
Loquat: A SNARK-Friendly Post-Quantum
Signature based on the Legendre PRF with

Applications in Ring and Aggregate Signatures

Xinyu Zhang1,2, Ron Steinfeld1, Muhammed F. Esgin1, Joseph K. Liu1,
Dongxi Liu2, and Sushmita Ruj3

1 Monash University, Melbourne, Australia
{Xinyu.Zhang1,Ron.Steinfeld,Muhammed.Esgin,Joseph.Liu}@monash.edu

2 Data61, CSIRO, Sydney, Australia
Dongxi.Liu@csiro.au

3 University of New South Wales
Sushmita.Ruj@unsw.edu

Abstract. We design and implement a novel post-quantum signature
scheme based on the Legendre PRF, named Loquat. Prior to this work,
efficient approaches for constructing post-quantum signatures with com-
parable security assumptions mainly used the MPC-in-the-head paradigm
or hash trees. Our method departs from these paradigms and, notably,
is SNARK-friendly, a feature not commonly found in earlier designs.
Loquat requires significantly fewer computational operations for verifi-
cation than other symmetric-key-based post-quantum signature schemes
that support stateless many-time signing. Notably, the performance of
Loquat remains practical even when employing algebraic hash func-
tions. Our Python-based implementations of Loquat demonstrate a sig-
nature size of 46KB, with a signing time of 5.04 seconds and a verifica-
tion time of merely 0.21 seconds. Instantiating the random oracle with
an algebraic hash function results in the R1CS constraints for signature
verification being about 148K, 7 to 175 times smaller than those required
for state-of-the-art MPC-in-the-head-based signatures and 3 to 9 times
less than those for SPHINCS+ [Bernstein et al. CCS’19].
We explore two applications of Loquat. First, we incorporate it into
the ID-based ring signature scheme [Buser et al. ACNS’22], achieving a
significant reduction in signature size from 1.9 MB to 0.9 MB with state-
less signing and practical master key generation. Our second application
presents a SNARK-based aggregate signature scheme. We use the imple-
mentations of Aurora [Ben-Sasson et al. EC’19] and Fractal [Chiesa et al.
EC’20] to benchmark our aggregate signature’s performance. Our find-
ings show that aggregating 32 Loquat signatures using Aurora results in
a proving time of about 7 minutes, a verification time of 66 seconds, and
an aggregate signature size of 197 KB. Furthermore, by leveraging the
recursive proof composition feature of Fractal, we achieve an aggregate
signature with a constant size of 145 KB, illustrating Loquat’s potential
for scalability in cryptographic applications.

Keywords: Post-Quantum Signature · Legendre PRF · SNARK · Ag-
gregate Signature · ID-Based Ring Signature

1 Introduction

In the last decade, the increasing computational feasibility of quantum com-
puting infrastructures, including quantum as a service (QaaS), has rejuvenated
the cryptographic community’s concern about the threats raised by quantum-
enabled algorithms, notably Shor’s polynomial-time quantum algorithm for fac-
toring and computing discrete logarithms [61]. In late 2016, NIST announced a
process to select quantum-resistant public key cryptographic alternatives whose
security would not be undermined by quantum computers. Among the options
considered by the community and stakeholders is the use of symmetric-key prim-
itives as building blocks. Existing signature schemes based on symmetric-key
primitives can be categorized into one of two paradigms: hash-based signatures
[52, 22, 44, 13, 14] or MPC-in-the-head-based signatures [25, 49, 45, 59, 6, 16, 58,
30]. Compared to post-quantum digital signatures derived from lattice cryptog-
raphy [31, 56], the majority of the previously mentioned signatures exhibit larger
sizes and longer running times. However, symmetric-key-based approaches con-
tinue to be regarded as crucial, given the necessity of developing post-quantum
cryptographic primitives using a diverse range of mathematical assumptions.

The advent of practical Succinct Non-Interactive Argument of Knowledge
(SNARK) protocols shows a new direction for constructing advanced crypto-
graphic primitives with post-quantum security, including ring signatures [23] and
aggregate signatures [50]. In these schemes, the validity of signatures is proven
by a SNARK protocol, which requires converting the signature verification al-
gorithm into a language recognizable by SNARKs, such as Rank-1 Constraint
System (R1CS). Consequently, the efficiency of these primitives is closely linked
to the complexity of constraint systems. Despite the surge in research aimed at
enhancing the performance of post-quantum ring and aggregate signatures, the
area of SNARK-friendly signatures remains comparatively undeveloped. This
gap serves as a key motivator for our research, which is dedicated to develop-
ing a post-quantum signature scheme that relies on symmetric-key primitives
based security assumptions and is inherently SNARK-compatible (i.e., can be
efficiently proven by SNARKs).

1.1 Challenges of Enabling SNARK-Compatibility using
Symmetric-Key Primitives

Hash-based Paradigm. The construction of hash-based signature schemes can
be traced back to the late 1970s, when Lamport [52] proposed the first hash-
based one-time signature (OTS). To increase the signing capacity, an OTS can
be combined with a Merkle tree [55] to obtain a hash-based many-time signature
(MTS). Such constructions, culminating in XMSS [22] and its multi-tree variant
[44], are quite efficient with minimal security assumptions. Nonetheless, signa-
ture schemes like XMSS suffer from stateful signing (i.e., the signer must store
the used one-time secret keys somewhere and ensure they are never reused). In
order to eliminate the statefulness, Bernstein et al. proposed SPHINCS [13] and

2

SPHINCS+ [14], which incorporated hash-based few-time signatures (FTS) into
a hyper-tree (a tree of Merkle trees).

Signature verification in hash-based schemes typically involves a large number
of hash function evaluations. Using a standard hash function such as SHA-256
tends to impose a substantial number of R1CS constraints (approximately 27,000
per hash evaluation). To address this issue, it becomes necessary to explore
algebraic alternatives such as Poseidon [41], Rescue-prime [62], or Griffin [39].
Unfortunately, despite the optimized R1CS efficiency, algebraic hash functions
suffer from slow performance when implemented in native computations.4

Concretely, the SageMath implementation of Griffin exhibits a running time
of 7 ms per permutation for an input size of 64 bytes, while the Python im-
plementation of SHA-256 runs in just 0.034 ms for the same input size. The
performance gap stems from the fact that the round function in algebraic hash
utilizes finite field multiplications, which require hundreds of CPU cycles, in
contrast to the bit operations employed by traditional hash functions. Replacing
the standard hash with an R1CS-friendly hash would result in impractical key
generation and/or signing time for hash-based MTS schemes, including XMSS,
SPHINCS, and SPHINCS+, due to the performance loss.

It is worth noting that the performance degradation caused by using alge-
braic hash functions is present in all signature schemes, including MPCitH-based
schemes and our scheme. However, the impact on signing and/or key generation
runtimes is more pronounced in hash-based schemes, as they typically require
considerably more hash evaluations compared to schemes constructed with other
paradigms.

MPC-in-the-Head based Paradigm. MPCitH-based post-quantum signa-
ture schemes [25, 49, 45, 59, 6, 16, 58, 30] are constructed by enabling the signer
to prove to the verifier (in zero-knowledge) that he/she has a secret key k cor-
responding to the public key (x, y), satisfying the condition y = fk(x), where f
represents a symmetric one-way function (e.g., block ciphers).

The idea is that the prover simulates an N -party computation protocol in
the head, where each party is equipped with a private random tape and a secret
share of the input. The simulated MPC computation results in N output shares
that are sent to the verifier, together with (binding and hiding) commitments
to the input shares of all parties, their random tapes, and exchanged messages
(referred to as views). Upon receiving these commitments, the verifier challenges
the prover to randomly open T < N commitments and checks that all commit-
ted messages (and output shares) are consistent with an honest execution of the
MPC protocol (i.e., by honestly re-executing the MPC protocol with T opened
parties). Typically, the process is repeated M times to achieve negligible sound-

4An exception is Reinforced Concrete (RC) [40], which applies lookup tables in Fp,
leading to a remarkable speedup of up to 15x compared to other algebraic hash func-
tions such as Poseidon [41]. However, this technique prevents RC from being efficiently
utilized in R1CS-based SNARKs or AIR-based STARKs.

3

ness error, and the interaction can be eliminated by applying the Fiat-Shamir
heuristic [32].

In the original version of Picnic [25], the verifier randomly opens 2-out-of-3
parties, which leads to an extensive number of parallel executions (219 for 128-
bit security) as each repetition has a relatively large soundness error. Katz et al.
[49] enhanced the MPCitH framework by introducing an input-independent pre-
processing phase, enabling the protocol to rely on n-party MPC functionalities.
Their approach involves a “cut-and-choose” mechanism, where the prover runs
M preprocessing simulations, of which the verifier selects M−τ to check. The re-
maining τ executions are then used to run online executions of the n-party MPC
protocol. Each MPC instance is then verified by revealing views of all-but-one
party. This framework is generally applied in subsequent MPCitH-based schemes
[45, 59, 6, 16, 58, 30].

Despite the fact that MPCitH-based signature schemes show good perfor-
mance on native computers, they fall short in achieving succinct verification. In
essence, the verifier undertakes similar tasks as the prover, leading to millions
of R1CS constraints per verification. This inefficiency renders the framework
unsuitable for SNARK-based applications.

1.2 Our Contributions

Our contributions are twofold. Firstly, we introduce a novel post-quantum signa-
ture scheme called Loquat (Legendre PRF-based SNARK-friendly post-quantum
signature), which stands out as the most SNARK-friendly post-quantum signa-
ture scheme constructed solely using symmetric-key primitives. We implement
Loquat in Python and evaluate its performance across a range of parameters
to accommodate distinct security levels.

Secondly, we demonstrate the practicality of Loquat in SNARK-based cryp-
tographic applications, including ID-based ring signatures [23] and aggregate sig-
natures. Our comparative analysis with existing schemes illustrates that Loquat
emerges as the preferred signature scheme in scenarios where the application ne-
cessitates post-quantum security from symmetric-key primitives and stateless
signing. We now provide further details of our contributions.

Contribution I. SNARK-friendly Post-Quantum Signature from the
Legendre PRF. Loquat offers the following features that all prior works fail
to meet these criteria on one or more counts.

• Succinct Verification: The verifier in Loquat has significantly fewer com-
putational operations than the prover, making it particularly effective for
proving signature validity with SNARKs.
• Practical Key Generation and Signing: The time required for key gen-
eration and signing remains practical when using algebraic hash functions.
• Security Assumptions based on Symmetric-Key Primitives: The
security of Loquat solely relies on symmetric-key primitives, specifically
collision-resistant hash functions and the Legendre PRF.

4

Our construction of Loquat does not rely on the existing MPC-in-the-Head
approach or on using a generic zkSNARK protocol.5 Instead, we show a novel
reduction that transforms the task of designing a key identification protocol for
the Legendre PRF into the task of designing a multivariate polynomial commit-
ment. This reduction facilitates succinct verification. We further optimize the
protocol in terms of SNARK-friendliness using multiple methods, including a
novel approach to verify quadratic residuosity in the SNARK circuit.

We implement Loquat using Python and test its performance on a 2021
MacBook Pro with an Apple M1 Max chip and 32GB RAM. Despite the inherent
performance degradation in Python programs, the signing and verification times
of our scheme are 5.04 and 0.21 seconds, respectively, with a signature size of
57KB, targeting standard 128-bit security. When replacing the standard hash
function with Griffin [39], the signing time extends to 105 seconds (284 times
faster than the signing of SPHINCS+ when instantiated with the same algebraic
hash function), while the verification process completes in 11 seconds.

Compared to Rainier [30], a state-of-the-art symmetric-key primitives-based
signature scheme, our signature size is 6.8 times larger. However, Loquat’s ver-
ification circuit is notably smaller, being 176 times smaller than that of Rainier.
It is important to note that direct comparisons of proving and verification times
between Loquat and Rainier should be approached with caution due to the
differences in implementation languages (C++ for Rainier versus Python for
Loquat). More comparisons can be found in Table 1.6

Scheme |σ| (KB) # R1CS
Hash
(KG)

Hash
(Sign)

Picnic1 [25] 32 3,451,440 0 7,008
Picnic3 [64] 12 21,598,340 0 1,679,784
LegRoast [16] 16 1,143,351 0 10,152
Banquet [6] 12 11,804,560 0 4,147
Rainer [30] 8 26,130,303 0 3,337

SPHINCS+s [14] 7.8 458,920 305,663 2,397,129
SPHINCS+f [14] 16 1,390,209 4,775 111,353

Loquat-128 57 148,825 0 8,434

Table 1. Comparison of Post-Quantum Signature Schemes based on Symmetric-Key
Primitives. |σ| = signature size, # R1CS = number of R1CS constraints for verifying
one signature, # Hash (KG)/# Hash (Sign) = the number of hash invocations in key
generation/signing, respectively.

5By generic zkSNARKs, we mean zkSNARK protocols that prove arbitrary cir-
cuits, which suggest a naive way to replace the MPCitH paradigm. However, signature
schemes based on generic zkSNARKs result in prohibitively large signatures (more
than 200KB).

6The results in Table 1 for other signatures are estimated.

5

Contribution II. Applying Loquat in SNARK-based Cryptographic
Primitives. We introduce two key applications for SNARK-friendly signatures.
The first application is a post-quantum ID-based ring signature proposed in [23].
By incorporating Loquat into the existing framework, we achieve a notable
reduction in the ring signature’s size (from 1.898 MB to 0.973 MB) compared
to the stateless Picnic-based scheme with a ring of size 26. Furthermore, in
comparison to the stateful XMSS-based ring signature, the use of Loquat leads
to a dramatic decrease in the time required to generate the master public key,
dropping from 3,355 seconds to just 0.1 seconds, albeit with a slight increase in
the ring signature’s size.

Our second application focuses on SNARK-based post-quantum aggregate
signatures. We first construct an aggregate signature by employing Aurora [11],
a transparent post-quantum SNARK. This approach yields a signature size that
is polylogarithmic and a verification time that is linear in the number of signers.
Subsequently, we illustrate the feasibility of developing an aggregate signature
with a constant signature size by leveraging SNARKs with succinct verifications
like Fractal [27]. We conducted our experiments using the open-source implemen-
tations of Aurora and Fractal in libiop [1]. These experiments were carried out
on an Ubuntu virtual machine (allocated 28GB memory) hosted on a system
equipped with 32GB of RAM and an i7-12700KF CPU operating at 3.6GHz.
We demonstrate the maximum number of signatures that can be aggregated
using Aurora and Fractal within the memory constraints of 28GB in Table 2.7

Moreover, owing to the quasi-linear proving time and linear verification time of
Aurora, aggregating N Loquat signatures can be achieved 3 to 175 times faster
than aggregating the same number of signatures based on other symmetric-key
primitives.

