
This is the full version of the paper appearing in the proceedings of the 31st ACM Conference on Computer
and Communications Security (CCS 2024).

Fake It till You Make It: Enhancing Security of Bluetooth
Secure Connections via Deferrable Authentication

Marc Fischlin Olga Sanina

Cryptoplexity, Technische Universität Darmstadt, Germany
www.cryptoplexity.de

{marc.fischlin,olga.sanina}@tu-darmstadt.de

Abstract. The Bluetooth protocol for wireless connection between devices comes with several security
measures to protect confidentiality and integrity of data. At the heart of these security protocols lies
the Secure Simple Pairing, wherewith the devices can negotiate a shared key before communicating
sensitive data. Despite the good intentions, the Bluetooth security protocol has repeatedly been shown
to be vulnerable, especially with regard to active attacks on the Secure Simple Pairing.
We propose here a mechanism to limit active attacks on the Secure Connections protocol (the more secure
version of the Secure Simple Pairing protocol), without infringing on the current Bluetooth protocol
stack specification. The idea is to run an authentication protocol, like a classical challenge-response
step for certified keys, within the existing infrastructure, even at a later, more convenient point in time.
We prove that not only does this authentication step ensure freshness of future encryption keys, but
an interesting feature is that it—a posteriori—also guarantees security of previously derived encryption
keys. We next argue that this approach indeed prevents a large set of known attacks on the Bluetooth
protocol.

1

Contents
1 Introduction 3

1.1 Bluetooth’s Etiology . 3
1.2 Contributions . 4
1.3 Applicability to BR/EDR and BLE . 5
1.4 Paper Structure . 6

2 Notation 6
2.1 General Notation . 6
2.2 Bluetooth-specific Notation . 7

3 Bluetooth Background 7

4 Related Work 9
4.1 Attacks on Bluetooth . 9
4.2 Analyses of Bluetooth Security Protocols . 14
4.3 Suggested Countermeasures . 16
4.4 Related Cryptographic Frameworks . 16

5 Enhancing the TOFU Security Model 18
5.1 TOFU-or-DOFU Security Model . 18
5.2 Match Security and Key Secrecy . 22

6 Authentication 23
6.1 Security Model . 24
6.2 Leakage-resistant Authentication Protocols . 26

7 Security of the BR/EDR Protocol with Deferrable Authentication 33
7.1 Match Security . 34
7.2 Key Secrecy . 34

8 Known Attacks on Bluetooth and our Mitigation 38
8.1 Example of the Ghost Keystroke Attack . 39
8.2 Efficacy of Authentication Against Attacks . 40

9 Conclusion 41

A Security Assumptions 46

B Acronyms 48

2

1 Introduction
Bluetooth enables short-ranged wireless communication between and for users. Predicted by ABI Research
to incline the shipment into the market in the next 5 years, Bluetooth technology is already used in bil-
lions of devices in smart homes, cars, monitoring and control systems, and wearables. With this spread,
Bluetooth channels send more and more data, including sensitive medical information, hence data confi-
dentiality is of concern. This includes authentication that ensures only intended devices can be connected.

Bluetooth was invented in the ’90s and, naturally, has evolved over time. Each major change is depicted
as a version in a Core Specification maintained by the Bluetooth Special Interest Group (SIG). The latest
version 5.4 [Blu23] was introduced on the 31st of January 2023, and adds, to give an example, the use of
electronic price tags. The modifications resulted in different versions of the Bluetooth protocol suits, which
include (outdated) legacy protocols and are available as two major branches today: classical Bluetooth
BR/EDR and low-energy Bluetooth BLE. All the so-called authentication methods suggested in the
Bluetooth Core Specification are not secure and prone to numerous attacks, including very recent ones.1

1.1 Bluetooth’s Etiology

To protect the communication, Bluetooth Core Specifications cover various cryptographic mechanisms. At
foremost, starting with version 4.2, BR/EDR and BLE support Secure Connections (SC), which should
enable parties to communicate securely, based on approved cryptographic primitives such as AES and
HMAC.

The core of SC is the Secure Simple Pairing (SSP) protocol that allows establishment of a shared key
between the devices and is based on the elliptic-curve Diffie–Hellman (ECDH) protocol. To obtain some
form of authentication, devices rely on the input/output capabilities (IOcap) that they negotiate during
the pairing. This includes the association models NC (numeric comparison, users comparing displayed
digits), PKE (passkey entry, users entering digits), and OOB (out-of-band transfer of authentication data
without the direct user involvement into the protocol). However, the protocol may also run in JW (just
works) without authentication, user involvement, and dependency on IOcap. The concrete instantiation
of SSP slightly differs between BR/EDR and BLE.

From the link key (BR/EDR) resp. long-term key (BLE), created in the SSP protocol, the parties
can then derive encryption keys, which can be used to secure the actual communication. Reconnections
also use this mechanism to create fresh encryption keys from the link key resp. long-term key, avoiding the
need to pair again.

Although Bluetooth incorporates cryptographic mechanisms, many security design choices are not
motivated well and appear to be ad hoc. Indeed, the history of the Bluetooth security protocol suite
abounds with devastating attacks and thorny security analyses. Most of the attacks against Bluetooth
focus on the SSP protocol and the authentication property. This includes attacks like the downgrading
to JW attack [HH07], enforcing that intended authentication is omitted; the Method Confusion Attack
[vTPFG21] and the Pairing Confusion Attack [CADE23], in which the adversary unnoticedly modifies the
IO capabilities in the pairing step and thus changes the authentication method. The Ghost Keystroke
Attacks [JZL23, ZWD+20] exploit cross-connected executions, which leak passkeys used for authentication
to MitM adversaries. Other attacks decrease the strength of the encryption scheme by downgrading the
keysize, such as the KNOB Attack [ATR20b, ATR19] and the Keysize Confusion Attack [SCH+23]. They
can be used in combination with authentication attacks, like the BIAS [ATR20a] and BLUFFS [Ant23]
Attacks, to cause even more dramatic consequences. For legacy versions of Bluetooth, further attacks
aim at the possibility of using brute-forceable low-entropic secrets [JW01, Rya13]. Some attacks use the

1The reported attacks can be found at: https://www.bluetooth.com/learn-about-bluetooth/key-attributes/
bluetooth-security/reporting-security/

3

https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security/
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security/

protocol support to switch between the BR/EDR and BLE modes, including the BLURtooth attack
[ATRP22] and the CSIA attack [WWX+22]. The BLESA attack [WNK+20] against reconnections in BLE
exploits the lack of proper authentication. Table 1 gives an overview on the effectiveness of some suggested
countermeasures [SCH+23, TH21] against various attacks. Note that our remedy works within the Secure
Connections type on the application level and thus cannot thwart attacks on the Legacy protocols. To
highlight the efficacy of our measure, we discuss the Ghost Keystroke attack and its mitigation more closely
in Section 8; all other attacks appear in Section 4.1.

Table 1: Proposed patches and their resilience to the attacks. Symbols: 7 means the attack is possible, 3 means the attack
is prevented, (3) is not claimed but prevented. All attacks are possible for both BLE and BR/EDR transport, apart from
[Rya13] resp. [Ant23, ATR20a, JW01, LÇA+04] that affect only the BLE resp. BR/EDR transport. Note that our approach
cannot prevent attacks on the Legacy versions.

Attack Exploited Stage Solution
[TH21] [SCH+23] Ours

Role Confusion [TH21] PKE 3 (3) 3

Method Confusion [vTPFG21] NC, PKE 7 3 3

Pairing Confusion [CADE23] NC, PKE, Legacy 7 7 3

Ghost Keystroke [JZL23, ZWD+20] PKE, (NC) 7 7 3

Downgrade to JW [HT10, HH07] SC and SSP 7 7 3

KNOB [ATR20b, ATR19, SCH+23] Key Size Negotiation 7 7 7

Key Cracking [Rya13, JW01] Legacy 7 7 7

BIAS [ATR20a] Reconnection 7 7 7

BLUFFS [Ant23] Legacy Reconnection 7 7 7

BLURtooth [ATRP22], CSIA [WWX+22] Cross-transport 7 7 7

1.2 Contributions

Our contribution enhances the security of the existing Bluetooth Secure Connections protocol stack in a
backward-compatible manner and consists of the three main parts.

First, unlike the usually suggested fixes for Bluetooth, we propose a (cryptographic) method to thwart
many attacks (see the right column in Table 1). Based on the observation that most vulnerabilities
root in the lack or misuse of message and identity authentication in association models, we propose an
authentication protocol that builds on the established paradigm of challenge-response schemes. This
protocol is executed on top of (i.e., after) the current steps, ensuring that the communication partner is
authentic and uses the same link/long-term key. Such a solution requires some form of authentication
means, like certified signing keys linked to the Bluetooth address of the device. We propose different
variants of authentication protocols but our method only yields a provably secure solution for BR/EDR.2

Our protocols blend in well with the existing Bluetooth protocol stack: We rely on the defined cryp-
tographic functions supported by the Core Specification; the protocols can run as an application over the
Bluetooth channel and they do not require access to secrets or other security-relevant data beyond the
link/long-term keys. The authentication step can be executed later, at any point in time, and still ensures
the security of the keys “backwards”. It means that, upon successful completion of the authentication
part, one can deduce that previous encryption keys must have been secure. This feature differs from per-
fect forward secrecy (PFS), which guarantees the previous session keys to remain secure if the adversary
compromises the long-term secret. For PFS, the keys are usually secure from the beginning; in contrast,

2The reason is that link keys in BR/EDR are derived via (truncated) HMAC and thus obey collision resistance. In contrast,
BLE uses an AES-CMAC-based key derivation function, which is not known to provide the required level of robustness, as it
is malleable [CE21]. We discuss this more in Section 1.3.

4

our security property says that authentication transfers the keys with the unknown status to secure keys.
While in both cases something happens at a later point in time (compromise vs. authentication), the
consequences are different: the keys remain secure after the compromise vs. they are made secure against
active attacks.

Post-handshake protocols have been considered in the literature before, e.g., for the Internet Key
Exchange protocol IKEv2 [KHN+14] in [SSL20] or for TLS 1.3 in [JKSS10] and [Kra16]. The difference
to our setting here is that these authentication steps are usually executed immediately after the key
establishment, assuming that the key establishment data (e.g., communication transcript) is still available.
For Bluetooth communication, the authentication process may run much later: either as a part of the
application execution, or after a software update (e.g., installing the authentication data), or because the
battery was low during the pairing procedure—but no fresh pairing is needed in these cases anymore. We
discuss the relationship to existing approaches in more detail in Section 4.

While our solution complies with the protocol flow of Bluetooth, it requires some form of certification of
identities and keys, e.g., in the form of a certificate issued by trustworthy vendors. The vendors themselves
may be certified with a root certificate held by the Bluetooth SIG. Such certificates for vendors could,
for example, be issued as part of the mandatory Bluetooth Qualification Process for new products. This
requires additional administrative steps but is conceivably easier to integrate than making changes at the
level of the specification and obeying legacy compatibility.

Since certification is already part of the Bluetooth ecosystem in Bluetooth Mesh (Mesh specification
supports X.509 digital certificates since version 1.1 but requires OOB methods for incorporating such
authentication methods), we find it plausible to assume that certification can be implemented in Bluetooth
BR/EDR and LE, too, both administratively and also technically. In terms of the computational costs,
Bluetooth devices already implement procedures like ECDH computations, so, e.g., EdDSA should not be
more expensive than this. Furthermore, we alternatively suggest a signature-free authentication method,
which also employs ECDH.

Second, we extend the trust-on-first-use (TOFU) security model for key establishment and reconnec-
tions in Bluetooth [FS21], which is a game-based model in the Bellare–Rogaway (BR) style [BR94]. While
the TOFU model opts for passive adversaries during the initial connections to ensure the security of
derived keys, we add authentication requirements to allow deferrable-outside-first-use (DOFU) authenti-
cation. That is, the authentication might be postponed to any later point in time and this way yields
TOFU-or-DOFU security.

Finally, we prove our proposed solution to provide an adequate level of cryptographic strength in the
sense of authenticated key exchange protocols. That is, we show the new protocols enjoy the security in our
extended TOFU-or-DOFU model. Note that Fischlin and Sanina [FS21] showed the best result one can
hope for, for the “vanilla” Bluetooth protocol stack: session keys (called encryption keys in Bluetooth) are
secure as long as the adversary has been passive in the initial connection, wherein the link key (BR/EDR)
resp. long-term key (BLE) has been distributed and whence all encryption keys are derived. We augment
this result by stating that all encryption keys are secure if the initial pairing is trustworthy, or if the
authentication step has been carried out successfully.

1.3 Applicability to BR/EDR and BLE

We emphasize here that our positive results in BR/EDR with HMAC as a key derivation function (KDF) for
LK do not immediately transfer to BLE because BLE uses AES-CMAC as a KDF function for LTK. HMAC
in BR/EDR gives collision resistance of the derived link key as an additional feature, which we require
in the proof for deferrable authentication. The AES-CMAC function in BLE, however, is not collision-
resistant and the attacks in [CE21] showed how such weaknesses can be exploited. We still managed
to prove our protocols for BLE to have provided match security, authentication, and leakage resistance

5

as long as AES-CMAC is used (but key secrecy only in the TOFU scenario). This is not a shortcoming
of our proof, but rather the lack of the collision resistance of the KDF in BLE opens up the following
attack strategy if only the long-term key can be used for authentication. The adversary can first make
two unpartnered honest initial-connection sessions accept and hold the same long-term key LTK due to
the lack of the collision resistance of the KDF in BLE. If the adversary connects these two sessions in
subsequent authentication sessions, then authentication would succeed for the same LTK, although the
initial-connection sessions were not partnered. This breaks the idea of the authentication intuitively and
can also be exploited formally by the adversary. If the KDF in BLE was replaced by a collision-resilient
variant, the proof of key secrecy would go through smoothly for BLE as well. Unfortunately, the BLE
specification currently employs only AES and AES-CMAC as KDFs.

1.4 Paper Structure

The paper is organized as follows. The used notations, both general and Bluetooth-related, are introduced
in Section 2 and acronyms in Appendix B. Section 3 shortly explains the Bluetooth technology and em-
ployed protocols, followed by Section 4 with an overview of the attacks and suggested countermeasures as
well as analysis of Bluetooth and related cryptographic frameworks that could be used for analysis.

The paper continues with the introduction of the modified TOFU model in Section 5 and the security
proof in a new TOFU-or-DOFU model in Section 7. Bluetooth-tailored notion of authentication is
presented in Section 6. The example of how the suggested solution helps against some of the attacks is
given in Section 8. The results and recommendations are discussed in Section 9.

2 Notation
We briefly recap the notation used throughout the paper and in Bluetooth. The model-specific definitions
are given in Section 5. Acronyms used in Bluetooth and in the paper can be found in Appendix B.

2.1 General Notation

By Zm we denote the set of integers 0, . . . ,m − 1, often also view it as the group or ring with common
modular addition and multiplication as operations. With x←$X we denote a uniformly sampled element
from the set X. In particular, x←$Z(q+1)/2 \ {0} means to uniformly pick an integer x from the range
1, . . . , (q + 1)/2, where q is odd. We denote by gx the x-fold multiplication of the generator g of a group.
The common Diffie–Hellman share of public data ga and gb is thus given by gab. When using elliptic
curves, as in Bluetooth, it is understood that ga is the a-fold addition of the curve point g. In this case,
we denote by 〈ga〉x the x-coordinate of the curve point. For more background on elliptic curves see [Sil09].

The notation V ← v means that value v is assigned to variable V , V := W means the variable V is
defined to be equal to variable W , and ⊥ denotes an uninitialized value or an error. For example, for
an array A[] we let A[i] be the ith element, where we assume A[i] = ⊥ if the value has not been set
previously. Given a vector A of named attributes a, b, c, . . . , we often denote the values of the attributes
as A.a,A.b, A.c, . . . or simply as a, b, c, . . . if the context A is clear. For strings s and r we denote by s|r
the concatenation of the two strings, and the bit-wise XOR of equal-length strings s and r by s⊕ r.

The deterministic resp. randomized output y of an algorithm A, run with input x, is denoted by
y ← A(x) resp. y←$A(x). We use square brackets to denote an optional input to an algorithm, e.g.,
y←$A(x, [a]) means that algorithm A may receive auxiliary input a in addition to x. We write AO1,...,On

if the algorithm has access to oracles O1, . . . ,On.
The security parameter is denoted by λ or, written in unary, by 1λ. If adversary A interacts in some

security experiment Game with some scheme Π for security parameter λ, then we write ExpGame
A (λ) = 1

6

to denote that the experiment outputs 1. This usually indicates an adversary’s success, such that
Pr
[
ExpGame

A (λ) = 1
]
represents the probability of this success. The advantage of the adversary is then

denoted by AdvGame
A,Π and measures the adversary’s success probability over trivial strategies, e.g., over

the guessing probability 1
2 for decisional experiments.

2.2 Bluetooth-specific Notation

Bluetooth employs a number of variables, whose notation follows the standards closely and which we
present here. Each party has a Bluetooth address, which we denote by BD_ADDR or sometimes as A.
Furthermore, we use the common values appearing in the pairing step, including the nonce N, random
passkey r, commitment value C, verification value V, and check value E. Devices usually provide or take
input and output capabilities IOcap, authentication requirements AuthReq, and out-of-band authentication
data OOB.

The established keys in Bluetooth are denoted as the link key LK (for BR/EDR), the long-term key
LTK (for BLE), or either of them L(T)K. To derive further session-specific keys, devices use the device key
dk, the authentication random number AU_RAND, the signed response SRES, the session key diversifier
SKD, the initialization vector IV, the authentication ciphering offset ACO, and the encryption key kAES.
The latter is used to protect the actual communication.

Bluetooth often uses truncated strings, i.e., we write s/2n if the n leftmost bits of string s are taken, and
s mod 232 if least significant bits of s are considered. If the string is given in hexadecimal representation,
this is indicated by the prefix 0x.

3 Bluetooth Background
Further we give a concise explanation of the main aspects of the Bluetooth technology. Today, Bluetooth
exists in two main versions, low-energy (BLE) and classic (BR/EDR).3 Both versions have similar
discovery and connection mechanisms but they deviate in the technical aspects and applications, making
them incompatible with each other. Devices might implement either of the versions (single-mode) or both
(dual-mode). The latter may also switch the mode (transport) afterwards in reconnections.

Devices supporting BR/EDR are equipped with a unique and registered 48-bit MAC-address, called
public (identity) address. BLE extends the address space by static random addresses of the same size,
which are generated once upon booting up but otherwise stay fixed. For improved privacy, BLE also
introduces resolvable and non-resolvable random private addresses. The former type can be used in
reconnections, after the initial connection has been carried out with a static address. It can be resolved by
the other party in a reconnection and mapped back internally to the static addresses via entries of already
established connections.

