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Abstract

The shuffle model has recently emerged as a popular setting for differential privacy, where clients can
communicate with a central server using anonymous channels or an intermediate message shuffler. This
model was also explored in the context of cryptographic tasks such as secure aggregation and private
information retrieval (PIR). However, this study was almost entirely restricted to the stringent notion of
information-theoretic security.

In this work, we study computationally secure aggregation protocols and PIR in the shuffle model. Our
starting point is the insight that the previous technique of shuffling additive shares can be improved in
the computational setting. We show that this indeed holds under the standard learning parity with noise
(LPN) assumption, but even better efficiency follows from plausible conjectures about the multi-disjoint
syndrome decoding (MDSD) problem that we introduce and study in this work.

We leverage the above towards improving the efficiency of secure aggregation and PIR in the shuffle
model. For secure aggregation of long vectors, our protocols require 9×–25× less communication than the
previous information-theoretic solutions. Our PIR protocols enjoy the simplicity and concrete efficiency
benefits of multi-server PIR while only requiring a single server to store the database. Under the MDSD
assumption, they improve over recent single-server PIR constructions by up to two orders of magnitude.
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1 Introduction

Anonymous communication, as a means for protecting the identities of communicating parties, is an im-
portant privacy tool that has been extensively studied from the perspectives of both constructions and
applications [Cha81, Cha88, GT96, GRS99, Nef01, FM02, DMS04, GJ04, CL05]. Somewhat less expectedly,
anonymous communication can also serve to enhance the efficiency of privacy primitives that seem unrelated
to hiding identities. This idea was first put forward by Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS06],
who suggested the use of anonymity for enhancing secure computation and private information retrieval
protocols.

More recently, in the context of differential privacy, several works observed that allowing clients to
simultaneously send anonymous messages to a central server can lead to significantly improved privacy-utility
tradeoffs [BEM+17, EFM+19, CSU+19, BBGN19]. A simple practical implementation that was suggested
in this context is via the use of a shuffler: an intermediate entity that receives from each client one or more
encrypted messages (under a secret key known only to the server), and forwards a random permutation of
the received ciphertexts to the server1. The simplicity and efficiency of this approach inspired a rich line of
work on differential privacy in the shuffle model; see, e.g., [Che21, CZ22] and references therein.

Almost all of the above works (with the exception of a feasibility result from [IKOS06], see Section 1.2)
only consider the stringent notion of information-theoretic security in the shuffle model. In the present work,
we study the concrete efficiency benefits of settling for computational security. We show that this relaxation
unlocks much more efficient solutions for problems that involve processing inputs or requests from a large
number of clients, including secure aggregation and private information retrieval.

The split-and-mix construction. A core building block in our solutions is a “split-and-mix” construction
from [IKOS06] that takes c inputs from a finite Abelian group, generates k additive shares of each, and
outputs the shuffled ck shares. This construction can be naturally used to realize secure aggregation in
the shuffle model. The main technical question is how large k should be, as a function of c and the group
size, such that the shuffled additive shares reveal essentially nothing except the sum of the c inputs. In
the information-theoretic setting, a nearly tight answer was given in [IKOS06, GMPV20, BBGN20]. In this
work, we initiate the study of the computational version of this problem. We show that the parameters
of the information-theoretic solution can be improved under standard assumptions on the hardness of the
syndrome decoding problem [BMvT78, McE78], an equivalent dual version of the learning parity with noise
(LPN) problem [BFKL94].

Towards further improving efficiency, we formulate and study the multi-disjoint syndrome decoding
(MDSD) problem, a variant of the previously studied multi-syndrome decoding (MSD) problem [Sen11],
and show that it tightly captures the computational security of the split-and-mix construction. We conjec-
ture that, in the relevant parameter regime, the MDSD problem is roughly as hard as MSD, for which the
best known attack is the Decoding One Out of Many (DOOM) algorithm from [Sen11]. This conjecture is
guided by the intuition that the weak extra structure in MDSD (compared to standard MSD) is similar in
spirit to the weak extra structure in the regular-noise variant of the standard LPN problem [AFS03]. The
latter is commonly believed to be as hard as standard LPN in most parameter regimes, even though only
loose security reductions are known [LWYY22]. In light of the above, we propose concrete security param-
eters for split-and-mix that suffice to defeat the DOOM attack. We extend our analysis to other variants of
the construction that compress the first k−1 additive shares of each secret by using short seeds, and include
an additional dummy secret that may be split into a bigger number of shares. These variants are motivated
by the applications we discuss next.

The split-and-mix construction is at the heart of the two main applications we consider in this work:
secure aggregation and private information retrieval (PIR) in the shuffle model. In both cases we require
anonymous communication, which may be implemented by a shuffler, between many clients and a single
server. For secure aggregation, we only require one-way communication from the clients to the server. For

1This assumes that the shuffler and the server do not collude, which is similar to non-collusion assumptions made in other
cryptographic contexts. This assumption can be realistic when the shuffler and server are run by different entities. It can be
further relaxed by concatenating two or more shufflers, as is done in the context of mix networks and voting protocols [Cha81].
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PIR, we further require that the server can respond to clients via the same shuffler. We now discuss the two
applications in more detail.

Secure aggregation in the shuffle model. A secure aggregation protocol enables the server to learn the
sum of the inputs provided by many clients without learning anything else about the inputs. While this
summation can be carried out in any finite Abelian group, we will mostly consider aggregation of long vectors
in Znp . Aggregating long vectors is commonly seen in applications like private histogram statistics [CGB17,
BBCG+21, AGJ+22, ZMA22], or the context of federated learning [MMR+17], where aggregate gradient
updates (often of dimension 10K or more) needs to be summed up for model training. Existing standard-
model single-server constructions [BIK+17, BBG+20, MWA+23, BGL+23, LLPT23] require multiple rounds
of interaction between the server and the clients, or a subset of clients that can handle a large communication
proportional to the number of users and is available for online interactions throughout the execution of the
protocol. There are also protocols that require only one message from each client but rely on two non-
colluding servers [CGB17, BBCG+21]. In the setting where we require only differential privacy guarantees
for the aggregated output, there is a line of works leveraging the shuffle model to obtain non-interactive
solutions with a single server. These solutions [GMPV20, BBGN20] rely on the information-theoretic variant
of the split-and-mix problem.

Our improved parameters for the computational setting directly yield similar improvements for secure
aggregation. The resulting construction requires each client to split its input vector into additive shares
(compressing all but one share), and send the shares to the server through the anonymous communication
channels. Asymptotically, the number of shares per client in our protocol is poly log(n) in the input length
n, and by compressing all but one shares we achieve nearly the optimal communication rate 1. In contrast,
the optimal information theoretic analysis achieves communication rate of log(c)/n. For concrete settings,
our protocol achieves 9× to 25× saving in terms of communication, even when optimizing the information-
theoretic solution by compressing all but one of the shares, or aggregating each vector entry separately.
Moreover, similarly to the information-theoretic solution, this aggregation protocol can make a black-box
use of an arbitrary Abelian group (we conjecture that the MDSD parameters for Z2 suffice in the general
case). This black-box use of groups can support, for example, point addition in bilinear groups, which is
required by recent shuffle model protocols from [HIKR23]. See Section 4 for more details on our secure
aggregation protocol and Section 6 for concrete evaluation results.

We also show how to reduce aggregation on long inputs to aggregation of short inputs by leveraging
RWLE encryption [Reg05] which provides both key and message homomorphism. The core idea is to have
clients submit their inputs encrypted under different keys and run secure aggregation to provide the server
with the aggregated key; this lets the server decrypt only the aggregated input. Note however that unlike the
direct MDSD-based construction, which makes a black-box use of the underlying group, the performance of
the RLWE-based construction is more sensitive to the choice of group. Section 4.1 details the RLWE-based
construction while Section 6 compares our different aggregation constructions.

PIR in the shuffle model. A PIR scheme [CGKS95, KO97] enables a client to retrieve a selected item
from a large database while hiding the identity of the retrieved item from one or more servers storing the
database. The main challenge in PIR research is to make the communication cost sublinear in the database
size, while also minimizing the server computation overhead. There has been a flurry of recent works on
practical solutions to PIR, either with or without database preprocessing; see Section 1.2 for a survey of
some relevant works.

Our starting point is a simple technique for multi-server PIR from [CGKS95], whose communication cost
is roughly the square root of the database size. Viewing the database as a matrix X ∈ Fm×m2 , which is held
by k ≥ 2 servers, the client randomly splits a unit vector q ∈ Fm2 into k additive shares qi, and each server
responds with the matrix-vector product X · qi. Adding up the answers, the client obtains an entire column
of X without revealing the identity of the chosen column using O(m) bits of communication.

The above PIR scheme is attractive due to its lightweight server computation. Without preprocessing
of the database, the computational cost of PIR must inherently be linear in the database size [BIM00].
Here each server only needs to compute the XOR of (roughly) half the columns of X. The main downside,

4



compared to single-server PIR schemes, is that the servers need to hold synchronized copies of the database,
and are further assumed not to collude.

Our simple observation is that the above multi-server scheme can be implemented almost directly using
a single server in the shuffle model. Here the same server plays the role of all k servers in the multi-server
scheme, where security is achieved by mixing the sub-queries of different clients. Using a small number of
additional dummy shares to hide the sum of the client inputs, the security of this construction reduces to
the MDSD assumption.

Compared to the multi-server scheme, this solution has the big advantage of only requiring a single server
to store the database. Furthermore, while a shuffler-based implementation still needs to assume that the
server and the shuffler do not collude, this is arguably more realistic than assuming non-collusion of servers
that need to maintain synchronized copies of the same database. The non-collusion assumption can be
further relaxed by employing multiple shufflers or other anonymous communication techniques.

The concrete efficiency of this construction is directly influenced by the choice of k. Based on our
conjectured parameters for the MDSD problem, k ≈ 20 suffices with a large number of clients. We achieve
further improvements by applying several optimization techniques. The bandwidth is reduced by compressing
k−1 out of the k sub-queries sent by each client. The computational overhead is improved by batch-processing
sub-queries and by processing the first k−1 sub-queries of each client offline, before the online query is known
and during idle times of the server. Even without these optimizations, the simplicity of this approach and
the small number of bit-operations performed by the server make it competitive with state-of-the-art single-
server PIR schemes, including ones that employ expensive preprocessing. The online phase of our optimized
implementation outperforms the best current single-server PIR schemes [MW22, HHC+23, LMRSW23] by
one to two orders of magnitude with respect to most relevant metrics. See Section 6 for a more detailed
comparison.

PIR with proxy. If the shuffle model is instantiated in practice with a dedicated proxy that mixes all queries,
a natural question is what we can achieve by having the proxy do more than shuffling but still without
requiring it to store the database. We show a proxy-PIR construction which enables the proxy to generate
PIR queries from an encryption of the query index sent by the client, and then combine the answers from
the server into a single response sent to the client. The proxy still learns nothing about the query index
or the response. Our construction achieves optimal upload and download size per query. See Section B for
details.

PIR with variable-sized records. Real-world databases typically contain records in a variety of sizes, and
revealing the record size can reveal sensitive information about the record identity. Unfortunately, in the
usual PIR setting, nothing better can be done apart from padding all records to the same size and having
clients retrieve the padded records; this poses an undue communication cost if the majority of clients only
wish to retrieve small records.

In Section 7, we demonstrate that the shuffle model enables PIR for variable-sized records with significant
savings in total communication, leaking only the total size of all the queried records. We show novel approach
for clients to split a query for record size ` into O(log `) queries for records of smaller sizes, in which the size
of any individual retrieved record can be hidden by shuffling without any database padding. Moreover, our
construction only makes a black-box use of single-server PIR protocols.

On realizing and extending the shuffle model. While there are many different approaches to realize
anonymous communication channels, a number of practical applications assume a dedicated non-colluding
shuffler party that processes the clients’ messages [App, Chr, Clo]. With this shuffler instantiation, our
secure aggregation and PIR protocols can be further optimized by leveraging the shuffler to insert and
shuffle dummy shares together with the clients’ inputs. These dummy shares are only necessary for the
security of the protocol with respect to the server, but do not influence the outputs. This helps reduce the
communication of the clients by requiring a smaller number of shares for each input, and can be used to
guarantee a sufficient level of security even when there is a small number of participating clients. Finally,
the shuffler can potentially perform other actions beyond inserting dummy shares. This is exploited in the
proxy-PIR construction discussed above.
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1.1 Our Contributions

Our new techniques and constructions include:

Reducing Split-and-Mix to MDSD. We initiate the study of the computational security of the “split-
and-mix” construction, which is core to multiple applications. We formulate the problem of multi-disjoint
syndrome decoding (MDSD) and we show that it suffices for the security of this primitive.

Security of MDSD. We show a reduction from the well studied syndrome decoding problem to MDSD.
Since this reduction is not tight, we also put forward a conjecture that the DOOM attack provides a tight
bound on the complexity of MDSD. We provide the intuition and analysis for this conjecture.

Secure aggregation in the shuffle model. We present new analysis for shuffle-model secure aggregation
constructions in the computational setting, which have been analyzed before only in the information-theoretic
setting. The proof of security leverages our core “split-and-mix” lemma. This construction approaches the
optimal communication rate of 1. We also present a reduction from secure aggregation on long vectors to
aggregation on short vectors with the help of RLWE encryption. The resulting construction reduces the
computation cost, typically with a small increase of communication cost.

PIR in the shuffle model. As a second application of our computational “split-and-mix” analysis, we
present a new single-server PIR protocol in the shuffle model, namely where the server obtains a shuffle of all
queries made by the clients. Our protocol offers significant efficiency advantages over existing single-server
PIR protocols without requiring database replication, but at the cost of requiring an additional shuffler who
does not collude with the server. We propose several optimizations that improve the concrete efficiency. In
Section 7, we additionally demonstrate the possibility of leveraging the shuffle model towards better solutions
for PIR with variable-size records, revealing only the total size of all retrieved records.

We implement our constructions, conduct extensive benchmarks and compare their concrete efficiency with
the state of the art.

Empirical Results. We implemented our secure aggregation and PIR protocols and evaluated their concrete
efficiency. For secure aggregation, we measured the improvement compared to the previous information-
theoretic analysis. Our advantage increases with the number of clients and the input size. For example,
for input vectors of dimensions 215–223 we get 9–25× improvement in communication. For many realistic
choices of parameters, the expansion ratio2 of our construction is very close to 1 which is optimal. Our RLWE
hybrid-variant only requires secure aggregation of short vectors (of length 210 to 211) combined with RLWE
encryptions of the inputs. The concrete communication for this hybrid protocol is worse than our MDSD-
based construction, which has close to optimal communication. However, it achieves better computation for
the server with 170×–590× speedups for different parameters.

For the PIR benchmarks, we considered databases of total size in the range of 0.2–8 GiB, arranged in
different shapes determined by record size vs. number of records. Both the (amortized) communication and
computation costs of our protocol improve as the number of clients increases. Since several of the single-
server schemes that we compared with are in the preprocessing model, where there is a significant offline
cost of communicating hints, we also split our communication into online and offline. More specifically,
each client’s query consists of several sub-queries, all but one of which can be sent and processed before the
query is available and thus the online communication consists of a single sub-query. The distinction between
online and offline costs makes sense even if those do not amortize across queries from the same client, since
offline queries can typically be run during idle periods for the server. We note that this kind of per-query
preprocessing is qualitatively worse than the one-time hint-based preprocessing required in several other
PIR schemes. However, even when adding this preprocessing cost to the online cost, our construction is still
competitive. We expect that in a typical situation where the server load has high variability, off-peak times
can be used to process the offline queries and enable very fast processing of online queries during peak times.

Existing single-server PIR constructions obtain different trade-offs between communication and compu-
tation costs. Spiral [MW22] minimizes communication, but at the cost of relatively high computation, while
SimplePIR [HHC+23] optimized throughput at the cost of large preprocessing communication costs. The

2Expansion ratio measures the communication overhead of the protocol over the input vector size.

6



online throughput of shuffle PIR improves the throughput of SimplePIR by 5–7× (20–25× with batched
processing). Spiral is more than 10× slower than SimplePIR and thus 200–300× times slower than the
online computation for ShufflePIR, and is also substantially slower even if we consider the total online and
offline computation for shuffle PIR. Concretely, the online computation of shuffle PIR in our experiments is
7–220ms per client.

In terms of communication, our online communication is close to that of Spiral, which is 3–13× less
than the online communication of SimplePIR for different parameter settings. The total online and offline
communication of ShufflePIR is better than the total communication for SimplePIR when clients have small
number of queries. Our proxy PIR constructions achieve upload cost of a single ciphertext encrypting the
query index and download of a single ciphertext encrypting the single retrieved record.

1.2 Related Work

In this section we discuss the relevant works for our comparison.

Shuffle Model. The shuffle model has been widely studied in the literature, spanning across differential
privacy, secure aggregation and anonymous systems. In recent years, this model has seen increasing popular-
ity due to its use in differential privacy applications (see, e.g., [BEM+17, Che21]). In this work we consider
PIR and secure aggregation, and study the extent to which settling for computational security can be used
to improve previous results from [BBGN20, GMPV20, IKOS06]. We expect our approach to have relevance
to differential privacy as well, and leave this direction to future work.

Secure Aggregation. A number of works consider the problem of enabling a server to learn the sum of
inputs from a set of clients without learning anything else. These works can be categorized by their communi-
cation models. Some constructions [BIK+17, BBG+20, BGL+23] (designed for distributed learning settings)
assume clients can only communicate with the server and are multi-round protocols. New committee-based
construction [MWA+23, LLPT23] in the similar communication model alleviate the multi-round requirement
for most of the clients but at the cost of an assumption that a subset of the clients can be available online
throughout the execution of the protocol and be able to handle communication linear in the number of
parties.

