
Cryptanalysis of Algebraic Verifiable Delay
Functions⋆

Alex Biryukov1, Ben Fisch2, Gottfried Herold3, Dmitry Khovratovich4, Gaëtan
Leurent5, María Naya-Plasencia5, and Benjamin Wesolowski6

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
2 Yale University, New Haven, USA

3 Ethereum Foundation, Bonn, Germany
4 Ethereum Foundation, Luxembourg City, Luxembourg

5 INRIA, Paris, France
6 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France

Abstract. Verifiable Delay Functions (VDF) are a class of cryptographic
primitives aiming to guarantee a minimum computation time, even for an
adversary with massive parallel computational power. They are useful in
blockchain protocols, and several practical candidates have been proposed
based on exponentiation in a large finite field: Sloth++, Veedo, MinRoot.
The underlying assumption of these constructions is that computing an
exponentiation xe requires at least log2 e sequential multiplications.
In this work, we analyze the security of these algebraic VDF candidates.
In particular, we show that the latency of exponentiation can be reduced
using parallel computation, against the preliminary assumptions.

Keywords: Verifiable Delay Functions · MinRoot · Veedo · Sloth++ ·
cryptanalysis · smoothness

1 Introduction

A verifiable delay function (VDF) [11] is a function f : X → Y that on average
cannot feasibly be evaluated much faster than some prescribed time T , even on
a parallel machine, but every output y = f(x) comes with a proof that allows
anyone to quickly verify the output is correct. The first property makes it a delay
function and the second makes it verifiable. In more detail, a VDF is a triple of
algorithms:

– Setup(1λ, T)→ pp; returns public parameters pp given a security parameter
λ and delay parameter T .

– Eval(pp, x)→ (y, π); returns y ∈ Y given x ∈ X and a proof π.
– Verify(pp, x, y, π)→ {0, 1}; returns 1 if y is the correct output of input x.

⋆ © IACR 2024. This article is the full version of the paper with the same title
published by Springer-Verlag in the proceedings of CRYPTO 2024.

The algorithms Setup and Verify are polynomial time and the algorithm Eval(pp, x),
which is allowed to use up to poly(λ) parallel processors, runs in time at most
(1 + ε)T for some 0 < ε < 1. Any parallel algorithm using at most poly(λ)
processors and running in time less than T should not be able to compute
f(x) = y except with negl(λ) probability over random x. We refer to [11] for a
more complete and formal definition.

VDFs have been most notably applied to removing bias in randomness bea-
cons7, which play an important role in consensus protocols, especially those used
in modern blockchains [11,15,23,44]. The randomness may be used both to select
block proposers unpredictably, or in the application layer, e.g. to simulate lotteries
or more sophisticated protocols. Unbiasable randomness beacons can also be
constructed from coin-tossing protocols [10], or from distributed key generation
and verifiable random functions (VRFs) [30], but these constructions require a
majority of parties participating in the protocol to be honest. In addition to re-
quiring honest-majority assumptions, such protocols are communication-intensive
and prone to delays in the case of a dynamic player set. In contrast, constructions
of randomness beacons using VDFs are simple, communication efficient, and only
require one participating party to be honest. VDFs have also been particularly
important for constructing blockchains using proof-of-space as an alternative to
proof-of-work8, or more broadly achieving dynamic availability in consensus pro-
tocols without proof-of-work [20]. There are many other applications, including
to proofs-of-replication [11,25], voting protocols [5], and preventing front-running
of trades in decentralized exchanges [17]. See [37] for a survey of applications.

Any delay function can be made verifiable using generic SNARKs [11,36].
However, it is desirable to construct delay functions with specialized proof systems
that result in a more efficient Eval algorithm than the generic construction (i.e.,
requiring fewer parallel processors and lower overall complexity).

There are two elegant and efficient constructions of VDFs based on repeated
squaring in a group of unknown order [59,39], as well as constructions based on
sequential compositions of isogenies on elliptic curves [19,46,4]. There are several
candidates for groups of unknown order. One is the RSA group Z∗

N for N = p · q
a product of two unknown safe primes, provided that the group is set up by
a trusted party who discards p and q. The assumption that repeated squaring
is sequential in this group was previously used in the construction of timelock
puzzles [41], and over generic rings has been proven equivalent to the difficulty
of factoring [42]. Multiparty computation can be used to generate a trusted RSA
modulus [12,16,27], but this has been found to be challenging and error-prone
to implement.9 Two candidates that do not require a trusted setup are class
groups of quadratic number fields and Jacobians of hyperelliptic curves [22].
Unfortunately, the security of VDFs in class groups or Jacobians is based on less

7 https://a16zcrypto.com/posts/article/public-randomness-and-randomness-
beacons/

8 https://docs.chia.net/green-paper-abstract/
9 https://medium.com/zengo/dogbyte-attack-playing-red-team-for-eth2-0-
vdf-ea2b9b2152af

2

https://a16zcrypto.com/posts/article/public-randomness-and-randomness-beacons/
https://a16zcrypto.com/posts/article/public-randomness-and-randomness-beacons/
https://docs.chia.net/green-paper-abstract/
https://medium.com/zengo/dogbyte-attack-playing-red-team-for-eth2-0-vdf-ea2b9b2152af
https://medium.com/zengo/dogbyte-attack-playing-red-team-for-eth2-0-vdf-ea2b9b2152af

studied assumptions (e.g., difficulty of finding low order elements in the class
group of an imaginary quadratic number field). The security of VDFs based on
isogenies is similarly based on relatively new assumptions.

In theory, a sequential composition of hash functions, when modeled as
random oracles, is provably a delay function [35]. While this might suggest that
the generic construction from SNARKs is the most robust direction for VDFs, in
practice no concrete hash function behaves like a true random oracle. Moreover,
the way this hash function is constructed can have a big impact on the efficiency
of Eval, specifically the complexity of computing a SNARK for many interactions
of the functions. The complexity of the SNARK is proportional to the complexity
of verifying f(x) = y directly, using an arithmetic circuit over a finite field.
One direction that was suggested in [11] and explored further in [52,29] is to
use an iterated permutation Π over Fn that has (a) low arithmetic complexity
as a circuit over F, and (b) Π−1 has even lower complexity than Π, which
helps with the SNARK. One such candidate are permutations that use a round
function xe mod p for e ≫ 2 where the inverse operation is exponentiation by
a = e−1 mod p− 1 for a ≪ e. The assumption that xe mod p is sequential, i.e.
that it cannot be evaluated substantially faster than repeated squaring on a
reasonable number of parallel processors, originates in the Sloth system [33], a
precursor to VDFs. This method is used in the VDF candidates Sloth++ [11],
Veedo [52], and MinRoot [29].

In this work, we present parallel algorithms for evaluating xe mod p several
factors faster than log2 e steps, challenging this assumption that was widely used
in constructions of VDFs, including one that was planned for use in Ethereum’s
consensus protocol and Filecoin, and for which an ASIC had already been
developed [53,54]. As a response to our attacks, those plans have been put on
hold [28]. We conclude by suggesting several alternative directions for VDFs that
are not known to suffer from our attacks.

1.1 Algebraic VDF Proposals

We first describe concrete VDF proposals based on exponentiation in a finite
group and their security claims.

Sloth++ [11]. The round function in the Sloth++ VDF candidate involves
two interleaved permutations ρ and σ over Fp2 where p ≡ 3 mod 4. The function
ρ(x) = x(p2+1)/4 returns a square root of x ∈ Fp2 and has inverse ρ−1(y) = y2.
The function σ(x) interprets x = (x1, x2) as a vector over F2

p (i.e., the coefficients
of a degree two polynomial) and returns σ(x1, x2) = (x2 + c1, x1 + c2) for some
fixed constants c1, c2 ∈ Fp.

Veedo [52]. The round function of Veedo operates on a pair of elements (u, v)
in Fp. It first applies a root operation to each element, then applies a linear layer
defined by an MDS matrix.

3

Input: x ∈ Fp2

for 0 ≤ i < niterations do
x←

√
x

(x1, x2)← x ▷ Map from Fp2 to F2
p

(x1, x2)← (x2 + c1, x1 + c2)
x← (x1, x2) ▷ Map from F2

p to Fp2

return u, v

Algorithm 1. Sloth++ VDF.

x1 x2

√
·

c1 c2⊞ ⊞

x′
1 x′

2

Fig. 1. Sloth++ round function.

Input: u, v ∈ Fp

for 0 ≤ i < niterations do
(u, v)←M × (a

√
u, a
√
u) + (ci, c

′
i)

return u, v

Algorithm 2. Veedo VDF.

u v

a
√
· a

√
·

M

ci c′i⊞ ⊞

u′ v′

Fig. 2. Veedo round function.

MinRoot [29]. MinRoot is a VDF proposal that was designed to be used as a
randomness beacon in the core layer of the Proof-of-Stake Ethereum protocol10.
It iterates niterations times a simple round function, which is concretely given as
an a’th root for small a in a finite field defined by a prime number p such that
gcd(a, p − 1) = 1, as shown in Algorithm 3. A proof of evaluation is supposed
to be a SNARK proof, output by the Nova prover [31]. We denote the internal
state of MinRoot as (u, v), and the round counter as i.

Input: u, v ∈ Fp

for 0 ≤ i < niterations do
(u, v)← (a

√
u+ v, u+ i)

return u, v

Algorithm 3. MinRoot VDF.

u v

i ⊞

⊞

a
√
·

u′ v′

Fig. 3. MinRoot round function.

The concrete parameters proposed by the MinRoot designers are as follows:

– p = 2254 + 232 · 0x224698fc094cf91b992d30ed+ 1,
– a = 5,

10 https://ethereum.github.io/consensus-specs/

4

https://ethereum.github.io/consensus-specs/

– The number niterations of iterations is typically in the order of 240.

MinRoot has concrete security claims and an ASIC implementation has been
developed, therefore we explain in more detail its implementation properties,
security claims, and functionality.

Currentlty, in the Proof-of-Stake Ethereum protocol every 32 blocks consti-
tute an epoch, and the epoch block proposers contribute some entropy values
s1, s2, . . . , s32 (omissions are possible). The values are passed to a classical hash
function whose output is declared a random beacon, which determines proposers
and signers for the next epochs. Clearly, the last of 32 proposers can influence
the beacon value by trying different entropy values.

To mitigate this issue, VDF f would be applied to (s1, s2, . . . , s32). The
calculation of f would run for the M next epochs, and the result would then
determine the block proposers for the M +1-th epoch. Assuming that no parallel
adversary could compute the VDF faster than by a factor of M and that each
epoch has at least one honest proposer, there is no way for any malicious proposer,
who learns the other contributions of a given epoch only during that epoch, to
precompute f and find some contribution si of his own that would give a desired
VDF output.

MinRoot Implementation. A standard implementation of MinRoot, such as
the one by Supranational [53], computes the rounds iteratively. The root is the
most expensive operation in the round function; in each round, it is computed
using Fermat’s little theorem (as a

√
x = x1/a mod p−1), with a square and multiply

algorithm. We define e = 1/a mod p− 1 so that the round function is written as
a
√
x = xe. Recall that a is chosen such that gcd(a, p− 1) = 1.
Exponentiation to the power e with the square and multiply algorithm

requires log2(e) ≈ log2(p) squarings. There are techniques to reduce the number
of multiplications (such as the sliding-window method or addition chains), but in
the context of a low latency implementation it is better to use a naive binary
decomposition because the multiplications can be evaluated in parallel with the
squarings. Therefore, the delay of one round is essentially log2(p) squarings (254
squarings with the proposed parameters), and the delay of MinRoot is essentially
niterations · log2(p) squarings (using two processors: one for the squarings and one
for the multiplications).

In practice, Supranational built an optimized ASIC implementation of MinRoot,
on a 12 nm node [53,55]. Their implementation requires 257 cycles per round,
where each cycle essentially corresponds to a squaring and takes 0.9 ns (230 ns
per round).

MinRoot security claims and their interpretation. The security claim of
MinRoot is that it is a sequential function. Informally, this means that MinRoot
cannot be computed faster by using some parallelism. There should be a lower
bound to the delay required to evaluate the function, and the standard implemen-
tation with a delay of niterations log2(p) squarings should be close to this lower
bound (up to a small constant factor).

5

This implies at least two distinct assumptions:

1. The round function itself is a sequential function (i.e. the root cannot be
computed faster using parallelism);

2. The iteration is sequential (i.e. there is no shortcut to evaluate niterations
rounds faster than by iterating them).

Formally, MinRoot is claimed to have 128 bits of VDF security, defined as follows:
Given up to 2128 parallel processors, no adversary using these processors and
spending up to 2128 MinRoot calls in precomputation, can compute MinRoot on
any input from a challenge set faster than by a factor of 2.