The Bluetooth technology consists of the protocols on different layers, which are split into two com-
ponents: the host for higher-layer aspects and the controller for lower-layer aspects—connected through
a host-controller interface. The controller is usually harder to modify since it is closer tied to the hard-
ware design. This is why we target the higher-layer protocols to integrate our authentication subprotocol.
We emphasize that the cryptographic part is treated differently in the different versions: in BR/EDR,
the Link Manager Protocol (LMP) is responsible for the cryptographic components, while in BLE, the
cryptographic parts are moved to Security Manager Protocol (SMP).

To connect, devices make links on several layers: physically, logically, and cryptographically. The
example protocol flow for the connection in BR/EDR on a cryptographic level is shown in Figure 1.
During the link establishments, devices learn the Bluetooth Address BD_ADDR of each other, the devices’

3We neglect the Legacy protocols and the Mesh transport here.

7

Alice (initiator) Bob (responder)

. Initial Connection .

a←$Z(q+1)/2 \ {0} or reuse a ga b←$Z(q+1)/2 \ {0} or reuse b

check gb: 〈gb〉x
?= 〈ga〉x and gb 6= debug key and ga 6= debug key gb check ga: 〈ga〉x

?= 〈gb〉x and ga 6= debug key and gb 6= debug key

Na←$ {0, 1}128 Cb Nb←$ {0, 1}128,Cb← HMAC(〈gb〉x, 〈ga〉x,Nb, 0x00)/2128

Na

Nb

check Cb,Va← SHA(〈ga〉x, 〈gb〉x,Na,Nb) mod 232, user checks Va Vb← SHA(〈ga〉x, 〈gb〉x,Na,Nb) mod 232, user checks Vb
Ea← HMAC(〈gab〉x,Na,Nb, 0128,AuthReqA|OOBa|IOcapA,A,B)/2128 Eb← HMAC(〈gab〉x,Nb,Na, 0128,AuthReqB|OOBb|IOcapB,A,B)/2128

Ea check Ea

check Eb Eb

LK← HMAC(〈gab〉x,Na,Nb, 0x62746C6B,A,B)/2128 LK← HMAC(〈gab〉x,Na,Nb, 0x62746C6B,A,B)/2128

. Reconnection .

AU_RAND_C←$ {0, 1}128 AU_RAND_C AU_RAND_P←$ {0, 1}128

dk← HMAC(LK, 0x6274646B|BD_ADDRA|BD_ADDRB)/2128 AU_RAND_P dk← HMAC(LK, 0x6274646B|BD_ADDRA|BD_ADDRB)/2128

SRES_C|SRES_P|ACO← HMAC(dk,AU_RAND_C|AU_RAND_P)/2128 SRES_P SRES_C|SRES_P|ACO← HMAC(dk,AU_RAND_C|AU_RAND_P)/2128

check SRES_P SRES_C check SRES_C

kAES ← HMAC(LK, 0x6274616B|BD_ADDRA|BD_ADDRB |ACO)/2128 kAES ← HMAC(LK, 0x6274616B|BD_ADDRA|BD_ADDRB |ACO)/2128

IV← ACO IV← ACO

Figure 1: Bluetooth initial pairing (SSP in mode NC) and reconnection (Secure Authentication and Encryption Key
Derivation). The session identifier in the initial connection is sid = (〈ga〉x, 〈gb〉x, A, B, Na, Nb) and in the reconnection
sid = (AU_RAND_C, AU_RAND_P, A, B).

capabilities (i.e., what algorithms they support and security they request). To establish cryptographic keys
and start secure data exchange, devices need to pair. At this step, they can decide if they want to create
a bond during the pairing (i.e., store the derived keys and delete all the temporal pairing information)
or opt for one-time connection only. Here the devices also decide if they want to use Secure Connections
Only (SCO) or agree on weaker versions of the protocol.

The basis of SCO is the Secure Simple Pairing (SSP) protocol, a Diffie–Hellman-based key exchange
protocol. SSP comes in four possible association models: Out-of-Band (OOB) with the exchange of data
over the secure channel outside of the Bluetooth transmission; PasskeyEntry (PKE) resp. NumericCom-
parison (NC) with the user entering resp. comparing 6 displayed digits; and JustWorks (JW) with no
attempt to protect against MitM attacks. As a result, SSP with the corresponding association model
outputs the key, which is then used for the derivation of the encryption keys with the lifespan of a session.
Usually the derived keys (link key LK for BR/EDR and long-term key LTK for BLE) are stored in the
host and passed to the controller when the latter requests them.

The most vulnerable stage is the exchange of capabilities, as this stage influences the choice of the
association model, encryption key size4, and types of keys to derive. Most of the attacks happen here,
e.g., modifying IO capabilities allows the adversary to launch the downgrade attack [HH07] to the JW
association model, or the Method Confusion Attack [vTPFG21], or an impersonation attack [ZWD+20];
modifying OOB flag leads to the drop of the OOB association model [HT10]; avoiding SCO downgrades

4In BR/EDR, the negotiation of the encryption key size happens during the reconnection.

8

the protocol to the legacy version, which enables Pairing Confusion Attack [CADE23], BIAS [ATR20a],
BLUFFS [Ant23], or attacks on the Legacy protocols [Ros13, Rya13]. Adversary can also downgrade the
size of the keys [ATR20b, ATR19] or confuse the devices on what key size to use [SCH+23].

Since the encryption keys are valid for one session, the devices can reconnect using the stored link/long-
term key and authenticate each other with this key. In BR/EDR, reconnection is a challenge-response
scheme. The parties each choose a fresh nonce (challenge), exchange it, and authenticate each other with
the responses, which are based on these fresh values and the stored key. In BLE, the procedure is simpler
and consists of the two exchanged fresh values to which the LTK is applied to generate the encryption key.

Cryptographic Details. When SSP starts, the devices possess the Bluetooth addresses BD_ADDR as
identities and the IOcap of each other and know what cryptographic algorithms the partner is able to
use. This includes the used elliptic curves, which are FIPS-approved and given in the Core Specification.
For curve points, Bluetooth makes use of the x-coordinate only (although the y-coordinate is also shared
to prevent the Invalid Curve Attack [BN19]), which we mark as 〈ga〉x. Both parties initially establish a
Diffie–Hellman key, then run the corresponding association model, and finally confirm the derived keys via
values Ea and Eb.

Both versions of Bluetooth employ different cryptographic algorithms: AES-CMAC in BLE and SHA
with HMAC in BR/EDR. To compute the commit and confirmation values, the link key, the device key
(a spin-off key for authentication in reconnections), the encryption key, and the response to a challenge,
BR/EDR uses HMAC; the derived DHKey is straight used as MACKey; for the computation of the
displayed digits in NC, SHA-256 is directly employed. BLE uses AES-CMAC for all these cases, apart
from the encryption key derivation in which simply AES encryption is used. Bluetooth usually truncates
the output and uses the leftmost n bits, which we denote by /2n.

4 Related Work
In the following, we detail related works about attacks on Bluetooth and potential countermeasures,
existing analyses of the protocols and cryptographic techniques related to our enhancement of Bluetooth.

4.1 Attacks on Bluetooth

Cäsar et al. [CPST22] give an overview of the attacks on BLE in both Legacy and SC. They look into
the versions of the Core Specification from 4.0 to 5.2 and cover attacks that violate both security and
privacy, even if they have been mitigated. Wu et al. [WWX+24] extend the overview to BR/EDR and
Mesh and include the attacks on a soft- and hardware level. We refer to these papers for an overview of
the vulnerabilities in Bluetooth.

Most of the attacks are mitigated by our solution (Table 1) since they result in an honest device and
a compromised device deriving different L(T)Ks in their corresponding sessions, and hence the adversary
will not be able to go through the authentication process if the signature or MAC is not calculated over
the same keys. In the following, we describe the attacks that are relevant for this paper and why other
proposals patch (or not) these attacks.

Legacy Attacks. Legacy protocols are subject to attacks in both BLE [Rya13] and BR/EDR [JW01].
The problem with the protocols is that they do not even aim to protect against the eavesdropping attackers.

In BLE, the Legacy protocol is based on the commit-reveal scheme, i.e., both parties must first commit
the temporal key TK using some random numbers and then reveal those numbers. It is possible to brute-
force TK and find a collision, such that the revealed random number would (together with the brute-forced

9

A
Central

M
MitM

B
Peripheral

Pairing Feature Extraction
SMP_Pairing_Request(IOcapA, ...) SMP_Pairing_Request(NoInputNoOutput, ...)

SMP_Pairing_Response(IOcapB, ...)SMP_Pairing_Response(NoInputNoOutput, ...)

PKE PKE

JW
SMP_Pairing_Public_Key(ga) SMP_Pairing_Public_Key(gm)

SMP_Pairing_Public_Key(gb)SMP_Pairing_Public_Key(gm)

SMP_Pairing_Confirm(Ca) SMP_Pairing_Confirm(Ca’)

SMP_Pairing_Confirm(Cb)SMP_Pairing_Confirm(Cb’)

SMP_Pairing_Random(Na) SMP_Pairing_Random(Na’)

SMP_Pairing_Random(Nb)SMP_Pairing_Random(Nb’)

[SC Only]SMP_Pairing_DHKey_Check(Ea) [SC Only]SMP_Pairing_DHKey_Check(Ea’)

[SC Only]SMP_Pairing_DHKey_Check(Eb)[SC Only]SMP_Pairing_DHKey_Check(Eb’)

Figure 2: Message flow for the NINO-attack on [TH21] and [SCH+23].

TK) end up to be equal to the value committed by the attacker. Such attack is found by Rosa [Ros13] and
called Flawed Bit Commitment. (Note that the LE Legacy JW and PKE protocols with short passkeys
are not secure even against passive adversaries, as shown by Ryan in [Rya13], since the temporal key TK
can be recovered from the conversation and the short-term key STK is derived from the TK using two
random values revealed in plaintext).

In the BR/EDR Legacy protocol, a PIN of size from 1 byte to 16 bytes is used. This PIN together with
the two exchanged in plaintext random values is used to derive a Kinit, which in turn is used for exchanging
the combination keys, and the latter is used for the LK derivation. Devices that use low-entropy PINs are
prone to PIN brute-forcing (e.g., when confused with a 6-digited passkey). The example of such an attack
is presented by Jakobsson and Wetzel [JW01].

The Legacy protocols can be only secure, if no adversary was present during the pairing process and
could not record the transcript for the key recovery. Our solution allows the device to be sure that the key
was derived with the genuine device, but this does not, however, protect the key from being computed.
Hence, the only way to secure protocols is to discard the Legacy protocols.

NINO / Downgrade to JW. The lack of IO and OOB capability authentication leads to the most
dramatic attack: association model downgrade. In several works (e.g., [HH07, HT10]), researchers managed
to show (also in practice) that the specification is prone to downgrading to the "weaker" association models.
While the fixes suggested both in [TH21] and [SCH+23] suggest modifications to the standalone protocols,
they do not take into account the interplay of the different association models. That is, the adversary can
still downgrade the communication to JW association model by simply modifying the IOcap of devices.
Thus, the devices will not even enter the modified protocol and simply stay at the less secure association
model. The flow of the attacks on fixes is similar to the standard downgrade attacks [HH07] and is shown
in Figure 2. Our proposed fix mitigates the downgrade because the parties derive different LKs in such
attacks, hence the adversary would need to forge the signature or MAC to pass the authentication step.

10

Method Confusion. Von Tschirschnitz et al. [vTPFG21] introduced the Method Confusion Attack
that exploits the similarity of passkeys displayed or entered in the PKE and NC association models. That
is, an attacker tampers devices’ IOcap, so that each device chooses a different from another association
model, i.e., one opts for PKE and another goes with NC instead of the agreement on the same association
model. Since the user cannot make a distinction between the two association models, and devices do not
authenticate the capabilities, the attack will remain unnoticed.

Neither of the suggestions in [TH21] is secure against the Method Confusion Attack, as the Dual
Passkey Entry can be simply avoided by replacing the IOcap. The flow of the attack when one of the
connections is replaced with another method is shown in Figure 3. There, the adversary still can manage
to go through the Dual Passkey Entry because the other connection in NC can be used to make the user
enter the passkey on Device B and trigger a new session in PKE to make the user enter the passkey on
Device A. In NC, the adversary learns the passkey as it will be displayed on its device, while in PKE, the
adversary gradually reveals passkey as the protocol does not protect the passkey.

In [SCH+23], displaying or entering the passkey happens twice, and the second passkey consists of the
first passkey concatenated to the IOcap, which are different for the two association models, so the attack
is mitigated. Our scheme does not allow the adversary to pass the authentication step since both devices
compute different L(T)Ks.

Pairing Confusion. The Pairing Confusion Attacks [CADE23] are close to the Method Confusion At-
tacks [vTPFG21] with the difference that the confusion between the SC and Legacy association models is
added. While in the Method Confusion Attack, the adversary changes the IOcap flag, in Pairing Confusion,
the attacker tampers with the SC flag in BLE or sends LMP_IN_RAND (instead of LMP_AU_RAND)
PDU in BD/EDR.

The attack flow is similar to the Method Confusion Attack, so the solution in [TH21] is neither secure
against the Pairing Confusion Attacks. The solution proposed in [SCH+23] is not secure against pairing
confusion as their fix does not aim to prevent attacks on the Legacy protocols. That is, the attacker can
downgrade one of the connections to Legacy and use this connection to learn the passkey used in another
connection. Analogously to the Method Confusion Attack, the user and the devices are not aware of the
capabilities and do not notice the mismatch of the protocols’ run on both sides due to their similar nature.
Our suggestion prevents this attack as in both connections, the different keys will be derived, hence the
adversary will not pass the authentication procedure without forging.

KNOB and Keysize Confusion. Antonioli, Tippenhauer, and Rasmussen [ATR19] showed an attack
on the Key Negotiating mechanism Of Bluetooth (KNOB) in BR/EDR that happens during the Au-
thentication and Encryption stage after the initial connection. The KNOB attack allows the adversary to
downgrade the size of the encryption key in BR/EDR to 1 byte what makes the key easy to brute-force.
In the subsequent work [ATR20b], the same authors found that KNOB mechanism in BLE (that is done
during the Pairing Feature Extraction) is also subject to the same attack. The KNOB attacks are possible
because keys’ size lacks authentication.

Shi et al. [SCH+23] discovered a new attack they call the Keysize Confusion Attack. The core idea
behind the attack is similar to the KNOB attack with the adversary manipulating the key size field, but
instead of downgrading the key size to the lowest, the adversary makes the parties accept with different key
sizes. This attack is possible due to the same reason as the KNOB attack: there is no security mechanism
to ensure and authenticate the partner’s choice of the key sizes. It is worth to note that the adversary
does not learn the resulting L(T)Ks of the parties but only makes the parties accept with different key
sizes (and hence also keys).

The same paper [SCH+23] attempts to mitigate both KNOB and Keysize Confusion attacks by includ-

11

A
Central

M
MitM

B
Peripheral

Pairing Feature Extraction

IOcapA = KeyboardDisplay, ... IOcapA = KeyboardDisplay, ...

IOcapB = KeyboardDisplay, ...IOcapB = DisplayOnly, ...

Dual PKE Dual PKE
ga gm

gbgm

NC

Cm

Na

Nm

Calculate Va
Display Va

Calculate Va
Set ra = Va

User enters ra← Va

Cause abrupt

New
IOcapA = KeyboardDisplay, ...

IOcapB = DisplayYesNo, ...

PKE

User enters rb Show rb

Cai

Cmi

Nai

Calculate NmiNmi

Repeat i=1..20 times

Derive LTKPKE Derive LTKPKE

Calculate rb
Set rm = rb

Cm′
i

Cbi

Nm′
i

Nbi

Repeat i=1..20 times

Derive LTKDPE Derive LTKDPE
Ea Em′

EbEm

Figure 3: Message flow for the Method Confusion Attack [vTPFG21] on fixes in [TH21].

ing the supported key size MaxEnc along with other values into the passkey computation. This, however,
limits the power of their patch, as other than NC and PKE association models in BLE and the whole
key negotiation mechanism in BR/EDR remain vulnerable to both attacks. Troncoso and Hale’s mod-

12

ification [TH21] only includes IOcap of the devices and hence does not prevent the change of the key
size. Our scheme could prevent the Keysize Confusion and KNOB attacks for BLE if a collision-resistant
cryptographic function is used instead of AES-CMAC. Yet, the key negotiation mechanism in BR/EDR
is not secured by our solution, as the negotiation happens during each reconnection step (and not during
the pairing, as in BLE) and cannot be patched in a backward-compatible manner. Moreover, we have to
assume that devices only use the maximum session key size—16 bytes—in order for the proof for BR/EDR
to work.

Initiator / Responder Role Confusion. Since the parties in the conversation are not always equal,
there is a space for role confusion or mismatching attacks. Troncoso and Hale [TH21] have found a
confusion attack on the initiator/responder roles in the PKE association model, when a user generates
the passkey and enters it on the both devices5. While good AKE protocols usually have a protection
against such attacks (e.g., the role is included into the key computation), Bluetooth prevents this only by
the fixed order of Central’s and Peripheral’s (i.e., initiator’s and responder’s) input values in the L(T)Ks
computation. That is, the devices might notice the attack via L(T)Ks mismatch at the reconnection step,
when computing a new session key (yet the both derived L(T)Ks remain unknown to the adversary).

Troncoso and Hale [TH21] suggest a fix to prevent the role confusion attack they discovered by including
the roles (initiator or responder) into the nonce computation. Shi et al. [SCH+23] implicitly fix this attack
by adding pairing and response request messages into passkey computation in PKE and NC. As the role
influences the input in L(T)Ks computation, what makes parties derive different keys, in our solution, the
adversary needs to commit forgery in order to pass the authentication stage.

Initiator resp. responder roles are also tied to the Central resp. Peripheral roles in Bluetooth. An-
tonioli, Tippenhauer, and Rasmussen [ATR20a] found several attacks they call Bluetooth Impersonation
AttackS (BIAS). The first attack is based on the one-wayness of the challenge-response procedure in Legacy
reconnections, where only the Central had to ask the Peripheral to respond to the challenge itself. If the
Central device was the target, the attacker could ask for a role switch and exploit the first attack. If two
devices had used Secure Connections for pairing, it was possible to downgrade to Legacy reconnections.
The attacks themselves do not leak or help the adversary to learn neither the LK, nor the encryption keys.
The current version of the Core Specification forbids the downgrade to Legacy reconnections for Secure
Connections pairing, disallows role switching during the reconnection in progress, and enforces the mutual
authentication in Legacy reconnections.

Cross-platform Key Derivation. Bluetooth’s Core Specification allows the dual-mode devices to pair
only once for either mode and derive the cross-platform key during this pairing. While facilitating the
usability for users, the process of the cross-platform key derivation was shown to be prone to attacks:
BLURtooth [ATRP22] and Cross Stack Illegal Access (CSIA) [WWX+22].

