the-column-
sparsity, d/2, guarantees good distance, whereas non-shrinkage (expansion of at
least 1) is necessary for good distance. Jumping ahead, we note that for large
fields and properly chosen matrices, non-shrinkage is also sufficient for good
distance.

Collections of matrices. For constants p € (0,1) and d,r € N, a collection of
(i, d,r)-matrices is defined by a (possibly randomized) polynomial-time algo-
rithm M that given 1™ outputs a (d,r)-sparse un x n matrix over F. We say
that the collection is (A, e) expanding with error e(n) (resp., has distance dd
with error €(n)) if the resulting matrix is (An, e) expanding (resp., has distance
ddn) except with probability e(n). By default, we assume that e is a negligible
function. The following constructions are based on [T4/T].

Fact 4 (expanding collections). For every constant dimension parameter p,
constant € > 0, and constant A < p/(1 + €) there exist constants d,r, and an
efficient collection of (u,d,r) binary matrices that are (\,1 + €) expanding with
a negligible error probability.

Also, for every constant dimension parameter u, there exist constants d,r, \
and an efficient collection of (u, d,r) binary matrices that are (\,0.9d) expanding
with zero error probability.

13

Proof. Observe that it suffices to prove the statement without worrying about
the row sparsity. Indeed, the average row sparsity must be d/u and so, by
Markov’s inequality, for every a > 0, all but a-fraction of the rows have weight
at most r = d/(pa). By removing these heavy rows we get (d, r)-sparsity at the
expense of a small constant degradation in the parameter A. The second part of
the theorem now follows immediately from the celebrated result of [14].

To prove the first part we rely on [I]. Since the statement in the original paper
refers to a slightly different regime of parameters, we sketch the argument here.
Consider a random pn X n binary matrix R that each of its columns is sampled
independently at random so that each column contains d ones. Let py denote the
probability that there exists a non-expanding set of exactly ¢ columns, i.e., a set
that fails to expand by a factor of 1 + €. A standard calculation shows that

0
14e)* 2
De < lce,y ((2’:—)) ‘| 3
un

where ¢, , is a constant that depends on ¢ and p but is independent of d. By
taking d to be a sufficiently large constant, we can guarantee that p, is negligible
for every w(l) < £ < un/(1+¢). However, for constant size £’s we get an inverse
polynomial failure probability, which means that the overall failure probability
Ezg pn/(14e) Pt is inverse polynomial in n. To reduce the error to be negligible,
we use the construction from [I] that samples a sparse matrix M’ such that,
except with negligible probability v(n), there are no non-expanding sets of size
smaller than ¢y for some super-constant parameter ¢y = w(1). Let M denote
the matrix obtained by taking the union of M’ with a random sparse matrix R
(ie, M, ; = MZ’J V R; ; for each 4,). Then M is a sparse matrix that does not
have a non-expanding set of size smaller than un/(1+¢) except with probability

~v(n) + Zéo<é§un/(1+e) p¢ which is negligible in n. O

Theorem 5 (near-threshold sparse-AFS from expanders). For every con-
stants T, < T there exists constants d,r such that for every field F of size super-
polynomial n“V) | there exists an efficient (Tp, 7c)-AFS over F whose constraint
matriz is (d,r)-sparse. Furthermore, except with negligible probability the dual
distance of the constraint matriz is (1 — 7c)n.

Proof. Let n € (1 — 7,1 — 7,) be a constant. Given 1", we sample a tuple
(M,y,v) as follows. (1) Use the first part of Fact 4| to sample a sparse un x n
binary matrix which is ((1 — 7c)i, 1 + €) expanding for some constant € > 0.
Next, replace each non-zero position by a uniformly chosen field element and
let M denote the resulting matrix. It is shown in [5I, Lemma 3.9] that, except
with negligible probability |F|~!, the dual distance of M over F, is at least as
large as the expansion parameter (1 — 7c)n. Sample a random reconstruction

vector v & F* and take y to be an arbitrary vector in the image of M. By
Remark [1} except with exponentially small probability, we get a (7cn, 7,n)-AFS
(since 7, < 1 — g and 7. = 1 —dd(M)/n), as required. O

14

Remark 4 (LDPC codes that almost achieve the singleton bound). Our proof
implicitly shows that when the field F is sufficiently large (say super-polynomial
in n), for every € > 0 there are d.-sparse m X n parity-check matrices whose
distance A approaches the singleton bound, i.e., A > (1 — ¢)n. Moreover, such
codes can be efficiently sampled with negligible error probability. To the best of
our knowledge, this result does not appear in the literature. For comparison, the
work of [40, Thm. 2.14] shows that such codes can achieve the Gilbert-Varshamov
bound when the sparsity grows with the field size.

Remark 5 (sparse-AFS over small fields). One can efficiently construct matrices
that achieve a constant rate and a constant distance even under constant size
fields [25]. In fact, by using the second part of Fact [4|and the connection between
expansion beyond half-the-column-sparsity d/2 in Eq. , one can get binary
matrices that achieve constant distance over any finite field. By sampling a
random extraction vector as in Claim [3} we get a (7p, 7c)-AFS, for some non-
trivial constants 0 < 7, < 7c < 0, that works over small fields whose constraint
matrix is a sparse binary matrix. (In fact, by using the techniques of [3], we can
get a single scheme that works universally over all finite fields that also enjoys
several efficiency features in reconstruction.)

Ezample 1 (sparse-AFS over large fields: Concrete numbers). Say that the field
is of size at least 2'°0 (in threshold systems the size is typically larger, e.g.,
~ 225% for Schnorr’s signature). Consider the following examples:

1. Say that we have n > 10 parties and take an AFS matrix with p-n rows where
© = 0.5. By standard expansion calculations, there are sparse matrices with
d = 8 and r =~ 16, that achieve 7. = O.GGE By choosing a random extraction
vector, we get 7, = 0.4 except with failure probability 271%°. So we get
a (8,16)-sparse (0.4,0.66)-AFS. (This favorably compares to the canonical
setting of 1/3 corrupt vs 2/3 honest that is used in many scenarios.)

2. As another data point, assume that the field F is of size at 22°° and that
the number of parties n > 50. Then, by taking x = 0.6, we can get a (4, 10)-
sparse matrix with 7, = 0.39, 7. = 0.9.

4.3 Robust AFS

Motivation. When a DKG is run, some participants might behave maliciously
and corrupt some of the shares that are needed for reconstructing the newly
distributed key. We need the AFS to be robust to such attempts. For concrete-
ness, consider the following scenario. Given an AFS z = (M, y,v), we distribute
a vector of random shares x € F” by sampling a uniform solution to the system
Mz = y. Then, an adversary who controls a ¢,-subset T' C [n] of the parties gets

10 The calculation here is based on the probabilistic method (i.e., we bound the prob-
ability that a random sparse matrix fails to expand well). We ignore here the issue
of finding explicit expanding matrices and note that this can be done via several
existing techniques, e.g., [1].

15

his shares z[T] and is allowed to corrupt the index z by erasing a small subset B
of the entries of the vector y. (Think of B as a small constant fraction of n.) In-
tuitively, we want the secret to still be recoverable given only (M [B;],y[B],v).
Unfortunately, when the matrix is sparse this is impossible since the adversary
can, for example, include in B and erase all the O(1) equations in which the
first honest party participates. In this case, an honest coalition that does not
contain the first honest party has no information on z; and cannot reconstruct
the secret s =), vix;.

Indeed, erasures in z effectively remove all the information about the shares of
some of the (possibly honest) parties. Still, we can compromise on the following
weaker notion of robustness: After the removal of B, it should be possible to
locate a set A of parties such that after their removal, the residual scheme z9 =
(M[B; A, y[B],v[A]), namely the scheme containing all the shares except those
of A, still supports recovery for a sufficiently large correctness threshold .. That
is, for zo = (M[B; A],y[B],v[A]), the recovery algorithm Rec,, can t.-recover
the secret s’ = Zie 4 %;v; even when the shares x are sampled according to X,
(i.e., as a uniform solution to Mz = y). Note that the secret associated with x
is changed to s’ since we use the restricted extraction vector v[A]. So privacy
now means that the secret s’ should remain information-theoretically hidden
given z[T]. That is, the restricted extraction vector v[A] should be t,-private for
the original matrix M. Jumping ahead, note that by erasing B, the adversary
effectively shifts the shared secret from s to s’. Still this does not bias the output
since s is still uniform and since our DSG/DKG protocols will ensure that the
choice of B is independent of the secret. We continue with a formal definition of

robust AFS.

Definition 2 (robust AFS). Let M be an m x n matriz, y be a vector in the
column span of M, and v € F™. We say that the tuple z = (M, y,v) is b-robust
(tp, tc)-AFS if for every b-subset B C [m] there exists a set A = A(B) C [n] such
that for
1= (M7y7U[A]) and z9 = (M[B7A]>y[B]7U[AD

the pair (X,,,Rec,,) forms a (tp,t.)-AFS. (We use this pair of algorithms since
the secret is shared with X, and recovered with Rec,,.) We further assume that
if B is an empty set then A must be an empty set as well, and therefore every
b-robust (tp,tc)-AFS, for b >0, is also (tp,t.)-AFS, and a 0-robust (t,,t.)-AFS
is simply a (tp,tc)-AFS.

An AFS ensemble with an index sampler Z is B-robust (7p, 7c)-AFS if for all
but negligible probability over (M,y,v) ¥id Z(1™), the AFS (M, y,v) is fn-robust
(Ton, Ten)-AFS. We also require that the set A should be efficiently computable
given (M, B).

Lemma 1 (Sparse AFS are robust). Suppose that (M,y,v) is a (tp,t.)-AFS
and that M is a (d,r)-sparse matriz whose dual distance is A = n —t. + 1.
Then (M,y,v) is a b-robust (t, —b-r,tc)-AFS for every b. Furthermore, the set
A(B) is taken to be the columns whose support intersects with B, i.e., A(B) =
{i:3j € B, M[j,i] #0}.

16

Proof. Fix a b-subset B C [m] and let A = A(B) as defined above. We begin
by claiming that (x) the B x A sub-matrix L of M has distance of at least
A =n—t.+1. For this it suffices to show that any set of A —1 columns {w;},.g
in L are linearly independent. To see this, recall that each column vector w; is
obtained from a column w; of M via the projection w; = w; [B] where the B-
coordinates of w; are known to be zero (otherwise i € A and w; is not a column
of L). This means that {w;}, g is linearly independent if the M-vectors {w;}, ¢
are linearly dependent, which is the case by the assumption on the distance of
M.

Let t;, = t, — b-r. We will now prove that (X,,,Rec.,) forms a (t,t.)-AFS
where 21, z5 are defined as in Definition @ Let x € F™ be a random solution to
the system Mz = y. Then, 2’ = z[A] is also a solution to the system defined by
M' = M[B; A] and 3 = y[B]). Let v' = v[A]. Fix a set T C [n] of size at least
te. Given z[T], the recovery algorithm Rec., recovers the secret s’ = >, via} if
and only if /[T is spanned by the rows of M'[; T]. This condition is equivalent
to the condition that v'[T N A] is spanned by the rows of M'[;T'N A] (since the
A entries/columns are set to zero). This is indeed the case, since the set TN A
is of size at most n — t. which is smaller than the distance, A, of the A x B
sub-matrix L of M, as shown in (x).

Fix a t;-subset T' C [n]. To show that s’ is distributed independently of x[T],
it suffices to show that

v'[T] = v[ANT] is not in colspan(M] ;T1]). (2)

Taking S := AUT, it holds that S = ANT, and so (2)) holds if v[S] ¢
colspan(M| ;T]) which must be the case since |S| = (], + |A]) < &, +br = t,
and since v is t,-private for M by assumption. (The inequality |[A| < b-r follows
by the sparsity condition on the matrix). O

By combining Lemma [I| with Theorem [5| we derive the following corollary.

Corollary 1 (near-threshold robust sparse-AFS). For every constants 1, <
Tc there exists constants d,r such that for every field F of size super-polynomial
n“M) | there exists an efficient (d,r)-sparse AFS collection which is [-robust
(1o — 1B, 7c)-AFS over F for every 8 > 0.