Differently, single-server aggregation in the shuffle model can be made non-interactive (single round).
Ishai et al. [IKOS06] first proposed an information-theoretic protocol for adding c inputs over a group of size
p in the shuffle model, where statistical security of 2−σ can be achieved by using k = O(log c + log p + σ)
additive shares per input. A line of subsequent works improved on this bound [IKOS06, BEM+17, EFM+19,
CSU+19, BBGN19], culminating in a nearly tight analysis [GMPV20, BBGN20] of the “split-and-mix”
protocol in the information-theoretic setting, showing that k = Θ( 2σ+log p

log c ) suffices. In this work we show
that, settling for computational security, better efficiency follows from the LPN or MDSD assumptions.

When inputs are high-dimensional, our construction’s communication outperforms these works by orders
of magnitude. This is particularly useful for machine learning applications to aggregate model weights. Note
that there are two straightforward optimizations to the information-theoretic solution: compressing all but
one shares using PRG seeds, and breaking a long vector into shorter segments that are aggregated sepa-
rately. Our construction still outperforms the information-theoretic solution even when these optimization
are equally applied, thanks to the much smaller number of shares (poly log(n) vs. n) per input for any given
input length n to guarantee the computational hardness of MDSD problem.

Private Information Retrieval. While the shuffle model is widely used in the area of differential privacy,
only few works have studied PIR in this model. Here, the clients are granted the ability to make anonymous
PIR queries to a single server. Ishai et al. [IKOS06] proposed a computationally secure construction under a
non-standard assumption (the hardness of reconstructing noisy low-degree curves in a low-dimensional space),
where the main goal is obtaining single-server PIR with sublinear server computation per query following
a one-time polynomial-time preprocessing. This problem was recently solved by Lin et al. [LMW23] in the
standard model under the standard RLWE assumption. An unpublished recent work by Ishai, Kelkar, Lee
and Ma [IKLM] gave an information-theoretic construction for PIR in the shuffle model. However, all these
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schemes are prohibitively expensive in practice, either having concretely high server storage and computation
overhead [IKOS06, LMW23] or requiring a huge number of clients to query simultaneously [IKLM]. Our
goal is to obtain PIR schemes with concretely fast server computation, even without preprocessing.

Another line of work [TDG16, AIVG22] considers the differential privacy (DP) notion for PIR. Here,
clients send their queries anonymously to the server, and privacy is guaranteed by the shuffling of the queries
along with some noise queries. The DP notion guarantees that the server cannot distinguish neighboring sets
of queries (i.e., differing in exactly one client). Unfortunately, DP is substantially weaker than the standard
PIR security definition and therefore insufficient in any applications where client queries can be strongly
correlated, which is often the case in practice.

To show the efficiency improvement, we compare our scheme with state-of-the-art single-server PIR con-
structions including 1) Simple PIR [HHC+23], which optimizes server online computation at the cost of
preprocessing; 2) Hintless PIR [LMRSW23], which removed the preprocessing of Simple PIR with some ad-
ditional online cost; and 3) Spiral PIR [MW22], which optimized online communication. FrodoPIR [DPC23]
is a concurrent work similar to SimplePIR, which has better download size but inferior throughput. There
are other works [PPY18, ZPSZ23] that have fast server computation, but require clients to download the
entire database in an offline phase (but with sublinear client storage).

2 Preliminaries

We use κ to denote the computational security parameter, and σ, the statistical security parameter. For
n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. By default, vectors in this paper are assumed to be
column vectors. For matrix A, we use a1,a2, . . . to denote its columns, and a(1),a(2), . . . for its rows. A
can also be written as the horizontal concatenation [a1, . . . ,an] of its columns, or the vertical concatenation
(a(1), . . . ,a(m)) of its rows.

For a distribution D, we use s← D to denote sampling from D. Given a set S, we use s←$ S to denote
uniformly sampling from S. We use I to denote the characteristic function of a random variable. For two
distributions D1,D2, we use s.d.(D1,D2) to denote the statistical distance between D1 and D2.

2.1 Coding Theory

We will need some basic results in coding theory. Let F be a finite field. The Hamming distance between
any two vectors v,u ∈ Fn, denoted by ∆(v,u), is the number of coordinates that they differ: ∆(v,u) :=
|{i | vi 6= ui}|. The Hamming weight of a vector v ∈ Fn, denoted by ∆(v), is the number of non-zero entries
in v. Clearly, we have ∆(u,v) = ∆(u− v) = ∆(v − u) for all u,v ∈ Fn.

A linear code C of length m and dimension k is a subspace of Fm, and its elements are usually called
codewords. The distance of a linear code C, denoted by ∆(C), is the minimum Hamming weight of non-
zero codewords of C. Since C is a linear subspace, we have ∆(C) = minu6=v∈C ∆(u,v). The code C can be
represented by its generator G ∈ Fk×m, whose columns form a basis of C, such that C = {xTG | x ∈ Fk}.
Given a matrix G ∈ Fk×m, we write C(G) = {xTG | x ∈ Fk} for the code generated by G. Alternatively,
C can also be represented by its parity check matrix H ∈ Fm×(m−k) whose kernel is C, i.e. H · y = 0 for
all y ∈ C. Note that G ·H = 0, and that the minimal distance ∆(C(G)) is exactly the minimal number
of columns of H that are linearly dependent. Furthermore, for randomly sampled generator matrix G, its
corresponding parity check matrix H is also uniformly random over Fm×(m−k). Note that we choose to write
the generator G in the “transposed” form where rows of G spans the code; this is more convenient for us
since we will mostly working with its parity check matrix H.

For finite field Fq, define the entropy function hq as

hq(x) = x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

This is a generalization of the binary entropy function h2(x) = −x log(x)−(1−x) log(1−x) to arbitrary finite
field Fq. For random linear codes over Fq, the celebrated Gilbert-Varshamov lemma gives a high probability
bound on the existence of a solution e ∈ Fmq such that H · e = z for a random H and a given z.
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Lemma 1 (Gilbert-Varshamov Bound for Random Linear Code). Let m > 1, q a prime power, δ ∈ [0, 1−
1/q), and 0 < ε < 1− hq(δ). If k = d(1− hq(δ)− ε)me, then

Pr
G←Fk×mq

{∆(C(G)) ≥ δm} ≥ 1− q−εm+1.

Definition 1 (Gilbert-Varshamov Distance of Linear Code). For a linear code C with parity-check matrix
H ∈ Fn×m, the Gilbert-Varshamov distance of C is the smallest integer d such that

(
m
d

)
≥ 2n.

2.2 LPN and Syndrome Decoding

Fix a field F, let m, k > 0 be integers, and let 0 ≤ τ ≤ 1. We use Berp(F) to denote the Bernoulli distribution
over F that returns a uniform non-zero element with probability p and 0 with probability 1 − p. We use
HWn

w(F) to denote the exact error distribution of Hamming weight w over Fn, that is, HWn
w(F) is the

uniform distribution over the subset {x ∈ Fn | ∆(x) = w}. The primal (m, k, τ)-LPN distribution over F,
parameterized by secret s ∈ Fk is

{(A, sTA + eT ) | A←$ Fm×k, e← Bermτ }.

We usually refer to k as the secret dimension, m the number of samples, τ the error rate, and w = mτ
the expectation of Hamming weight of the error vector e.

Definition 2 (Primal LPN Assumption [BFKL94]). Let m, k > 0 and 0 ≤ τ ≤ 1. The (primal) (m, k, τ)-
LPN assumption states that, for any secret vector s←$ Fk, the (m, k, τ)-LPN distribution is indistinguishable
from uniform distribution over the same output domain:

{(A, sTA + eT ) | A←$ Fm×k, e← Bermτ } ≈c {(A,bT ) | A←$ Fm×k,b←$ Fm}.

In the above formulation, we can consider A as the generator matrix of a (m, k)-linear code C over F.
The vector bT = sTA + eT is thus a received word with error eT . Let n = m − k and H ∈ Fn×m be the
parity check matrix of A, i.e., AHT = 0, we then have Hb = H(AT s + e) = H · e. The vector He is called
the syndrome of the received word b. The dual form of the LPN assumption is now on the distribution on
He being pseudorandom for H←$ F(m−k)×m.

The dual LPN assumption is closely related to the Syndrome Decoding problem, and in fact it is equivalent
to the (m,m− k,w)-Decisional Syndrome Decoding assumption.

Definition 3 (Decisional Syndrome Decoding (dual-LPN) Assumption [BFKL94, AIK07]). Let n,m > 0
and 0 ≤ τ ≤ 1. The Decisional (m,n, τ)-Syndrome Decoding assumption states that the following two
distributions are computational indistinguishable:

SDm,n,τ (F) = {(H,H · e) | H←$ Fn×m, e← Bermτ }
≈c {(H,y) | H←$ Fn×m,y←$ Fn}.

For our purpose, it is more convenient to use the exact error distribution HWn
w(F) for fixed Hamming

weight w instead of the Bernoulli distribution. The corresponding syndrome decoding problem with a
fixed Hamming weight error distribution is usually referred to as the Exact-Syndrome Decoding, and we use
SDn,m,w to denote this variant. Note that the hardness of search version of SDn,m,w, which asks the adversary
to recover the error vector e, follows directly from the hardness of the search SDn,m,τ problem [Pie12]. See
[LWYY22] for a recent analysis on the relations between the exact SD / LPN problems and the Bernoulli
variant.

2.3 Additive Secret Sharing

We use an additive secret sharing scheme (Share,Recon) over a vector space. Formally, let F be a finite field,
and let n > 0. The additive secret sharing scheme over Fn is defined as follows.
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• Share(x ∈ Fn; k ≥ 2) = (s1, . . . , sk): On input a secret x, sample uniform and i.i.d. s1, . . . , sk−1←$ Fn,

and let sk = x−
∑k−1
i=1 si.

• Recon(s1, . . . , sk) =
∑k
i=1 si: On input shares s1, . . . , sk, output their sum as the reconstructed secret.

Additive secret sharing is information-theoretically secure in the sense that any subset of shares of size
at most k− 1 is uniformly random. We formulate an interesting computational problem about mixing many
additive secret sharings in Section 3. Looking ahead, this will be central in the analysis of our constructions.

2.4 Computational Bit Security

We restate the bit-security framework [MW18] for cryptographic primitives.

Definition 4 (Non-adaptive Decision Game). Let {D0
θ}θ and {D1

θ}θ be two distribution ensembles indexed
by a security parameter θ. A non-adaptive decision game G (implicitly parameterized by θ) is defined as
follows:

• C samples a bit b←$ {0, 1};
• A sends q ∈ N to C;

• C samples y1, . . . , yq ← Dbθ and sends (y1, . . . , yq) to A;

• A outputs either a bit b′ or ⊥.

The output of the game is defined as G[A] := (b′ = b).

Definition 5 (Bit Security). For any adversary A playing a decision game G and outputting b′, we define its
output probability as αA := Pr{b′ 6= ⊥} and its conditional success probability as βA := Pr{b′ = b | b′ 6= ⊥},
where the probabilities are taken over the randomness of the game G and internal randomness of A. We define
A’s conditional distinguishing advantage as δA := 2βA − 1, and the advantage of A as AdvA := αA(δA)2.

The bit security of a primitive modeled by G is minA log T (A)

AdvA
, where T (A) is the running time of A.

Bit security provides a uniform measure about hardness of a computational problem. The following
lemma allows us to determine the bit security of hybrid arguments.

Lemma 2 (Hybrid Argument [MW18]). Let {Hi}ki=1 be a series of k distributions and Gi,j be the decision

game instantiated with Hi and Hj. Let εi,j = maxA AdvA over all T -bounded adversaries A against Gi,j.
Then ε1,k ≤ 3k

∑k−1
i=1 εi,i+1.

2.5 Key-Message Homomorphic Encryption

For our proxy and secure aggregation constructions, we use a symmetric encryption scheme E = (Enc,Dec)
with key space K and message space F`, such that it is both key and message homomorphic, i.e. Enc(s1,x1)+
Enc(s2,x2) = Enc(s1⊕s2,x1 +x2), where ⊕ and + are addition over K and F`, respectively. Furthermore, let
E ′ = (KeyGen′,Enc′,Dec′) be a public key additively homomorphic encryption scheme with message space K.

We can instantiate E and E ′ with the above properties using lattice-based encryption schemes [Reg06].
One natural instantiation is the following: Assume F = Fp is a finite field of prime order. Let RQ1

=
ZQ1/(X

N1 + 1) be a quotient ring with N1 ≥ ` a power of two and Q1 > p, and let RQ2 = ZQ2/(X
N2 + 1)

be a quotient ring such that N2 ≥ N1 is a power of two and Q2 > Q1. For some σ > 0, let χσ(R) be
the distribution over polynomial ring R where each coefficient is independent Gaussian with parameter σ.
The key space of E is K = RQ1

, and we interpret any vector x ∈ F`p as the coefficients of a polynomial in

Zp/(XN1 + 1). The symmetric encryption scheme E with public random polynomial a←$RQ1
consists of

the following algorithms:

• Enc(s,x) $→ a · s+ e+ bQ1/p · xe: where e← χσ;
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• Dec(s, y) = b(y − a · s)/pe.

The public key encryption scheme E ′ can be defined as:

• KeyGen′() $→ (sk, pk = (u,−u · sk + e′) (mod Q2)), where u←$RQ2
and sk, e′ ← χσ;

• Enc′(pk, s) $→ (v · pk0 + e0 + bQ2/Q1 · se , v · pk1 + e1), where v, e0, e1 ← χσ.

• Dec′(sk, ct) = b(ct0 · sk + ct1)/Q1e.

To securely instantiate E and E ′, we can set lattice parameters (N1, Q1, σ) and (N2, Q2, σ) with the desired
security level.

To combine a KMAHE scheme with a shuffle-model secure aggregation protocol as in Construction 2, it
must satisfy a special leakage-resilient security. We now formally define such security.

Definition 6. Let E = (Enc,Dec) be an KMAHE encryption scheme with key space K. Let c > 0 be any
positive integer. We say that E is c-IND-secure under leakage of sum of secret keys if any efficient adversary
A has negligible advantage in winning the following experiment.

Expr[A](1κ) = (b == b′) :

b←$ {0, 1}

({x(0)
i }

c
i=1, {x

(1)
i }

c
i=1)← A(1κ)

for all i = 1, . . . , c : ski←$K, cti ← Enc(ski, x
(b)
i )

b′ ← A(

c∑
i=1

ski, ct1, . . . , ctc)

3 Split-and-Mix Core Lemma

In this section, we formulate a core split-and-mix lemma which we will use in the rest of our constructions;
this formalizes the security properties we need from shuffling additive shares. To formalize the shuffle model,
let Π = {Πm}m∈N be a distribution ensemble where Πm is a distribution over the symmetric group Sm

(recall that this is the group of all permutations of {1, . . . ,m}). When Π is unspecified, we assume that each
Πm is a uniform distribution over Sm; we refer to this as the uniform or perfect shuffler.

We begin by considering the problem of distinguishing between (i) a single additive sharing of
∑c
i=0 xi

into m shares; and (ii) the union of individual additive sharings of xi into a smaller (k or k0) number of
shares, with c · k + k0 = m. More formally, let F be a finite field, let c, n, k, k0 be positive integers, and
let m = c · k + k0. For any x0, . . . ,xc ∈ Fn, the split-and-mix problem is to distinguish the following two
distributions:

D0 =

π(s
(0)
1 , . . . , s

(0)
k0
, s

(1)
1 , . . . , s

(1)
k , . . . , s

(c)
1 , . . . , s

(c)
k )

∣∣∣∣∣∣∣
(s

(0)
1 , . . . , s

(0)
k0

)← Share(x0 ∈ Fn, k0),

∀1 ≤ i ≤ c. (s
(i)
1 , . . . , s

(i)
k )← Share(xi ∈ Fn, k),

π←$ Πm

 ,

and

D1 =

{
π(s1, . . . , sm)

∣∣∣ (s1, . . . , sm)← Share(
∑c
i=0 xi ∈ Fn,m),

π←$ Πm

}
.

We formally present the indistinguishability result in the split-and-mix problem in Lemma 4, which is our
formal split-and-mix lemma.

Here we briefly discuss the split-and-mix problem. Without loss of generality, we assume that the first

k−1 shares in Share(x, k) are independently sampled, e.g., s
(0)
1 , . . . , s

(0)
k0−1←$ Fn and s

(0)
k0

= x0−
∑k0−1
i=1 s

(0)
i .

Looking ahead, x0 may play a different role than the rest of the input vectors and we may set k0 � k:
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In the aggregation protocol where a proxy implements the shuffle, x0 is the 0 vector, and we may let the
proxy insert a large k0 shares of 0 into the mix. In PIR, x0 is a random vector where the generation of the

large shares s
(0)
1 , . . . , s

(0)
k0−1 is distributed among the clients, to make it hard for the server to locate shares

of real input xi for i = 1, . . . , c. In both cases, we would like to set k as small as possible while keeping the
split-and-mix problem hard.

When c = 1, the split-and-mix problem reduces from Syndrome Decoding SDn,m−2,k−1 over F. We
formally present the reduction in the lemma below.

Lemma 3. For any integers n > 0, m > 2, and k > 1, and for any x0,x1 ∈ Fn, if the decisional SDn,m−2,k−1

is hard, then the split-and-mix problem over x0,x1 with c = 1 is also hard.