One may notice that the security claim of MinRoot is somewhat vague. Con-
cretely, it misses the following details, which became apparent at the time of
third party analysis:

– What the reference implementation of MinRoot is and what timing it claims.
– What the computation model is, which might be needed to determine whether

the adversary is faster than the legitimate computation.

For the first issue, we refer to the third-party implementation of MinRoot in
hardware by Supranational [53]. They report latency benchmarks and chip
sizes [55]. For the second issue we had to choose between existing models in the
parallel computation analysis (cf. a survey in [43]) and some ad-hoc model. We
resorted to the second option for two reasons:

– Our model matches nicely with the existing hardware implementation by
Supranational.

– We assign realworld-inspired numbers to memory access and CPU access
timings, which scale reasonably with the network size.

1.2 Notations and Assumptions

We focus on the latency of evaluating VDFs in parallel from an algorithmic point
of view. In particular we evaluate the latency of the computation and neglect
the latency of communication between the processors, and implementation issues
such as large fan-in or large fan-out.

While the VDF we study naturally works with modular values in Fp, in this
paper, we sometimes consider the values as integers instead; we believe this
should be clear depending on the context. The notation x mod q refers to the
integer in {0, 1, . . . , q − 1} that is congruent to x. When taking logarithms, we
default to base-2 (but usually write it out unless it does not matter, such as in
O-expressions).

Latency Assumptions. We consider the following results on low-latency arithmetic
operations:

Integer addition: Addition of two n-bit integers has a latency of O(log(n))
using a carry look-ahead adder (e.g. the Brent-Kung adder [13]).
Addition of k n-bit integers has a latency of O(log(k) + log(n)), using a tree
of carry-save adders [24], followed by a carry look-ahead adder.

6

Integer multiplication: Multiplication of two n-bit integers has a latency of
O(log(n)) using a tree of carry-save adders (e.g. a Wallace tree [57]) followed
by a carry look-ahead adder.

Trial division: Trial division of an up to n-bit integer x by a hardwired constant
c of at most m < n bits can e.g. be performed by checking whether x ·
c−1 mod 2n+m has at most n bits if c is odd. Since division by powers of two
is essentially free and c−1 mod 2n+m can be precomputed, trial divisions by
such constants have latency O(log n).

Modular reduction: Modular reduction of a 2n-bit value modulo an n-bit value
has a latency of O(log(n)). For instance, the Barrett reduction [8] computes
the reduction using integer division by a constant, which is computed using
an integer multiplication.

The results above imply that modular addition Add, modular multiplication Mul,
and modular reduction (this includes trial division) Mod in Fp all have a latency
of O(log(log(p))). For simplicity, we assume that those operations have the same
latency, and consider it as one unit of time (for practical purposes, this time unit
is estimated to be 0.9 ns in an ASIC implementation, following the Supranational
implementation of MinRoot).

Adding up to log2(p) ≈ 256 values (integers smaller than p or modular values
in Fp) also has latency O(log(log(p))); we assume this also corresponds to one
unit. Trial division of 256-bit integers by hardwired constants cost essentially the
same and we assume unit latency for this.

We also assume that a multiply-and-add operation (x · y+ z) has unit latency,
because the addition term can be included in the tree of carry-save adders.

A table lookup in a table with k entries, denoted by Table(k), has a latency
O(log(k)) when implemented as a combinatorial circuit. For small tables (up to
log2(p) ≈ 256 entries), we treat this as having unit latency. Larger tables must
be stored in RAM, and have a larger latency. Assuming a DDR RAM with a
latency of 5 ns, we consider that a memory access has a cost of 6 units of time.

When evaluating the number of processors required to implement an algorithm,
we consider that one processor corresponds to a circuit of roughly the size of a
modular multiplier. Adding up to log2(p) values and table lookups with up to
log2(p) values are each assumed to require one processor.

These latency estimations are strongly dependent on the architecture used
to implement a circuit, and are therefore somewhat arbitrary.11 Nonetheless,
they are useful to compare algorithms in a concrete setting, when an asymptotic
complexity estimate is hard to derive. In particular, we evaluate all our algorithms
in the context of a 256-bit prime, to match the parameters of MinRoot, since
we have ASIC implementation results available. The implementation from [53]
uses algorithms for addition, multiplication, and modular reduction that roughly
match these latency assumptions.
11 The Supranational team mentioned in private communication that it should be

possible to reduce the latency by a factor of up to 3 at the cost of longer and more
expensive circuit scrutiny (e.g. better layout), using smaller technical process, larger
lookup tables etc.

7

1.3 Our results

We study how to compute VDF functions in parallel in order to achieve a
lower latency than the described standard implementations. Instead of looking for
shortcuts when iterating a large number of rounds, we focus on the round function
itself, and the most expensive operation, the root computation. We are able to
provide some algorithms that achieve latency gains that clearly break the original
security claims, considering our (reasonable) model. Despite breaking the security
claims, it is still unclear whether our algorithms can be implemented in practice,
as they require a large number of parallel processors. Even if the practicality
of our algorithms might be debatable, they clearly show that computing a root
a
√
x in Fp via square and multipy is not necessarily sequential. Several previous

works [32,11,52,29] assume that there is no parallel algorithm with lower latency
than the square and multiply algorithm with latency log2(p), but our results
show that this assumption is wrong.

We explore several ideas to evaluate monomial functions in parallel in Section 2.
Our best algorithm is a smoothness-based algorithm in Section 2.2 that uses the
same basic ideas as a paper from Adleman and Kompella [2]. We propose various
optimizations of this algorithm in Section 3, and prove a close connection to
the discrete logarithm problem in Section 4. We demonstrate the impact of our
methods on several VDF constructions in Section 5. In Section 6, we consider the
related problem of evaluating low-degree functions in parallel. In Section 7 we
briefly discuss practical issues to implement our algorithms. Finally, in conclusion
we discuss possible tweaks of algebraic VDF functions to improve their security.

Table 1 shows a summary of our results, with concrete number corresponding
to the MinRoot setting with a 256-bit prime.

Table 1. Summary of our attacks to compute a
√
x, with concrete speedups for a 256-bit

prime (as in MinRoot).

Algo T #CPU M speedup Techniques

naive 256 1 0 1 Fast exponentiation
1 8 2128 2128 32 Baby-step, giant-step
2 6 254.5 0 42 Smoothness
3 13 248 259.5 20 Smoothness with medium-size factor
4 14 240 259.5 18 Smoothness with medium-size factor and pre-filter
5 21 236 264 12 Smoothness with special shape of p
6 54 234 240 4.7 Smoothness with rational reconstruction
7 13 229 240 20 Smoothness with parallel smoothness test
8 68 225 240 3.7 Smoothness with parallel rational reconstruction

8

2 Low-latency Evaluation of Power Functions

We explore in this section how to reduce the latency of root functions using their
homomorphism property. We propose algorithms that make use of the fact that
monomial functions f over Fp have the following properties:

– f is easy to precompute on any single input.
– f(x · y) = f(x) · f(y), ∀x, y ∈ Fp.

In the following, we consider roots f(x) = a
√
x = x1/e mod p−1 in Fp, where

gcd(a, p− 1) = 1. We take p ≈ 2256 for concrete examples to match the MinRoot
parameters.

The root is the most expensive operation in VDF constructions, and has a
latency of log2(p) squaring in the standard implementation. We show in this sec-
tion two basic algorithms for evaluating it with smaller latency. These algorithms
will be refined and improved in the next section.

In an actual VDF such as MinRoot, the round function is applied a large
number (niterations ≈ 240) of times. Due to that, we really care about expected
(over a random choice of input) time/latency. For the probabilistic algorithms
in this and the next sections, we therefore aim for a good, but not necessarily
overwhelming success probability. See 7.1 for some further discussion.

2.1 A Baby-step Giant-step Approach

We first propose a simple algorithm using precomputation. The MinRoot sub-
mission document [29] also described a precomputation attack, but in our case
we target the root operation instead of targeting the iterated function MinRoot.
Additionally, we use a self-randomization property to make the attack successful
for any given input instead of having a multi-target attack. Let α, β > 0 be two
parameters.

Precomputation. We precompute the following values:
– Compute a

√
i for i ≤ α√p.

– Compute ra, r−1 for a set of β⌊√p⌋ random values r.
Online phase. Given a challenge x, do the following in parallel with β⌊√p⌋

processors:
1. Pick one of the randomly generated r.
2. Compute y = x · ra mod p.
3. If y ≤ α√p, then return a

√
y · r−1.

This algorithm is similar to the baby step-giant step algorithm to compute
discrete logarithms. Due to the birthday paradox, its probability of success is
approximately 1− exp(−αβ), so one can fix reasonably small values α, β ∈ O(1).
The method has a latency of two multiplications and one table lookup. This
implies T = 2+6 = 8 time units using the assumptions of Section 1.2, using O(√p)
precomputations, and β√p = O(√p) parallel processors, versus the T = 256 of
the sequential computation.

9

For MinRoot, with p ≈ 2256, this requires approximately 2128 precomputations
and parallel processors. Since MinRoot claims 128 bits of security, this algorithm
has a very close complexity to the claim, and shows that it is at best tight.

In practice, each of the 2128 processors will use a different r that can be
hard-coded in the processor, together with ra and r−1. The algorithm requires a
memory of size √p. However, note that for uniformly random input, only α · β
processors are expected to succeed, and only a single one of those needs to access
the memory for each root computation.

Algorithm 1: Using precomputation to evaluate a
√
x

Tgeneral = 2Mul+ Table(M)

TMinRoot = 8 #CPU = 2128 M = 2128 speedup : 32

2.2 An Approach Using Smoothness

We now describe an algorithm based on smoothness, which is similar to a previous
work published by Adleman and Kompella in STOC ’88 [2]. This algorithm uses
smoothness to compute some arithmetic functions with logarithmic depth and a
large number of processors. Starting with the randomization step of Section 2.1,
the main idea is to assume that the value y = x · ra mod p is B-smooth when
lifted to the integers, i.e. it only has prime factors smaller than B, for some
bound B.

Preliminaries. We use π(x) to denote the prime counting function π(x) = #{p ≤
x | p is prime}. According to the prime number theorem [38, Theorem 6.9], we
have π(x) ≈ x/ ln(x).

We use the following result by Dickman to estimate the probability of a
random n-bit number to be B-smooth:

Theorem 1 ([38, Theorem 7.2], [21]). Let ψ(x, y) be the number of positive
integers not exceeding x composed entirely of prime numbers not exceeding y, and
let ρ(u) be [the Dickman function]. Then, for any U ≥ 0 we have

ψ(x, x1/u) = ρ(u)x+O
(

x

log(x)

)
uniformly for 0 ≤ u ≤ U and all x ≥ 2.

In particular, the probability that an n-bit number is B-smooth is approximately
ρ (n/ log2(B)).

Finally we use the following result, with Q(x) the number of square-free
integers not exceeding x:

10

Theorem 2 ([38, Theorem 2.2]). Far all x ≥ 1

Q(x) =
6

π2
x+O(x1/2)

The algorithm works as follows:

Precomputation.
– Compute a

√
q for all small primes q ≤ B

– Compute ra, r−1 for a set of R random values r
Online phase. Given a challenge x, R groups of processors (each group of size

π(B)) will do the following in parallel (steps 4 and 5 use π(B) processors,
and the other steps use a single processor):
1. Pick one of the randomly generated r (one value per group)
2. Compute y = x · ra mod p

3. Lift y to the integers
4. Perform trial division of y by all primes q ≤ B, in parallel. Denote {qi}

the set of primes that divide y
5. Compute z =

∏
a
√
q
i
· r−1 mod p (all terms are precomputed)

6. If za = x return z

The algorithm succeeds if the value y at step 2 is B-smooth and square free. In
this case y =

∏
qi, hence a

√
x = a
√
y ·r−1 =

∏
a
√
qi ·r−1. The probability of y being

B-smooth and square-free can be approximated as ρ(256/ log2(B)) × 6/π2 by
heuristically assuming that B-smoothness and being square-free are independent;
therefore we choose R≫ π2/6ρ(256/ log2(B)), and we obtain a high probability
of success, thanks to the randomization done in step 1. Note that the required
heuristic can be greatly weakened by the optimization of allowing square factors
discussed below and we successfully tested the heuristic for the parameters of
interest (cf. the discussion on page 12).

This algorithm is similar to the index calculus one to compute discrete
logarithms. Its complexity is sub-exponential. We now discuss some optimizations
to make the algorithm closer to usable in practice.