The BLURtooth attack [ATRP22] allows rewriting a “secure” key derived from genuine device inter-
action with a “less secure” cross-platform key from another transport, e.g., “unauthenticated” or with the
lower entropy. The Cross Stack Illegal Access (CSIA) [WWX+22] attack considers a semi-compromised
setting, when a malicious app, installed on a device with the access to the key of one transport, could use
the cross-platform key on another transport to access the data it should have not in the first place. Since
this setting requires compromised devices, the SIG treats this attack as out of scope.

Neither of the suggested solution prevents BLURtooth nor CSIA attacks, as they do not prevent
the downgrade attack (what makes BLURtooth possible) and do not consider the compromised setting

5While [TH21] showed the attack only for the user-generated passkey entered on both KeyboardOnly devices, we do not
see a reason why this attack does not apply to other cases in PKE as well as in the JW and OOB association models. NC
prevents this attack by displaying the digits computed from the fixed-order input.

13

like in CSIA. If the app has the access to the L(T)Ks only, but not the signing key, this attack could
have been mitigated with our solution. However, our scheme also leaves this attack out of scope, since
conversion is done with the help of a non-collision-resistant function AES-CMAC, i.e., even if devices derive
different L(T)Ks during the pairing, the converted keys might collide. The solution could be to replace
the cryptographic function used for key derivation or to disable the possibility to convert the key.

Other Attacks. Claverie and Esteves [CE21] investigated reflection attacks on PKE they call BlueMir-
ror that led to the successful impersonation of parties during the initial connection. The attack exploited
the symmetric nature of PKE and the fact that the passkey is revealed after the full Authentication stage 1
execution. The reflection attack involved a MitM adversary, which used connection with one party to learn
the passkey by simply reflecting the values sent by this party. The learned passkey was then used in the
second connection to impersonate the genuine party from the first connection. This attack was mitigated
in the Bluetooth Core Specification v.5.3, which mandates to check the equality of the received values to
their own sent values.

A similar idea to KNOB and BIAS is used in BLUetooth Forward and Future Secrecy (BLUFFS)
attacks [Ant23]. The attacks exploit the Legacy encryption key derivation, which bases the randomness
of the key on only one nonce from a Central. Hence, the adversary can impersonate the Central and reuse
the same nonce in multiple sessions.

Wu et al. [WNK+20] considered reactive and proactive Spoofing Attacks on BLE (BLESA) in accessing
the attributes: The proactive attack was an implementation drawback with the wrong handling of the
errors, and the reactive attack allows “impersonation” of the server/Peripheral towards the client/Central
with the spoofed responses. The latter attack may be fixed only by enforcing the encryption by default, as
it does not happen during the key establishment or authentication stages but rather after the encryption
should have been enabled.

Levi et al. [LÇA+04] found two relay attacks (two-sided and one-sided) on the Legacy reconnection in
BR/EDR. The two-sided simply relays the messages in the Legacy mutual reconnection step between two
parties, and the one-sided attack allows relaying the challenge from one party to another by terminating
one of the connections. These attacks do not result in the adversary learning the key, hence we leave the
attacks out of scope.

4.2 Analyses of Bluetooth Security Protocols

Bluetooth was also a target of several security analyses. While some results purely focused on single
protocols, others tried to consider the whole protocol stack. Both security proofs and automated tools
were employed for the analysis.

Complexity-based Analyses. Lindell has analyzed the NC association model in [Lin09] and showed
NC to be secure as comparison-based key exchange, notion of which is also introduced in that paper.
The analysis of the protocol is done in isolation and assumes that the Bluetooth addresses (which are not
constant identities) are included in the confirmation value computation. Sun and Sun [SS19] have also
analyzed NC and OOB in isolation and showed their security. Their result is the same as [Lin09], but
the model is more restricted, as they do not allowing the adversary to communicate with the parties after
testing.

Troncoso and Hale [TH21] have developed a model for the analysis of protocols with user interaction.
The model, called CYBORG, captures an adversarial influence on the User-to-Device (UtD) channel.
They analyze different cases (which depend on the IOcap of the devices) in the PKE association model of
Bluetooth SSP and show that PKE does not provide security in the CYBORG model: in the case of the
user-generated passkey, the adversary can perform a role confusion attack and make the sessions accept

14

with role disagreement; in case of the device-generated passkey, the adversary is able to perform a guessing
attack and win with non-negligible probability. Troncoso and Hale do not provide a detailed analysis of
NC subprotocol, but conclude it does not achieve the security with respect to the CYBORG model.

Yin [Yin23] has analyzed the OOB and NC association models in terms of the CYBORG security
model. The analysis showed only bidirectional OOB to be CYBORG-secure: For NC, they found an
attack where the adversary successfully substitutes the user’s response to the device from negative to
positive; in unidirectional OOB, they allowed the adversary to modify the data in the OOB channel
and showed a successful attack in this setting. Yin has also extended the CYBORG model to address
Tap’n’Ghost attacks, where the channel is authenticated but not confidential, and called it Authentication
Protocols assisted by EXtra (APEX) model. They showed the APEX-security of NC and bidirectional
OOB but presented an attack on the improved PKE from Troncoso and Hale [TH21] with the leaked
passkey and unidirectional OOB (where the non-authenticated party is impersonated). Both scenarios are
not intended to be secure according to the Bluetooth Core Specification. The analysis considered all the
protocols in isolation, what does not represent the real-world scenario and ignores the known downgrade
and confusion attacks on Bluetooth, such as [HH07, vTPFG21, CADE23].

Fischlin and Sanina [FS21] have analyzed all Secure Connections protocols together (i.e., excluding the
Legacy protocols) and showed the security of Bluetooth in the trust-on-first-use (TOFU) model, where
the adversary can eavesdrop on the initial connection and be active during the reconnections. While that
analysis opted for the unmodified “vanilla” protocol and showed the best security the current version can
achieve, this paper aims to improve the Bluetooth security guarantees by modifying the protocol in a
backward-compatible manner.

Formal Analyses. Chang and Shmatikov [CS07] have conducted the first formal analysis on Bluetooth:
namely, the BR/EDR Legacy protocol and the NC association model of the Bluetooth Simple Pairing
protocol (the predecessor of SSP). They have used ProVerif for the analysis and modeled the user as
a human oracle. The analysis confirmed the insecurity of BR/EDR Legacy and found a vulnerability
that results in the difficulty for the user to distinguish for which concurrent sessions the numbers are
being matched. As a solution, the authors suggest adding session identificators into the displayed digits’
computation.

Wu et al. [WNK+20] have used ProVerif to analyze the reconnection stage in BLE and found the
Bluetooth Low Energy Spoofing Attacks (BLESA) that allows the adversary to spoof the attribute value
from the Peripheral and use the value to disable encryption on the Central’s side.

Wu et al. [WWX+22] have analyzed all association models and their interplay in all stages in BR/EDR,
BLE, and Bluetooth Mesh using ProVerif. They confirmed 5 known vulnerabilities and discovered two new
attacks. The first attack is the Authentication Neutralization (BlueMAN) attack, in which the adversary
forwards the provisioning information in Bluetooth Mesh and records the transcript to derive the session
key and decrypt the data. The second attack is the Cross Stack Illegal Access (CSIA) attack, which, like
the BLURtooth attack [ATRP22], exploits the cross-platform mechanism but requires one of the devices
to be compromised.

Jangid, Zhang, and Lin [JZL23] have analyzed the PKE association model using Tamarin. They
confirmed known attacks, such as the Method Confusion Attack [vTPFG21], the reflection attack [CE21],
the static passkey reuse attack [SMS18], and uncovered two new attacks: Group Guessing and Ghost
Keystroke. While the first one is a type of the static reuse attack, when several connections are in place
and devices use the same passkey for concurrent sessions, the second is a type of semi-honest connection,
similar to the attack on PKE shown by Zhang et al. in [ZWD+20]. They also suggested countermeasures
for the already known and newly discovered attacks: ban on passkey reuse, check on the equality to the own
values, distinguished UI for different association models, and locking of the devices to avoid compromise.

15

Claverie et al. [CADE23] have analyzed using Tamarin all the association models and protocols avail-
able in BR/EDR. They repeated the analysis separately for BLE and Bluetooth Mesh. They found an
attack they call pairing confusion, in which the adversary downgrades to a Legacy protocol in one of the
connections, what results into confusion with the SSP association models.

Shi et al. [SCH+23] have analyzed all association models and their interplay in all stages of the BLE
SC protocol using Tamarin. They confirmed the Method Confusion Attack [vTPFG21] and found a new
confusion attack for the key size. To overcome these two attacks, the authors proposed countermeasures
for PKE and NC: run the protocol twice and include the previously generated passkey/digits together
with the data from the pairing request/response as an input into the second stage.

4.3 Suggested Countermeasures

Researchers have suggested various fixes for Bluetooth protocols. Some fixes add modifications to existing
protocols, some design completely new protocols. In the following, we describe the most relevant suggested
fixes and discuss their advantages and drawbacks.

After the analysis of PKE, Troncoso and Hale [TH21] proposed two modifications to partly achieve
CYBORG-security for this association model. The first modification (called Secure Hash) aims to au-
thenticate various values: input and output capabilities should be included in the computation of the
confirmation values; the nonces produced during the 20 iterations in PKE should be concatenated to-
gether with the initiator/responder role in the session, and the resulting concatenation is used in the
computation of the confirmation values. The second modification (Dual Passkey Entry) suggests to use
two independent passkeys that are generated by the both devices and transmitted to the other device via the
user as a secure channel. This requires the devices to have keyboard-input capability (i.e., KeyboardOnly
or KeyboardDisplay as IOcap), which limits the use of the subprotocol to the 4 cases only in total (out of
9 cases for PKE and 3 cases for NC in the current version of the protocol). It is noteworthy to mention
that, according to the Bluetooth Core Specification, if both devices have KeyboardDisplay as IOcap, they
agree on using the NC association model rather than PKE. These modifications still allow a number of
the attacks and only mitigate the role confusion attack that the authors discovered.

To mitigate the Method Confusion, KNOB, and Keysize Confusion attacks, Shi et al. [SCH+23]
suggested two fixes they claim to be backward compatible. Their patch implies including the parameters,
negotiated during the pairing feature extraction, into the computation of the displayed passkey both in NC
and PKE during the additional run of the Authentication stage 1. Besides the additional computation, this
fix would imply creation of a new cryptographic function: It should take the previously generated passkey
as an input, concatenate it with the both initiator and responder devices’ parameters and truncate the
output to 6 digits. The proposed fix does not help to guarantee the resistance to the KNOB and Keysize
Confusion attacks for JW, nor achieve authentication, since the downgrade to the JW protocol remains
possible.

There are also possible non-cryptographic ways to address the attacks, e.g., safety number verification
as in Signal or OOB communication. These are, however, of limited generality, as devices have different
OOB capabilities, and require a technical add-on like an NFC chip, a camera, or a screen, which many
Bluetooth devices do not have.

4.4 Related Cryptographic Frameworks

Jager et al. [JKSS10] suggested two generic compilers for BR-secure (security against passive adversaries is
already sufficient) key exchange (KE) protocol, after which the derived key together with the transcript is
handed over to the authentication protocol. The first compiler makes use of signatures and MACs, where
the transcript from KE (and a random value) is signed using secret keys of parties and MAC is computed

16

over the signatures using a MAC key derived from the resulting KE key. The second compiler reduces one
additional round of exchanged messages by hashing the transcript, the MAC key, and a random value and
signing the result with the secret key of the corresponding party. Their approach allows treating some
protocols as pure KE protocols without authentication, which is exactly the case with Bluetooth.

Krawczyk [Kra16] has introduced the notion of post-handshake authentication for TLS 1.3. This notion
helps to capture the feature of TLS 1.3 with an optional authentication of the client that happens after the
client and a server performed a handshake (key exchange in TLS) and the client already authenticated the
server. Krawczyk suggested a compiler based on the signature and MAC solution (which can be generalized
to other authentication mechanisms). The compiler functions as follows: the parties first derive a session
key and a MAC key out of the obtained shared secret key (the option when a session key and a MAC key
are concatenated and outputted as a shared secret is also possible but is not considered in the paper). Then
the client signs the transcript exchanged during the handshake and sends it to the server together with
the MAC-ed identities of the server and the client. The reason to have identities included in a separate
MAC is to have a deniability notion.

TLS 1.3 also has a mode for usage of a pre-shared key (PSK), i.e., when two parties have a mechanism
to establish a shared secret key, which can be used later for authenticating a TLS connection. This mode
either requires the PSK to be shared out-of-band before, or the PSK must be derived from a previous
authenticated connection, based on certified signatures in TLS 1.3. Link/long-term keys in Bluetooth,
however, are usually established during an unauthenticated key exchange protocol, which is vulnerable to
machine-in-the-middle attacks. Thus, to use such PSK methods in Bluetooth, the adversary in the initial
connection must be limited to being passive, which exactly corresponds to the TOFU-setting of [FS21].
Hence, deploying PSKs, which have been created in the pairing step, in subsequent Bluetooth connections
does not help to protect against adversaries, which are active in the initial connection.

Schage et al. [SSL20] have analyzed RFC for IKEv2 [KHN+14] as a privacy-preserving authenticated
KE (PPAKE) protocol. That is, apart from achieving basic security guarantees, PPAKE ensures that
the communication is deniable against the passive attacker, who can only eavesdrop the conversation.
Their definition of the original key corresponds to our definition of TOFU connection. Although IKEv2
follows the similar 2-stage (KE-then-A) structure and allows two parties to derive somewhat long-term
keys that might be used for deriving encryption keys later, it does not fully correspond to the way that
Bluetooth devices are connecting: IKEv2 requires parties to store the transcript from the KE stage to
sign it at the authentication stage. In addition, IKEv2 does not allow parties to create session keys before
authentication, what should be allowed for Bluetooth solutions.

The solutions and compilers from [JKSS10] and [Kra16] are not applicable to the Bluetooth setting,
since the transcript of the pairing (KE) is not stored on the devices: After the successful initial pairing,
only identities, L(T)K, and own DH share are available for reconnections and authentication. In addition,
Bluetooth does not follow the regular structure of KE with the authentication happening right after the
KE, but rather consists of the KE with the following reconnections.

Pietrzak [Pie20] looked into the notion of the delayed authentication with the application to contact
tracing. This notion implies committing a randomized identifier via MAC, which is revealed later on in
order to authenticate the exposed party. The notion is somewhat similar to the delayed-key MAC proposed
by Fischlin and Lehmann [FL10]. Therein, the key becomes known in the end of the stream, and the MAC
is committed on the all the way through. Both solution do not meet our requirements, as the Bluetooth
devices do not store the transcripts and in order to make the commit, we would need to modify the pairing
protocol, what is not backward compatible.

Another approach is to rely on wireless communication to extract the key from probing and compose
it with authentication mechanism as in WiKE-then-PAKE approach from Arriaga, Šala, and Škrobot
[ASS23]. However, this approach relies on the adversary being passive during the probing period. Although
some methods exist to enforce the security against active adversaries as well, this would make the Bluetooth

17

protocol incompatible with the older devices.
Fischlin and Günther [FG14] proposed a model for multi-stage KE. In the model, participants can

establishes new keys at different stages and use these keys across other stages for deriving new keys. While
their model allows accounting for the keys’ dependencies, the model is redundant for the Bluetooth case,
as the only dependency we consider is the encryption keys in reconnections derived from the L(T)Ks
established in the first initial connections. While new reconnections in Bluetooth are consecutive, they are
independent from each other and only originate from one “parental” initial session.

5 Enhancing the TOFU Security Model
In this section, we give the security model for TOFU-or-DOFU-authenticated key exchange protocols.
Besides the basic properties of key secrecy and match security in the TOFU-model [FS21], we also aim for
authentication and weak forward secrecy. Since the authentication is optional and can be performed by
any party at any point of time, we consider unilateral authentication, leaving out the execution of the au-
thentication protocol once more with the reversed roles for mutual authentication. Mutual authentication
follows from unilateral authentication in both directions, since signing or MAC-computation is done over
fresh challenges from both sides, and the party applies the ConnectKey to at least own challenge (derived
from the input that corresponds to the sid).

We also capture the presence of a passive adversary, who only eavesdropped on the conversation during
the initial connection without intervening, by introducing TOFU-authentication. While it is not possible
to achieve forward secrecy for Bluetooth with regard to the link/long-term key or reused DH shares, we
still aim for the weaker version: that is, the session keys remain secure as long as the initial connection
was not under active attacks, even if the authentication key of the party was corrupted. This corresponds
to the cases, when, e.g., the creation process of the vendor was compromised.

For convenience, we follow the style of [FS21] to model different steps separately: we use separate
sessions of the initial-connection step for link/long-term key agreement (with empty session keys); a re-
connection step for encryption key derivation; and an authentication step. While the reconnection step
normally follows the initial connection, the authentication step can be performed at any point of time,
therefore, we let adversary decide on when to perform either of them.

5.1 TOFU-or-DOFU Security Model

Our TOFU-or-DOFU model follows the TOFU-model from [FS21] which, in turn, is based on the
common game-based security model of [BR94]. The gist of the model is to use the flag isTOFU to indicate
if the connection key (i.e., the link key in BR/EDR or the long-term key in BLE) has been established
in an execution with an honest partner or not. If the flag is not set, then the model does not consider
this key to be a viable target, as it could be trivially known by the adversary anyway. We modify the
TOFU-model to add authentication requirements, saying that even if the isTOFU flag is not set, but the
authentication step has been carried out by the partner (flag isPartnerAuth is set), then the connection key
is an admissible attack target. The modifications are highlighted with a different color.

Transmitted identities of the parties are defined as their Bluetooth addresses BD_ADDR and are usually
denoted as A and B for the corresponding parties. The parties learn the identity of the intended partner
before the KE execution through the corresponding discovery mechanisms. Note that the Bluetooth address
does not correspond to the true identity (i.e., MAC-addresses) and can easily change in different sessions.
To distinguish the transmitted address BD_ADDR from the actual device address, which we authenticate
cryptographically, we denote the latter by MAC_ADDR. The true identity is globally unique and authenticated
only later during the authentication step, and the Bluetooth address itself is not authenticated. We denote
by I the universe of all possible identities MAC_ADDR.

18

Authentication Keys Linked to Identities. The Bluetooth protocols themselves are not equipped
with public keys linked to the identities. Instead, some weak form of authentication should be provided
through comparison or input of digits via PKEand NC, or out-of-band in OOB. Since such methods turn
out to be highly vulnerable, and numerous attacks prove that they do not provide the common security
guarantees, we instead revert to the classical authentication methods via certified long-term keys.