Proof. Assume A solves the split-and-mix problem with c = 1. We build the following reduction to solve
SDn,m−2,k−1 using A as an oracle. Given a uniformly random parity check matrix H ← Fn×(m−2) and a
vector y ∈ Fn, the reduction computes z = x1 −

∑
j hj + y and runs A on a set of randomly permuted

vectors π(h1, . . . ,hm−2,−y + x0, z). Clearly, if (H,y) is a SDn,m−2,k−1 sample and hence y = H · e for
some random e with Hamming weight k− 1, then the input to A follows D0; if (H,y) is instead a uniformly
random sample, then the input to A is an additive sharing of x0 + x1 of size m and follows D1.

We are interested in the case where c > 1 and k0 ≥ k. The conjectured hardness of this decision problem
will serve as the basis for applications in the shuffle model, including secure aggregation and PIR. Later in
this section, we will show that this hardness conjecture is implied by the hardness of a generalized version
of syndrome decoding.

3.1 Multi-Disjoint Syndrome Decoding

As alluded to above, there are close connections between the split-and-mix problem and the problem of
decoding random linear codes, and in the degenerate case c = 1, there is a simple reduction from syndrome
decoding. For the general case, we introduce the Multi-Disjoint Syndrome Decoding problem and study its
hardness and relations with existing problems.

First, let us define an error distribution for this new problem.

Definition 7 (Disjoint Error). Let F be a finite field, and let m, c,w > 0. The (m, c,w)-Disjoint Error Set
DisErrorm,c,w is the following set of matrices over F:

DisErrorm,c,w = {E ∈ Fm×c | ∀i 6= j, ei ∩ ej = ∅ ∧ ∀i,∆(ei) = w}.

Now we define the multi-disjoint syndrome decoding problem.

Definition 8 (Multi-Disjoint Syndrome Decoding). Let F be a finite field, and let n,m, c, w > 0. The
(n,m, c, w)-Multi-Disjoint Syndrome Decoding distribution over F is

MDSDn,m,c,w = {(H,H ·E) | H←$ Fn×m,E←$ DisErrorm,c,w}.

The (n,m, c, w)-Decisional Multi-Disjoint Syndrome Decoding (MDSD) problem is to distinguish the
distribution MDSDn,m,c,w from the uniform distribution over Fn×m × Fn×c.

The next lemma states that the hardness of the MDSD problem implies the indistinguishability of the
split-and-mix distributions D0 and D1. To see the link first we will consider shares of the zero vector. Let
w = k − 1, w0 = k0 − 1, and let m = cw + w0. Let H be a n ×m matrix whose columns are the shuffled

random vectors {s(0)
j }

w0
j=1, {s(1)

j }wj=1, . . . , {s(c)
j }wj=1. Let E be a 0-1 matrix of dimension m × c such that,

for 1 ≤ i ≤ c, the coordinates of 1’s in the i’th column ei are exactly the column indices of s
(i)
1 , . . . , s

(i)
w in

H. That is, if Y = H · E is a matrix with c columns y1, . . . ,yc, then we have yi =
∑w
j=1 s

(i)
j . It follows

that, for 1 ≤ i ≤ c, (s
(i)
1 , . . . , s

(i)
w ,−yi) is an additive secret sharing of 0 of size k. The columns in H that

are not selected by E are exactly s
(0)
1 , . . . , s

(0)
w0 . So, we set z = x0 − s

(0)
k0

= x0 − (
∑m
j=1 hj −

∑c
i=1 yi),
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and thus (s
(0)
1 , . . . , s

(0)
k0−1, z) form an additive secret sharing of x0 of size k0. At this point, we can think

of H,X −H · E, z, where X has columns x1, . . . ,xc, as the shuffled shares of the vectors x0, . . . ,xc, which
is distribution D0. On the other hand, if we have a random matrix Y with c columns y1, . . . ,yc and we
set z = x0 − (

∑m
j=1 hj −

∑c
i=1 yi) where hj are the columns of H, then H,X −Y, z are shuffled shares of∑c

i=0 xi, which is the distribution D1.

Lemma 4 (Split-and-Mix). For any n,m, c, w > 0, and for any set of vectors x0, . . . ,xc ∈ Fn, where X
has as columns x1, . . . ,xc, if the decisional MDSDn,m,c,w is hard, then the following two distributions are
computationally indistinguishable.

D0 =

(H,X−Y, z = x0 −
∑
j

hj +
∑
i

yi)

∣∣∣∣∣∣
H←$ Fn×m,
E←$ DisErrorm,c,w
Y = H ·E

 ,

D1 =

(H,X−Y, z = x0 −
∑
j

hj +
∑
i

yi)

∣∣∣∣∣∣ H←$ Fn×m,
Y←$ Fn×c

 .

Proof. Notice that all elements in the two distributions can be computed given H and Y in additions to
x0, . . . ,xc. So a reduction from MDSDn,m,c,w is straightforward.

The distributions D0 and D1 in Lemma 4 contain smaller shuffle than in D0 and D1: in D0 the matrix
H is a shuffle of the first w shares of each xi, for 1 ≤ i ≤ c, as well as the first w0 shares of x0, where the
permutation is determined by the columns of the error matrix E; in D1 the matrix H is a shuffle of the first
m− 1 share vectors of

∑c
i=0 xi. In particular, if D0 and D1 are indistinguishable, then so is D0 and D1; this

is because any random permutation π in D0 and D1 can be decomposed into the permutation implied by
the columns of E and another permutation in Sm . Looking ahead, this limited form of shuffle in D0 and
D1 allows to use PRG in applications to compress all but one shares for each xi.

3.2 Reduction from Syndrome Decoding to MDSD

In this section we show a reduction from the standard syndrome decoding problem to our new multi-disjoint
version. We start with the following technical lemma that establishes a statistical bound.

Lemma 5. Let n,m,w > 0, and let Fq be a finite field. If n ≥ hq( 2w
m ) ·m+ σ

log q , then

Pr
H←$ Fn×mq

{
∃e, e′ ∈ Fmq , e 6= e′,He = He′,∆(e) = ∆(e′) = w

}
≤ 2−σ.

Proof. Assume there exist distinct e, e′ ∈ Fmq such that He = He′ and ∆(e) = ∆(e′) = w. Let y = e− e′.

Since H·y = 0 and y 6= 0, we have that y is a non-zero codeword of C(H⊥) and that ∆(C(H⊥)) ≤ ∆(y) ≤ 2w.
Let G = H⊥ be the generator matrix of the code. By Lemma 1, the probability that C(G) has distance at
most 2w is bounded by

Pr
G←$ Fk×mq

{∆(C(G)) ≤ 2w} ≤ q−εm+1,

where k = m − n and εm ≤ (1 − hq( 2w
m )) · m + 1 − k. By our condition on n, we can bound the above

probability by 2−σ.

We are now ready to present our reduction from SD to MDSD.

Lemma 6. Fix a finite field Fq, and let n,m, c, w > 0 such that m = c · w + λ for some λ > 0. Assume for
all 1 ≤ i ≤ c, SDn,i·w+λ,w is κi-bit computationally hard and n ≥ hq(

2w
m ) ·m + κi

log q . Then MDSDn,m,c,w is

κ-bit computationally hard for κ = − log(3c)− log(
∑c
i=1 2−κi).
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Proof. We proceed with a hybrid argument reducing the MDSDn,m,c,w problem from the standard SDn,wh+λ,w

problem with different codeword lengths wh+λ for h = 1, . . . , c. In the MDSD problem, the adversary wants
to distinguish between (H,H·E) and a uniformly random instance (H,Y), where E←$ DisErrorm,c,w ⊂ Fm×cq

consists of “error vectors” that encode the locations of linearly dependent columns of the matrix (H,H ·E).
Our hybrids are defined as follows:

• Hyb(0) = (H,y1, . . . ,yc) where H←$ Fn×mq and y1, . . . ,yc←$ Fnq : This is a uniformly random instance.

• Hyb(i) = (H,He1, . . . ,Hei,yi+1, . . . ,yc), where H←$ Fn×mq , E(i)←$ DisErrorm,i,w, and yi+1, . . . ,yc←$ Fnq
are independently and uniformly sampled. Note that Hyb(c) is exactly the MDSD distribution.

In the following we denote using 1w for a vector in Fwq whose components are all 1’s, and 0w for a vector
of w many 0’s. Row vectors are denoted using notations like (v1, . . . , vm), and by default we assume vectors
are column vectors.

• Hyb(0) vs Hyb(1): Note that Hyb(1) = (H←$ Fn×mq ,y1 = He1,y2←$ Fn, . . . ,yc←$ Fn), where e1 is

sampled from DisErrorm,1,w. Distinguishing Hyb(0) and Hyb(1) is exactly the decisional SDn,m,w problem.

• For any i ≥ 1, we can reduce SD(n, (c − i)w + λ,w) to distinguishing Hyb(i) and Hyb(i+1), and in
addition a statistical argument. We have

Hyb(i) = (H←$ Fn×mq ,y1 = He1, . . . ,yi = Hei,yi+1←$ Fn,yi+2←$ Fn . . . ,yc←$ Fn),

Hybi+1 = (H←$ Fn×m,y1 = He1, . . . ,yi = Hei,yi+1 = Hei+1,yi+2←$ Fn, . . . ,yc←$ Fn).

The difference between these two hybrids is in how yi+1 is generated.

Assume A is any efficient distinguisher of Hyb(i) and Hyb(i+1). We build a reduction B(H̄, ȳ) from
SD(n, (c − i)w + λ,w), where the input to B is either a sample (H̄←$ Fn×((c−i)w+λ), ȳ = H̄ē) from the
syndrome decoding distribution SDn,(c−i)w+λ,w for ē ← Berm+λ

w/(w+λ), or it is a uniformly random sample

(H̄←$ Fn×((c−i)w+λ)
q , ȳ←$ Fnq ).

B(H̄, ȳ) : Sample H∗←$ Fn×iw, and π←$ Πcw+λ;
For j ∈ {1, . . . , i}:

let yj = H∗ · fj for fTj = (0(j−1)w,1w,0(i−j)w) ∈ Fiw;
Sample yi+2, . . . ,yc←$ Fnq ;
Let H = π(H̄ | H∗), where we apply π to randomly permute columns of (H̄ | H∗);
Run A(H,y1, . . . ,yi, ȳ,yi+2, . . . ,yc), and return its result.

Fix an input (H̄, ȳ). We consider two cases:

1. ȳ = H̄ē is generated as a syndrome of ē ∈ Fiw+λ
q such that ∆(e) = w. We consider two sub-cases:

– There exists a unique solution e ∈ Fmq such that He = ȳ. By the construction of H = π(H̄|H∗)
and the assumption that H̄ē = ȳ, we must have eT = π((ē,0(i−1)w)T ). By definition, we also have
yj = Hej for eTj = π(0(c−i)w+λ, fTj ), j = 1, . . . , i. For any distinct j, j′ < i, since fj ∩ fj′ = 0 by
definition, we have ej ∩ ej′ = 0 are also disjoint. Furthermore, e ∩ ej = 0 are disjoint for all j ≤ i. So,

E = (e1, . . . , ei, e) is an element of DisErrorm,i+1,w, and hence the input given to A is exactly Hyb(i+1).

– There exist distinct e′ 6= e such that He′ = He = ȳ and ∆(e′) = ∆(e) = w. WLOG we can
assume eT = π((ē,0iw)T ) is a solution. Then the minimal distance of the code generated by H⊥ is less
than 2w, which happens with negligible probability 2−σ by Lemma 5.

2. ȳ is uniformly sampled from Fnq . In this case the input given to A is exactly Hyb(i).
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It follows that Hyb(i) and Hyb(i+1) are κi-bit computationally indistinguishable and σ-bit statistically
indistinguishable.

By definition, any adversary A with running time T and against Hyb(i) and Hyb(i+1) has advantage
εi ≤ T/2−κi . According to Lemma 2, any adversary of the MDSDm,n,c,w problem has advantage at most
3c
∑c
i=1 T/2

−κi . Therefore MDSDm,n,c,w is at least (− log(3c)− log
∑c
i=1

1
2κi )-bit computationally hard.

Concrete security. When w is smaller than the GV-distance of the code C⊥(H), the best known al-
gorithms that solve the syndrome decoding problem are the class of Information-Set Decoding (ISD) algo-
rithms such as Prange [Pra62], Stern [Ste88], Dumer [Dum91], and recent ISD variants such as May-Meurer-
Thomae [MMT11], Becker-Joux-May-Meurer [BJMM12], May-Ozerov [MO15], and Both-May [BM18]. In
the setting of our shuffle PIR protocol, we would like to keep w small to minimize the client communica-
tion cost and the server’s computation cost, and we will always set w to be smaller than the GV-distance.
For sublinear w = o(m), it is known [TS16] that the asymptotic complexity of these ISD algorithms is
2− log(n/m)·w·(1+o(1)).

In the formulation of Lemma 6, there are λ columns of H that correspond to 0 entries of E, and hence
these columns are independent in an MDSD sample (H,H·E). These vectors “hide” the remaining, correlated
shares. Assume SDn,w+λ,w has κ bits of security. We may use κ − 2 log c as a rough upper bound on the
bit security of MDSDn,cw+λ,c,w problem. In order for our shuffle PIR protocol to achieve κ′ bits of security

against ISD attacks, we should set w = κ′+2 log c
log λ−logn . In particular, this estimation requires λ > n.

3.3 Security of MDSD Problem

In the previous subsection we show that there is a poly(c) time reduction from standard SD to the MDSDm,n,c,w
problem, which, however, is not tight. In particular, it does not seem to correspond to a very efficient dis-
tinguishing attack on the MDSD problem. In this section, we study the hardness of distinguishing the
MDSDm,n,c,w distribution from uniformly random.

3.3.1 Search-to-decision Reduction

Consider the search version of MDSD problem: given a MDSDn,m,c,w sample (H,Y = H ·E), the adversary
is asked to return at least one column of the error matrix E. Note that, in order to distinguish an MDSD
sample with uniform (H,Y), it is sufficient to recover just one error vector e such that yi = H · e for some
1 ≤ i ≤ c, as the probability of the existance of e such that H · e = y is negligible for random H and y.

On the other hand, Lemma 6 implies a reduction from the search MDSD problem to its decision variant.
This can be seen as follows. Assume there exists a distinguisher D for MDSDn,m,c,w with advantage ε > 0.

Then there must exist 0 ≤ i < c and a distinguisher D(i) for the hybrids Hyb(i) and Hyb(i+1) as in the proof
of Lemma 6, such that D(i)’s advantage is at least ε/c. Now, D(i) can be used to build a distinguisher for
SDn,m′,c,w and the uniform distribution, where m′ = m− (c− i)w, and by the search-to-decision reduction
of Syndrome Decoding (and its dual problem LPN) [BFKL94, AIK07, KSS10, MM11], we can then build an
adversary that recovers ei.

3.3.2 Security of Search MDSD Problem

In the MDSD distribution, the syndrome vectors (columns of H · E) are generated from correlated error
vectors (columns of E), where distinct error vectors ei, ej do not have overlapping entries of 1’s. If we instead
consider independent error vectors, then the problem becomes more general, and it is commonly referred to
as the Decoding One Out of Many (DOOM) [Sen11], or the Multi-Syndrome Decoding problem.

15



Definition 9 (Multi Syndrome Decoding). Let F be a finite field, and let n,m, c, w > 0. The (n,m, c, w)-
Multi Syndrome Decoding distribution is

MultiSDn,m,c,w =

( H,H · e1, . . . ,H · ec
) ∣∣∣∣∣∣

H←$ Fn×m,
e1 ← Bermτ , . . . ,
ec ← Bermτ

 .

The (n,m, c, w)-Decisional Multi Syndrome Decoding problem is to distinguish the distribution MultiSDn,m,c,w
from the uniform distribution over Fn×m × Fn×c.

The search version of Multi-Syndrome Decoding (MSD) asks the adversary to recover at least one error
vector ej . Clearly, MDSD is a restricted variant of MSD, and any MDSD attacker can automatically solve
the MSD problem. So, the complexity of an MSD solver is a lower bound on the concrete security for MDSD.

For the MDSD parameters that we are interested in, where w = O(logm) is the Hamming weight
of error vectors, since w is smaller than the GV-distance of the code C(H⊥), Information Set Decoding
(ISD) algorithms are the most efficient for solving standard SD and MSD problems. For sublinear w =
o(m), it is known [TS16] that the asymptotic complexity of the ISD algorithms for solving SDn,m,w is
2− log(n/m)·w·(1+o(1)). Assume TSD is the concrete running time of an ISD algorithm for solving SDn,m,w.
As shown in [Sen11], such algorithm can be converted to solve MultiSDn,m,c,w with running time TMultiSD =
TSD/c

γ , where γ < 1/2. In practice, when m is large, the factor γ is much smaller than 1/2.
We conjecture that the DOOM algorithm [Sen11] is the most efficient one for breaking the MDSD problem.

As a generic extension of ISD algorithms, DOOM maintains two sets of vectors computed from the multiple
syndrome vectors in order to perform collision tests more efficiently. Although the error vectors in MDSD
have additional structure that the non-zero entries are correlated, such information does not seem to be
useful in the DOOM algorithm. A similar situation is the relation between the LPN and the regular LPN
problems: while the error vector in regular LPN has an regular noise pattern, such structure does not seem
to allow a significant speedup in the attacking algorithms for the parameter regimes similar to ours. As
analyzed in [HOSS22], ISD algorithms are (among combinatorial attacks) the most efficient in attacking
regular LPN when the error Hamming weight is below the GV-distance, and they do not perform better on
regular LPN comparing to standard LPN with the same dimension. The recent algebraic attack to regular
LPN [BØ23] seems to be limited to the cases where the code rate m/(m− n) is small, which does not apply
to our proposed parameters. One plausible approach to study our conjectured hardness of MDSD is to apply
the linear test framework of [BCG+20], by checking if there are noticable bias when applying any linear
function to the syndrome vectors. We do not know how to bound such bias for the MDSD distribution, and
we leave it as an open question.