Allowing Square Factors in y. For a prime q with qe ≤ B < qe+1, we do trial
division with q, q2, . . . qe, and each trial adds a copy of q to the set {qi} if it is
successful. With this tweak, the algorithm succeeds as long as y is B-powersmooth,
i.e. all prime powers qν dividing y satisfy qν < B. There is no simple formula
to evaluate the complexity of this variant, but with the parameters we use, the
probability of being B-powersmooth is essentially the same as being B-smooth;
therefore we increase the success rate by a factor π2/6 ≈ 1.64 (the inverse
probability of being square-free) with a very small increase in the number of
processors.

11

Avoiding the Final Test. The purpose of the final test, computing za, is to verify
if y is B-smooth. In order to avoid the latency of computing this, we can check if
the qi factors are enough and we are missing no bigger ones by precomputing an
approximation of log(qi) and check if

∑
log(qi) ≈ log(y) ≈ log(p) to detect when

y is B-smooth. Note that the approximation does not need to be very good: on
failure, za differs from y by at least some prime factor that was not found, which
is at least 2 (and for square-free y, at least B). We can improve this and rule
out missing very small prime factors q by testing divisibility by qν for larger ν
up to qν < p rather than qν < B for very small q at a very small increase in the
number of processors.

Finally, we obtain the Algorithm of Figure 4, where black boxes represent
processors and green boxes represent groups of processors. For simplicity, we
assume that a single group of processors will succeed and return a value. The
latency is one multiplication, one trial division, and the final multiplication of
several terms. We assume that the multiplication circuit can efficiently deal with
empty factors and the complexity depends on the number of non-unit terms in
the product.

Using precomputed Discrete Logarithms. In case it is not practical to build a
multiplication circuit dealing only with the non-empty terms, we propose an
alternative approach. Instead of having each processor returning zi = a

√
qi, we

precompute the discrete logarithm of zi in Fp using a generator g. If we denote
the logarithm as νi with zi = gνi (and νi = 0 for empty factors) we can replace
the product z =

∏
zi mod p by a sum ν =

∑
νi mod p−1 and an exponentiation

z = gν . Using the assumptions of Section 1.2, the sum of π(B) terms has latency
only log2(π(B))/8. To compute the exponentiation with low latency, we split ν
into 32 bytes, and use table lookups for each byte followed by a multiplication
tree with latency 5.

Concrete Parameters for log2(p) ≈ 256. Parameters that minimize the total
complexity can be chosen as:

B = 235 R = 224

With those parameters, there are 224 groups of processors, and each group has
roughly π(235) ≈ 230.5 processors to do trial division in parallel (a total of 254.5
processors). This succeeds with high probability because the probability that a
256-bit number is 235-smooth can be approximated as ρ(256/35) ≈ 2−21.6 ≫ 1/R,
and we assume than the probability of being 235-powersmooth is the same.

To verify this estimate, we performed experiments with Bach’s algorithm
to generate factored random numbers [7]. Out of 230 random 256-bit numbers,
we observed 367 235-smooth numbers (a fraction of 2−21.5); all of them are also
235-powersmooth, and 169 of them are square-free (a fraction of 2−22.6). This
closely matches the theoretical estimation. In order to deal with factors qν < B,
we actually need slightly more than π(B) processors but the increase is negligible
(230.5 + 214.1).

12

r = 2

y ← x · 2a mod p

q = 2

If 2 | y
ℓ2 ← log 2
z2 ← a

√
2

Else
ℓ2 ← 0
z2 ← 1

q = 3

If 3 | y
ℓ3 ← log 3
z3 ← a

√
3

Else
ℓ3 ← 0
z3 ← 1

q = 4

If 4 | y
ℓ4 ← log 2
z4 ← a

√
2

Else
ℓ4 ← 0
z4 ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

If ℓ ≈ log p
Ret z · 2−1 mod p

. . .

r

y ← x · ra mod p

q = qe0

If q | y
ℓq ← log q0
zq ← a

√
q0

Else
ℓq ← 0
zq ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

If ℓ ≈ log p
Ret z · r−1 mod p

Fig. 4. Algorithm using B-smooth numbers

Assuming that we can neglect the communication time, the latency of this
algorithm is one multiplication, one trial division, and about 4 multiplications at
the end (assuming there are at most 15 primes in the decomposition of y), for
a total latency of 6 units. This algorithm does not use any table lookup, each
processor only uses a single hard-coded value for a

√
q0, ra, and r−1.

Algorithm 2: Using smoothness to evaluate a
√
x

Tgeneral = 6Mul

TMinRoot = 6 #CPU = 254.5 M = 0a speedup : 42

a We write M = 0 because there are no table lookups in this algorithm, but each
processor uses a constant amount of memory, resulting in 254.5 memory cells in total.

Alternatively, parameters can be chosen to minimize the latency:

B = 264 R = 210

With those parameters the total number of processors is somewhat higher at 268.5
but we expect fewer factors qi so that the final multiplication only has latency 3
(assuming at most 7 primes), and the total latency is 5 units.

13

3 Optimizing the Smoothness Algorithm

In this section we present several ideas that allow us to reduce the number of
CPUs needed in the smoothness algorithm. Our aim is to make our algorithm
as close to practical as possible, and for doing this we will reduce the speedup
provided by the algorithm in the previous section and provide different trade-offs.
When combined, we are able to reduce the number of processors required below
230 (with a 256-bit prime). This has allowed us to run experiments on the full
algorithm (the code is available as supplementary material12).

3.1 Using Almost-Smooth Numbers

Our first improvement relaxes the constraint of y being B-smooth to allow a
single medium-size factor, in addition to an arbitrary number of small ones.
Formally, we say that an integer is (B,B′)-almost-smooth (with B′ > B) if all
its prime factors are smaller than B′, and at most one factor is larger than B. It
will require a large precomputed table to deal with the bigger factor, but this will
allow to increase the probability of y verifying the condition for similar values of
B, reducing R and the overall number of processors needed.

After doing trial division, we detect that y is almost-smooth by checking the
magnitude of the rough part after removing all factors smaller than B. Since
we are mostly interested in cases with B′ < B2, if the rough part is smaller
than B′ then there is a single prime factor between B and B′ (or none if y is
B-smooth). We precompute the roots of all prime numbers between B and B′

and the processor that finds an almost-smooth y will make a table lookup to
recover it.

In practice, we modify the algorithm to compute z−1 in parallel with the
computation of z, using precomputed tables of q−1/a

i = 1/ a
√
qi. We evaluate z−1

as z̄ ←
∏
q
−1/a
i mod p, and we compute the rough part as y · z̄. The resulting

algorithm is shown as Figure 5.
We know no simple analytic way to compute the probability of almost-

smoothness, but we could estimate it from experiments.

Concrete Parameters for log2(p) ≈ 256. Good parameters can be chosen as:

B = 232 B′ = 265 R = 220

Experimentally, the probability of a 256-bit number to be (232, 265)-almost-
smooth is about 2−18; this is a significant increase compared to the probability of
begin 232-smooth (ρ(256/32) ≈ 2−24.9). Therefore with R = 220 there is a high
probability of success.

The latency increases because of the table-lookup. Using our assumptions, this
has a latency of 6; we obtain a latency of one multiplication, one trial division, 4
multiplications to compute y ·

∏
z̄q, one table lookup, and one final multiplication.

12 https://github.com/Cryptosaurus/VDF_cryptanalysis_code

14

https://github.com/Cryptosaurus/VDF_cryptanalysis_code

This algorithm requires a huge amount of memory, but we stress that the memory
is not accessed simultaneously by all processors; for each computation of a

√
x

only a few processors succeed (those that get an almost-smooth y) and only one
of them needs to make a memory access.

Algorithm 3: Using smoothness to evaluate a
√
x, with a medium-size factor

Tgeneral = 6Mul+Mod+ Table(M)

TMinRoot = 13 M = 259.5 #CPU = 248 speedup : 20

r = 2

y ← x · 2a mod p

q = 2

If 2 | y
ℓ2 ← log 2
z2 ← a

√
2

z̄2 ← 2
−1
a

Else
ℓ2 ← 0
z2 ← 1
z̄2 ← 1

q = 3

If 3 | y
ℓ3 ← log 3
z3 ← a

√
3

z̄3 ← 3
−1
a

Else
ℓ3 ← 0
z3 ← 1
z̄3 ← 1

q = 4

If 4 | y
ℓ4 ← log 2
z4 ← a

√
2

z̄4 ← 2
−1
a

Else
ℓ4 ← 0
z4 ← 1
z̄4 ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

z̄ ←
∏

z̄q mod p (z̄ = z−1 mod p)
If ℓ ≥ log p− logB′

w ← a
√
y · z̄ (Precomputed, with y · z̄ ≤ B′)

Ret z · w · 2−1 mod p

. . .

r

y ← x · ra mod p

q = qe0

If q | y
ℓq ← log q0
zq ← a

√
q0

z̄q ← q0
−1
a

Else
ℓq ← 0
zq ← 1
z̄q ← 1

. . .

ℓ←
∑

ℓq
z ←

∏
zq mod p

z̄ ←
∏

z̄q mod p
If ℓ ≥ log p− logB′

w ← a
√
y · z̄

Ret z · w · r−1 mod p

Fig. 5. Improved algorithm using (B,B′)-almost-smooth numbers

3.2 Pre-filtering

We observe that the randomizing step (y ← x · ra mod p) uses only one processor
per group, so that many processors sit idle during this step. To optimize the
algorithm, we can try several values r in each group, and keep the value y =
x · ra mod p that seems more promising in each group. For instance, with a

15

smoothness bound B = 232 as above, each group has π(B) ≈ 227.6 processors.
We can pick 227.6 random r’s in each group and keep the smallest value y =
x · ra mod p; we expect y to be of size 256− 27.6 ≈ 228 bits which increases the
probability of smoothness.

For a more advanced filtering, we do a smoothness test with a smaller bound
B0 < B, and we keep the candidate y with the largest B0-smooth part (or,
we keep candidates with a B0-smooth part larger than some threshold t). This
filtering requires π(B0) processors, so we can chain it with a first step that
keep the smallest y out of π(B0) candidates. Figure 6 shows this pre-filtering
algorithm.

Concrete Parameters for log2(p) ≈ 256. Parameters can be chosen as:

B = 232 B′ = 265 B0 = 220 t = 276 R = 212

Experimentally, the probability of having a 220-smooth part larger than t = 276

is about 2−9.3 for a 256-bit value. With the parameters above, we consider
π(B)/π(B0) ≈ 211.3 candidates y in each group, therefore with high probability
one of them will pass the filter. After filtering those candidates, the probability
that they are (232, 265)-almost-smooth is about 2−11.

Using the initial filter the size of y is reduced by 10 bits; this increases the
probability to roughly 2−9.5.

Algorithm 4: Using smoothness to evaluate a
√
x, with medium-size factor and

pre-filter

Tgeneral = 7Mul+Mod+ Table(M)

TMinRoot = 14 M = 259.5 #CPU = 240 speedup : 18

3.3 Exploiting the Shape of p

The prime used in MinRoot has a special shape: p = 232q + 1. Therefore, the
low 32-bits of a product x · y mod p with y < 232 only depend on the lowest and
highest 32 bits of x (and y). We use this property to improve our algorithm, by
precomputing values r with ra < 232 that generate a product x · ra with zeros
in the least significant bits, given the low and high bits of x. This will allow to
reduce R for similar parameters.

To take advantage of this, we modify the online algorithm to perform two
steps of randomization: first with an arbitrary r0, then with the precomputed
value r1:

Precomputation. Initialize table T :
– For all xlow < 232, xhigh < 232, consider x = xlow + 2224xhigh

16

r′ = {2, 3, . . .}

r′ = 2

y2 ← x · 2a mod p

r′ = 3

y3 ← x · 3a mod p

. . .

y′ ← min yr
r′ ← argmin yr

q = 2

If 2 | y′

ℓ2 ← log 2
Else
ℓ2 ← 0

q = 3

If 3 | y′

ℓ3 ← log 3
Else
ℓ3 ← 0

q = 4

If 4 | y′

ℓ4 ← log 2
Else
ℓ4 ← 0

. . .

If
∑

ℓq > t
y ← y′

r ← r′

r′ = {r1, r2, . . .}

r′ = ri

yri ← x · rai mod p

. . .

y′ ← min yr
r′ ← argmin yr

q = qe0

If q | y′

ℓq ← log q0
Else
ℓq ← 0

. . .

If
∑

ℓq > t
y ← y′

r ← r′

. . .