Remark 6 (robust sparse binary AFS). For constant-size fields (e.g., the binary
field), a similar corollary can be obtained for some constants 7, < 7¢, by com-
bining Lemma [I| with Remark

5 Distributed Secret-Sharing Generation

Following Katz [37] we define distributed key generation in the discrete-logarithm
setting (hereafter referred to as DKG), and distributed secret-sharing generation
DSG, via an MPC framework. While Katz’s definitions are tailored to Shamir-
based DKG, we will need slightly more general definitions that are compatible

17

with general collections of AFS schemes. We begin with an abstract version that
captures the desired security properties and move on to more concrete variants,
formally captured by canonical protocols, that provide additional efficiency fea-
tures.

5.1 DSG and DKG: Abstract Version

Syntactically, a DSG is a two-stage n-party protocol where the parties hold
no input. The first phase, Share, distributes to each party a private share and
generates some public information. At the second phase, Rec, the parties recover
the secret s € F, where the field F = F, is implicitly specified as part of the
parameters of the scheme. The syntax of DKG is similar, except that after the
sharing phase, the protocol reveals also the public key ¢g° as part of the public
information where g generates a cyclic group G of order p that is given implicitly
as part of the parameters of the scheme. In its most abstract form, the scheme
should realize the following reactive ideal functionality (Functionality @ The
term “broadcasts” should be interpreted as writing a message on the public BB.

Functionality 6 (Fgsg and Fyug). The functionality has two phases:

1. Share phase: The functionality samples a secret s € F and broadcasts
the message “shared”, and, in the case of Fakg, also the value g°.

2. Recovery phase: The functionality broadcasts the secret s.
(For Fawg, we can consider a variant in which given public group
element h, the functionality broadcasts h®.)

We will say that a protocol (tp, tc)-realizes Fasg (resp., (tp, tc)-realizes Faxg) if
it realizes Fysg (resp., Fdwg) il the presence of a mixed adversary that corrupts up
to tp parties with an arbitrary mix of ¢; passive and ¢y active corruptions as long
as t1 +t2 < tp. In addition, the adversary is allowed to abort additional ¢3 honest
parties at the reconstruction phase as long as n — (t1 + t3) > t., i.e., at least t.
parties honestly participate in the reconstruction. This definition implies that
any set of t. honest /passively corrupted parties can recover the secret even when
the adversary submits faulty shares on behalf of the actively corrupted parties.
Such a protocol is also private in the sense that during the sharing phase, an
adversary controlling up to ¢, parties cannot bias the distribution of the secret
and cannot learn anything about s (except for what follows from ¢*® in the case
of DKG). In particular, the above MPC-based definition implies the property-
based definition of DKG from [28] in its strongest form. We always assume that
tp < tc and note that the definition is meaningful even when ¢. + ¢, # n (due
the use of a mixed adversary).

Remark 7 (Relazation). For completeness, we present here a relaxed variant of
the definition, which is not used in our work. In some scenarios, it makes sense
to relax the definition by requiring simulatability only for the sharing phase.
Formally, we say that a two-phase protocol IT weakly realizes Fysg if for every

18

adversary A there exists an efficient simulator Sim such that the random variable
(Viewi{’f;, Outputi{fcn), consisting of the view of the adversary after the sharing
phase and the output of the honest parties after the recovery phase, is computa-
tionally indistinguishable from the pair (Sim, s) where Sim is the output of the

simulator and s & T is a uniformly chosen secret. For the case of DKG, the
simulator also gets ¢° as an input. Indeed, the DKG variant of this definition is
essentially equivalent to the property-based definition from [28].

5.2 Canonical Schemes

While the above definition nicely captures the desired security properties of DSG
and DKG, it misses some useful “efficiency” aspects such as non-interactive recon-
struction or the ability to reconstruct shares via linear operations — a feature that
is necessary for “reconstruction-in-the-exponent” in DLOG-based threshold sys-
tems. To capture these additional properties (which are common to most existing
schemes), we introduce the notion of canonical schemes and focus throughout
the paper on such schemes.

Let E be a non-interactive commitment scheme. We say that a DSG is in
canonical form if, at the end of the sharing phase, each honest party holds a
share x; € I of the secret s according to some (tp,tc)-AFS that is specified by
the public values z = (M, y,v) that are known to all parties (e.g., broadcast
during the protocol). In addition, at the end of the sharing phase all the parties
learn commitments (o; = E(x; p;))ie[n to all the shares. In this case, the recov-
ery phase can be implemented by the following single-round canonical recovery
protocol (Protocol [7)).

Protocol 7 (Canonical Recovery Protocol Ilge.). We assume a
common reference string crspf, public index z = (M,y,v) and public
share commitments a = (ai)ie[n]. In addition, each honest party P; holds
(x4, pi) such that a; = E(x4;p;).

— R1: Each party P; broadcasts z; and a NIZK w; (with respect to crspf)
that x; and «; satisfy the equality o; = E(x;;p;) with respect to the
witness p;.

— Output Let (), o) denote the values broadcasted by the ith party and
let T C [n] be the set of indices i € [n] for which the proof 7} passes
verification with respect to o and z;. Compute the linear recovery
algorithm Recps (T, 2'[T]) and output the result.

\. J

If we strive for the weaker variant of DSG/DKG that is mentioned in Re-
mark [7] then we can simply open the commitment in the recovery phase and
avoid the NIZK. (See Footnote [17]in the proof of Lemma [2] for more details.)

Remark 8 (Canonical recovery in the exponent). The above protocol can be eas-
ily modified to allow the reconstruction of the secret s in the exponent of a public

19

group element h € G. In the first round, each party sends h”¢ together with NIZK
that certifies that x; is consistent with its commitment «;. At this point any ex-
ternal receiver can compute h® by dropping the invalid elements (whose validity
proofs fail) and by computing the linear reconstruction algorithm Rec, “in the
exponent”. Thus canonical protocols efficiently support “reconstruction in the
exponent”, which is a crucial feature in the context of DLOG-based threshold
cryptography. We emphasize that most threshold cryptography applications use
recovery in the exponent, for example to compute BLS signatures or to com-
pute a verifiable random function (VRF'). The secret is used as the key for these
functions. Furthermore, in these applications, when there are multiple invoca-
tions of the threshold function, the same secret is recovered multiple times in
the exponent, using different random public bases. (One can capture this by
defining the DSG/DKG functionality as a reactive multi-phase functionality in
which sharing happens once during initialization and recovery-in-the-exponent
can be called multiple times with different group elements h; Our protocols hold
in this setting as well.)

Given the above discussion, to realize a canonical DSG it suffices to imple-
ment a secure protocol for the sharing phase. This is formalized by Functional-
ity |§| in Fig. E The ideal functionality Fegsg » is parameterized with a robustness
parameter b and is implicitly parameterized by a non-interactive commitment
scheme E and by a b-robust (¢,, tc)-AFS. The latter is specified by a public m xn
constraint matrix M, and a public extraction vector v € F™ such that for every
y € F™ in the image of M the AFS (M, y,v) is b-robust (tmtc)—AFSE The
non-robust variant is handled by taking the robustness parameter b to be zero.
Jumping ahead, we will show later (Lemma [2)) that security holds even if the
adversary is allowed to choose her own shares based on the residual value of the
offset y and to erase up to b of entries of the resulting offset vector.

To understand the definition, let us focus on the non-robust version where the
adversary does not erase entries, i.e., B = (). Intuitively, security holds since for
any fixing of y in the image of M, and any fixing for the shares of the corrupted
parties, z[C], if we choose the shares of the honest parties x[H] uniformly at
random subject to Mz = y, then the secret s = >, v;z; is uniformly distributed.

Formally, we prove the following lemma.

Lemma 2. Let IT be a protocol that t,-realizes Feqsg,p for some b-robust (tp,tc)-
AFS (M,y) and let ITgec denote the canonical recovery protocol. Then, (II, Igec),
viewed as a two-phase protocol, (tp,t.)-realizes Fysg where we assume that ITrec
is applied to the index (M[A; B],y[B],v[A]) where B,y[B] are the public output
of the first phase and A is computed based on B and M by using the specification

of the AFS.

Proof (sketch). We begin with a brief intuition under the simplifying assumption
that the commitment scheme is perfectly hiding. (This assumption will be waived

11 Asymptotically, we may assume that M and v are sampled from some b-robust
(tp,tc)-AFS sampler Z(1™) during a one-time set-up phase; Such a phase is needed
any way to set the field and the underlying cyclic group G.

20

Functionality 8 (Fcusg,p). The functionality gets the set of corrupt parties C.

1. (Sampling) The functionality samples random commitment keys for the
honest parties (p;)icn and samples random field elements as shares for

the honest parties tn = (Zi)icH <E FNl. Then it computes the residual
offset vector y' = My - zw € F™ where My is the restriction of M to
the columns indexed by H. The adversary gets the commitments of the
honest parties (a;)icn where a; = E(xs;p;) and the offset vector y'. (The
constraint matriz M and the extraction vector v are assumed to be public.)

2. (Corruption) The adversary selects her own shares xc = (zi)icc, her own
commitment keys pc = (pi)icc and specifies an erasure subset B C [m] of
size at most b. The tuple (zc, pc, B) is sent to the functionality.

3. The functionality merges xn,xc to a single vector © € F", computes
y= Mz =y + Mc - zc where Mc is the restriction of M to the columns
indexed by C. Finally, the functionality broadcasts the erasure set B, the
modified, erased, offset vector y[B], and the commitments (E(zi; p:))ien]-
In addition, each honest party i privately receives (x;, ps).

Fig. 1: Functionality 8 — sharing phase for a canonical DSG.

in actual proof.) In this case, by the privacy properties of the AFS, for any fixing
of the view of the adversary after the sharing phase, the distribution of the
secret is uniform and independent of the view. Furthermore, assume that in the
reconstruction phase, the adversary aborts all but ¢. parties but does not submit
corrupted shares. Then, by the correctness and robustness properties, the secret
is recovered properly. In the actual proof, we argue that (1) computationally
hiding commitments suffice for achieving computationally close simulation and
that (2) the binding properties and the NIZK guarantee that a computationally
bounded adversary cannot modify its shares during the reconstruction. The full
proof is deferred to Appendix O

5.3 From DSG to DKG

We reduce Fyig to canonical DSG, Fedsg, by adding a single round of “reconstruc-
tion in the exponent” of the generator g. (Party i broadcasts g with a NIZK
that proves consistency with «;, and the valid elements can be combined into
g° as explained in Remark) This allows everyone to recover the public key ¢*
without revealing any additional information on s. The communication per party
is constant (it depends on the security parameter but does not grow with n).
Formally, we have the following lemma whose proof is deferred to Section [C.2}

Lemma 3. Let IT be a protocol that t,-realizes Fegsgp for some b-robust (tp,tc)-
AFS (M,y) and let IT§,. denote the “canonical recovery in the exponent” protocol
from Remark @ Then, the functionality Fawg is (tp,tc)-realized by the following
two-phase protocol:

21

- aring nvorke an en apply w1 € puouc group generaior g
Sharing) Invoke IT and th ly I}, with the publi t

and where the index of the AFS is taken to be (M|A; B],y[B],v[A]) where
B, y|B] are the public output of IT and A is computed based on B and M by
using the specification of the AFS.

— (Reconstruction in the exponent) Given public group generator h, invoke
IT}.. with the generator h and where the index of the AFS is taken to be

(M[A; B, y|B],v[A]) as defined above.

The drawback of the above approach is that it adds a single round of commu-
nication in order to reconstruct the secret in the exponent. This can be avoided
if we are willing to realize a weaker variant of the DKG functionality. The idea is
to make a single call to the Fqsg functionality while setting the underlying com-
mitment scheme in Fegsg to E(z4; p;) == g”*. We refer to this variant as canonical
DKG, Fedkg. Although E is not a valid commitment scheme (being deterministic
it fails to satisfy semantic security), the values (g%)¢}, leak exactly the public
key g° which should be revealed anyway. Still, strictly speaking, Fcqkg does not
realize Fykg since the adversary can choose its inputs after seeing the “exponen-
tiated shares” of the honest parties, and so the adversary can effectively shift the
public key by an arbitrary shift A € F. This issue is discussed by [28] who show
that this variant suffices for typical applications of threshold cryptography (e.g.,
Schnorr’s signatures). Intuitively, if the underlying hardness assumption (e.g.,
in-feasibility of extracting DLOG) holds over the un-shifted key, then it also
holds with respect to the shifted public key since the shift A can be extracted
from the adversary. We note that this variant can be formalized by a variant of
the DKG ideal functionality in which the functionality first sends the public key
g° to the adversary who is allowed to shift it by a chosen A, and then forwards
the shifted public key ¢g54 to the honest parties.