4 Secure Aggregation

In this section, we show how we can use the split-and-mix core lemma from Section 3 to construct a secure
aggregation protocol. We start with a definition of secure aggregation in the shuffle model.

Definition 10 (Secure Aggregation in the Shuffle Model). Let F be a finite field, and let n, c ∈ N. A (single-
server) secure aggregation protocol over c clients in the shuffle model is a tuple of algorithms ShAgg =
(Share,Mix,Aggregate):

• Share(x ∈ Fn) $→ S: a randomized algorithm executed by the client that takes in an input x ∈ Fn, and
outputs a set of shares3 S.

• Mix(S1, . . . , Sc) $→ Ŝ: a randomized algorithm executed by the shuffler that takes in the sets of shares
from c clients S1, . . . , Sc, and output a set of shuffled shares Ŝ.

• Aggregate(Ŝ)→ a: a deterministic algorithm executed by the server that takes in the shuffled elements
and outputs an aggregated answer a.

3In the context of secure aggregation protocol, we follow the convention to call client output shares of its input.
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Correctness. For all n, c ∈ N, a secure aggregation protocol over c clients is correct if for all x1, . . . ,xc ∈ Fn,

Pr

a =

c∑
i=1

xi

∣∣∣∣∣∣
Si ← Share(xi) ∀i ∈ [c],

Ŝ ← Mix(S1, . . . , Sc),

a ← Aggregate(Ŝ)

 = 1.

Security. For all n, c ∈ N, an aggregation protocol over c clients in the shuffle model is secure if for all
x1, . . . ,xc,x

′
1, . . . ,x

′
c ∈ Fn such that

∑c
i=1 xi =

∑c
i=1 x′i, the following two distributions V and V ′ are

computationally indistinguishable:

V =

{
Ŝ
∣∣∣ Si ← Share(xi) ∀i ∈ [c],

Ŝ ← Mix(S1, . . . , Sc)

}
,

V ′ =

{
Ŝ′
∣∣∣ S′

i ← Share(x′
i) ∀i ∈ [c],

Ŝ′ ← Mix(S′
1, . . . , S

′
c)

}
.

Our secure aggregation construction has clients additively share their input vectors into w+ 1 shares, for
some public parameter w ∈ N.

Construction 1 (Computationally Secure Aggregation in the Shuffle Model). Let F be a finite field, let
n, c, w > 0. We define a single-server aggregation protocol in the shuffle model as follows.

• Share(x ∈ Fn) $→ (s0, . . . , sw): samples si←$ Fn for i = 0, . . . , w − 1, and let sw = x−
∑w−1
i=0 si.

• Mix(S1, . . . , Sc) $→ Ŝ: samples a uniform random distribution π←$ Π∑c
i=1 |Si|, and outputs Ŝ := π(S1, . . . , Sc).

• Aggregate(Ŝ)→ a: outputs a :=
∑

s∈Ŝ s.

Theorem 1. Let n, c, w > 0, and let {xi}ci=1 and {x′i}ci=1 be any two sequences of vectors over a finite field
F such that

∑c
i=1 xi =

∑c
i=1 x′i. Assume the decisional MDSDn,m,c,w is hard over F. Then the aggregation

protocol of Construction 1 is computationally secure.

The security of the above constructions follows from the split-and-mix Lemma 4, which states that the
server’s view on any input set is indistinguishable from the distributions of shuffled shares of the sum of the
input vectors.

Proof. Let X ∈ Fc×c be a matrix with columns x1, . . . ,xc, and X′ a matrix with columns x′1, . . . ,x
′
c.

Furthermore, let m = c ·w. The server’s view given inputs {xi}ci=0 and {x′i}ci=0 are shuffles of samples from
the following distributions D and D′:

D =

(H,X−Y, z = x0 −
m∑
j=1

hj +

c∑
i=1

yi)
∣∣∣ H←$ Fn×m,

E← DisErrorm,c,w
Y = H ·E

 ,

D′ =

(H,X′ −Y, z = x′0 −
m∑
j=1

hj +

c∑
i=1

yi)
∣∣∣ H←$ Fn×m,

E← DisErrorm,c,w
Y = H ·E


First notice that, by Lemma 4 and setting w0 = w, D is indistinguishable from

D̃ =

(H,X−Y, z = x0 −
m∑
j=1

hj +

c∑
i=1

yi)
∣∣∣ H←$ Fn×m,

Y←$ Fn×c

 .

Now, since Y in D̃ is uniformly random, and since
∑c
i=0 x′i =

∑c
i=0 xi, the distribution D̃ is equivalent

to

D̃ ≡

(H,X′ −Y, z = x′0 −
m∑
j=1

hj +

c∑
i=1

yi)
∣∣∣ H← Fn×m,

Y ← Fn×c

 .

By Lemma 4 again, we see that D̃ is indistinguishable from D′.
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Optimizations. We can compress all but one shares in an input by using PRG seeds. This improves the
communication cost and helps us reach optimal expansion ratio (see Section 6). We will explicitly prove the
security of this optimized approach in the random oracle model for our secure aggregation construction, and
an analogous proof follows for our shuffle PIR construction.

Besides, in the proxy model for shuffle PIR where all the client shares are shuffled by a proxy party who
does not collude with the server, we can have the proxy insert w0 � w many dummy shares whose sum is
the zero vector. The security of this proxy-mode construction also follows from the split-and-mix Lemma 4.
Since ISD attacks have asymptotic complexity 2− log(n/m)·w where m = w0+w ·c, this proxy-inserting reduces
the number of shares w from each client.

4.1 Reducing Long-Vector Aggregation to Short-Vector Aggregation

As the input vector becomes longer, the number of shares per input must grow in order to maintain security
level. We now discuss a reduction that allows to keep the number of shares low while working with long inputs,
with the help of a key- and message-additive homomorphic encryption (KMAHE) scheme E (see Section 2.5)
with a special leakage resilience property. This idea was leveraged by Bell et al. [BGL+23] in their interactive
single server secure aggregation constructions, and we show how it can also be applied in the shuffle model.
Roughly speaking, we require the KMAHE scheme E to have IND security even when the sum of symmetric
keys is leaked. In the resulting shuffle-model aggregation protocol, each client encrypts its input using a
fresh (symmetric) encryption key of E and sends such ciphertext to the server, and then all clients invoke
the aggregation protocol in Construction 1 on their encryption keys. The server can then decrypt the sum
of KMAHE ciphertexts using the aggregated encryption keys, and learn the aggregated input. Below we
formally present such hybrid construction.

Construction 2 (Secure Aggregation with KMAHE in the Shuffle Model). For any c ∈ N, let E be an
KMAHE encryption scheme with key space K and plaintext space Fn. Let ShAgg = (Share,Mix,Aggregate)
be a secure aggregation protocol for c clients in the shuffle model with message space K. Define a new
aggregation protocol ShAgg′ = (Share′,Mix′,Aggregate′) over Fn as follows:

• Share′(x ∈ Fn) $→ (ct, S): samples a random key sk←$K and encrypts ct ← E .Enc(sk,x). Invokes
S ← ShAgg.Share(sk). Outputs (ct, S).

• Mix′((ct1, S1), . . . , (ctc, Sc)) $→ (ct1, . . . , ctc, Ŝ): invokes Ŝ ← ShAgg.Mix(S1, . . . , Sc). Outputs (ct1, . . . , ctc, Ŝ).

• Aggregate′(ĉt, Ŝ)→ a: invokes aS ← ShAgg.Aggregate(Ŝ). Outputs a = E .Dec(aS ,
∑c
i=1 cti).

Note that the E ciphertexts are not required to be anonymous, and they can be sent directly to the server.

Theorem 2. For any positive integers c, n > 0, let E = (Enc,Dec) be a KMAHE encryption scheme with
key space K, message space Fn and ciphertext space C, and assume it is c-IND secure under leakage of sum
of secret keys as in Definition 6. Let ShAggK,c,λ = (Share,Mix,Aggregate) be the aggregation protocol of
Construction 1 with input space K. Then, the protocol in Construction 2 is a c-client secure aggregation
protocol in the shuffle model, with per-client communication O(n · |C|) + Õ(|K|).

Under the standard RLWE assumption, Bell et al [BGL+23, Appendix A] builds an KAHE scheme with
the leakage security property of Definition 6 for any polynomially bounded c. We now sketch a proof of
Theorem 2.

Proof(Sketch). Fix any two sequences of input vectors {xi}ci=1 and {x′i}ci=1 over Fn such that
∑c
i=1 xi =∑c

i=1 x′i. The server’s views under {xi}ci=1 is

V =

(H,−Y + S, z, {cti}ci=1)

∣∣∣∣∣∣
H←$ F`×m,E← DisError,Y = H ·E,
∀1 ≤ i ≤ c. ski←$K, cti ← Enc(ski,xi),

S = (sk1, . . . , skc−1), z = −
∑
j hj +

∑
i yi + skc

 .
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By Lemma 4, V is indistinguishable from the distribution Hyb(1) over (H,−Y + S, z, {cti}ci=1) where Y
is uniformly random and other components are identically distributed as in V . Next, since Y is uniform in
Hyb(1), Hyb(1) is identical to Hyb(1) where we replace −Y+S with Y and let z = −

∑
j hj+

∑
i yi+

∑c
i=1 ski.

Now, by the leakage security property of E , Hyb(1) is indistinguishable from the distribution Hyb(2) over
(H,Y, z, {ct′i}ci=1) where ct′i ← Enc(ski,x

′
i) for all i. Finally, by a symmetric argument, we see that Hyb(2)

is indistinguishable from the server’s view V ′ on input {x′i}ci=1.

5 PIR in the Shuffle Model

5.1 Definitions

We now formally define single-server PIR in the shuffle model; we consider a single server but many query-
making clients. Importantly, we do not assume any coordination among clients. In this section, we require
the shuffler to only provide a random permutation; Appendix B expands the role of the shuffler to perform
additional computation.

Definition 11 (PIR in the shuffle model). Let Σ be a finite alphabet and n ∈ N. PIR in the shuffle model
on database Σn is a tuple ShPIR = (Setup,Query,Answer,Recon), run by a server and a set of clients defined
as below.

• Setup(x) → Px: a deterministic algorithm executed by the server that takes in an n-entry database
x ∈ Σn and outputs its encoding Px.

• Query(i;n) $→ ((q1, . . . , qk), st): a randomized algorithm (parameterized by n) executed by the client
that takes in an index i ∈ [n], and outputs sub-queries q1, . . . , qk and a state st. Note that k may be a
(randomized) function of n.

• Answer(Px, q`) → a`: a deterministic algorithm executed by the server that takes in the encoding Px
and a sub-query q`, and outputs an answer a`.

• Recon((a1, . . . , ak), st) → xi: a deterministic algorithm executed by the client that takes in answers
a1, . . . , ak and a state st, where for all ` ∈ [k], a` is the answer to the client’s sub-query q`; and outputs
xi ∈ Σ.

Correctness. For all n ∈ N, any database x = (x1, . . . , xn) ∈ Σn, and every i ∈ [n],

Pr

Recon(a1, . . . , ak) = xi

∣∣∣∣∣∣
Px = Setup(x)

(q1, . . . , qk)← Query(i;n)

(a1, . . . , ak) = (Answer(Px, q`))
k
`=1

 = 1.

Security. We will parameterize security by a shuffler Π and a minimum number of client queries c. For
given n, Π, and c, and given a tuple I = (i1, . . . , ic) ∈ [n]c of client query indices, define the distribution

D̃n,Π,c(I) =


π(q)

∣∣∣∣∣∣∣∣∣∣∣

(q
(1)
1 , . . . , q

(1)
k ) ←$ Query(i1;n)

· · ·
(q

(c)
1 , . . . , q

(c)
k ) ←$ Query(ic;n)

q← (q
(1)
1 , . . . , q

(1)
k , . . . , q

(c)
1 , . . . , q

(c)
k )

π
$←− Πkc


.

Then, we say that ShPIR is (Π, c, ε) computationally secure if for every n ∈ N and all c∗ ≥ c(n), and
I, I ′ ∈ [n]c

∗
, and any probabilistic polynomial-time adversary A, it holds that:

|Pr[A(D̃n,Π,c∗(I)) = 1]− Pr[A(D̃n,Π,c∗(I ′)) = 1]| ≤ ε(n),
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where the probability is taken over the randomness of Π and all the algorithms in ShPIR. For ease of presen-
tation, we will parameterize a ShPIR protocol running on database Σn with c clients as a tuple (Σ, c, n, k),
and given a such tuple, there will be a corresponding security level κ. Later in our construction, we may split
k into two parameters to differentiate the sub-query types.

Remark 1 (Randomized number of sub-queries). Unlike in standard multi-server PIR, k may be a function
of n; this is possible since the shuffle model does not require k physical servers. In the shuffle model, all
sub-queries will be sent to one server.

5.2 Construction

We start by describing the key idea of our construction. Fix a finite field F such that Σ can be encoded. On
input i ∈ [n], the client generates w + 1 + z vectors in Fn, which are called sub-queries in our protocol, and
sends them to the shuffler who will shuffle sub-queries from all clients and forward them to the server. Each
set of sub-queries consists of k = w + 1 real sub-queries s0, . . . , sw which are additive secret shares of the
indicator vector ui encoding the index i, as well as z dummy sub-queries r1, . . . , rz which are independent
and uniformly random vectors in Fn. We index the real sub-queries using subscripts starting from 0 for
convenience of stating our security assumption, which will become clear in Section 5.3. For the dummies,
the total number of dummy sub-queries λ = z · c will play an important role in our security analysis, and so
we index them starting from 1.

Once the sub-queries are shuffled by the shuffler, the server processes each sub-query, which simply
computes the inner product between the database (as a vector in Fn) and the sub-query vector as the
response. All the responses are routed back through the shuffler to the originating client. Then client
can recover the requested database element by computing the sum of responses corresponding to the real
sub-queries.

This basic protocol has each sub-query being a vector of length n (linear in the database size). We can
reduce the query size by compressing all but one sub-queries using PRG seeds, and the server can expand
them into vectors in Fn to answer the sub-queries. 4 We give the protocol description in Construction 3.

Construction 3 (Shuffle PIR Protocol). Let F be a field and c, n, w, z ∈ N, and let x ∈ Fn. Assume
G : {0, 1}s → Fn is a random oracle with output space Fn. The PIR protocol parameterized by (F, c, n, w, z)
consists of the following algorithms.

• Setup(x) → x: The setup algorithm does not modify the database and treats it as a vector of length n
over F.

• Query(i;n) $→ (s0, seed1, . . . , seedw, seed
′
1, . . . , seed

′
z): The query algorithm samples w + z independent

PRG seeds seed1, . . . , seedw, seed′1, . . . , seed
′
z, and computes s0 = ui −

∑w
i=1 G(seedi), where ui ∈ Fn is the

indicator vector of query index i. It outputs the tuple (s0, seed1, . . . , seedw, seed
′
1, . . . , seed

′
z).

• Answer(x,q) → 〈x,q〉 ∈ F. Given a sub-query q ∈ Fn, the server computes the inner product between
the database x and the sub-query q, and returns it to the client.

• Recon(a0, . . . , aw, d1, . . . , dz) →
∑w
i=0 ai ∈ F: To reconstruct the requested element, the client com-

putes the sum of a0, . . . , aw that correspond to the real sub-queries s0, seed1, . . . , seedw. Answers d1, . . . , dz
corresponding to the dummy sub-queries are discarded.

Remark 2. Note that the shuffle model only ensure anonymity, so here messages are not necessarily hidden
from the communication intermediary between the server and the clients. If we want to further hide the
query, we can have clients encrypt the query and the answer as follows. For query, the clients use server’s
public key. For answers, the client sends with each share (a sub-query) a fresh symmetric key to be used to
encrypt the answer. This guarantees that the server will not link shares of the same client.

We can view the sub-queries (after expanding using PRG) received by the server as vectors in Fn. Thus,
the server’s view in our protocol with c clients is a matrix in Fn×c(w+z+1).

4As we will prove, this compression technique is secure when the PRG is modeled as a random oracle.
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5.3 Security

We now prove that our PIR protocol is computationally secure in the shuffle model, where the security
can either be based on standard hardness assumptions about decoding random linear codes, or on our new
assumption on the hardness of solving MDSD problem.

Theorem 3 (Security). Let n,m, c, w > 0 such that m = c · w + λ for some λ > 0. Assume MDSDn,m,c,w
over F is κ-bit computationally hard (c.f. Definition 5). Furthermore, assume G is modeled as a random
oracle. Then the shuffle PIR protocol in Construction 3 parameterized by (F, c, n, w, dλ/ce) is (Π, c, 2−κ)
computationally secure in the shuffle model and random oracle model.

Proof. Let I = (i1, . . . , ic), Î = (̂i1, . . . , îc) ∈ [n]c be arbitrary sequences of query indices. Let u1, . . . ,uc be
the indicator vectors corresponding to indices in I. Similarly let û1, . . . , ûc be the corresponding indicator
vectors of indices in Î. The server’s view for queries I is the following distribution V :{

π
(
seed(1), seed

′(1), . . . , seed(c), seed
′(c), s

(1)
0 , . . . , s

(c)
0

) ∣∣∣ ∀j.(s(j)
0 , seed(j), seed

′(j))← Query(ij),
π←$ Π

}
.

where, for each 1 ≤ j ≤ c, we denote using seed(j) the tuple of seeds corresponding to the real sub-queries

and seed
′(j) the tuple of seeds corresponding to the dummy sub-queries in Query(ij). Similarly, the server’s

view given the indices Î is V̂ :{
π

(
ŝeed

(1)
, ŝeed

′(1)
, . . . , ŝeed

(c)
, ŝeed

′(c)
, ŝ

(1)
0 , . . . , ŝ

(c)
0

) ∣∣∣ ∀j.(ŝ(j)
0 , ŝeed

(j)
, ŝeed

′(j)
)← Query(̂ij),

π←$ Π

}
.