Scheme # Sig # R1CS
Sig. Size
(KB)

Agg.
Time (s)

Ver.
Time (s)

SPHINCS+s [14] 18(4)

223(221) 207(145) 553(556) 62(0.78)

LegRoast [16] 7(1)
Rainer [30] 0(0)
Picnic3 [64] 0(0)
Banquet [6] 0(0)
Loquat 64(16)

Table 2. Aurora and Fractal Aggregation of Different Symmetric-Key Primitives based
Post-Quantum Signatures. # Sig = maximum number of signatures can be aggregated
with 28GB memory, # R1CS = maximum number of R1CS constraints that can be
proven with 28GB memory, red = Aurora-based aggregation, blue = Fractal-based
aggregation.

7Since the implementation of Aurora [11] and Fractal [27] support R1CS constraints
that are powers of 2, the maximum number of signatures in Table 2 is computed as the
floor of 223 divided by the number of R1CS constraints of the signature verification.

6

Remark 1 (From ROM to the URS model). While we prove the EUF-CMA of
Loquat in the random oracle model (ROM), for the aforementioned SNARK-
based applications, we need to leave the model by heuristically instantiating the
random oracle with a (collision-resistant) cryptographic hash function and start
from Loquat in the URS model. The reason for this is not merely motivated
by implementation as we now explain. Since the verifier of Loquat makes calls
to the random oracle, and proving the validity of Loquat in ID-based ring
signature and aggregate signature schemes requires a SNARK which can prove
the correctness of computations that involve oracle gates. Previous research has
shown that such SNARKs do not exist [26]. Hence, we have to instantiate the
random oracle such that the SNARK proves the computation of cryptographic
hash functions instead of the oracle gates. We note that random oracles cannot be
properly instantiated in general, and so we make the same heuristic assumption
as in other works [43, 27, 7]: there is a secure instantiation of the random oracle
for the key identification protocol produced via Theorem 1.

It is worth noting that the reliance on the heuristic instantiation of the ran-
dom oracle model presents a widespread challenge for stateless post-quantum
signature schemes in the context of SNARK-based applications. This issue has
spurred a line of research aimed at addressing and potentially circumventing this
theoretical obstacle.

1.3 Related Works

The first practical symmetric-key primitives-based aggregate signature scheme
was introduced in [50], which compresses hash-based one-time signatures (i.e.,
Lamport+) using STARK [9], a variant of SNARK. Owing to the succinctness
of STARK, the aggregate signature size grows sublinearly with the number of
signers. Furthermore, due to the simplicity of the design of one-time signatures,
the concrete performance approaches 130KB when aggregating 128 signatures.
Nonetheless, one-time signatures are stateful, requiring the signer to keep track
of all used secret keys. This requirement is often not practical in real-world
applications because it is often impossible to continuously update a key pair,
and storing the used secret keys can pose significant challenges.

Beyond symmetric-key primitives, the construction of aggregate signatures
and multi-signatures has seen notable advancements through alternative post-
quantum techniques, particularly lattice-based methods [19, 21, 20, 34, 29]. The
advent of practical lattice-based multi-signatures, such as Chipmunk [33], under-
scores the potential of lattices in developing advanced cryptographic primitives
since, unlike symmetric-key primitives, lattices offer distinct advantages owing
to the underlying algebraic structures. However, the quantitative security level
of lattice-based cryptography is unclear despite their reasonably efficient per-
formance [13]. This is also evident from NIST’s selection of SPHINCS+ [14]
for standardization. Despite its significant efficiency disadvantages compared to
lattice-based alternatives, there is a practical and theoretical need to develop
cryptographic schemes based on different cryptographic assumptions. As such,

7

exploring post-quantum cryptographic primitives based on a range of security
assumptions becomes critically important.

In this work, we focus on narrowing the performance gap between advanced
cryptographic primitives based on lattices and symmetric-key primitives. We
achieve this by introducing a SNARK-friendly signature scheme that stands
out for its reliance on distinct security assumptions compared to lattice-based
alternatives. This approach not only offers practical benefits but also presents
theoretical interest in the realm of cryptography.

2 Technical Overview

We start with an overview of the key identification problem for the Legendre
PRF, followed by the description of the identification protocol based on MPC-
in-the-head as presented in LegRoast [16]. We then introduce our approach of
replacing the MPC-in-the-head with a polynomial commitment scheme, which
facilitates succinct verification.

2.1 Key Identification Problem of the Legendre PRF

The Legendre PRF (Section 3.1) is a one-way function denoted by LK(·) : Fp →
Z2, which on input a random field element a ∈ Fp (and a hard-coded secret
key K), outputs a bit indicating the quadratic residuosity of (K + a). Owing
to the limitation that the PRF only produces one bit of output, the public
key should consist of many PRF evaluations denoted as pk = (pk1, . . . , pkL) =
(LK(I1), . . . ,LK(IL)) for some fixed and publicly defined arbitrary list I =
(I1, . . . , IL). The key identification problem is described as follows: given a public
key consists of L Legendre PRF outputs, prove the knowledge of a value K ′ such
that LK′(Iℓ) = LK(Iℓ) for all ℓ ∈ [L] simultaneously.

2.2 MPCitH-based Identification Protocol [16].

A straightforward way to prove the knowledge of K ′ would involve applying a
generic zero-knowledge proof demonstrating that, for all ℓ ∈ [L], the evaluation
of L on the secret input K ′ and public input Iℓ produces the exact bit as pkℓ.
However, this approach is prohibitively expensive due to the following reasons:

1. The circuit of evaluating L requires O(log p) operations, where p is a large
prime.

2. L is a large integer in the case of key identification.

Grassi et al. [42] addressed the first problem by manipulating the multi-
plicative homomorphism of the PRF. Namely, for ℓ ∈ [L], the prover employs
a zero-knowledge proof to demonstrate the correct computation of public val-
ues oℓ that is defined as oℓ = (K ′ + Iℓ)rℓ, for some random rℓ ∈ Fp. If oℓ is
computed honestly and K ′ = K, then L0(oℓ) must equal to pkℓ + L0(rℓ). The
approach effectively reduces the number of arithmetic operations to be proven by

8

the zero-knowledge proof from O(log p) to a single multiplication and addition
per symbol.

To obtain a practical signature scheme, LegRoast [16] addressed the second
problem by presenting a relaxation of the Legendre PRF relation. Instead of
proving that the signer knows a K ′ such that L0((K

′ + Iℓ)rℓ) = pkℓ +L0(rℓ) for
all ℓ ∈ [L], LegRoast lets a prover prove knowledge of a K ′ such that this holds
for a large fraction of ℓ in [L]. The fraction is uniformly randomly chosen by the
verifier after the prover commits to the claimed witness K ′ and the randomness
rℓ. It has been proven in LegRoast that this relaxed PRF relation (Definition 2) is
as hard as the original Legendre PRF relation (Definition 1), given appropriately
chosen parameters [16, Theorem 1].

2.3 Our Approach for the Identification Scheme

Our first observation is that the objective of the MPC-in-the-head (MPCitH)
in LegRoast [16] is to demonstrate that oℓ are computed honestly, namely, in
the form of (K ′ + Iℓ)rℓ. To achieve succinct verification, our first attempt was
to replace MPCitH with a generic zkSNARK such as Fractal [27]. However,
despite the small number of constraints to be proven, this approach results in
large signature sizes and slow prover time. More importantly, it does not lead to
sufficiently small R1CS constraints for signature verification.

We then observed that since the witness K ′ and the randomness rℓ must
be committed prior to the verifier sampling the random fraction (denoted as I ′
such that |I ′| = B ≤ L) of I, this scenario can be reformulated as a polynomial
commitment [47] problem, treating the elements Iℓ ∈ I ′ as unknown values
and K ′, rℓ as coefficients. Thus, at the beginning of the protocol, the prover
computes B linear functions f̂ℓ(x) = (K ′ + x)rℓ = (K ′rℓ) + rℓ · x (i.e., (K ′rℓ)
is the constant coefficient and rℓ is the coefficient of the degree 1 variable in
f̂ℓ(x)). The MPCitH proof of oℓ = (K ′ + Iℓ)rℓ can then be replaced by a proper

polynomial commitment proof showing that f̂ℓ(Iℓ) = oℓ for Iℓ ∈ I ′.
However, symmetric-key primitives-based post-quantum polynomial commit-

ment schemes such as RedShift [48] are (much) more expensive than MPC-in-
the-head. Hence, we followed a batching technique as follows. Instead of proving
oℓ individually, the prover proves the random linear combination of all oℓ’s using
a multivariate polynomial.

Specifically, we let the prover to show that
∑B

ℓ=1 λℓoℓ =
∑B

ℓ=1 λℓrℓ(K
′+Iℓ) =∑B

ℓ=1 Krℓ ·λℓ+rℓ ·λℓIℓ for randomly chosen λℓ by the verifier. We treat both ver-
ifier’s challenges (λℓ, Iℓ)ℓ∈B as variables in the first round. Therefore, the prover

defines a multilinear polynomial with 2B variables as f̂(x1, . . . , xB , y1, . . . , yB) =
K ′r1y1+r1x1y1+ · · ·+K ′rBy1+rBxByB . Then, the prover commits to the poly-
nomial and proves to the verifier that the evaluation of f̂ on (I1, . . . , IB , λ1, . . . , λB)

equals to
∑B

ℓ=1 λℓoℓ. We adopted the multivaraite polynomial commitment in
Virgo [65] to obtain Loquat, resulting in desired Legendre PRF-based signature
scheme with succinct verification.

9

Efficient Verification of Quadratic Residuosity in SNARKs The afore-
mentioned approach enables succinct signature verification. However, proving
L0(oℓ) = pkIℓ + L0(rℓ) for ℓ ∈ [B] in the SNARK circuit can incur a large over-
head. We introduce the following technique to demonstrate that oℓ has the same
quadratic residuosity as (K+Iℓ)rℓ, which only requires three multiplication gates
per symbol.

Let us fix a quadratic non-residue (QNR) α ∈ Fp. Then, we define

tℓ = oℓ · (α · (pkIℓ + Tℓ) + (1− (pkIℓ + Tℓ))). (1)

where Tℓ = L0(rℓ). Note that, for oℓ ̸= 0, tℓ will be a quadratic residue (QR)
if and only if L0(oℓ) = pkIℓ + Tℓ (i.e., non-zero oℓ’s can be easily proved with
B + 1 constraints in the circuit).

Therefore, if it holds true that for all ℓ ∈ [B], L0(oℓ) = pkIℓ + Tℓ, we can
find the square root sℓ of tℓ and prove in the circuit that tℓ = sℓ · sℓ (mod p). It
is worth emphasizing that the computation of sℓ values can be done outside of
the circuit. Consequently, the total number of constraints required to verify the
quadratic residuosity of oℓ is 4B + 1.

3 Preliminaries

Notations Let Fp denote the prime field for a large prime p and F = Fp2 de-
note the extension field of Fp. We use bold letters to denote vectors (e.g., f), and
f [i] denotes the i-th element in f . We use hatted letters to denote polynomials

(e.g., f̂). Given a set S = (s1, . . . , sn) and a vector f = (f1, . . . , fn), we write f̂ =

Interpolate(S, f) the interpolation of f̂(X) using n points {(s1, f1), . . . , (sn, fn)},
and f = f̂ |S denotes the evaluation of the polynomial f̂ over the set S.

For any n ∈ N, [n] = {1, . . . , n}, and h
$← H for a set H denotes that h

is chosen uniformly at random from H. The negligible function is denoted by
negl(·), the empty string is ⊥, and the security parameter is λ.

Reed-Solomon Code and Interleaved Code. Given a subset U ⊆ F and a
rate parameter ρ ∈ (0, 1], we denote by RS[U, ρ] ⊆ F|U | the evaluations over U
of univariate polynomials with degree less than ρ|U |. In other words, a codeword

f ∈ F|U | is in RS[U, ρ] if there exists a polynomial f̂ of degree less than ρ|U |
and f = f̂ |U .

If there exist m linear codes (f1, . . . , fm) with alphabet F, where fi ∈ Fn for
all i ∈ [m], the interleaved code with alphabet Fm is denoted by

∏m
i=1 Ci ⊆

(Fm)n ≡ Fm×n that is an m× n matrix whose i-th row is fi.

Merkle Tree In this paper, we use Merkle tree [55] as a primitive for committing
to a vector with short commitment and logarithmic-size proof. Occasionally,
we require not only the commitment (i.e., Merkle root) is hiding, but also the
authentication path will not reveal any information, which is called Merkle tree

10

with privacy [12]. We will specify in the paper when we require Merkle tree with
privacy. If not specified, then it runs like an original Merkle tree commitment
scheme. The scheme consists of following algorithms:

– rootc ← MT.Commit(c): On input a vector c, the algorithm outputs a short
commitment rootc.

– (ci, authi)← MT.Open(i, c): On input an index i, a vector c that was commit-
ted using MT.Commit algorithm, the deterministic algorithm outputs a leaf
node ci ∈ c and an authentication path authi.

– (1/0) ← MT.Verify(rootc, i, ci, authi): On input a Merkle root rootc, an
index i, the leaf node ci, and the corresponding authentication path authi,
the deterministic algorithm outputs 1 if and only if ci is a valid leaf node
with respect to the root rootc. Otherwise, outputs 0.

Fast Fourier Transform Our scheme requires polynomial evaluation and in-
terpolation, which are implemented via Fast Fourier Transform (FFT) and its
inverse (IFFT), respectively. Given a multiplicative coset of size d of a finite
field, the polynomial interpolation can be performed in O(d log d) field opera-
tions using IFFT. We often evaluate the polynomial on a larger subspace (of size
n > d), which can be performed in O(n log d) field operations via FFT.

If there exist m linear codes (f1, . . . , fm) with alphabet F, where fi ∈ Fn for
all i ∈ [m], the interleaved code with alphabet Fm is denoted by

∏m
i=1 Ci ⊆

(Fm)n ≡ Fm×n that is an m× n matrix whose i-th row is fi.

3.1 Legendre PRF

The Legendre PRF relies on the conjectured pseudo-randomness of the Legendre
symbol with a secret shift [15]. Specifically, on input a ∈ Fp, the Legendre symbol
outputs {−1, 0, 1}, depending on whether a is a square modulo p:

(
a

p

)
=

1, if a = b2 (mod p) for some b ∈ F∗

p

0, if a = 0 (mod p)

−1, otherwise

Then, the Legendre PRF is defined as:

L0(a) =

⌊
1

2

(
1−

(
a

p

))⌋
∈ {0, 1}

Namely, the PRF outputs 1 if a is a quadratic non-residue (QNR) modulo p
and 0 otherwise. The Legendre PRF has multiplicative homomorphism, that is
L0(a · b) = L0(a) + L0(b) for non-zero a, b ∈ F∗

p. The keyed Legendre PRF is:

L : Fp × Fp → Z2

L : (K, a) 7→ L0(K + a)

and L0(K + a) is used interchangeably with LK(a).