6 Realizing Robust Canonical DSG

In Section [5| we showed that the task of realizing DSG/DKG reduces (with con-
stant overhead) to the task of realizing the Fegsg,» functionality. In this section we
present two protocols that realize Fegsgp. In both cases, each party reads/writes
O(1) elements from the BB such that at the end of the protocol each party
holds her private output. In addition, everyone can recover the public outputs
by reading the content of the BB. Our first “basic” protocol (Section achieves
a relatively low, yet constant, privacy threshold, and our second “extended” pro-
tocol (Section provides a near-threshold result, namely an arbitrarily small
gap between the privacy and correctness thresholds, 7, and 7.. We begin with
some preliminaries (Section [6.1]).

6.1 Notation and Tools

Notation. Let M = (Mj;);je[m],icn) be a sparse mxn matrix. We focus on binary
matrices though the following can be easily generalized to the non-binary case.

22

The support of column number ¢ € [n] is denoted by R; = {j € [m] : M;,; # 0}
and the support of column number j € [m]is denoted by L; = {3 € [n] : M;; # 0}.
We let L; _; denote the set L; \ {i}. The matrix M will be used as a mapping
from vectors x € F™ to vectors y € F™ where y = Mx. Accordingly, each column
of M corresponds to an input and each row corresponds to an output, and so
j € R; means that the output j is influenced by the input ¢ and by the inputs
in L;_;. For a set of inputs I C [n], we let R(I) = U;erR; denote the set of
outputs that are affected by inputs in I. Throughout the section, E,(x) is taken
to be some a non-interactive commitment scheme that is specified as part of the
description of Fedsgp- The algorithm E takes a field element x € F and a key p
as input, and outputs some “tag”.

Tools. We will need non-interactive commitments Comesem(; k), and for clarity
we distinguish between these commitments and the “internal” commitments F
that is specified by Fcgsgp. We will also need an ID-based simulation-sound
NIZK proof system for the following relations: The E-relation, defined wrt the
tagging-algorithm F, via

Re = {(a, (p,)) : o = Ey(x)},

and an additive commitment relation, about a value y being equal to a linear
combination of committed values. For a coefficient vector v € F*, it is defined as

Ry = {(crsem, y, , (¢i)igln))s (T, 05 (%05 Ki)igln) -
Vi € [k], ¢; = Comersem (45 ki), 0 = Ep(x),y = = + Zvi i}

To simplify notation, we typically omit the CRS crscm from the subscript of the
commitment and from the relations.

6.2 The Basic Protocol

Protocol in Fig. 2 describes a basic DSG protocol that realized Feysgp. Intu-
itively, the protocol IIp; g securely computes the mapping = = (z1,...,%,) —
y = Mz for an arbitrary security threshold ¢, except that it allows the adver-
sary to abort outputs that depend on the adversary’s inputsH Since the matrix
is sparse and each column contains at most d non-zero elements, an adversary
that corrupts ¢ parties can only abort at most dt outputs. As a result, if (M, v)
is a b-robust (tp,t.)-AFS then ITy; g realizes Feqsgp With security threshold of
t, = min(t,,b/d). We also note that the protocol publicly identifies some of the
corrupted parties (i.e., the “auxiliary output” C') — a feature that is not needed

12 We emphasize again that we used affine secret sharing in order to let each participant
choose its share x; at random, and have the system publish y = Mz to enable
recovering the joint secret. If, instead, we were using secret sharing where y = Mz =
0 then the participants would have needed to coordinate their share generation, to
ensure that Mz = 0.

23

under the definition of Fegsg,p. To match the syntax of Fegsg,, We can always
assume that C’ is dropped from the output. The following theorem is proved in

Appendix

Theorem 9. Suppose that M is a (d,r)-sparse constraint matriz that together
with a recovery vector v forms a b-robust (ty,tc)-AFS. Then, Il g t,-realizes
the functionality Feasgp for t, = min(ty,b/d).

Remark 9 (The complexity of Il g). The protocol has 3 rounds of interaction
and each party sends (either privately or to the BB via broadcast) at most
O(d - r - max(x,log |F|)) bits where d and r are the maximal number of non-
zero elements in a column of M and the maximal number of non-zero elements
in a row of M, respectively. Similarly, each party P; receives at most O(d - r -
max(x, log |F|)) bits via point-to-point communication and has to read a similar
amount of bits from the BB (basically, only the commitments sent by parties
that influence an output that is also influenced by P;). Since r = d = O(1), the
communication per party is a constant that does not grow with the number of
parties. The computational complexity per party is O(rd) = O(1) cryptographic
operations/field operations during the execution of the protocol. The final public
decoding costs O(n) downstream communication and O(n) operations and it can
be postponed to the recovery phase.

Variants: The above protocol can be tweaked in many ways to optimize different
goals. We mention some of these variants.

— Two-Round version: If we assume a PKI we can reduce the round com-
plexity to two rounds as follows. Recall that in the first round P; broad-
casts a commitment ¢, ; j; = Com(7,; j; ko,i,;)) and sends its private opening
(ro,ijs Ko,i,j) to the jth party P;. Instead, we let P; broadcast an encryption
of 75,4,; encrypted under the public-key of P; together with a NIZK for the
validity of the ciphertext. Now we can remove the “complaining round” R2
and proceed directly to R3. (The NIZK relations in R3 should be updated,
e.g., instead of proving consistency with commitments one has to prove con-
sistency with a ciphertext.) The security proof goes through assuming that
the underlying encryption is perfectly correct. Conveniently, the first round
of this protocol is independent of the inputs (x;, p;) and so it can be invoked
as an “offline” round.

— Adaptive security: Assuming secure erasures and trapdoor commitments
(e.g., Pedersen commitments), the protocol can be made adaptively secure
by letting each party erase the randomness used for the NIZKs.

— Abstraction: The protocol can be viewed as a concrete instantiation of the
following more general approach. Say that a set of n parties holding inputs
Z1,...,T, € X wishes to securely compute m functions f1, ..., f;, such that
the output is delivered to all the parties and where each function f; depends
on a small set of inputs S; C [n]. Then, we can get such a protocol (with
refined identifiable abort) based on protocols Iy, ..., IT,, for individually

24

Protocol 10 (The basic protocol Il g). We assume a common reference
string crs = (crspf, crsem). Each party P;, i € [n] locally samples random (x;, p;)
and proceeds as follows.

— R1: (Sending Randomizers) For every output o € R, influenced by i

and every j € Lo _;, party P; samples a random mask 7o, ; EF and
a random commitment key ko, broadcasts the commitment co; ;
Com(70,s,5; ko,i,j), and sends the opening (70,5, ko,,5) of the commitment
to the jth party P; over a private channel.

— R2: (Resolving Private Inconsistencies) For every o € R;,j € Lo,—;, if P;
does not receive from P; an opening for the published commitment co ;. s,
or receives an opening that is inconsistent with co ., then P; broadcasts a
“complaint” (j,0). This complaint asserts that ro,5,; and ko ;i should be set
to zero and co,j,; = Com(0;0). (We assume that i,j € Ro, and if this is not
the case, ignore the complaint.El

— R3: (Computing shares of the vector y: Local Sums and Output Tags)
Party P; broadcasts a; = Ep, (x;) together with a NIZK m; for consistency.
In addition, for every output o € R;, party P; broadcasts the value

Yo,i = Ti + g Toyij — g T0,4,is

JE€ELo, —i JE€ELo, —i

together with a NIZK 7,; that the committed wvalues in
i, (Coyiygs Co,j,i)je[,ol’ii satisfy the above linear equation about y, ;.

— Private outputs: The private output of the ith party is taken to be its
private inputs (i, pi).

— Public output: The broadcasted values define the public outputs of the
protocol via the following decoding procedure. If, for some party i, the proof
m; fails to verify, set a; = Eo(0) and replace m; with a wvalid proof. In
addition, initialize C'; B = (). For every output o € [m]:

o If there exists j € L, for which the proof 7, ; fails to verify insert o to
B and j to C'.
o Otherwise, set yo =3, 1 Yo,j-
Set B, (Yo)ogr and (0i)icin), as the public verification information of the
DSG. (Treat C' as auziliary output.)

“ Note that an adversary can issue false complaints and force r, ;; and ko j,:
to be zero. In the proof, we show that this is not an issue (essentially since
To,j,i is being used to pad information known to the adversary anyway).

Fig.2: The basic protocol Il E.

25

computing the functionalities fi,..., f;, where protocol II; is defined over
the parties S;. Assuming a PKI and NIZK, the idea is to start by letting
each party commit to its randomness and input, then run the protocols
114, ..., II,, where private messages are sent encrypted over public channels
together with NIZKs that certify consistency with the committed inputs and
committed randomness. This variant of the well-known GMW compiler [30]
inherits the security properties of the underlying protocols, and leads to a
communication complexity which is essentially the sum of the complexities
of the II; protocols. Furthermore, by using the “undeniable transmission”
mechanism from [4)2], the public key encryption scheme can be replaced by
standard commitments. The actual version that appears above is obtained by
tailoring this approach to the special case of linear functions while exploiting
the simple structure of the standard secure-addition protocol.

— Relaxing E: The proof of Theorem [J] does not make use of the hiding
property of the underlying commitment E. This means that Protocol IIx/ g
realizes the functionality Fcgsgp even if the underlying function F is binding
but not necessarily hiding. Of course, in such a case Lemmas 2] and [3] Still,
this observation allows us to employ the protocol where E(x) = ¢* and real-
ize the canonical DKG protocol (with the caveats discussed in Section .

6.3 Improving Security by Limiting Aborts

In order to achieve near-threshold results (i.e., an arbitrarily small gap between
the privacy 7, and correctness 7. thresholds), we need to limit the number of
aborts. Recall that the basic protocol Iy g aborts each output that depends
on an input from a party that was publicly identified as being corrupted. To
limit the number of aborts, we invoke the basic protocol II;; r and then try to
recover the aborted outputs by using an additional sub-protocol. (Protocol
in Fig. [3])

Informally, the idea is to remove the set of publicly corrupted parties, and to
re-compute the corresponding outputs over the inputs of the other parties as if all
the inputs of the publicly corrupted parties were taken to be zero. This approach
means that all the outputs o € R¢/ that are affected by publicly corrupted parties
(including valid ones) have to be re-computed. Fortunately, re-computing such
values is quite simple given the information that was gathered in Il p: All
that is needed is to reveal the randomizers r,; ; that correspond to a pair (i, 5)
consisting of a party ¢ ¢ C’ and a publicly corrupted party j € C’' (or vice versa).
Since each such value was already committed to, and the honest party from the
pair knows it, that party can simply open the corresponding commitment.

A potential difficulty is that malicious parties that acted honestly in Iy g
and were not detected, may decide not to collaborate in this new sub-protocol.
Namely, these parties will not open in the new sub-protocol the commitments
that the protocol requires them to open. This behavior will be detected dur-
ing the new sub-protocol, the corresponding parties will be added to the set of
publicly corrupted parties, and as a result their inputs will be set to zero and
additional outputs will need to be computed. This process might cascade over

26

multiple iterations of running the sub-protocol, if in each iteration a new party
is identified as being corrupted, and as a result its inputs must be set to zero.
Fortunately, it can be shown that the amount of communication is still constant
per party. Moreover, if the number of aborts is linear and is equal to b = gn for
some small constant 3, then the round complexity will be constant as well. The
resulting protocol, ITs, g 5, is described in Protocol [I]in Fig. [3] It is parameter-
ized with the number b of outputs that the adversary is allowed to abort (which
corresponds to the robustness parameter).

