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Abstract. One of the most promising avenues for realising scalable proof systems relies
on the existence of 2-cycles of pairing-friendly elliptic curves. Such a cycle consists of two
elliptic curves E/Fp and E ′/Fq that both have a low embedding degree and also satisfy
q = #E(Fp) and p = #E ′(Fq). These constraints turn out to be rather restrictive; in the
decade that has passed since 2-cycles were first proposed for use in proof systems, no new
constructions of 2-cycles have been found.

In this paper, we generalise the notion of cycles of pairing-friendly elliptic curves to study cy-
cles of pairing-friendly abelian varieties, with a view towards realising more efficient pairing-
based SNARKs. We show that considering abelian varieties of dimension larger than 1 un-
locks a number of interesting possibilities for finding pairing-friendly cycles, and we give
several new constructions that can be instantiated at any security level.

Keywords: Zero-knowledge proofs, SNARKs, recursive proof composition, abelian vari-
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1 Introduction

Pairing-based proof systems. Non-interactive zero-knowledge proofs are powerful crypto-
graphic primitives that offer an array of applications (see [60] for a comprehensive, up-to-date
survey). Beginning with the works of Groth, Ostrovsky and Sahai [30,27,31], a large body of
research has focussed on constructing instances of these proofs that additionally achieve the suc-
cinctness property. Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs)
provide a computationally sound proof that is both cheap to verify and small in size compared
to the circuit describing the statement. Groth’s breakthrough zk-SNARK constructions were the
first of their kind that achieved constant proof sizes [28,29]. Prior proposals gave proofs whose
size depended on the size of the circuit, but Groth was able to overcome this dependency by util-
ising the power of bilinear pairings. Groth’s pairing-based proof systems are now among the most
popular instantiations of SNARKs, both in theory and in practice [60].

Recursive SNARK composition via MNT cycles. In 2014, Ben-Sasson, Chiesa, Tromer
and Virza [6] realised efficient pairing-based zk-SNARKs via a new approach. They built on prior
works proposing the recursive composition of proofs [61,8] to give the first implementation of a
zk-SNARK that achieves such recursive proof composition at scale. The core ingredient was a
2-cycle of pairing-friendly elliptic curves, i.e., E/Fp and E ′/Fq, where q = #E(Fp), p = #E ′(Fq),
and both E and E ′ have low embedding degrees. At that time, only one such pairing-friendly cycle
was known in the literature: the 2-cycle of Miyaji, Nakabayashi and Takano (MNT) curves [45]
that was pointed out by Karabina and Teske [39, Proposition 1]. Indeed, in [6], the authors used
an instance of the MNT 2-cycle with p ≈ q ≈ 2298 to bring their recursive proof composition to
life.
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While the elliptic curve discrete logarithm problem (ECDLP) on a well-chosen elliptic curve
with a prime order of around 2298 is conjectured to offer around 150 bits of security, the im-
plementation of the MNT cycle in [6] could only claim a security level of around 80 bits. The
reason for this discrepancy is that both E/Fp and E ′/Fq are pairing-friendly, meaning that the
ECDLP on both curves can instead be solved more efficiently as a finite field discrete logarithm
problem (DLP) in F×

pk or F×
qk′ , where k and k′ are small, positive integers [44,21]. The MNT cycle

has (k, k′) = (4, 6), so the easiest place to solve discrete logarithms is in F×
p4 ; in [6], the authors

argued that p ≈ 2298 was enough to ensure that the DLP in F×
p4 offered around 80 bits of security.

However, when scaling up to the modern standard of 128-bit security, Guillevic [33] analysed the
state-of-the-art in algorithms for the finite field DLP and concluded that the MNT cycle must have
p ≈ q ≈ 21000. In other words, p and q are around four times the bitlength they would need to be
(to achieve 2128 ECDLP security) if cycles with larger embedding degrees were known. Working
with such large p and q dramatically hampers the efficiency of recursive composition [60, §18].

The search for new cycles. Due to the inherent drawbacks of the MNT cycle, it is desirable
to find alternative constructions of pairing-friendly 2-cycles. Unfortunately, the papers in the
literature that investigate this possibility have been unable to find any new such 2-cycles, and
have almost exclusively presented impossibility results. The 2019 paper by Chiesa, Chua and
Weidner [16] showed that pairing-friendly 2-cycles with (k, k′) in the set {(5, 10), (8, 8), (12, 12)}
do not exist, and that cycles within the Freeman [18] and Barreto-Naehrig [4] families also do
not exist. The 2023 paper by Bellés-Muñoz, Jiménez Urroz and Silva [5] extended this work and
addressed some of the open problems posed in [16]. For example, they proved that no curve from
any of the known pairing-friendly families can be in a 2-cycle in which the other curve has an
embedding degree k ≤ 22.

The failure to find any new 2-cycles has caused authors and designers of SNARK protocols
to relax the cycle requirement and instead look for 2-chains of pairing-friendly curves; i.e., two
pairing-friendly curves E/Fp and E ′/Fq with p | #E ′(Fq) (rather than p = #E ′(Fq) and q = #E(Fp)
as in a 2-cycle). The 2022 paper by El Housni and Guillevic [35] classifies the state-of-the-art in
the direction of efficient 2-chains, and it includes parameterised families of 2-chains that link well-
known families into 2-chains of pairing-friendly curves. With a chain of pairing-friendly curves,
however, the corresponding SNARKs cannot perform the unbounded recursive composition of
proofs envisioned by Ben-Sasson, Chiesa, Tromer and Virza [6]. Instead, they can only perform a
bounded proof bootstrapping, as was first implemented in Geppetto [17], a zero-knowledge SNARK
built for verifiable computations.

There are a number of SNARKs based around elliptic curve cycles where the pairing-friendly
requirement has been relaxed on one or both of the curves. For example, the Halo proof system
of Bowe, Grigg and Hopwood [12] avoids the trusted setup that is inherent to pairing-based
SNARKs and instead uses a 2-cycle of non-pairing-friendly curves. The work of Silverman and
Stange [55] shows that these cycles are plentiful, and in practice we find they are therefore much
easier to construct than cycles where both curves are pairing-friendly. Even in the case where only
one of the curves in the 2-cycle needs to be pairing-friendly, this relaxation allows for relatively
straightforward constructions, e.g. one can partner a non-pairing-friendly curve with a pairing-
friendly curve from any one of the MNT, Freeman and BN families. We refer to the survey paper
by Aranha, El Housni and Guillevic [1] for more examples of 2-chains or non-pairing-friendly cycles
that can be found in the wild.

This work. Motivated by the lack of performant pairing-friendly cycles of elliptic curves, we
initiate the search for pairing-friendly cycles of abelian varieties3. We say (see Definition 1) that
two pairing-friendly abelian varieties A/Fpu and B/Fqv are a cycle, denoted A ⇌ B, if p | #B(Fqv )
and q | #A(Fpu). In contrast to the cycles of pairing-friendly elliptic curves E/Fp and E ′/Fq with

3Abelian varieties are a generalisations of elliptic curves, which are themselves the most simple instances
of abelian varieties used in cryptography: an elliptic curve is an abelian variety of dimension 1.
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p = #E ′(Fq) and q = #E(Fp) that were proposed in [6] and studied in [16,5], our definition has
three relaxations:

(i) A and B can be abelian varieties of any dimension;
(ii) A and B can be defined over extension fields; and
(iii) p and q need only divide the respective group orders of B and A, not be equal to them.

To our knowledge, this paper is the first to explore (i) and (ii). In the original paper proposing
cycles for proof systems, it is already mentioned that the generalisation in (iii) is permitted [6,
§3.1], but the authors did not need to allow for it since they were using the prime order MNT
construction. In the search for more pairing-friendly cycles of elliptic curves defined over prime
fields, Chiesa, Chua and Weidner [16] also considered (iii) by allowing for either curves in the cycle
to have composite order. However, they went on to prove that such cycles cannot exist when the
elliptic curves E and E ′ are defined over prime fields.

All three relaxations above have their own benefits and drawbacks. As we show in this paper,
the main benefit of the loosened requirements in (i), (ii) and (iii) is that they open up a wide
range of possibilities for finding cycles. It is worth pointing out that we do not need to exploit
all three relaxations simultaneously in order to find cycles of pairing-friendly curves. For example,
the combination of (ii) and (iii) already allows us to define a new cycle of pairing-friendly elliptic
curves E/Fp2 ⇌ E ′/Fq, which have p2 = #E ′(Fq) and q = #E(Fp2). In this case, however, the
cryptographic exponents4 of E and E ′ are even smaller than the embedding degrees of the MNT
cycle. It is only when we allow (i), and consider higher dimensional abelian varieties, that we are
able to find cycles containing cryptographic exponents larger than 6 and present possibilities that
may pique the interest of practitioners.

The ideal scenario for implementing a recursive SNARK is a 2-cycle of two prime order elliptic
curves, both of which have (the same) small embedding degree that perfectly balances the ECDLP
and DLP securities in all groups involved. The relaxations (i), (ii) and (iii) are all suboptimal
compared to this ideal scenario. For example, the relaxation given by (i) is not as appealing as in the
classical context of (hyper-)elliptic curve cryptography, where allowing higher-dimensional abelian
varieties enables the use of smaller base fields for the same conjectured (H)ECDLP complexity.
This presents interesting trade-offs between working with a more complex group law but over
finite fields of smaller characteristic. Cycles for zk-SNARK applications, however, require the field
characteristics to correspond to (sub)group sizes. To keep the DLP in these groups hard enough,
the characteristics are forced to be at least 2λ bits to achieve λ bits of security against Pollard’s
ρ algorithm [48]. Despite these drawbacks, we hope that the relaxations above can pave the way
to more performant cycles than the suboptimal MNT cycle, in particular since cycles realising the
above ideal scenario have shown to be elusive and may not exist at all [5].

As we discuss at length in Section 3, the generalisation to abelian varieties opens up a vast
number of options for obtaining cycles. In §3.1 we make four choices that narrow the scope of our
search. On the one hand, they allow us to explore a meaningful fraction of this uncharted territory
within a framework that produces a variety of new pairing-friendly cycles. On the other hand,
these restrictions each come with their own drawbacks. The most significant of these imposes that
all of our constructions have B/Fqv as an elliptic curve with cryptographic exponent 1. Unlike the
case where the curves are defined over prime fields, however, this does not force q to be large; the
main goal of Section 5 is to pursue constructions where v is as large as possible so that the size of
q can be made smaller at the same security level. We start there by giving two constructions for
B that form cycles with all of the constructions for A we present in this paper: the first has B as
an ordinary elliptic curve with v = 1, the second has B as a supersingular curve with v = 2. We
then move to ordinary curves B that are paired with a specific construction of A, starting with
v = 3 before describing a more general construction for all v ∈ 2N.