Let X = (u1, . . . ,uc), and define the distribution Ṽ asπ(H,−H ·E + X)

∣∣∣∣∣∣
E← DisErrorm,c,w,

H = τE(G(seed(1)),G(seed
′(1)), . . . ,G(seed(c)),G(seed

′(c))),
π←$ Π

 ,

where by G(seed(i)) we mean the vectors G(seed
(i)
1 ), . . . ,G(seed(i)

w ) obtained by invoking RO on all w seeds in

seed(i) independently, and similarly for G(seed
′(i)); and τE is the permutation derived from the error matrix

E such that the non-zero entries of the j’th column ej correspond to the positions of G(seed(i)) under the
permutation τE. Such permutation τE makes sure that, for each 1 ≤ j ≤ c, the columns {hk : ej,k 6= 0}
together with −H · ej + uj form an additive sharing of uj . Similarly, let X̂ = (û1, . . . , ûc), and define the

distribution ˜̃V asπ(H,−H ·E + X̂)

∣∣∣∣∣∣∣
E← DisErrorm,c,w,

H = τE(G(ŝeed
(1)

),G(ŝeed
′(1)

), . . . ,G(ŝeed
(c)

),G(ŝeed
′(c)

)),
π←$ Π

 .

In ˜̃V , the columns {hk : ej,k 6= 0} together with −H · ej + ũj form an additive sharing of ũj .

Since G is a random oracle, and since all seeds are independently sampled, the matrix H in Ṽ and ˜̃V is
uniform over Fn×m. Furthermore, any distinguisher D of V and V̂ can be converted into a distinguisher of

Ṽ and ˜̃V in ROM, where the reduction receives either a sample from Ṽ or ˜̃V , replaces columns of H with
independently sampled seeds and programs the random oracle such that it outputs hj when given as input
the corresponding seed, for all j = 1, . . . ,m, and then invokes the distinguisher D.

Now, we can rewrite Ṽ and ˜̃V as

Ṽ ≡
{
π(H,−H ·E + X)

∣∣∣ H←$ Fn×m,E← DisErrorm,c,w, π←$ Π
}
,

˜̃V ≡
{
π(H,−H ·E + X̂)

∣∣∣ H←$ Fn×m,E← DisErrorm,c,w, π←$ Π
}
.
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It remains to show that Ṽ and ˜̃V are indistinguishable. By Lemma 4, Ṽ is indistinguishable from the
following distribution

W =
{
π(H,−Y + X)

∣∣∣ H←$ Fn×m,Y←$ Fn×c
}
.

This can be seen as follows: extend Ṽ by letting Y = H · E and add to the tuple an extra element
z = −

∑
j hj +

∑
i yi−

∑
i ui; by Lemma 4, the tuple (H,−H ·E+X, z) is indistinguishable from (H,−Y +

X,−
∑
j hj +

∑
i yi −

∑
i ui) where Y←$ Fm×c is uniformly sampled. Next, since Y is uniform in W , we

see that W is equivalent to the following distribution W̃ :

W̃ =
{
π(H,−Y + X̃)

∣∣∣ H←$ Fn×m,Y←$ Fn×c
}
.

By a symmetrical argument, W̃ is indistinguishable from ˜̃V . Now our proof is complete.

As we have shown in Section 3, there is a reduction from SD to the MDSD problem. This allows us to
rely on standard hardness assumption about decoding random linear codes.

Corollary 1. Let n,m, c, w > 0 such that m = c ·w+ λ for some λ > 0. Assume SDn,i·w+λ,w is κi-bit com-
putationally hard for all i = 1, . . . , c. Then the shuffle PIR protocol in Construction 3 is (Π, c, 3c

∑c
i=1

T
2κi )-

secure against all adversaries with running time at most T .

We now give the efficiency of our construction below.

Theorem 4 (Efficiency). Let n, λ,w, c ∈ N and let m = c ·w+λ. Let Fq be a field of size q, and let x ∈ Fnq .
Let κ be a computationally security parameter for PIR. Assuming there exists a PRG G : {0, 1}s → Fq
with seed size s bits that can be modeled as random oracle. Let MDSDn,m,c,w over Fq be an instance that
is κ-bit computationally hard. Then there exists a PIR protocol in the shuffle model with κ bits of security,
parameterized by (Fq, c, n, w, dλ/ce), such that for each query:

• Upload size is n log q + s(w + dλ/ce) bits;

• Download size is (w + dλ/ce) log q bits;

• Server computation per client query is dominated by w+ dλ/ce PRG invocations and n(w+ dλ/ce+ 1)
multiplications in Fq.

6 Evaluation

We now present our evaluation results of the secure aggregation and PIR protocols of Sections 4 and 5.

6.1 Setup and Parameters

We ran our experiments on a laptop with an Intel i7 1185G CPU and 32 GB RAM, and our experimental
programs take advantage of the SIMD instructions such as AVX-512. All our experiments were executed
using a single thread.

Aggregation. For our aggregation protocol, we consider input vectors over F2 as well as over larger finite
fields F65537 of 16 bits and F4294967311 of 32 bits. Note that the complexity of ISD algorithms increases as
the field becomes larger, and as observed in [LWYY22], ISD algorithms are the most efficient for our settings
where the noise rate is low. We estimated the complexity of the DOOM attacks on MDSDn,m,c,w, based
on ISD algorithms such as Prange [Pra62], Stern [Ste88], Dumer [Dum91], and Lee-Brickell [LB88], using
the Syndrome Decoding Estimators [EB22] for F2 and [EVZB23] for larger fields. We then set parameters
such that the protocol has at least 128 bits of computational security based on the conjectured hardness
of MDSDn,m,c,w problem as discussed in Section 3.3. We also set parameters achieving 100 bits of security
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with lower numbers of shares, based on the conjectured MDSDn,m,c,w hardness. In addition, we consider
conservative parameters in both the primitive shuffle model and the extended shuffle model, where the
shuffler also generates dummy shares of the zero vector, such that the security is based on the reduction
from SD problems.

PIR. We instantiate our PIR protocol from Definition 3 over F2. Let n be the number of records in the
database, and let L be the bit length of each record. The database is arranged into a n1 × n2 matrix,
where n = n1n2, and the query dimension n1 is divided into blocks of size d (see Appendix A.2 for details).
Recall that each query consists of w + 1 real and z dummy sub-queries, where all except one sub-queries
are sent as AES-128 seeds. So, each query has size n1 + 256(w + z)n1/d bits, and each response has size
nL(w + z + 1)/d bits assuming the shuffler simply forwards all responses back to the client. We rely on the
hardness of MDSDd,m,c,w problem where m = c(w+ z). For concrete database dimensions, we adjust n1, n2,
and d to minimize the communication and computation costs.

We further optimize the number of database reads by batch-processing multiple queries—the trick is
to simultaneously compute several inner-products with just one sequential pass over the database (see Ap-
pendix A.1). Through experimentation, we observe that the optimal batch size depends on the record size
and the CPU cache size. For small records, we batch up to the sub-queries in each client query, effectively
handling queries one at a time. For large records and when the number of shares is large, each query is
processed in several batches.

To set protocol parameters, we rely on the conjectured hardness of MDSDd,m,c,w problem. We use the
Syndrome Decoding Estimator [EB22] to estimate the complexity of the DOOM attack on MDSDd,m,c,w such
that our PIR protocol has at least 128 bits of security. In particular, we consider ISD attacks with access to
up to 260 bits of memory, and as our parameter scales are large, we consider the logarithmic memory access
cost model. In addition, we consider parameters achieving 100 bits of security, as well as more conservative
parameters based on the reduction from SD problems as in Lemma 6.

6.2 Experimental Results

We now discuss the benchmarks for our aggregation and PIR protocols.

Aggregation. We implemented our secure aggregation construction, where all but one of the input shares
were compressed to AES-128 seeds and the last share was sent in full length. We compared with the state
of the art shuffle-based aggregation protocol with information-theoretic security of Balle et al. [BBGN19]
applying the same compression optimization. Table 1 contains the benchmarks of our secure aggregation
protocol achieve 128 bits of security. It shows that for most parameters settings of number of clients, input
size and field, our protocol achieves close to the optimal expansion ratio 1, which measures the bandwidth
used by the aggregation protocol per client over the plaintext input size. This results in 11–24× improvement
over Balle et al. under different numbers of clients for inputs of length 215, 220 over prime fields of 1, 16 and
32 bits. In Tables 2 we present parameters targeting a lower, 100-bit security level based on the conjectured
MDSD hardness, where the expansion ratio is very close to 1 in all input settings.

In Table 3 we present the parameters and benchmark results for which there is a reduction from SD
problem to MDSD. To set parameters according to Lemma 6, we consider λ = w and hence we must have
2w > n; otherwise SD problem over a n× 2w random matrix can be easily solved by Gaussian elimination.
Due to this constraint, the share size is much larger than the parameters relying on the conjectured MDSD
hardness. Nonetheless, we were still be able to choose parameters such that the communication cost is
smaller than the information theoretical construction of [BBGN20].

In Table 4, we present results of our aggregation protocol in the extended shuffle model, where the shuffler
generates λ > 0 shares of the zero vector. We set parameters based on the conservative hardness of MDSD
problem. In particular, we chose a relatively large number λ of dummy shares, and as a result, we were
able to set the share size lower than in the primitive shuffle model with heuristic parameters. Again, in the
extended shuffle model, the communication rate is close to 1.

We also evaluated the hybrid constructions which combines a RLWE-based KMAHE scheme with the
shuffle-model secure aggregation for short vectors. Table 5 contains the benchmark results. We compare it
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Input × Field
Input size

(KiB)
# Clients

Aggregation Protocol in Construction 1 Info-Theoretic Protocol [BBGN20]

# Shares
Upload

size
(KiB)

Expansion
ratio

# Shares
Upload

size
(KiB)

Expansion
ratio

215 × F2 4
100 405 10 2.57 6317 103 25.67
1000 88 5 1.34 3856 64 16.06
10000 37 5 1.14 2775 47 11.84

215 × F65537 64
100 410 70 1.10 100819 1639 25.61
1000 77 65 1.02 61525 1025 16.02
10000 33 65 1.01 44271 756 11.81

215 × F4294967311 128
100 410 134 1.05 201621 3278 25.61
1000 77 129 1.01 123039 2050 16.02
10000 33 129 1.00 88533 1511 11.81

220 × F2 128
100 10576 293 2.29 201621 3278 25.61
1000 1124 146 1.14 123039 2050 16.02
10000 169 131 1.02 88533 1511 11.81

220 × F65537 2048
100 10568 2213 1.08 3225684 52449 25.61
1000 1116 2065 1.01 1968454 32805 16.02
10000 159 2050 1.00 1416403 24179 11.81

220 × F4294967311 4096
100 10563 4261 1.04 6451352 104898 25.61
1000 1110 4113 1.00 3936897 65610 16.02
10000 153 4098 1.00 2832797 48358 11.81

Table 1: Parameters and communication costs of our aggregation protocol over Fn
q in the primitive shuffle model,

for q with bit sizes 1, 16 and 32. We set parameters based on the conjectured MDSD hardness for 128-bit security.
For each input vector x ∈ Fn

q , we generate w + 1 additive shares over Fn
q , where the first w shares are compressed

using AES-128 seeds. For comparison, we include the information-theoretic construction from [BBGN20]. In both
protocols, the expansion ratio measures the communication overhead of the protocol over the input vector size.

Input × Field
Input size

(KiB)
# Clients

Aggregation Protocol in Construction 1 Info-Theoretic Protocol [BBGN20]

#
Shares

Upload
size

(KiB)
Expansion ratio

#
Shares

Upload
size

(KiB)

Expansion
ratio

215 × F65537 64
100 371 70 1.09 100819 1639 25.61
1000 66 65 1.02 61525 1025 16.02
10000 25 64 1.01 44271 756 11.81

215 × F4294967311 128
100 371 134 1.05 201621 3278 25.61
1000 64 129 1.01 123039 2050 16.02
10000 22 128 1.00 88533 1511 11.81

220 × F65537 2048
100 10528 2212 1.08 3225684 52449 25.61
1000 1087 2065 1.01 1968454 32805 16.02
10000 137 2050 1.00 1416403 24179 11.81

220 × F4294967311 4096
100 10528 4260 1.04 6451352 104898 25.61
1000 1087 4113 1.00 3936897 65610 16.02
10000 136 4098 1.00 2832797 48358 11.81

Table 2: Parameters and communication costs of our aggregation protocol over Fn
q in the primitive shuffle model,

targeting 100-bit security, for q with bit sizes 16 and 32. Security is based on the conjectured MDSD hardness.
For each input vector x ∈ Fn

q , we generate w + 1 additive shares over Fn
q , where the first w shares are compressed

using AES-128 seeds. For comparison, we include the information-theoretic construction from [BBGN20]. In both
protocols, the expansion ratio measures the communication overhead of the protocol over the input vector size.
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Input × Field
Input size

(KiB)
# Clients

Aggregation Protocol in Construction 1 Info-Theoretic Protocol [BBGN20]

#
Shares

Upload
size

(KiB)
Expansion ratio

#
Shares

Upload
size

(KiB)

Expansion
ratio

215 × F65537 64
100 16712 325 5.08 100819 1639 25.61
1000 16712 325 5.08 61525 1025 16.02
10000 16712 325 5.08 44271 756 11.81

220 × F4294967311 4096
100 524682 12294 3.00 6451352 104898 25.61
1000 524682 12294 3.00 3936897 65610 16.02
10000 524682 12294 3.00 2832797 48358 11.81

Table 3: Parameters and communication costs of our secure aggregation protocol over Fn
q in the primitive shuffle

model, where the parameters are based on the reduction from the SD problem of Lemma 6, targeting 128-bit security
level. For each input vector x ∈ Fn, we generate an additive share of size w+ 1 over Fn

q , where the first w shares are
sent using AES-128 seeds. For comparison, we include the information-theoretic construction from [BBGN20].

Input × Field
Input
size

(KiB)

#
Clients

Our Aggregation Protocol Info-Theoretical Protocol [BBGN20]

d λ
Share
size
w

Upload
size

(KiB)
Expansion

ratio

Share
size
w

Upload
size

(KiB)
Expansion

ratio

220 × F2 128
1000 216 200000 101 153 1.20 123039 2050 16.02
10000 216 2000000 94 151 1.18 88533 1511 11.81

Table 4: Parameters and communication costs of our secure aggregation protocol over Fn
q in the extended shuffle

model. Security is based on the conservative hardness of MDSD problem by reducing from SD as in Lemma 6. For
each input vector x ∈ Fn

q , we first split into blocks of length d, and then generate an additive share of size w + 1 for
each block over Fd

q , where the first w shares are sent using AES-128 seeds. For comparison, we include the information
theoretical construction in [BBGN20].

against running the shuffle construction directly on the long input vectors. This hybrid construction has
slightly worse expansion ratio than our direct shuffle construction from MDSD. However, its aggregation
phase runs much faster than the direct aggregation protocol. Such improvement is because aggregating
short RLWE keys requires a much smaller number of shares per input, and hence the hybrid protocol spends
much less on the relatively more expensive AES operations and replace with fast polynomial operations in
RLWE. In our benchmarks on input length 220 and 223 over 16-bit and 32-bit prime fields, the RWLE-based
hybrid protocol is 170–590× faster than the direct aggregation protocol.

PIR. We selected some typical database configurations: a baseline database of 220 × 256 bytes, databases
of one billion small records: 230 × 1 bytes and 230 × 8 bytes, and a databases of long records: 218 × 32
KB. Table 6 shows our parameters as well as the communication cost in the primitive shuffle model, with
128-bit security under the MDSD conjecture. For all databases we set z = 1, i.e. each query contains one
dummy sub-query. In Table 7, we present the corresponding experimental results on server running times.
we consider our protocol in the offline-online mode: during the offline stage the client does not know the
query indices yet, and it sends all except one sub-queries (as AES-128 seeds); during the online stage, the
client then sends the last sub-query vector of full length.

For comparison, we considered two single-server PIR protocols in the standard model with minimal
setup, namely HintlessPIR [LMRSW23] and Spiral [MW22], as well as SimplePIR [HHC+23] which has the
state-of-the-art online time. Our shuffle PIR protocol achieves extremely fast online computation, taking
7–220 ms for the different databases we considered. Thus our online throughput improves the throughput
of SimplePIR by 5–6×. When we also process online sub-queries in batches, we see that the per-query
throughput improves over SimplePIR by 20–25×. Both Hintless and Spiral query times are slower than
SimplePIR, 2–10× and 10–20× respectively. Our total computation time (online+offline) is always faster
than Spiral, faster than HintlessPIR for most parameters, and comparable to SimplePIR for large numbers
of users.