Collect y and r from one of the successful pre-filtering CPUs
Proceed with trial division of y and the rest of the algorithm (see Figure 5)

Fig. 6. Pre-filtering step (only one CPU group shown)

– For all y < 232, if LSB32

(
x · y mod p

)
= 0, set T [xlow, xhigh]← a

√
y

Online phase. Given a challenge x:
1. Pick one of the randomly generated r0
2. Compute y0 = x · ra0 mod p
3. Recover the precomputed value r1 = T [LSB32(y0),MSB32(y0)]
4. Compute y1 = y0 · ra1 mod p

This produces a value y1 that is a multiple of 232, therefore the effective length
for the smoothness test is reduced by 32 bits.

Concrete Parameters for MinRoot. We keep the same smoothness parameters as
above, but we reduce the number of groups needed:

B = 232 B′ = 265 B0 = 220 t = 276 R = 28

By reducing the size of y by an extra 32 bits, we obtain 214-bit values; after
filtering candidates with a 220-smooth part larger than t = 276, the probability
that they are (232, 265)-almost-smooth is about 2−6, corresponding to a gain of
3.5 bits.

17

Algorithm 5: Using smoothness to evaluate a
√
x, with medium-size factor,

pre-filter, and the special shape of p

Tgeneral = 8Mul+Mod+ 2Table(M)a

TMinRoot = 21 M = 264 #CPU = 236 speedup : 12

a This algorithm also requires a precomputation of 296 roots

However this variant requires a memory access to the table T from each
processor doing the initial randomization, therefore this is unlikely to be an
improvement in practice with a huge table. Trade-offs with a smaller table
(controlling fewer bits of y) might be more practical; for instance, we can use
tables of size 232 to control 16 bits of y (each processor could hold a copy of
table). We obtain 230-bit values, and the probability that they are (232, 265)-
almost-smooth after filtering is about 2−7.6.

In the end, this technique produces small improvements, and cannot be used
together with the techniques proposed in the following sections.

3.4 Rational Reconstruction

Rational reconstruction takes an element x in Fp and writes it as a fraction:
x = α/β with α, β ∈ Fp. Wang proposed an algorithm that finds a solution
with α ≈ β ≈ √p, based on the extended Euclidean algorithm [58]. Indeed,
running the extended Euclidean algorithm on x and p generates a series of
relations ui × x + vi × p = wi. Each relation defines a rational reconstruction:
x ≡ wi/ui mod p. During the extended Euclidean algorithm, the magnitude of
(ui) and (vi) are increasing while (wi) is decreasing; if we stop after half the
number of iterations we obtain ui ≈ wi ≈

√
p.

The online algorithm can be improved as follows using rational reconstruction:

1. Pick one of the randomly generated r
2. Compute y = x · ra mod p
3. Reconstruct a fraction y = α/β
4. Lift α and β to the integers
5. Do trial division of α and β

If α and β are both smooth, we easily deduce a
√
x from precomputed tables:

a
√
x =

∏
a

√
q′j ·

∏
q

−1
a

i · r−1 if β =
∏

qi and α =
∏

q′j

Since α and β are of the order of √p, they are significantly more likely to be
smooth and we can use a smaller bound B. The smoothness test for α and β is
done in parallel, using 2× π(B) processors.

18

Latency of Rational Reconstruction. In practice, variants of the binary GCD
algorithm (such as the plus-minus algorithm of Brent and Kung [14]) should have
a lower latency than the Euclidean algorithm because they only use addition and
subtractions. Extended versions of the binary GCD algorithm produce relations
of the form ui × x+ vi × p = wi × 2zi , that can also be used in our case.

A recent work [51] studies low-latency implementation of extended GCD
algorithms. They describe an ASIC built on 16nm that performs extended GCD
of 256-bit integers with latency 89 ns in constant time. For rational reconstruction,
only half the rounds are necessary. Moreover, the constant-time circuit uses more
rounds than required on average to maintain a constant time, and the circuit uses
16 nm technology while the Supranational implementation of MinRoot uses 12 nm
technology. Therefore, we estimate that the regular extended GCD algorithm
for n-bit numbers has latency EGCD(n) = 5

16n, and thus rational reconstruction
would have a latency of roughly 40 time units.

To reduce the latency further, some GCD algorithms use precomputed tables
to reduce the number of iterations, such as the right-shift k-ary algorithm of
Sorenson [50], with only O(log(n)/k) iterations using tables of size k. Further
work would be needed to evaluate the latency of such algorithms when a massive
number of processors and precomputation is available.

Concrete Parameters for log2(p) ≈ 256. We combine rational reconstruction
with the pre-filtering step: we consider many fractions α/β, and we only keep
fractions where α and β both have a large B0-smooth factor. Parameters can be
chosen as:

B = 224 B′ = 245 B0 = 216 t = 228 R = 213

Experimentally, the probability of having a 216-smooth part larger than t = 228

is about 2−2.9 (2−5.8 for a pair (α, β)). With the parameters above, we consider
π(B)/π(B0) ≈ 27.4 candidates y = α/β in each group, therefore with high
probability one pair (α, β) will pass the filter. After filtering those candidates,
the probability that they are (224, 245)-almost-smooth is about 2−5.5 (2−11 for a
pair (α, β)).

Algorithm 6: Using smoothness to evaluate a
√
x, with medium-size factor,

pre-filter, and rational reconstruction

Tgeneral = 0.5EGCD(p) + Table(M) + 7Mul+Mod

TMinRoot = 54 M = 240 #CPU = 234 speedup : 4.7

3.5 Parallel Smoothness Test

We propose here another idea that can be used to reduce the latency, at the
expense of more communication. Instead of randomizing with y ← x · ra mod p

19

for random r until the value y is smooth when lifted to the integers, we can
compute y ← x + r · p over the integers, for small r ∈ {0, 1, . . . R}. We obtain
slightly larger integers, but again if one of them is smooth we can compute
a
√
y mod p and deduce a

√
x mod p = a

√
y mod p.

The advantage of this approach is that we can test all candidates y for
smoothness simultaneously. Indeed, we don’t have to do trial division for all
x+ r · p and all small prime powers qi. We just have to compute x mod qi, and
we directly know the values of r for which x + r · p is divisible by qi: those
with r ≡ −x · p−1 mod qi. Since p is prime, it is always invertible mod qi and
p−1 mod qi can be precomputed. Figure 7 shows this algorithm.

In a model with free communication (e.g. with a parallel RAM that can be
accessed simultaneously by each processor), this should be quite efficient: each
processor doing trial division just has to send a list of candidates r such that
x + r · p is divisible by qi, and one processor per candidate r will merge the
data (with a parallel RAM: each processor writes the factor found in a region
dedicated to a given candidate r).

The main factor for the complexity of this algorithm is the number of messages
to send; on average it is equal to

∑
qν<B

R
qν . In order to minimize latency, we

use multiple processors for small factors qi, so that each processor has a single
message to send; therefore, the number of processor is

∑
qν<B⌈

R
qν ⌉.

When taking communication into account, there will be some cost to pay to
route the messages. Using a hypercube topology (each processor is connected to
log(n) other processors), n processors can route n messages in probabilistic time
O(log(n)) [56].

Concrete Parameters for log2(p) ≈ 256. This idea can be combined with the
use of almost-smoothness, but not with pre-filtering because we consider many
values of y simultaneously. We consider the following parameters:

B = 232 B′ = 245 R = 226

With those parameters, the number of processors for trial division is
∑

qν<B⌈
R
qν ⌉ =

228.8, and the average number of messages to route is
∑

qν<B
R
qν = 228 (slightly

higher than π(B) ≈ 227.6). Each candidate y is a 256 + 26 = 282-bit number.
The probability that they are (232, 245)-almost-smooth is about 2−24, so that the
algorithm succeeds with high probability.

Algorithm 7: Using smoothness to evaluate a
√
x, with medium-size factor,

and parallel smoothness test

Tgeneral = Table(M) + 6Mul+Mod

TMinRoot = 13 M = 240 #CPU = 229 speedup : 20

20

q = 2

x̄← x mod 2
ForAll 0 ≤ i < R
If i ≡ −x̄ · p−1 mod 2
ℓi2 ← log 2
zi2 ←

√
2

Else
ℓi2 ← 0
zi2 ← 1

q = 3

x̄← x mod 3
ForAll 0 ≤ i < R
For i ≡ −x̄ · p−1 mod 3
ℓi3 ← log 3
zi3 ←

√
3

Else
ℓi3 ← 0
zi3 ← 1

. . .

q = qe0

x̄← x mod q
ForAll 0 ≤ i < R
For i ≡ −x̄ · p−1 mod q
ℓiq ← log q0
ziq ←

√
q0

Else
ℓiq ← 0
ziq ← 1

r = 0
y = x

ℓ←
∑

q ℓ
0
q

z ←
∏

q z
0
q mod p

If ℓ ≈ log p
// y is smooth
Return z

r = 1
y = x+ p

ℓ←
∑

q ℓ
1
q

z ←
∏

q z
1
q mod p

If ℓ ≈ log 2p
// y is smooth
Return z

. . .

r
y = x+ rp

ℓ←
∑

q ℓ
r
q

z ←
∏

q z
r
q mod p

If ℓ ≈ log r + log p
// y is smooth
Return z

Fig. 7. Parallel smoothness test. We use a for “ForAll i” loop in the algorithmic
description, but a real implementation will directly iterate over values of i such that
i ≡ −x̄ · p−1 mod q.

3.6 Parallel Smoothness Test and Rational Reconstruction

Finally, we combine the ideas of rational reconstruction and the parallel smooth-
ness test. First, we use rational reconstruction on x, to obtain two different
fractions x = α/β mod p = γ/δ mod p. Using intermediate values from the ex-
tended Euclidean algorithm, we just keep two consecutive steps, and we expect
α, β, γ, and δ to be slightly larger than √p. We observe that for any r we have
(assuming β + δ · r ̸≡ 0 mod p):

α+ γ · r
β + δ · r

≡ β · x+ δ · x · r
β + δ · r

mod p ≡ x mod p

Therefore, we consider a series of fractions α+γ·r
β+δ·r for small r ∈ {0, 1, . . . R} and

deduce a
√
x when α+ γ · r and β + δ · r (integers of magnitude roughly R · √p)

are simultaneously smooth. As in the previous section, we obtain the divisibility
information on all candidates (α+γ ·r or β+δ ·r) with a single modular reduction.

Concretely, when doing trial division of α+ γ · r by qi, we have α+ γ · r ≡
0 mod qi ⇐⇒ r ≡ −α · γ−1 mod qi. Therefore each processor must compute
α mod qi and γ−1 mod qi; this differs from Section 3.5 where p−1 mod qi was
precomputed. We note that γ is not necessarily invertible in Zqi , but having a
non-invertible value is relatively rare and we neglect it to simplify the analysis
(this only introduces some false negatives).

21

There are several possibilities to compute γ−1 mod qi: we can precompute a
table of inverses in Zqi , or can compute it on the fly using either the extended
Euclidean algorithm or as γφ(qi)−1 mod qi using Euler theorem. Using the as-
sumptions of Section 1.2, the fastest approach is a precomputed table, with
latency 6 units, but it requires a large amount of memory.

Concrete Parameters for log2(p) ≈ 256. We consider the following parameters:

B = 227 B′ = 245 R = 221

With those parameters, the number of processors for trial division is
∑

qν<B⌈
R
qν ⌉ =

223.9 (224.9 to do trial division of α + γ · r and β + δ · r in parallel), and the
average number of messages to route is

∑
qν<B

R
qν = 223 (224 when considering

both the numerator and denominator). Each candidate y is a 128 + 21 = 149-bit
number. The probability that they are (227, 245)-almost-smooth is about 2−9.2,
so that the algorithm succeeds with high probability after 221 attempts.

We assume that γ−1 mod qi is computed on the fly (using precomputed tables
would require a memory of size 248.8). Following the latency estimate for the
extended GCD algorithm in Section 3.4, we assume that computing inverses in
Zqi has latency 5

16 log2(qi), which we round up to log2(qi)/2 ≈ 14 units.

Algorithm 8: Using smoothness to evaluate a
√
x, with medium-size factor,

rational reconstruction, and parallel smoothness test

Tgeneral = 0.5EGCD(p) + EGCD(B) + Table(M) + 7Mul+Mod

TMinRoot = 68 M = 240 #CPU = 225 speedup : 3.7

We have implemented (a serialized version of) this algorithm in practice with
those parameters, and it succeeds with probability more than 99% (2 failures out
of 1000 trials). When working with a 128-bit prime p (as in Veedo), the attack
requires only 213 processors and 240 memory (with B = 214, B′ = 245, R = 29),
which might be implementable in practice (as a reference, the largest GPUs today
have more than 214 cores and some motherboards support 12TB of memory).
The code is available as supplementary material12.