We assume each party, which intends to authenticate, possesses a long-term authentication key authsk
and a matching verification key authpk. This can, for example, be a pair of signing and verification keys.
The authentication keys are used for mutual or unilateral authentication. The certificate should be issued
to the device’s (static) identity i = MAC_ADDR, either the registered public address in BR/EDR or BLE,
or the static random address in BLE. The latter requires some form of bookkeeping of the certification
authority to ensure that static random addresses do not repeat. Since we focus on BR/EDR with our
solution, one may assume that the identity is the public address.

The verification key comes with a certificate cert issued by some trustworthy entity. We denote the key
pair of the certification authority as (certsk, certpk)←$ CertKGen(1λ), generated by algorithm CertKGen.
We assume that all parties, including the adversary, have access to the certification authority’s public key
certpk. The certification of a public authentication key authpk is denoted by cert←$ Cert(certsk, authpk).

While we allow parties to reauthenticate themselves (in case of credential change), we still consider this
pair of keys as long-term secrets and allow the corruption of authsk via a corresponding Corrupt-oracle.
This corruption does not model only inadvertent leakage of the secret key but also successful attacks on
the public key. If oracle Corrupt is called with the input i ∈ I, then the identity i is added to the (initially
empty) set C of corrupt parties.

Further Keys. During the communication, parties derive a connection key ConnectKey for authentica-
tion during future reconnections. Although ConnectKey can be used for a long period of time, we treat it
as an ephemeral key that can be derived anew via a corresponding InitSession-oracle. Parties also possess
DH key pairs that they might use only once or in several initial connections. We allow parties to reuse
Diffie–Hellman key pairs in several executions (as defined in the Bluetooth standard [Blu23, Vol 2, Part
H, Section 5.1]) by modeling initialization of keys6 (dhski, dhpki)←$ DHKGen(1λ) for each party i at the
beginning of the game. The option to change the key pair used by party i is given to the adversary via
the NextDH-oracle. This oracle models the key pair update via counter dhctri. The value of the counter
is initially set to 0 and is incremented with each query to the oracle. Although these keys might be used
in several connections, we do not allow the adversary to learn them (e.g., via a Corrupt query). This can
reflect the behavior when a malicious app manages to get an access to the L(T)K but not to ephemeral
keys like DH. We could capture the corruption of DH keys by tracking all the L(T)Ks and sessions keys
derived from the corrupted DH share and forbidding the adversary from testing these sessions keys, but
this sophisticates the model and the proof and does not help to yield forward secrecy of sessions keys.

Sessions. We call the k-th session run by the party with identity i ∈ I as a protocol session and mark
it via an administrative label lbl = (i, k), lbl ∈ L, where I resp. L is the set of all identities resp. labels.
Each session lbl consists of the following entries with boxed initialized value :

• id ∈ I defines the party’s identity.

• pid ∈ I defines the identity of the intended partner. Note that this partner identity may only be
authenticated later, when executing the authentication subprotocol.
6We renamed these keys dhsk, dhpk from the terminology sk, pk used in [FS21] in order to distinguish them better from the

other keys we have introduced here, like authpk and certpk.

19

• mode ∈ {init, reconnect, auth} corresponds to the session in an initial-connection, reconnection, or au-
thentication step.

• parent ∈ L for a reconnection or authentication session points to the initial session from which this
session lbl is spawned off, or to itself if this is a parental session.

• state ∈ {running, accepted, rejected} describes the state of the session: running once the session is initial-
ized, and accepted or rejected if the party has accepted.

• aux stands for auxiliary information such as the association model (JW, PKE, NC, or OOB) in use;
additional data transmitted out of band, e.g., passkey ∈ {0, 1, . . . , 9}∗ ∪ {⊥} in the PKE association
model; or in authentication steps, the identity of the party aiming to authenticate (the “prover”).

• dhctr stands for the counter of a Diffie–Hellman key pair that party i uses in the session. While the
party always uses the same key pair according to the counter during one protocol session, in different
sessions, the counter can be incremented and lead to the different key pairs used by the party.

• ConnectKey ∈ {0, 1}∗ ∪ { ⊥ }) is the connection key that corresponds to the link key in Bluetooth
BR/EDR and long-term key in Bluetooth LE. The connection key can be set during the initial connec-
tion. It is used to derive session keys during the reconnection and to provide key authentication during
authentication.

• key ∈ {0, 1}∗∪{ ⊥ } is the session key that is set in reconnections (lbl.mode = reconnect) after the session
accepts (lbl.state = accepted). For authentication (lbl.mode = auth) or initial connection (lbl.mode =
init), the key is set to ⊥ even after the session accepts.

• sid ∈ {0, 1}∗ ∪ { ⊥ } is the session identifier. The session identifier can be set only once when executing
the protocol.

• isTested ∈ {true, false } is a Boolean flag defining whether the session key has been tested before.

• isRevealed ∈ {true, false } is the Boolean flag defining whether the session key has been revealed.

• isTOFU ∈ {true, false } is a Boolean flag defining whether the session key has been derived in the honest
execution during the initial connection.

• isPartnerAuth ∈ {true, false } is a Boolean flag defining if the partner in entry pid has been authenticated
through the authentication subprotocol. Note that this can only be set to true if the partner is still
honest (pid /∈ C).

Note that although Bluetooth connections are asymmetric in nature (i.e., Bluetooth uses initiator resp.
responder roles, which transform into the Central resp. Peripheral roles—Bluetooth’s analogue for client
resp. server roles), we do not include roles into our model. The reason is that the choice of the roles
is not fixed (while there are devices that can be only in the Peripheral role, dual-role devices also exist)
and is not authenticated throughout the protocol. Cryptographically, it is neither relevant for the security
property of the established authenticated key.

We follow the approach to model partnered sessions via the same session identifier.

Definition 5.1 (Partnered Sessions) We say two sessions lbl and lbl′ are partnered if lbl 6= lbl′ and
lbl.sid = lbl′.sid 6= ⊥.

20

Adversary’s Capabilities. We let an adversary A to be active and interact with the protocol through
the access to the following oracles:

• InitSession(i, j, [aux]) creates a new session at party i with intended partner j and automatically
incremented number k and returns lbl to the adversary. The identity of the party is assigned to
the corresponding entry lbl.id ← i, the identity of the intended partner to lbl.pid ← j, the initial
connection is set as the mode lbl.mode ← init, and the state of the session changes to lbl.state ←
running. If optional auxiliary information [aux] is present, then it is stored in parameter lbl.aux,
otherwise the parameter is set to ⊥. The flags lbl.isTested, lbl.isRevealed, lbl.isPartnerAuth, lbl.isTOFU
are set to their initial values false. The pointer to the parent lbl.parent is set to lbl. The session
counter of a key pair receives the value of the party’s current counter lbl.dhctr← dhctri.

• Reconnect(lbl, [aux]) establishes a new session lbl′ = (i, k′) from the parental session lbl and returns
lbl′ if there exists a session with lbl.ConnectKey 6= ⊥ and lbl.parent = lbl, otherwise returns ⊥. A new
session is established via calling InitSession(i, lbl.pid, [aux]) and overwriting lbl′.mode ← reconnect
as well as lbl′.parent ← lbl. The new session lbl′ inherits the TOFU parameter lbl′.isTOFU ←
lbl.isTOFU, the authentication parameter lbl′.isPartnerAuth ← lbl.isPartnerAuth, and the connection
key lbl′.ConnectKey← lbl.ConnectKey from the parental session.

• Authenticate(lbl, [aux]) establishes a new session lbl′ = (i, k′) from parental session lbl and returns lbl′
if there exists the session with lbl.ConnectKey 6= ⊥ and lbl.parent = lbl.parent, otherwise returns ⊥.
This oracle is used to establish a session for unilateral authentication. The choice is determined by
placing the identity ({i} or {j}) of the authenticating party (the “prover”) into aux. Establishing
a new session is done through calling InitSession(i, lbl.pid, [aux]) and overwriting lbl′.mode← auth as
well as lbl′.parent← lbl. The new session lbl′ inherits the TOFU parameter lbl′.isTOFU← lbl.isTOFU
and the connection key lbl′.ConnectKey ← lbl.ConnectKey that it is about to authenticate from the
parental session. We allow parties to reauthenticate themselves, therefore this oracle can be queried
multiple times, even for the same lbl or same identity.

• Send(lbl,m) sends a protocol message m to the session lbl and returns the answer. If the session
does not exist or is not established, the oracle returns ⊥. During the oracle execution, the session
may change the state lbl.state to accepted or rejected and set session identifier lbl.sid. If the session
accepts (lbl.state = accepted), then the following happens:

– If lbl.mode = init and there exists a session lbl′ partnered to lbl, then set lbl.isTOFU← true and
lbl′.isTOFU← true.

– If lbl.mode = auth and the partner is authenticated (lbl.pid ∈ lbl.aux) and is currently not
corrupt (lbl.pid /∈ C), then the partner authentication flag is set lbl.isPartnerAuth ← true. Only
in this case, authenticate all other related sessions by setting lbl′.isPartnerAuth ← true for all
sessions lbl′ with lbl′.parent = lbl.parent as authentication spans over the connection key. Note
that this also sets the authentication flag for the parental session to true.

– If there exists a partnered session lbl′ with lbl′.isTested = true, then the flag of the session here
also receives lbl.isTested← true.

– If there exists a partnered session lbl′ with lbl′.isRevealed = true, then the flag of the session
here also receives lbl.isRevealed← true.

• NextDH(i) updates the Diffie–Hellman key pair used by party i and returns the public key part
to the adversary. To update, the oracle increments counter dhctri and generates a new key pair
(dhski[dhctri], dhpki[dhctri])←$ DHKGen(1λ). The new key pair will be used only in future sessions,
not in currently running sessions.

21

• Reveal(lbl) returns the session key key of session lbl. If the session does not exist or if lbl.state 6=
accepted, the oracle returns ⊥. Else sets lbl.isRevealed← true and for all partnered sessions lbl′ with
lbl′.sid = lbl.sid also sets lbl′.isRevealed ← true. Note that if adversary queries this oracle about a
session in mode mode = init or mode = auth, the oracle returns key = ⊥ and not the connection key
ConnectKey.

• Corrupt(i) returns the secret authentication key authsk of party i ∈ I. If the party does not have
an authentication key, the oracle returns ⊥, otherwise sets C ← C ∪ {i}. Note that although the
connection keys might be used for several connections, we do not allow their corruption, but only of
the secret authentication key.

• Test(lbl) is the oracle for testing the session key key of session lbl. If the session does not exist,
or has not accepted (lbl.state 6= accepted), or has been already revealed (lbl.isRevealed = true) or
tested (lbl.isTested = true), or is neither the result of the genuine pairing (lbl.isTOFU = false) nor
authenticated the partner yet (lbl.isPartnerAuth = false), or key = ⊥, then the query returns ⊥.
Otherwise, for the challenge bit b, the query returns either the real key key if b = 1, or a random
string of length |key| if b = 0. To prevent the adversary from an easy win by querying this oracle to
the same or partnered session again, the session lbl sets the flag lbl.isTested← true and all partnered
sessions lbl′ with lbl′.sid = lbl.sid set the flag lbl′.isTested← true.

Note that according to our model, the authentication step is not executed over the secured communi-
cation channel, protected under an encryption key (as potentially Bluetooth would do), but run “in plain”.
We can model encrypted authentication steps by having the parties execute a reconnection step first (to
establish an encryption key), immediately revealing this encryption key, followed by an authentication step
in which the revealed encryption key can be used to incorporate encryption. Since our solutions would
still be secure if the authentication steps were not encrypted, we stick to the easier model here.

5.2 Match Security and Key Secrecy

We define the two desired properties of authenticated key exchange protocols: match security and (session)
key secrecy. The first property stands for the attacks where the adversary manages to confuse honest parties
about their intended partners or with whom they share the session key. Key secrecy guarantees that the
key is hidden from the adversary. For all security properties, including also the authentication property
later, we assume the same initialization procedure, which generates the users’ keys and certifies them. This
is captured by the following description:

Initialize(λ)
b←$ {0, 1}, C ← ∅
(certsk, certpk)←$ CertKGen(1λ)
forall i ∈ I do

dhctri ← 0
(dhski[0], dhpki[0])←$ DHKGen(1λ)
(authski, authpki)←$ AuthKGen(1λ)
certi←$ Cert(certsk, authpki)

All values are available in the subsequent games.

22

Match Security. Match security ensures that two partnered sessions hold the same session key (1),
and at most two sessions are partnered (2). Since the same ConnectKey can be used in several reconnec-
tions, we also need to require the ConnectKey array used for reconnection or authentication to match the
one used in the initial connection. This is reflected in the split of the first condition into two cases: for
initial connections, where we require matches on the session key and the connection keys, and for recon-
nections/authentication, where we require session key matching under the condition that the sessions are
partnered and start with the same connection key array.

Definition 5.2 (TOFU-or-DOFU Match Security) A key exchange protocol Π provides TOFU-or-
DOFU Match Security if for any PPT adversary A and identity set I

AdvMatch Security
A,Π,I (λ) := Pr

[
ExpMatch Security

A,Π,I (λ) = 1
]

is negligible in the following experiment:

ExpMatch Security
A,Π,I (λ)

Initialize(λ)
AInitSession,Reconnect,Authenticate,Send,NextDH,Reveal,Corrupt,Test(certpk, {(i, dhpki[0], authpki, certi)}i∈I)
return 1 if ∃ pairwise distinct lbl, lbl′, lbl′′ ∈ L :
(1a) lbl.sid = lbl′.sid 6= ⊥ and lbl.mode = init and (lbl.key 6= lbl′.key or lbl.ConnectKey 6= lbl′.ConnectKey),
(1b) lbl.sid = lbl′.sid 6= ⊥ and (lbl.mode = reconnect or lbl.mode = auth) and lbl.ConnectKey = lbl′.ConnectKey

and lbl.key 6= lbl′.key,
(2) lbl.sid = lbl′.sid = lbl′′.sid 6= ⊥

Key Secrecy. This property ensures that the session key remains secret if an adversary mounts an attack.
Note that we capture the secrecy of the trustworthy or authenticated sessions only, what is ensured by the
attack model (i.e., adversary is forbidden from querying Test-oracle to sessions with isTOFU = false and
isPartnerAuth = false).

Definition 5.3 (TOFU-or-DOFU Key Secrecy) A key exchange protocol Π provides TOFU-or-DOFU
Key Secrecy if for any PPT adversary A and identity set I

AdvKey Secrecy
A,Π,I (λ) := Pr

[
ExpKey Secrecy

A,Π,I (λ) = 1
]
− 1

2

is negligible in the following experiment:

ExpKey Secrecy
A,Π,I (λ)

Initialize(λ)
b′←$AInitSession,Reconnect,Authenticate,Send,NextDH,Corrupt,Reveal,Test(certpk, {(i, dhpki[0], authpki, certi)}i∈I)
return 1 if

b′ = b and there are no lbl, lbl′ ∈ L with lbl.sid = lbl′.sidbut lbl.isRevealed = false and lbl′.isTested = true

6 Authentication
We next define what we expect from the authentication subprotocol. Note that this part is merely a
means to an end, and that a successful execution should provide key secrecy for (past and future) session
keys. The goal is to make sure that a party can reliably authenticate the intended partner. However, we

23

actually require more: We want to ensure that the intended partner also confirms to hold the same link
key resp. long-term key. This, in turn, adds another requirement to the authentication procedure, namely,
that this step needs to authenticate the identity and the connection key but, at the same time, should not
infringe with the secrecy of the connection key.

6.1 Security Model

We denote by P and V the two parties executing the authentication protocol Ψ. The prover P holds an
authentication key pair, (authsk, authpk)←$ AuthKGen(1λ), and both parties know a value ConnectKey,
corresponding to the connection key in our Bluetooth scenario. To link identities reliably to keys authpk,
we also involve a certification scheme Γ = (CertKGen,Cert,CertVf). When executing the protocol, we
assume that the verifier V eventually outputs a decision bit, accepted or rejected, to indicate if the verifier
is convinced of the authenticity of the prover and the data ConnectKey.

For the sake of compatibility, we will use the same session information as for the security model for key
exchange protocols (albeit we do not need all entries here). We let the adversary interact with both the
prover and verifier’s instances as in the case of key exchange protocols. That is, we have sessions with labels
of the form lbl = (i, k) or lbl = (j, k) and each session holds entries state for the status (accepted, rejected,
or running), aux for the data to be authenticated (i.e., the connection key), and sid for the session identifier
(to be determined by the protocol). We assume that the party starting the execution always takes the
role of the verifier V. Only this party eventually sets the entry lbl.isPartnerAuth ← true upon acceptance
(from the initial value false). For mutual authentication, the protocol needs to be run once more with the
reverse roles of the prover and verifier.

We note that, when initializing a new session, the adversary has three options for the data to be
authenticated (i.e., the connection key): either it sets the value to v by providing auxiliary input (set, v),
or it asks for a hidden random value (secret, `) of some length `, or it asks to inherit the data from some
other session by setting the auxiliary information to (inherit, lbl′). The latter corresponds to reconnections.

We capture leakage-proofness of the connection key in authentication steps via the AuthTest oracle.
This oracle will either initiate a session by inheriting the random key of another session, or by establishing
an independent (but consistent) random connection key, the choice made in dependency of the secret
challenge bit b. More precisely, the game will keep track of such independent random keys in authentication
steps by maintaining a table T [] indexed by connection keys ConnectKey, where T [ConnectKey] contains
the connection key ConnectKey to be used in the test session (either equal to lbl.ConnectKey if b = 0,
or to the independent random value if b = 1). Later sessions with the same connection key will also use
T [ConnectKey] to ensure consistency; this is why we index by key values. While this test oracle is irrelevant
for the authentication property, in the secrecy game, the task of the adversary is to distinguish the two
cases.

Since we aim to authenticate also the connection key in the authentication step, we have to use it in
authentication protocol. To make sure that this usage of the connection key does not interfere with the
usage to derive session keys in reconnection steps, we grant the adversary access to a “side-channel” oracle
AuthSide, which it can query about any pair (lbl, x) to receive the value for f(lbl.ConnectKey, x) under key
lbl.ConnectKey, if lbl.ConnectKey 6= ⊥ has been set already. Here f is some protocol-specific function, e.g.,
AES for BLE and HMAC/128 for BR/EDR. The only stipulation is that the adversary cannot see values
for inputs x, which also appear in the authentication step. More precisely, we assume that the protocol
defines a blacklist set X auth

test of values x, which can only be used in authentication test sessions but never
in AuthSide. Once more, this oracle is only necessary for the secrecy game but we include it in all games
for the sake of uniformity.