Both SimplePIR and Spiral require significant amount of setup communication between each client and
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Input × Field
Input size

(KiB)
#

Clients

Agg. Protocol with RLWE-based Masks Construction 1
RLWE
degree
N

#
Shares

Upload
size

(KiB)

Agg.
time (s)

Dimension
d

#
Shares

Agg.
time (s)

220 × F65537 2048
1000 210 23 3460 0.75 210 29 296
10000 211 16 3591 8.01 211 21 2107
100000 211 11 3848 75.59 211 13 13022

220 × F4294967311 4096
1000 211 27 5515 0.98 211 30 356
10000 211 16 5643 8.92 211 18 2132
100000 211 11 5900 84.57 211 13 15413

223 × F65537 16384
1000 210 23 27652 5.04 210 30 2447
10000 211 16 28679 51.42 211 22 17635
100000 211 11 30728 516.79 211 14 113380

223 × F4294967311 32768
1000 211 27 44043 4.94 211 31 2947
10000 211 16 45067 52.39 211 19 17987
100000 211 11 47116 545.63 211 14 133203

Table 5: Parameters and benchmark results of the aggregation protocol of Construction 2 when using private-key
RLWE encryption as an KAMHE scheme, where we rely on the conjectured MDSD hardness to set parameters for the
underlying shuffle-model aggregation protocol for aggregating RLWE secrets. We also include the aggregation protocol
of Construction 1 with MDSD-based security, where the input vector is divided into sub-vectors of dimension d; hence
we run multiple instances of Construction 1 and we set parameters according to the conjectured MDSD security on
dimension d. For both protocols, we target 128-bit security level, and we report the time for the server to aggregate
all client inputs and recover the aggregation result. For the former protocol, server time includes expanding AES-128
seeds into shares of RLWE secrets, aggregating all such shares and then decrypting the aggregated RLWE ciphertexts.
For the latter protocol, the server time includes the time to expand AES-128 seeds for all instances and aggregate
shares from all clients.

the server. In the case of SimplePIR, such a preprocessing is database dependent and needs to be updated
when the database changes. For the databases we considered in experiments, it takes from 45s to 35mins
to preprocess the entire database. SimplePIR requires each client to store the preprocessed information,
which results in significant setup bandwidth and storage requirement for the user device. Spiral requires
that the server hold state per client resulting from the preprocessing, which is infeasible in many settings,
especially if we want to achieve anonymity of queries. This makes it incompatible with the techniques for
supporting variable database size records relying on shuffling. Our online communication cost is close to that
of Spiral, which achieves the optimal upload/download communication by compressing the query (and this
is the reason for its high computation cost). It is 3–13× less than the online communication of SimplePIR
for different parameter settings. The total online and offline communication of our shuffle PIR is better than
that for SimplePIR when each client makes a small number of queries; in the setting with a large number
of clients, our total communication is better than SimplePIR when each client makes hundreds of queries.
HintlessPIR has only online communication which is tens of times more than our online communication and,
for a large number of clients, a higher total communication.

In Table 8, we present alternative parameters achieving 128 bits of security with different tradeoffs
between the number of real sub-queries (k = w + 1) and the total number of dummy sub-queries (λ =
m − c · w = c · z). Specifically, we consider z = 10 and 25 dummy sub-queries per client. As before, we
group the database rows n1 into blocks of d rows, and hence we rely on security of MDSDd,m,c,w problem.
Although w becomes smaller for the parameters in Table 8 when fixing d and c, to achieve the same 128-bit
security level as in Table 6, the combined number of real and dummy sub-queries per client increases. This
results in increases in the client request sizes and server computation costs.

In Table 9, we present parameters of our PIR protocol targeting a lower, 100-bit security level based on
the conjectured MDSD hardness. We consider the same configurations of databases and clients as in Table 6,
and we also set the number of dummy sub-queries per client to 1. We can lower the number of sub-queries
to achieve a lower security level, resulting in smaller request sizes and lower server computation costs.
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Database
#

Clients

Our PIR Protocol in Construction 3 SimplePIR HintlessPIR Spiral

n1 d
# Sub-
queries

Offline
Up/Down

(KiB)

Online
Up/Down

(KiB)

Setup
(KiB)

Up/Down
(KiB)

Up/Down
(KiB)

Setup
(KiB)

Up/Down
(KiB)

220 × 256
bytes

1K 215 214 65 2 / 1024 4 / 16

90112 66 / 21 442 / 788 7936 16 / 21
10K 215 214 32 1 / 496 4 / 16
100K 215 215 23 1 / 176 4 / 8
1M 216 216 18 1 / 68 8 / 4

230 × 1
bytes

1K 217 214 67 8 / 4224 16 / 64

180224 131 / 41 506 / 1576 7936 16 / 21
10K 217 214 33 4 / 2048 16 / 64
100K 218 216 26 2 / 400 32 / 16
1M 218 216 19 1 / 289 32 / 16

230 × 8
bytes

1K 218 213 51 25 / 51200 32 / 1024

509751 371 / 104 740 / 4470 10240 16 / 61
10K 218 214 33 8 / 16384 32 / 512
100K 218 216 26 2 / 3200 32 / 128
1M 218 216 19 1 / 2304 32 / 128

218 × 32 KB

1K 218 214 67 17 / 33792 32 / 512

180224 1024 / 288 1402 / 1824 10624 16 / 61
10K 218 214 33 8 / 16384 32 / 512
100K 218 215 24 3 / 5888 32 / 256
1M 218 217 20 1 / 1216 32 / 64

Table 6: Parameters (based on conjectured MDSD hardness targeting 128-bit security level) and communication
costs of our PIR protocol in the primitive shuffle model. We arrange a database into a rectangle matrix of dimension
n1 × n2, and each PIR request contains just one dummy sub-query. Furthermore, we split the n1 rows into blocks
of length d, and thus we base security on the MDSDd,m,c,w problem where w + 2 is the number of sub-queries per
PIR request, and m = c(w+ 1). The offline part of a request consists of w+ 1 AES-128 seeds, and the online part is
a length n1 binary vector. When running our protocol without the offline phase, the communication cost is simply
the sum of offline and online parts. For comparison, we include the communication costs of SimplePIR, HintlessPIR,
and Spiral, where SimplePIR and Spiral require a one-time setup.

Database
#

Clients

Our PIR Protocol in Construction 3 SimplePIR

HintlessPIR
(ms)

Spiral
(ms)

Offline
latency

(ms)

Online
latency

(ms)

Online
throughput

(GiB/s)

Online
throughput
(batched,
GiB/s)

Latency
(ms)

Throughput
(GiB/s)

220 × 256
bytes

1K 132
7 36.64 125.05

45 5.56 575 794
10K 63
100K 47
1M 33 9 28.64 129.59

230 × 1
bytes

1K 581
30 32.95 117.13

183 5.46 1033 2576
10K 270
100K 205

35 28.17 126.97
1M 139

230 × 8
bytes

1K 5245

220 36.29 97.59 1442 5.55 3472 12875
10K 2964
100K 2171
1M 1317

218 × 32 KB

1K 8690

220 36.29 97.59 1483 5.39 2333 32050
10K 3200
100K 1857
1M 1430

Table 7: Server running times of our PIR protocol in the primitive shuffle model, for the conjectured parameters
of Table 6. The server processes sub-queries in batches, where the batch size is at most the number of sub-queries
of a single query. Offline latency measures the time taken to process a batch of offline sub-queries. Online latency
measures the time to process a single online sub-query without batching. We also report the server running times of
related works where their latency numbers measure the time for processing an individual query.
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Database
#

Clients

Our PIR w/ 10 Dummy Sub-Queries per Client Our PIR w/ 25 Dummy Sub-Queries Per Client

n1 d w
Offline

Up/Down
(KiB)

Online
Up/Down

(KiB)

Latency
Off/Online

(ms)
n1 d w

Offline
Up/Down

(KiB)

Online
Up/Down

(KiB)

Latency
Off/Online

(ms)

220 × 256
bytes

1K 215 214 60 2 / 1120 4 / 16 143 / 7 215 214 55 3 / 1280 4 / 16 164 / 7
10K 215 214 28 1 / 608 4 / 16 80 / 7 215 214 26 2 / 816 4 / 16 105 / 7
100K 215 215 20 1 / 240 4 / 8 62 / 7 215 215 18 1 / 344 4 / 8 88 / 7
1M 216 216 15 1 / 100 8 / 4 50 / 9 216 216 14 1 / 156 8 / 4 83 / 9

230 × 1
bytes

1K 217 214 61 9 / 4544 16 / 8 600 / 30 217 214 56 10 / 5184 16 / 8 700 / 30
10K 217 214 29 5 / 2496 16 / 8 320 / 30 217 214 27 7 / 3328 16 / 8 438 / 30
100K 218 216 23 2 / 528 32 / 18 285 / 35 218 216 21 3 / 736 32 / 18 394 / 35
1M 218 216 16 2 / 416 32 / 16 207 / 35 218 216 15 3 / 640 32 / 16 341 / 35

230 × 8
bytes

1K 218 213 48 29 / 59392 32 / 1024 7463 / 220 218 213 44 35 / 70656 32 / 1024 9634 / 220
10K 218 214 30 10 / 20480 32 / 512 3996 / 220 218 214 27 13 / 26624 32 / 512 5811 / 220
100K 218 216 23 2 / 4224 32 / 128 3212 / 220 218 216 21 3 / 5888 32 / 128 4842 / 220
1M 218 216 16 2 / 3328 32 / 128 2261 / 220 218 216 15 3 / 5120 32 / 128 4110 / 220

218 × 32
KB

1K 218 214 62 18 / 36864 32 / 512 10312 / 220 218 214 57 21 / 41984 32 / 512 11417 / 220
10K 218 214 29 10 / 19968 32 / 512 4163 / 220 218 214 27 13 / 26624 32 / 512 5841 / 220
100K 218 215 21 4 / 7936 32 / 256 3012 / 220 218 215 19 5 / 11264 32 / 256 4887 / 220
1M 218 217 17 1 / 1728 32 / 64 2431 / 220 218 217 16 1 / 2624 32 / 64 4183 / 220

Table 8: Alternative parameters (based on the conjectured MDSD hardness targeting 128-bit security level) and
communication costs of our PIR protocol in the primitive shuffle model, where each client contribute either z = 10 or
z = 25 dummy sub-queries for a total of λ = c · z dummy sub-queries. We arrange a database into a rectangle matrix
of dimension n1 × n2, and we split the n1 rows into blocks of length d; hence we base security on the MDSDd,m,c,w

problem where w + z + 1 is the number of sub-queries per client, and m = cw + λ. The offline part of a request
consists of w+z AES-128 seeds, and the online part is a length n1 binary vector. When running our protocol without
the offline phase, the communication cost is simply the sum of offline and online parts.

Database # Clients
Our PIR Protocol w/ 100-bit Security

n1 d w
Offline Up/Down

(KiB)
Online Up/Down

(KiB)
Latency Off/Online

(ms)

220 × 256 bytes
1K 215 214 55 2 / 896 4 / 16 113 / 7
10K 215 214 25 1 / 416 4 / 16 53 / 7
100K 215 215 17 1 / 144 4 / 8 39 / 7
1M 216 216 13 1 / 56 8 / 4 28 / 7

230 × 1 bytes
1K 217 214 56 7 / 3648 16 / 64 483 / 30
10K 217 214 26 3 / 1728 16 / 64 228 / 30
100K 218 216 20 1 / 336 32 / 16 159 / 30
1M 218 216 14 1 / 241 32 / 16 125 / 30

230 × 8 bytes
1K 218 213 44 23 / 46080 32 / 1024 4740 / 220
10K 218 214 26 7 / 13824 32 / 512 2413 / 220
100K 218 216 20 1 / 2688 32 / 128 1598 / 220
1M 218 216 14 1 / 1920 32 / 128 1106 / 220

218 × 32 KB
1K 218 214 57 15 / 29696 32 / 512 7221 / 220
10K 218 214 26 7 / 13824 32 / 512 2528 / 220
100K 218 215 18 2 / 4864 32 / 256 1458 / 220
1M 218 217 15 1 / 1024 32 / 64 1211 / 220

Table 9: Parameters (based on the conjectured MDSD hardness) and communication costs of our PIR protocol in the
primitive shuffle model to achieve 100-bit security, where each client contribute one dummy sub-queries. We arrange
a database into a rectangle matrix of dimension n1 × n2, and we split the n1 rows into blocks of length d; hence we
base security on the MDSDd,m,c,w problem where w + 2 is the number of sub-queries per client, and m = c(w + 1).
The offline part of a request consists of w+ 1 AES-128 seeds, and the online part is a length n1 binary vector. When
running our protocol without the offline phase, the communication cost is simply the sum of offline and online parts.

Finally, in Table 10 we present benchmark results of our PIR protocol where the parameters are chosen
according to the conservative security reduction from the SD problem. Since the reduction in Lemma 6 relies
on the hardness of SDd,w+λ,w where λ = c · z is the total number of dummy sub-queries, in order to set w
relatively small, we must have λ sufficiently large. When there are c = 10000 clients, we can set z ≈ 30; and
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when c = 100000, it is sufficient to set z ≈ 20.

Database # Clients
Conservative Parameters

n1 d w z
Offline Up /
Down (KiB)

Online Up /
Down (KiB)

Offline
latency (ms)

Online
latency (ms)

220 × 256 bytes
10000 214 214 32 32 2 / 1024 2 / 16 204 7
100000 215 215 25 24 2 / 392 4 / 8 101 7

230 × 1 bytes
10000 217 214 35 34 17 / 4416 16 / 64 570 30
100000 217 215 25 28 7 / 1696 16 / 32 459 30

230 × 8 bytes
10000 218 215 52 25 77 / 19712 128 / 256 5455 224
100000 218 217 41 17 14 / 3648 128 / 64 4049 224

218 × 32 KB
10000 218 215 51 25 19 / 19456 32 / 256 7552 224
100000 218 217 39 17 4 / 3584 32 / 64 5492 224

Table 10: Communication and computation cost of our PIR protocol in the primitive shuffle model, where we
estimate security using the conservative reduction from the SD problem.

7 PIR with Variable-Sized Records

In this section, we discuss an orthogonal use case of the split-and-mix paradigm which enables PIR on
databases with variable-sized records.

7.1 Motivation and Goals

Real-world databases typically contain records in a wide variety of sizes—a platform like Youtube, for
instance, houses both 30-second shorts along with 5 hour long documentaries. In many situations, knowing
merely the size of the record can help to identify the record itself (or at least substantially reduce the
possibility space). Consequently, for PIR protocols to be implemented for such databases in practice, it is
necessary to also prevent leakage of the size of the record accessed.

Unfortunately, the existing literature on PIR typically considers databases where each record is of the
same size—and for good reason. In particular, in the standard PIR setting, the only way to hide the size
of the retrieved record is to pad each record to the length of the largest record (or some upper bound), or
pack smaller records in the size of the largest record [GCM+16, ASA+21]. Even though this leaks nothing
to the server about the size of record being queried (except that it is no bigger than the padding bound), a
client who only wishes to access small records needs to pay the high communication cost of retrieving the
largest record. This is highly sub-optimal especially because in practice, we expect most clients to query for
average-sized records, while only a few clients query for very large ones.

Contrary to the standard model, we show that the shuffle model enables better communication-security
tradeoffs compared to padding every record to the maximum length. The ideal security goal here is to leak
only (an upper bound on) the total size of the records retrieved by all clients. In a bit more detail, consider
multiple clients querying records of different sizes simultaneously. If we were in the standard model (every
record is padded to an upper bound L), then the server sees homogeneous PIR queries all for size L; in
other words, the queried sizes form a histogram (L,L, . . . , L). In the shuffle model, if the PIR queries were
heterogeneous for different sizes (e.g., the server can distinguish between a PIR query for size-1 record and
a PIR query for size-2 record), then the server would learn a histogram, e.g., (2, L, 3, . . . , 1), that indicates
the queried sizes of all clients.

While revealing the histogram does not immediately lead to severe attacks, recent works [GSB+17,
ZKP16] show that in certain applications the histogram reveals sensitive information. We wish to further
hide the histogram up to only leaking the sum, or in a slight relaxation a very rough shape of the histogram.

A simple yet effective solution. We now describe a simple solution that achieves the above security
goal without any padding. Suppose the database stores the concatenation of all the records without padding
and assume that it contains n bits in total. Now, a client wanting to retrieve a record of length ` makes `
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PIR queries retrieving 1 bit each in the `-length record. (More realistically, 1 bit can be replaced by a larger
unit, depending on the maximal record size.) Observe that when the queries from all clients are mixed, the
server only sees homogeneous queries, the only thing it learns is the total number of such queries—the total
length of records queried by all clients. This simple solution has the communication per client proportional
only to ` but not the maximum record size L (which can be much larger); in contrast the typical padding
approach results in communication proportional to L even for clients querying small records.

Given this simple solution, we want to explore the following questions. First, can we achieve better
per-client communication by retrieving more bits using one PIR query? In other words, the client splits
record length ` into sub-lengths that may be larger than 1. When records are split into different sub-lengths,
the PIR queries are no longer homogeneous (the server can tell between PIR queries for length-2 record and
for length-1 record); so how much information of the queried lengths does the multi-set of the sub-lengths
reveal? Note that the above simple solution leaks only the total length because the multi-set of the sub-
lengths is identical given a particular sum of record lengths. The same is not true if the records are split in
other ways (or not split at all), e.g., using the powers of 2 corresponding to the binary representation; there
are many cases where a certain multi-set directly or indirectly reveals information about the original lengths
configurations.

On leaking the total size of records. So far, we are able to hide the histogram that is generated
under a given sum S and the number of clients C, with the restriction of length at most L. However, for
certain regimes of (C, S, L), the record length of every client can be directly inferred from the sum. As a
toy example, consider a database x with two entries: x1 of size 1, and x2 of size 1000, and two clients doing
split-and-mix with splitting down to size 1. If the server knows the total size is 1001, then certainly there
is one client querying x1 and another querying x2. Formally, given the information of number of clients C,
maximum length L, and the total length S, the number of possible C-sized partitions of S with restricted to
L is immediately known. Hiding such information is beyond the scope of cryptography, analogous to hiding
the message size in encryption. If leaking this information is concerning in applications, one can increase
the possibility space of the partitions by increasing C, or increasing S with randomized padding.