11

Definition 1 (Legendre PRF relation (adapted from [16])). For an odd

prime p and a list I = (I1, . . . , IL), where Iℓ
$← Fp for all ℓ ∈ [L], we define the

Legendre PRF relation RL as

RL = {(LK(I),K) ∈ {0, 1}L × Fp|K ∈ Fp}

and LK(I) = (LK(I1), . . . ,LK(IL)).

Definition 2 (β-approximate Legendre PRF relation (adapted from
[16])). Given β ∈ [0, 1], an odd prime p, and a list I of L elements uniformly
chosen from Fp at random, we define the β-approximate PRF relation RβL as

RβL = {(s,K) ∈ {0, 1}L × Fp|∃a ∈ {0, 1} : dH(s+ (a, . . . , a),LK(I)) ≤ βL}

where dH(·, ·) denotes the Hamming distance.

According to [16, Theorem 1], the β-approximate Legendre PRF relation is as
hard as Legendre PRF relation with the probability at least 1−2p·Pr[B(L, 1/2+
1/
√
p+2/p) ≥ (1−β)L] over the choice of I, where B(n, q) denotes the binomial

distribution with n samples each with success probability q. Simply put, with the
proper choice of the parameter L (sufficiently large) and β (sufficiently small)
[16], if there exists a PPT algorithm that is able to find the β-approximate
witness K, then K is also a witness of the exact Legendre PRF relation. For
a comprehensive analysis of the quantum and classical security of the Legendre
PRF, we direct interested readers to Appendix A.

3.2 Multivariate Polynomial Commitment from Univariate
Sumcheck

The multivariate polynomial commitment protocol [65] allows a prover to prove
the evaluation of a committed multivariate polynomial. This protocol builds
upon the “univariate sumcheck” [11], an Interactive Oracle Proof (IOP) used to

verify whether a given univariate polynomial f̂(x) sums to a specific value µ on
an additive or multiplicative coset H ⊆ F. Our construction differs from [65] in
several aspects; for example, we do not use the GKR protocol [36] to reduce the
verification time. Therefore, we only assume black-box access to the univariate
sumcheck protocol, which can be defined as follows:

Definition 3 (Univariate Sumcheck Relation (Adapted from [11])). The

relation RUS is the set of all tuples ((F, U,H, d, µ), f̂), where F is a finite field,

U,H are multiplicative cosets of F, d ∈ N is the degree bound of f̂ , and µ ∈ F,
such that µ =

∑
a∈H f̂(a) and f̂ |U ∈ RS[L, d

|U |].

At a high-level, the univariate sumcheck protocol allows a prover to convince
a verifier that there exists a low-degree univariate polynomial f̂(x) such that

12

µ =
∑

a∈H f̂(a) for µ ∈ F and H ⊆ F. The following lemma describes the
foundation of the univariate sumcheck protocol.8

Lemma 1. [24] Let H be a multiplicative coset of F, and ĝ(x) ∈ F[X] that has
degree strictly less than |H|. Then

∑
a∈H ĝ(a) = ĝ(0) · |H|.

We demonstrate the underlying idea of the univariate sumcheck for bet-
ter readability and refer the readers to [11, Section 5] for more details. Let

f̂(x) ∈ F[X] of degree less than d, which can be decomposed vanto two unique

polynomials ĝ(x), ĥ(x) of degree less than |H| and d − |H|, respectively, such
that f̂(x) ≡ ĝ(x) + ZH(x) · ĥ(x), where ZH(x) is the vanishing polynomial
over H (i.e., it evaluates to 0 everywhere on H). It is not hard to see that

µ =
∑

a∈H f̂(a) =
∑

a∈H ĝ(a). Then, according to Lemma 1, µ = |H| · ĝ(0) since
the degree of ĝ is less than |H|. In other words, |H|ĝ(x)−µ

|H|x must be a polynomial

with degree less than |H| − 1. Hence, checking if µ =
∑

a∈H f̂(a) is equivalent
to check:

1. ĝ(x) = f̂(x)− ZH(x) · ĥ(x) is computed correctly, and

2. |H|ĝ(x)−µ
|H|x is of degree less than |H| − 1.

Let us define the rational constraint p̂(x) ∈ F[X] that can be computed as
the division of a sequence of polynomials:

p̂(x) =
|H|f̂(x)− |H|ZH(x)ĥ(x)− µ

|H| · x
(2)

Note that if Condition 1 is satisfied, then the numerator of p̂(x) is |H|ĝ(x)− µ.
Furthermore, if the second condition is also satisfied, then p̂(x) is a polynomial
of degree less than |H| − 1 since |H|ĝ(x) − µ should have constant term 0 if µ
is indeed the sum. Therefore, the univaraite sumcheck is reduced to low-degree
test of three polynomials: deg(p̂) < |H| − 1, deg(ĥ) < d− |H|, and deg(f̂) < d.

Remark 2 (Zero-Knowledge). Univariate sumcheck can be made zero-knowledge
using standard techniques [11, Section 5.1]. Namely, to mask witness polynomial

f̂(x), the prover randomly samples a polynomial ŝ(x) with deg(ŝ) = deg(f̂)
and computes S =

∑
a∈H ŝ(a). It sends S to the verifier and commits to ŝ|U ∈

RS[U, |H|
U]. The verifier sends a uniformly random challenge z

$← F to the prover,
who then prove the univariate sumcheck relation with respect to the claimed sum
zµ+ S =

∑
a∈H zf̂(a) + ŝ(a).

8Aurora [11] introduced univariate sumcheck over both additive and multiplicative
cosets, but their protocol was mainly designed for additive cosets. We follow [65] to
use univariate sumcheck over multiplicative cosets for better compatibility with the
Legendre PRF.

13

Low-Degree Test (LDT) Univariate sumcheck uses FRI [8] for low-degree
test, which allows a verifier to test whether a codeword c is a member of the
RS-code with prescribed code rate ρ. Following previous discussion on univariate
sumcheck, the prover needs to send three oracle codewords to the verifier:

1. Witness oracle: f̂ |U ∈ RS[U, d
|U |].

2. Message oracle: ĥ|U ∈ RS[U, d−|H|
|U |].

3. Rational constraint: p̂|U ∈ RS[U, |H|−1
|U |]

A straightforward way is to perform low-degree tests individually on each
codeword. However, given that LDT is computationally expansive, Aurora em-
ploys a strategy that facilitates the degree test for interleaved RS codes with
different code rates using a single LDT protocol [11, Protocol 8.2]. At a high-
level, this involves multiplying each polynomial by an appropriate monomial in
such a way that all of them have the same (maximum) code rate. Subsequently,
a random linear combination of the interleaved code is computed. The resulting
codeword, with code rate ρ∗, is then taken as the input to the low-degree test
protocol.

3.3 Digital Signature

Definition 4 (Syntax). A signature scheme consists of the following algo-
rithms (Setup, KeyGen, Sign, Verify):

1. (pp)← Setup(λ). On input a security parameter λ, the algorithm generates
a set of public parameters denoted as pp.

2. (sk, pk)← KeyGen(pp): On input public parameters pp generated in the setup
phase, the algorithm outputs a key pair (sk, pk).

3. σ ← Sign(sk,m, pp): On input a secret key sk, a message m, and public
parameters pp, the (randomized) algorithm outputs a signature σ.

4. (0/1) ← Verify(pk,m, σ, pp): On input a public key pk, a message m, a
signature σ, and public parameters pp, the (deterministic) algorithm outputs
1 (accept) or 0 (reject).

A signature scheme should be correct and existential unforgeable under adap-
tive chosen message attacks (EUF-CMA) [38]. We first define the correctness of
the signature scheme.

Definition 5 (Correctness). For any message m,

Pr

[
Verify(pk,m, σ) = 1

∣∣∣∣ (sk, pk)← KeyGen

σ ← Sign(sk,m)

]
= 1

We first reduce the EUF-KO (existential unforgeability against key-only at-
tacks) of Loquat to the β-approximate Legendre PRF relation as a stepping
stone, then we reduce EUF-CMA (existential unforgeability against (adaptive)
chosen message attacks) to EUF-KO. We define the two security models as fol-
lows.

14

Definition 6 (EUF-KO). Given a security parameter λ, we say that the signa-
ture scheme is EUF-KO-secure in the random oracle model if any PPT algorithm
A has negligible advantage in the EUF-KO game defined as

AdvEUF-KO
A = Pr

[
Verify(pk,m∗, σ∗) = 1

∣∣∣∣ (sk, pk)← KeyGen(λ)
(m∗, σ∗)← A(pk)

]
Definition 7 (EUF-CMA). Given a security parameter λ, we say that the
signature scheme is EUF-CMA-secure in the random oracle model if any PPT al-
gorithm A has negligible advantage in the EUF-CMA game defined as

AdvEUF-CMA
A = Pr

[
Verify(pk,m∗, σ∗) = 1
∧ m∗ /∈ Q

∣∣∣∣ (sk, pk)← KeyGen(λ)
(m∗, σ∗)← ASign(sk,·)(pk)

]
where ASign(sk,·) denotes A’s access to a signing oracle with private key sk, and
Q denotes the set of messages m that are queried to the signing oracle by A.

3.4 Aggregate Signature

Definition 8 (Syntax). An aggregate signature scheme consists of the follow-
ing algorithms (Setup, KeyGen, Sign, Verify, Agg, AggVerify):

1. Setup, KeyGen, Sign, Verify are defined the same as in ordinary signature
schemes, except that Setup also generates the public parameters for the ag-
gregate signature scheme.

2. Σ ← Agg({σi,mi, pki}i∈[n], pp): On input n signature, message, public-key
pairs, where (σi,mi, pki) denotes the pair for the i-th signer, and a set of
public parameters pp generated in the Setup phase, the algorithm outputs Σ
which is the aggregated signature.

3. (0/1) ← AggVerify(Σ,PK,M, pp): On input public parameters pp, the
aggregated signature Σ, n public keys PK = (pk1, . . . , pkn) and messages
M = (m1, . . . ,mn), the algorithm accepts (outputs 1) if the aggregate signa-
ture is valid against PK and M . Otherwise, the algorithm rejects (outputs
0).

We follow the aggregate chosen-key model from [18] for our aggregate signa-
ture, in which the adversary A is given a challenge public key and a signing oracle
with respect to the challenge key. A can generate other key pairs and attempt to
forge an aggregate signature. The definition of the aggregate chosen-key game
Game

AggSig
H,Sign(A, N, qH , qs) as follows.

Definition 9 (Aggregate Chosen-Key Model [18]). The game contains
four phases as follows.

• Setup. Define pp to be the public parameters for the signature scheme. The
adversary A is given a challenge public key pk1 chosen at random and public
parameters pp.

15

• Queries. The adversary A with pk1 can make at most qH queries to the
random oracle and at most qs queries to the signing oracle Sign with respect
to pk1 on messages of his choice.

• Response. A outputs N − 1 distinct public keys pk2, . . . , pkN , a tuple of
messages m1, . . . ,mN where m1 was not queried to the signing oracle, and
an aggregate signature Σ.

• Output. Denote PK = {pk1, . . . , pkn} and M = {m1, . . . ,mn}. The game
outputs AggVerify(Σ,PK,M).

The advantage of the adversary, which is denoted as AdvAggSig
A , is defined to

be the probability Game
AggSig
H,Sign(A, N, qH , qs) outputs 1. The aggregate signature

is secure against any efficient adversary under the aggregate chosen-key model
if AdvAggSig

A (N, qH , qs) is negligible in the security parameter.

3.5 Interactive Oracle Proof

Interactive oracle proofs (IOPs) [12], also known as probabilistically checkable
interactive proofs (PCIPs) [57], generalise interactive proofs (IPs) [37] and prob-
abilistically checkable proofs (PCPs) [4, 5]. In this paper, we consider only public-
coin IOP protocols (i.e., the messages from the verifier are sampled uniformly
at random and are independent from messages sent by the prover).

Definition 10 (Interactive Oracle Proof (adapted from [12])). An inter-
active oracle proof system for relation R with round complexity k : {0, 1}∗ → N
and soundness s : {0, 1}∗ → [0, 1] is a tuple (P,V) where P,V are probabilistic
algorithms, that satisfies the following properties.

1. Completeness. For every (x,w) ∈ R, ⟨P (x,w), V (x)⟩ is a k(x)-round in-
teractive oracle protocol with accepting probability 1.

2. Soundness. For every x not in the language of R and P̃ , ⟨P̃ , V (x)⟩ is a
k(x)-round interactive oracle protocol with accepting probability at most s(x).

Public-coin IOPs can be complied to non-interactive random oracle proofs
(NIROPs) using BCS transform [12] which preserves the proof-of-knowledge and
zero-knowledge properties of the underlying IOP. The soundness of the NIROP
depends on the (restricted) state-restoration soundness which relates to the stan-
dard soundness and the round complexity of the IOP protocol.

3.6 Succinct Non-Interactive Argument of Knowledge (SNARK)

SNARKs consist of the following three algorithms, which are defined as:

Definition 11 (Syntax).

• SNARK-pp← SNARK-Setup(λ). On input a security parameter, the algorithm
outputs a set of public parameters that everyone can access (hence transpar-
ent).

16

• πSNARK ← SNARK-P(SNARK-pp,w,x). On input a set of public parameters SNARK-pp
and a witness-statement pair (x,w), the algorithm outputs a succinct proof
πSNARK.

• 0/1 ← SNARK-V(SNARK-pp,x, πSNARK). On input a set of public parameters
SNARK-pp, a claimed statement x and the proof πSNARK, the algorithm outputs
1 (accept) if πSNARK is convincing.

If the SNARK is a preprocessing SNARK (e.g., Fractal [27]), then the protocol
additionally consists of an indexer algorithm, denoted as SNARK-Indexer, which
on input an arithmetic circuit, outputs a short ivk and a long ipk for the SNARK
verifier and the SNARK prover, respectively.

A SNARK protocol satisfies correctness and argument of knowledge, which
are defined in

Definition 12 (Security Properties).

1. Completeness. For every (x,w) ∈ R,

Pr[SNARK-V(x, SNARK-P(x,w))(SNARK-pp) = 1] = 1

2. Knowledge Soundness. For all PPT adversaries A there exists a PPT
extractor E such that

Pr

[
SNARK-V(SNARK-pp,x, π) = 1
∧ (x,w) /∈ R

∣∣∣∣ ((x, π);w)← A ∥ E(SNARK-pp)
]
= negl

4 Loquat: SNARK-Friendly Post-Quantum Signature
from the Legendre PRF

4.1 IOP-based Interactive Key Identification Scheme

We first present an Interactive Oracle Proof-based key identification scheme
for the Legendre PRF, which is then compiled into a signature scheme (i.e.,
Loquat) using the BCS transform [12].