We explore multiple options for A/Fpu , all of which are supersingular. This begins with two
elliptic curve constructions in Section 4 for which the cryptographic exponents are 3/2 and 3,

4For pairing-friendly abelian varieties defined over extension fields, the field of definition of the pairing
can be a proper subfield of the field extension given by the embedding degree. The cryptographic exponent
is the ratio of the sizes of this field and the field of definition of the variety.
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respectively. In Section 6, we move into dimension 2 and present two constructions where A/Fpu

is a supersingular abelian surface; these have cryptographic exponents 3 and 6, respectively. In
Section 7 we present our main construction using the work of Rubin and Silverberg [49] to find
cycles where A/Fpu can be of arbitrarily high dimension g = 2ℓ for ℓ ≥ 0, and of arbitrarily high
cryptographic exponent 3 · 2g−1. In §7.2 we give a number of cryptographically sized examples
that illustrate the potential of A being able to have arbitrarily high cryptographic exponent. The
last example is geared towards the 128-bit security level: it uses a 256-bit p and a genus 4 abelian
variety A/Fp2 with cryptographic exponent 24 to give comparable security to an MNT cycle with
992-bit p and q.

In Section 8, we survey the literature for optimisations that can accelerate SNARKs based on
our cycles. These include optimisations for the pairings themselves, as well as hashing routines
and exponentations in all three pairing groups. We also touch on optimisations that are specific
to SNARKs, like those that can accelerate large multiscalar multiplications; finally, we show that
(unlike the MNT cycle) our cycles can be instantiated on parameters with very large 2-adicity –
see §8.4.

Towards optimal 2-cycles. An optimal cycle A/Fpu ⇌ B/Fqv at the λ-bit security level would
be one where p ≈ q ≈ 22λ, and where the q-Weil pairing of A and the p-Weil pairing of B both
map into extension fields just large enough to achieve λ bits of security against the state-of-the-art
in DLP attacks. In this work we are able to give constructions of A where p ≈ 22λ is indeed as
small as possible. If we were able to partner this with a B/Fqv for which v can be arbitrarily
large, then we could hope to obtain p ≈ 22λ and q ≈ 24λ (q is at least as large as p2 in our
framework), but unfortunately the only values of v for which we managed to construct such a B
are v = 1 and v = 2. However, we feel it is worth pointing out that cycles with arbitrarily large
values of v do exist within our framework; the only reason we have been so far unable to construct
them is because our attempts have produced a CM equation with a discriminant that is too large,
which makes computing the curve coefficients of cryptographically sized instances infeasible (see
Section 2). Nevertheless, contrary to the negative results that exist for 2-cycles of ordinary elliptic
curves [16,5], it is encouraging to know that cycles where p and q can be much closer to optimal
(irrespective of the security level) are out there.

2 Preliminaries

In this section, we provide some relevant background about elliptic curves and abelian varieties.
We assume basic knowledge about elliptic curves and their use in cryptography. For a more general
exposition we refer to Silverman [54].

Throughout this paper, for a prime number p we let Fpk denote the finite field with pk elements,

where k ∈ N. We let Fpk denote its algebraic closure.

Elliptic curves. Let p > 3 be prime and u ∈ N. An elliptic curve E/Fpu is supersingular if
E(Fpu) has no points of order p, otherwise it is ordinary. The number of Fpu -rational points on E
is #E(Fpu) = pu + 1 − t, where t is the trace of Frobenius and |t| ≤ 2

√
pu according to Hasse’s

theorem.
The following theorem (due to Waterhouse [63]) tells us precisely which values of the trace t

correspond to E being supersingular.

Theorem 1 ([63]). There exists a supersingular curve over Fpu with trace t if and only if t
satisfies one of the following conditions:

– u is even and

(i) t = ±2
√
pu,

(ii) t = ±
√
pu and p ̸≡ 1 mod 3,

(iii) t = 0 and p ̸≡ 1 mod 4;

4



– u is odd and
(iv) t = 0.

Over a given finite field Fpu , we can take any t that satisfies one of the conditions in Theorem 1,
and input it alongside p and u into Bröker’s algorithm [13] to obtain a supersingular elliptic curve
with trace t.

For any t with |t| ≤ 2
√
pu that does not satisfy the conditions above, there exists an ordinary

elliptic curve over Fpu with trace t. If we wish to construct it, we can attempt to use the theory
of complex multiplication (CM), which proceeds by taking D as the largest squarefree divisor of
4pu − t2, i.e., setting

DV 2 = 4pu − t2, (1)

where D is the squarefree integer commonly referred to as the CM discriminant. If D is not too
large, we can compute the Hilbert class polynomial HD(x) ∈ Fpu [x] corresponding to D [57].
The roots of HD(x) are the j-invariants of curves with trace t, so we can take any such root
j. If j = 0, the curve we seek is E : y2 = x3 + 1 or one of its sextic twists; if j = 1728, it is
E : y2 = x3 +x or one of its quartic twists, otherwise we can output the curve E : y2 = x3 + ax− a
with a = −27j/(4(j − 1728)) or its quadratic twist [14].

Abelian varieties. The natural generalisation of elliptic curves to higher dimensions are princi-
pally polarised (p.p.) abelian varieties. Let A/Fpu be a p.p. abelian variety. We say that A is simple
if it is not Fpu -isogenous to a product of lower dimensional abelian varieties, and is supersingular
if it is Fpu -isogenous to a product of supersingular elliptic curves.5 From this point onwards, we
will assume our abelian varieties come equipped with a principal polarisation, and drop the ‘p.p.’
for clarity.

The following result concerning supersingular abelian varities over Fpu will prove useful when
we arrive at §7 and construct cycles involving such A. Before stating the result, we define a
supersingular pu-Weil number to be a complex number of the form

√
puζ, where ζ is a root of

unity [49, §1].

Theorem 2 ([49,34,58,64]). Let A/Fpu be a simple supersingular abelian variety and let P (x)
be the characteristic polynomial of the pu-power Frobenius endomorphism of A. Then:

(i) P (x) = G(x)e, where G(x) ∈ Z[x] is a monic irreducible polynomial and e ∈ {1, 2};
(ii) the roots of G are supersingular pu-Weil numbers;
(iii) A(Fpu) ∼= (ZG(1))

e, unless pu is non-square and either
(a) p ≡ 3 mod 4, dim(A) = 1, and G(x) = x2 + pu, or
(b) p ≡ 1 mod 4, dim(A) = 2, and G(x) = x2 − pu;
in these exceptional cases, A(Fpu) ∼= (ZG(1))

a× (ZG(1)
2

×Z2)
b with non-negative integers a and

b such that a+ b = e;
(iv) #A(Fpu) = P (1).

The roots of G are called the pu-Weil numbers for A. The dimension of A is dim(A) = deg(P )/2 =
e · deg(G)/2.

The cryptographic exponent. Let p be prime and let A/Fpu be an abelian variety. Since
we are interested in scenarios where A is pairing-friendly, it is important (for the sake of MOV
security [44]) to know the minimum degree of the extension field of Fp where the Weil pairing is
defined. If ℓ | #A(Fpu) for some prime ℓ > 5, then we typically define the embedding degree of A
with respect to ℓ as the smallest natural number k such that ℓ | (pu)k − 1. Rubin and Silverberg
additionally define the cryptographic exponent cA of A [49, Definition 3], which (for large enough

5Here, we emphasise that ‘isogenous’ should be understood in the context of abstract abelian varieties,
i.e., discarding their principal polarisation.
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ℓ, as will be the case in this work) is such that (pu)cA = pr [49, Theorem 7], where r is the
smallest integer such that ℓ | pr − 1. For abelian varieties that are defined over extension fields,
the cryptographic exponent therefore captures the ratio between the field of definition of A and
the field where the ℓ-Weil pairing is defined. Note that if u > 1, r can be smaller than uk.

The theorem of Rubin and Silverberg. Supersingular elliptic curves E/Fpu will play a fun-
damental role in the constructions we present, but when p > 3 they can only have cryptographic
exponents cE ≤ 3. In Section 7, we will use the following theorem (due to Rubin and Silverberg [49,
Theorem 17]) to produce higher dimensional abelian varieties A/Fpu whose cryptographic expo-
nents are much larger. The larger the cryptographic exponent is, the smaller pu can be chosen,
making arithmetic in the field of definition more efficient while still guaranteeing high enough DLP
security in the finite field group.

Theorem 3 ([49]). Let E/Fpu be a supersingular elliptic curve, π be a pu-Weil number for E that
is not a rational number. Fix r ∈ N with gcd(r, 2pcE) = 1. Then there is a supersingular abelian
variety A/Fpu such that:

(i) dim(A) = φ(r);

(ii) for every primitive r-th root of unity ζ, πζ is a pu-Weil number for A;

(iii) cA = rcE ; and

(iv) there is a natural identification of A(Fpu) with the subgroup of E(Fpur )

{Q ∈ E(Fpur ) : TrFpur/F
pur/ℓ

(Q) = O for every prime ℓ | r}.

3 The high-level strategy

We start this section by formalising our generalisation of cycles to abelian varieties in Definition 1.
As we discussed in Section 1, this opens up a large number of possibilities for obtaining such
cycles. In §3.1 we discuss the restrictions that are imposed throughout the rest of the paper. These
choices allow us to explore a meaningful fraction of this uncharted territory whilst adhering to
a consistent framework that produces a variety of new pairing-friendly cycles. Nevertheless, we
believe it is highly likely that the most performant cycles of pairing-friendly abelian varieties are
yet to be discovered, so we endeavour to point out the drawbacks of our restrictions by shedding
light on what is lost by adhering to them. We conclude this section in §3.2 with a high-level
discussion on the security of our approach.

Definition 1. Two abelian varieties A/Fpu and B/Fqv are a pairing-friendly cycle, denoted A ⇌
B, if and only if

(i) p | #B(Fqv );

(ii) q | #A(Fpu);

(iii) A is pairing-friendly with respect to q; and

(iv) B is pairing-friendly with respect to p.

The use of the term “pairing-friendly” in (iii) and (iv) refers to A and B having small crypto-
graphic exponents, e.g. cA, cB ≤ 50.