To simplify the presentation, the protocol description ignores communication
complexity limitations. It will be also convenient to drop the distinction between
online protocol operations and public-decoding operations that will be post-
processed after the execution (e.g., as part of the recovery phase) based on
publicly available values that appear on the BB. Still, we highlight such public
operations by the label “All:” that indicates that the following operations can
be computed based on public values. We will later explain how to obtain a
communication-efficient variant of the protocol.

Analysis. Tt is not hard to verify that C’ contains only corrupted parties, that
B C R(C'), and that if the procedure halts then |B| < b. We also prove an
upper-bound on the number of iterations needed for the procedure to halt.

Claim 12. The sub-protocol IIs halts after at most 1+ |C|-d/(b+ 1) iterations.

Proof. At the end of each iteration, if an output o is in B, then there must exist
at least one new publicly-corrupted input ¢ € L, that influences o. Since such
a party ¢ can influence at most d outputs, we discover at least (b + 1)/d new
corrupt parties in each iteration (except for the last one), and the number of
iterations is at most 1+ |C|-d/(b+ 1). O

Hence, when the robustness parameter is b = 0, we need a linear number of
iterations, and when b = fn for a constant 3, only a constant number of O(1/8)
iterations is needed. In fact, even if b = 0, the proof shows that the number
of rounds scales linearly with the number of (identifiable) corrupted parties.
So an adversary can only slow down the process at the expense of revealing
the identities of corrupted parties. (Specifically, in an optimistic execution path
where all the parties behave honestly, the above extension adds no overhead.)

Intuitively, the security of the protocol relies on the following observations:
(1) The information revealed during IT, (i.e., the randomizers adjacent to the
publicly corrupted parties) does not violate privacy since it is already known
to the adversary; and (2) Assuming that the adversary cannot violate the bind-
ing of the commitments, the outputs (y,),¢p are consistent with the inputs
(@:)ien, (25)iec where z} is either the witness used to generate m; (for parties
that weren’t caught cheating), or zero otherwise. Formally, in Appendix [E| we
prove the following theorem.

Theorem 13. Suppose that M is a (d,r)-sparse constraint matriz that together
with a recovery vector v forms a b-robust (tp,tc)-AFS. Then, the protocol ITn; g p
tp-realizes the functionality Fedsg,b-

27

Protocol 11 (The extended protocol I1n g). Ezecute Protgcol and
compute but do not output the values C', B, (Yo)ogn, (®ti)icin) as in the last step
of the protocol. Initialize an empty set Z, and apply the following sub-protocol
II> as long as the set B is larger than b:

1. Every party P;,i ¢ C' does the following: For every output o € R; and ev-
ery publicly corrupted j € Lo,—; N C’, broadcast all the private randomizers
To,ijyTo,,s and their commitment keys ko j, ko,j,i that were sent to/from
the corrupted party j. (If these values were sent in the previous itera-
tions there is no need to send them again.) We say that the randomizers
are successfully revealed if the opening is consistent with the commitments
Co,i,55Co,j,i-

2. All: For every output o that depends on some publicly corrupted input
j € C\Z, If for everyi € L, \ C' and j € L, N C' the randomizers
To,i,j,To,j,: were successfully revealed by P;, Then call o tentatively ready
and set a tentative value

!
Yo = E Yo,i — E To,,j + Toj,i

i€Lo\C/ JELy _iNC!

3. All: For every publicly corrupted party 5 € C', if all the outputs that are
influenced by j are tentatively ready do: (a) insert j to Z and redefine
a; = Eo(0); and (b) update all the affected outputs o € R; to be yo = y,.

4. All: Insert to C' every party j that did not successfully reveal one of its
randomizers. (Such a party is now publicly corrupted.) Insert to B all the
outputs that are influenced by these new publicly-corrupted parties.

All: Output B, (yo)ogn and (as)igcr . (Auziliary output: C'.)

Fig. 3: The extended protocol Il g p-

Remark 10 (Reducing the Communication). Let d and r be the maximal number
of non-zero elements in a column of M and the maximal number of non-zero ele-
ments in a row of M, respectively. Observe that each party needs to communicate
at most d(r — 1) openings during the protocol (since this is the number of ran-
domizers that are “adjacent” to her). So the upstream communication per party
is constant. To obtain constant downstream communication, we split the proto-
col into an online part and a post-processing public-decoding part. In the online
part, we apply the first step of the protocol for T'=1+t, - d/(b + 1) iterations
while updating the set C’'. (Below we show that this can be done with constant
downstream complexity.) In the decoding phase, we iteratively repeat over Steps
2—4 while in each iteration i we use the values that were computed in the ith

28

iteration of the online phase. We terminate the post-processing public-decoding
once B is smaller than b, which, by Claim takes at most T’ iterationsE

Let us get back to the online part and analyze the downstream complexity.
Assuming that b = 2(n), the number of iterations is constant. We will show
that the downstream complexity of every party F; is also constant. Call P; a
neighbor of P; if they both influence a common output o. Recall that in each
iteration P; has to check, for each of her neighbors P;, whether P; publicly
cheated, ie., if j € C'. Let us denote by Cj, the set of parties that publicly
cheated for the fisrt time at the kth iteration where Cj is the set of parties
that publicly cheated in IIjs . At the first iteration, the communication cost of
checking if P; is in Cj, is constant (since it suffices to check the validity of the
proofs sent by P; during ITjs,g). For k > 0, the party P; is in C}, if (a) P; is
supposed to open a commitment; and (b) the opening is either invalid or was
not sent. Condition (b) is easy to verify with O(1) communication (by accessing
the opening and verifying against the commitment). Condition (a) boils down to
checking whether P; has a neighbor that publicly cheated in the k — 1 iteration.
Denoting by ¢ the downstream communication needed for checking if a party
is in C}, we have that ¢, = O(D - ¢x—1) where D = d(r — 1) is the maximal
number of neighbors of a party. It follows that the communication in the kth
iteration is O(D¥) which is still constant since the number of rounds is constant.
Furthermore, the computational complexity of each party is constant as well.
(See Section [F| for a more detailed description.)

By combining Theorem [I3| with Lemma 2] (or Lemma [3|for the case of DKG)
and with Corollary [5] we derive the following corollary (formal version of the
main theorem).

Corollary 2 (near-threshold DSG and DKG). Assuming the existence of
NIZKs the following holds. For every constants 1, < 7. and every field F of
size super-polynomial n®(Y | there exists a protocol that (Tp, Tc) realizes the Fysg
functionality (resp., Faxg functionality) over F in which each party sends and
receives only a constant number of field elements and commitments/NIZKs and
computes a constant number of arithmetic and cryptographic operations. More-
over, the sharing phase has a constant number of rounds.

7 Instantiating the Protocols

We describe here a straightforward instantiation of the protocols, using El-Gamal
based commitments [26] and simple proofs. The purpose of this instantiation is
to demonstrate feasibility rather than optimize efficiency. Accordingly, we will
focus on the cryptographic components and leave the instantiation of the com-
binatorial part of the protocol (i.e., the AFS scheme) for future optimizations.
(Some preliminary non-optimized suggestion is given in Remark at the end
of this section.)

13 In the online phase, we do not update the size of B since this is communication
expensive, and therefore just iterate T times.

29

The protocols work over a finite cyclic group G of order p, and will deal a
secret s € I, where F = I, is a field. The values g, h are generators of G. We
assume that the decisional Diffie-Hellman assumption (DDH) holds in G, and
that no one knows log, h. El-Gamal’s commitment is defined as follows: given a
value and a key r, both in F, the commitment to = is Com(x;r) = (¢", g"h").
This commitment is perfectly binding and computationally hiding. The zero-
knowledge proofs are obtained by using standard Sigma protocols that can be
compiled into NIZK via the aid of Random Oracles (e.g., [21I7I22]). (As usual,
the identifier of a party should appear as part of the input to the Random

Oracle) E

7.1 Instantiating the Sharing Phase

The CRS contains G,F, as well as two generators g,h of G. We assume that
the AFS is specified by a matrix M and an extraction vector v. Each party P;
samples random inputs (z;, p;). We instantiate the Basic Protocol (Protocol
as follows.

R1: (Sending Randomizers) For every output o € R; and every j € L, _;,
party FP; samples in FF a random mask 7, ; ; and a random commitment key k, ; ;,
and broadcasts the commitment ¢, ; j = Com (7, j; ko ;) = (gFei, groti hEoiid),
P; also sends the opening (roﬂ»,j, ko ;) of the commitment to P;.

R2: (Resolving Private Inconsistencies) For every o € R;,j € L, _;, if P; does
not receive from P; an opening that is consistent with the published commitment
Co,j.i» then P; broadcasts a “complaint” (7, 0). This complaint asserts that 7, ;;
and k, ;; should be set to zero and ¢, j; = Com(0;0).

R3: (Local Sums and Output Tags) P; broadcasts a; = E,, (x;) = Com(z;, p;).
The ZKPOK m; for proving the consistency of this value is standard. (Publish
a random commitment o} = Com(z}, p,) and, given a challenge 8 € T, send the
pair (z + Bx;, pi + Bpi). To verify check that the sent pair is a valid opening of
the commitment o - o/}.)

In addition, for every output o € R;, party P; broadcasts the value

Yo,i = T; + E To,i,j — E To,5,i-

JELo —i JELo, —i

To prove that y,; agrees with the committed value in o; and the committed
randomizers in (Co,,5, Co,j,i)jeL,. ;> We first use the linear homomorphism of El-
Gamal’s commitments to combine all the commitments of the right-hand side
into a single commitment ¢,; = (¢o,:[1], ¢0.4[2]) and then prove the knowledge

4 While Fiat-Shamir is somewhat problematic when it is needed to ensure adaptive
knowledge-extraction based simulation soundness (SS) (see, e.g., [8§]), we can rely on
the weaker variants mentioned in Remark Specifically, we only need weak non-
adaptive SS for Theorems@ and [13| (by Remark[15]), and only SS without knowledge
extraction for Lemmas [2| and [3[(by Remark d since we use perfectly-binding
commitments). It is known that Fiat-Shamir compiled Sigma protocols satisfy these
notions, see, e.g., [916].

30

of a key r,; that opens the commitment to y, ;. The latter can be done via the
Chaum-Pedersen Sigma protocol [16] for proving that (g, h, ¢, (1], ¢o,:[2]/g¥>*)
is a DH tuple.

(Optimization) P; needs to broadcast a value y,; and a proof m,; for ev-
ery output o € R;. To reduce communication and improve run time through
multi-exponentiations, P; can batch these proofs by using random coefficients
po (chosen, again, by the random oracle) for every o € R;, and proving that the
commitment [],cp ¢b% opens to Y- cp Poloi-

Computing the Outputs: The private output of the ith party is taken
to be its private inputs (z;,p;). The public outputs can be computed by all
parties based on the information that was broadcasted as followsE If for some
party 4, the proof 7; fails to verify, set o; = Ep(0) and replace m; with a valid
proof. (This is trivial to do, since we know that a; = (¢°,¢°h°).) In addition,
initialize C’, B = . For every output o € [m]: If there exists j € L, for which
the proof 7, ; fails to verify insert o to B and j to C'. Otherwise, set y, =
ZjeLu Yo,j- Output B, (yo)ogp and (;)ie[n- (One can also output C' and apply
some penalty mechanism to the parties in C'.)

Recovering the public key for a DKG: In a DKG application, as defined
in Functionality [6] the sharing protocol must publish g raised to the power of
the secret. This can be implemented using the method described in the next
section (Section for recovering the secret in the exponent, by replacing the
computation of H(m) to the power of the secret with computing g to the power
of the secret. (As mentioned in Section this step is not needed if the parties
run a canonical DKG, set E,, (z;) = g™, and take care of the subtleties discussed

in Section [5.3])

Remark 11 (Other variants). Assuming a PKI (instantiated with, say, El-Gamal
encryption), one can turn the above protocol into a two-round protocol as de-
scribed in Section[6.2] We can also realize the extended protocol from Section [6.3
on top of the current instantiation in a straightforward way. (Recall that the ex-
tension only requires openning commitments for randomizers).