Interactive Oracle Proof (IOP) Generally speaking, an (public coin) IOP
has three phases, interaction phase, query phase, and decision phase that can
be described as follows. During the interaction phase, the prover and the verifier
engage in k rounds of interaction, where in each round i ∈ [k], the verifier sends
a message mi to the prover, who reads in full and responds with oracle messages
fi, along with a plaintext message pi. The verifier makes point queries to the
oracle messages, while he/she reads the plaintext message in its entirety.9

After k rounds of interaction, the (public coin) verifier initiates the query
phase by making queries to the oracle messages (f1, . . . , fk) and subsequently
receives responses (a1, . . . ,ak). Finally, the verifier decides whether to accept
or reject the proof, based on the answers (a1, . . . ,ak), the verifier’s messages
(m1, . . . ,mk), and the plaintext message (p1, . . . ,pk).

9Occasionally, the oracle message or the plaintext message may be an empty string.

17

Key Identification of the Legendre PRF Fix two integers L and B, where
L denotes the bit length of the Legendre PRF statement, and B ≤ L denotes
the number of challenged quadratic residuosity symbols. Define a set of publicly
accessible strings denoted as I = (I1, . . . , IL), which are uniformly selected at
random from the field Fp for a large prime p. The prover proceeds to choose

a random K
$← F∗

p as the PRF private key. It then computes the PRF output

LK(I) = (LK(I1), . . . ,LK(IL)) ∈ {0, 1}L. The objective of the prover is to
convince the verifier that it has knowledge of the β-approximate PRF key K ′

with respect to the output LK(I).
Moreover, the prover and the verifier agree on two disjoint multiplicative

subgroups H,U ⊆ F, where |H| = B and |U | > |H|. We denote the interactive
key identification protocol as ⟨P(K,LK(I)),V(LK(I))⟩, which uses, as a black-
box, the zero-knowledge univariate sumcheck protocol ⟨PUS(x,w),VUS(x)⟩ for the
relation RUS = (x,w) as shown in Definition 3. We present the IOP-based key
identification protocol in Algorithm 1.

Remark 3 (Achieving Zero-Knowledge). Query answers to f1 may leak informa-
tion about the PRF key K. We can employ a similar technique used in Vigro
[65] to mask the polynomial ĉ. Let |Q| be the number of queries made by V.
The prover P randomly selects r̂(x) with degree |Q|, and computes ĉ′(x) =
ĉ(x) +ZH(x)r̂(x), where ZH(x) is the vanishing polynomial (i.e., ZH(h) = 0 for
all h ∈ H). The prover P computes the witness oracle as f1 = ĉ′|U . Note that
the univariate sumcheck polynomial is now computed as ŵ(x) = ĉ′(x) · q̂(x),
with degree less than 4B + |Q|, and the claimed sum µ =

∑B
b=1 λboB remains

the same. Consequently, any |Q| queries to f1 are randomly distributed, ensuring
the zero-knowledge property of the key identification protocol.

Theorem 1. Suppose there exists an IOP protocol ⟨PUS(x,w),VUS(x)⟩ for the
univariate sumcheck relation RUS (Definition 3), where x = (F, U,H, d, µ) and

w = f̂ that is knowledge sound and zero-knowledge with following parameters
[11]:

• Knowledge error: ϵUS = O
(

|U |
|F|

)
+ negl(κ), where κ denotes the repetition

parameter of the low-degree test,
• Proof length: pUS = O(|U |),
• Query complexity: qUS = O(κ),
• Round complexity: rUS = O(log |U |),
• Prover complexity: tPUS = O(|U |),
• Verifier complexity: tVUS = O(log2 |H|) +O(log |U |).

Then, we can construct a public-coin IOP protocol ⟨P(w,x),V(x)⟩ (Algorithm
1) where w = K and x = LK(I) for the β-approximate Legendre PRF relation
RβL (Definition 2), assume the black-box access to ⟨PUS(x,w),VUS(x)⟩. The pro-
tocol is complete, knowledge sound, and zero-knowledge with following complexity
parameters.

• Knowledge error: ϵ(x) = ϵUS + (1− β)B + 1/p,

18

Algorithm 1: IOP-based Key Identification of the Legendre PRF

1 Interactive Phase
2 Prover Round 1
3 Randomly pick (r1, . . . , rB) ∈ F∗

p and a random polynomial

r̂(x) ∈ F[X] of degree |Q|.
4 Compute witness vector c = (Kr1, r1, . . . ,KrB , rB) and witness

polynomial ĉ = Interpolate(H, c).
5 Compute ĉ′(x) = ĉ(x) +ZH(x)r̂(x), where ZH(x) is the vanishing

polynomial on set H. // deg(ĉ′) ≤ 2B + |Q|
6 for b = 1 to B do
7 Compute Tb = L0(rb).

8 Send the witness oracle f1 = ĉ′|U and plaintext message
p1 = (T1, . . . , TB) to V.

9 Verifier Round 1
10 Randomly sample I ′ ⊂ I, with |I ′| = B and send m1 = I ′ to P.
11 Prover Round 2
12 for b = 1 to B do
13 Compute ob = (K + Ib)rb for Ib ∈ I ′.
14 Send the plaintext message p2 = (o1, . . . , oB) to V. // The

oracle message in this round is empty.

15 Verifier Round 2

16 Randomly samples (λb)b∈[B]
$← Fp.

17 Send m2 = (λ1, . . . , λB) to P.
18 Prover Round 3
19 Compute q = (λ1, λ1I1, . . . , λB , λBIB) and the evaluation

polynomial q̂(x) = Interpolate(H,q). // deg(q̂) < 2B

20 Compute the polynomial for univariate sumcheck
ŵ(x) = ĉ′(x) · q̂(x). // deg(ŵ) < 4B + |Q|

21 Compute the claimed sum µ =
∑B

b=1 λbob.

22 Univariate Sumcheck Round
23 Invoke ⟨PUS(x, ŵ),VUS(x)⟩, where x = (F, U,H, 4B + |Q|, µ).

24 Query Phase
25 V samples a random set Q ⊂ U and send Q to P, who responds with

(a1,aUS), where a1[i] = f1[i] for i ∈ [Q] and aUS is the query answer
to oracles generated in the univariate sumcheck.

26 Decision Phase
27 V outputs 1 (i.e., accept) if and only if

1. VUS(x) accepts.
2. For all b ∈ [B], L0(ob) = LK(Ib) + Tb where ob ̸= 0 (mod p) and Ib ∈ I ′.

Otherwise, V outputs 0 (i.e., reject).

19

• Proof length: p(x) = |U | · |F|+ (log p+ 1)B + pUS,

• Query complexity q(x) = κ · 2η + qUS, where η denotes the localization pa-
rameter in the low-degree test,

• Round complexity r(x) = 2 + rUS,

• Prover complexity tP (x) = 2 · FFT (IFFT (|H|), |U |) +O(log p) + tpUS,

• Verifier complexity tV (x) = B ·O(log p) + tVUS.

Where FFT denotes the complexity of running one FFT to evaluate the poly-
nomial and IFFT denotes the complexity of running one IFFT to interpolate
the polynomial.

We show a formal proof and analysis for Theorem 1 in Appendix, Section B.1.

According to [12, Lemma 5.7], an IOP protocol with k(x) rounds of in-
teraction has (restricted) state-restoration soundness error (knowledge error)
ϵ̄(b,x) ≤

(
b

k(x)

)
ϵ(x), where b denotes the maximum number of interactions al-

lowed between the state restoration prover and the verifier. However, the general
upper bound of the state-restoration soundness is not enough for our key iden-
tification protocol. We analyze a tighter upper bound of the (restricted) state-
restoration soundness as shown in Lemma 2, and provide the formal proof in
Appendix B.2.

Lemma 2. The restricted state-restoration soundness error (knowledge error)
of the IOP-based key identification protocol for the Legendre PRF against a
b-bound malicious prover P̃ is ϵ̄(b,x) = Pr[X + Y + Z = B] where X =
max(X1, . . . , Xb1), Y = max(Y1, . . . , Yb2), and Z = max(Z1, . . . , Zb3) such that
b1+b2+b3 ≤ b, Xi are i.i.d. as B(B, (1−β)), Yi are i.i.d. B(B−X, 1/p), and Zi

are i.i.d. as B(B −X − Y, ϵUS), where B(·, ·) denotes the binomial distribution.

Remark 4. Note that the security of the Legendre PRF is well-studied in the
prime field Fp while the univaraite sumcheck works in the extension field F = Fp2 .
To solve the inconsistency between the fields, we will naturally lift the elements
in Fp to Fp2 for vectors c,q, where Fp2 only affects the statistical soundness of
the univariate sumcheck, and it is independent from the Legendre PRF.

4.2 Loquat: Post-Quantum Signature Scheme from the Legendre
PRF

Loquat (Algorithm 2 - 7) is constructed by applying BCS transform [12] to the
IOP-based key identification scheme of the Legendre PRF presented in Section
4.1. Note that in key generation (Algorithm 3), we requireK+Iℓ ̸= 0 (mod p) for
enabling efficient residuosity check in SNARK-based applications, which reduces
the key space from p to p− L. This remains secure since L≪ p.

We first show the EUF-KO (ROM) security of Loquat in Theorem 2, which
follows directly from [12, Theorem 7.1]. Then, we prove the EUF-CMA (ROM)
of Loquat, using EUF-KO as the stepping stone, in Theorem 3.

20

Algorithm 2: Loquat Setup

Input: Security Parameter λ
Output: Public Parameter L-pp

1 L-Setup
2 Public Parameters for Legendre PRF
3 Fp: prime field for sufficiently large p.
4 L ∈ N: the number of bits in the public key.
5 B ∈ N: the number of challenged residuosity symbols and B ≤ L.

6 I = {I1, . . . , IL} where Iℓ
$← Fp for all ℓ ∈ [L].

7 m,n ∈ N: degree bound and the number of parallel executions
such that m× n = B with m being a power of 2.

8 Public Parameters for Univariate Sumcheck and LDT
9 F = F2

p: extension field of Fp that contains large enough smooth

multiplicative subgroups.
10 H ⊆ F: a multiplicative coset with |H| = 2m.
11 η: the localisation parameter of LDT.
12 κ: the query repetition parameter of LDT.
13 U : a smooth multiplicative coset U ⊆ F such that |U | > |H| and

H ∩ U = ∅.
14 ρ∗: maximum rate that is the closest power of 2, where

ρ∗ > 4m+κ·2η
|U | .

15 r =
⌊
log2(|U |)−log2(1/ρ

∗)
η

⌋
: the round complexity of LDT.

16 U (1), . . . , U (r): r multiplicative subgroups where U (0) = U :
17 for i = 1 to r do
18 for x ∈ U (i−1) do
19 y = x2η .

20 U (i).append(y)

21 H1, . . . ,H5+r,HMT: collision-resistant hash functions.
22 Expand : F→ F∗: an expand function.

23 Output L-pp :=

(Fp,F, p, L,B, I,m, n,H,U, (U (k))k∈[r], ρ
∗, r, κ, η, (Hk)k∈[5+r],HMT, Expand).

21

Algorithm 3: Loquat Key Generation

Input: L-pp
Output: (sk, pk)

1 L-KeyGen
2 On input public parameters L-pp, the algorithm performs the

following tasks.
3 Generate the secret key. Randomly pick a field element

K
$← F∗

p/{−I1, . . . ,−IL} and set sk := K.

4 Generate the public key. Compute
pk := LK(I) = (LK(I1), . . . ,LK(IL)). The bit length of the public
key is L.

5 Output (sk, pk).

Remark 5. Decomposing a large polynomial with degree 2B to n polynomials
with degree 2m introduces an additional soundness error 1/|F| owing to randomly
linear combination of n polynomials for univariate sumcheck. The increment is
negligible and is not reflected in our proof of Theorem 1 and Lemma 2.

Theorem 2. Let ΠLoquat be the signature scheme that is constructed in Section
4.2. ΠLoquat is secure in EUF-KO as defined in Definition 6 under the assumption
that finding β-approximate witnesses for a given public key is hard. Specifically,
for a given security parameter λ, if there exists a PPT adversary A that makes at
most m queries to the random oracles with success forgery probability in the EUF-
KO model ε, then there exists a PPT algorithm B which, on receive the challenge
public key pk = (LK(I1), . . . ,LK(IL)) for a random key K ∈ F∗

p, outputs a β-

approximate witness for pk with probability at least ε− ϵ̄(pk,m)−3(m2+1)2−2λ,
where ϵ̄(pk,m) is the restricted state-restoration soundness of the IOP-based key
identification scheme defined in Lemma 2.

Proof. The proof of Theorem 2 is same as the proof of [12, Theorem 7.1]. Namely,
the restricted state restoration soundness (knowledge) error ϵ̄(pk,m) is the error
probability ofA forges a signature by successfully cheating on the protocol, which
is negligible with appropriate parameters. (3(m2+1)2−λ) is the probability that
B aborts in the IOP protocol owing to collisions, as analyzed in [12]. ⊓⊔

Theorem 3. Assume that H1 is modeled as a random oracle. Then, if there
exists an adversary A that wins the EUF-CMA security game with advantage
ε, then there exists an adversary B with a run-time within a constant factor
of the run-time of A wins the EUF-KO security game with probability at least
ε − (qs(qs + qH1

)) · 2−2λ by making at most qH1
random oracle queries and at

most qs signing oracle queries.

The security proof of Theorem 3 is shown in Appendix B.3. To enable
SNARK-based applications, we define Loquat in the URS model by heuris-
tically instantiating the random oracle via cryptographic hash functions (see

22

Algorithm 4: Loquat Sign (Part I)

Input: Public parameter L-pp, secret key sk, and message M
Output: Signature σ

1 L-Sign
2 Phase 1. Commit to secret key and randomness
3 for j = 1 to n do

4 Randomly pick (r1,j , . . . , rm,j)
$← F∗

p.

5 for i = 1 to m do
6 Compute Ti,j ← L0(ri,j).

7 Assign cj ← (Kr1,j , r1,j , . . . ,Krm,j , rm,j) ∈ F2m
p and lift cj to

F2m.
8 ĉj(x)← Interpolate(H, cj). // ĉj ∈ F[X] and deg(ĉj) < 2m

9 Randomly sample r̂(x) ∈ F[X] with degree κ · 2η.
10 Compute ĉ′j(x)← ĉj(x) + ZH(x)r̂(x). // deg(ĉ′j) < 2m+ κ · 2η

11 for e = 1 to |U | do
12 leafe = Hc(ĉ

′
1(U [e]), . . . , ĉ′n(U [e]))

13 Commit to leaf = (leaf1, . . . , leaf|U |):
rootc ← MT.Commit(leaf).

14 Set σ1 ← (rootc, (T1,j , . . . , Tm,j)j∈[n]).

15 Phase 2. Compute residuosity symbols
16 Compute h1 ← H1(σ1,M) and

(I1,j , . . . , Im,j)j∈[n] ← Expand(h1), where Ii,j ∈ I.
17 for i = 1 to m do
18 for j = 1 to n do
19 Compute oi,j ← (K + Ii,j)ri,j .

20 Set σ2 ← (o1,j , . . . , om,j)j∈[n].

21 Phase 3. Compute witness vector for univariate sumcheck
22 Compute h2 ← H2(σ2, h1) and

((λ1,j , . . . , λm,j), ϵj)j∈[n] ← Expand(h2), where λi,j ∈ Fp and
ϵj ∈ F.