3.1 Choices and restrictions

The framework within which we search for cycles of pairing-friendly abelian varieties is based on
the following four choices:
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1. A and B are simple. In other words, A (resp. B) is not Fpu -isogenous (resp. Fqv -isogenous)
to a product of lower dimensional abelian varieties. We argue that this is a natural restriction:
if A ⇌ B and A was Fpu -isogenous to A1 × A2, then it must be that at least one of A1 and
A2 is pairing-friendly with respect to q, so (without loss of generality) assume that this is
A1. Then we could instead take our cycle to be A1 ⇌ B, rather than A ⇌ B, without losing
anything. Note, however, that we do not insist that either is absolutely simple; in fact, our
restriction below in 2 necessarily says that A is Fpu -isogenous (as an abstract variety) to a
product of lower-dimensional abelian varieties.

2. A is supersingular of dimension g ≥ 1. One restriction we make in this work is that we
only allow the dimension of A (and not both A and B) to be larger than 1 (more on this in 4
below). In terms of the myriad of pairing-friendly curves that existed prior to the interest in
cycles, ordinary pairing-friendly abelian varieties of dimension larger than 1 were notoriously
difficult to construct, and even the best examples (e.g. [19]) were ultimately not competitive
with their genus 1 counterparts. On the other hand, explicit constructions of various super-
singular pairing-friendly abelian varieties of dimension greater than 1 are readily found in the
literature (e.g. [24]), and for our purposes they come with several advantages. While supersin-
gular elliptic curves over large characteristic fields have cryptographic exponents of at most 3,
the works of Galbraith [22] and Rubin-Silverberg [49] showed how the cryptographic exponents
of supersingular abelian varieties grow steadily with the dimension. Moreover, crucial to our
construction of pairing-friendly cycles is the fact that the coefficients in the pu-Weil polynomial
P (x) of A/Fpu are all multiples of p [22, Theorem 2], except for the leading coefficient which is
1. Together with Theorem 2(iv), this implies that P (1) ≡ 1 mod p, which (in conjunction with
the choice we make in 3 below) allows us to define an abelian variety B that is pairing-friendly
with respect to p with ease.

3. A is of prime order q. This restriction is perhaps the most impactful one we impose, both
in terms of the way it enables us to construct cycles in a straightforward way, and in terms
of the optimality it sacrifices. Setting q = #A(Fpu) means q ≡ 1 mod p (from 2), which in
turn means that B will be pairing-friendly with respect to p. On the other hand, it forces the
cryptographic exponent on this side to be cB = 1, which is the main cause of the suboptimality
we mention above. The way we work towards overcoming the drawback of cB = 1 is to work
with values of v that are as large as possible, such that the p-torsion of B is defined over Fqv ,
i.e., B[p] ⊆ B(Fqv ), but not over any smaller extension of Fq. This in turn allows us to work
with smaller values of q, which in some sense mimics what we would be able to do with a larger
cryptographic exponent cB, but still comes with the drawback that all of the p-torsion is de-
fined over Fqv . Moreover, all of the constructions in this paper have #A(Fpu) = P (1) = f(p),
where f is a polynomial of degree at least 2; thus, imposing that q = P (1) means that q will
always have at least twice the bitlength of p.

4. B has dimension 1. Subject to 3 and the implication that cB = 1, having B as an elliptic
curve allows for the most straightforward construction of a cycle and for the most efficient
arithmetic. In Section 5 we give a variety of different possibilities for defining B/Fqv ; these
include B being both ordinary and supersingular, and explicit constructions for v = 1, v = 3,
as well as a construction that works for every v ∈ 2N.

3.2 Security

We now give a preliminary discussion of the security of our constructions. From a high level, the
security analysis of the pairing-friendly cycle A ⇌ B can be conducted by independently analysing
the security of the pairing-friendly constructions A and B. In other words, to our knowledge there
are no additional security concerns introduced by virtue of A and B being in a 2-cycle with one
another.
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The security of supersingular varieties. In terms of discrete logarithm based cryptosys-
tems, the security story of supersingular elliptic curves has featured a number of highs and lows.
Initially, they began as popular choices for instantiating ECC based on the ease of computing
their cardinality and thus finding secure instances. In the early 1990’s, however, the MOV/Frey-
Rück attacks [44,21] used bilinear pairings to transport supersingular ECDLP instances into finite
field DLP instances that were substantially easier to solve. Due to their low embedding degrees
that enabled these attacks, supersingular curves were thought to be avoided at all costs, but this
changed at the turn of the century with the birth of pairing-based cryptography [51,37,11]. Pair-
ings were no longer entirely a destructive tool, and protocols that used their bilinearity property
in a constructive way required small embedding degrees so that the pairings can be computed
efficiently. Nevertheless, supersingular elliptic curves could still only achieve embedding degrees
up to 6 [44], and researchers began noticing that this was too small to achieve optimal pairing-
based cryptosystems. Subsequently, a number of constructions of ordinary pairing-friendly curves
with higher embedding degrees began to emerge [3,4], and pairings based on supersingular curves
soon became a suboptimal instantiation of the past. Nevertheless, as we discussed in §3.1 above,
higher-dimensional supersingular varieties afford larger cryptographic exponents, which is what
we exploit to find pairing-friendly cycles in this work. As long as the corresponding ECDLPs and
finite field DLPs are conjecturally secure, and as long as the corresponding protocol does not
require DDH to be hard (more on this below), there is no known drawback to using supersingular
curves. Or, as Koblitz and Menezes [41, §7.1] put it: “Despite the customary preference for non-
supersingular elliptic curves, there is no known reason why a nonsupersingular curve with small
embedding degree k would have any security advantage over a supersingular curve with the same
embedding degree”.

The security of high-dimensional abelian varieties. Koblitz first proposed higher dimen-
sional abelian varieties for discrete logarithm based cryptography in 1989 [40]. At that time, there
was seemingly no difference in the asymptotic difficulty of two well-chosen prime order (H)ECDLP
groups, regardless of the genus of the underlying abelian variety. Fast forwarding 25 years, the
conventional wisdom nowadays is that only genus 1 and 2 varieties are safe for (H)ECC. The
reason for avoiding genus 3 and above is that state-of-the-art index calculus attacks [26] on the
HECDLP become asymptotically faster than generic algorithms like Pollard’s ρ algorithm [48].
This inference is based on the types of parameterisations and trade-offs that would be considered
optimal for HECC. For example, the Jacobian variety corresponding to a well-chosen genus 3 curve
C/Fq of (almost) prime order r will have r = O(q3). The attack of Gaudry, Thomé, Thériault and
Diem [26] solves the HECDLP in the Jacobian group of any hyperelliptic curve with g ≥ 3 in time
Õ(q2−2/g), so in this case would run in expected time Õ(q4/3). This is a substantial improvement
over the Õ(q3/2) complexity of a generic attack like Pollard’s ρ algorithm.

In the case of the higher-dimensional varieties proposed in this paper, however, we are dealing
with a rather different setup than that of optimised HECC instances. In particular, our varieties
A/Fpu and B/Fqv being in a cycle forces us to choose both our field characteristics p and q to be
large enough such that generic discrete logarithm attacks against the respective groups of these
orders are hard. In other words, HECDLP index calculus algorithms like [26] will never be the
best attack against our cycle constructions, because its respective complexities are always at least
Õ(p) and Õ(q), which is much worse than the Õ(p1/2) or Õ(q1/2) Pollard-ρ complexities.

Security within SNARK ecosystems. A note of caution is warranted when using supersingular
varieties for proof systems and zk-SNARKs. Supersingular elliptic curves have distortion maps,
meaning the Weil pairing can be used as a Diffie-Hellman oracle resulting in the decisional Diffie-
Hellman problem (DDH) being efficiently solvable [62]. This is problematic, for instance, for the
inner pairing product commitment of the Dory polynomial commitment scheme [42], which relies
on the hardness of DDH in both pairing argument groups. Many other constructions, including
the line of pairing-based SNARKs following Groth’s constructions [28,29] are unaffected by the
symmetric pairing.
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The assumption that underpins the security of pairing-based SNARKs is typically (a variant
of) the Q-DLog assumption: for an asymmetric pairing e : G1×G2 → GT , it asks to find the scalar
x given the tuples

(P1, [x]P1, . . . , [x
Q]P1) ∈ GQ+1

1 and (P2, [x]P2, . . . , [x
Q]P2) ∈ GQ+1

2 .

For a symmetric pairing e : G×G → GT , it asks to find the scalar x given the tuple

(P, [x]P, . . . , [xQ]P ) ∈ GQ+1.

In both cases one can use the pairing to produce the tuple of elements

(z, zx, zx
2

, . . . , zx
2Q

) ∈ G2Q+1
T ,

where z = e(P1, P2) in the asymmetric case and z = e(P, P ) in the symmetric case. Thus, any
known security issues posed by, say, Cheon’s attack [15], apply equivalently to both the ordinary
and supersingular scenarios.

3.3 Roadmap

The remainder of the paper is organised as follows. We start in Section 4 by presenting our simplest
construction for A: a supersingular elliptic curve. In Section 5 we present multiple possibilities
for constructing B, which include both ordinary and supersingular elliptic curves. We then return
to A in the next two sections: Section 6 gives constructions where A is a supersingular abelian
surface that is the Jacobian of a genus-2 curve, and Section 7 exploits the theorem of Rubin and
Silverberg to increase the cryptographic exponents of A by working in the trace zero subvarieties
of supersingular elliptic curves over larger extension fields.6 Finally, in Section 8 we point readers
to a number of optimisations from the literature that can be used to accelerate SNARKs based
on our new cycles.

4 A is a supersingular elliptic curve

We begin describing our construction of cycles with our simplest option for A: a supersingular
elliptic curve. Proposition 1 in §4.1 gives a construction for cA = 3/2 and Proposition 2 in §4.2 gives
a construction with cA = 3. Together, they form the basis for the remainder of the constructions
of A in the paper.

Recall from Restriction 3 in §3.1 that we seek A/Fpu such that #A(Fpu) is prime. Over fields
of large prime characteristic p, the only possibility for supersingular elliptic curves to have prime
order arise as Category (ii) of Theorem 1, which excludes p ≡ 1 mod 3. For the remainder of this
paper, we impose that p ≡ 2 mod 3.

Both constructions work over Fpu for u ∈ 2Z: the first involves curves of order pu + pu/2 + 1
while the second produces curves of order pu − pu/2 + 1. With p ≡ 2 mod 3, imposing that the
order is prime means that u ∈ 2Z but u ̸∈ 4Z in the first case, and u ∈ 4Z in the second case.