Remark 12 (Consrete instantiation of the robust-AFS). Recall that in the second
item in Example [1| we showed that when |F| > 22%5 and n > 50, we can get a
(4, 10)-sparse matrix with 7, = 0.39, 7. = 0.9 (by taking p = 0.6). For (relative)
robustness of 8 = 0.029, we get, by Lemma (I} a privacy threshold of 7/ =
0.39 — 10 - 0.029 = 0.1. Plugging this into the extended protocol (Protocol ,
yields a DKG with a privacy threshold of TF/) = 0.1, correctness threshold of
T = 0.9, optimistic round complexity of, say, 2, and additional 7',; -d/B < 14
rounds in the worst case.

7.2 Instantiating the Recovery Phase

Recovering the secret itself:

15 This computation can be postponed to the recovery phase.

31

— Each party broadcasts its private input x;, and proves in ZK via the Chaum-
Pedersen proof that he knows an opening p; that opens the commitment «;
to g*i.

— Each party that wishes to compute the output verifies all published proofs.

— Let T C [n] be the set of indices i € [n] for which theses proofs pass veri-
fication. A party that wishes to compute the output does the following. (1)
retrieve the public outputs B and (y,).¢p5, compute the set A based on B
and M using the robust-AFS algorith and set

M' = M[A;B], y =y[B], andv =v[A] (3)

Next, (2) call the linear recovery algorithm Recps o o (T, z[T]) and output
the result. (Recall that the recovery algorithm expresses the missing shares
as a linear combination of the existing shares, and outputs the multiplication
of v' by the vector of shares.) Since all computation is deterministic and is
based on data that was publicly broadcast, anyone can individually compute
the recovery algorithm and arrive at the same result.

Recovering the secret in the exponent: Many applications of threshold cryptog-
raphy do not recover the secret itself. Instead, the participants receive an input
m, compute H(m) € G, and must jointly compute H(m) raised to the power of
the shared secret. This can be done in the following way:

— Each P; broadcasts s; = H(m)%, and proves in ZK that it knows z;, p;
such that a; = (g”*, g% - h*") and s; = H(m)". (One can easily design an
appropriate Sigma protocol for this statement, see, e.g., [I1}, Section 19.5.3].)

— Each party that wishes to compute the output verifies all these proofs that
were published.

— Let T C [n] be the set of indices ¢ € [n] for which theses proofs pass verifica-
tion. Each party that wishes to compute the output defines (M’,y’,v’) as in
Eq. (3) and computes the linear recovery algorithm Recpss o o (T, z[T]) in the
exponent and outputs the result. Namely, Rec searches for a row vector o €

F™ such that a- M'[;T] = v/[T], and outputs [;o s;" -H(m)*V". (In other
words, we know that }° .7 vjz; = a -y, and therefore [, H(m)®*" =
[Lier s - H(m)*v".)

As before, all computation is deterministic and is based on data that was
publicly broadcast, and therefore anyone can individually compute the re-
covery algorithm and arrive at the same result.

References

1. Applebaum, B., Kachlon, E.: Sampling graphs without forbidden subgraphs
and unbalanced expanders with negligible error. SIAM J. Comput. 52(6),
1321-1368 (2023). https://doi.org/10.1137/22M 1484134 |https: //doi.org/10.1137/
22m1484134

16 In our AFS constructions, this is simply the set A of columns in M whose support
intersects with B.

32

https://doi.org/10.1137/22M1484134
https://doi.org/10.1137/22M1484134
https://doi.org/10.1137/22m1484134
https://doi.org/10.1137/22m1484134

10.

11.

12.

13.

14.

15.

16.

. Applebaum, B., Kachlon, E., Patra, A.: Verifiable relation sharing and multi-

verifier zero-knowledge in two rounds: Trading nizks with honest majority - (ex-
tended abstract). In: Advances in Cryptology - CRYPTO 2022 - 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA,
August 15-18, 2022, Proceedings, Part IV. pp. 33-56 (2022). https://doi.org/10.
1007/978-3-031-15985-5 2

Applebaum, B., Nir, O., Pinkas, B.: How to recover a secret with o(n) additions. In:
Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Pro-
ceedings, Part 1. pp. 236262 (2023). https://doi.org/10.1007/978-3-031-38557-5
S

Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revis-
ited. In: Advances in Cryptology - ASTACRYPT 2011. Lecture Notes in Computer
Science, vol. 7073, pp. 590-609. Springer (2011)

Beerliova-Trubiniova, Z., Hirt, M.: Perfectly-secure MPC with linear communi-
cation complexity. In: Theory of Cryptography Conference, TCC 2008. LNCS,
vol. 4948, pp. 213-230. Springer (2008)

Bellare, M.: Lectures on NIZKs: A concrete security treatment (2021), https://
cseweb.ucsd.edu/ " mihir/cse208- Wi20 /main.pdf

Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993. pp. 62—-73.
ACM (1993)

Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge in the
random oracle model. IET Inf. Secur. 10(6), 319-331 (2016). https://doi.org/10.
1049/IET-1FS.2015.0506

Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the
fiat-shamir heuristic and applications to helios. TACR Cryptol. ePrint Arch. p. 771
2016

](30gd&)m0v, A., Guo, S., Komargodski, I.: Threshold secret sharing requires a linear-
size alphabet. Theory Comput. 16, 1-18 (2020). https://doi.org/10.4086/TOC.
2020.V016A002, [https://doi.org/10.4086 /toc.2020.v016a002

Boneh, D., Shoup, V.: A graduate course in applied cryptography (2023), https:
/ /toc.cryptobook.us/, version 6

Canetti, R.: Universally composable security. J. ACM 67(5), 28:1-28:94 (2020).
https://doi.org/10.1145,/3402457

Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive secu-
rity for threshold cryptosystems. In: CRYPTO ’99. LNCS, vol. 1666, pp. 98-115.
Springer (1999)

Capalbo, M.R., Reingold, O., Vadhan, S.P., Wigderson, A.: Randomness conduc-
tors and constant-degree lossless expanders. In: Reif, J.H. (ed.) Proceedings on 34th
Annual ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal,
Québec, Canada. pp. 659-668. ACM (2002)

Cascudo, I., David, B.: Publicly verifiable secret sharing over class groups and
applications to dkg and yoso. Cryptology ePrint Archive (2023)

Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
Advances in Cryptology - CRYPTO 92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings.
Lecture Notes in Computer Science, vol. 740, pp. 89-105. Springer (1992). https:
//doi.org/10.1007/3-540-48071-4 7

33

https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-15985-5_2
https://doi.org/10.1007/978-3-031-38557-5_8
https://doi.org/10.1007/978-3-031-38557-5_8
https://doi.org/10.1007/978-3-031-38557-5_8
https://doi.org/10.1007/978-3-031-38557-5_8
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://cseweb.ucsd.edu/~mihir/cse208-Wi20/main.pdf
https://doi.org/10.1049/IET-IFS.2015.0506
https://doi.org/10.1049/IET-IFS.2015.0506
https://doi.org/10.1049/IET-IFS.2015.0506
https://doi.org/10.1049/IET-IFS.2015.0506
https://doi.org/10.4086/TOC.2020.V016A002
https://doi.org/10.4086/TOC.2020.V016A002
https://doi.org/10.4086/TOC.2020.V016A002
https://doi.org/10.4086/TOC.2020.V016A002
https://doi.org/10.4086/toc.2020.v016a002
https://toc.cryptobook.us/
https://toc.cryptobook.us/
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Cramer, R., Damgard, [.B., Déttling, N., Fehr, S.; Spini, G.: Linear secret sharing
schemes from error correcting codes and universal hash functions. In: Oswald, E.,
Fischlin, M. (eds.) Advances in Cryptology - EUROCRYPT 2015, Part II. Lecture
Notes in Computer Science, vol. 9057, pp. 313-336. Springer (2015)

Das, S., Pinkas, B., Tomescu, A., Xiang, Z.: Distributed randomness using weighted
vrfs. Cryptology ePrint Archive, Paper 2024/198 (2024), https://eprint.iacr.org/
2024 /198, |https://eprint.iacr.org/2024 /198

DKGPG developers: DKGPG: Distributed Key Generation for Pretty Good Pri-
vacy (PGP). |https://www.nongnu.org/dkgpg/| (2017), accessed: February 14, 2024
drand: drand: Distributed Randomness Beacon Service. https://github.com/
drand/drand| (2020), accessed: February 14, 2024

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186-194. Springer (1986). https://doi.org/10.1007/
3-540-47721-7 12

Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In: Shoup, V. (ed.) Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3621, pp.
152-168. Springer (2005). https://doi.org/10.1007/11535218 10

Fitzi, M., Hirt, M., Maurer, U.M.: Trading correctness for privacy in unconditional
multi-party computation (extended abstract). In: Krawczyk, H. (ed.) Advances in
Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 23-27, 1998, Proceedings. Lecture Notes
in Computer Science, vol. 1462, pp. 121-136. Springer (1998). https://doi.org/10.
1007 /BFB0055724

Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: International Workshop on Public Key Cryptography. pp.
300-316. Springer (2001)

Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21-28
(1962)

Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469-472 (1985). |https://doi.org/10.
1109/ TIT.1985.1057074

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure applications of pedersen’s
distributed key generation protocol. In: Topics in Cryptology - CT-RSA 2003, The
Cryptographers’ Track at the RSA Conference 2003. LNCS, vol. 2612, pp. 373-390.
Springer (2003)

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51-83 (2007). https://
doi.org/10.1007/S00145-006-0347-3|, [https: //doi.org/10.1007/s00145-006-0347-3
Goldreich, O.: The Foundations of Cryptography - Volume 2: Basic Applications.
Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511721656
Goldwasser, S., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. Proceedings of the 19th
Annual ACM Symposium on Theory of Computing pp. 218-229 (1987)

Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive (2021)

34

https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/198
https://eprint.iacr.org/2024/198
https://www.nongnu.org/dkgpg/
https://github.com/drand/drand
https://github.com/drand/drand
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/BFB0055724
https://doi.org/10.1007/BFB0055724
https://doi.org/10.1007/BFB0055724
https://doi.org/10.1007/BFB0055724
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/S00145-006-0347-3
https://doi.org/10.1007/S00145-006-0347-3
https://doi.org/10.1007/S00145-006-0347-3
https://doi.org/10.1007/S00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

Groth, J., Shoup, V.: Design and analysis of a distributed ecdsa signing service.
Cryptology ePrint Archive, Paper 2022/506 (2022), https://eprint.iacr.org/2022/
506, https://eprint.iacr.org/2022 /506

Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Ag-
gregatable distributed key generation. In: EUROCRYPT 2021. LNCS, vol. 12696,
pp. 147-176. Springer (2021)

Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364-1396 (1999). https:
//doi.org/10.1137/S0097539793244708

Ishai, Y., Ostrovsky, R., Zikas, V.: Secure multi-party computation with identifiable
abort. In: CRYPTO 2014. LNCS, vol. 8617, pp. 369-386. Springer (2014)

Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Thyagarajan, S.A.K.: Non-
interactive vss using class groups and application to dkg. Cryptology ePrint Archive
(2023)

Katz, J.: Round optimal robust distributed key generation. TACR Cryptol. ePrint
Arch. p. 1094 (2023), |https://eprint.iacr.org/2023,/1094

Katz, J., Ostrovsky, R., Rabin, M.O.: Identity-based zero knowledge. In: Blundo,
C., Cimato, S. (eds.) Security in Communication Networks, 4th International Con-
ference, SCN 2004, Amalfi, Italy, September 8-10, 2004, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 3352, pp. 180-192. Springer (2004).
https://doi.org/10.1007/978-3-540-30598-9 13

Komlo, C., Goldberg, I., Stebila, D.: A formal treatment of distributed key
generation, and new constructions. IACR Cryptol. ePrint Arch. p. 292 (2023),
https://eprint.iacr.org/2023 /292

Mosheiff, J., Resch, N.; Ron-Zewi, N., Silas, S., Wootters, M.: LDPC codes achieve
list decoding capacity. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020. pp. 458-469. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00050,
https://doi.org/10.1109 /FOCS46700.2020.00050

Naor, M.: Bit commitment using pseudo-randomness. In: CRYPTO ’89. LNCS,
vol. 435, pp. 128-136. Springer (1989)