23 for j = 1 to n do
24 Assign qj ← (λ1,j , λ1,jI1,j , . . . , λm,j , λm,jIm,j) ∈ F2m

p and lift

qj to F2m.
25 q̂j(x)← Interpolate(H,qj). // q̂j ∈ F[X] and deg(q̂j) < 2m

26 Define f̂j(x)← ĉ′j(x) · q̂j(x). // deg(f̂j) < 4m+ κ · 2η

27 Define f̂(x) =
∑n

j=1 ϵj f̂j(x) // deg(f̂) = deg(f̂j) < 4m+ κ · 2η

28 Execute the (non-interactive) zero-knowledge univaraite
sumcheck protocol with respect to
((F, U,H, 4m+ κ · 2η, µ), f̂(x)), where µ ∈ F is lifted from∑n

j=1 ϵj(
∑m

i=1 λi,joi,j). Obtain partial signature πUS.

29 Output the signature σ := ((Ti,j , oi,j)i∈[m],j∈[n], πUS, πLDT).

23

Algorithm 5: Loquat Sign (Part II) - Univariate Sumcheck

1 L-Sign - Part II
2 Phase 3 (cont’d). Enable ZK of Univariate Sumcheck
3 Randomly sample ŝ(x) with degree 4m+ κ · 2η − 1.
4 Compute S ←

∑
a∈H ŝ(a).

5 Commit roots ← MT.Commit(ŝ|U).
6 Set σ3 ← (roots, S).

7 Phase 4. Univariate Sumcheck
8 Compute h3 ← H3(σ3, h2) and z ← Expand(h3).

9 Define f̂ ′ = zf̂(x) + ŝ(x). // deg(f̂)′ < 4m+ κ · 2η

10 Compute ĝ(x) and ĥ(x) such that f̂ ′(x) = ĝ(x) + ZH(x)ĥ(x).

// deg(ĝ) < 2m and deg(ĥ) < 2m+ κ · 2η

11 Commit rooth ← MT.Commit(ĥ|U).
12 Set σ4 ← (rooth).

13 Phase 5. Stacking Codeword for LDT
14 Compute h4 ← H4(σ4, h3) and e← Expand(h4), where e ∈ F8.

15 Define rational constraint p̂(x) = |H|f̂ ′−|H|ZH(x)ĥ(x)−(zµ+S)
|H|x .

// deg(p̂) < 2m− 1

16 Stack vertically ĉ′|U , ŝ|U , ĥ|U , p̂|U , denote the resulting matrix as

Π0 ∈ F4×|U |.

17 Define ρ1 = 2m+κ·2η+1
|U | , ρ2 = 4m+κ·2η

|U | , ρ3 = 2m+κ·2η
|U | , and

ρ4 = 2m−1
|U | .

18 for i = 1 to 4 do

19 Compute (Π1)i,y = y(ρ
∗−ρi)|U | · (Π0)i,y.

20 Obtain Π =
(
Π0

Π1

)
∈ F8×|U |.

21 Compute f (0) ← e⊤ ·Π such that f (0) ∈ RS[U, ρ∗].

24

Algorithm 6: Loquat Sign (Part III) - Low-Degree Test

1 L-Sign - Part III
2 Phase 6. LDT Folding

3 Define l̂(x) = x2η and denote U (0) = U .
4 for i = 0 to r do
5 Compute rootf(i) ← MT.Commit(f (i)).

6 Define σ5+i ← rootf(i) and h5+i ← H5+i(σ5+i, h4+i).

x(i) ← Expand(h5+i), where x(i) ∈ F.
7 for y ∈ U (i+1) do

8 Define S
(i)
y = {x ∈ U (i)|l̂(x) = y} // S

(i)
y is the

multiplicative coset of U (i) with |S(i)
y | = 2η

9 Set P̂
(i)
y (x) = Interpolate(S

(i)
y , f̂ (i)|

S
(i)
y
) // P̂

(i)
y (x)

agrees with f̂ (i) on the multiplicative coset S
(i)
y and

deg(P̂
(i)
y) = 2η − 1

10 f (i+1).append(P̂
(i)
y (x(0)))

11 if i+ 1 = r then
12 Let f (r) = f (i+1) be defined in previous steps, and

f̂ (r)(x) = Interpolate(U (r), f (r)).

13 Let d = ρ∗ · |U (r)| − 1
14 Commits to the first d+ 1 coefficients a = (a0, . . . , ad) of

f̂ (r)(x): h5+r ← H5+r(a, h4+r).
15 End the iteration

16 else
17 Continue the iteration with f (i+1).

18 Phase 7. LDT Query
19 Compute (S1, . . . , Sκ)← Expand(h5+r), where |Sj | = 2η and

Sj ⊂ U (0) such that there exists a y ∈ U (1), l̂(s) = y for all
s ∈ Sj .

20 Reveal leaf nodes for trees rootc, roots, rooth, denote the query
answers, corresponding Merkle roots, and auxiliary information
in univariate sumcheck as πUS.

21 for i = 1 to r − 1 do
22 Reveal κ · (2η − 1) leaves for f (i). // Using κ · 2η query

answers of f (i−1) can compute κ leaves of f (i). Then,

reveal the remaining leaves in the same coset would be

enough

23 Denote the query answers as πLDT.

24 Append coefficients a of f̂ (r) Merkle roots
rootf(0) , . . . , rootf(r−1) in LDT phase to πLDT.

25 The signature σ := ((Ti,j , oi,j)i∈[m],j∈[n], πUS, πLDT).

25

Algorithm 7: Loquat Verify

Input: Signature σ, public key pk, and message M
Output: 0/1

1 L-Verify
2 Step 1. Recompute Challenges
3 There exists a hash chain from the beginning to the end of the

signature protocol, where the verifier first obtains all Merkle
roots and plaintext messages from the signature, then computes
the hash output round-by-round. It then expand each round’s
hash output to obtain corresponding challenges if required.

4 Step 2. Recompute Leaf Nodes
5 for j = 1 to n do
6 Define qj ← (λ1,j , λ1,jI1,j , . . . , λm,j , λm,jIm,j) ∈ F2m

p and lift

qj to F2m.
7 q̂j(x)← Interpolate(H,qj).

8 Define f̂j(x)← ĉ′j(x) · q̂j(x).
9 for s ∈ Q do

10 Recompute (q̂j(s))j∈[n]. // Q being the query set

11 Recompute f̂j(s)← ĉ′j(s) · q̂j(s) and f̂(s) =
∑n

j=1 ϵj f̂
(
js).

12 Recompute p̂(s) = |H|(zf̂(s)+ŝ(s))−|H|ZH(s)ĥ(s)−(zµ+S)
|H|s , where

µ ∈ F is lifted from
∑n

j=1 ϵj(
∑m

i=1 λi,joi,j).

13 Recompute f (0)(s). // By reconstructing the interleaved

code Π and takes the random linear combination

14 Step 3. Checking Proofs
15 for i ∈ [m], j ∈ [n] do
16 if oi,j = 0 ∨ L0(oi,j) ̸= pkIi,j + Ti,j then
17 Reject the signature with output 0.

18 If there exists any authentication path that is not a valid opening
of the Merkle commitment, reject and output 0.

19 If the low-degree test is inconsistent, reject and output 0.

20 Otherwise, accept and output 1.

26

Remark 1). It is worth noting that the security of Loquat public-private keys
depends on the security of the Legendre PRF (analyzed in Appendix A), while
the EUF-KO and EUF-CMA security of Loquat solely rely on collision-resistant
hash functions.

Definition 13 (Loquat in the URS model). Given a security parameter λ,
Loquat in the URS model satisfies following security properties.

• Correctness. For any message m,

Pr

Verify(urs, pk,m, σ) = 1

∣∣∣∣∣∣
urs← {0, 1}poly(λ)
(sk, pk)← KeyGen(urs)
σ ← Sign(urs, sk,m)

 = 1

• EUF-CMA. For any PPT adversary A, it has negligible advantage in the
EUF-CMA game defined as:

AdvEUF-CMA
A = Pr

Verify(urs, pk,m∗, σ∗) = 1
∧ m∗ /∈ Q

∣∣∣∣∣∣
urs← {0, 1}poly(λ)
(sk, pk)← KeyGen(urs)
(m∗, σ∗)← ASign(urs,sk,·)

where ASign(urs,sk,·) denotes A’s access to a signing oracle with private key
sk and Q denotes the set of messages m that were queried to the signing
oracle by A.

4.3 Optimizing Loquat Protocol for SNARK-based Applications

We commence this section by presenting several improvements aimed at mini-
mizing the R1CS complexity of the verification algorithm of Loquat.

Decomposing Large Polynomials. We leverage the modular design of our
key identification scheme to decompose large polynomials, which enables the
univariate sumcheck to work on a smaller amortised polynomial.

Specifically, let m and n be two integers such that m × n = B, with m
being a power of 2. For j ∈ [n], the prover computes the witness polyno-

mial f̂j(x1,j , y1,j , . . . , xm,j , ymj
) = Kr1,jx1,j + r1,jx1,jy1,j + · · · +Krm,jxm,j +

rm,jxm,jym,j . Note that each f̂j has 2m coefficients wherem = B/n. The decom-
position step does not influence the soundness as the total number of residuosity
symbols being checked is still B.

Nonetheless, running n zkVPD protocols concurrently on small polynomials
does not yield efficiency improvements. To reduce the number of zkVPD proto-
cols, we explore the amortisation property of univariate sumcheck [11, Section
5.2], wherein n univariate sumchecks relations can be amortised through random
linear combinations (with additional soundness error of 1/|F|).

27

Efficient Verification of Quadratic Residuosity. Recall that to verify σe

for (e ∈ [N]), the SNARK prover needs to prove, in the circuit, that for all

i ∈ [m], j ∈ [n], L0(o
(e)
i,j) = pk

(e)
Ii,j

+ T
(e)
i,j . Notably, computing Legendre PRF in

the circuit can be relatively expensive. To circumvent the problem, we let the
SNARK prover perform the following tasks outside of the circuit.

1. For the Loquat signature σe = (. . . , (o
(e)
i,j)i∈[m],j∈[n], . . .), the SNARK prover

computes L0(o
(e)
i,j). There are two possible outputs 0 or 1 implying that o

(e)
i,j

is a quadratic residue (QR) or quadratic non-residue (QNR) modulo p.

(a) If L0(o
(e)
i,j) = 0, then either o

(e)
i,j = 0 (this case is avoided by checking if

o
(e)
i,j is a non-zero element), or o

(e)
i,j is a QR. Then, the SNARK prover

can find a s
(e)
i,j ∈ Fp such that (s

(e)
i,j)

2 = o
(e)
i,j (actually s

(e)
i,j and −s(e)i,j are

both candidates that can be squared to o
(e)
i,j , here we let the SNARK

prover pick the smallest s
(e)
i,j).

(b) If L0(o
(e)
i,j) = 1, then o

(e)
i,j must be a QNR. Then, we let the SNARK

prover compute t
(e)
i,j = o

(e)
i,j · α for some fixed QNR α that is defined in

public parameters. Thus, t
(e)
i,j is a QR, which implies that there exists a

corresponding s
(e)
i,j such that (s

(e)
i,j)

2 = t
(e)
i,j .

2. After finding s(e) = (s
(e)
i,j)i∈[m],j∈[n], the SNARK prover obtains σ′

e by ap-

pending s(e) to σe.

The witness is then defined as w = (σ′
1, . . . , σ

′
N).

To prevent the SNARK prover cheating on s
(e)
i,j , we let it prove in the circuit

that s
(e)
i,j · s

(e)
i,j = t

(e)
i,j , where (also in the circuit) t

(e)
i,j = o

(e)
i,j · (α · (pk

(e)
Ii,j

+ T
(e)
i,j) +

(1 − (pk
(e)
Ii,j

+ T
(e)
i,j))) for all e ∈ [N], i ∈ [m], j ∈ [n]. Note that the SNARK

prover can always check the validity of the Loquat signature before proving the
validity of Loquat to prevent DoS attack. Therefore, if it holds true that for all
b ∈ [B], L0(ob) = pkIb +Tb, we can find the square root sb of tb and prove in the
circuit that tb = sb · sb (mod p). It is worth emphasising that the computation
of sb values can be done outside of the circuit. Consequently, the total number
of constraints required to verify the quadratic residuosity of ob is 4B + 1.

Hash by Subset and Tree Cap. Since the answers to the queries for low-
degree test involve κ·2η leaf nodes, instead of treat each element as an individual
leaf node, the prover can hash 2η elements and use the single element as the
Merkle leaf. This reduces the number of leaves for each Merkle tree by a factor
of 2η. Furthermore, by the pigenhole principle, any set of authentication paths
must overlap towards the top of the tree. To take advantage of this, we modify
the Merkle tree by hashing the nodes in layer t together to form the root, instead
of computing the tree.

28

5 Applications of Loquat

5.1 ID-based Ring Signature

Buser et al. [23] introduced an ID-based ring signature whose security solely relies
on symmetric-key primitives. In this scheme, the Public Key Generator (PKG)
initiates the process by generating a master public-private key pair using the
key generation algorithm of a post-quantum signature scheme. A user wishing
to register sends their ID (i.e., the public key) to the PKG, which signs this ID
with its master private key, and returns the signature to the user to serve as
their signing key. To construct an ID-based ring signature, a user undertakes the
following steps:

1. The user selects n− 1 IDs and inserts their own ID at a random position to
form a ring of size n with the user’s index denoted by π.

2. The user accumulates n IDs using a Merkle tree and records the root.
3. Subsequently, the user produces a Non-Interactive Zero-Knowledge Proof of

Knowledge (NIZKPoK) demonstrating that:
– There exists a valid signing key with respect to IDπ in the ring. In other

words, the user proves that there exists a valid signature of IDπ under
the master public key.

– IDπ is accumulated in the Merkle tree.

The unforgeability is guaranteed by the (knowledge) soundness while the anonymity
is ensured by the zero-knowledge property of the employed NIZKPoK protocol.
By adopting Ligero++ [17] as the underlying NOIZKPoK, the ID-based ring
signature has size ranging between 0.885 and 1.898 MB for rings containing 26

members.
The original proposal highlighted two symmetric-key primitives based signa-

ture schemes for PKG: XMSS [22] and Picnic [64]. Their analysis showed that
verifying an XMSS signature requires 685 hash function calls, whereas a Picnic
signature verification demands 7,008 hash function calls and 2,680,560 multi-
plication gates. As discussed earlier (Section 1.1), employing zero-knowledge
protocols to prove signature validity mandates substituting the hash function
with algebraic alternatives due to the prohibitively large number of constraints
associated with standard hash functions. Unfortunately, such a substitution sig-
nificantly extends the key generation time of XMSS, particularly for large tree
size. In the case of Picnic, the scheme is burdened with an excessively high num-
ber of R1CS constraints. Compared to these schemes, Loquat appears as the
optimal solution for the PKG in the proposed ID-based ring signature frame-
work.