We immediately follow Proposition 1 with Example 1, which is continued through the rest of
the paper. To find one small sized example that could continue through Sections 6 and 7, we chose
the prime p = 1373 so that p ≡ 2 mod 3 and for which p2 + p+1, p4 − p2 +1, and p8 − p4 +1 are
also prime (the reason for this will become clear once we arrive at Theorem 4).7

6The reason we jump from A to B and then back to A is so the reader does not have to wait past
Section 5 to see constructions of cycles A ⇌ B.

7The first such odd prime was p = 5, so for the sake of taking something slightly larger (e.g. to avoid
issues in dimensions larger than 1), we took the next one: p = 1373.
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4.1 A has cryptographic exponent cA = 3/2

We are now ready to present our construction for A with cryptographic exponent cA = 3/2.

Proposition 1. Let p ≡ 2 mod 3 be an odd prime and u be twice an odd integer such that q =
pu + pu/2 + 1 is also prime. Let α be a primitive element of Fpu . The elliptic curve A/Fpu with
trace t = −pu/2 satisfies the following:

1. It has the form A/Fpu : y2 = x3 + a, where a ∈ {α, α5};
2. is supersingular;
3. has order #A(Fpu) = q; and
4. has cryptographic exponent cA = 3/2 with respect to q.

Proof. Claim 3 is immediate from t = −pu/2, Claim 2 is due to Waterhouse [63, Theorem 4.1(3)],
and Claim 4 is due to Galbraith [10, Theorem IX.20]. The form of the curve in Claim 1 is due to
Morain [47], where a ∈ {α, α5} follows from A having prime order. ⊓⊔

Example 1. Let p = 1373 and u = 2, and observe that q = p2 + p + 1 = 1886503 is prime.
Write Fp2 = Fp(λ) where λ2 = 2. The element α = λ + 12 is primitive in Fp2 and the curve
A/Fp2 : y2 = x3 + α is supersingular with prime order q = #A(Fp2). The cryptographic exponent
of A with respect to q is cA = 3/2, meaning the order-q Weil pairing maps to a subgroup of F×

p3 .

4.2 A has cryptographic exponent cA = 3

To obtain a larger cryptographic exponent, we look to find A/Fpu with group order pu − pu/2 +1.
This leads us to the following proposition.

Proposition 2. Let p ≡ 2 mod 3 be an odd prime and u be twice an even integer such that
q = pu − pu/2 + 1 is also prime. Let α be a primitive element of Fpu . The elliptic curve A/Fpu

with trace t = pu/2 satisfies the following:

1. It has the form A/Fpu : y2 = x3 + a, where a ∈ {α, α5};
2. is supersingular;
3. has order #A(Fpu) = q; and
4. has cryptographic exponent cA = 3 with respect to q.

Proof. The proof is identical to that of Proposition 1, except for Claim 4 which is also due to
Galbraith [10, Theorem IX.20]. ⊓⊔

Example 1 (continued). Let p = 1373 and take u = 4. Observe that q = p4−p2+1 = 3553709461513
is prime. Write Fp2 = Fp(λ) with λ2 = 2 and Fp4 = Fp2(µ) with µ2 = λ. The element α =
(788λ+1236)µ+(740λ+183) is primitive in Fp4 and the curve A/Fp4 : y2 = x3+α is supersingu-
lar with prime order q = #A(Fp4). The cryptographic exponent of A with respect to q is cA = 3,
meaning the order-q Weil pairing maps to a subgroup of F×

p12 .

5 B is an elliptic curve of cryptographic exponent cB = 1

We now turn to exploring several options for instantiating B/Fqv for v ≥ 1. These will be used to
form cycles with the options for A/Fpu already presented in Section 4, as well as those that will
come in Sections 6 and 7. Recall from §3.1(4) that we restrict B to have dimension 1 in this paper,
i.e., B is an elliptic curve.

All of the A/Fpu in Sections 4, 6 and 7 have #A(Fpu) = pu ± pu/2 + 1 with u ∈ 2N. Recall
from §3.1(3) that we will set q = pu ± pu/2 + 1, which immediately implies that cB = 1. If v = 1,
this means that q must be large enough that discrete logarithms in F×

q are hard. The way we work
towards overcoming this drawback and decrease the size of q is to try to increase v, i.e., increase
the field over which (the p-torsion of) B is minimally defined. In the case of q = pu±pu/2+1 with
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arbitrary u, we find constructions with v = 1 such that B/Fq is ordinary (§5.1) and with v = 2
such that B/Fq2 is supersingular (§5.2). When q = p2 + p+ 1 (i.e., u = 2), we find a construction
for v = 3 where B/Fq3 is ordinary (§5.3), and a general construction that works for any even v
(§5.4).

We note that cycles between A/Fpu and ordinary curves B/Fqv exist for q = pu + pu/2 + 1
with arbitrary u ∈ 2 + 4Z and arbitrary v ∈ 2Z. However, the key of our methods is to ensure
B/Fqv has small CM discriminant. In this way, we can exploit the CM method to obtain an explicit
construction of the elliptic curve, which cannot be guaranteed for v > 2.

5.1 B is ordinary and defined over Fq

We start with a construction for an ordinary elliptic curve B/Fq that can be used to form a cycle
with any of the A constructions in this paper.

Proposition 3. Let p ≡ 2 mod 3 be an odd prime and u be an even integer such that q = pu ±
pu/2 + 1 is also prime, and let β be a primitive element of Fq. The elliptic curve B/Fq with trace
t = ±pu/2 + 2

1. has the form B/Fq : y
2 = x3 + b, where b ∈ {β, β5};

2. is ordinary;
3. has order #B(Fq) = pu;
4. has cryptographic exponent cB = 1 with respect to p; and
5. is in a cycle A/Fpu ⇌ B/Fq,

where A/Fpu is the curve from Proposition 1 if q = pu + pu/2 + 1,
and A/Fpu is the curve from Proposition 2 if q = pu − pu/2 + 1.

Proof. Claims 2 and 3 follow immediately from t = ±pu/2+2, and 4 follows from observing that q ≡
1 mod p. Substituting q and t into the CM equation 4q = t2+Dy2 yields D = 3 and y = ±pu. The
six traces satisfying the CM equation with q,D and y as above are {±t,±(t+3y)/2,±(t−3y)/2} [32,
§A.14.2.3]. Direct substitution reveals that the only possible trace that gives a group of order
divisible by pu is t. Now, since 2 ∤ #B(Fq) (resp. 3 ∤ #B(Fq)), b cannot be a cube (resp. square) in
Fq; thus, b is precisely one of β or β5, which proves 1. Finally, Claim 5 follows from the respective
group orders and cryptographic exponents of A/Fpu and B/Fq, and Definition 1. ⊓⊔

Example 1 (continued). We continue with p = 1373, u = 2, and the prime q = p2+p+1 = 1886503.
The element β = 3 is primitive in Fq and the curve B/Fq : y

2 = x3+ b with b = β5 = 243 has trace
p+ 2 = 1375 and group order #B(Fq) = p2. In particular, B(Fq) ∼= Zp ×Zp, and the order-p Weil
pairing maps to a subgroup of F×

q .

When q = pu±pu/2+1, there are other ordinary curves B′/Fqv with v ∈ {2, 3, 6} that form cycles
with the A from Section 4, and whose p-torsion only become rational over Fqv . Moreover, they are
also (isomorphic to elliptic curves) of the form y2 = x3 + b, and since they have v > 1, it seems
they would be preferable to the construction of B/Fq above. However, as we show below, these all
correspond to the twists of the B in Proposition 3. From a constructive point of view, this means
that if we were to use any of them to construct a cycle A/Fpu ⇌ B′/Fqv , the p-Weil pairing would
be a map B′(Fqv )[p]×B′(Fqv )[p] → F×

qv , which would seemingly give finite field discrete logarithm

instances in F×
qv . However, an attacker could use the twisting morphism Ψ : B′ → B to instead

work with the p-Weil pairing B(Fq)[p]×B(Fq)[p] → F×
q , and solve discrete logarithms in F×

q . Thus,
in terms of being able to decrease q, we do not gain anything in using one of the twists of B/Fq.

Proposition 4. Let B1/Fq : y
2 = x3 + b be the curve defined by Proposition 3. None of the five

curves Bz/Fq : y
2 = x3 + bz with z ∈ {2, 3, 4, 5, 6} have Fq-rational p-torsion, but are all Fq-

isomorphic to B1. In particular, B4 is Fq2-isomorphic to B1; B3 and B5 are Fq3-isomorphic to B1;
and, B2 and B6 are Fq6-isomorphic to B1.
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Proof. It follows from Silverman [54, Proposition X.5.4] that the curves B1/Fq and B4/Fq are
quadratic twists of one another and are thus isomorphic over Fq2 ; the curves B1/Fq, B3/Fq and
B5/Fq are cubic twists of each other and are thus isomorphic over Fq3 ; and, all six curves Bz/Fq

with z ∈ {1, . . . , 6} are sextic twists of each other and thus become isomorphic over Fq6 . ⊓⊔

Example 1 (continued). Take q = 1886503 and b = 243 as above. The curves Bz/Fq : y
2 = x3 + bz

with z ∈ {1, . . . , 6} are such that B1(Fq) ∼= Z1373×Z1373, B2(Fq) ∼= Z1883757, B3(Fq) ∼= Z2×Z942566,
B4(Fq) ∼= Z1887879, B5(Fq) ∼= Z1889251, and B6(Fq) ∼= Z1374 × Z1374. However, we have B1(Fq2) ∼=
B4(Fq2), B1(Fq3) ∼= B3(Fq3) ∼= B5(Fq3), and Bz(Fq6) ∼= Bz′(Fq6) for all z, z

′ ∈ {1, . . . , 6}.

5.2 B is supersingular and defined over Fq2

We now present the construction for a supersingular elliptic curve B/Fq2 that can be used to form
a cycle with our constructions for A.

Proposition 5. Let p > 3 be a prime and u be an even integer such that q = pu± pu/2+1 is also
prime. The elliptic curve B/Fq2 with trace t = 2q

1. is supersingular;

2. has group structure B(Fq2) ∼= Zpu/2(pu/2±1) × Zpu/2(pu/2±1);

3. has cryptographic exponent cB = 1 with respect to p; and

4. is in a cycle A/Fpu ⇌ B/Fq,
where A/Fpu is the curve from Proposition 1 if q = pu + pu/2 + 1,
and A/Fpu is the curve from Proposition 2 if q = pu − pu/2 + 1.