In summary, the adversary can interact with the instances as follows:

24

• AuthInitSession(i, j, aux) generates a new label lbl = (i, k) and returns lbl to the adversary. It sets
lbl.id ← i, lbl.pid ← j, lbl.state ← running, lbl.isPartnerAuth ← false, and lbl.sid ← ⊥. The auxiliary
information may be one of the following three types:

– aux = (set, v) sets lbl.ConnectKey← v for value v.
– aux = (inherit, lbl′) checks if lbl′ exists and, if not, executes the next item instead (i.e., for secret of

some predetermined length parameter array `); else lbl.ConnectKey← lbl′.ConnectKey.
– aux = (secret, `) picks lbl.ConnectKey←$ {0, 1}` at random.

In all cases, we store aux in lbl.aux. We say that the session lbl has a secret connection key of length
` if lbl.aux = (secret, `) or if it (recursively) leads to such a session with a secret connection key via a
sequence of aux entries of the form (inherit, lbl′).

• AuthSend(lbl,m) sends a protocol message to the session with label lbl. If the session does not exist,
the oracle immediately returns ⊥. If the state lbl.state of the session changes to accepted, then it also
sets lbl.sid 6= ⊥. If, on top, the party is the verifier and sent the first protocol message, then it sets
lbl.isPartnerAuth← true upon acceptance if lbl.pid /∈ C.

• AuthCorrupt(i) returns the secret authentication key authsk of party i ∈ I to the adversary. It also adds
i to the initially empty set C of corrupt users, C ← C ∪ {i}.

• AuthSide(lbl, x) checks that lbl.ConnectKey 6= ⊥ and x /∈ X auth
test and, if so, returns f(lbl.ConnectKey, x).

• AuthTest(lbl′) first checks if session lbl′ exists and has a secret connection key of some length `; if not,
it returns ⊥. Else, it checks if the initially empty table T [] has already been set for the connection key
of session lbl′, i.e., T [lbl′.ConnectKey] 6= ⊥, and sets aux ← (set, T [lbl′.ConnectKey]) if so, independently
of the game’s challenge bit b. If not, it sets aux ← (set, lbl′,ConnectKey) and T [lbl′.ConnectKey] ←
lbl′.ConnectKey for b = 0. For b = 1 it picks the entry T [lbl′.ConnectKey] at random and sets aux ←
(set, T [lbl′.ConnectKey]. It initiates a new session by calling AuthInitSession(lbl′.id, lbl′.pid, aux) and re-
turns the response lbl to the adversary as a newly created session, which either inherits the random
connection key or gets a freshly (but consistently) chosen random connection key.

We require completeness of the authentication protocol Ψ in the sense that, if an honest verifier
communicates with an honest prover, then the verifier session eventually sets isPartnerAuth = true. All our
suggested protocols have this property. In addition, we next define the three security properties—match
security, authentication, and leakage resistance:

Definition 6.1 (Match Security) An authentication protocol Ψ with a certification scheme Γ provides
Match Security, if for any PPT adversary A and identity set I

AdvMatch Security
A,Ψ,Γ,I,X auth

test ,f
(λ) := Pr

[
ExpMatch Security

A,Ψ,I,X auth
test ,f

(λ) = 1
]

is negligible in the following experiment:

ExpMatch Security
A,Ψ,Γ,I,X auth

test ,f
(λ)

Initialize(λ)
AAuthInitSession,AuthSend,AuthCorrupt,AuthSide,AuthTest(certpk, {(i, authpki, certi)}i∈I)
return 1 if ∃ pairwise distinct lbl, lbl′, lbl′′ :

lbl.sid = lbl′.sid = lbl′′.sid 6= ⊥

25

Next we define authentication. This requires that any session lbl, which claims to have reliably iden-
tified a (non-corrupt) partner (lbl.isPartnerAuth = true and lbl.pid /∈ C), there must be an honest session,
which is actually partnered to lbl and which also holds the same connection key. The latter implies the
authentication of the connection key. Note that we could actually demand there to be an honest partner
session with the correct identity lbl.pid, but since honest sessions do not adopt false identities, we can
equally ask that there is some honest session. The adversary wins now if there is no such session, i.e., the
session lbl has communicated with the adversary and the adversary managed to impersonate an honest
user lbl.pid, or the honest parties partnered but held different connection keys.

Definition 6.2 (Authentication) An authentication protocol Ψ with a certification scheme Γ provides
Authentication, if for any PPT adversary A and identity set I

AdvAuthentication
A,Ψ,Γ,I,X auth

test ,f
(λ) := Pr

[
ExpAuthentication

A,Π,I,X auth
test ,f

(λ) = 1
]

is negligible in the following experiment:

ExpAuthentication
A,Ψ,Γ,I,X auth

test ,f
(λ)

Initialize(λ)
AAuthInitSession,AuthSend,AuthCorrupt,AuthSide,AuthTest(certpk, {(i, authpki, certi)}i∈I)
return 1 if

∃lbl with lbl.isPartnerAuth and lbl.pid /∈ C, but
∀lbl′ 6= lbl : (lbl.sid 6= lbl′.sid or lbl.ConnectKey 6= lbl′.ConnectKey)

Definition 6.3 (Leakage Resistance) An authentication protocol Ψ with a certification scheme Γ is
leakage-resistant, if for any PPT adversary A and identity set I

AdvLeakage Resistance
A,Ψ,Γ,I,X auth

test ,f
(λ) := Pr

[
ExpLeakage Resistance

A,Ψ,Γ,I,X auth
test ,f

(λ) = 1
]
− 1

2
is negligible in the following experiment:

ExpLeakage Resistance
A,Ψ,Γ,I,X auth

test ,f
(λ)

Initialize(λ)
b′←$AAuthInitSession,AuthSend,AuthCorrupt,AuthSide,AuthTest(certpk, {(i, authpki, certi)}i∈I)
return 1 if b = b′

6.2 Leakage-resistant Authentication Protocols

We describe here four main variants of leakage-resistant authentication protocols, two more suited to
BR/EDR and two more suited to BLE (albeit we cannot prove security of the overall key exchange
protocol with deferred authentication for BLE). In all schemes we let the authenticating party include the
IO capabilities request (BR/EDR) resp. pairing request data, describing the device’s supported features.
These data are transmitted before the secure simple pairing and include the device’s IO capabilities, the
OOB data flag, the authentication request (for BR/EDR), as well as the maximum encryption key size,
and the initiator and responder key distribution entries (for BLE). For BR/EDR, the value IOcap can
be described with 24 bits (as in key derivation) and the value PairReq in BLE with 48 bits. We let the
authenticating device send this as part of the authentication protocol. Note that the KNOB attack on
BLE [ATR19, ATR20b], for instance, uses the fact that the adversary is able to modify the maximum

26

encryption key size when this value is transmitted in the initial pairing. Including this value here as part
of PairReq in the authentication step implies that this would be detected later during authentication.

Our first protocol uses (certified) signatures to authenticate, where the signed data is computed in
the same way as an encryption key from the long-term key, AES(LTK, challB), where challA and challB
are random 128-bit values, which are appended to the AES value to form authdata. The prover sends a
signature σB of authdata under its signature key authsk and appends the certificate for the verification key
(which includes the verification key authpk). In this first variant, we rely on the key-collision resistance of
AES in the sense that finding another key LTK′ mapping challB to the same value should be infeasible.
The exact requirement appears below. The advantage is that the computation of the signed data complies
with encryption key derivation in BLE with security function e in [Blu23].

Alice (Central) Bob (Peripheral)
LTK LTK, authskB , authpkB , certB

. Authentication .

challA←$ {0, 1}128 challA challB←$ {0, 1}128

authdata← AES(LTK, challB)

authdata← AES(LTK, challB)
challB, σB, PairReq

authpkB, certB σB ← Sig(authskB , authdata|challA|challB|PairReq)

check σB and certB

Figure 4: Signature-based Bluetooth Authentication Subprotocol for BLE. Recall that PairReq describes the device’s pref-
erence transmitted also in the pairing request or response step. The session identifier here and for alternative authentication
protocols is given as sid = (challA, challB). The session key KDF in all cases is ⊥.

We define here for simplicity the set of admissible test values X auth
test to be {0, 1}128. Strictly speaking,

since X auth
test already covers all possible input values for AES(LTK, ·), the adversary could not call AuthSide

about non-trivial values anymore. We could be more liberal and define X auth
test to be the set of random

values challB appearing in test queries only and allowing for other queries about AES(LTK, x), but then
we would need to adapt the model slightly to set X auth

test randomly. We omit this extension here.
Alternatively, and this constitutes our second variant, we may use a collision-resistant hash function

Hash directly and, instead, compute authdata = HMAC(LK, challA‖challB) and sign these data as before,
this time with the IOcap features. The advantages here are that the security is based on the common
collision-resistance of the underlying hash function Hash in HMAC and that this approach can easily support
longer challenge values, like the concatenation of two 128-bit challenges. In fact, the HMAC computation
resembles the device authentication confirmation function h5 in BR/EDR.7 We set X auth

test to be the set
of all strings except for 128- and 192-bit values; note that BR/EDR calls HMAC(LK, ·) in reconnection
steps only about these two input lengths.

The third variant for BLE avoids signatures and is thus more deniability-friendly. To this end, we
assume that the prover holds a certified Diffie–Hellman share gy and the verifier provides a random Diffie–
Hellman share gx. Both parties also exchange 128-bit nonces challA, challB and compute a confirmation
value as σB ← PRF(〈gxy〉x, challA, challB, R, I0, A0,PairReq) where I0 = 0|IOcap| and A0 = 0|A| are the
placeholders for the prover’s IO capabilities and the parties identities, PairReq are the 48-bit pairing request

7Strictly speaking, function h5 uses the device key as input, derived from the link key via function h4; this extra step may
also be done here.

27

Alice (Central) Bob (Peripheral)
LK LK, authskB , authpkB , certB

. Authentication .

challA←$ {0, 1}128 challA challB←$ {0, 1}128

authdata← HMAC(LK, challA|challB)/2128

challB, σB, IOcap
authpkB, certB σB ← Sig(authskB , authdata|IOcap)

authdata← HMAC(LK, challA|challB)/2128

check σB and certB

Figure 5: Signature-based Bluetooth Authentication Subprotocol for BR/EDR. Recall that IOcap describes the device’s IO
capabilities (as used during secure simple pairing). Then notation HMAC(LK, challA|challB)/2128 means to take the leftmost
128 bits of the hash function’s output.

data, and R is given by AES(LTK, challB). The reason for computing σB this way is that it corresponds
to the confirmation value computation in the pairing step (LE Secure Connections check value generation
function f6 for BLE in [Blu23]), and is based on AES-CMAC for BLE, with extra steps to map the Diffie–
Hellman value to a 128-bit key (LE Secure Connections key generation function f5 in [Blu23]). Since the
values I0, A0 do not serve any purpose here, beyond this compatibility issue, and may even not be available
at this point, we set them to 0. The prover finally sends σB, the certificate, and the challenge value to the
verifier. Once more let X auth

test = {0, 1}128.

Alice (Central) Bob (Peripheral)
LTK LTK, authskB = y, authpkB = gy, certB

. .Authentication. .

x←$Z(q+1)/2 \ {0}

challA←$ {0, 1}128 gx, challA challB←$ {0, 1}128

R← AES(LTK, challB)

challB, σB,PairReq, gy, certB σB ← PRF(〈gxy〉x, challA, challB, R, I0, A0,PairReq)

R← AES(LTK, challB)

check σB and certB

Figure 6: DH-based Bluetooth Authentication Subprotocol for BLE (with PRF being based on AES-CMAC), where I0 = 0|IOcap|

and A0 = 0|A| are placeholders, and PairReq describes the 48 bits of the pairing request data.

The fourth variant maps the third scheme to BR/EDR, once more using Diffie–Hellman. The only
difference to the previous version is that HMAC (truncated to 128 bits) is used to compute the value R and
that we place the 24-bit IOcap describing the device’s capabilities into the corresponding entry instead of
I0 and now also set the second address entry B0 = 0|B|. Let X auth

test = {0, 1}256.

28

Alice (Central) Bob (Peripheral)
LK LK, authskB = y, authpkB = gy, certB

. Authentication .

x←$Z(q+1)/2 \ {0}

challA←$ {0, 1}128 gx, challA challB←$ {0, 1}128

R← HMAC(LK, challA|challB)/2128

challB, σB, IOcap
gy, certB σB ← PRF(〈gxy〉x, challA, challB, R, IOcap, A0, B0)

R← HMAC(LK, challA|challB)/2128

check σB and certB

Figure 7: DH-based Bluetooth Authentication Subprotocol for BR/EDR (with PRF being being a truncated HMAC), where
IOcap are the device’s IO capabilities, and A0 = 0|A|, B0 = 0|B| are placeholders.

Match Security of the Proposed Protocols. For all four protocols, we let the session identifier
sid = (challA, challB) to consist of the two 128-bit challenges. Match Security follows now easily via the
birthday bound:

Proposition 6.4 (DH and Sig BLE and BR/EDR Match Security) All protocols in Figures 4, 5,
6, and 7 provide Match Security. Specifically, for any adversary A initiating at most qs sessions, we have

AdvMatch Security
A,Ψ,Γ,I,X auth

test ,f
(λ) ≤ q2

s · 2−|chall|,

where |chall| = 128 is the length of the challenge nonces.

Signature-based Bluetooth Authentication Protocol for BLE. We next show security of the
signature-based protocol for BLE. We define the session identifier sid to be (challA, challB). To prove
security, we rely on the unforgeability of the signature scheme Σ and of the certification scheme Γ, as
well as on the key-collision resistance of AES (see Appendix A for all definitions). The latter says that
for algorithm D, let Advkey-collD,AES (λ) be the probability that D outputs (k, k′, x), such that k 6= k′ but
AES(k, x) = AES(k′, x).

Proposition 6.5 (Sig BLE Authentication) The signature-based Bluetooth Authentication protocol for
BLE in Figure 4 provides Authentication. That is, for any A initiating at most qs sessions with at most
qp parties, there exist algorithms B, C, D (with approximately the same running time, and B making at
most qs signature requests, and C making at most qp certification requests), such that

AdvAuthentication
A,Ψ,Γ,I,X auth

test ,AES(λ) ≤ 2q2
s · 2−|chall| + qp ·AdvEUF-CMA

B,Σ,I (λ)+ AdvEUF-CMA
C,Γ,I (λ) + Advkey-coll

D,AES (λ),

where |chall| = 128 is the length of the challenges.

Proof. We proceed by a sequence of game hops. The initial game Game0 is the original attack of A against
authentication. For each game Gamei, we denote by Pr[Gamei] the probability that the corresponding
game returns 1.

29

Game 1. We next declare A to lose if there are two honest sessions choosing the same challA resp. challB
in Game0.

Note that the probability of this happening among the at most qs sessions is at most q2
s · 2−|chall| for

each of the two values, and thus at most 2q2
s · 2−|chall| for either part to collide. Hence,

Pr[Game0] ≤ Pr[Game1] + 2q2
s · 2−|chall|.

Game 2. We next declare the adversary to lose if it manages, in some session, to send a public authenti-
cation key authpk∗ under some identity i, different from the originally certified key of this party, together
with a valid certificate.

We note that this immediately constitutes a breach of the unforgeability property of the certification
scheme Γ. Namely, we can construct an algorithm C, which receives the public key certpk of the certifica-
tion authority and runs the setup of the authentication attack (according to Game1). For each required
certificate, it calls its certification oracle. Then it waits for A to send, in some session, the forged certificate
cert∗ for authpk∗ for identity i, and outputs (authpk∗, i), cert∗ as its forgery. Since each identity i is issued
only one certificate, and this has been for a different public key authpk, the output of C constitutes a valid
forgery against Γ. The bound now follows:

Pr[Game1] ≤ Pr[Game2] + AdvEUF-CMA
C,Γ,I (λ).

Game 3. We next declare the adversary to lose if, in some session, the honest verifier receives a valid
signature σ∗B under the public key authpk of some honest party i /∈ C for authdata∗ (together with a valid
certificate for authpk, i), such that this party has not signed authdata∗ before.

Analogously to the case of certificate forgeries, this event here would lead to a forgery against the
signature scheme Σ. For this, first note that, according to the previous game hop, the public key authpk
in question must be authentic. We give a reduction B against the signature scheme by running A’s attack
(in Game2) and using the externally provided key authpk as the key of party i. We do so by guessing the
right party with probability 1/qp and injecting the provided key there during the setup; all other keys are
created by B itself. Subsequently, if the party i is supposed to sign a value authdata, then we call the
signing oracle to create the signature. If the adversary A succeeds in creating a forgery as defined by the
game hop, then B outputs authdata∗ together with σ∗B as its forgery. In conclusion,

Pr[Game2] ≤ Pr[Game3] + qp ·AdvEUF-CMA
B,Σ,I (λ).

Game 4. Finally, declare the adversary A to lose if, in some session, the honest verifier accepts a signature
σB for authdata|challA|challB under certified key authpk of party i /∈ C, but such that the verifier holds
a different connection key LTK′ 6= LTK than party i did when creating the signature σB in the unique
matching session.

We note that this immediately gives a reduction D against key-collision resistance of AES. If such
event happens, then we can immediately output k = LTK and k′ = LTK′ together with x = challB as the
key collision for AES. Thus,

Pr[Game3] ≤ Pr[Game4] + Advkey-collD,AES (λ).

With the final game hop to Game4, we can now argue that A cannot break authentication in this final
game. If this was the case—and we have already ruled out threefold collisions in session identifiers— then it
must be that a verifier session lbl accepts an honest party lbl.pid /∈ C as legitimate (lbl.isPartnerAuth = true),
but such that there is no matching prover session lbl′ with the same session identifier lbl.sid = lbl′.sid
and same connection key lbl.ConnectKey = lbl′.ConnectKey. However, by the previous game hops, there
must be a unique prover session, which created the valid signature for authdata∗|challA|challB, which the

30

verifier session in question has accepted. It follows that this prover session has the same session identifier
sid = (challA, challB) as the verifier. According to the last game hop, it must be that this prover session
also holds the same connection key as the verifier. This shows that the adversary A cannot violate the
authentication property in Game4:

Pr[Game4] = 0.
This yields the claimed bound.

Proposition 6.6 (Sig BLE Leakage Resistance) The signature-based Bluetooth Authentication pro-
tocol for BLE in Figure 4 provides Leakage Resistance. That is, for any A initiating at most qs sessions,
there exist algorithm B (with roughly the same running time as A), such that

AdvLeakage Resistance
A,Ψ,Γ,I,X auth

test ,f
(λ) ≤ 1

2 + q2
s · 2−|chall| + qs ·AdvPRF

B,AES(λ),

where |chall| = 128 is the length of the challenges.