5.2 SNARK-based Aggregate Signature

We assume there exists a SNARK protocol with post-quantum security and
transparent setup (e.g., [2, 11, 17, 27]) denoted as ΠSNARK. The definition of
SNARKs can be found in Section 3.6.

29

The aggregator computes πSNARK = SNARK-P(SNARK-pp,w,x) which states the
validity of all signatures being aggregated. We define the aggregate signature
scheme that consists of the following six algorithms, where the setup algorithm
AggSetup is shown in Algorithm 8, while (KeyGen, Sign, Verify) are defined
the same as Loquat (Section 4.2). Algorithm 9 presents both Agg (aggregate
signature generation) and AggVerify (aggregate signature verification).

Algorithm 8: Aggregate Signature (Transparent) Setup

Input: Security parameter λ
Output: A-pp

1 AggSetup

2 Fix a QNR α ∈ Fp.
3 Generate public parameters for Loquat: L-pp← L-Setup(λ) and

public parameters for the SNARK protocol:
SNARK-pp← SNARK-Setup(λ).

4 Output A-pp = (α, L-pp, SNARK-pp).

Theorem 4. Let ΠA be the aggregate signature protocol shown in Algorithm 9.
Assume that the knowledge error, eSNARK, of the SNARK protocol used by ΠA

is negligible (in the random oracle model). If there exists an A that wins the
aggregate chosen-key security game (Definition 9) with advantage ϵ, then there
exists a PPT adversary B, who runs in time t+qs · tL-Sign+ tSNARK, that breaks the
unforgeability of Loquat in the URS model with probability at least ϵ − eSNARK
while making at most qs queries to the signing oracle of Loquat in the URS
model. We denote t as the running time of A, tL-Sign as the running time of
the signing oracle of Loquat, and tSNARK as the running time of the SNARK
extractor ESNARK.

The security proof of Theorem 4 is presented in Appendix B.4.

SNARK-based Aggregate Signature with Proof Recursion Given the
black-box access to a SNARK protocol with succinct verification (i.e., the num-
ber of R1CS constraints to represent the SNARK verifier is less than the R1CS
constraints that the SNARK verifier checks), we can construct an aggregate sig-
nature using SNARK proof recursive composition. The setup phase is the same
as Algorithm 8, while Agg and AggVerify with proof recursion is shown in Algo-
rithm 10 and 11. Note that we omit the indexer step if the underlying SNARK
is a preprocessing SNARK for the sake of simplicity.

Theorem 5. Let Π ′
A be the aggregate signature protocol shown in Algorithm 10.

Assume the knowledge error of the SNARK protocol with succinct verification is
eSNARK, which is negligible (in the URS model). If there exists an adversary A that

30

Algorithm 9: Aggregate Signature Generation and Verification

1 Agg
Input: Public parameters A-pp, arithmetic circuit of signature

verification algorithm C, signatures to be aggregated
{(σe,Me, pke)}e∈[N]

Output: Σ
2 Step 1. Prepare square roots (outside of the circuit)
3 for e = 1 to N do
4 for i ∈ [m], j ∈ [n] do

5 if L0(o
(e)
i,j) = 0 then

6 Define the smallest s
(e)
i,j such that (s

(e)
i,j)

2 = o
(e)
i,j .

7 else

8 Define the smallest s
(e)
i,j such that (s

(e)
i,j)

2 = o
(e)
i,j · α.

9 Define σ′
e = (σe, (s

(e)
i,j)i∈[m],j∈[n]).

10 Step 2. Define witness and statement for SNARK prover
11 Define w = (σ′

1, . . . , σ
′
N) and

x = (CN , (M1, pk1), . . . , (MN , pkN)), where CN denotes the
concatenation of N circuits with multiplication gates.

12 Step 3. Construct SNARK proof
13 Obtain πSNARK = (SNARK-pp,w,x) and set Σ = (πSNARK, o), where

o =
∏n

i=1

(∏B
b=1 o

(e)
i,j

)
is computed in the circuit.

14 Output Σ.

15 Verify
Input: Public parameters A-pp, arithmetic circuit of signature

verification algorithm C, an aggregate signature Σ, and a list
of message, public key pairs ((M1, pk1), . . . , (MN , pkN)).

Output: 0/1
16 Step 1. Check zero
17 Parse Σ = (πSNARK, o). If o = 0, then reject and output 0.

18 Step 2. Prepare the statement
19 Define x = (C, (M1, pk1), . . . , (MN , pkN)).

20 3. Verify SNARK proof
21 Compute b← SNARK-V(SNARK-pp, Σ,x).

22 Output b.

31

Algorithm 10: Aggregate Signature Generation

Input: A-pp,C, {(σe,Me, pke)}e∈[N]

Output: Σ
1 Agg

2 On input a set of public parameters A-pp, an R1CS instance C that
represents the arithmetic circuit of the Loquat verification for s
signatures, and a list of signature, message, public key pairs
{(σe,me, pke)}e∈[N], the algorithm performs the following tasks.

3 Step 1. Split the Inputs.
4 Split N signatures into γ chunks (Γ1, . . . , Γγ) such that:
5 for k = 1 to γ do
6 if k = 1 then
7 |Γk| · |C| > T
8 else
9 |Γk| · |C|+Rk′−1 > T

10 where T denotes the recursion threshold.
11 Denote each chunk of the message public key pairs as (M,PK)k,

and the circuit for verifying each chunck of circuit as Ck for
k ∈ [γ].

12 Step 2. Prepare Square roots (Outside of the Circuit).
13 Same as in Algorithm 9.

14 Step 3. First Aggregation
15 Define w1 = Γ1 and x1 = (C1, (M,PK)1).
16 Compute π1 = SNARK-P(SNARK-pp,w1,x1).

17 4. Recursive Aggregation
18 for k = 2 to γ do
19 Define w = (Γk, πk−1) and

x = ((Ck,Rk−1), ((M,PK)k), xk−1)), where Rk−1 denotes
the circuit presentation of the (k − 1)-th SNARK verifier:
SNARK-V(SNARK-pp, πk−1, xk−1)).

20 Compute πk = SNARK-P(SNARK-pp,wk,xk).

21 Define Σ = (πγ , o) and output Σ.

32

Algorithm 11: Aggregate Signature Verification

Input: A-pp, Σ,Cγ , {(Me, pke)}e∈[N]

Output: 0/1
1 Verify

2 On input a set of public parameters A-pp, an aggregate signature Σ,
an R1CS instance represents the Loquat verifier, and a list of
message, public key pairs ((M1, pk1), . . . , (MN , pkN)), the algorithm
does the following.

3 Step 1. Check Zero
4 Parse Σ = (πγ , o).
5 If o = 0, then reject and output 0.

6 Step 2. Prepare the statement
7 Define x = ((Cγ ,Rγ), (M1, pk1), . . . , (MN , pkN)).

8 2. Verify SNARK proof
9 Compute b← SNARK-V(SNARK-pp, Σ,x).

10 Output b.

wins the aggregate chosen-key security game (Definition 9), then there exists a
PPT adversary B, who runs in time t + qs · tL-Sign + k · tSNARK, that breaks the
unforgeability of Loquat in the URS model with probability at least ϵ−k ·eSNARK,
while making at most qs queries to the signing oracle of Loquat in the URS
model. We denote t as the running time of A, tL-Sign as the running time of the
signing oracle of Loquat, tSNARK as the running time of the SNARK extractor
ESNARK, and k as the total number of the recursion.

The proof of Theorem 5 is shown in Appendix B.5.

6 Evaluation

6.1 Choice of Parameters

Choice of the field. We choose a prime field such that finding the β-approximate
witness for the Legendre PRF relation is hard. In particular, we follow the choice
in LegRoast [16] to set p = 2127 − 1. This allows for 128-bit security level for
the Legendre PRF. The corresponding field choice of univariate sumcheck and
low-degree test is Fp2 , which contains sufficiently large smooth multiplicative
subgroup for the code domain U . We note that a smaller extension field such
as Fq2 for q = 261 − 1 can achieve 100+ bit security [65]. However, owing to
the field inconsistency problem, we can only choose Fp2 that enables simple and
efficient field lifting.

Choice of parameters for relaxed Legendre PRF relation. In order to
make sure β-approximate Legendre PRF relation is as hard as Legendre PRF

33

relation, we need to choose L and β such that 2p ·Pr[B(L, 1/2+ 1/
√
p+2/p) >

(1 − β)L] ≤ 2−λ, where B(·, ·) denotes the binomial distribution [16]. Since
p = 2127 − 1 and for λ = 128, we can roughly re-write the inequality so that
Pr[B(L, 1/2 + 1/

√
p + 2/p) > (1 − β)L] ≤ 2−128. In the binomial distribu-

tion, the winning probability is dominated by 1/2, thus, the inequality becomes
Pr[B(L, 1/2) > (1−β)L] ≤ 2−128. Then, following cumulative distribution func-

tion, Pr[B(L, 1/2) > (1 − β)L] = 1 −
∑(1−β)L

i=0

((
L
i

)
·
(
1
2

)L)
. We observe that

with the same choice of β = 0.449 and L = 32768 = 215 as in LegRoast, the
inequality holds. This implies our choice of B = 128 for 128-bit security. For the
choice of m and n such that m× n = B, the lower bound on m is 16 since LDT
must run on polynomials with degree larger than 16.

Choice of parameters for univariate sumcheck and low-degree test. We
set the maximum code rate to ρ∗ = 1/16 and explore various query complexi-
ties in low-degree testing, tailored to the desired security level. Drawing from the
soundness conjecture proposed in FRI [8, Conjecture 1.5], we introduce Loquat,
which rejects codes that maximally deviate from the desired code rate (a prop-
erty holds with high probability for random code). Additionally, we present Lo-
quat*, which builds upon the proven soundness bounds of FRI, as detailed in
[10, Theorem 8.2]. Loquat* can be considered as a more conservative approach
compared to Loquat. For both protocols, performance evaluations at security
levels of 80, 100, and 128 are provided, as illustrated in Table 3.

6.2 Performance of Loquat

In our implementation of Loquat, we offer two options for hash functions:
the standard SHA3-256 and SHAKE-128, as well as the algebraic hash func-
tion Griffin [39]. For Griffin, we opt for a state size of 4 for compression and 3
for expansion, both configurations featuring a capacity of 2. Notably, the time
required for key generation remains constant at 0.1 seconds, regardless of the
selected security level or hash function. The setup time varies depending on the
hash function choice: utilising standard hash functions results in a setup time of
0.35 seconds, whereas using the algebraic hash function Griffin extends the setup
time to 1.34 seconds. Our implementation leverages Python and the Sagemath
library. All performance benchmarks were conducted on a 2021 MacBook Pro
equipped with an M1 Max chip and 32GB of RAM using a single thread.

Given our choice of Griffin parameters, the R1CS constraints for each com-
pression permutation are 110, while the constraints for each expansion permu-
tation are 88. We primarily consider Loquat with the conjectured security of
low-degree testing for computing R1CS constraints. Specifically, verifying a sin-
gle Loquat-80 signature requires 102,089 R1CS constraints, approximately 3.5
times larger than a SHA256 circuit. Among these, 95,480 constraints stem from
evaluating hash functions, while the remaining 6,609 arise from algebraic opera-
tions. In Fig. 1, we show the required R1CS constraints for verifying Loquat-100

34

Security Level κ |σ| (KB) tP (s) tV (s) Hash
Loquat-80 20 37 4.64 0.16

SHA/SHAKELoquat-100 25 46 4.77 0.19
Loquat-128 32 57 5.04 0.21
Loquat-80 20 37 104 7.40

GriffinLoquat-100 25 46 105 9.15
Loquat-128 32 57 105 11
Loquat*-80 40 75 11.51 0.27

SHA/SHAKELoquat*-100 50 90 12.08 0.31
Loquat*-128 64 114 13.22 0.37
Loquat*-80 40 75 209 15

GriffinLoquat*-100 50 90 210 18
Loquat*-128 64 114 214 25

Table 3. Performance Evaluation of Loquat. κ is the query complexity, |σ| is the
signature size, tP and tV are the proving and verification times, respectively.

signatures as an example. Detailed analysis of the R1CS constraints can be found
in Appendix C.

6.3 Performance of Loquat in ID-based Ring Signature

We compare Loquat with the of these three schemes in Table 4. To ensure a
fair comparison, the R1CS constraints for Loquat-100 are calculated using the
Poseidon [41] hash function with 600 constraints per permutation, as employed
in the original paper.

Sig tKG(s) |SID|(KB) R1CS Max N
|σ| (MB) (est.)

N = 26 N = 212 N = 220

Picnic [64] ≈ 0 167 6.88M unli. 1.898 1.899 1.900
XMSS [22] 3355 4.899 431,480 220 0.885 0.889 0.893
Loquat-100 0.1 46 648,549 unli. 0.973 0.977 0.982

Table 4. Instantiate IDRS [23] with Various Signatures. tKG= Master Key Generation
Time, |SID| = User Signing Key Size, N = ring size, |σ| = ID-based Ring Signature
Size.

6.4 Performance of SNARK-based Aggregate Signature

The performance of our aggregate signature varies depending on the underlying
SNARKs. For instance, with the state-of-the-art transparent SNARK named

35

Fig. 1. R1CS Constraints for Verifying Loquat Signatures

Ligero++ [17], proving 27 SHA256 functions (equal to aggregate 35 Loquat-
100 signatures) takes approximately 100 seconds for proving and 15 seconds for
verifying, with a proof size of 158 KB, as reported in the original Ligero++ paper.
We further instantiate the underlying SNARK with Aurora [11] and Fractal
[27] and utilize the open-source implementation in libiop [1] to evaluate the
performance. All tests are done locally on a Virtual Machine with 28GB memory
restrictions.

Aurora Fractal Fractal-R (est.)
n = 4 8 16 32 64 4 8 16 4 8 16 32

tI (s) - - - - - 33 88 218 5K 13K 32K 32K
tP (s) 14 33 67 160 553 119 251 556 3K 6K 14K 14K
tV (s) 2.4 4.3 10 20 62 0.2 0.47 0.78 2.4 5.64 9.6 9.6
|σ| (KB) 126 137 182 197 207 131 140 145 131 140 145 145

Table 5. Performance of Aggregating Loquat Using Aurora, Fractal, and Recursive
Fractal (Fractal-R). tI = indexer time, tP = proving time, tV = verification time, n =
the number of signatures being aggregated.

We compare the aggregate signature with OTS/STARK [50] and Chipmunk
[33], the most related work with ours. To facilitate comparison, we will make
the following assumption: the performances of the Aurora-based and Fractal-
based aggregate signature schemes follow the asymptotic result. This assumption

36

enables us to extrapolate the existing performance results and make a meaningful
comparison.