Proof. Refer to Galbraith [10, Theorem IX.20] for Claims 1, 2 and 3. Claim 4 follows from the
respective group orders and cryptographic exponents of A/Fpu and B/Fq2 , and Definition 1. ⊓⊔

Example 1 (continued). We continue with p = 1373, u = 2, and q = p2+p+1 = 1886503 as above.
Let Fq2 = Fq(ξ) with ξ2 + 1 = 0. On input of Fq2 and t = 2q, Bröker’s algorithm [13] outputs
the supersingular elliptic curve B/Fq2 : y

2 = x3 − (4ξ + 3)x with trace t such that B(Fq2) ∼=
Zp(p+1) × Zp(p+1).

In the supersingular case, a situation arises that is similar to the scenario we discussed at the end
of §5.1 for the ordinary case. In theory, there is nothing preventing us from finding supersingular
curves E/Fqv whose p-torsion is minimally defined over Fqv with v > 2. However, the following
proposition shows that they are Fqv -isogenous to the B/Fq2 in Proposition 5. In other words,
in terms of increasing v to decrease the size of q, there is nothing to be gained by looking for
supersingular curves with v > 2, as it leaves the door open for an attacker that could use the
isogeny to bring the corresponding DLP instances into Fq2 .

Proposition 6. Let q = p2u ± pu + 1 be a prime where p > 3 is also prime, let v be an integer,
and let E/Fqv be a supersingular elliptic curve such that E [p] ⊆ E(Fqv ). Then E is Fqv -isogenous
to B from Proposition 5.

Proof. Theorem 1((iv)) states that t = 0 for odd v, meaning #E(Fqv ) = qv + 1 ≡ 2 mod p, which
precludes E [p] ⊆ E(Fqv ), hence v must be even. The same argument rules out t = 0 for even v
from Theorem 1((iii)). Our choice of q is such that q ≡ 1 mod 3, while rules out t = ±

√
qv for

even v from Theorem 1((ii)). Thus, the only options for even v are t = −2
√
qv and t = 2

√
qv. The

former is again ruled out by E [p] ⊆ E(Fqv ), since #E(Fqv ) ≡ 4 mod p in that case. Thus, it must
be that t = 2qv/2, which (with B/Fq2 as in Proposition 5) is the same trace as B(Fqv ) [9, Corollary
VI.2]. ⊓⊔
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5.3 B is ordinary and defined over Fq3

In this section, we present a construction for an ordinary elliptic curve B/Fq3 that can be used to
form a cycle with A/Fp2 constructed in Proposition 1 (i.e., we fix u = 2).

Due to the Hasse bound, the trace t lies between −2p3 and 2p3. So, to find such a B/Fq3 we set
its trace to be t = t0+ t1p+ t2p

2+ t3p
3, for some unknowns t0, t1, t2 ∈ Z and t3 ∈ {−2,−1, 0, 1, 2}.

Our goal is to find ti ∈ Z such that: (a) p2 | (q3 + 1− t); and (b) the squarefree part of 4q3 − t2 is
small. The former condition ensures that p2 divides #B(Fq3) so that a cycle can be formed with
A, and the latter ensures that the discriminant D of B is small enough that B can be constructed
using the CM method. This leads us to the following proposition.

Proposition 7. Let p ≡ 2 mod 3 be an odd prime such that q = p2 + p + 1 is also prime. The
elliptic curve B/Fq3 with trace t = 2 + 3p ± 3p2 ± 2p3 forms a cycle with A/Fp2 constructed in
Proposition 1. Let 4q3 − t2 = DV 2 with squarefree discriminant D. Then:

1. If t = 2 + 3p+ 3p2 + 2p3, then D is equal to the squarefree part of 3p2 + 2p+ 3.
2. If t = 2 + 3p − 3p2 − 2p3, then D = 3 and B is a cubic twist of the elliptic curve from

Proposition 3.

Proof. Letting (t0, t1) = (2, 3) we get DV 2 = 4q3 − t2 = −p2 · f(p), where

f(p) = (t23 − 4)p4 + (2t2t3 − 12)p3 + (t22 + 6t3 − 24)p2 + (6t2 + 4t3 − 28)p+ 4

ensuring p2 | (q3 + 1− t). If (t2, t3) = (3, 2), we obtain

DV 2 = p2(3p2 + 2p+ 3). (2)

If (t2, t3) = (−3,−2), then DV 2 = 27p2(p+1)2 and so D = 3. This corresponds to one of the cubic
twists in Proposition 4, that is, Fq3-isomorphic to the elliptic curve B/Fq from Proposition 3. ⊓⊔

In the above proposition, we note that if the squarefree part of (3p2+2p+3) is small8, then B/Fq3

with trace t = 2 + 3p+ 3p2 + 2p3 can be constructed using the CM method.

Example 1 (continued). We continue with p = 1373 and q = p2 + p + 1 = 1886503, this time
taking Fq3 = Fq(ξ) with ξ3 = 3. Viewing (2), we see that the squarefree discriminant D is the
squarefree part of 3p2 + 2p + 3, which in this case is D = 1414534. The Hilbert class polynomial
H−4D(x) ∈ Fq2 [x] is H−4D(x) = x720 + 839185x719 + · · ·+ 437552; all 720 of its roots are unique
elements of Fq and again give rise to non-isomorphic options for B. One such instance has j-
invariant j = 1773, a model for which is B : y2 = x3 + 1130838x + 1511330; the trace over Fq3 is
t = 2p3 + 3p2 + 3p + 2 and the group structure is B(Fq3) ∼= Zp × Zp(p2+p+1)(p2+2p+3). Note that
B is minimally defined over Fq, but we do not find points of order p until we consider the group
B(Fq3), where we find B[p] ⊂ B(Fq3).

5.4 B is ordinary and defined over Fqv , v even

We now consider ordinary B defined over even extension fields, i.e., B/Fpv for v even, which will
form a cycle with A/Fp2 constructed in Proposition 1.

First, for simplicity, we fix v = 2 to get an analogous construction as in §5.2 for an ordinary
elliptic curve. We do so by following the method introduced in the previous section. Namely, we
let the trace of B be t = t0 + t1p + t2p

2, for some unknowns t0, t1 ∈ Z and t2 ∈ {−2,−1, 0, 1, 2}
(again by considering the Hasse bound). We want to choose the ti so that: (a) p2 | (q2 + 1 − t);
and (b) 4q2 − t2 has small squarefree part. This is achieved by setting t0 = t1 = 2, and t2 = −2.
Indeed, we obtain

#B(Fq2) = p2(p2 + 2p+ 5) and DV 2 = 16p2(p+ 1). (3)

8In practice, searching for large p such that the squarefree part of 3p2 +2p+3 is small can be done by
using Pell equations; this same issue arises when constructing MNT curves.
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Condition (a) ensures that B/Fp2 will form a cycle with A/Fp2 from Proposition 1. If the squarefree
part of p+ 1 (which corresponds to the discriminant of B) is small, then condition (b) is satisfied
and we can explicitly construct the equation defining B using the CM method.

Example 1 (continued). We continue with p = 1373, q = p2+p+1 = 1886503, and Fq2 = Fq(ξ) with
ξ2 +1 = 0 as above. Viewing (3), we see that the squarefree discriminant D is the squarefree part
of p+1, which in this case is D = p+1 = 1374. The Hilbert class polynomial H−4D(x) ∈ Fq2 [x] is
H−4D(x) = x28+111311x27+· · ·+786521; all 28 of its roots are unique elements of Fq and give rise
to non-isomorphic options for B. One such instance has j-invariant j = 219133, a model for which
is B/Fq2 : y

2 = x3+(808231ξ+52195)x+(1293228ξ+1434207); the trace is t(B) = −2p2+2p+2
and the group structure is B(Fq2) ∼= Z2p × Zp(p2+2p+5)/2. Note that we can always find an elliptic
curve E/Fq with the prescribed j ∈ Fq, but that E(Fq2) may not have the correct group order
from (3); in such cases, we can take B as the quadratic twist of E(Fq2), and in general B will not
be minimally defined over Fq, as we see in the above instance.

Following the case of v = 2, we obtain a construction for general field extensions of even degree
v. We start with a general parameterisation of the trace t as t =

∑v
i=0 tip

i and attempt to find
small integer coefficients ti such that the group order is divisible by p2 and 4qv − t2 = DV 2 as
polynomials in p, where D is at most quadratic in p.

Our first observation is that picking t0 = 2 and t1 = v ensures that p2 | (qv+1−t). This follows
directly from q = p2 + p+ 1 by explicitly computing qv + 1− t = (2− t0) + (v − t1)p+ p2(. . . ) as
a polynomial in p. The following lemma shows how to pick t as a polynomial in p such that D is
the squarefree part of p+ 1 in the norm equation.

Lemma 1. Let p and v be positive integers such that v = 2w is even, and let q = p2 + p + 1. If
t = 2qw−1(−p2 + p+ 1), then

p2 | (qv + 1− t) and 4qv − t2 = 16p2qv−2(p+ 1) = (4pqw−1)2(p+ 1). (4)

Proof. Note that qm = (1 + p+ p2)m ≡ 1 +mp mod p2 for all m ≥ 0. It follows that

qv + 1− t ≡ 1 + vp+ 1− 2qw−1(p+ 1)

≡ 2 + 2wp− 2(1 + (w − 1)p)(p+ 1)

≡ 2 + 2wp− 2(p+ 1)− 2(w − 1)p ≡ 0 mod p2.

Furthermore, it holds that

t− 2qw = 2qw−1(−p2 + p+ 1)− 2qw = 2qw−1(−p2 + p+ 1− q) = −4qw−1p2 and

t+ 2qw = 2qw−1(−p2 + p+ 1) + 2qw = 2qw−1(−p2 + p+ 1 + q) = 4qw−1(p+ 1),

which means that 4qv − t2 = −(t− 2qw)(t+ 2qw) = 16q2w−2p2(p+ 1). ⊓⊔
From this lemma, we immediately obtain the following proposition.

Proposition 8. Let p ≡ 2 mod 3 be an odd prime such that q = p2 + p + 1 is also prime. For
v ∈ 2Z, the elliptic curve B/Fqv with trace t = 2qv/2−1(−p2 + p + 1), forms a cycle with A/Fp2

constructed in Proposition 1. The discriminant D of B is equal to the squarefree part of p+ 1.