Orbs-Network: DKG-on-EVM: A Distributed Key Generation Protocol for
Ethereum Virtual Machine. https://github.com/orbs-network/dkg-on-evm/ (2018),
accessed: February 14, 2024

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: CRYPTO ’91. LNCS, vol. 576, pp. 129-140. Springer (1991)

Santis, A.D., Crescenzo, G.D., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-
interactive zero knowledge. In: CRYPTO 2001. LNCS, vol. 2139, pp. 566-598.
Springer (2001)

Schindler, P.: ethdkg: An Ethereum-based DKG Implementation. https://github.
com/PhilippSchindler/ethdkg (2020), accessed: February 14, 2024

Schindler, P., Judmayer, A., Stifter, N., Weippl, E.: Ethdkg: Distributed key gener-
ation with ethereum smart contracts. Cryptology ePrint Archive, Paper 2019/985
(2019), |https://eprint.iacr.org,/2019,/985, https://eprint.iacr.org,/2019 /985
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Shrestha, N., Bhat, A., Kate, A., Nayak, K.: Synchronous distributed key gen-
eration without broadcasts. IACR Cryptol. ePrint Arch. p. 1635 (2021), https:
//eprint.iacr.org/2021,/1635

Stamer, H.: Gnosis dkg: A Distributed Key Generation Library. https://github.
com/gnosis/dkg (2018), accessed: February 14, 2024

35

https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506
https://eprint.iacr.org/2022/506
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708
https://eprint.iacr.org/2023/1094
https://doi.org/10.1007/978-3-540-30598-9_13
https://doi.org/10.1007/978-3-540-30598-9_13
https://eprint.iacr.org/2023/292
https://doi.org/10.1109/FOCS46700.2020.00050
https://doi.org/10.1109/FOCS46700.2020.00050
https://doi.org/10.1109/FOCS46700.2020.00050
https://github.com/orbs-network/dkg-on-evm
https://github.com/PhilippSchindler/ethdkg
https://github.com/PhilippSchindler/ethdkg
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2019/985
https://eprint.iacr.org/2021/1635
https://eprint.iacr.org/2021/1635
https://github.com/gnosis/dkg
https://github.com/gnosis/dkg

50. Vadhan, S.P.: Pseudorandomness. Found. Trends Theor. Comput. Sci. 7(1-
3), 1-336 (2012). [https://doi.org/10.1561,/0400000010, [https://doi.org/10.1561/
0400000010

51. Zichron, L.: Locally Computable Arithmetic Pseudorandom Generators. Master
thesis, Tel Aviv University (2017), available at https://www.bennyapplebaum.sites.
tau.ac.il/ files/ugd/f706bf 501515c9cd7744c498935684bd1648a2.pdf

A The Necessity of Public Headers

Fix some constants 0 < 7, < 7c < 1 and let II be a (7,1, 7cn) DSG protocol that
takes randomness 7; from each party P; and delivers a share x; to each party. We
assume that there is no public header, i.e., the shares (z;);er of any t.-subset T
uniquely determine the secret s. We also assume that there is no external source
of randomness, i.e., the secret is fully determined by the randomness (r1, ..., 7,).
We prove that in this case, the protocol suffers from the information bottleneck
mentioned in the introduction. That is, there are {2(n) parties (“influencers”)
whose inputs influence the output of at least {2(n) parties. Formally, consider a
digraph G over n parties where we put an edge from P; to Pj, denoted i — j,
if there exists a pair of input vectors 7 = (r4)repn) and 7’ = (77,)ke[n that differ
only in their ith location (i.e., 7, = 7}, for k # i) such that the share y; delivered
to P; in an honest execution with the inputs r is different from the share y; that
is delivered to P; in an honest execution with the inputs r’. We will show that
there are {2(n) influential nodes with out-degree of £2(n).

For every authorized set S of size at least t, let Ng = {i:3j € S,i — j}
denote the set of parties that influence the shares of .S. By correctness, the secret
depends only on the random tape of the parties that belong to N* = (g Ng. (Ifa
party i ¢ N* affects the secret, then there exists a recovery set S whose shares do
not depend on the randomness of ¢ and so correctness is violated.) Put differently,
each party ¢ in N* talks to a set M; that contains at least a single party in each
recovery set. We conclude that ¢ talks to at least |M;| > n — tc = £2(n) parties.
Otherwise, if |[M;| < n — t. party i misses the complement M; of M; which is
a set of size t. and so it is an authorized set. Finally, by privacy, N* must be
larger than t, = {2(n), and the claim follows.

Note that the above argument applies even when the protocol achieves only
a weak level of semi-maliciously security. (That is, security holds only against
corrupted parties that choose their inputs arbitrarily but follow the protocol
honestly.)

B Omitted Preliminaries

Non-Interactive commitment. A non-interactive commitment Comesem(z; k) is
an efficient algorithm that takes a random reference string crscm sampled from
some efficiently samplable distribution D(1%), a message = and a random com-
mitment key k and outputs a commitment string «. Hiding asserts that for

36

https://doi.org/10.1561/0400000010
https://doi.org/10.1561/0400000010
https://doi.org/10.1561/0400000010
https://doi.org/10.1561/0400000010
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf
https://www.bennyapplebaum.sites.tau.ac.il/_files/ugd/f706bf_501515c9cd7744c498935684bd1648a2.pdf

any pair of messages x,z’, and randomly chosen crscm and key k the commit-
ments Comesem (; k) and Comgem(2’; k) are computationally indistinguishable.
Binding asserts that for a randomly chosen crscm, except with negligible prob-
ability, no efficient algorithm can find a pair of messages x # z’ and a pair of
keys k, k' for which Comgsem (25 k) = Comersem (2’5 k). Such commitments can be
constructed based on one-way functions [34/41].

The following formalization of NIZK is taken from [37].

Definition 3 (Non-Interactive Zero-Knowldge). For an NP-relation R a
NIZK is a tuple of efficient algorithms (CRSGen, P, V, Simy, Sima, KE) that satisfy
the following requirements.

Completeness asserts that for all (x,w) € R, all identities i € [n] and every
security parameter k it holds that

Pr [V(crspf, i, z, P(crspf, i, z,w)) = 1] = 1,
crspf & CRSGen (1)

Adaptive, multi-theorem zero-knowledge asserts that for every efficient
adversary A the following quantity is negligible

Pr [AP"(erspf) (cropf)] — Pr [ASIm2 (dPF.) (cropf)] |
crspf & CRSGen(1%) (crspf tdpf) & Simy (1)

where P*(crspf, i, z, w) returns P(crspf, i, z,w) if (z,w) € R and L otherwise and
Simi(tdpf, i, x) returns Simso(tdpf, i, z) if (x,w) € R and L otherwise.

Identity-based simulation soundness (SS) asserts every efficient adver-
sary A wins in the following game with at most negligible probability.

1. The Challenger samples (crspf,tdpf) £ Sim1(1%) and a challenge bit b £
{0,1} and sends crspf to the adversary who specifies a set of “honest” iden-
tities H C [n].

2. The adversary is given an access to a prover oracle and a verification oracle.
The former takes an input (i, z,w) and returns a simulated proof Sima(tdpf, ¢, x)
if i € H and (z,w) € R; otherwise, it returns L. The verification oracle takes
an input (i,z,) and returns L if i € H or V(crspf, i, z,) = 0. Otherwise it
returns 1 if either b =1 and the witness extractor KE(tdpf,i,x,) extracts a
valid witness w such that (x,w) € R, or if b = 0.

3. At the end, the adversary outputs b’ and wins the game if b’ = b.

Remark 13 (weaker variants). The above formulation is somewhat strong and is
adopted for the sake of simplicity. We will later show that the following weaker
variants of simulation soundness suffices for our purposes:

— Identity-based simulation soundness without extraction: defined sim-
ilarly to SS except that we do not require knowledge extraction. Accord-
ingly, the condition “KE(tdpf,i,x,) extracts a valid witness w such that
(x,w) € R” is replace with the wvalidity condition there is no witness w for
which (z,w) € R.

37

— Alternatively, we will use Non-Adaptive identity-based simulation sound-
ness that is defined similarly to SS except that the adversary operates in
two phases: First she calls the prover oracles (multiple times), and then she
makes a multiple parallel calls to the verification oracle. Notably, the calls to
the verification oracle are non-adaptive, i.e., independent of its answers. A
closely related notion (without identifiers) was studied in [9] and is referred
to as Simulation Sound Extractability.

C Proofs of Lemmas [2] and [3]

C.1 Proof of Lemma [2]

By standard MPC composition theorems (e.g., [2912]), it suffices to prove that
the 2-phase functionality Fsg is (£p, tc)-realized by the protocol Iy that makes
a single call to the ideal functionality Fcgsg» followed by a canonical recovery
protocol. Indeed, let A be an adversary that attacks I/4ss. Then, we construct a
straight-line black-box simulator Sim that attacks Fgs, as follows.

1. (Setup) The simulator Sim uses the first-phase simulator Sim; for the NIZK
system to sample CRS/trapdoor pairs, (crspf, tdpf) and sends crs = (crspf, crscm)
to A who responds by specifying a set of corrupted parties C C [n] of size at
most t, where C' C C are only passively corrupted.

2. The simulator samples a random vector ' in the image of My (i.e., ¥y =
My - z{; for randomly sampled xj,). For each honest party ¢ € H, sample a
fresh zero commitment o; = E,, (0) where p; is a random commitment key.
Send y" and (o);cn to A.

3. The adversary responds with xc = (z;)iec, pc = (pi)icc and a set B C [m]
of size at most b. The simulator computes y = y' + Mc -zc and o; = E,, (z;)
for i € C and returns B, y[B], (a;);c[n). In addition, the simulator invokes
the sharing phase of Fysg.

4. When the adversary .A invokes the recovery phase of Il4se, we call the recov-
ery phase of Fysg and get the secret s. We compute the set A based on the
set B specified by the adversary, and sample shares for the honest parties
T = (;)ien subject to ¥’ = My - zy and subject to v[A] - x = s where
- stands for inner-product and x € F™ is the vector of shares obtained by
concatenating xy with z¢ that was chosen by the adversary. We send to the
adversary the messages (z;,7;);en that the honest parties send in the recov-
ery phase where 7; is a simulated (fake) NIZK for the commitment relation
R ={((a,z),p) : = Ep(m)}m The adversary responds with some values

17 Here we see why we cannot just open the commitment in the recovery phase: The
committed value is unknown to the simulator when the commitment is generated. We
further note that the problem is avoided if one uses the weaker variant of DSG/DKG
that is mentioned in Remark IE In this case, it suffices to simulate only the sharing
phase, and so we can just open the commitments in the recovery protocol. The
indistinguishability property specified in Remark [7] then follows by the hiding and
binding properties of the commitment. Unlike the current construction, this variant
can be constructed without employing NIZK and without a CRS.

38

(x}, 7})iec where for passively corrupted parties ¢ € C’ it holds that =} = x;
and 7, is honestly generated (and passes verification). The adversary selects
a subset of the honest parties H' C H such that |[H'| + |C’'| > ¢. and resets
the messages of the honest parties H\ H' outside H’ to L. We terminate the
simulation by outputting the adversary’s view.

Let H; denote the output of the simulated experiment that consists of the
output of the simulator (when interacting with Fgysz) concatenated with the
secret s that the Fys; delivers to the honest parties in the reconstruction phase.
Let H g be the output of the real experiment that corresponds to the case where
A attacks the two-phase protocol Ilysg = (Fedsg,b, HRec)- Specifically, Hr consists
of the output of A concatenated with the public output s’ of IIrec. To show that
‘Hr is computationally indistinguishable from Hpr we will use several hybrids.

The hybrid H; is identical to the Hp, except that the CRS is generated with
a trapdoor and the proofs (m;);en in the recovery phase are generated by using
the NIZK simulator. By the security of the NIZK proofs, H; is computationally
indistinguishable from Hg.

The hybrid H, is identical to the H1, except that commitments (a;);cn gen-
erated by Fegsg,p are replaced by commitments to zeroes. By the hiding property
of the commitments, Hs is computationally indistinguishable from ;.

To complete the proof of the theorem, it suffices to prove the following claim.