Here we consider the following quesiton: Given C, S, L, how can we randomly split recoreds so that, for
any two query histograms in the partition space, the distributions of multi-sets of sub-lengths are statistically
close? Note that this is a much stronger notion than differential privacy. Our next task is to formally define
this problem and quantify the distinguishing advantage.

7.2 Problem Definition

We will define a probabilistic leakage function to capture how much information is leaked by the multi-set
generated from a given query-length configuration. In other words, the server should be able simulate its
view in the actual protocol given the output of the leakage function.

As a warm-up, let us first consider the following examples. In the simple case where each record is
split into 1 bit, the leakage is only the sum of all the query-length. However, once we split a record into
sub-records larger than 1 bit (to reduce the number of PIR queries), the corresponding multi-set reveals
more information than just the sum: a server receiving a multi-set (2, 1, 1, . . . , 1) will immediately know that
not all the clients are querying records of length 1, while this fact cannot be learned using the solution of
splitting records down to size 1. On the positive side though, this intuitively leaks much less information
than directly revealing the original query-length.

Definition 12 formally describes our security goal for record-length splitting using the language of leakage
function. In the next section we discuss how record-splitting can be compiled with any single-server PIR
protocols in a black box way to (partially) hide the query-length information.

Definition 12 (Leakage function for record splitting). Let L ∈ N+ (the total length), and let U = {1, . . . , L}.
Define probabilistic leakage function LU that takes in a multi-set H ⊂ U and outputs a distribution over U .

For any two equal-sized multi-sets H,H ′ ⊂ U with the same sum of elements, we say that the leakage
function LU is ε-secure if

s.d.(LU (H),LU (H ′)) ≤ ε.
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For correctness of PIR, the output of the leakage function must be restricted by the input H: we require
every possible output of LU must be partitioned into subsets, where there exists a surjective mapping from
the subsets to H, such that the sum of elements in each subset equals to an element in H. For example, if
H = {1, 3, 4}, then LU (H) = {1, 1, 2, 2, 2} is a valid output because the partition {{1}, {1, 2}, {2, 2}} gives
H, while LU (H) = {2, 3, 3} is not valid because none of its partitions gives H.

We next give the definition of the length-splitting algorithm run by each client. The corresponding
multi-set of sub-lengths is just generated by multiple clients running the splitting algorithm.

Definition 13 (Splitting algorithm). A splitting algorithm Split(`;L), parameterized by a maximum record
length L, takes in a record length ` ∈ [L], and outputs a tuple (bj)j∈[h] of values where h = h(`, L) is a
(possibly randomized) function of `, L. We define the following properties of Split.

Correctness. For every ` ∈ [L], letting (b1, . . . , bh)←$ Split(`;L), it holds that
∑h
j=1 bj ≥ `.

Efficiency. We want to capture the efficiency of algorithm Split by measuring the portion of bits the client
wants to retrieve in all the bits the client actually retrieves. We say that Split has bit efficiency µ, if for
every L ∈ N, and all ` ∈ [L], let (w1, . . . , wh)←$ Split(`;L), it holds that (

∑h
j=1 wj)/` ≤ 1/µ. Note that

1/L ≤ µ ≤ 1. When µ = 1, there is no waste on bits retrieved by the client; when µ = 1/L, it is the same
as padding.

Another efficiency metric we consider is message complexity, which we measure as E[h(`;L)], where the
randomness comes from the Split algorithm.

Now consider C > 1 clients running Split algorithm, where their inputs are `1, . . . , `C ∈ [L]. Let H be
the multi-set {`1, . . . , `C}, and define L[L](H) to be the joint outputs of Split(`i;L) for all i ∈ [C]; now, given
any algorithm Split, one can compute the leakage ε of L[L]. Furthermore, if we know (an upper bound of)
the distance between H and H ′ (say L1 distance between the histogram of H and H ′), then one can write ε
as a function of the distance. Intuitively, if the distance of two record-length histograms increases, then the
corresponding ε will also increase. For example, consider the following three cases:

• L clients all querying length 1,

• Only one client querying length L,

• L− 2 clients querying length 1, one client querying length 2.

In general, the ε we can achieve between case 1 and case 2 is larger than that between case 1 and case 3.
We give a concrete instantiation of Split algorithm and analyze the leakage in Section 7.3.

7.3 Construction

High-level idea. We now give the high-level idea of our Split algorithm that splits a given length ` to
roughly log ` sub-lengths. Assuming L is power of 2 w.l.o.g. (If not, we can increase L to the nearest power
of 2.) Each client builds 1 + logL levels (indexed from 0), where the jth level represents length 2j for
j = 0, . . . , logL. The Split algorithm can be viewed as placing balls at the 1 + logL levels. The client starts
with an initial configuration where ` is split into powers of 2; this corresponds to placing exactly one ball
at the corresponding levels; and the rest levels are empty. For instance, if the record length is 40, the client
splits it to 32 and 8, which corresponds to placing one ball at level 5 and one ball at level 3. Then starting
from the highest level (the (logL)-th level), for each ball at the current level j, with probability 1/2 the
client split it into two balls and place them at level j − 1; with probability 1/2 the client leaves this ball at
the current level. In other words, the client recursively splits the balls until it reaches the level indexed by
0. The eventual balls-to-bins configuration is the output of Split algorithm.

In our final construction, there is a parameter ρ that specifies the depth of the levels until which all balls
are split with probability 1 (i.e., fully split). We can view ρ as a trade-off factor between efficiency and
leakage: when ρ = logL, we have ε = 0 but the message complexity equals the length of the record; when
ρ = 0, the record is not split at all so the message complexity is 1, but ε = 1. The construction is described
in Construction 4.
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Construction 4 (Recursive splitting). Let L be the maximum length of database records (w.l.o.g. assume
L is power of 2). Let ρ be a parameter indicating the depth of full-split levels where ρ ∈ [logL]. Split(`, L)→
(b1, . . . , bh) is defined as follows.

1. Let B0, . . . , BlogL ∈ {0, 1} be the binary decomposition of `, i.e., ` =
∑logL
j=0 Bj · 2j.

2. For j = logL, . . . , logL− ρ+ 1: // fully split

(a) Set Bj−1 ← 2Bj.

3. For j = logL− ρ, . . . , 1: // for each sub-record, split with probability 1/2

(a) Set Sj := 0.

(b) Repeat Bj times the following:
Sample r←$ {0, 1}, if r = 0, then set Sj ← Sj + 1.

(c) Set Bj ← Bj − Sj and set Bj−1 ← Bj−1 + 2Sj.

4. Output (20, . . . , 20︸ ︷︷ ︸
B0

, 21, . . . , 21︸ ︷︷ ︸
B1

, . . . , 2logL, . . . , 2logL︸ ︷︷ ︸
BlogL

).

Compilation with PIR. So far we only describe how records are split into sub-records, now we describe
how the client retrieve from the server the sub-records privately. As before, all the records are concatenated
together to an n-bit database (no padding). Then the server (virtually) prepares log n databases, each of n
bits; the j-th database is partitioned into entries of size of 2j for j = 0, . . . , log n. The server also sets up a
helper database that stores, for each item, the range of indices in the original database (i.e., concatenation)
that the record resides. For example, the 10-th entry in the helper database stores the information: the
10-th record consists of the 100 bits from index 200 to 300 in the n-bit database.

To retrieve an item, the client first makes a PIR query to the helper database to obtain the range of the
indices to which the record corresponds. Suppose the record is of length `. Now the client runs the algorithm
Split that takes in ` and splits it to h sub-lengths. Then client retrieves h sub-records from the log n logical
databases; these h sub-records should cover the entire range that the client wants to query. The client can
label the query with the level number so that the server knows how to partition the database when answering
queries.

A concrete example is as follows. Suppose the client wants to retrieve the record that resides in range
[11, 16] ⊂ [n], and the Split algorithm outputs lengths 2, 4. The client will issue a query of the form
(PIR.Query(6), “size 2”) and (PIR.Query(4), “size 4”). The former tuple queries the 6th size-2 sub-record,
i.e., [11, 12], and the latter tuple is for the 4th size-4 sub-record, i.e., [13, 16]. The server answers to the
former tuple by viewing the n-bit database as 2 bits per entry, and answers to the latter tuple by viewing
the database as 4 bits per entry.

Concrete security. We next give data points to show how our Split algorithm achieves a better balance
between query communication cost and leakage of record sizes, compared to the naive approach (splitting
records down to 1 bit) or the non-private approach. Specifically, we focus on regime where C = L, and
choose L = 220. This choice captures the parameters in applications; for example, the maximum size of a
Google doc is 50 MB and if a unit is 32 bytes, then we have L being roughly 220. If C is smaller than L, we
can increase the unit size. Since in real-world settings most clients will query records close to the average
length, we further assume that, for any two query histogram with the same total length, the C clients query
records of at most

√
C distinct lengths.

Figure 1 shows the distinguishing advantage ε and efficiency for different solutions. Note that even
ε = 0.13 gives a significant level of uncertainty, leaking a very rough shape of the histogram; in contrast, the
non-private solution has ε = 1 where the server learns the full shape of the histogram. In terms of efficiency,
we use two metrics: the total number of messages that all clients send to the server, and the total number of
bits the clients retrieve from the server. The latter is essentially the size of all PIR answers. Our recursive
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schemes sum S total retrieved total #msg ε

trivial pad N/A 137.44 GB 1.05 · 106 0

no pad, no split
225 4.19 MB

1.05 · 106 1230 134.22 MB
235 4.29 GB

no pad, split to 1
225 4.19 MB 3.36 · 107

0230 134.22 MB 1.07 · 109

235 4.29 GB 3.44 · 1010

no pad, recur. split

225 4.19 MB
< 1.05 · 106 < 1.00
< 4.19 · 106 < 0.50

230 134.22 MB
< 3.36 · 107 < 0.18
< 1.34 · 108 < 0.09

235 4.29 GB
< 1.07 · 109 < 0.03
< 4.29 · 109 < 0.02

Figure 1: Efficiency comparison between our construction and baselines. We assume maximum record size
is L = 220 and there are C = 220 clients who query records of total length S, where we additionally assume
there are most

√
C distinct lengths. The parameter ε measures how much the server learns about the shape

of the histogram. Our recursive splitting algorithm (Construction 4) offers a trade-off between ε and message
complexity. Here we provide two data points per S.

splitting approach has the optimal number of retrieved bits (hence has bit efficiency 1); this matches the
download size of the non-private solution. We also reduce the total number of messages by 32× with leaking
only a very rough shape of the histogram (ε = 0.13). In this case, a client querying record of length, e.g., 16,
will only need to send 4 queries in expectation instead of 16 queries. Also, when S is larger, we get better
trade-off between ε and the message complexity.

Finally, an interesting future direction is to get better parameters with randomized padding and splitting;
note that our Split algorithm above does not pad any record. For example, one can pad the record length to
L = 2k (up to the maximum length) with probability 2−k. We leave the analysis to future work.

Proof and analysis. To calculate the ε for our Split algorithm in Construction 4, one can rely on the two
lemmas below.

Lemma 7 (Smoothing Lemma). Given k, r such that 0 < r <
√
k, consider placing k balls at level j v.s.

placing k−r balls at level j and place 2r balls at level j−1. Let D0 be the distribution of balls after randomized
splitting starting with the first configuration; similarly Dr for the second configuration. Then there exists a
constant c > 0 such that s.d.(D0,Dr) ≤ c · r/

√
k.

Proof. We start with the base case where r = 1. Observe that we can bound the statistical distance simply
by considering the splitting from level j to level j − 1. Specifically, we can sum up, for each i, the difference
in probabilities between the two scenarios that level j − 1 contains exactly i balls after the splitting of balls
in level j. We get:

s.d.(D0,D1) ≤
(
k

0

)
(
1

2
)k +

k∑
i=1

∣∣∣∣(ki
)

(
1

2
)k −

(
k − 1

i− 1

)
(
1

2
)k−1

∣∣∣∣
≤ 2 ·

(
k

k/2

)
(
1

2
)k = Θ(

1√
k

) . . . by Stirling’s approximation.
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The same idea applies to any r <
√
k. We have

s.d.(D0,Dr) ≤ (
1

2
)k · (

(
k

0

)
+ . . .+

(
k

r − 1

)
) +

k∑
i=r

∣∣∣∣(ki
)

(
1

2
)k −

(
k − r
i− r

)
(
1

2
)k−r

∣∣∣∣
≤ 2r ·

(
k

k/2

)
(
1

2
)k

≤ c · 2r√
k

for some constant c > 0.

Lemma 8 (Bounding the differences at every level). Consider any two configurations with equal sum. Then,
at every level, the difference in the number of balls between the two configurations is at most C.

Proof. Let the sum be S and the number of clients be C. Now consider the balls-to-bins configuration of all
the clients.

The maximum number of balls above the k-th level is C(2k−1 +. . . 20) = C(2k−1), as for each client, each

level has at most one ball. So in this case, the number of balls at the k-th level is S−C(2k−1)
2k

= S
2k
−C + C

2k
.

In the other case, the minimum number of balls below the k-th level is 0; then in this case the k-th level has
the number of balls S/2k. Therefore, the difference is C − C

2k
, which is smaller than C.

8 Conclusion and Open Questions

We presented a new computational analysis for the “split-and-mix” approach that shuffles additive shares
of multiple inputs in a way that reveals only the sum of the inputs. In the process, we introduced the new
computational MDSD problem and provided security analysis. We showed how to use the split-and-mix
technique to construct new secure aggregation and PIR protocols in the shuffle model, which improve on the
state of the art. In particular, our secure aggregation protocol improves the communication rate by orders of
magnitudes over the near optimal information-theoretic analysis, and our PIR protocol achieves best online
performance overall, and is also more efficient than most existing protocols without requiring an expensive
setup. We leave it as an open problem to further study the MDSD problem and to explore its applications.

Another open problem is to obtain a more complete understanding of the achievable trade-offs between
efficiency and security for PIR with variable-size records in the shuffle model. This includes solutions that
may slightly increase the total size of the records retrieved by the clients, combining splitting and padding.
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A Optimizations to the PIR Protocol

We now introduce several optimizations for improving the concrete efficiency of our base construction from
Section 5.2; collectively, these result in a highly practical protocol.

A.1 Stream Processing for Batched Queries

The first optimization is a system-level one which can process multiple queries with just one sequential
pass over the database. For this optimization we assume the PIR protocol is instantiated over F with
characteristic 2.

We illustrate the key idea via the following scenario. Assume that the database is large (can only be
stored in e.g., disk) and each database entry is much larger than one bit (e.g., KB), and suppose the client’s
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Batch size 1 2 4 8 16 32

128 bytes record 4.68 6.96 10.78 14.03 16.48 16.51
256 bytes record 8.14 14.09 23.11 29.76 33.27 35.97

Figure 2: Throughput (GB/s) of batched XOR computation on random records of size 128 and 256 bytes.

query can be fit into memory or cache. Consider the server computation for processing a single client’s query
for database of size n: the client splits its selection vector (a unit vector of length n) into w shares (each
is a binary vector of length n). Recall that the PIR response to each share is the inner product between
the database vector and the sharing vector; alternatively, it is the XOR of those database entries that the
corresponding selection bit is 1.

To answer all the w shares from a client, naively the server needs to read the database w times, each
for computing one inner product. However, reading the database from disk is costly. We instead let the
server sequentially read the database once to process a batch of w sharing vectors to get w inner products.
Concretely, the database is divided into equally-sized rows (where w many rows can be fit into the cache);
the server then sequentially reads each row of the database, and computes the inner product between the
row and a batch of w sub-vectors.

This optimization essentially means the server can process one query consisting of w share, or even
multiple queries, by making a single pass over the database. We can compare the concrete efficiency with
the recent state-of-the-art PIR schemes (HintlessPIR [LMRSW23] SimplePIR [HHC+23]) in an analytical
way and in an experimental way. Note that both the recent schemes have linear-time server preprocessing
to generate hints that needs to be re-computed once the database changes. In contrast, our protocol does
not have such hints and the server can update the database without extra cost.

Analytical comparison. Assuming atomic operations in CPU are 32-bit integer addition/multiplication,
and 32-bit XOR. Note that different atomic operations may have different run time. Suppose the database
consists of n elements, each of size 32` bits. To answer one query, the server in SimplePIR computes n` 32-bit
integer multiplications and n` 32-bit integer additions. The computation for HintlessPIR is more expensive.
In our protocol, on the same database, the server computes on average (n/2) · `w 32-bit XORs, where w is
the number of shares per client.

Experimental results. Table 2 shows the throughput of XORing random records in batches of difference
sizes. When the batch size increases from 1 to 32, the throughput increases by roughly a factor of 4. The
throughput reaches a plateau at batch size 16, so in the PIR protocol we can let the server batch process 16
sharing vectors.

A.2 Splitting the Database

Recall in Section 5.2, we give our base construction for PIR in the shuffle model. This does not directly give
us practical PIR: concretely, to guarantee over 100 bits of security for a database of size 210, if we split the
query into 10 shares, we need 220 dummies. Next we present an optimization that reduces the total number
of dummies without increasing server or client computation.

The idea of this optimization comes from a simple observation on the standard syndrome decoding
problem (Section 2): given (m,n, τ) for an SD problem, and fix m and τ , the smaller n is, the harder the
SD problem is. In the corresponding PIR setting, this observation implies that when the database size
decreases, the required number of dummies also decreases. So our technique is to split the database into
smaller equal-sized sub-databases, and have the client also split the selection vector (a unit vector) into
the same equal-sized sub-vectors. For a target security level, the database-splitting approach requires less
number of dummies compared to the base solution.