To explicitly construct B as in Proposition 8, one can run through integers of the form p =
D(V ′)2 − 1 for feasible CM discriminants D and integers V ′ of the appropriate size such that
p ≡ 2 mod 3 until p is prime. Then 4qv−t2 = DV 2, where V = 4pqv/2−1 ·V ′ according to Lemma 1
and B can be constructed with the CM method via computing the Hilbert class polynomial HD(x)
as described in Section 2.

Remark 1. Note that Lemma 1 is still true if one replaces p by pu/2 for any even u. This also gives
an analog of Proposition 8 showing that cycles between A/Fpu and B/Fqv exist for any u ∈ 2+4Z
and v ∈ 2Z. However, the CM discriminant of B will be the squarefree part of pu/2 + 1. Even for
the smallest possible u larger than 2, which is u = 6, we have not yet found a way to guarantee
for p of cryptographic size that the squarefree part of p3 + 1 is small enough for the CM method
to be feasible. Therefore, we were not able to explicitly construct the corresponding B for values
other than u = 2.
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6 A is a supersingular abelian surface

We now return to constructingA’s that can be paired with the curves B constructed in the previous
section. In this section, we fix the dimension of A to be 2, i.e., A is an abelian surface. In §6.1 and
§6.2 we present A with cryptographic exponent cA = 3 and 6 by considering A/Fpu with group
order p2u ± pu + 1, respectively.

6.1 A has cryptographic exponent 3

Proposition 9. Let p ≡ 2 mod 3 be an odd prime and u be an odd integer such that q = p2u+pu+1
is also prime. There exists a simple abelian surface A/Fpu such that:

1. A is supersingular;
2. the characteristic polynomial of the pu-power Frobenius endomorphism on A is

P (x) = x4 + pux2 + p2u;

3. #A(Fpu) = q;
4. A has cryptographic exponent cA = 3 with respect to q;
5. A is (principally polarized as) the Jacobian of some twist of the curve C′/Fpu : y2 = x6 + 1;

and
6. A(Fpu) forms a cycle A ⇌ B, with the ordinary elliptic curve B/Fq from Proposition 3, or

with the supersingular elliptic curve B/Fq2 from Proposition 5.

Proof. Claims 1 and 2 are due to Maisner and Nart—see [43, Corollary 2.11] and [43, Theorem 2.9],
respectively. Claim 3 follows from #A = P (1), and Claim 4 follows from P (1) being Φ3(p), i.e., the
third cyclotomic polynomial evaluated at p. Claim 5 is due to Howe, Nart and Ritzenthaler [36,
pp. 282–283]. Finally, Claim 6 follows from Claim 3 and Propositions 3 and 5, together with
Definition 1. ⊓⊔

Example 1 (continued). We continue with p = 1373 and take u = 1 so q = p2 + p+ 1 = 1886503.
The curve C/Fp : y

2 = x6+733x5+900x4+1052x3+393x2+901x+1332 is a twist of C′/Fp : y
2 =

x6 + 1. The characteristic polynomial of the p-power Frobenius endomorphism on A = JC is
P (x) = x4 + 1373x2 + 13732 and #A(Fp) = 1886503. The order-q Weil pairing on A maps to a
subgroup of F×

p3 .

6.2 A has cryptographic exponent 6

Proposition 10. Let p ≡ 5 mod 12 be an odd prime and u be an even integer such that q =
p2u − pu + 1 is also prime. There exists a simple abelian surface A/Fpu such that:

1. A is supersingular;
2. the characteristic polynomial of the pu-power Frobenius endomorphism on A is

P (x) = x4 − pux2 + p2u;

3. #A(Fpu) = q;
4. A has cryptographic exponent cA = 6 with respect to q;
5. A is Fpu-isogenous to the Jacobian of a twist of E × E, where E/Fp : y

2 = x3 + 1; and,
6. A(Fpu) forms a cycle A ⇌ B, with the ordinary elliptic curve B/Fq from Proposition 3, or

with the supersingular elliptic curve B/Fq2 from Proposition 5.

Proof. Claims 1 and 2 are again due to Maisner and Nart—see [43, Corollary 2.11] and [43,
Theorem 2.9], respectively. Claim 3 follows from #A = P (1), and Claim 4 follows from P (1) being
Φ6(p), i.e., the sixth cyclotomic polynomial evaluated at p. Claim 5 is due to Howe, Nart and
Ritzenthaler—see the proof of [36, Proposition 13.4]. Finally, Claim 6 follows from Claim 3 and
Propositions 3 and 5, together with Definition 1. ⊓⊔
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7 A is a trace-zero subvariety

Our final construction exploits the theorem of Rubin and Silverberg [49], given in Theorem 3.
We take the supersingular elliptic curve E/Fpu considered in Proposition 1, and consider E over
Fpur for r a power of 2. Using Weil restriction, we can construct an abelian variety A/Fpu of
dimension g = r/2 with cryptographic exponent cA = 3 · 2g−1. By increasing the dimension of A,
we obtain an arbitrarily large cryptographic exponent cA. This will, however, come at the cost
of more expensive arithmetic for higher dimensional varieties. The upside is that we can identify
A/Fpu with a subgroup of E(Fpur ): the trace-zero subvariety9. Thus, all arithmetic can instead be
performed in this subgroup, rather than on a g-dimensional abelian variety. This result is given
in Theorem 4. In §7.2 we provide several examples for cryptographic sized p constructed using
Theorem 4 and draw some comparisons with the MNT cycle.

7.1 Applying the theorem of Rubin and Silverberg

In the statement of the theorem below we start with E/Fpu as the curve from Proposition 1.
However, we no longer need to insist that q = #E(Fpu) is prime; this was done so that the curve
in Proposition 1 could form a cycle with subsequent constructions of B/Fqv . Instead, we will be
insisting that q = P (1) is prime, where P (x) is given in item 2 of the theorem that follows.

Theorem 4. Let E/Fpu be the elliptic curve in Proposition 1 and let r = 2g where g = 2ℓ with
ℓ ≥ 0. Then there is a supersingular abelian variety A/Fpu such that

1. dim(A) = g;
2. the characteristic polynomial of the Frobenius endomorphism of A is

P (x) = xug − pug/2xug/2 + pug;

3. the cryptographic exponent is cA = 3 · 2g−1;
4. there is a natural identification of A(Fpu) with the subgroup of E(Fpur )

T 0
r = {Q ∈ E(Fpur ) : TrFpur/Fpug (Q) = O}.

Furthemore, if q = P (1) is prime, then in the sense of Definition 1, A(Fpu) forms a cycle A ⇌ B,
with the ordinary elliptic curve B/Fq from Proposition 3, or with the supersingular elliptic curve
B/Fq2 from Proposition 5 (where u is replaced with u · g in the statement of both propositions).

Proof. The curve E/Fpu from Proposition 1 has cE = 3/2, so gcd(r, 2pcE) = gcd(r, 3p) = 1 as re-
quired to apply Theorem 3 since r = 2ℓ+1. Then, Claims 1, 3 and 4 follow from Theorem 3 (i), (iii),
and (iv) respectively. For Claim 2, π is a pu-Weil number for E and satisfies the characteristic poly-
nomial PE(x) = xu+pu/2xu/2+pu and ζ is a primitive r-th root of unity, where r = 2g and g = 2ℓ,
meaning ζ satisfies xg+1 = 0. Theorem 3(ii) says ζπ is a pu-number for A, the minimal polynomial
for which is P (x) = xug − pug/2xug/2 + pug. Finally, A ⇌ B follows immediately from q = P (1)
and Theorem 2(iv). ⊓⊔

Example 1 (continued). Recall (from the example corresponding to Proposition 1) that p = 1373,
u = 2, Fp2 = Fp(λ) with λ

2 = 2, and E/Fp2 : y2 = x3 + (λ+ 12). We will illustrate Theorem 4 for
ℓ = 2, which gives g = 4 and r = 8, soA/Fp2 is identified with T 0

8 = {Q ∈ E(Fp16) : TrFp16/Fp8
(Q) =

O}. Now, #E(Fp16) = (p8 + p4 + 1)(p8 − p4 + 1), and #T 0
8 = P (1) = p8 − p4 + 1, so A/Fp2 is an

abelian variety of dimension g = 4 identified with the order-(p8−p4+1) subgroup of E(Fp16). Here
q = P (1) = 12628864335241435950636241 is prime, so taking β = 11 as the primitive element of
Fq, from Proposition 3 we get the ordinary curve B/Fq : y

2 = x3 + β5, which has group structure
B(Fq) ∼= Zp4 × Zp4 and we have the cycle

A/Fp2 ⇌ B/Fq.

9Trace-zero varieties were first suggested for use in cryptography by Frey [20].
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Here cA = 24, so the order-q Weil pairing on A maps to F×
p48 , and cB = 1, so the order-p Weil

pairing on B maps to F×
q . Alternatively, we can take the supersingular B from Proposition 5. Let

Fq2 = Fq(ξ) with ξ2 + 11 = 0. On input of the trace t = 2q, Bröker’s algorithm [13] outputs the
supersingular curve B/Fq2 : y

2 = x3 + ax+ b with

a = 7556923987885274573241445 · ξ + 6346076494481973586254723,

b = 7284530327753877594920076 · ξ + 381309141309952853306290,

which has group structure B(Fq2) ∼= Zp4(p4−1) × Zp4(p4−1), and gives rise to the cycle

A/Fp2 ⇌ B/Fq2 .

The order-p Weil pairing on B maps to F×
q2 .

7.2 Cryptographic examples

We now illustrate Theorem 4 by presenting some examples of cryptographic size. In line with the
discussions in Section 1, we draw comparisons to the MNT cycle merely to illustrate the potential
of using higher dimensional varieties and the relaxations in Definition 1 in terms of achieving
smaller sizes of p. In particular, we do not claim that any cycle given in this paper will outperform
an MNT cycle at the same security level for a given SNARK construction.

We give two examples at the 80- and 112-bit security levels and three examples at the 128-bit
security level. These are summarised and presented alongside the three cycles of MNT curves in
Table 1 below. The smaller MNT cycles are from the original paper on cycles by Ben-Sasson,
Chiesa, Tromer and Virza [6] and the 128-bit example is due to Guillevic [33]. We note that
drawing comparisons at these lower security levels is not as favourable to our construction as
higher security levels would be: the sizes of p and q in the MNT cycle necessarily grow linearly with
the size of the extension fields required to resist (subexponential) attacks in F×

p4 . One drawback
of our construction is that cB = 1 forces q to grow linearly with the sizes of the extension fields as
well, but as we discussed in Sections 1 and 3, this is a consequence of the restrictions we imposed
in this paper (in particular, §3.1,4). On the other hand, our construction affords us to choose p
as small as possible at a given security level, i.e., based on the complexity of the generic Pollard-ρ
attack, as can be seen in Cycles 1, 2, 3, 5 and 7.