4 Relation with Discrete Logarithm

We observe that the algorithms in Sections 2 and 3 are very close to classical
algorithms for the discrete logarithm problem: Section 2.1 is similar to the baby-
step giant-step algorithm [47], and Section 2.2 is similar to index calculus [1].
In Appendix A.1 we describe another algorithm similar to the Pohlig-Hellman
algorithm [40].

22

4.1 Advanced logarithm methods

It is natural to consider more advanced discrete logarithm algorithms in the
context of low-latency computation of roots.

Using ECM. The elliptic curve method [34] (ECM) is a factorization algorithm
that is particularly efficient to find small factors. It could be used instead of trial
division for smoothness tests in the index calculus type attacks. The idea would
be to precompute some curves so that the value you want has smooth order. But
it is unclear how to make this work, or whether the amount of computation for
doing ECM would end up being within the desired constraints.

Using NFS-type algorithms. The complexity of index calculus for the discrete
logarithm problem is in the class L[1/2]. There are more efficient algorithms
known, with complexity in the class L[1/3], such as the Number Field Sieve [26].
Unfortunately, these algorithms seem to have an intrinsically sequential structure.
Further work is needed to evaluate the potential of these ideas, but the apparent
sequentiality is a serious obstacle in the context of low-latency algorithms.

4.2 Reduction to parallel discrete logarithm

On another hand, we show that a large class of attacks on algebraic VDFs,
which includes all our attacks, is reducible to the parallel discrete logarithm
computation. Informally, an attack that computes roots by precomputation and
low-latency multiplications may be used to compute the discrete log.

Definition 1. We call an algorithm A algebraic w.r.t. precomputed memory
C = [c1, c2, . . . , ck] if on input x it outputs a result in the form

A(x;C)→ (y, d1, d2, . . . , dk, d
′) (1)

such that
y = cd1

1 c
d2
2 · · · c

dk

k xd
′

(2)

It is easy to see that all algorithms from Section 3 are algebraic: the result is
always a product of some powers of stored values, which in our case are numbers
with known roots.

Theorem 3. Let p be a prime, and let DL be an algorithm that computes the
discrete logarithm in Fp with computational cost TDL(p). Let A be a parallel
algebraic algorithm that computes the power function

f(x) = xd mod p

using D processors and memory in online time (latency) L and precomputation
time T and produces a result in the form (2), where d− d′ is coprime with p− 1.
Then there exists a parallel algorithm B that computes the discrete logarithm in
Fp (using base g) in time L′ = L+ log2 k using D processors and memory and
precomputation time T +D · TDL(p).

23

Proof. We construct such an algorithm as follows. For each precomputed memory
element we precompute its discrete logarithm in time TDL(p) spending the total
of at most D · TDL(p) precomputation and store it together with the value ci.

In the online phase we run A as a subroutine for x and obtain

xd = cd1
1 c

d2
2 · · · c

dk

k xd
′

Given {ci, di}, d′ we retrieve the log of each ci from the memory and compute

logg x =

∑
di logg ci

d− d′

in time log2 k using k processors. This ends the proof.

Therefore, any algebraic attack implies a parallel discrete logarithm computa-
tion with the same online latency and the same online computational complexity.
Given that the latter problem has received some public scrutiny [49,18,48] (and
impacts the real-world security of Diffie-Hellman [3]), we may guess that a further
progress in low-latency attacks on algebraic VDFs, in particular the reduction in
the CPU number D, would require a non-algebraic approach.

5 Application to VDF Constructions

The previous algorithms break the sequentiality of several VDF constructions,
such as MinRoot [29], VeeDo [52] and Sloth++ [11]. An attacker with a large
number of processors can compute the round function several times faster than a
legitimate user, if we neglect communication and memory cost.

In particular, it contradicts the security claims of MinRoot: for instance, using
the algorithm of Section 3.5, an attacker with 229 processors can compute the
round function about 20 times faster than a legitimate user.

5.1 Optimization for Iterated MinRoot

We can save the latency of the initial multiplication used by r′a in the next round
if the processor that succeeds broadcasts the factors to be multiplied (

{
a
√
qi
}

and
r−1) rather than the final reduced result. Then each processor would compute
the randomized input for the next round as:

(u′ + v′) · r′a = (a
√
u+ v + (u+ i)) · r′a

=
∏

a
√
qi · r

−1 · r′a + (u+ i) · r′a

This results in a product with one more term, but it does not affect the latency
if the number of terms was not a power of two. The term (u+ i) · r′a is added
using a multiply-and-add operation at the end, so that the latency of a MinRoot
round is still just the latency of the a-th root.

24

5.2 Application to Sloth++

Sloth++ uses square roots in Fp2 . The precomputation attack from Section 2.1
can be applied directly, but attacks from Section 2.2 and 3 rely on smoothness
and there is no direct way to apply it in Fp2 . Instead, we show how to reduce the
computation of square roots in Fp2 to square roots in Fp.

We assume that Fp2 is constructed as Fp[X]/
(
X2 + α

)
. An element b of Fp2

is a polynomial b0 + b1X. The square root z = z0 + z1X of b = b0 + b1X satisfies:

z2 = b

(z0 + z1X)
2
= b0 + b1X

z20 − αz21 + 2z0z1X = b0 + b1X{
2z0z1 = b1

z20 − αz21 = b0{
z0 = b1/2z1 (assuming z1 ̸= 0)
a2
1

4z2
1
− αz21 = b0

We denote u = z21 and we obtain a quadratic equation in u:

b21
4u
− αu = b0

b21
4
− αu2 = b0 · u

We solve this equation by computing a square root in Fp, and deduce z0 and z1
using another square root operation in Fp, an inverse and a few multiplications.
The inverse in Fp can be computed with the low latency algorithms of Sections 2
and 3.

5.3 Bigger moduli

It is natural to ask how our attacks scale with modulus size. Given the relation
with discrete logarithm computation (Section 4), we expect that the number of
CPUs needed for the attack becomes less feasible with moduli of 1024 bits and
higher, as it happens with the RSA/DSA security. As different applications may
be okay with the number of CPUs above a certain threshold, we provide attack
complexity estimates for moduli sizes up to 2048 bits in Table 2.

Due to the space limit, we do not list the latency numbers and speedups in
the table. However we note that the speedup in our model actually grows as the
modulus increases. This is due to the fact that the plain root computation grows
linearly with the modulus size, whereas, for example, the memory access cost is
sublinear in it as long as the memory itself grows slower than prime p.

6 Low-latency Evaluation of Low-degree Exponentiation

We now consider a different problem: how to compute xd with a small d in
parallel faster than with the standard square and multiply. This can be directly

25

Table 2. Scalability of smoothness-based attacks. The numbers are given in log2 and
assume an attack with success rate 1− exp(−1) (lower than the rates in Section 3). The
code to compute these numbers is available at https://github.com/Cryptosaurus/
VDF/tree/master/code/alt_code.

Algorithm
Sec. 2.2 Sec. 3.1 Sec. 3.5 Sec. 3.6

Modulus (bits) #CPU M #CPU M #CPU M #CPU
96 27 34 22 29 13 27 11
128 33 36 28 30 17 29 14
192 43 41 38 40 22 34 19
256 51 51 47 41 27 40 23
384 67 57 62 49 34 44 30
512 80 63 75 59 41 53 36
768 102 78 98 65 53 62 47
1024 121 92 117 74 62 69 57
1536 154 108 150 91 79 87 72
2048 184 105 180 108 94 102 85

applied if the round function uses xe with small e rather than a
√
x with small

a. Moreover, those techniques can be used to reduce the latency of the root
computation in a VDF: an algorithm to compute xd with latency smaller than
log2(d) squarings can speed up computing xe with arbitrary e by replacing the
square and multiply algorithm by a d-th power and multiply algorithm; if done
naively, each step now requires up to d − 1 multiplications, but those can be
parallelized and do not affect the latency much.

6.1 Algorithm Using Shares and LUTs

Let us consider that we split each field element into a sum of s shares from a
smaller domain, say, s = 2. We then have that x ∈ Fp is equal to x = ℓ + h,
where for instance ℓ corresponds to the lowest bits and h to the highest bits of x.
The overall idea consists in precomputing some monomials in order to speed up
the computation of the VDF primitive we consider.

In general, we have that (with operations in Fp)

(ℓ+ h)d =

d∑
i=0

(
d

i

)
ℓihd−i

Suppose that an adversary has precomputed
(
d
i

)
ℓi and hi for all values of i, and

for all possible ℓ and h (recall that ℓ and h live in spaces that are much smaller
than Fp). Assume also that they have access to several parallel processors, then it
is possible to compute (ℓ+ h)d with a latency of 1 lookup, 1 multiplication, and
whatever is needed for additions and reduction mod p. After optimizing away 2
trivial tables for i = 0 and i = d, overall, 2d processors are needed for this to
work (to access 2d LUTs in parallel).

26

https://github.com/Cryptosaurus/VDF/tree/master/code/alt_code
https://github.com/Cryptosaurus/VDF/tree/master/code/alt_code

If d ≤ 4 such a technique turns out not to be too interesting. However, as
the degree d increases, this technique becomes more interesting since the latency
does not change when d increases, only the number of processors needed (and
the number of tables). Overall, in order to evaluate (h+ ℓ)d, we need:

– 2d parallel processors,
– 2d tables of size roughly p1/2,
– a latency of 1 lookup, 1 multiplication, and many additions.

This can be generalized to a higher number s of shares, in which case the
numbers above become (without optimizing away some trivial tables)

– s
(
d+s−1

d

)
= s
(
d+s−1
s−1

)
parallel processors,

– tables of size roughly p1/s,
– a latency of 1 lookup, log2(s) multiplications (since we don’t have to do them

sequentially), and many additions.

Again, while the overall complexity (and in particular the latency) increases
with s, the latency does not depend on d. Thus, this technique can be become
interesting when the degree is higher, in particular if d is much bigger than s.

Concrete Parameters for log2(p) ≈ 256. For instance, with d = 216 and s = 4,
we obtain a circuit to evaluate x2

16

using 4× 246 = 248 parallel processors, each
using a table of size 264, with a latency of 1 lookup, 2 multiplications and a
modular sum of 246 terms. Using the assumptions in Section 1.2, the tables would
be stored in RAM with an access latency of 6 units, and the sum of 246 terms
has a latency of 6 (using a tree with 6 levels where each level adds 256 terms).
This corresponds to a latency of 6 + 2 + 6 = 14, which is smaller than a direct
evaluation with latency 16.

However the memory requirements of this algorithm are prohibitive, with
sd = 218 tables of size 264, and a total of 248 accesses to the tables.

Algorithm 9: Using shares and LUTs to evaluate x216

T = 14 #CPU = 248 M = 282 speedup : 16/14

6.2 Extensions

The above method can be applied to directly compute r consecutive applications
of a VDF round function. Furthermore, we observe the bottleneck is the large
tables of size s

√
p for maps of the form x 7→ C · xi each. However, the functions

computed by those tables are amenable to the very same technique and we can
use the technique recursively with l layers by splitting the shares into sub-shares.
We refer to Appendix A.3 for more details. The results are given in Table 3.

27

Table 3. Comparison of highly parallel low latency computation with standard VDF
(only counting the multiplications in the latency).

Metric Compressed Recursive with l layers Standard VDF

Tables (in bits) er2
log2 p

s log2 p er2
log2 p

sl log2 p 0
Processors

(
er+s−1

s−1

)
e2r

2

(
er+s−1

s−1

)l e2r
2

1 or 2
Latency (in log2 p bit MUL) 2 + ⌈log2(s)⌉ 2 + l⌈log2(s)⌉ ⌈log2(e)⌉ · r

7 Practical Issues

The previous sections mostly consider ideal implementations of VDF from an
algorithmic point of view. In this section we briefly discuss some practical issues,
such as the communication cost.

7.1 Dealing with Errors

The algorithms given in this paper are probabilistic. Since we consider only the
round function a

√
x, and VDFs use a large number of iterations (typically 240 for

MinRoot), we need a very high success rate in order to successfully compute the
full VDF function.

However, it is easy to deal with rare erroneous computations, because the
computations can be efficiently checked (if y = a

√
x then ya = x). One option

is to repeat the algorithm when it fails; this increases the latency but if the
failure rate is small, the average latency stays small. Another option is to run the
standard implementation in parallel to the attack. If the attack succeeds we have
the result with low latency, and if it fails we wait until the standard algorithm
succeeds. If the failure rate is small, the average latency is still small.