Concrete security. On one hand, splitting the database into smaller sub-databases will make the cor-
responding MDSD instance harder; on the other hand, it will generate multiple MDSD instances and we
need to guarantee no adversary can break any of these MDSD instances (can be analyzed by union bound).

41



#splits L 512 1024 2048

dimension of sub-databases n/L 2048 1024 512

#real shares per client (w + 1) 25 25 25

#dummy shares per client 4 3 2

#total shares (m+ c) 2893216 2762144 2631073

bit security of MDSDn/L,m,w 150 157 157

PIR security w/ database splitting 132 137 135

Figure 3: Examples of splitting database to reduce dummies. Suppose the database size n = 220 and there
are c =100K clients. The total number of shares include real and dummy sub-queries.

Table 3 shows example parameters when we split the database into sub-databases of size 2048, 1024 and 512.
For example, if we use sub-databases of size 1024, then each client needs to add 3 dummies for a query. The
bit security of the corresponding MDSD problem (a single instance) is 157, but combining 1024 instances
together gives us the overall bit security 137. If the database is split into smaller dimension such as 512, we
get same level of security with fewer dummies per MDSD instance.

Theorem 5 (Asymptotic reduced number of dummies). Given database size n ∈ N and security parameter
κ. Given construction 3, assume the underlying assumption is MDSDn,cw+λ,c,w with κ bits of security.
Applying the splitting optimization with parameter L, then under the same number of shares w per query
and same level of security κ, we can reduce the number of dummies from λ to λ∗ where

log λ∗ = (1 +
2 logL

κ+ 2 log c
) log λ− κ logL

κ+ 2 log c
.

Proof. Let κ+ be the security parameter for a single instance of MDSDn/L,cw+λ,c,w. By results from [MW18],
we have κ = κ+ − 2 logL. Using the concrete security result in Section 3.2, for the optimized version we
have

w∗ =
κ+ + 2 log c

log λ∗ − log(n/L)

number of shares. On the other hand, for the non-optimized version we have

w =
κ+ 2 log c

log λ− log n
.

Let w = w∗, we can solve the relation between λ∗ and λ as the theorem states.

A.3 Finding Basis Across Multiple Queries

The complementary approach. Recall that to answer each query share, the server computes the inner
product of the database with the (binary) share vector. By viewing the binary share as a selection vector for
which database entries to XOR, this results in n/2 XORs (for a database of size n) on expectation. When
the server needs to compute more than n/2 XORs, a simple optimization is to XOR the remaining entries
instead along with the pre-computed XOR of all entries. For large n, the number of XORs needed after
this optimization is approximated by the normal distribution N(n/2, n/4), and the number of XORs under
the complementary approach follows the half-normal distribution, with the expectation being n/2− 0.4

√
n.

Therefore it saves roughly 0.4
√
n XORs compared to the naive approach. One can generalize the above

approach to storing the XOR of subsets of entries; and prior works [BIM00, DK99] show that the server can
save a factor of d for computation with 2d extra storage. In our experiments, we will use the non-generalized
version as it incurs extra storage only of one database entry and is friendly for database updates.
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Fast matrix-vector multiplications. Naively, multiplying an n× n matrix with an n-length vector has
computational cost O(n2). Using Method of the Four Russians (M4RM) and Strassen-Winograd algorithm,
we can improve the cost to O(n(log2 7−1)). We leave the experimental cost to future work.

A.4 Composing with Single-Server PIR protocol in the Standard Model

The easiest approach to reduce the database dimension for the shuffle PIR is to organize the database
as a matrix and have the client retrieve an entire row (instead of an entry), which increases per-client
communication. One can further reduce the per-client communication additionally using a standard PIR
scheme to retrieve the entry from the row, as specified below.

Take any standard single-server PIR scheme stdPIR and denote the shuffle PIR construction as ShPIR.
The server organizes the size-n database as an d× (n/d) matrix where d is a constant. The key idea here is
to use stdPIR to retrieve a column and ShPIR to retrieve a row. The server treats each column as a database
in ShPIR and runs ShPIR.Setup on it. The server stores the preprocessed results as lookup tables (hence n/d
tables in total).

Suppose a client wants to retrieve the entry at r-th row and c-th column. The client runs the query algo-
rithm of ShPIR on index r ∈ [d] and generates k sub-queries. Then the client sends k messages anonymously,
where the j-th message consists of the j-th sub-query of ShPIR and a stdPIR query for index c ∈ [n/d].
On receiving each message, the server first processes the sub-query of ShPIR (essentially n/d table lookup
operations), which results in n/d elements; then the server processes the stdPIR query on these n/d elements.

Compared to running stdPIR on a size-n database, this technique reduces server computation by a factor
of d. And the ShPIR database size is d, which neither requires too many clients nor incurs high anonymity
cost. The tradeoff is that a client sends k messages in the stdPIR-ShPIR combination instead of one message
when using stdPIR only.

Later in Appendix B, we can further reduce the black-box standard single-server PIR by extending the
functionality of the shuffler.

B Extensions to the Shuffle Model

In Section 5.2, we presented shuffle PIR constructions which assume that all the queries are shuffled together
before the server receives them. In order to satisfy this assumption in practice, we need to employ an
additional party who can perform the shuffling. Once we have such an additional party, it is an interesting
question whether we can leverage it to further improve the efficiency of the constructions. Of course, there
are two-server PIR constructions that already present solutions [GGM98] where the second party does more
than shuffling. However, those require that both parties have the database and their computation uses it.
This imposes challenges when the database is frequently changing (which is the case in real world) since the
two parties need to synchronize the changes, which incurs heavy communication cost.

In this section, we explore the idea how we can leverage more efficiently an intermediary party such
as the shuffler to reduce the overall overhead for the PIR constructions, but in a way that still preserves
the property that the intermediary, which we will call a proxy, does not need to know anything about the
database. We further assume that the intermediary and the server have much more computational resources
than the clients, thus shifting work from the clients to any of these parties will lead to an improvement.
Similarly, in the real-world setting, communication between the server and the intermediary is cheaper than
the communication to the client (e.g., the server and intermediary have more bandwidth and they have
stable networks), hence, another goal will be to reduce the message size going to the client even if it comes
with larger messages between the intermediary and server.

One obvious way to shift client’s work in our previous construction (Section 5.2) to the intermediary is
to have the intermediary insert the dummies in addition to shuffling the queries that come from the clients.

We can further leverage the intermediary to reduce the communication back to the client. In order to
reduce the length of query vectors, we arranged the database by two dimensions and use the shuffle PIR to
retrieve entries from the first dimension, and hence the PIR answer is of length of the second dimension.
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One option to reduce the answer size was to compose the shuffle PIR with a single-server PIR scheme to
select the query item across the second dimension (Appendix A.4), but this incurs heavy computational cost
for the server since existing single-server PIR schemes are expensive. A different idea is to enable the proxy
to select the appropriate record from the items in the second dimension. To do this without revealing any
information about the query to the intermediary, the client can send a random permutation to the server
that specifies how the server should permute the items selected with the shuffle PIR step before sending them
to the intermediary. The client would also provide the proxy with the appropriate location of the queried
record in the random permutation, thus the proxy can select the appropriate record from ones it receives
from the server and forward it to the client. We present the details of this approach in Construction 5.

In a different idea we explore whether we can outsource the query generation for shuffle PIR to the
proxy beyond just adding the dummy items before the shuffle. In the ideal setting the client will be sending
constant-sized message for a query index. One idea to achieve this is to have client generate an encryption
of its index i under additive homomorphic encryption which has plaintext space Zn, and send the encrypted
index HE.Enc(i) to the proxy. The proxy will generate a shuffle PIR query as follows: it generates shares
of the index vector selecting position one; for each share it selects a random number r ∈ Zn. It cyclically
shifts (towards right) the share vector by r positions and additionally computes HE.Enc(i− r − 1), which is
paired with the rotated share. The complete client query consists of all share vectors together with their
corresponding encrypted indices. Dummy items now will be generated also as a random share vector plus
random encrypted index. The final shuffle PIR queries are the shuffle across the newly defined client query
shares and the dummies.

The server processes each query by decrypting the index sent with each share, rotating the share in
increasing direction as many positions as the decrypted index and then computing an inner product with
the database. Each client recovers its output as before. Note that this approach is composable with the one
above that reduces the length of the response sent from the intermediary to the client.

We could also aim to use the proxy to reconstruct the answer that should be sent to the client from the
encrypted shares of the answer sent by the server. As a reminder, those shares will need to be encrypted
under different keys so that they are not linkable by the server. To achieve both goal we will leverage
homomorphic encryption that supports both message and key homomorphism. This constructions enables
the proxy to generate different encryption keys that add up to the key chosen by the client and sent encrypted
to the proxy. As a result adding the additive shares of the output encrypted under all of these keys results in
the reconstructed output encrypted under the key of the client. The details of this approach are presented
in Construction 15.

B.1 Extended Definition

In the previous sections we used a definition for shuffle PIR which implicitly assumes the shuffling of the
clients’ inputs without explicitly defining a functionality for the shuffler. Since in the proxy constructions the
intermediary party will perform operations beyond shuffling, we extend the definition with functionalities
that correspond to the proxy’s action when submitting the query and sending the answer back to the client.
We present the details of this extended definition next.

Definition 14 (PIR in the proxy model (Reduced Client Download)). Let Σ be a finite alphabet and n ∈
N. A (single-server) PIR protocol in the proxy model on database Σn is a tuple of algorithms ShPIR =
(Setup,Query,ProxyQ,ProxyPerm,Answer,ProxyRRecon).

• Setup(x) → Px: a deterministic algorithm executed by the server that takes in an n-entry database
x ∈ Σn and outputs its encoding Px.

• Query(i;n) $→ σi: a randomized algorithm (parameterized by n) executed by the client that takes in an
index i ∈ [n], and outputs an encoded query σi.

• ProxyQ(σi) $→ (q1, . . . , qk, stC): a randomized algorithm executed by the proxy that takes an encoded
query σi generated by a client C and outputs sub-queries q1, . . . , qk, and state stC.
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• ProxyPerm(q1, . . . , qm·k): it takes sub-queries from m clients and outputs a new set of sub-queries and
a state stP.

• Answer(Px, q`) → a`: a deterministic algorithm executed by the server that takes in the encoding Px
and a sub-query q`, and outputs an answer a`.

• ProxyR((a1, . . . , am·k), stC,1, . . . , stC,m, stP) → (τ1, . . . , τm): a deterministic algorithm executed by the
proxy that takes in answers a1, . . . , am·k, where for all j ∈ [m], ` ∈ [k], ak·(j−1)+` is the answer to the j’th
client sub-query q`, and stC,j is the state corresponding to the j’th client, while stP is the proxy state across
all clients. It outputs encoded output τj for client j.

• Recon(τi)→ x[i]: a deterministic algorithm executed by the client that takes an encoded output τi from
the proxy; and outputs x[i] ∈ Σ.

B.2 Proxy PIR with Reduced Client Download

The next construction realized the idea that the proxy can filter only the relevant element for the client from
a shuffle PIR response that includes multiple database elements.

Construction 5 (Proxy PIR Protocol with Reduced Client Download). Let F be a field and n ∈ N, and
let x ∈ Fn be a database of n elements. Our Proxy PIR protocol is parameterized with positive integers k
(the number of shares per query), z (the number of dummy sub-queries per query), and c (the number of
queries). Furthermore, let λ = c · z be the total number of dummy sub-queries. The PIR protocol consists of
the following algorithms.

• Setup(x) →M ∈ Fn: Rearrange the database as database of size m1 where each entry consists of m2

consecutive entries from x, M ∈ (Fm2)m1 .

• Query(j;m1,m2) $→ σi: The query algorithm first splits the indicator vector uj ∈ Fm1 into additive

secret shares s1, . . . , sk ∈ Fm1 such that si are uniformly random conditioned on
∑k
i=1 si = uj ∈ Fm1 . For

each 1 ≤ i ≤ k, sample a uniform permutation πi : [1,m2] → [1,m2] and set ti = πi(j mod m1), and set

the the i-th share to be (si, πi, ti). The encoded query is then the tuple of vectors σi ←
(

(s1, π1, t1), . . . , (sk,

πk, tk)
)

. Note that the values si, πi are encrypted with the public key for the server and ti is encrypted for

the proxy.

• ProxyQ(σi)→ σi.

• ProxyPerm(σ1, . . . , σc): The proxy generates λ dummy items by sampling random vectors and permuta-
tions (rh, τh) for all 1 ≤ h ≤ λ. It outputs for the server a permutation α of the sub-queries qi = (si, πi) in
all σ1, . . . , σc and the dummy queries qm·k+h = (rh, τh) for all 1 ≤ h ≤ λ. It keeps as state t1, . . . tck and α.

• Answer(M,q = (s, π)): The server computes y = 〈M, s〉 which results in a vector of items of length m2.
It returns π(y).

• ProxyR((y1, . . .yk,d1, . . . ,dz, stC = (t1, . . . , tk): The proxy returns (y1[t1], . . . ,yk[tk]). The answers
d1, . . . ,dz for the dummy queries are discarded.

• Recon(a1, . . . , ak) →
∑k
i=1 ai: To reconstruct the requested database element, the client computes the

sum of answers a1, . . . , ak received from the proxy.

The security of the above construction follows from the security of the shuffle PIR protocol and the fact
that the indices ti that the proxy receives are completely random and thus it does not learn any information
about the query.
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B.3 Proxy PIR with Reduced Client Upload

The next construction show how the proxy can generate the shuffle query on the behalf of the client using
an encrypted query index.

Definition 15 (PIR in the proxy model (Reduced Client Download)). Let Σ be a finite alphabet and n ∈ N.
A (single-server) PIR protocol in the proxy model on database Σn is a tuple of algorithms ProxyPIR =
(Setup,Query,ProxyQ,Answer,ProxyRRecon).

• Setup(x ∈ Fn) $→ (x, pkQ, skQ, pkK, skK): The setup algorithm, as usual, treats the database as a vector
of length n over F. It also generates key pairs (pkQ, skQ) and (pkK, skK) for a public-key additive homomorphic
encryption scheme E, where the message space for the first instantiation is Zn and the message space for
the second instantiation coincides with the key space K for a symmetric-key KMAHE scheme E ′. The server
sends pkQ and pkK to the clients and the proxy.

• Query(qj ;n) $→ (ctQ, ctK): The client first encrypts ctQ ← E .Enc(pkQ, qj). It samples a key for the
KMAHE scheme: E ′ skC←$K, and encrypts it as ctK ← E .Enc(pkK, skC).

• ProxyQ(ctQ, ctK) $→ ({s′i, cti, ct′i}wi=0): The proxy generates additive secret shares (s0, . . . , sw)← Share(1 ∈
Fn, w + 1), where 1 is the selection vector with 1 in first position and 0’s in all other positions. It samples
w + 1 symmetric keys Ri←$K such that

∑w
i=0 Ri = 0.

For each 0 ≤ i ≤ w, the proxy generates a random shift 0 ≤ ki ≤ n−1, computes cti ← ctQ+E .Enc(pkQ, ki)
and s′i which is obtained from si by cyclically rotating ki positions backwards, i.e. s′i[j] = si[j − ki mod n]
for all j. It also computes ct′i ← ctK + E .Enc(pkK,Ri).

• ProxyPerm({s′i, cti, ct′i}w·mi=0 ) $→ ({s′i, cti, ct′i}
w·m+λ
i=0 ): The proxy generates λ dummy items by sampling

random vectors, encryptions of random numbers and random encryption keys (rj , ctj , ct
′
j). It outputs the

permuted real items from m clients and λ dummy items. It keeps as state the applied permutation π.

• Answer(s, ct, ct′) $→ cta: The server decrypts k = E .Dec(skQ, ct). It then cyclically shifts s forward with
k positions to obtain s′, i.e. s′[j] = s[j + k mod n]. It computes a as the inner product of s′ and the
database x.

The server decrypts skC = E .Dec(skK, ct′) and outputs cta ← E ′.Enc(skC, a).

• ProxyR
(
π(cta1 , . . . , ctaw·m , ctd1 , . . . , ctdλ)

)
→ (ctq1 , . . . , ctqm): the proxy reverses the permutation and

filters out the answers of the dummy items. For each client j ∈ [c], it computes ctqj =
∑j·w
i=(j−1)·w+1 cti,

which is equivalent to E ′.Enc(w · skC +
∑w
i=1 Ri,

∑w
i=1 ai) ≡ E ′.Enc(w · skC ,x[qi]).

• Recon(ctqi) → x[qi]: The client decrypts using the decryption key for the corresponding query x[qi] ←
E ′.Dec(w · skC, ctqi).

Security Sketch. The view of the server is the proxy construction is the same as in the shuffle PIR
construction. The server sees random shuffled shares of the query selection vectors, which are represented
as the shifted share vector plus the shift. The encryption keys are also indistinguishable from independently
sampled keys.

The semi-honest proxy sees the query bit encrypted and the response shares are also encrypted under
keys that it does not know.
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Database Field # Clients
Our PIR Protocol in Proxy Model

n1 d # Sub-
queries

Client
Up/Down

(KiB)

Proxy
Up/Down

(KiB)

Proxy time
(ms)

Server time
(ms)

220 × 256
bytes

F65537
10000 215 214 32 32 / 26 1752 / 1628 41 74
100000 215 215 23 32 / 26 622 / 289 15 47

223 × 1
bytes

F65537
10000 217 214 33 32 / 26 7233 / 26880 172 306
100000 218 216 26 32 / 13 2825 / 2625 67 218

Table 11: Parameters and communication costs of our PIR protocol in the proxy model as in Appendix B.3.
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