Claim 14. The output of Ho is statistically close to the output of the ideal
experiment Hy.

From now on, we focus on the proof of the Claim. First, observe that the first
message that the adversary receives y/, («;);en is distributed identically in both
experiments. Let us fix these values. Consequently, the values B, xc, pc sent by
the adversary are also distributed identically in both experiments, and we can
fix them as well, and move on to the recovery phase.

We show that in both experiments the vector of honest shares xy is dis-
tributed identically. Recall that in Ho the vector zy is uniform subject to (1)
y' = My - xy whereas in H; the vector xy is uniform subject to (1) and to (2)
v[A] -z = s where s is uniformly distributed. Let X denote the set of solutions
to (1), and for any fixing of s, let X denote the subset of X that satisfies (2) for
this choice of s. By the ¢,-privacy of the scheme (M,y,v[A]), the sets X, form
a partition of X into sets of equal size, and therefore the vector xy is uniformly
distributed over X in both cases.

Let us fix zy in both experiments. Since the view of the adversary is now
identical in both experiments, it remains to show that the secret s that is deliv-
ered by the ideal functionality in H equals the secret s’ that is recovered in Hs.
Let us condition on the good event, G, that Vi € C if the tuple (z}, 7}, ;) passes
verification then z} = x;. In this case, the secret s’ is obtained by applying the
recovery algorithm Rec 14, 5,y15],0[4]) OVer a vector of shares in the support of
2 0r,y,0p4]- Since the vector consists of at least ¢c shares, recovery succeeds and

s’ = w[4] - & = s, as required.

39

Finally, we argue that the good event G happens with all but negligible
probability. Indeed, if G happens we can use the knowledge extraction algo-
rithm to retrieve, except with negligible probability, a witness p; such that
E,(z}) = a; = E,,(z;) and violate the binding property of the commitment.
This completes the proof of the claim and the proof of the lemma. O

Remark 14 (Relazing the proof-of-knowledge property). A closer look at the proof
of Claim [14] shows that if the commitment E is perfectly binding (as opposed
to computationally binding) then the knowledge-extractor is not needed and
standard soundness suffices. Since this is the only use of knowledge extraction in
the proof, we conclude that the Lemma[2] holds even when the underlying NIZK
satisfies Identity-based simulation soundness without extraction, provided that
F is perfectly binding.

C.2 Proof of Lemma [3]

The proof of Lemma [3]is very similar to the proof of Lemma [3] we highlight the
main differences.

By standard MPC composition theorems (e.g., [2912]), it suffices to prove
that the 2-phase functionality Fawg is (¢p, t.)-realized by the protocol I whose
first phase consists of a single call to the ideal functionality Fcqsg,s followed by a
canonical recovery in the exponent protocol for the generator g (with input as in
Lemma and its second phase consists of a canonical recovery in the exponent
protocol for an element h. Letting A be an adversary that attacks Ilqwg, we
construct a straight-line black-box simulator Sim that attacks Fqug as follows.

1. The first three steps are exactly as in the proof of Lemma [3| (Section .
Except that at the end of Step 3, when the simulator invokes the sharing
phase of Fqig, the functionality returns the value g°. We proceed as follows.

4. We compute the set A based on the set B specified by the adversary (in
Step 3), and sample a vector of exponentiated shares (g; = ¢g*);en for the
honest parties subject to y' = My - oy and subject to v[A] - z = s where
- stands for inner-product and = € F™ is the vector of shares obtained by
concatenating zy with the vector x¢ that was chosen by the adversary in the
third step. This is done efficiently via the following standard technique. View
the constraints as a linear system over the formal variables (zy, s). Since the
system is consistent (as follows from the analysis of the simulation) and since
s participate in a single constraint, we can treat s as a “free variable” and
locate a set of additional free variables zp, F' C H such that every non-free
variable x;,7 € H\ F can be written as a linear combination v; of (s,).
Now to sample a solution in the exponent of g, we sample xr at random, set
gi = g*i for free variables i € F', and for non-free variables, i € H\ F, set
gi = (¢°,gr)"". (Here we use a power-product notation: for a vector of group
elements @ = (aq,...,ax) and vector of field elements v = (vy,...,v;) we
write o’ to denote [, o;".) We send to the adversary the messages (¢;, 7;)icH
that the honest parties send in the recovery phase where 7; is a simulated

40

(fake) NIZK for the relation R = {((«,f,9),(p,x)) : a = E,(x), 5 = ¢g*}.
The adversary responds with some values (g;, 7});cc where for passively cor-
rupted parties ¢ € C' it holds that g; = ¢** and =} is an honestly-generated
proof (that passes verification).

5. When the adversary .A invokes the recovery phase of Ilyx; with group element
h, we call the recovery phase of Fq.g and get h®. We proceed exactly as in the
previous step with the same values of the variables xzy. That is, set h; = A"
for a free variable i € F and h; = (h*, hg)¥i for a non-free variable i € H\ F,
and send to the adversary the messages (h;, 7;);cn that the honest parties
send in the recovery phase where ; is a simulated (fake) NIZK for the
relation R. The adversary responds with some values (h;, });cc where for
passively corrupted parties ¢ € C’ it holds that h; = ¢®¢ and] is an honestly-
generated proof (that passes verification). The adversary also selects a subset
of the honest parties H' C H such that |H'|+|C’| > t. and resets the messages
of the honest parties H\ H" outside H’ to L. We terminate the simulation by
outputting the adversary’s view. We terminate the simulation by outputting
the adversary’s view.

The analysis of the simulator is similar to the analysis of Lemma [3| (see Sec-
tion [C.1f). We note that Remark [14] applies here as well.

D Proof of Theorem

We describe a simulator Sim that interacts with an adversary A. We note that
whenever A passively corrupts a party P; our simulator also passively corrupts
P;, thus security against mixed adversaries follows.

— Setup: The simulator Sim uses the first-phase simulator Sim; for the NIZK
system to sample CRS/trapdoor pairs, (crspf, tdpf). The simulator also sam-
ples a CRS crscm for the commitment. We send crs = (crspf, crscm) to A
who specifies a set C C [n] of corrupted parties of size at most .

— R1: The simulator generates the randomizers of the honest parties just like
in the protocol; That is, for each ¢ ¢ C, 0 € R; and j € L, _;: Sample a

random mask 7, ; ; & F and a random commitment key ko, j, send to A
the “broadcast values” ¢, ;; = Com(7o; ;; ko), and, for every j € C, the
opening (7 j, ko,i,j) as private-channel messages. The adversary A returns
the tuple of (supposedly) committed randomizers

(Co,i,j)i€C0€Ri j€Lg, —i5 (Tosivis Koyij)ieCoe Ry jE Ly, \C-

— R2: Raise complaints of honest parties on corrupted parties as in the pro-
tocol; That is, for each ¢ ¢ C, for every o € R;,j € L, _; N C, if the opening
ko ; (generated by the adversary) is inconsistent with the published com-
mitment ¢, ;;, send to A a “complaint” (¢, j,0) and update 7, ; ; to zero and
Coj,i = Com(0;0), ko ;s = 0. The adversary responds with a (possibly empty)
list of complaints, for each such complaint (4, j,0) if i € C,i,j € R, update
To,j,i YO zero.

41

— R3: The simulator calls the ideal functionality Feysg,» and receives (a;)icn
and a residual offset vector y’. The simulator chooses some arbitrary zj, =
(«})ien that satisfies the equation Myzy, = y' where My is the matrix M
restricted to the columns in H.

For every honest party i ¢ C:
e Generate a fake proof m; = Sima(ay;, tdpf) that certifies that the tag o
(received from the ideal functionality) satisfies the relation Rg.
e For every output o € L;, compute

—_— / PR — ..
Yo,i = X; + E To,i,5 E To0,5,i5

JELo, i JE€ELo,—i

just like in the original protocol.

o Generate a fake proof 7, ; that the committed values in o, (co’i,j, co,j,i)jeLDﬂ
satisfy the above linear equation, by using the second-phase simulator
Simg and the trapdoor tdpf.

Send to A the tuple (Yo, Mo, @4, 7)), Vi ¢ C,0 € R; and get back the tuple
pairs (Yo,i, To,is @4, i), Vi € C,0 € R;.

— Generating outputs: If for some i € C the proof w; fails to verify, set
z; = 0,p; = 0. Else, use the knowledge extractor to extract (x;,p;). Next,
compute the sets C' and B just like in the protocol. Formally, we iterate over
every output o € [m], if there exists j € L, for which the proof m, ; fails to
verify, insert o to B, and j to C'. Finally, call the ideal functionality with B
and (z;, p;)icc. Recall that the functionality computes y = ¢y’ + Mc - z¢c and

returns to all the parties the tuple (B, y[B], (a;)icn, (o = E,, (z;))icc.

It is not hard to see that C' C C and that B is of size at most t;, -d < b and so
the simulator sends legal input to the ideal functionality. Fix the random input
of the honest parties in the protocol to some value z = (;);¢c and p = (pi)igc,
and let us condition on the event that the same input is chosen by the ideal
functionality Fedsg,s. It suffices to show that the output of the simulated experi-
ment Hg (that consists of the output of A concatenated with the public output
that the ideal functionality delivers to the honest parties) is computationally
indistinguishable from the real experiment #Hy; (that consists of the output of
A concatenated with the public output of the honest parties in the execution of
II) E). We define a sequence of hybrids.

H1: Identical to to the simulator, except that in R1, for every output o € [m)]
and every pair of honest parties i,j € L, \ C that influence o, we let c,; ;
Com(0; ko ;) be a random commitment of zero. (All other commitments remain
unchanged.) Since these commitments are never opened, by the hiding property,
we get that H3 is computationally indistinguishable from Hg.

Ho: Identical to Hi, except that in R3, we replace with z; for every honest
party ¢ € H. Note that that after this modification, z’ is never used.

Claim 15. Hy is distributed identically to Hy.

42

Proof. By definition, for each output o € [m], it holds that the “residual honest
sum” y, = Y ,cr \c % equals to the “residual honest sum” y, = >,/ \c %
computed over x. Thus the proof follows from the information-theoretic security
of the standard secure-sum protocol. We sketch the details for completeness.
Fix all the randomness in the experiment up to the computation of y, ;,
except for the choice of (r,, ;) for all o € [m] and honest i,j € L, \ C. It
suffices to show that the vector (y,,i)oe[m],icr,\c i identically distributed in
both experiments. (Since this is the only value that depends on z’.) Fix some
o € [m] and honest i € L,, and let us subtract from y,; the fixed values z,; =
> jer, incToij — 2jer, inc To.ji» and show that the resulting values y;,; =
Yo,i — Z0,i are distributed identically in both experiments. Indeed, it is not hard to
verify that, for every o € [m], the vector (y;, ;)icr,\c is just a fresh additive secret
sharing of the value y/. Furthermore, these sharings are statistically independent
across the o’s. The claim follows. a

H3: Identical to H,, except that in R1, we switch back the commitments c, ; ;
to Com(r,, j; ko ;) for every output o € [m] and every pair of honest parties i, j €
L,\C that influence o. (All other commitments remain unchanged.) By the hiding
property of the commitment, we get that Hs is computationally indistinguishable
from Hs.

H4: Identical to Hg, except that in R3 for each honest party i € H and o € R;,
we generate the proof 7, ; honestly (like in the protocol) based on the witnesses
pi» (Koijy Koji)jeL, ;- By the zero-knowledge property of the NIZK system we
get that H, is computationally indistinguishable from Hs.

Hs: Identical to Hy, except that in R3 for each honest party ¢ € H, the proof
m; is computed honestly by using the prover and the witness (x;, p;). By the
zero-knowledge property of the NIZK system we get that H5 is computationally
indistinguishable from Hy.

He: Identical to Hs, except that we ignore the response of the ideal functionality
in R3 and define the vector y' := Myzn and set «; := E,, (x;) for every i € H.
Recall that we fixed the inputs (x4, p;);¢c of the honest parties, and so, in both
experiments the value «; is taken to be E,, (z;) for every i € H and ¢ :=
My - zy. The modification does not change the output of A, and Hg is identically
distributed to Hs.