7.2 Communication Cost

The analysis above essentially neglects communication costs. In practice, this is
likely to be an important bottleneck, because communication between millions
of CPUs takes time, and requires a large communication network; this is likely
to dominate the cost of the machine [60]. The setting is quite different from
usual cryptanalytic attacks, often embarrassingly parallel and not requiring
communication between the processors (e.g. brute-force key search). Since our
attacks target the round function, all cores must synchronize at least after each
round, to collect the result from the core that succeeded and broadcast it to
other cores (some algorithms might require even more communication). In this
section, we briefly discuss how to implement those communications, and how
practical this might be.

Massive Communication Network. In many of the discussed settings with high
available parallelism it is necessary to broadcast a short input (e.g. 256 bits) with

28

very low latency to a large set of processors and later to collect short outputs
from a small random subset of “successful” processors.

With more than 220 processors, this would probably require too long wires for
such broadcast and retrieval. Alternatives could be broadcasting wirelessly or even
over the optical domain. Indeed the speed of optics might make it possible to flash
with low latency the common input to the field of processors and later, with a few
receiving detectors to retrieve outputs from a handful of lucky processors. There
is ongoing research on integrating optical elements into existing chip design [6],
and the hypothetical Twinkle factoring device by Shamir also used in optics for
finding B-smooth numbers [45].

7.3 Physical Constraints

Speed of light. We want the attack to be faster than the standard implementation.
Taking the Supranational implementation of MinRoot as a benchmark, the attack
must have a latency of at most 230 ns; during this time light can only travel 70
meters; if we aim for an attack twice as fast as the standard implementation, light
can only travel 35 meters. This limits the physical size of the machine that runs
the attacks: it should be within a sphere of diameter 35 meters. Assuming that
each processor has a volume of 0.025mm2, at most π

6 35m
3/0.025mm2 ≈ 250

processors can communicate within one round.

Cooling limit. Assuming each core consumes 1W of power, the limit above would
result in a power density of 50 GW

m3 , far exceeding the power density of a nuclear
reactor.

The largest nuclear reactor in the world is the Taishan EPR, rated at 1.66GW,
and 4.59GW of thermal capacity. This is a major constraint on building nuclear
power plants leading us to claim that it is near impossible to build a system
dissipating more than 100GW of thermal power in one location on land. Adding
an “engineering safety factor of 10” gives a limit of 1TW, leading to a limit of
about 240 cores in a single machine.

Practical engineering constraints. Practical engineering constraints are very likely
to lead to much lower limits than any of the above. It completely ignores power
supply, cooling, and space for interconnect for communications, which will far
exceed the size of the cores. However, the point of designing for “128 bit security”
is to account for future improvements by adding safety margins, and so it is
unclear how much practical engineering problems should influence this if they
can’t be translated into clear physical limits.

8 Conclusion

In this paper we propose several algorithms to compute roots in a finite field Fp

with low latency. Even though it is not clear how efficient those algorithms would
be if implemented in practice, they clearly show that computing roots is not a

29

sequential operation, breaking an assumption used in several VDF constructions.
In particular, MinRoot is a VDF candidate that was proposed as a randomness
beacon in the core layer of the Proof-of-Stake Ethereum protocol, but this project
has been put on hold following our results [28].

Possible Tweaks. In order to limit the impact of these results, we considered
some options to construct a VDF that would plausibly not be affected by the
attacks. We have not looked into these alternatives in detail, and we do not claim
that they are secure, but they could offer ideas for further analysis.

Using a low degree round function. Our strongest attacks (in Sections 2
and 3) compute a

√
x with low latency. This breaks the VDF property because

the standard implementation requires about log2(p) squarings to compute
the root. An option could be to use xe with small e in the round function
instead of a

√
x: this reduces the latency of the standard implementation and

the algorithms of Section 2 are no longer competitive.
However, the algorithms of Section 6 show that a low-degree round function
can also be sped up to a smaller extend using parallel computation.

Using a larger prime p. All the algorithms that we proposed have a complex-
ity (number of processors) that is at best sub-exponential in p: the number
of processors required to obtain a given advantage increases with p. If p is
chosen large enough, it might be possible to achieve a sufficient security level.
However, further work is required to gain confidence on the non-existence of
better attacks, because the field has been barely explored.

Using extension fields (as in Sloth++). While taking square roots over Fp2

reduces to solving a quadratic equation over Fp, which is solved by taking
square roots over Fp (quadratic formula), this doesn’t appear to be the case
for cube roots or higher. The cubic formula may be useful, but for roots
larger than 3 it isn’t clear how to leverage the attack over Fp. On the other
hand, the attack may generalize more directly to extension fields, using a
suitable smoothness basis for the extension field (similar to index calculus
being extended to NFS).

Using elliptic curve groups. Another approach is to use elliptic curve groups
for the round permutation because there is no straightforward notion of
smoothness as there is in finite fields. Index calculus is less effective for
solving DL on elliptic curve groups too. For instance, the round function
could use r×x, with x a curve point and r such that 3r = 1 mod q (assuming
the EC group over Fp has order q). However, between rounds we would
need to interleave this with some permutation on the curve group that is
simple/algebraic over Fp and not a scalar multiplication.

Acknowledgements

This work was started during a gathering organized by Ethereum Foundation,
where experts were invited to analyze the MinRoot VDF. A technical report of

30

the gathering is available at [28]. We would like to thank Ethereum Foundation
for organizing the gathering, and all the participants for fruitful discussions. In
particular, Dankrad Feist contributed to the discussion of physical constraints,
and Anne Canteaut and Itai Dinur contributed appendices A.1 and A.2.

Gaëtan Leurent is supported by project Cryptanalyse from PEPR Cyber-
sécurité (22-PECY-0010). Alex Biryukov was funded in part by the Luxembourg
National Research Fund (FNR), project CryptoFin C22/IS/17415825.

References

1. Adleman, L.M.: A subexponential algorithm for the discrete logarithm problem
with applications to cryptography (abstract). In: 20th Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979. pp.
55–60. IEEE Computer Society (1979). https://doi.org/10.1109/SFCS.1979.2,
https://doi.org/10.1109/SFCS.1979.2

2. Adleman, L.M., Kompella, K.: Using smoothness to achieve parallelism (abstract).
In: 20th ACM STOC. pp. 528–538. ACM Press (May 1988). https://doi.org/10.
1145/62212.62264

3. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow,
E., Zanella-Béguelin, S., Zimmermann, P.: Imperfect forward secrecy: How Diffie-
Hellman fails in practice. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp.
5–17. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813707

4. Ahrens, K., Zumbrägel, J.: DEFEND: towards verifiable delay functions from
endomorphism rings. IACR Cryptol. ePrint Arch. p. 1537 (2023), https://eprint.
iacr.org/2023/1537

5. Arun, A., Bonneau, J., Clark, J.: Short-lived zero-knowledge proofs and signatures.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp.
487–516. Springer, Heidelberg (Dec 2022). https://doi.org/10.1007/978-3-031-
22969-5_17

6. Atabaki, A.H., Moazeni, S., Pavanello, F., Gevorgyan, H., Notaros, J., Alloatti, L.,
Wade, M.T., Sun, C., Kruger, S.A., Meng, H., Al Qubaisi, K., Wang, I., Zhang, B.,
Khilo, A., Baiocco, C.V., Popović, M.A., Stojanović, V.M., Ram, R.J.: Integrating
photonics with silicon nanoelectronics for the next generation of systems on a chip.
Nature 556(7701), 349–354 (Apr 2018). https://doi.org/10.1038/s41586-018-
0028-z, https://doi.org/10.1038/s41586-018-0028-z

7. Bach, E.: How to generate factored random numbers. SIAM J. Comput. 17(2),
179–193 (1988). https://doi.org/10.1137/0217012, https://doi.org/10.1137/
0217012

8. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryp-
tion algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.)
CRYPTO’86. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (Aug 1987).
https://doi.org/10.1007/3-540-47721-7_24

9. Bernstein, D.J., Sorenson, J.P.: Modular exponentiation via the explicit Chi-
nese remainder theorem. Math. Comput. 76(257), 443–454 (2007). https://doi.
org/10.1090/S0025-5718-06-01849-7, https://doi.org/10.1090/S0025-5718-
06-01849-7

10. Blum, M.: Coin flipping by telephone. In: Proc. IEEE Spring COMPCOM. pp.
133–137 (1982)

31

https://doi.org/10.1109/SFCS.1979.2
https://doi.org/10.1109/SFCS.1979.2
https://doi.org/10.1109/SFCS.1979.2
https://doi.org/10.1145/62212.62264
https://doi.org/10.1145/62212.62264
https://doi.org/10.1145/62212.62264
https://doi.org/10.1145/62212.62264
https://doi.org/10.1145/2810103.2813707
https://doi.org/10.1145/2810103.2813707
https://eprint.iacr.org/2023/1537
https://eprint.iacr.org/2023/1537
https://doi.org/10.1007/978-3-031-22969-5_17
https://doi.org/10.1007/978-3-031-22969-5_17
https://doi.org/10.1007/978-3-031-22969-5_17
https://doi.org/10.1007/978-3-031-22969-5_17
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1038/s41586-018-0028-z
https://doi.org/10.1137/0217012
https://doi.org/10.1137/0217012
https://doi.org/10.1137/0217012
https://doi.org/10.1137/0217012
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7
https://doi.org/10.1090/S0025-5718-06-01849-7

11. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 757–788.
Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-
1_25

12. Boneh, D., Franklin, M.K.: Efficient generation of shared RSA keys (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 425–439.
Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052253

13. Brent, R.P., Kung, H.T.: A regular layout for parallel adders. IEEE Trans.
Computers 31(3), 260–264 (1982). https://doi.org/10.1109/TC.1982.1675982,
https://doi.org/10.1109/TC.1982.1675982

14. Brent, R.P., Rung, H.: A systolic algorithm for integer gcd computation. In: 1985
IEEE 7th Symposium on Computer Arithmetic (ARITH). pp. 118–125. IEEE (1985)

15. Buterin, V.: Randao++. https://redd.it/4mdkku (2017)
16. Chen, M., Cohen, R., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., shelat, a.:

Multiparty generation of an RSA modulus. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 64–93. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56877-1_3

17. Cline, D., Dryja, T., Narula, N., CommitO: Clockwork: An exchange protocol for
proofs of non front-running (2020)

18. Coppersmith, D., Shparlinski, I.: On polynomial approximation of the discrete
logarithm and the diffie—hellman mapping. Journal of Cryptology 13, 339–360
(2000)

19. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from su-
persingular isogenies and pairings. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part I. LNCS, vol. 11921, pp. 248–277. Springer, Heidelberg (Dec
2019). https://doi.org/10.1007/978-3-030-34578-5_10

20. Deb, S., Kannan, S., Tse, D.: PoSAT: Proof-of-work availability and unpredictability,
without the work. In: Borisov, N., Díaz, C. (eds.) FC 2021, Part II. LNCS, vol. 12675,
pp. 104–128. Springer, Heidelberg (Mar 2021). https://doi.org/10.1007/978-3-
662-64331-0_6

21. Dickman, K.: On the frequency of numbers containing prime factors of a certain
relative magnitude. Arkiv for matematik, astronomi och fysik 22(10), A–10 (1930)

22. Dobson, S., Galbraith, S.D., Smith, B.A.: Trustless unknown-order groups.
ArXiv abs/2211.16128 (2022), https://api.semanticscholar.org/CorpusID:
236932351

23. Drake, J.: Minimal vdf randomness beacon. https://ethresear.ch/t/minimal-
vdf-randomness-beacon/3566 (2018)

24. Earle, J.: Latched carry-save adder. IBM Technical Disclosure Bulletin 7(10),
909–910 (1965)

25. Fisch, B.: Tight proofs of space and replication. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 324–348. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17656-3_12

26. Gordon, D.M.: Discrete logarithms in GF(P) using the number field sieve. SIAM J.
Discret. Math. 6(1), 124–138 (1993). https://doi.org/10.1137/0406010, https:
//doi.org/10.1137/0406010

27. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T., Nicolosi, A.A.: Efficient RSA key
generation and threshold paillier in the two-party setting. Journal of Cryptology
32(2), 265–323 (Apr 2019). https://doi.org/10.1007/s00145-017-9275-7

28. Herold, G., Kadianakis, G., Khovratovich, D., Maller, M., Simkin, M., Sanso,
A., Zapico, A., Zhang, Z.: Statement regarding the public report on the anal-