At each of the three security levels, we found the example cycles summarised in Table 1 subject
to the following two constraints: (1) we ensured that the smallest of the two extension fields Fpu·cA

and Fqv·cB in our construction was no smaller than the smallest extension field in the corresponding
MNT construction; and, (2) we wanted the bitlength of p (our smallest prime) to be at least twice
the security parameter in order to meet the requisite ECDLP security. In all cases, once the
bitlength l of p was determined, we searched backwards from 2l − 1 until we found the first prime
p ≡ 2 mod 3 such that q = pu ± pu/2 + 1 was also prime. An alternative set of primes that give
identical constructions but maximise the 2-adicity of p− 1 and q − 1 are given in §8.4.

The bold numbers in Table 1 indicate when the size of p in our construction is less than the
sizes of the primes in the corresponding MNT construction. Cycle 7 shows the optimal scenario
where the bitlength of our p is twice the security level and A’s field of definition is Fp2 , which itself
is signifcantly smaller than the sizes of p and q in the MNT construction. Of course, in this case
A has dimension g = 4, meaning that arithmetic is much more complex than on its dimension-1
counterparts. However, in the next section we cite a number of optimisations that significantly
accelerate arithmetic on A.

For each cycle, we provide Magma and Sage code that verifies all parameters. This can be found
at

https://github.com/craigcostello/pairing-friendly-cycles.

17

https://github.com/craigcostello/pairing-friendly-cycles


Table 1. A summary of some examples of our construction together alongside three instantiations of the
MNT cycle found in the literature. Further explanation in text.

target MNT cycle this work

security ref. p q pk qk
′

ref. dim(A) p pu q (pu)cA qv

80 [6] 298 298 1192 1788
Cycle 1 1 160 640 640 1920 1280
Cycle 2 2 160 320 640 1920 1280

112 [6] 753 753 3012 4517
Cycle 3 1 224 1792 1792 5376 3584
Cycle 4 2 377 754 1508 4512 3012

128 [33] 992 992 3966 5948
Cycle 5 1 256 2048 2048 6144 4096
Cycle 6 2 512 1024 2048 6144 4096
Cycle 7 4 256 512 2048 12288 4096

Cycle 1 Let p = 2160−44159, Fp2 = Fp(λ) with λ
2 = 3 and Fp4 = Fp2(µ) with µ2 = λ. Following

Proposition 1, the curve A/Fp4 : y2 = x3 + α with α = λ + µ is such that #A(Fp4) = q, where
q = p4 − p2 + 1 is 640 bits. Let Fq2 = Fq(ξ) with ξ2 + 5 = 0. Following Proposition 5, Bröker’s
algorithm outputs a supersingular curve B/Fq2 : y

2 = x3+ax+b with a, b ∈ Fq2 \Fq and j(B) ∈ Fq

whose group structure is B(Fq2) = Zp2(p2−1) ×Zp2(p2−1). The parameters a, b and j are in the file

cycle1.m. Here cA = 3 and cB = 1: the q-Weil pairing on A/Fp4 maps into the 1920-bit field F×
p12 ,

and the p-Weil pairing on B/Fq2 maps into the 1280-bit field F×
q2 .

Cycle 2 Let p, Fp2 , q, Fq2 and B/Fq2 be as in Cycle 1. Following Proposition 1, E/Fp2 : y2 = x3+α
with α = λ + 3 is such that #E(Fp2) = p2 + p + 1. Setting g = dim(A) = 2 gives r = 4, so from
Theorem 4 we identify A/Fp2 with

T 0
4 = {Q ∈ E(Fp8) : TrFp8/Fp4

(Q) = O},

i.e., T 0
4 corresponds to the points of order q in E(Fp8), whose cardinality is #E(Fp8) = q·(p4+p2+1).

As in Cycle 1, the q-Weil pairing on A/Fp2 maps into the 1920-bit field F×
p12 , and the p-Weil pairing

on B/Fq2 maps into the 1280-bit field F×
q2 .

Cycle 3 Let p = 2224 − 44159, Fp2 = Fp(λ) with λ2 = 2, Fp4 = Fp2(µ) with µ2 = λ, and
Fp8 = Fp4(ν) with ν2 = µ. Following Proposition 2, the curveA/Fp8 : y2 = x3+α with α = λ+µ+ν
is such that #A(Fp8) = q, where q = p8 − p4 + 1 is 1792 bits. Let Fq2 = Fq(ξ) with ξ

2 + 13 = 0.
Following Proposition 5, Bröker’s algorithm outputs a supersingular curve B/Fq2 : y

2 = x3+ax+b
with a, b ∈ Fq2 \ Fq and j(B) ∈ Fq whose group structure is B(Fq2) = Zp4(p4−1) × Zp4(p4−1). The
parameters a, b and j are in the file cycle3.m. Here cA = 3 and cB = 1: the q-Weil pairing on
A/Fp8 maps into the 5376-bit field F×

p12 , and the p-Weil pairing on B/Fq2 maps into the 3584-bit

field F×
q2 .

Cycle 4 Let p = 2377 − 12351, Fp2 = Fp(λ) with λ2 = 3. Following Proposition 1, E/Fp2 : y2 =
x3 + α with α = λ+ 6 is such that #E(Fp2) = p2 + p+ 1. Setting g = dim(A) = 2 gives r = 4, so
from Theorem 4 we identify A/Fp2 with

T 0
4 = {Q ∈ E(Fp8) : TrFp8/Fp4

(Q) = O},

i.e., T 0
4 corresponds to the points of order q = p4 − p2 + 1 in E(Fp8), whose order is #E(Fp8) =

q · (p4 + p2 + 1). Let Fq2 = Fq(ξ) with ξ2 + 11 = 0. Following Proposition 5, Bröker’s algorithm
outputs a supersingular curve B/Fq2 : y

2 = x3 + ax + b with a, b ∈ Fq2 \ Fq and j(B) ∈ Fq

whose group structure is B(Fq2) = Zp2(p2−1) ×Zp2(p2−1). The parameters a, b and j are in the file

cycle4.m. Here cA = 6 and cB = 1: the q-Weil pairing on A/Fp2 maps into the 4512-bit field F×
p12 ,

and the p-Weil pairing on B/Fq2 maps into the 3012-bit field F×
q2 .

18



Cycle 5 Let p = 2256 − 6539, Fp2 = Fp(λ) with λ2 = 2, Fp4 = Fp2(µ) with µ2 = i, and Fp8 =
Fp4(ν) with ν2 = µ. Following Proposition 1, the curve A/Fp8 : y2 = x3+α with α = λ+ν is such
that #A(Fp8) = q, where q = p8−p4+1. Let Fq2 = Fq(ξ) with ξ

2+11 = 0. Following Proposition 5,
Bröker’s algorithm outputs a supersingular curve B/Fq2 : y

2 = x3+ ax+ b with a, b ∈ Fq2 \Fq and
j(B) ∈ Fq whose group structure is B(Fq2) = Zp4(p4−1) ×Zp4(p4−1). The parameters a, b and j are
in the file cycle5.m. Here cA = 3 and cB = 1: the q-Weil pairing on A/Fp8 maps into the 6144-bit
field F×

p24 , and the p-Weil pairing on B/Fq2 maps into the 4096-bit field F×
q2 .

Cycle 6 Let p = 2512 − 258887, Fp2 = Fp(λ) with λ
2 = 3. Following Proposition 1, E/Fp2 : y2 =

x3 + α with α = λ+ 3 is such that #E(Fp2) = p2 + p+ 1. Setting g = dim(A) = 2 gives r = 4, so
from Theorem 4 we identify A/Fp2 with

T 0
4 = {Q ∈ E(Fp8) : TrFp8/Fp4

(Q) = O},

i.e., T 0
4 corresponds to the points of order q = p4 − p2 + 1 in E(Fp8), whose order is #E(Fp8) =

q·(p4+p2+1). Let Fq2 = Fq(ξ) with ξ
2+7 = 0. Following Proposition 5, Bröker’s algorithm outputs

a supersingular curve B/Fq2 : y
2 = x3 + ax + b with a, b ∈ Fq2 \ Fq and j(B) ∈ Fq whose group

structure is B(Fq2) = Zp2(p2−1) × Zp2(p2−1). The parameters a, b and j are in the file cycle6.m.

Here cA = 6 and cB = 1: the q-Weil pairing on A/Fp4 maps into the 6144-bit field F×
p24 , and the

p-Weil pairing on B/Fq2 maps into the 4096-bit field F×
q2 .

Cycle 7 Let p, Fp2 , q, Fq2 and B/Fq2 be as in Cycle 5. Following Proposition 1, E/Fp2 : y2 = x3+α
with α = λ + 4 is such that #E(Fp2) = p2 + p + 1. Setting g = dim(A) = 4 gives r = 8, so from
Theorem 4 we identify A/Fp2 with

T 0
8 = {Q ∈ E(Fp16) : TrFp16/Fp8

(Q) = O},

, T 0
4 corresponds to the points of order q in E(Fp16), whose order is #E(Fp16) = q · (p8 + p4 + 1).

Here cA = 24 and cB = 1: the q-Weil pairing on A/Fp2 maps into the 12288-bit field F×
p48 , and the

p-Weil pairing on B/Fq2 maps into the 4096-bit field F×
q2 .

8 Hashing, group exponentiations, and pairing computations

Instantiating an efficient pairing-based cryptosystem typically requires much more than optimising
the pairing e : G1×G2 → GT itself. In most applications it is also desirable to be able to efficiently
hash into (or randomly sample elements from) either or both of the groups G1 and G2, as well as
being able to perform fast group exponentiations in some or all of G1, G2 and GT . In the case of
modern SNARK constructions, there is also the core operation of efficiently computing enormous
multiscalar multiplications in G1 and G2; these routines typically take many (e.g. thousands or
millions of) curve points Pi and scalars ni, and output the point

∑
i[ni]Pi. Furthermore, in the

case of pairing-friendly cycles, we now have six groups to consider: the three pairing groups GA
1 ,

GA
2 and GA

T corresponding to A, as well as the three groups GB
1 , GB

2 and GB
T corresponding to B.