OTS/STARK Chipmunk Loquat/A Loquat/FR
n =
128

1024 128 1024 128 1024 128 1024

tI (s) - - - - - - 32K 32K
tP (s) 2.5 19.7 - 0.57 796 7K 14K 14K
tV (s) - - - 0.0077 61 487 9.6 9.6
|σ| (KB) 68 83 - 118 212 235 145 145

Table 6. Comparison between Various Aggregate/Multi- Signature Schemes. tI =
indexer time, tP = proving time, tV = verification time, n = the number of signatures
being aggregated.

We address that the comparison between our aggregate signature and the
OTS/STARK [50] is not entirely apples-to-apples, given that one-time signatures
do not adhere to the standard definition of signatures, and the task of constant
key updating can be challenging to implement in real-world applications. Fur-
thermore, Chipmunk is a multi-signature scheme that can be seen as a special
type of the aggregate signature, where the signers are limited to sign on the same
message. While an aggregate signature can function as a multi-signature, the re-
verse is not true. Although our aggregate signature’s performance may not sur-
pass existing solutions, it benefits from distinct security assumptions compared
to Chipmunk and offers flexibility for signers to endorse distinct messages.

However, as demonstrated in Table 5 and 6, the practicality of our SNARK-
based aggregate signatures is limited to scenarios involving a small number of
signatures. These scenarios have certain real-world applications. For example, in
a public key infrastructure, users’ signatures are often accompanied by a chain of
n certificates. Since n tends to be relatively small, aggregating these signatures
can reduce the storage requirement in the user end. Similarly, in the secure BGP
protocol, routers receive a list of n signatures verifying a specific network path.
Here, an aggregate signature scheme could effectively decrease the bandwidth
usage.

7 Conclusion

In this paper, we presented Loquat, a post-quantum signature scheme based
on the Legendre PRF. We demonstrated a novel protocol design method which
reduces the task of designing key identification protocol for the Legendre PRF
to the task of designing multivariate polynomial commitment, a commitment
scheme that can be constructed using univariate sumcheck [11]. Our method
results in a SNARK-friendly signature scheme that can be applied in SNARK-

37

based applications such as ID-based ring signatures [23] and SNARK-based ag-
gregate signatures.

Future Work We propose the following interesting directions for future works:

1. The signature size and signing/verification time can be improved by replac-
ing the Legendre PRF with more generalized power-residue PRFs. However,
the efficient circuit evaluation of the Legendre PRF presented in Section 4.3
cannot be naively applied to power-residue PRFs.

2. The SNARK-based aggregate signature proposed in this paper is rather
generic. Tailoring the SNARK for faster Loquat aggregation is also an in-
teresting direction for future work.

3. Applying more efficient low-degree tests, such as STIR [3], to replace FRI
[8] in Loquat could potentially lead to better signature sizes. We leave this
as future work.

Acknowledgement.

We sincerely thank Veronika Kuchta and Raphael Phan for their help with the
early draft of this paper. We also wish to express our gratitude to the anonymous
reviewers for their invaluable feedback, which greatly helped improve this pa-
per. This paper is supported by Australian Research Council (ARC) Discovery
Projects DP18180102199 and DP220101234.

References

1. libiop. https://github.com/scipr-lab/libiop (2014)
2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-

linear arguments without a trusted setup. In: Proceedings of the 2017 ACM CCS.
pp. 2087–2104 (2017)

3. Arnon, G., Chiesa, A., Fenzi, G., Yogev, E.: Stir: Reed–solomon proximity testing
with fewer queries. Cryptology ePrint Archive (2024)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of np.
JACM 45(1), 70–122 (1998)

5. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in poly-
logarithmic time. In: Proceedings of the twenty-third annual ACM ToC. pp. 21–32
(1991)

6. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.:
Banquet: Short and fast signatures from aes. In: PKC. pp. 266–297 (2021)

7. Belling, A., Soleimanian, A., Bégassat, O.: Recursion over public-coin interactive
proof systems; faster hash verification. In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1422–1436 (2023)

8. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interactive
oracle proofs of proximity. In: 45th icalp. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

9. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive (2018)

38

https://github.com/scipr-lab/libiop

10. Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for
reed–solomon codes. Journal of the ACM (2023)

11. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Au-
rora: Transparent succinct arguments for r1cs. In: Eurocrypt. pp. 103–128. Springer
(2019)

12. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: TCC. pp.
31–60. Springer (2016)

13. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: Sphincs:
practical stateless hash-based signatures. In: Eurocrypt. pp. 368–397. Springer
(2015)

14. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The sphincs+ signature framework. In: Proceedings of the 2019 ACM CCS. pp.
2129–2146 (2019)

15. Beullens, W., Beyne, T., Udovenko, A., Vitto, G.: Cryptanalysis of the legendre
prf and generalizations. IACR Transactions on Symmetric Cryptology pp. 313–330
(2020)

16. Beullens, W., de Saint Guilhem, C.D.: Legroast: Efficient post-quantum signatures
from the legendre prf. In: PQCrypto. pp. 130–150. Springer (2020)

17. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.:
Ligero++: a new optimized sublinear iop. In: Proceedings of the 2020 ACM CCS.
pp. 2025–2038 (2020)

18. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Eurocrypt. pp. 416–432. Springer (2003)

19. Boneh, D., Kim, S.: One-time and interactive aggregate signatures from lattices.
preprint 4 (2020)

20. Boschini, C., Takahashi, A., Tibouchi, M.: Musig-l: lattice-based multi-signature
with single-round online phase. In: Annual International Cryptology Conference.
pp. 276–305. Springer (2022)

21. Boudgoust, K., Takahashi, A.: Sequential half-aggregation of lattice-based signa-
tures. Cryptology ePrint Archive (2023)

22. Buchmann, J., Dahmen, E., Hülsing, A.: Xmss-a practical forward secure signa-
ture scheme based on minimal security assumptions. In: PQCrypto. pp. 117–129.
Springer (2011)

23. Buser, M., Liu, J.K., Steinfeld, R., Sakzad, A.: Post-quantum id-based ring signa-
tures from symmetric-key primitives. In: ACNS. pp. 892–912. Springer (2022)

24. Byott, N.P., Chapman, R.J.: Power sums over finite subspaces of a field. Finite
Fields and Their Applications 5(3), 254–265 (1999)

25. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Proceedings of the 2017 ACM CCS. pp. 1825–1842
(2017)

26. Chiesa, A., Liu, S.: On the impossibility of probabilistic proofs in relativized worlds.
Cryptology ePrint Archive (2019)

27. Chiesa, A., Ojha, D., Spooner, N.: Fractal: Post-quantum and transparent recursive
proofs from holography. In: Eurocrypt. pp. 769–793. Springer (2020)

28. van Dam, W., Hallgren, S.: Efficient quantum algorithms for shifted quadratic
character problems. arXiv preprint quant-ph/0011067 (2000)

29. Damg̊ard, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and
multi-signatures and trapdoor commitment from lattices. Journal of Cryptology
35(2), 14 (2022)

39

30. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter
signatures based on tailor-made minimalist symmetric-key crypto. In: Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
pp. 843–857 (2022)

31. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 238–268 (2018)

32. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Conference on the theory and application of cryptographic
techniques. pp. 186–194. Springer (1986)

33. Fleischhacker, N., Herold, G., Simkin, M., Zhang, Z.: Chipmunk: Better synchro-
nized multi-signatures from lattices. In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. pp. 386–400 (2023)

34. Fleischhacker, N., Simkin, M., Zhang, Z.: Squirrel: efficient synchronized multi-
signatures from lattices. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1109–1123 (2022)

35. Frixons, P., Schrottenloher, A.: Quantum security of the legendre prf. Mathemat-
ical Cryptology 1(2), 52–69 (2021)

36. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. JACM 62(4), 1–64 (2015)

37. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM JoC 18(1), 186–208 (1989)

38. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM JoC 17(2), 281–308 (1988)

39. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: Horst
meets fluid-spn: Griffin for zero-knowledge applications. In: Annual International
Cryptology Conference. pp. 573–606. Springer (2023)

40. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced concrete: A fast hash function for verifiable computation.
In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Commu-
nications Security. pp. 1323–1335 (2022)

41. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: A
new hash function for {Zero-Knowledge} proof systems. In: 30th USENIX Security.
pp. 519–535 (2021)

42. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: Mpc-friendly sym-
metric key primitives. In: Proceedings of the 2016 ACM CCS. pp. 430–443 (2016)

43. Hsiang, J.H., Fu, S., Kuo, P.C., Cheng, C.M.: Pqscale: A post-quantum signature
aggregation algorithm (2023)

44. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for xmss mt. In: Inter-
national conference on availability, reliability, and security. pp. 194–208. Springer
(2013)

45. Kales, D., Zaverucha, G.: Improving the performance of the picnic signature
scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems
pp. 154–188 (2020)

46. Kaludjerović, N., Kleinjung, T., Kostic, D.: Improved key recovery on the legendre
prf. Cryptology ePrint Archive (2020)

47. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Asiacrypt. pp. 177–194. Springer (2010)

48. Kattis, A., Panarin, K., Vlasov, A.: Redshift: transparent snarks from list polyno-
mial commitment iops. Cryptology ePrint Archive (2019)

40

49. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with
applications to post-quantum signatures. In: Proceedings of the 2018 ACM CCS.
pp. 525–537 (2018)

50. Khaburzaniya, I., Chalkias, K., Lewi, K., Malvai, H.: Aggregating and thresholdiz-
ing hash-based signatures using starks. In: AsiaCCS. ACM (2022)

51. Khovratovich, D.: Key recovery attacks on the legendre prfs within the birthday
bound. Cryptology ePrint Archive (2019)

52. Lamport, L.: Constructing digital signatures from a one way function (1979)
53. Lin, S.J., Chung, W.H., Han, Y.S.: Novel polynomial basis and its application to

reed-solomon erasure codes. In: 2014 ieee 55th FOCS. pp. 316–325. IEEE (2014)
54. May, A., Zweydinger, F.: Legendre prf (multiple) key attacks and the power of

preprocessing. In: 2022 IEEE 35th Computer Security Foundations Symposium
(CSF). pp. 428–438. IEEE (2022)

55. Merkle, R.C.: A certified digital signature. In: Asiacrypt. pp. 218–238. Springer
(1989)

56. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. Post-Quantum Cryptogra-
phy Project of NIST (2020)

57. Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs
for delegating computation. In: Proceedings of the 48th ACM ToC. pp. 255–340
(2016)

58. Delpech de Saint Guilhem, C., Orsini, E., Tanguy, T.: Limbo: Efficient zero-
knowledge mpcith-based arguments. In: ACM CCS. pp. 3022–3036 (2021)

59. de Saint Guilhem, C.D., De Meyer, L., Orsini, E., Smart, N.P.: Bbq: using aes in
picnic signatures. In: SAC. pp. 669–692. Springer (2019)

60. Seres, I.A., Horváth, M., Burcsi, P.: The legendre pseudorandom function as a
multivariate quadratic cryptosystem: security and applications. Applicable Algebra
in Engineering, Communication and Computing pp. 1–31 (2023)

61. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review 41(2), 303–332 (1999)

62. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-prime: a standard specification
(sok). Cryptology ePrint Archive (2020)

63. Van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift
problems. SIAM Journal on Computing 36(3), 763–778 (2006)

64. Zaverucha, G., Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S.,
Rechberger, C., Slamanig, D., Katz, J., Wang, X., Kolesnikov, V., Kales, D.: Picnic.
Technical report, National Institute of Standards and Technology (2020)

65. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and
its applications to zero knowledge proof. In: 2020 IEEE S&P. pp. 859–876. IEEE
(2020)

Appendix

A Security of the Legendre PRF

Let us first define the Shifted Legendre Symbol Problem (SLSP) as follows.

Problem 1. (Shifted Legendre Symbol Problem [28]) Let p be an odd prime and
K be a uniformly random value in Fp. Given access to an oracle O that on input

a ∈ Fp, computes O(a) =
(

K+a
p

)
, find K.

41

It is known that if the adversary is allowed to query O in a quantum mech-
anism superposition, then a polynomial-time quantum algorithm can determine
K and break the pseudo-randomness of the PRF, using a single query [28, 63].
If the oracle can only be queried classically, Khovratovich [51] showed a mem-
oryless collision search algorithm with O(

√
p log p) Legendre evaluations when√

p log p queries are available. Recent works concurrently improved the attack
presented in [51], either by exploiting the multiplicative property of the Legendre
function [15, 46] or by allowing input-independent pre-computations [54].

In particular, if the number of oracle queries is bounded by L ≤ 4√p, [15]
presented a table-based collision search algorithm that recovers the hidden shift

with a time complexity of O(p log2 p
L2) Legendre symbol evaluations and a mem-

ory cost of O(L2). [46] shows a similar table-based collision attack that further
reduces the run time complexity to O(

√
p log log p) on a Θ(log p)-bit machine by

using
4
√
p log2 p log log p queries and O(

√
p log log p log p) memory. By allowing

pre-computation [54], the query complexity can be brought down (from
√
p log p)

to O(3√p), with O(
3
√
p2) (offline) run time and O(3√p) memory. There also exists

a multiple-key attack against the Legendre PRF with O(
√
mp) time/query com-

plexity to recover m hidden shifts [54]. Another work [60] shows that recovering
the hidden shift of the Legendre PRF is equivalent to solving a specific family of
multivariate quadratic (MQ) equation systems, and algebraic cryptanalysis does
not improve previous results.

With classical queries to the PRF, if we allow the model of classical memory
with quantum random access (QRACM), the query complexity, time complexity
and memory complexity (in QRACM) of [46] can be improved to O(6√p), O(3√p),
and O(3√p), respectively. However, since there is no practical and scalable imple-
mentation of QRACM at the moment, [35] improved the attack by eliminating
the requirement of QRACM. They showed that there exists a quantum attack on

the SLSP with 2O(
√

log2 p) 3√p time complexity, while using 3√p classical queries
and a subexponential number of qubits memory.

Problem 2. (Key Recovery of Loquat) Let p be an odd prime. Given L random,
uncontrolled PRF evaluations (i.e., public key) to the function LK(·) : Fp 7→
{0, 1} for some secret K ∈ Fp, find K.

It is easy to see that the key recovery of Loquat is at least as hard as the
shifted Legendre symbol problem. Furthermore, the key recovery of Loquat im-
poses additional constraints upon the adversary, making many attacks discussed
previously more unpractical. Notably, the polynomial-time quantum attacks in-
troduced in [28, 63] become infeasible in the context of Loquat key recovery. This
is due to the adversary’s inability to perform quantum superposition queries on
the PRF.

Moreover, if the number of oracle calls is bounded by L, the complexi-

ties of key recovery attacks in [51, 15, 46] become O(p log p
L), O(p log2 p

L2) and

O(p log p log log p
L2), respectively. These complexities are exponential in relation to

the security parameter, especially when L is sufficiently small. It is crucial to

42

emphasise that the enhancements proposed in [15, 46] are reliant on the sequen-
tial characteristics of Legendre PRF queries. Consequently, it remains an open
question whether these attacks can be extended to random point queries. In ad-
dition, it is worth noting that the attacks described in [35, 54] are not applicable,
as both of them rely on a substantial number of oracle queries.