Proof. For the proof, we once more proceed via game hopping. Let Game0 be the original leakage-resistance
experiment involving A. Let again Pr[Gamei] denote the probability that A correctly predicts the challenge
bit b.
Game 1. In the first game hop, we (consistently) replace AES computations by a random function
evaluation for those sessions, which have a secret connection key of length λ = 128. Recall that this means
the connection key is chosen randomly or is inherited from another session but where this key, too, has
been chosen randomly. In either case, the adversary A is oblivious about the key. By “consistently” we
mean that we have a sequence of at most qs random function instances and, for each newly picked random
connection key, assign the next available random function. Instead of computing AES(LTK, x) for this
random key LTK, we instead call the assigned random function about x and use the response. This holds
for AES evaluations in protocol executions (via oracle AuthSend) as well as queries to the side-channel
oracle AuthSide.

By a hybrid argument, we can reduce the advantage of replacing all AES instances to the case of a
single AES instance, losing a factor qs. Hence,

Pr[Game0] ≤ Pr[Game1] + qs ·AdvPRFB,AES(λ).

Game 2. In the next game hop, we let the adversary lose if some sessions of honest provers choose the
same value challB.

Since we have at most qs sessions, the birthday bound tells us that the probability of such a collision
in the prover’s challenge values is at most q2

s · 2−|chall|. Therefore,

Pr[Game1] ≤ Pr[Game2] + q2
s · 2−|chall|.

In this final game, we apply the now random functions only to distinct inputs challB, independently of
the potentially malicious challenge values challA. Furthermore, adversary A can only win if S ∩ X auth

test =
∅ for the set of queries S to the side-channel oracle, meaning that we can assume that all queries to
secret connection keys via AuthSide have been for different inputs than the challenges challB used in test
sessions. It follows that each evaluation of the random functions, even for the same connection key, yields
independent responses. Put differently, all responses can be thought of as random and independent values.
It follows that the two cases in the AuthTest oracle, inherited and dependent connection keys vs. random
and independent connection keys, cannot be distinguished beyond the pure guessing probability of 1/2. In
summary,

Pr[Game2] = 1
2 .

Summing up the probabilities yields the claim.

31

Signature-based Bluetooth Authentication Protocol for BR/EDR. The proof for the signature-
based authentication using HMAC is almost identical to the one for AES. Only this time, we sign authdata =
HMAC(LK, challA|challB)/2128 directly, without repeating challA, challB for signing. The reason is that
HMAC is based on a collision-resistant hash function Hash (in case of Bluetooth 5.4 [Blu23], this is SHA-
256) such that finding any colliding input triples (LK, challA, challB) 6= (LK, challA′, challB′) should be
infeasible, even if we truncate the output to the leftmost 128 bits. The session identifier once more consists
of sid = (challA, challB).

Proposition 6.7 (Sig BR/EDR Authentication) The signature-based Bluetooth Authentication pro-
tocol for BR/EDR in Figure 5 provides Authentication. That is, for any A initiating at most qs sessions
with at most qp parties, there exist algorithms B, C, D (with approximately the same running time, and B
making at most qs signature requests, and C making at most qp certification requests), such that

AdvAuthentication
A,Ψ,Γ,I,X auth

test ,HMAC/128(λ) ≤ 2q2
s · 2−|chall| + qp ·AdvEUF-CMA

B,Σ,I (λ) + AdvEUF-CMA
C,Γ,I (λ) + Advcoll-res

D,HMAC/128(λ),

where |chall| = 128 is the length of the challenges.

Analogously, leakage resistance follows as HMAC, even truncated to 128 bits, is considered to be a
pseudorandom function. The proof is therefore easy to adapt from the BLE case with AES.

Proposition 6.8 (Sig BR/EDR Leakage Resistance) The signature-based Bluetooth Authentication
protocol for BR/EDR in Figure 5 provides Leakage Resistance. That is, for any A initiating at most qs
sessions there exist algorithm B (with roughly the same running time as A), such that

AdvLeakage Resistance
A,Ψ,Γ,I,X auth

test ,HMAC/128(λ) ≤ 1
2 + q2

s · 2−|chall| + qs ·AdvPRF
B,HMAC/128(λ),

where |chall| = 128 is the length of the challenges.

DH-based Bluetooth Authentication Subprotocol. We treat both Diffie–Hellman cases, for BLE
and for BR/EDR, in one go. Authentication follows from the adapted PRF-ODH assumption, which has
also been used to prove the security of the Bluetooth protocol in the TOFU setting [FS21] and which
will be used in our proof as well. The assumption says that given gu, gv, it is infeasible to distinguish
PRF(〈guv〉x, x∗) for some label x∗ from random. This should even hold if one is able to learn related values
PRF(〈guw〉x, x) for inputs (gw, x) 6= (g±v, x∗) and values PRF(〈gvw〉x, x) for inputs (gw, x) 6= (g±u, x∗).
Some care must be taken in the Bluetooth setting since only the x-coordinate enters the computations and
the secret exponents u, v are chosen from Z(q+1)/2 \ {0} instead of Zq or Z∗q .

The PRF-ODH assumption is described formally in Appendix A. As discussed in [FS21], it is plausible
that this assumption holds for Bluetooth BLE, where PRF is an AES-CMAC-based function, and for
BR/EDR, where the function is defined by HMAC for SHA-256. Hence, we assume from now on that
AdvPRF-ODH

D,PRF,G (λ) is indeed small in both cases. With this, we can show the authentication security:

Proposition 6.9 (DH BR/EDR and BLE Authentication) The Diffie–Hellman-based Bluetooth Au-
thentication protocol in Figure 6 resp. in Figure 7 provides Authentication. That is, for any A initiating
at most qs sessions with at most qp parties, there exist algorithms B, C, D (with approximately the same
running time, and B making at most qs evaluation requests in the PRF-ODH assumption, and C making
at most qp certification requests), such that

AdvAuthentication
A,Ψ,Γ,I,X auth

test ,f
(λ) ≤ 2q2

s · 2−|chall| + 2qsqp ·AdvPRF-ODH
B,PRF,G (λ) +2qsqp · 2−|prf| + AdvEUF-CMA

C,Γ,I (λ) + δ,

where |chall| = |prf| = 128 is the length of the challenges and PRF output. The value δ equals Advkey-coll
D,AES (λ)

for the protocol in Figure 6, and AdvCR
D,HMAC/128(λ) for the protocol in Figure 7.

32

Proof. In the first two game hops, the proof(s) are identical to the previous ones. Only in the hop to
Game3, where we gave a reduction to the unforgeability of the signature scheme, we now give a reduction to
the unpredictability of the PRF value. Unpredictability here says that no adversary can predict the value
PRF(〈guv〉x, x∗), instead of distinguishing it from random. We remark that for any predicting adversary A,
we have a distinguishing adversary B, such that A’s advantage is bounded by 2 ·AdvPRF-ODH

B,PRF,G (λ) + 2−|prf|.
Game 3. We next declare the adversary to lose if, in some session, the honest verifier receives a valid
value σ∗B under the public key authpk of some honest party i /∈ C for (R∗, challA∗, challB∗) (together with a
valid certificate for authpk, i), such that this party has not computed a PRF value for (R∗, challA∗, challB∗)
before.

The reduction now causes a contradiction to the unpredictability of the PRF-ODH assumption. That
is, we can guess the verifier’s session with probability 1/qs, and the certified public key of the prover
with probability 1/qp. Then we insert the PRF-ODH challenge values gu (for the verifier) and gv (for
the prover) and let the label x∗ be the value (challA∗, challB∗, R∗, IOcap, A,B), where IOcap, A,B are the
values used in the corresponding session. Note that since the challenge values chosen by honest parties
are unique according to Game1, we can use the ODHu and ODHv to compute any other value for different
labels. Hence, if A manages to send the correct value σ∗B, then this immediately gives a predictor against
the PRF-ODH assumption (if the initial guesses have been correct). Therefore,

Pr[Game2] ≤ Pr[Game3] + 2qsqp ·AdvPRF-ODH
C,PRF,G (λ) + 2qsqp · 2−|prf|.

The final step in the proof is as before, using the (key-)collision resistance of AES resp. of HMAC, to
conclude that there cannot be another session with the same session identifier but a different connection
key. This, again, yields the claim.

We next note that leakage resistance follows as before in the signature cases. The reason is that the
pseudorandomness of AES resp. HMAC ensures this property, independently of the concrete post-processing
via signatures or Diffie–Hellman computations. We thus get:

Proposition 6.10 (DH BR/EDR and BLE Leakage Resistance) The Diffie–Hellman-based Blue-
tooth Authentication protocol in Figure 6 resp. in Figure 7 provides leakage-resistant Authentication. That
is, for any A initiating at most qs sessions, there exist algorithm B (with roughly the same running time
as A), such that

AdvLeakage Resistance
A,Ψ,Γ,I,X auth

test ,PRF(λ) ≤ 1
2 + q2

s · 2−|chall| + qs ·AdvPRF
B, (λ),

where |chall| = 128 is the length of the challenges. Here, PRF = AES for the protocol in Figure 6, and
PRF = HMAC/128 for the protocol in Figure 7.

7 Security of the BR/EDR Protocol with Deferrable Authentication
We next argue that the security of the BR/EDR Bluetooth protocol can be enhanced via deferrable
authentication, lifting the guarantees from trust-on-first-use to trust-on-first-use or authenticated. This
means that any session key, future or past, of an authenticated connection is also secret, even if the
adversary has previously been active during the initial pairing.

The proof strategy is intuitive: The difference from the TOFU model is that the adversary may also
test sessions where it was active during the initial interaction, as long as there has been a subsequent
authentication step. Yet, the security of the authentication protocol ensures that only the intended honest
partner could have executed this part and also holds the correct connection key. The latter, however,
implies that this party must have indeed been the one that executed the initial connection and com-
puted the connection key. Hence, the authentication step basically confines the adversary once more to a

33

TOFU attack. Leakage resistance of the authentication protocol ensures that the extra deployment of the
connection key in the authentication step does not facilitate the adversary’s TOFU-only attack.

7.1 Match Security

Before discussing the key secrecy property, we first look at match security. We define the session identifier
sid of our protocol as follows. For the initial connections, sid consists of the x-coordinates of the DH-shares,
Bluetooth addresses, and randomly generated nonces: sid = (init, 〈ga〉x, 〈gb〉x, A,B,Na,Nb). For reconnec-
tions in BR/EDR, sid should contain the randomly generated nonces as well as the Bluetooth addresses of
the devices: sid = (reconnect,AU_RAND_C,AU_RAND_P,A,B). Finally, for authentication, we inherit
the session identifier sid′ of the authentication protocol but prepend the key word auth, sid = (auth, sid′).

Proposition 7.1 (BR/EDR Match Security) The BR/EDR Bluetooth protocol Π with an authenti-
cation protocol Ψ and a certification scheme Γ provides TOFU-or-DOFU-Match Security. That is, for
any adversary A initiating at most qs sessions, there exists an adversary B (with approximately the same
running time as A and initiating also at most qs sessions), such that

AdvMatch Security
A,Π,I (λ) ≤ q2

s · 2−|nonce| + AdvMatch Security
A,Ψ,Γ,I (λ),

where |nonce| = 128.

Proof. We first show that the partnered sessions derive the same session key. For initial connections, all
the data in the session identifier sid = (init, 〈ga〉x, 〈gb〉x, A,B,Na,Nb) completely determine the input to
the key derivation function for the connection key, such that identical session identifiers imply identical
connection keys. Furthermore, we set the session key of initial connections to be empty, such that parties
trivially agree on the same session key.

For reconnection sessions with identical connection keys, the values in the session identifiers in BR/EDR
together with the connection key deterministically define the session key. Hence, equality on session iden-
tifiers and connection keys also implies identical session keys for reconnections. Finally, authentication
sessions, starting and keeping the same connection key, derive an empty session key such that the claim
trivially holds for such sessions.

It remains to show that at most two sessions have the same identifier sid. Since all identifiers for types
init and reconnect contain random nonces (of which at least one is chosen by an honest party), the birthday
bound tells us that colliding nonces can happen with probability at most q2

s · 2−|nonce| in the total number
qs of all sessions. For all sessions, the nonce length is 128.

For authentication steps, this follows from the corresponding property of the authentication protocol.
It is straightforward to give a reduction B, which perfectly simulates all other steps of the key exchange
protocol in A’s attack but instead interacts in the Match Security game of the authentication scheme.
Since the key exchange protocol uses the same session identifiers in auth sessions as the authentication
protocol (plus the prepended constant auth), any threefold session-identifier collision on the key exchange
protocol yields a corresponding collision for the authentication protocol. Hence, we can bound such cases
by the Match Security of the authentication protocol.

7.2 Key Secrecy

As explained earlier in this section, the proof strategy is to reduce the adversary to a TOFU-only adversary.
For technical reasons, yet, we still need to dive into the original TOFU proof in [FS21]. The underlying
cryptographic assumptions (like the PRF-ODH assumption or collision resistance of truncated HMAC) are
stated formally in Appendix A.

34

Proposition 7.2 (BR/EDR Key Secrecy) The BR/EDR Bluetooth protocol Π with an authentication
protocol Ψ (with set X auth

test = {0, 1}∗ \({0, 1}128∪{0, 1}192) and f = HMAC/128) and a certification scheme
Γ provides TOFU-or-DOFU-Key Secrecy: for any adversary A with at most qs sessions, initiating only
initialization and authentication sessions, there exist adversaries B, C, D, E, and F (with roughly the same
running time as A, and C making at most qs oracle queries), such that

AdvKey Secrecy
A,Π,I (λ) ≤ q2

s · 2−|nonce| + AdvAuthentication
B,Ψ,Γ,I,X auth

test ,f
(λ) + AdvCR

C,HMAC/128(λ) + q3
s ·AdvPRF-ODH

D,PRF,G (λ)+

2 ·AdvLeakage Resistance
E,Ψ,Γ,I (λ) + 2qs ·AdvPRF

F ,HMAC/128(λ) + q2
s · 2−|ACO|,

where |nonce| = 128 and |ACO| = 64.

Note that the bound roughly matches the one in [FS21] but adds the (un)forgeability bound for the
authentication step, as well as the leakage bound for the link key in the authentication step. Indeed, the
factor q3

s in the PRF-ODH advantage and the factor q2
s ·2−|ACO| mean that the bounds are only reasonable

if one considers corresponding bounds on the number of sessions, which can occur in a setting.
Let us highlight the term AdvCRC,HMAC/128(λ) in the above bound. This term captures the likelihood of

collisions when deriving the link key via truncated HMAC in BR/EDR and is used in the proof to argue
that the authentication step (which ranges also over the link key) must be carried out by the same party
as in the initial connection establishment (in which exactly this link key has been created). Our results
would transfer to BLE almost immediately, if we could argue a similar term for the collision resistance
of the long-term key derivation function AES-CMAC in BLE. Unfortunately, this would be hard to show,
especially in light of known malleability attacks [CE21].

Proof. We prove the claim by performing the game hops, until we finally reach a game where the adversary
always receives independent random keys from the Test oracle, no matter what value the challenge bit b
has. We let Game0 be the original attack of A on key secrecy. To simplify the presentation, we assume the
adversary never reveals or tests an empty session key of a session in mode mode = init or mode = auth.
We also write Pr[Gamei] to denote the probability that the adversary predicts the challenge bit in Gamei
correctly, minus the guessing probability of 1/2.
Game 1. In Game1, we assume that there are no three sessions in mode mode = init with the same nonce
entries NA, NB in the session identifier, and thus in particular also with the same session identifier. This
happens with probability at most q2

s · 2−|nonce| for the 128-bit nonces exchanged in the pairing step.
Game 2. Declare the adversary to lose if, in a session lbl of type auth, the verifier accepts the partner
lbl.pid as authentic (lbl.isPartnerAuth = true), implying that the partner was honest upon completion of
the session (lbl.pid /∈ C), but there is no honest session lbl′ with the same session identifier (lbl.sid = lbl′.sid)
and the same connection key (lbl.ConnectKey = lbl′.ConnectKey).

This immediately gives a contradiction to the authentication property of protocol Ψ. Namely, we can
simulate A’s attack by choosing all other data, except for the authentication part, locally. We construct
an algorithm B relaying all authentication steps to the corresponding oracles in the authentication game,
setting the connection key in all initializations via aux = (set, v) to the known value v from the simulation.
Note that key exchange sessions can only run in mode auth if they have a valid connection key in the
first place. Also note that B does not need the AuthTest oracle when playing against the authentication
property.

Since there is a bijection from session identifiers for the authentication step in the key exchange pro-
tocol to the ones of the plain authentication protocol (prepending resp. pruning the prefix auth) and B’s
simulation is perfect, it follows that any violation according to Game2 immediately breaks authentication
of protocol Ψ. Hence,

Pr[Game1] ≤ Pr[Game2] + AdvAuthenticationB,Ψ,Γ,I,X auth
test ,f

(λ).

35

Remark: We would now like to conclude that, after a successful run of the authentication step, the connection
keys have been generated genuinely between two honest parties, akin to the TOFU setting. But the previous game hop
only means that there must be an honest party, which has been partnered in the authentication step and also holds
the same connection key. We next conclude that these two parties must have also been partnered in the initialization
phase. This follows from the fact that, in BR/EDR, the connection key is computed via a truncated HMAC and
thus provides a form of collision resistance. We are not aware of one can draw the same conclusion for BLE, where
the connection key is computed via the malleable AES-CMAC function.
Game 3. Declare the adversary to lose if there exists two distinct accepting sessions (lbl 6= lbl′), both in the
mode = init, which are not partnered (lbl.sid 6= lbl′.sid) but hold the same connection keys, lbl.ConnectKey =
lbl′.ConnectKey.

Note that the distinct session identifiers lbl.sid, lbl′.sid are given by the x-coordinates of the DH values
〈ga〉x, 〈gb〉x, the nonces N1, N2, and the Bluetooth addresses A1, A2 from which the BR/EDR connection
key/link key is derived as

HMAC(W,N1|N2|kIDBR/EDR|A1|A2)/2128,

where kIDBR/EDR is a constant and W = 〈gab〉x is the x-coordinate of the shared DH key. It follows that
if there are two sessions lbl, lbl′ as above, then we get a collision in the truncated HMAC output and thus
a collision in (truncated) SHA-256. Therefore,

Pr[Game2] ≤ Pr[Game3] + AdvCRC,HMAC/128(λ).

Game 4. In all sessions lbl of mode init, upon acceptance, replace the connection key ConnectKey as
follows:

1. If there is a partnered session lbl′, which has accepted before—there can be at most one by the
previous game hops—set lbl.ConnectKey← lbl′.ConnectKey.

2. Else, if there exists an (incomplete) session lbl′, which upon acceptance would set the same session
identifier lbl.sid, i.e., which has sent and received the same data gx, gy, NA, NB, A,B from which the
connection key is derived, then pick the connection key lbl.ConnectKey randomly.

3. In any other case, compute the connection key according to the protocol.

Note regarding case 2 that we cannot have a pairing step in which session lbl accepts and another (incom-
plete) session lbl′ of an honest party has not yet received the entire data gx, gy, NA, NB, A,B but becomes
partnered later with lbl. The reason is that both parties eventually exchange the confirmation values EA
and EB such that, upon acceptance of lbl, the session lbl′ must have sent its confirmation value already.
The key for computing the confirmation value is based upon the data gx, gy, NA, NB, A,B.