32

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1109/TC.1982.1675982
https://doi.org/10.1109/TC.1982.1675982
https://doi.org/10.1109/TC.1982.1675982
https://redd.it/4mdkku
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-030-56877-1_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-662-64331-0_6
https://doi.org/10.1007/978-3-662-64331-0_6
https://doi.org/10.1007/978-3-662-64331-0_6
https://doi.org/10.1007/978-3-662-64331-0_6
https://api.semanticscholar.org/CorpusID:236932351
https://api.semanticscholar.org/CorpusID:236932351
https://ethresear.ch/t/ minimal-vdf-randomness-beacon/3566
https://ethresear.ch/t/ minimal-vdf-randomness-beacon/3566
https://doi.org/10.1007/978-3-030-17656-3_12
https://doi.org/10.1007/978-3-030-17656-3_12
https://doi.org/10.1137/0406010
https://doi.org/10.1137/0406010
https://doi.org/10.1137/0406010
https://doi.org/10.1137/0406010
https://doi.org/10.1007/s00145-017-9275-7
https://doi.org/10.1007/s00145-017-9275-7

ysis of minroot. https://ethresear.ch/t/statement-regarding-the-public-
report-on-the-analysis-of-minroot/16670 (Sep 2023)

29. Khovratovich, D., Maller, M., Tiwari, P.R.: MinRoot: Candidate sequential function
for ethereum VDF. Cryptology ePrint Archive, Report 2022/1626 (2022), https:
//eprint.iacr.org/2022/1626

30. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 357–388. Springer, Heidelberg (Aug 2017). https:
//doi.org/10.1007/978-3-319-63688-7_12

31. Kothapalli, A., Setty, S., Tzialla, I.: Nova: Recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol. 13510, pp. 359–388. Springer, Heidelberg (Aug 2022). https://doi.
org/10.1007/978-3-031-15985-5_13

32. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryptology
ePrint Archive, Report 2015/366 (2015), https://eprint.iacr.org/2015/366

33. Lenstra, A.K., Wesolowski, B.: Trustworthy public randomness with sloth, unicorn,
and trx. Int. J. Appl. Cryptogr. 3(4), 330–343 (2017). https://doi.org/10.1504/
IJACT.2017.10010315, https://doi.org/10.1504/IJACT.2017.10010315

34. Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics
126(3), 649–673 (1987), http://www.jstor.org/stable/1971363

35. Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential
work. In: Kleinberg, R.D. (ed.) ITCS 2013. pp. 373–388. ACM (Jan 2013). https:
//doi.org/10.1145/2422436.2422479

36. Mahmoody, M., Smith, C., Wu, D.J.: Can verifiable delay functions be based on
random oracles? In: Czumaj, A., Dawar, A., Merelli, E. (eds.) ICALP 2020. LIPIcs,
vol. 168, pp. 83:1–83:17. Schloss Dagstuhl (Jul 2020). https://doi.org/10.4230/
LIPIcs.ICALP.2020.83

37. Medley, L., Loe, A.F., Quaglia, E.A.: Sok: Delay-based cryptography. In: 36th
IEEE Computer Security Foundations Symposium, CSF 2023, Dubrovnik, Croatia,
July 10-14, 2023. pp. 169–183. IEEE (2023). https://doi.org/10.1109/CSF57540.
2023.00028, https://doi.org/10.1109/CSF57540.2023.00028

38. Montgomery, H.L., Vaughan, R.C.: Multiplicative number theory I: Classical theory.
No. 97, Cambridge university press (2007)

39. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed.) ITCS 2019.
vol. 124, pp. 60:1–60:15. LIPIcs (Jan 2019). https://doi.org/10.4230/LIPIcs.
ITCS.2019.60

40. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory
24(1), 106–110 (1978). https://doi.org/10.1109/TIT.1978.1055817, https://
doi.org/10.1109/TIT.1978.1055817

41. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto.
Technical Report, Massachusetts Institute of Technology (1996)

42. Rotem, L., Segev, G.: Generically speeding-up repeated squaring is equivalent to
factoring: Sharp thresholds for all generic-ring delay functions. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol. 12172, pp. 481–509.
Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56877-
1_17

43. Savage, J.E.: Models of computation, vol. 136. Addison-Wesley Reading, MA (1998)
44. Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., Weippl, E.R.: RandRunner:

Distributed randomness from trapdoor VDFs with strong uniqueness. In: NDSS 2021.
The Internet Society (Feb 2021)

33

https://ethresear.ch/t/statement-regarding-the-public-report-on-the-analysis-of-minroot/16670
https://ethresear.ch/t/statement-regarding-the-public-report-on-the-analysis-of-minroot/16670
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2022/1626
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://eprint.iacr.org/2015/366
https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1504/IJACT.2017.10010315
https://doi.org/10.1504/IJACT.2017.10010315
http://www.jstor.org/stable/1971363
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.4230/LIPIcs.ICALP.2020.83
https://doi.org/10.4230/LIPIcs.ICALP.2020.83
https://doi.org/10.4230/LIPIcs.ICALP.2020.83
https://doi.org/10.4230/LIPIcs.ICALP.2020.83
https://doi.org/10.1109/CSF57540.2023.00028
https://doi.org/10.1109/CSF57540.2023.00028
https://doi.org/10.1109/CSF57540.2023.00028
https://doi.org/10.1109/CSF57540.2023.00028
https://doi.org/10.1109/CSF57540.2023.00028
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1109/TIT.1978.1055817
https://doi.org/10.1007/978-3-030-56877-1_17
https://doi.org/10.1007/978-3-030-56877-1_17
https://doi.org/10.1007/978-3-030-56877-1_17
https://doi.org/10.1007/978-3-030-56877-1_17

45. Shamir, A.: Factoring large numbers with the Twinkle device (extended abstract).
In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp. 2–12. Springer,
Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48059-5_2

46. Shani, B.: A note on isogeny-based hybrid verifiable delay functions. Cryptology
ePrint Archive, Report 2019/205 (2019), https://eprint.iacr.org/2019/205

47. Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. Symp.
Math. Soc., 1971. vol. 20, pp. 415–440 (1971)

48. Shparlinski, I.: Number theoretic methods in cryptography: Complexity lower
bounds, vol. 17. Birkhäuser (2012)

49. Sorenson, J.: Polylog depth circuits for integer factoring and discrete logarithms.
Information and Computation 110(1), 1–18 (1994)

50. Sorenson, J.: Two fast GCD algorithms. J. Algorithms 16(1), 110–144
(1994). https://doi.org/10.1006/jagm.1994.1006, https://doi.org/10.1006/
jagm.1994.1006

51. Sreedhar, K., Horowitz, M., Torng, C.: A fast large-integer extended GCD algorithm
and hardware design for verifiable delay functions and modular inversion. IACR
TCHES 2022(4), 163–187 (2022). https://doi.org/10.46586/tches.v2022.i4.
163-187

52. StarkWare: Presenting: VeeDo. https://medium.com/starkware/presenting-
veedo-e4bbff77c7ae (june 2020)

53. Supranational LLC: MinRoot VDF Hardware Engine (2022), https://github.com/
supranational/minroot_hardware

54. Supranational LLC: Minroot ASIC Driver (2023), https://github.com/
supranational/minroot_driver

55. Supranational LLC: MinRoot VDF ASIC (apr 2023), private presentation
56. Valiant, L.G.: A scheme for fast parallel communication. SIAM J. Comput. 11(2),

350–361 (1982). https://doi.org/10.1137/0211027, https://doi.org/10.1137/
0211027

57. Wallace, C.S.: A suggestion for a fast multiplier. IEEE Trans. Electron. Comput.
13(1), 14–17 (1964). https://doi.org/10.1109/PGEC.1964.263830, https://doi.
org/10.1109/PGEC.1964.263830

58. Wang, P.S.: A p-adic algorithm for univariate partial fractions. In: Wang, P.S. (ed.)
Proceedings of the Symposium on Symbolic and Algebraic Manipulation, SYMSAC
1981, Snowbird, Utah, USA, August 5-7, 1981. pp. 212–217. ACM (1981). https:
//doi.org/10.1145/800206.806398, https://doi.org/10.1145/800206.806398

59. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 379–407. Springer, Heidelberg
(May 2019). https://doi.org/10.1007/978-3-030-17659-4_13

60. Wiener, M.J.: The full cost of cryptanalytic attacks. Journal of Cryptology 17(2),
105–124 (Mar 2004). https://doi.org/10.1007/s00145-003-0213-5

A Other Low-latency algorithms

A.1 Algorithm using Subgroups of F∗
p (by Anne Canteaut)

For any divisor d of (p− 1), we denote by Gd the multiplicative subgroup of F∗
p

of order d, i.e.,
Gd := {x ∈ F∗

p : xd = 1} .

34

https://doi.org/10.1007/3-540-48059-5_2
https://doi.org/10.1007/3-540-48059-5_2
https://eprint.iacr.org/2019/205
https://doi.org/10.1006/jagm.1994.1006
https://doi.org/10.1006/jagm.1994.1006
https://doi.org/10.1006/jagm.1994.1006
https://doi.org/10.1006/jagm.1994.1006
https://doi.org/10.46586/tches.v2022.i4.163-187
https://doi.org/10.46586/tches.v2022.i4.163-187
https://doi.org/10.46586/tches.v2022.i4.163-187
https://doi.org/10.46586/tches.v2022.i4.163-187
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://github.com/supranational/minroot_hardware
https://github.com/supranational/minroot_hardware
https://github.com/supranational/minroot_driver
https://github.com/supranational/minroot_driver
https://doi.org/10.1137/0211027
https://doi.org/10.1137/0211027
https://doi.org/10.1137/0211027
https://doi.org/10.1137/0211027
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/s00145-003-0213-5
https://doi.org/10.1007/s00145-003-0213-5

Let F[d,a] be the a-th root in Gd, i.e.

F[d,a](x) = y if and only if ya = x, for any x ∈ Gd .

In other words,
F[d,a](x) = xe with ea ≡ 1 mod d .

Then, F[p−1,a] can be computed from F[d,a] and F[d,ad], when d = (p− 1)/d
is coprime with d. Namely, for any x ∈ F∗

p, we have

F[p−1,a](x) = F[d,ad](x
d)× F[d,a]

(
x(

F[d,ad](x
d)
)a
)
. (3)

Indeed, if gcd(d, d) = 1, F[p−1,a](x) can be uniquely decomposed as the product
of two elements, g1 in Gd and g2 in Gd. Then, by definition

x = F[p−1,a](x)
a = ga1g

a
2 ,

implying that
xd = gad2 .

It follows that
g2 = F[d,ad](x

d) .

Moreover
ga1 =

x

ga2
= x×

(
F[d,ad](x

d)
)−a

,

leading to (3).
It follows that, up to a few operations, computing F[p−1,a](x) boils down to

computing (possibly in parallel) both F[d,ad] and F[d,a], followed by an additional
exponentiation by d. This observation can be used in two different manners.
First, basic TMTO algorithms can be improved at the price of an exponentiation
by d, i.e., an additional cost of around log2(d) in the latency. A second possible
direction would be to investigate whether computing F[d,ad] could be significantly
easier than the original problem.

Time-Memory Trade-off An interesting point is that the previous observation
enables to divide the computation into two parts: computing a root in Gd and
computing a root in Gd. We set d < d.

In the following, we assume that that d is smaller than the available memory
size so that computing T[d,a] can be done by precomputing a lookup table.
Otherwise, the second step of the on-line phase requires another randomization
and needs to be distributed among several processors.

Precomputation
– Build a table Td with all pairs (z, za), z ∈ Gd, indexed by the values of
za.

35

– Build a table Td with triples (z, 1
za , z

ad) for M values of z ∈ Gd. This
table is indexed by zad.

The on-line phase then consists of the following two steps.

Find the component in Gd

– u← xd

– On each processor, do:
• Pick (r, 1

ra , r
ad) in Td.

• y ← rad × u
• If y is in Td then return (y2, v, y) = Td[y]

Find the component in Gd:
– z ← x× ra × v
– g1 = Td[z]
– return g1×y2

r

This algorithm costs M log2(ad) + d precomputation time, (M + d) memory.
The number of processors is p−1

dM , and the number of operations to be per-
formed is one multiplication and one table lookup on each processor, as well as
one exponentiation by d, a few multiplications and one additional table lookup on
a single processor. This corresponds to a latency of log2(d) plus a small constant.

It is worth noting that for d = 1, this corresponds to the usual TMTO
algorithm, where M values of F[p−1,a] are precomputed. Using subgroups allows
to divide the number of processors (or the memory) by a factor d at a cost log2(d)
of latency.

In particular, if there is a small factor d of p− 1, we obtain an algorithm with
fewer than 2128 processors, breaking the claim of 128-bit security. Since p has a
particular shape p = 232q + 1, we choose d = 232 and obtain an algorithm with
latency slightly higher than 32, using 296 processors.