In this section we discuss efficiently hashing to, exponentiating in, and computing pairings
between these six groups in the framework of our construction. In particular, we focus on these
computations in the context of Theorem 4, since these constructions are of the most practical
interest. Thus, throughout this section A/Fpu is a dimension-g abelian variety, which we identify
with a subgroup of E(Fp2ug ) where E is an elliptic curve defined over Fpu (as defined in Theorem 4),
and B is the supersingular elliptic curve from Proposition 5 defined over Fq2 .

We note that this section is not intended to present any novel optimisations and, as such,
we will not dig into the finer details of all of these computations. Instead, we aim to point im-
plementers to the related literature in order to highlight the unique options that correspond to
our construction. In comparison to the MNT cycle, where the available optimisations are rather
limited, our construction can exploit a variety of tricks from the existing literature on optimised
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pairing-based protocols. We do not intend to claim that any of our observations are the most
efficient algorithms for these operations, but merely wish to show the myriad of optimisations that
can be applied in our setting. Implementers wishing to experiment with our constructions may be
pleased to read the following remark.

Remark 2 (Elliptic curve arithmetic only). Although Theorem 4 can be used to produce an abelian
variety A of dimension g = 2ℓ for any ℓ ≥ 0, we re-emphasise that all of the arithmetic is
implementable as elliptic curve arithmetic. Even in the case of the two propositions involving
abelian surfaces in Section 6, we note that both of these constructions can be recast as invocations
of Theorem 4, and that elliptic curve arithmetic can be used in place of genus 2 arithmetic there
as well.

8.1 Efficient group exponentiations

We first point out that producing a cycle A ⇌ B by combining an A from Theorem 4 with a B
from Proposition 5 typically produces GA

1 , GA
2 , GB

1 and GB
2 as prime order subgroups of a larger

group whose cardinality is divisible by 4. Thus, the twisted Edwards [7] and/or Montgomery [46]
models can be used in order to exploit efficient curve arithmetic in all of these groups.

Exponentiations in GA
1 . Let π be the pu-power Frobenius map on elliptic curve E/Fpu . Then

πi for 1 ≤ i ≤ r− 1 can be used to accelerate (multi)scalar multiplications in GA
1 ⊂ E(Fpur ) using

the techniques by Galbraith and Scott [25], and Scott et al. [52, §3]. It may also be helpful to
additionally incorporate the endomorphism ϕ : E → E , (x, y) 7→ (ξx, y) where ξ is a non-trivial
cube root of unity in Fp2 [23, §4].

Exponentiations in GA
2 . The same speedups will work in GA

2 ⊂ E(FpurcA ), but larger cA
allows even more powers of π to be exploited. Furthermore, since E/Fpu has j-invariant j = 0
and cA = 3 · 2g−1, when g > 1 the sextic twist from [54, Proposition X.5.4] will be available to
transport operations in G2 into a subfield whose degree is a factor 6 smaller.

Exponentiations in GB
1 and GB

2 . In the context of our constructions, Bröker’s algorithm outputs
a supersingular curve B that is minimally defined over Fq2 . However, it is typically produced by
starting with a curve B′/Fq that is lifted to B′(Fq2), and then taking B as the quadratic twist of
B′ over Fq2—see [13, §3]. This means both GB

1 and GB
2 can both exploit the Galbraith-Lin-Scott

(GLS) endomorphism in [23, Theorem 2].

Exponentiations in GA
T and GB

T . Elements in GA
T and GB

T lie in the “cyclotomic groups” of
the extension fields Fpu·cA and Fqv·cB , so can use the respective Frobenius operations to speed up
group exponentiations—see the works by Stam and Lenstra [56] and Galbraith and Scott [25].

8.2 Hashing

The first step in hashing to both the A and B groups involves taking a random point on the respec-
tive varieties. In their seminal paper [11], Boneh and Franklin described an efficient MapToPoint
algorithm that can produce uniform points on the curve E/Fp : y

2 = x3 + 1 with p ≡ 2 mod 3 by
taking y0 as a random element of Fp (via a presumably uniform hash function H : {0, 1}∗ → Fp),
then computing the point Q = (x0, y0) = ((y20 − 1)1/3, y0), before outputting the image Q′ = [h]Q
of a cofactor multiplication. This hashing is made easy by virtue of the fact that the cube root
function f : Fp → Fp, x 7→ x1/3 is a bijection.

In our case we also have p ≡ 2 mod 3, but our supersingular curves are defined over Fp2 , where
the cube root function is unfortunately no longer a bijection. Thus, we are also faced with the same
hashing difficulties that typical ordinary curves have, which is the uniform sampling of random
points on E . The literature on this specific issue is vast in and of itself, so below we simply focus
on the subsequent hashing step of performing the cofactor multiplication efficiently.
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Hashing to GA
1 and GA

2 . Recall from Section 7 that GA
1 is the set of points of order q =

(pug−pug/2+1) in E(Fpur ), which can be obtained by a scalar multiplication of a random point in
E(Fpur ) by the cofactor h = (pug+pug/2+1). These special types of cofactors can exploit additional
tricks related to Frobenius endomorphisms—see [52]. In the context of SNARK constructions, it
may also be convenient to exploit a distortion map between GA

1 and GA
2 . For example, the curve

E/Fp2 : y2 = x3 + α with α ∈ Fp2 \ Fp in Proposition 2 has a convenient distortion map—see [38,
Table 1]. Alternatively, hashing to GA

2 can be performed via a larger cofactor multiplication, which
can exploit the same tricks (as well as the sextic twist we touched on in §8.1).

Hashing to GB
1 and GB

2 . The techniques in [52] are unlikely to be as useful for cofactor mul-
tiplications on B, but the GLS endomorphism can be used to accelerate cofactor multiplications
in exactly the same way as it was described in §8.1. Again, there are distortion maps available
between GB

1 and GB
2 [62, Theorem 5] that may be useful in a given SNARK construction. If not,

then the fact that all of the p-torsion on B is minimally defined over Fq2 might make it difficult
to hash into the same specific order-p subgroups via a cofactor multiplication.

8.3 Pairing computation

As we discussed in §3.2, the earliest instantiations of bilinear pairings used supersingular curves.
Thus, there is a vast amount of literature dedicated to optimising such pairings. In the case
of our constructions, there are subtle differences that may prevent a trivial adoption of these
optimisations, but nevertheless the main ideas can still be applied to accelerate the pairings on
both A and B.

Efficient pairings on A. Let E and A be as in Theorem 4. (In the case where E is instead the
curve in Proposition 2, see the fast pairing techniques in [59].) Together with γ : (x, y) 7→ (ξx,−y),
which has order 6 in Aut(E), and a distortion map ψ, the variety A satisfies the conditions in [2,
Theorem 1], meaning that the ηT pairing can be applied. Moreover, when g > 1, the sextic twist
mentioned in §8.1 will help accelerate the pairing. Finally, the pu-power Frobenius map can be
used to accelerate the final exponentiation using the techniques in [25,53].

Efficient pairings on B. The ηT pairing can be invoked on B by combining the GLS endomor-
phism with a distortion map under the conditions in [2, Theorem 1], but the automorphism group
of B will be smaller which means the loop shortening factor will not be as large as for A.

8.4 Other optimisations

Compression. Depending on the SNARK construction and on the target application, it may
be desirable to exploit the compression and decompression techniques that Rubin and Silverberg
gave for the trace zero varieties we exploited in this paper—see [50, §10-11].

2-adicity. For efficiency reasons, it is desirable for pairing-based SNARKs to work with (sub)groups
of prime order r such that r − 1 is divisible by a large power of 2—see [6, §3.2]. In the context of
cycles, this means we would like both p and q to be such that 2e | p − 1 and 2e

′ | q − 1. In the
case of the MNT cycle for which p and q come as the solutions of Pell equations, it is difficult to
obtain large 2-adicity for primes of a prescribed bitlength—see [33] and the examples in [6, §3.2].

In the case of our constructions where suitable primes are plentiful, one can search for primes of
a given bitlength with very large 2-adicity. Recall that the examples in §7.2 searched for the largest
primes p of a prescribed bitlength ℓ such that q = pu − pu/2 + 1 is also prime; this was done to
illustrate how quickly a suitable prime p = 2ℓ−m is found by showing how smallm is. Alternatively,
we could substitute in the following primes that were found in a modified search that maximises
the 2-adicity subject to the prescribed bit length. Note that in our constructions the 2-adicity of
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q−1 is always guaranteed to be larger than that of p−1, since q−1 = pu−pu/2 = pu/2(pu/2−1),
meaning that 2(p − 1) | q − 1. Let v2(x) be the largest power of 2 dividing x. The 160-bit prime
in Cycles 1 and 2 could be replaced with the 160-bit prime p = 2144 · 39991 + 1, which gives
v2(p − 1) = 144 and v2(q − 1) = 145. The 224-bit prime in Cycle 3 could be replaced with the
224-bit prime p = 2208 · 36841 + 1, which gives v2(p − 1) = 208 and v2(q − 1) = 210. The 377-
bit prime in Cycle 4 could be replaced with the 377-bit prime p = 2361 · 34631 + 1, which gives
v2(p − 1) = 361 and v2(q − 1) = 362. The 256-bit prime in Cycle 5 could be replaced with the
256-bit prime p = 2241 · 27101 + 1, which gives v2(p − 1) = 241 and v2(q − 1) = 243. And, the
512-bit prime in Cycles 6 and 7 could be replaced with the 512-bit prime p = 2494 · 174475 + 1,
which gives v2(p− 1) = 494 and v2(q − 1) = 495.

Pairing-based SNARKs that benefit from 2-adicity typically only need powers of 2 that are
far smaller than those we can obtain above. Once that threshold has been met, extra 2-adicity
does not give additional benefits and is therefore overkill. Thus, in practice one would be able to
combine the requisite 2-adicity with other desirable properties of the target primes, e.g. primes
that offer fast field arithmetic.
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References

1. D. F. Aranha, Y. El Housni, and A. Guillevic. A survey of elliptic curves for proof systems. Designs,
Codes and Cryptography, pages 1–46, 2022.

2. P. S. L. M. Barreto, S. D. Galbraith, C. O’hEigeartaigh, and M. Scott. Efficient pairing computation
on supersingular abelian varieties. Des. Codes Cryptogr., 42(3):239–271, 2007.

3. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with prescribed embedding
degrees. In SCN 2002, volume 2576 of LNCS, pages 257–267. Springer, 2002.

4. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In SAC 2005,
volume 3897 of LNCS, pages 319–331. Springer, 2005.
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