We argue that these replacements are valid according to the PRF-ODH assumption. Recall that the
PRF-ODH assumption states that an adversary receives challenge values U = gu and V = gv, picks a
challenge label x∗, and cannot distinguish the value PRF(〈guv〉x, x) from random, even when learning
related PRF values (for U and for V) for other labels via ODH oracles. See Appendix A for a formal
definition.

As in the proof for the TOFU property [FS21], we now do a hybrid argument, gradually replacing
all the (at most qs) actual connection keys in case 2 by random values. Formally, for i picked randomly
between 1 and qs, we replace the first i − 1 of such keys by random values, and the i-th value by the
challenge in the PRF-ODH game. To this end, we first guess the right DH-key shares among the at most
q2
s many possibilities, and inject the given challenge values gu, gv when the next DH key is triggered and
reaches our guesses. If our guess has been wrong, then we output a random prediction for the PRF-ODH
challenge bit. In any other case, we use the prediction of the key exchange adversary. All other connection
keys, including the ones computed according to case 3, are derived by calling the ODH oracle. Note that,

36

since nonces are unique per session according to Game1, any query to the ODH oracles are for a different
label than the one in the challenge value.

The analysis in [FS21] reveals that we lose a factor q3
s in the PRF-ODH advantage when progressing

from Game3 to Game4, due to the at most qs hybrids and the at most q2
s possibilities to inject the challenge

values gu, gv. It follows that

Pr[Game3] ≤ Pr[Game4] + q3
s ·AdvPRF-ODH

D,PRF,G (λ).

Remark: Note that this means that we have substituted all connection keys, which are created between two
honest parties in an undisturbed pairing step by random values, e.g., if isTOFU = true. The previous games, Game2
and Game3, show that any other “testable” session (in which isPartnerAuth = true) must have such an undisturbed
pairing step, too. It follows that we are already using random keys instead in all sessions, which could potentially be
tested.

Mark the sessions in which we replace ConnectKey by a random value according to case 2, or in
which we set ConnectKey according to case 1 for an already substituted key ConnectKey, as having secret
connection keys. Observe that these are sessions, which have an initial (and unique) honest partner session
by construction. In particular, we can identify sessions, which have the same (secret) connection key via
such initial pairings.

The next step is to argue that the authentication step cannot facilitate the adversary’s task in computing
a session key (in a reconnection step), due to the leakage resistance of the authentication step. To this
end, the game also keeps an initially empty table T [] to store values, which we use in the authentication
step.
Game 5. Next, in each initialized session lbl of mode auth with a secret connection key, use (yet another)
random value T [ConnectKey]←$ {0, 1}|ConnectKey| instead of ConnectKey (unless a value T [ConnectKey] has
already been chosen for this connection key, in which case we reuse the value T [ConnectKey]).

Note that the adaption corresponds to the behavior of the AuthTest oracle in the leakage resistance
game. It is therefore straightforward to give a reduction E to leakage resistance. To this end, E upon asked
by the key exchange adversary to create a new authentication session for some session lbl with a secret
connection key, calls the AuthTest oracle to create a new authentication session, either with the actual
connection key or with a fresh (but consistent) one, and then relays the communication with the adversary
and this session. For genuine connection keys picked by AuthTest, this corresponds to Game4, and for fresh
keys this corresponds to Game5. Note that E can simulate additional reconnection steps towards A for
such unknown connection keys, and potentially subsequent Reveal queries about such session keys, with
the help of its side-channel oracle AuthSide: Simulate the reconnection protocol according to the game
and query AuthSide about the right input (lbl, x) to get the device key and the actual session key. By
construction, we then query HMAC only about inpout values x of 128 bits (for the device key) and 192
bits (for the session key). Since we excluded such inputs from the set X auth

test of admissible test queries,
reduction E can safely use AuthSide to get these values.

Taking into account the factor 2 for moving from prediction to indistinguishability in the authentication
game, we get

Pr[Game4] ≤ Pr[Game5] + 2 ·AdvLeakage Resistance
E,Ψ,Γ,I,X auth

test ,f
(λ).

Remark: Note that this means that authentication steps in sessions with secret connection keys actually do
not use the connection key anymore. In particular, the only time connection keys are used to derive values is in
reconnection steps.
Game 6. In any session lbl of mode reconnect with secret connection key, (consistently) replace the
computation HMAC(LK, . . .)/2128 by random values. Here, consistently means that fresh inputs yield
fresh random outputs, but repeating inputs yield the previous answers again.

This easily follows from the pseudorandomness of HMAC, i.e., we can straightforwardly simulate the
game for the adversary and give a reduction to qs instances of the pseudorandom function HMAC. In the

37

simulation, we identify the right instance via the session identifiers in the pairing step. Thus,

Pr[Game5] ≤ Pr[Game6] + qs ·AdvPRFF ,HMAC(λ).

In particular, we now have replaced the device keys dk← HMAC(LK, kIDDev|BD_ADDRA|BD_ADDRB)/2128

in such sessions by random values.
Game 7. In any session lbl of mode reconnect with secret connection key, (consistently) replace the val-
ues SRES_C|SRES_P|ACO ← HMAC(dk,AU_RAND_C|AU_RAND_P)/2128 by random values. Once
more, since dk is already random, we can conclude from the pseudorandomness of HMAC that

Pr[Game6] ≤ Pr[Game7] + qs ·AdvPRFF ,HMAC(λ).

Here we use again the fact that we can ensure consistency via the session identifiers in the pairing step.
(For sake of simplicity, we use the same adversary F for the bound here as in the previous game hop and
account for this in the theorem’s bound via a factor 2.)
Game 8. Declare the adversary to lose if there are two accepting sessions lbl and lbl′, both in mode
reconnect, for the same secret connection key, which are not partnered but such that ACO and BD_ADDRA
BD_ADDRB are identical in both sessions.

Fix two sessions lbl and lbl′ as above. Since the sessions are not partnered but have the same Blue-
tooth addresses, and the session identifier is given by sid = (reconnect,AU_RAND_C,AU_RAND_P,
BD_ADDRA, BD_ADDRB), we must have that the parties’ nonces (AU_RAND_C,AU_RAND_P) in ses-
sion lbl and (AU_RAND_C′,AU_RAND_P′) in session lbl′ must be distinct. It follows that the values
SRES_C|SRES_P|ACO and SRES_C′|SRES_P′|ACO′ in the two sessions are picked randomly and in-
dependently according to Game7. Hence, we have a collision on the ACO-part with probability at most
2−64. Since we have at most q2

s of such session pairs lbl, lbl′, we get

Pr[Game7] ≤ Pr[Game8] + q2
s · 2−64.

We can now conclude that all session keys of reconnect sessions with secret connection keys are gen-
erated independently and randomly if they are not partnered. This holds as they either have identical
connection keys, since they are partnered in the corresponding init session, but unless they are part-
nered in the reconnection sessions and use different input values to compute the session key kAES ←
HMAC(LK, kIDAES|BD_ADDRA|BD_ADDRB|ACO)/2128 according to Game8. Or, they are not partnered via
an init session and thus have independent connection keys and all subsequent values are chosen indepen-
dently. Note that the Test oracle forbids to test a reconnect session and reveal its partner, such that any
admissible Test for a reconnect session yields an independent and random answer in both cases b = 0 and
b = 1. Now the adversary has a view on two completely random session keys and can guess only with the
probability of 1/2.

8 Known Attacks on Bluetooth and our Mitigation
In this section, we briefly describe in how far our solution prevents known attacks. We start with an
example of the Ghost Keystroke attack on Bluetooth from [ZWD+20] and show how it is mitigated by our
solution. We continue with a short summary of other known attacks on Bluetooth and explain the efficacy
of our method against these attacks. More detailed explanation of the attacks and their fixes can be found
in Section 4.1.

38

8.1 Example of the Ghost Keystroke Attack

The source of the Ghost Keystroke Attack is the impersonation attack on PKE discovered by Zhang et
al. [ZWD+20] (see Figure 8 for a pictorial description). In this attack, a user tries to connect two devices,
one of which (Central A) has a screen to display the digital passkey, and the second one (Peripheral B)
has an input capability for the user to enter the digits. If an MitM-attacker M had prior access to the
input device B and established a connection (by sending its own DH public share gm and computing the
compromised LKcomp), it can receive the keystroke entered at this compromised device. When the user
initiates a connection between devices A and B, the attacker connects to the output device A, which
displays the digits. The user enters those digits on the compromised input device B, which sends the
keystroke with the passkey to the attacker. Eventually, the attacker successfully impersonates the input
device B and connects its fake input device to the user’s honest output device A without the user noticing.

A
Central

M
MitM

B
Peripheral

Establish a connection

ga gm

gm gb

Derive LKcompDerive LKcomp

Connection established, M
can receive keystrokes from B

PKE

Show ra to user User enters rb
Learn rb via keystroke

Set ra← rb

Cai

Cmi

Nai

Nmi

Repeat i=1..20 times

Derive LKpke Derive LKpke

Figure 8: Message Flow for Ghost Keystroke Attack [ZWD+20, JZL23] on Secure Hash Modification [TH21]. The MitM
adversary M manages to impersonate B by establishing a connection with it to receive the leakage of the passkey. Each
connection is independent, and the honest devices derive different long-term keys in each: LKpke by Central A resp. initially
compromised LKcomp by Peripheral B.

39

The impersonation attack on PKE from [ZWD+20] was generalized by Jangid et al. [JZL23] as the
Ghost Keystroke Attack. The attack assumes that one device is leaking the passkey: e.g., if the adversary
had a physical access to the device and established the connection during the user’s absence, then the
attacker can receive the keystrokes via this connection whenever the user enters anything on this device.
The Ghost Keystroke Attack is valid for PKE, and even the fix for PKE suggested in [SCH+23] and the
Secure Hash Modification fix in [TH21] do not protect against it (the principle of the attack is the same
as shown in Figure 8). When the adversary not only can receive the keystrokes but also inject malicious
strings on the compromised device’s screen, the attack is even extendable to Dual Passkey Entry in [TH21],
unmodified NC, and the fix for NC in [SCH+23].

The adversary can launch the Ghost Attack on our scheme only if it has the power to forge in the au-
thentication process, assuming it has been carried out at some point. Since this step also authenticates the
link key LK, and the honest device derives different from the compromised device’s LK in the correspond-
ing sessions, the adversary will not be able to successfully authenticate, unless it breaks unforgeability of
the authentication procedure.

8.2 Efficacy of Authentication Against Attacks

Prevented Attacks. The attacks we prevent are commonly addressing the capabilities exchange stage,
where the adversary can get in between the devices and replace the genuine capabilities with the needed for
itself without any further authentication. For example, the adversary can replace the IO capabilities in the
exchanged messages and trick devices into the DH-like JW association model, as shown in several works,
e.g., [HH07, HT10]. If devices have screens, the adversary can launch even more sophisticated attacks,
such as a method confusion attack [vTPFG21] and its extension, pairing confusion attack [CADE23]. With
these attacks, the devices are tricked into using different association models, which look the same from
the user perspective, and in case of the pairing confusion—even into different protocols that look alike.
Changing initiator/responder packets [TH21] allows the adversary to trick the parties into the believe that
each is the initiator/responder. While the attack itself does not lead to the key leakage, cryptographically
such attacks should not be allowed in any good protocol.

In each of the above attacks, the devices will derive pairwise-different connection keys. Hence, we can
expect the authentication step to bring forward this discrepancy, as the keys LKs and hence the genuine
signatures will not match—unless the adversary breaks authenticity, e.g., forges a signature.

We note that to prevent capability mismatches, both fixes in [TH21] and [SCH+23] suggest modifica-
tions to the concrete standalone protocols. They do not take into account the interplay of all the different
association models. That is, the adversary can still downgrade the communication to the JW association
model by simply modifying the IOcap of devices, which, in turn, will not even enter the modified protocol
and simply stay at the less secure association model.

Potentially Prevented Attacks. The prevention of some attacks is not possible because of some
vulnerable parts of the Bluetooth protocol. For instance, the protocols in BLE employ the weak function
AES-CMAC that is not collision resistant. Bluetooth has a cross-platform mechanism to derive a key on
one transport channel using the key derived from another transport. The cross-key derivation mechanism,
however, uses AES-CMAC for these procedures: it would not be possible to carry out our proof for this
function, due to similar weaknesses as in the standalone BLE setting. The KNOB attack [ATR20b] and
the Keysize Confusion attack [SCH+23] in BLE could have been mitigated in principle, as the negotiation
is done during the capability exchange stage. Yet, due to the usage of the non-collision-resistant function
AES-CMAC, we cannot show security against these attacks in BLE.

40

Attacks Escaping our Solution. In BR/EDR, attacks on the negotiation mechanism [ATR19, ATR20b]
cannot be prevented by our method, as the negotiation mechanism has its own protocol, independent from
the Bluetooth pairing step. In addition, all Legacy protocols do not withstand against the passive adversary
(as shown, e.g., in [Rya13, JW01]) and hence are not possible to be secured. Initiator resp. responder roles
are tied to the Central resp. Peripheral roles in Bluetooth; by exploiting the challenge-response procedure
in Legacy reconnections in BR/EDR [ATR20a], the adversary can make only the Central to have asked
the Peripheral to respond to the challenge itself. If the Central device is a target, the attacker asks for a
role switch and exploits the one-wayness again. For Secure Connections, the attacker can downgrade to
Legacy reconnections. The attacks themselves do not leak or help the adversary to learn the link key LK,
nor the encryption keys. The current version of the Core Specification forbids the downgrade to Legacy
reconnections for Secure Connections pairing, disallows role switching during the reconnection in progress,
and enforces the mutual authentication in Legacy reconnections.

Other attacks. The reflection attack [CE21] allowed the adversary to use a connection with one party
to learn the secret passkey by simply reflecting the values sent by this party. This passkey was then used
in a connection with another party to impersonate the first. This attack was mitigated in the Bluetooth
Core Specification v.5.3, which mandates to check the equality of the received values to their own sent
values.

A similar idea to KNOB and BIAS is used in BLUFFS attacks [Ant23]. The attack exploits the Legacy
encryption key derivation, which bases the randomness of the key on only one nonce from a Central.
Hence, the adversary can force the Peripheral to reuse the same nonce in multiple sessions. This is only
fixable by forbidding the usage of the same nonce.

An implementation drawback with the wrong handling of the errors [WNK+20] allowed accessing the
attributes, and spoofing the responses [WNK+20] could lead to the “impersonation” of one device towards
another. The latter attack may only be fixed by enforcing the encryption by default, as the attack does
not happen during the key establishment or authentication stages but rather after the encryption should
have been enabled.

Two relay attacks (two-sided and one-sided) [LÇA+04] targeted the Legacy reconnection in BR/EDR.
The first attack simply relays the messages in the Legacy mutual reconnection step between two parties,
the second allows relaying the challenge from one party to another by terminating one of the connections.
These attacks do not lead to the adversary learning the key, hence we leave the attacks out of our scope.

9 Conclusion
In this work, we proposed a scheme based on certificates to add authentication to the Bluetooth Secure
Connections protocol and to prevent many known attacks on the protocol. We showed the cryptographic
strength of the solutions in an extension of common game-based security models. It is noteworthy that
our solution only yields a provably secure version for BR/EDR, wherein HMAC is used to derive link
keys. In contrast, our proof technique falls short of working in the BLE setting, where the long-term key
is computed via AES-CMAC. The reason lies in the lack of collision resistance of the “hashing function
AES-CMAC” [Blu23]. It would be easy to lift our proof if, say, also HMAC would be used in BLE. Indeed,
we are positive that one could then also extend our result to the cross-transport key derivation (CTKD)
mechanism for dual-mode devices, wherewith a BR/EDR link key can be converted to a BLE long-term
key and vice versa. This would allow us to also rule out corresponding CTKD attacks. Given the security
issues with AES-CMAC, also the malleability problems in Bluetooth Mesh with this function [CE21], it
may be worth to consider switching.

41

Acknowledgments
We thank the anonymous reviewers and the shepherd for the valuable feedback that helped to improve the
paper. This research work has been funded by the German Federal Ministry of Education and Research
and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support
of the National Research Center for Applied Cybersecurity ATHENE. It has also been funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — 251805230/GRK 2050 and
23661529/SFB 1119.

References
[Ant23] Daniele Antonioli. BLUFFS: Bluetooth forward and future secrecy attacks and defenses. In

Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, editors, ACM
CCS 2023: 30th Conference on Computer and Communications Security, pages 636–650,
Copenhagen, Denmark, November 26–30, 2023. ACM Press. (Cited on pages 3, 4, 9, 14, and 41.)

[ASS23] Afonso Arriaga, Petra Sala, and Marjan Skrobot. Wireless-channel key exchange. In Mike
Rosulek, editor, Topics in Cryptology – CT-RSA 2023, volume 13871 of Lecture Notes in
Computer Science, pages 672–699, San Francisco, CA, USA, April 24–27, 2023. Springer,
Heidelberg, Germany. (Cited on page 17.)

[ATR19] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Bonne Rasmussen. The KNOB is bro-
ken: Exploiting low entropy in the encryption key negotiation of bluetooth BR/EDR. In Nadia
Heninger and Patrick Traynor, editors, USENIX Security 2019: 28th USENIX Security Sym-
posium, pages 1047–1061, Santa Clara, CA, USA, August 14–16, 2019. USENIX Association.
(Cited on pages 3, 4, 9, 11, 26, and 41.)

[ATR20a] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. BIAS: Bluetooth imper-
sonation AttackS. In 2020 IEEE Symposium on Security and Privacy, pages 549–562, San
Francisco, CA, USA, May 18–21, 2020. IEEE Computer Society Press. (Cited on pages 3, 4, 9,
13, and 41.)

[ATR20b] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. Key negotiation downgrade
attacks on bluetooth and bluetooth low energy. ACM Trans. Priv. Secur., 23(3), jul 2020.
(Cited on pages 3, 4, 9, 11, 26, 40, and 41.)

[ATRP22] Daniele Antonioli, Nils Ole Tippenhauer, Kasper Rasmussen, and Mathias Payer. BLURtooth:
Exploiting cross-transport key derivation in bluetooth classic and bluetooth low energy. In
Yuji Suga, Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors, ASIACCS 22: 17th ACM
Symposium on Information, Computer and Communications Security, pages 196–207, Na-
gasaki, Japan, May 30 – June 3, 2022. ACM Press. (Cited on pages 4, 13, and 15.)

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH: Re-
lations, instantiations, and impossibility results. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Part III, volume 10403 of Lecture Notes in
Computer Science, pages 651–681, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany. (Cited on page 47.)