Algorithm 10: Using precomputation and subgroups to evaluate a
√
x

T = 48 #CPU = 296 M = 2128 speedup : 5.3

Computing F[d,ad] In general, there is no particular algorithm to speed up the
computation of F[d,ad](y) in the previous algorithm. For instance, the probability
that the value y = radxd is smooth is not higher for a random element. It
then seems difficult to combine the use of subgroups with some other algorithm
exploiting the fact that computing a-th root is easier for inputs having a specific
form (e.g. for smooth integers).

However, for a given value of p, it should be checked that there is no divisor d
of p− 1 such that computing F[d,ad] is much easier than expected. One condition
is that the corresponding e such that ead ≡ 1 mod d has to be close to d. For the
MinRoot prime p, no d gives an anomalously small e.

36

A.2 Algorithm Using the Chinese Remainder Theorem (by Itai
Dinur)

Given x ∈ Fp for p < 2256, assume we want to compute xd mod p for d ∈ Zp−1

in minimal parallel time and limited number of processors. We demonstrate how
to apply a variant of the CRT-based algorithm by Bernstein and Sorenson [9] for
the concrete value of d = 32 = 25. We note that our algorithm is slightly different
from that of [9]. For example, unlike [9], we do not use the explicit form of the
Chinese remainder theorem, but this does not seem to have a significant impact
in our computational model.

As the advantage of the algorithm over a standard square-and-multiply
algorithm is small at best, it heavily depends on the computational model. Using
the assumptions above, a standard square-and-multiply algorithm that computes
x32 requires 5 time units (5 squarings).

Definitions Let y = x32, over the integers. We have 0 ≤ y ≤ 2256·32 = 28192. Let
d be the smallest value such that q1 · q2 · . . . · qd ≥ 28192, where q1 < q2 < . . . < qd
are the first d prime numbers. We have d = 759 < 210 and qd = 5783 < 213.
Denote

Q = q1 · q2 · . . . · qd.

Our aim is to do computation in the CRT basis defined by Q. Therefore, we
define Qi = Q/qi, Mi = 1/Qi mod qi (modular inverse), and yi = y mod qi for
1 ≤ i ≤ d.

Since y ≤ Q, we have by the Chinese remainder theorem:

y =

(
d∑

i=1

yiMiQi

)
mod Q.

We define z =
∑d

i=1 yiMiQi, as a sum of integers.

Overview Our goal is to compute y mod p = (z mod Q) mod p. We define
k = ⌊z/Q⌋, so that z = (z mod Q) + kQ, with z mod Q < Q and k ∈ Z. Hence

y mod p = (z mod Q) mod p = (z mod p− kQ mod p) mod p

This is the main equation used by the algorithm. In the following, we describe how
to compute z mod p and kQ mod p, while the result is obtained by subtracting
them and reducing modulo p.

Computing z mod p Given x, our goal is to compute

z mod p =

d∑
i=1

yiMiQi mod p,

37

with yi = y mod qi. We define xi = x mod qi, and we observe that

yi = y mod qi = x32 mod qi = x32i mod qi.

We compute the term yiMiQi mod p as follows. We begin by computing
xi = x mod qi by looking at the binary representation of x and making use of
precomputed values of 2j mod qi for j = 0, . . . , 255. Thus, computing xi requires
256 additions mod qi (with word size about 12 bits), which can be done in in
parallel-time 1 using our assumptions, with a circuit that is smaller than a
multiplier. Alternatively, we can use larger precomputed tables. For example, if
we use tables of size 28 (per 8 bits of x), we can compute xi using 32 processors
but this doesn’t reduce the latency under our assumptions (we assume that a
table lookup takes the same time as adding 256 values).

Once we have computed xi, we can use precomputed tables that map xi to
yiMiQi mod p. Since xi < qi, each table has size of at most qd < 213. We assume
that the tables are small enough to be implemented with unit delay, and we
consider that the circuit size for one table corresponds to one processor. Finally,
z mod p =

∑d
i=1 yiMiQi mod p can be computed in unit time.

Overall, using precomputed tables as above, computing z mod p can be done
using about d ≈ 210 processors in 3 units of parallel time.

Computing kQ mod p Recall that z =
∑d

i=1 yiMiQi. Since 0 ≤ MiQi < Q,
we have

0 ≤ z < Q ·
d∑

i=1

yi ≤ d · qd ·Q ≤ 223 ·Q.

Since k = ⌊z/Q⌋, we have 0 ≤ k < 223.
Moreover we can estimate z/Q to a precision of 20 bits (for example), and

then round it down to the nearest integer. This may introduce errors, which are
rare (assuming the input is uniform). However, in the setting of VDFs, where
(some) computations can be efficiently checked, it is easy to deal with the rare
erroneous computations (see Section 7.1).

More specifically, for each i ≤ d, after computing xi = x mod qi as above, we
use a precomputed table that maps xi to the value (yiMiQi)/Q, up to a precision
of 20 + log2(d) = 30 bits (overall, we use 13 + 30 = 43-bit values). We then
add these d values in parallel and round the result down to the nearest integer
to estimate k. Finally, we use the precomputed value of Q mod p and compute
kQ mod p.

Note that the addition of 210 values introduces an additional error term, but
it is unlikely to propagate beyond 10 bits.

After the computations of xi = x mod qi, the computation of kQ mod p
can be performed in parallel to that of z mod p. Thus, the only overhead in
parallel time is caused by the computation of k · Q mod q, with unit latency.
Since Q mod q is a constant and k is small, the multiplication can be done with
lookup tables, but this does not reduce the latency in our model.

38

Total Cost After computing z mod p and kQ mod p, it takes unit time to
compute the final result. However, we can avoid this additional latency by adding
z mod p to the result before the final reduction in the modular multiplication
k ·Q mod q (using a multiply-and-add operation).

Overall, the total time is estimated to be 4 units, which improves upon
the standard square-and-multiple algorithm with latency 5 (with d = 32). The
number of processors required is about 211.

Algorithm 11: Using CRT to evaluate x32

T = 4 #CPU = 211 speedup : 5/4

Variants

CRT coordinates. We may avoid the initial reductions xi = x mod qi in consec-
utive computations of exponentiations by “remaining in CRT coordinates”, i.e.,
performing all intermediate computations modulo qj for each j. However, this
only saves the initial modular reductions and requires about d ≈ 210 times more
processors.

Trade-Off by changing d. We can use the same approach to compute xd mod p
for other values of d. In general, choosing a smaller value of d will result in a
smaller gain compared to the standard square-and-multiple algorithm in our
computational model. Yet, a smaller value of d requires fewer processors, smaller
lookup tables and smaller fan-in/fan-out, and hence the cost model may be more
realistic. Choosing a larger value of d has the opposite effect (in particular, we
quickly obtain lookup tables that are too large for a combinatorial implementation
and must be stored in RAM).

A.3 Extensions to Multiple Rounds of low-degree MinRoot

We now consider extensions to the attack from section 6. Let us first consider
the evaluation of several rounds of a MinRoot variant, where the round function
xe uses a small e rather than e = 1/a mod p− 1 with small a.

Note that when used as a subroutine of a large-power exponentiation via e-th
power and multiply, we need to beat a latency of (non-rounded) log2 e, whereas
if the round function itself uses x 7→ xe for small e directly, we need to beat the
latency of the standard implementation of x 7→ xe. This may differ if e is not a
power of 2.

For such a round function, given input (x, y), each of the two outputs after r
rounds would be a degree er polynomial P (x, y). This polynomial can be written
in a general form:

P (x, y) =

er∑
k=0

k∑
i=0

Akix
iyk−i

39

In practice it seems most of the terms are present and there are a bit less than
er(er − 1)/2 terms. (Without the counters there would be only odd terms if e is
odd.)

Caveat: the constants Aki will depend on the round counter, so we need a
clever way to precompute/store them. They would be themselves polynomials of
degree at most er−2 in the round counter (it does not participate in the non-linear
part of the 1st round and is only added at the end of the last round). In the
naive implementation they can be all stored in tables for all the 240 steps of the
VDF computation. There might be a smarter recurrent way to compute them on
the fly.

Attack Complexity There is clearly a trade-off between the number of pro-
cessors and the size of tables which is governed by the number s of shares and
the number of rounds r, since the size of tables is exponential in log2 p

s and r,
and the number of processors is exponential in s and r (it can be very roughly
approximated as ers).

To give a concrete preliminary example, we consider e = 3 (cubing function);
the standard implementation has a latency of 3 units per cycle (2 multiplications
and 1 addition).

With s = 8, tables would take T = 3r237 bytes. There are at most e2r/2
terms in the polynomial; each term is the product of an x monomial and a y
monomial and each monomial requires at most

(
3r+7

7

)
processors for a low-latency

evaluation; therefore the number of processors would be P =
(
3r+7

7

)
32r

2 . So for
r = 8 get: T ≈ 250 bytes, P =

(
6568
7

)
· 9

8

2 ≈ 276+24 = 2100. The latency is 1 table
lookup and 3 multiplications (to compute one share of one monomial), 10 units to
sum 276 shares, 1 multiplication (between the x monomial and the y monomial),
and 3 units for the sum of 224 terms. The total latency is estimated at 23 units,
instead of 24 units for the standard implementation.

Recursive Approach Observe that the large memory cost comes from lookups
to compute maps of the form x 7→ A · xi, where x is from a set of the form
x ∈ {0, B, 2B, . . .} of size s

√
p. The way we split elements into shares can be

recursively applied to sets of this form to give shares from an even smaller domain.
By doing this (ex. 3 stages, bottom stages splitting into 3 shares each time),

we can trade-off a bit of latency for large gains in T . For example with two layers
of recursion l = 2 and s = 3 (optimal numbers of shares are 2m − 1 which allows
to do one layer in m multiplicative steps) we will need T = er229+5 = er234 bytes
and P = (e

2r

2)3 = e6r

2 processors. For r = 12, we have T = 248 bytes, P = 2114,
and a latency of 6 + 2 + 5 + 2 + 5 + 1 + 5 = 26, instead of 36.

A rough comparison of the various techniques is shown in Table 4 (a copy of
Table 3). Some additional observations:

– There are lots of redundant, overlapping calculations, so there should be
possible savings in terms of tables and processors.

40

Table 4. Comparison of highly parallel low latency computation with standard VDF
(only counting the multiplications in the latency).

Metric Compressed Recursive with l layers Standard VDF

Tables (in bits) er2
log2 p

s log2 p er2
log2 p

sl log2 p 0
Processors

(
er+s−1

s−1

)
e2r

2

(
er+s−1

s−1

)l e2r
2

1 or 2
Latency (in log2 p bit MUL) 2 + ⌈log2(s)⌉ 2 + l⌈log2(s)⌉ ⌈log2(e)⌉ · r

– Dependence of coefficients Aki on the counters needs to be taken into account.
This should be done on the fly by the processor responsible for the specific
monomial.

– It seems there is no big difference between Feistel or MISTY-like round
functions in terms of the number of monomials they can generate. But it does
help to perform the first step x1 = x0+ y0 before the rest of the computation,
gaining one round in terms of monomials.

41

	Cryptanalysis of Algebraic Verifiable Delay Functions
	Introduction
	Algebraic VDF Proposals
	Sloth++.
	Veedo.
	MinRoot.
	MinRoot Implementation.
	MinRoot security claims and their interpretation.

	Notations and Assumptions
	Our results

	Low-latency Evaluation of Power Functions
	A Baby-step Giant-step Approach
	An Approach Using Smoothness

	Optimizing the Smoothness Algorithm
	Using Almost-Smooth Numbers
	Pre-filtering
	the Shape of p
	Rational Reconstruction
	Parallel Smoothness Test
	Parallel Smoothness Test and Rational Reconstruction

	Relation with Discrete Logarithm
	Advanced logarithm methods
	Reduction to parallel discrete logarithm

	Application to VDF Constructions
	Optimization for Iterated MinRoot
	Application to Sloth++
	Bigger moduli

	Low-latency Evaluation of Low-degree Exponentiation
	Algorithm Using Shares and LUTs
	Extensions

	Practical Issues
	Dealing with Errors
	Communication Cost
	Physical Constraints

	Conclusion
	Other Low-latency algorithms
	Algorithm using Subgroups of the units mod p (by Anne Canteaut)
	Time-Memory Trade-off
	Computing roots in subgroups

	Algorithm Using the Chinese Remainder Theorem (by Itai Dinur)
	Definitions
	Overview
	Computing z mod p
	Computing kQ mod p
	Total Cost
	Variants

	Extensions to Multiple Rounds of low-degree MinRoot
	Attack Complexity
	Recursive Approach