‘Hr: Identical to Hg, except that we remove the second call to the ideal func-
tionality in the final stage, and define the output of the honest parties to
be B, (Yo)ogB; (@ti)ic[n)) computed as in the real-world experiment by protocol

Iy g
Claim 16. H; is statistically close to Hg.
Proof. First, observe that in both experiments, for i € C the value of «; is taken

to be Eg(0) if the proof 7; is invalid. If the proof is valid, then «; is taken to be

43

the value sent by the adversary at the end of R3 unless the knowledge extractor
fails to extract a valid witness (z;, p;) from a valid proof 7;, which happens with
negligible probability. Let us condition on the event that such failures do not
happen, and let us fix the values x; of the adversary (which is either extracted
from a valid proofs or taken to be zero for invalid proofs).

Observe that the sets C’, B are identically computed in both experiments,
and so it remains to show that, for every o ¢ B the output yo = > .c; Vo,
as computed as in the real-world experiment, equals to the value), L, Ti (as
computed by the ideal functionality) except with negligible probability. For this
it suffices to show that for every ¢ € L,, the good event G;, defined by

Yo,i = Ti + Z Toyij — Z To,j,is (4)

JEL, JE€L,

happens with all but negligible probability. For every honest party i ¢ C, the
event G; holds with probability 1, and so we focus on i € C. Recall that o ¢ B
which means that the proof 7, ; passes verification. Therefore, except with neg-
ligible probability, we can therefore use the knowledge-extractor KE to extract
a vector of openings to the commitments «;, (¢, Co,j.i)jeL, _; that satisfy the
linear equation . If G; does not happen, then, for at least one of these com-
mitments, we get two different valid openings, violating the binding property of

the commitment scheme. The claim follows. O

Finally, observe that the only difference between the real experiment H g
and H7, is that in H we honestly sample the CRS crspf of the proof system.
By the indistinguishability of the CRS, it follows that the two ensembles are
computationally indistinguishable, completing the proof of Theorem [9] a

Remark 15 (Relazation: Non-Adaptive NIZK). Note that the adversary gener-
ates all her proofs in one shot (at the end of round R3) and after that she does
not get to see new proofs of honest parties. We can therefore employ NIZK with
non-adaptive identity-based simulation soundness as discussed in Remark [I3]

E Proof of Theorem [13

We describe a simulator for Protocol (A close variant of this simulator cor-
responds to the communication-optimized variant mentioned in Remark .
Again, when the simulator is type-preserving (if the adversary passively cor-
rupts a party, then the simulator also passively corrupts the party) and so the
simulation automatically applies to mixed adversaries. The simulator is similar
to the simulator of the basic protocol 11 g (Section@ except that the last step
(“Generating outputs”) is extended as follows.

1. If for some ¢ € C the proof m; fails to verify, set x; = 0, p; = 0. Else, use the
knowledge extractor to extract (z;, p;). Next, compute the sets C' and B just
like in the protocol I . Formally, we iterate over every output o € [m], if
there exists j € L, for which the proof 7, ; fails to verify, insert o to B, and
j to C'.

44

2. Initialize an empty set Z, and iterate the sub-protocol I1; as long as the
set B is larger than b while honestly emulating the role of honest parties.
Specifically, in each iteration, the simulator reveals the randomizers that
are adjacent to honest parties and publicly corrupted parties C’. (These
randomizers were already defined in the steps R1 and R2 of the simulation
and were already leaked to the adversary.) Receive from A randomizers and
commitment keys on behalf of some of the parties in C, check these values
and update the the sets Z, C’, Z and B based on the public values just like
in the original protocol.

3. Finally, after the iterations ends, for every i € Z set x; = 0,; = Ep(0),
call the ideal functionality with B and (z;, p;)icc. Recall that the function-
ality computes y = 3’ + Mc - zc and returns to all the parties the tuple

(B,y[B], ()ien, (i = E,, (x;))icc. Terminate with the output of A.

It is not hard to see that C’ C C. Also, by definition, the set B is of size at
most b and so the simulator sends legal input to the ideal functionality. Fix the
random input of the honest parties in the protocol to some value x = (;);¢c
and p = (p;)i¢c, and let us condition on the event that the same input is chosen
by the ideal functionality Fcgsgp. It suffices to show that the output of the
simulated experiment Hg (that consists of the output of A concatenated with
the public output that the ideal functionality delivers to the honest parties) is
computationally indistinguishable from the real experiment Hy (that consists
of the output of A concatenated with the public output of the honest parties in
the execution of ITjs g). The proof uses the same hybrids used in the proof of
the basic protocol (Section @ except for the last hybrid H; which is modified
as follows.

‘H7: Identical to Hg, except that we remove the call to the ideal functionality in
the final stage, and define the output of the honest parties to be B, (yo)og¢ B, (@) ic[n))
computed as in the real-world experiment by protocol IIxs g p.

Claim 17. H7 is statistically close to Hg.

Proof. Tt suffices to show that the value returned by the functionality is statis-
tically close to the output of the honest parties as computed in H;. Call party
P;, i € C public cheater (in short PC), if she publicly cheats during the protocol,
and decent otherwise. If P; is PC then, in both experiments, «; is taken to be
Ey(0). If P; is decent then, in both experiments, «; is taken to be the value sent
by the adversary at the end of R3 unless the knowledge extractor fails to ex-
tract a valid witness (z;, p;) from a valid proof 7;, which happens with negligible
probability. Let us condition on the event that such failures do not happen, and
let us fix the values x; of the adversary (which are either extracted from valid
proofs or taken to be zero for invalid proofs).

Observe that the sets C' and B are identically computed in both experiments
and so it remains to show that, for every o ¢ B the output y,, as computed as
in the real-world experiment, equals to the value ", er, Ti (as computed by the
ideal functionality) except with negligible probability. For an output o ¢ B that

45

remains unchanged during II5, the argument is identical to the argument in the
proof of the basic protocol (specifically, Claim .

We move on to the case of o ¢ B whose value y, was updated during the
emulation of IT5. Each of these values is computed in Hg as

Yo = E Yo,i — E To,ij T To,i | »

i€L,\C! j€Ly—inC

where C’ is the set of PC and 1, ; together with k,; ; are valid openings for
Coi,; that were published by P;. Since x; = 0 for i € C’, the output delivered by
the ideal functionality can be written as » L,\c Zi- To prove that this value
equals to y,, it suffices to show that for every ¢ € L, \ C’, the good event G;,

defined by
Yo,i = Ti + Z Tosi,j — Z To,4,is (5)

jeLo,—i jeLo,—i

happens with all but negligible probability. For every honest party i ¢ C, the
event G; holds with probability 1, and so we focus on a decent party P;, i € C\C'.
Assume that G; does not happen. Since the proof 7, ; passes verification, we can
use the knowledge-extractor KE to extract (except with negligible probability) a
vector of openings to the commitments ;, (o.i 5, Co i) jeL, _, that satisfies the
linear equation . This means that, for at least one of these commitments, we
get two different valid openings, violating the binding property of the commit-
ment scheme. The claim follows. O

Finally, observe that the only difference between the real experiment H
and Hr, is that in H; we honestly sample the CRS crspf of the proof system.
By the indistinguishability of the CRS, it follows that the two ensembles are
computationally indistinguishable, completing the proof of Theorem [I3] a

We note that Remark [I5] applies here as well. Indeed, no proofs are generated
during the extended protocol (after the basic part ends).

F Communication-efficient variant of Protocol [11]

We formally describe the communication efficient variant of Protocol [I1] as ex-
plained in Remark Below we say that P; and P; are neighbors if P; and P;
influence a common output o, i.e., R;NR; is non-empty. Note that this neighbor-
hood relation implicitly defines an undirected graph over the parties P, ..., P,
whose maximal-degree D is at most d - (r — 1) = O(1). We further assume that
tp is taken to 7,1 fro some constant 7, < 1 and that b = Sn for some constant
B <1 Welet T :=1+|C|-d/(b+ 1) and note that under our setting of parame-
ters, T is upper-bounded by a constant that does not grow with n. The protocol
is described in Figure [

46

Efficiency. During the entire online phase, P; writes at most D values since she
only reveals randomizers that are adjacent to her. The downstream complexity
is at most ZeT:1 D - ¢y where ¢, is the downstream complexity of a single call to
IsCorrupt(-,¢). Noting that ¢ is O(d) and ¢, < Dcy_1 we get that ¢, < d - DT
since d, D and T are constants the total downstream complexity is constant as
well.

Correctness. We claim that protocol IT 5\4 E.b tp-realizes the functionality Fegsg.p
just like ITps g p. Formally, consider a variant of Iy g, denoted by II, in
which the number of iteration is taken to be T but the final output B, (yo)0¢ B
and (a;);¢cs is taken to be the output that is recorded at the end of the first
iteration in which the set B is smaller than b. It is not hard to show that
Theorem applies also to IT; (via essentially the same proof that appears in
Section Novv consider a variant of II’, denoted by II{, in which each call
to the subroutine IsCorrupt (P}, ¢) is replaced by checking whether P; is in C’
which is defined as in the offline phase of IT{. Clearly, I1; is identical to IT{. (We
only postponed some operations to the offline phase but these operations do
not affect the online part anyway.) So it suffices to show that I7] is identical to
7 jw g,p- This follows by the correctness of IsCorrupt which can be edtablished
by induction on the number of iterations.

47

Protocol 18 (Communication-efficient extended protocol H}M’E’b).
Online: Execute Protocol without the offline (public output) phase. Next,
each party P; initializes a flag fi j for each of its neighbors P; that will indicate
whether P; knows that P; was publicly cheating. We initialize all the flags to
false. For ¢ =1,...,T every party P; does the following.

— Revealing randomizers: For every output o € R, and every meighbor
J € Lo,—i if fi; is false check if P;j is a new publicly-corrupted party by
calling the subroutine IsCorrupt(j,¢ — 1) defined below. If the result is
positive we say that P; is triggered by P; in round ¢ with respect to output
o and do the following:

o P; writes on the BB all the private randomizers 1o j,70,5i and their
commitment keys ko.i,j, ko,j,i that were sent to/from the corrupted party
j. In addition, P; sets f; ; to true.

The IsCorrupt subroutine: Given an index j € [n] of a party and an itera-
tion number ¢ the subroutine IsCorrupt(j, £) returns true if, during iteration
4, party P; publicly cheated for the first time. The subroutine is defined as
follows.

— IsCorrupt(j,¢):

1. For £ = 0: output true if P; publicly cheated in the basic protocol
II; gy That is, for every o € R, read from the BB the proof mo.;
and verify its validity. If any of these proofs fail, output true; Else,
output false.

2. For £ > 1: for every output o € R; and every neighbor k € Lo _;:

If IsCorrupt(k, £ — 1) holds but P;j, who was triggered by Py in iter-
ation £ — 1, did not reveal consistent randomizers in iteration £, then
output true; Else, output false.

Offline decoding: The public outputs are obtained by applying the protocol
Iy on the values that were written on the BB so far. Formally, compute
the values C', B, (Yo)ogn as in the last step of the basic protocol based on the
transcript of the basic protocol. Then repeat the following steps as long as the
set B is larger than b:

1. In the Lth iteration, read the transcript of the (th iteration of the online
part.

2. For every output o that depends on some publicly corrupted input j € C"\
Z, If for every i € L, \ C' and j € L, N C' the randomizers To,i,53To,j,i
were successfully revealed by P;, Then call o tentatively ready and set a
tentative value

/
Yo = E Yo,i — E To,,j + Toj,i

€L, \C/ JEL, —;NC!

3. For every publicly corrupted party j € C', if all the outputs that are in-
fluenced by j are tentatively ready do: (a) insert j to Z and redefine
a; = Eo(0); and (b) update all the affected outputs o € R; to be yo = y,.

4. Insert to C' every party j who was triggered but did not successfully reveal
all its randomizers. (Such a party is now publicly corrupted.) Insert to B
all the outputs that are influenced by these new publicly-corrupted parties.

48
Output B, (Yo)ogr and (a;)igcr. (Auziliary output: C'.)

Fig. 4: The communication-efficient extended protocol IT fw B.b

	Distributing Keys and Random Secrets with Constant Complexity