[Blu23] Bluetooth Special Interest Group (SIG). Bluetooth core specification, January 2023. Ver. 5.4.
(Cited on pages 3, 19, 27, 28, 32, and 41.)

42

[BN19] Eli Biham and Lior Neumann. Breaking the bluetooth pairing - the fixed coordinate invalid
curve attack. In Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019: 26th Annual
International Workshop on Selected Areas in Cryptography, volume 11959 of Lecture Notes
in Computer Science, pages 250–273, Waterloo, ON, Canada, August 12–16, 2019. Springer,
Heidelberg, Germany. (Cited on page 9.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes
in Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994. Springer,
Heidelberg, Germany. (Cited on pages 5 and 18.)

[CADE23] Tristan Claverie, Gildas Avoine, Stéphanie Delaune, and José Lopes Esteves. Tamarin-based
Analysis of Bluetooth Uncovers Two Practical Pairing Confusion Attacks. working paper or
preprint, April 2023. (Cited on pages 3, 4, 9, 11, 15, 16, and 40.)

[CE21] Tristan Claverie and José Lopes Esteves. Bluemirror: Reflections on bluetooth pairing and
provisioning protocols. In 2021 IEEE Security and Privacy Workshops (SPW), pages 339–351,
2021. (Cited on pages 4, 5, 14, 15, 35, and 41.)

[CPST22] Matthias Cäsar, Tobias Pawelke, Jan Steffan, and Gabriel Terhorst. A survey on bluetooth
low energy security and privacy. Comput. Netw., 205(C), mar 2022. (Cited on page 9.)

[CS07] Richard Chang and Vitaly Shmatikov. Formal analysis of authentication in bluetooth device
pairing. In Proceedings of LICS/ICALP Workshop on Foundations of Computer Security and
Automated Reasoning for Security Protocol Analysis (FCS-ARSPA), volume 45, Wrocław,
Poland, jul 2007. (Cited on page 15.)

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st
Conference on Computer and Communications Security, pages 1193–1204, Scottsdale, AZ,
USA, November 3–7, 2014. ACM Press. (Cited on page 18.)

[FL10] Marc Fischlin and Anja Lehmann. Delayed-key message authentication for streams. In Daniele
Micciancio, editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lec-
ture Notes in Computer Science, pages 290–307, Zurich, Switzerland, February 9–11, 2010.
Springer, Heidelberg, Germany. (Cited on page 17.)

[FOR17] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie. Security of symmetric primitives under
incorrect usage of keys. IACR Transactions on Symmetric Cryptology, 2017(1):449–473, 2017.
(Cited on page 48.)

[FS21] Marc Fischlin and Olga Sanina. Cryptographic analysis of the bluetooth secure connection
protocol suite. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2021, Part II, volume 13091 of Lecture Notes in Computer Science, pages 696–
725, Singapore, December 6–10, 2021. Springer, Heidelberg, Germany. (Cited on pages 5, 15, 17,
18, 19, 32, 34, 35, 36, 37, and 47.)

[HH07] Konstantin Hypponen and Keijo M.J. Haataja. “nino” man-in-the-middle attack on bluetooth
secure simple pairing. In 2007 3rd IEEE/IFIP International Conference in Central Asia on
Internet, pages 1–5, 2007. (Cited on pages 3, 4, 8, 10, 15, and 40.)

43

[HT10] Keijo Haataja and Pekka Toivanen. Two practical man-in-the-middle attacks on bluetooth
secure simple pairing and countermeasures. IEEE Transactions on Wireless Communications,
9(1):384–392, 2010. (Cited on pages 4, 8, 10, and 40.)

[JKSS10] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. Generic compilers for authenti-
cated key exchange. In Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010,
volume 6477 of Lecture Notes in Computer Science, pages 232–249, Singapore, December 5–9,
2010. Springer, Heidelberg, Germany. (Cited on pages 5, 16, and 17.)

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 273–
293, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on
page 47.)

[JW01] Markus Jakobsson and Susanne Wetzel. Security weaknesses in Bluetooth. In David Naccache,
editor, Topics in Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer
Science, pages 176–191, San Francisco, CA, USA, April 8–12, 2001. Springer, Heidelberg,
Germany. (Cited on pages 3, 4, 9, 10, and 41.)

[JZL23] Mohit Kumar Jangid, Yue Zhang, and Zhiqiang Lin. Extrapolating formal analysis to uncover
attacks in bluetooth passkey entry pairing. NDSS 2023, 2023. (Cited on pages 3, 4, 15, 39, and 40.)

[KHN+14] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 7296, October 2014. (Cited on pages 5 and 17.)

[Kra16] Hugo Krawczyk. A unilateral-to-mutual authentication compiler for key exchange (with ap-
plications to client authentication in TLS 1.3). In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd
Conference on Computer and Communications Security, pages 1438–1450, Vienna, Austria,
October 24–28, 2016. ACM Press. (Cited on pages 5 and 17.)

[LÇA+04] Albert Levi, Erhan Çetintaş, Murat Aydos, Çetin Kaya Koç, and M. Ufuk Çağlayan. Relay
attacks on bluetooth authentication and solutions. In Cevdet Aykanat, Tuǧrul Dayar, and
İbrahim Körpeoğlu, editors, Computer and Information Sciences - ISCIS 2004, pages 278–288,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. (Cited on pages 4, 14, and 41.)

[Lin09] Andrew Y. Lindell. Comparison-based key exchange and the security of the numeric compar-
ison mode in Bluetooth v2.1. In Marc Fischlin, editor, Topics in Cryptology – CT-RSA 2009,
volume 5473 of Lecture Notes in Computer Science, pages 66–83, San Francisco, CA, USA,
April 20–24, 2009. Springer, Heidelberg, Germany. (Cited on page 14.)

[Pie20] Krzysztof Pietrzak. Delayed authentication: Preventing replay and relay attacks in private
contact tracing. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran,
editors, Progress in Cryptology - INDOCRYPT 2020: 21st International Conference in Cryp-
tology in India, volume 12578 of Lecture Notes in Computer Science, pages 3–15, Bangalore,
India, December 13–16, 2020. Springer, Heidelberg, Germany. (Cited on page 17.)

[Ros13] Tomas Rosa. Bypassing passkey authentication in Bluetooth low energy. Cryptology ePrint
Archive, Report 2013/309, 2013. https://eprint.iacr.org/2013/309. (Cited on pages 9
and 10.)

44

https://eprint.iacr.org/2013/309

[Rya13] Mike Ryan. Bluetooth: With low energy comes low security. In 7th USENIX Workshop on
Offensive Technologies (WOOT 13), Washington, D.C., August 2013. USENIX Association.
(Cited on pages 3, 4, 9, 10, and 41.)

[SCH+23] Min Shi, Jing Chen, Kun He, Haoran Zhao, Meng Jia, and Ruiying Du. Formal analysis and
patching of BLE-SC pairing. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 37–52, Anaheim, CA, August 2023. USENIX Association. (Cited on pages 3, 4, 9, 10, 11,
13, 16, and 40.)

[Sil09] Joseph H. Silverman. Algorithmic Aspects of Elliptic Curves, pages 363–408. Springer New
York, New York, NY, 2009. (Cited on page 6.)

[SMS18] Da-Zhi Sun, Yi Mu, and Willy Susilo. Man-in-the-middle attacks on secure simple pairing in
bluetooth standard v5.0 and its countermeasure. Personal Ubiquitous Comput., 22(1):55–67,
feb 2018. (Cited on page 15.)

[SS19] Da-Zhi Sun and Li Sun. On secure simple pairing in bluetooth standard v5.0-part i: Authen-
ticated link key security and its home automation and entertainment applications. Sensors,
19(5), 2019. (Cited on page 14.)

[SSL20] Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving authenticated key ex-
change and the case of IKEv2. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 12111 of Lecture Notes in Computer Science, pages
567–596, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg, Germany. (Cited on pages 5
and 17.)

[TH21] Michael Troncoso and Britta Hale. The bluetooth CYBORG: Analysis of the full human-
machine passkey entry AKE protocol. In ISOC Network and Distributed System Security
Symposium – NDSS 2021, Virtual, February 21–25, 2021. The Internet Society. (Cited on
pages 4, 10, 11, 12, 13, 14, 15, 16, 39, and 40.)

[vTPFG21] Maximilian von Tschirschnitz, Ludwig Peuckert, Fabian Franzen, and Jens Grossklags.
Method confusion attack on bluetooth pairing. In 2021 IEEE Symposium on Security and Pri-
vacy, pages 1332–1347, San Francisco, CA, USA, May 24–27, 2021. IEEE Computer Society
Press. (Cited on pages 3, 4, 8, 11, 12, 15, 16, and 40.)

[WNK+20] Jianliang Wu, Yuhong Nan, Vireshwar Kumar, Dave (Jing) Tian, Antonio Bianchi, Math-
ias Payer, and Dongyan Xu. BLESA: Spoofing attacks against reconnections in bluetooth
low energy. In 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX
Association, August 2020. (Cited on pages 4, 14, 15, and 41.)

[WWX+22] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave Jing Tian, and Antonio Bianchi. Formal model-
driven discovery of bluetooth protocol design vulnerabilities. In 2022 IEEE Symposium on
Security and Privacy, pages 2285–2303, San Francisco, CA, USA, May 22–26, 2022. IEEE
Computer Society Press. (Cited on pages 4, 13, and 15.)

[WWX+24] Jianliang Wu, Ruoyu Wu, Dongyan Xu, Dave (Jing) Tian, and Antonio Bianchi. Sok: The
long journey of exploiting and defending the legacy of king harald bluetooth. 2024. (Cited on
page 9.)

45

[Yin23] Haotian Yin. Security analysis of bluetooth secure simple pairing protocols with extended
threat model. Journal of Information Security and Applications, 72:103385, 2023. (Cited on
page 15.)

[ZWD+20] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. Breaking secure
pairing of bluetooth low energy using downgrade attacks. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020: 29th USENIX Security Symposium, pages 37–54.
USENIX Association, August 12–14, 2020. (Cited on pages 3, 4, 8, 15, 38, 39, and 40.)

A Security Assumptions
In this section we define the necessary assumptions formally. We usually give them in the common
asymptotic setting, but the definitions of the advantages can be readily applied to our concrete security
statements as well.

EUF-CMA of Signature and Certification Schemes. A signature scheme Σ = (KGen,Sign,Vf)
consists of the key generation algorithm outputting a key pair (sk, pk)←$ KGen(1λ), the signing algorithm
σ←$ Sign(sk,m) outputting a signature σ for message m, and the verification algorithm d← Vf(pk,m, σ)
returning a decision bit d. Completeness demands that for any security parameter λ, any valid key pair
(sk, pk)←$ KGen(1λ), any message m and any signature σ←$ Sign(sk,m), we always have Vf(pk,m, σ) = 1.

Existential unforgeability under chosen message attacks demands that no adversary can forge signa-
tures, even after having seen signatures for other messages:

Definition A.1 (EUF-CMA) A signature scheme Σ is EUF-CMA if for any PPT adversary A, we
have

AdvEUF-CMA
A,Σ (λ) := Pr

[
ExpEUF-CMA

A,Σ

]
is negligible, where

ExpEUF-CMA
A,Σ

(sk, pk)←$ KGen(1λ)
(m∗, σ∗)←$ASign(sk,·)(pk)
return 1 if

Vf(pk,m∗, σ∗) = 1 and m∗ has not been queried to Sign(sk, ·)

The definition of unforgeability is analogously for certification schemes Γ = (CertKGen,Cert,CertVf),
when viewing the issued certificate as the signature and the certified data as the message.

Pseudorandom Function. A pseudorandom function PRF for security parameter λ takes as input a
key k ∈ {0, 1}λ and some input x and returns a value y ∈ {0, 1}λ. The outputs should look random,
i.e., they should be indistinguishable from random (but consistent) answers. In the definition below, we
capture consistency of the random answers by maintaining an initially empty list F of already evaluated
inputs.

Definition A.2 (PRF Assumption) A function PRF is pseudorandom if for any PPT adversary A,
we have

AdvPRF
A,PRF(λ) := Pr

[
ExpPRF

A,PRF

]
− 1/2

46

is negligible, where
ExpPRF

A,PRF

b←$ {0, 1}
F ← ∅
b′←$AOPRF(1λ)
return b = b′

where oracle OPRF on input x checks if x has the correct length, and returns ⊥ if not. Else it checks if
(x, y) ∈ F and returns y if so. Otherwise it computes y ← PRF(k, x) if b = 0 resp. samples y←$ {0, 1}λ if
b = 1, stores (x, y) in F , and returns y to the adversary.

PRF-ODH Assumption. We employ the version of PRF-ODH assumption from [FS21] which has been
modified to match the Bluetooth setting. The assumption intertwines a PRF-like assumption with a
Diffie–Hellman-based key generation process. It has been originally proposed in [JKSS12] and analyzed
further in [BFGJ17], and is handy when analyzing protocols like Bluetooth where Diffie–Hellman values
can be reused throughout multiple sessions.

Let G be a cyclic (multiplicatively written) group of prime order q = q(λ) with generator g, PRF :
G×{0, 1}∗ → {0, 1}∗ be a pseudorandom function, with a key k ∈ G and a string s as input, and a string
PRF(k, s) as output. For a given w ∈ Zq, let ODHw : G × {0, 1}∗ → {0, 1}∗ be the function with X ∈ G
and string s as input, and PRF(〈Xw〉x, s) as output. Let gu resp. gv with u resp. v be in the range 1 and
q/2, or in the range q/2 and q. We let PRF-ODH to use only the x-coordinate and forbid the adversary
from querying ODHu and ODHv about the challenge value guv with label x∗ and about g−uv with x∗.

Definition A.3 (PRF-ODH Assumption) The PRF-ODH assumption holds relative to G if for any
PPT adversary A, we have

AdvPRF-ODH
A,PRF,G (λ) := Pr

[
ExpPRF-ODH

A,PRF,G

]
− 1/2

is negligible, where
ExpPRF-ODH

A,PRF,G

u, v←$Z(q+1)/2 \ {0}, b←$ {0, 1}
U ← gu, V ← gv

(x∗, st)←$AODHu(·,·),ODHv(·,·)(U, V)
y0 ← PRF(〈guv〉x, x∗), y1 ← {0, 1}|y0|

b′←$AODHu(·,·),ODHv(·,·)(st, V, yb)
return b = b′

where A never makes a query (A, x) = (V ±1, x∗) to oracle ODHu resp. (B, x) = (U±1, x∗) to ODHv.

Collision Resistance. Collision resistance is more tricky to define since we cannot use the usual asymp-
totic behavior, unless we deal with keyed hash functions. Hence we only define the advantage here.

Definition A.4 (Collision Resistance) For a deterministic function Hash and adversary A, define the
collision resistance advantage as

AdvCR
A,Hash(λ) := Pr

[
ExpCR

A,Hash

]
,

47

where
ExpCR

A,Hash

(x, x′)←$A(1λ)
return 1 if x 6= x′ and Hash(x) = Hash(x′)

Key-collision Resistance of Block Ciphers. We give the definition of key collision resistance ab-
stractly for block ciphers, where a block cipher is a deterministic algorithm BC, which takes as input a
key k and value x of equal length, as well as a sign ± (to indicate if one should compute the answer in
forward or backward direction), and returns a value y of equal length as x. For each key k ∈ {0, 1}λ, the
functions BC(k, ·,+) and BC(k, ·,−) are permutations over {0, 1}λ such that BC(k,BC(k, x,+),−) = x and
BC(k,BC(k, y,−),+) = y.

Key-collision resistance of a block cipher now demands that it is infeasible to find k 6= k′ and x with
BC(k, x,+) = BC(k′, x,+). Once more, we cannot rely on the asymptotic behavior unless we introduce
keyed versions. The notion here is related to the definition of full robustness of pseudorandom functions
[FOR17] (given a PRF, find k 6= k′ and x, x′ such that PRF(k, x) = PRF(k′, x′) collide), albeit we work
with block ciphers and explicitly ask the adversary to find a collision for the same input x = x′. The latter
is indeed necessary for block ciphers since otherwise any values k 6= k′, x and x′ = BC(k′,BC(k, x,+),−)
would form a valid solution.

Definition A.5 (Key-Collision Resistance of Block Ciphers) For block cipher BC and adversary
A, define the key-collision resistance advantage as

Advkey-coll
A,BC (λ) := Pr

[
Expkey-coll

A,BC

]
,

where
Expkey-coll

A,BC

(k, k′, x)←$A(1λ)
return 1 if k 6= k′ and BC(k, x,+) = BC(k′, x,+)

B Acronyms
AKE Authenticated Key Exchange
BIAS Bluetooth Impersonation AttackS
BC Block Cipher
BLE Bluetooth Low Energy
BLESA Bluetooth Low Energy Spoofing Attack
BLUFFS BLUetooth Forward and Future Secrecy
BR/EDR Basic Rate/Enhanced Data Rate
CR Collision Resistance
CSIA Cross Stack Illegal Access
DDH Decisional Diffie–Hellman
DOFU Deferrable outside first use
ECDH Elliptic Curve Diffie–Hellman
EUF-CMA Existential Unforgeability under Chosen Message Attack
IO Input/Output
JW Just Works
KE Key Exchange

48

KNOB Key Negotiation of Bluetooth
LE Low Energy
LK Link Key
LTK Long-term key
L(T)K Long-term and Link key
MAC Media Access Control or Message Authentication Code
MitM Machine in the Middle
ODH Oracle Diffie–Hellman
NINO No Input No Output
NumCom Numeric Comparison
OOB Out of Band
PDU Protocol Data Unit
PKE Passkey Entry
PKI Public-key infrastructure
PPT Probabilistic Polynomial-time
PRF Pseudorandom Function
PRF-ODH Pseudorandom-function oracle-Diffie–Hellman
SC Secure Connections
SCO Secure Connections Only
SIG Bluetooth Special Interest Group
SMP Security Manager Protocol
SSP Secure Simple Pairing
STK Short-term key
TK Temporal key
TOFU Trust on the first use

49

	Introduction
	Bluetooth's Etiology
	Contributions
	Applicability to BR/EDR and BLE
	Paper Structure

	Notation
	General Notation
	Bluetooth-specific Notation

	Bluetooth Background
	Related Work
	Attacks on Bluetooth
	Analyses of Bluetooth Security Protocols
	Suggested Countermeasures
	Related Cryptographic Frameworks

	Enhancing the TOFU Security Model
	TOFU-or-DOFU Security Model
	Match Security and Key Secrecy

	Authentication
	Security Model
	Leakage-resistant Authentication Protocols

	Security of the BR/EDR Protocol with Deferrable Authentication
	Match Security
	Key Secrecy

	Known Attacks on Bluetooth and our Mitigation
	Example of the Ghost Keystroke Attack
	Efficacy of Authentication Against Attacks

	Conclusion
	Security Assumptions
	Acronyms