B Security Proofs

B.1 Proof of Theorem 1

We provide formal security analysis to our main theorem (Theorem 1) in this
section. Note that the soundness analysis provided here is for IOP standard
soundness. For state-restoration soundness, we refer the readers to

Proof. Completeness.We begin by showing the completeness of the protocol. If
the polynomials are computed honestly in the protocol, then (x,w) ∈ RUS where

x = (F, U,H, 4B+κ·2η,
∑B

b=1 λbob) and w = ĉ′(x)· q̂(x). It is not hard to observe

that the degree of f̂(x) = ĉ′(x)· q̂(x) is indeed less than 4B+κ·2η since deg(ĉ′) =
2B + κ · 2η and deg(q̂) = 2B − 1, where ĉ′(x) = ĉ(x) + ZH(x)r̂(x). Moreover,∑

a∈H ĉ′(a) · q̂(a) =
∑

a∈H ĉ(a) · q̂(a) since 0 =
∑

a∈H ZH(a)r̂(a). Recall that
ĉ|H = (Kr1, . . . ,KrB , r1, . . . , rB) and q̂|H = (λ1, . . . , λB , λ1I1, . . . , λBIB), for
challenges Ib ∈ I ′. Then we can write

∑
a∈H ĉ(a) · q̂(a) as the sum of the entry-

wise product between two vectors. That is,∑
a∈H

ĉ′(a) · q̂(a) =
∑
a∈H

ĉ(a) · q̂(a)

= (Kr1, r1, . . . ,KrB , rB) ◦ (λ1, λ1I1, . . . , λB , λBIB)

= Kr1λ1 + r1λ1I1 + · · ·+KrBλB + rBλBIB

=

B∑
b=1

λb(K + Ib)rb

=

B∑
b=1

λbob

provided that ob = (K+Ib)rb for all b ∈ [1, B], and ◦ denotes the entry-wise prod-
uct between vectors. Finally, L0(ob) = L0(K + Ib) + L0(rb) owing to the multi-
plicative homomorphism of the Legendre PRF, it holds that L0(ob) = LK(Ib)+Tb

provided that Tb = L0(rb) for all b ∈ [B]. The completeness holds.

Knowledge SoundnessWe now show the (standard) proof-of-knowledge of the
IOP protocol for β-approximate Legendre PRF relation RβL. Given an instance

LK(I), if ⟨P̃(LK(I)),V(LK(I))⟩ outputs 1 (i.e., V accepts) with non-negligible
probability ε, then there exists an extractor E which extracts a β-approximate
Legendre PRF witness K∗ such that (K∗,LK(I)) ∈ RβL with probability at

43

least ε − ϵUS − (1 − β)B − 1/p, where ϵUS is the knowledge error of the zero-
knowledge univariate sumcheck.

If the verifier accepts, then there exists an extractor of the univariate sum-
check protocol that extracts a valid witness polynomial ĉ′

∗
with probability at

least ε − ϵUS such that ((F, U,H, 4B + κ · 2η,
∑B

b=1 λbo
∗
b), (ĉ

′∗ · q̂)) ∈ RUS, where
q̂(x) = Interpolate(H,q) for vector q = (λ1, λ1I1, . . . , λB , λBIB) that is com-
puted from V’s messages.

Namely,
∑B

b=1 λbo
∗
b =

∑
a∈H ĉ′∗(a) · q̂(a) and deg(ĉ′∗ · q̂) < 4B + κ · 2η.

According to the protocol, we have following equations:

B∑
b=1

λbo
∗
b =

∑
a∈H

ĉ′∗(a) · q̂(a)

= (c∗1, r
∗
1 , . . . c

∗
B , r

∗
B) ◦ (λ1, λ1I1, . . . , λB , λBIB)

= λ1c
∗
1 + λ1I1r

∗
1 + · · ·+ λBc

∗
B + λBIBr

∗
B

= λ1(c
∗
1 + I1r

∗
1) + · · ·+ λB(c

∗
B + IBr

∗
B)

Since (λ1, . . . , λB) are random scalars sampled uniformly from Fp after the

prover sends (o∗1, . . . , o
∗
B) in the second round, then

∑B
b=1 λbo

∗
b = λ1(c

∗
1+I1r

∗
1)+

· · · + λ1(c
∗
B + IBr

∗
B) implies that for all b ∈ [B], λbo

∗
b = λb(c

∗
b + Ibr

∗
b). In other

words, for each b ∈ [B], o∗b = c∗b + Ibr
∗
b with probability at least ε− ϵUS − 1/p.

E computes for b ∈ [B],K∗
b =

c∗b
r∗b
. We assume that for all b ∈ [B], (K∗

b ,LK(I)) /∈
RβL and show the probability that L0(o

∗
b) = LK(Ib) + T ∗

b holds for all b ∈ [B]
is upper-bounded by (1− β)B .

Given K∗
b =

c∗b
r∗b
, we can re-write o∗b as o∗b = (K∗

b + Ib)r
∗
b . Since L0(o

∗
b) =

LK(Ib) + T ∗
b for all b ∈ [B], we have LK∗

b
(IB) + L0(r

∗
b) = LK(Ib) + T ∗

b . If K
∗
b

is not a β-approximate witness, then we have the following inequality for all
b ∈ [B],

βbL > βL (3)

where βbL = dH
((
LK∗

b
(I) + L0(r

∗
b), . . . ,L0(r

∗
b

)
, (T ∗

b ,LK(IB))
)
and dH denotes

the Hamming distance.
In other words, L0(o

∗
b) = T ∗

b + LK(Ib) and (K∗
b ,LK(I)) /∈ RβL implies that

the challenge set I ′ is chosen from the fraction of (1 − βb)L for all b ∈ [B].
Recall that I ′ is uniformly chosen after P̃ sends the oracle codeword ĉ′∗|U , then
the probability that for all b ∈ [1, B], Ib ∈ I ′ is from the fraction (1 − βb)L is∏B

b=1(1 − βb) which is strictly less than (1 − β)B . Thus, the probability that
E fails to extract a β-approximate witness from a valid transcript generated by
⟨P̃(LK(I)),V(LK(I))⟩ is at most ϵUS + 1/p+ (1− β)B .

Proof Length. The proof length is the total number of bits sent from the prover
P to the verifier V. In the first round, the prover sends an oracle codeword
f1 = ĉ′|U and a plaintext message p1 = (T1, . . . , TB) which has |U | · |F| + B
bits (i.e., each Tb is one bit since it is the output of the Legendre PRF), where

44

|F| denotes the bit-length of the field elements. Then, in the second round, the
prover sends a plaintext message p2 = (o1, . . . , oB) where ob ∈ Fp. Thus, the
total bit length for the second round is B ·log p. From the third round, the prover
and the verifier start to simulate the univariate sumcheck protocol, which has
total bit length pUS. Hence, the total proof length is |U | · |F|+B+B · log p+ pUS
bits.

Query Complexity. The query complexity denotes the total number of loca-
tions queried by the verifier across all of the prover’s messages. In the first round,
the prover sends an oracle codeword f1 which will later be queried at κ · 2η lo-
cations in order to perform the low-degree test. Hence, the query complexity is
κ · 2η + qUS.

Prover Complexity and Verifier Complexity. The prover in Algorithm
1 needs to interpolate and evaluate polynomials ĉ′ and q̂, which has costs of
2 · FFT (IFFT (|H|), |U |). It computes B Legendre PRFs (i.e., Tb = L0(rb) for
b ∈ [B]), which has B ·O(log p) arithmetic complexity. The verifier additionally
computes B Legendre PRF (i.e., checks if L0(ob) = L0(Ib) + Tb for all b ∈ [B]),
which costs B ·O(log p). Note that we omits the operations required to compute
ZH(x) since for a fixed multiplicative coset H, it can be computed in an offline
phase.

Zero-Knowledge. We present a construction of the simulator S which is given
the straight-line access (i.e., no rewinding) to a malicious verifier Ṽ, it perfectly
simulates Ṽ’s view in the real protocol.

The simulator S picks 2B field elements c = (c1, . . . , c2B) uniformly at ran-
dom and computes ĉ = Interpolate(H, c). It outputs f∗1 = ĉ|U . Given the
second round random challenge I ′ from Ṽ, it computes o∗b = cb + cb+1Ib and
T ∗
b = L0(o

∗
b)−LK(Ib). Outputs the first round message f∗1 and p∗1 = (T1, . . . , TB)

and follows the description of the protocol.
With κ · 2η queries, the verifier cannot distinguish between f∗1 (a random

polynomial) and f1 (masked by a random polynomial r̂(x) with degree κ · 2η).
T ∗
b = L0(o

∗
b)−LK(Ib) for b ∈ [B] are indistinguishable from Tb = L0(rb) since rb

are chosen uniformly at random from Fp. For the second round, o∗b = cb+ cb+1Ib

and ob = Krb + Ibrb are indistinguishable owing to rb
$← Fp. The rest of the

proof follows from the zero-knowledge univariate sumcheck. ⊓⊔

B.2 Proof of Lemma 2

We show the restricted state-restoration soundness of our key identification pro-
tocol as shown in Algorithm 1 (with zero-knowledge enabled from Remark 3).

Proof. In the restricted state-restoration attack, the malicious prover P̃ commits
to the messages in initial round (i.e., f1 = ĉ′∗|U and p1 = (T ∗

1 , . . . , T
∗
B)) and

starts its interaction with V. Then, in all later rounds, P̃ can rewind the verifier
to any round (except for the initial round), and the verifier continue with fresh

45

randomness. For any b-bound P̃ to convince the verifier (without the knowledge
of K), it must pass the following checks:

1. VUS(F, U,H, 4B + κ · 2η,
∑B

b=1 λbo
∗
b) accepts, and

2. L0(o
∗
b) = LK(Ib) + T ∗

b for all b ∈ [B] and non-zero o∗b .

Cheat on the second round. Suppose P̃ rewinds V to the second round b1
times, where b1 ≤ b−kUS. It finds the “best” set I ′ such that there exists a subset
Ī ′ ⊆ I ′ with maximum size. For all Ib ∈ Ī ′, o∗b = c∗b+r∗b Ib and L0(o

∗
b) = pkIb+T ∗

b .
We denote X = max(X1, . . . , Xb1) where Xi are i.i.d. as B(B, (1− β)).
Cheat on the third round. Suppose P̃ rewinds V to the third round b2 times,
where b2 ≤ b − b1 − (kUS − 1). It finds the “best” set of (λ1, . . . , λB) such that
for the remaining B − |Ī ′|, I ′b ∈ I/Ī ′ (i.e., those has L0(o

∗
b) = pkI′

b
+ T ∗

b but
o∗b ̸= c∗b + r∗b I

′
b),

∑
I′
b∈I′/Ī′ λbo

∗
b =

∑
I′
b∈I′/Ī′ λb(c

∗
b + r∗b I

′
b). We denote Y =

max(Y1, . . . , Yb2) where Yi are i.i.d. as B(B −X, 1/p).
Cheat on the univariate sumcheck. For the remaining indices, P̃ has to
cheat on the univariate sumcheck within b3 ≤ b− b1− b2 rewinds. We denote by
Z = max(Z1, . . . , Zb3) where Zi are i.i.d. as B(B −X − Y, ϵUS). ⊓⊔

B.3 Proof of Theorem 3

Proof. Let A be an adversary against EUF-CMA security of Loquat, we con-
struct an adversary B against EUF-KO. When B is run on input pk, it starts A
on input pk. We first define the construction of the signing oracle and random
oracle, then argue that the simulated signature is indistinguishable from real
ones, and finally show that EUF-KO implies EUF-CMA security.

– Simulating random oracles. B maintains a list of input-output pairs for
random oracle queries and a list of “bad” outputs denoted as BadH which
stores all random oracle outputs. If the query was made before by A, then B
responses with the same answer. Otherwise, B returns a uniformly random
output and record the new input-output pair in the list.

– Simulating signing oracle. When A queries the signing oracle with mes-
sage M , B simulates the signature σ and program the output of the H of
the second round to generate the desired challenge indices. B simulates the
signing oracle as follows:

1. On input a message M , B randomly samples a fake key K ′ $← F∗
p and for

j ∈ [n], (r1,j , . . . , rm,j)
$← F∗

p. Then it follows the protocol to compute
the vector cj = (K ′r1,j , r1,j , . . . ,K

′rm,j , rm,j). B follows the protocol to
obtain the Merkle root rootc.

2. B generates a random output h1 ∈ {0, 1}2λ, if h1 ∈ BadH, B aborts.
Otherwise, B computes (I1,j , . . . , Im,j)j∈[n] ← Expand(h1) and Ti,j =
L0((K

′ + Ii,j)ri,j)− pkIi,j , for i ∈ [m], j ∈ [n].
3. B programs the output ofH to be h1 on input (rootc, (T1,j , . . . , Tm,j)j∈[n],M).
4. B computes oi,j = (K ′ + Ii,j)ri,j for all b ∈ [B].
5. B follows the rest of the protocol.

46

6. Finally, B outputs ((Ti,j , oi,j)i∈[m],j∈[n]πUS, πLDT).

When A outputs a forgery for the EUF-CMA game, B forwards the forgery as
its forgery for the EUF-KO game.

We show that the simulation is not distinguishable from the real signature.
If B did not abort, then the simulation of the random oracle is perfect. A can
only distinguish the simulated signature if B failed to program the output of H
on input (rootc, (T1,j , . . . , Tm,j)j∈[n],M).

In other words, (rootc, (T1,j , . . . , Tm,j)j∈[n],M) was queried before. Other-
wise, the simulated signature follows exactly the same distribution as the real
signature.

We now establish B’s advantage against EUF-KO. There are two situations
that B may abort during the simulation of the signing oracle, which are shown
as follows.

1. In step 2, if h1 was used in one of the previous simulated signatures, which
happens with probability q2s2

−2λ.
2. B failed to program the output of the H to generate desired challenges, that

is, (rootc, (T1,j , . . . , Tm,j)j∈[n],M) was queried before, which happens with

probability (qsqH1
)2−2λ.

Therefore, if AdvEUF-CMA
A wins the game with probability ε, B wins the EUF-KO

with the probability ε− (qs(qs + qH1)) · 2−2λ. ⊓⊔

B.4 Proof of Theorem 4

Proof. LetA be an adversary against the aggregate chosen-key security ofΠAngus,
we construct an adversary B against the unforgeability of ΠLoquat in the URS
model. When B runs on input pk1 that is generated using the KeyGen algorithm,
it starts A on input pk1. Denote the extractor of the SNARK protocol as ESNARK
with extracting probability eSNARK. After A terminates, ESNARK extracts a valid
witness w = (σ′

1, σ
′
2, . . . , σ

′
N).

We now argue that if w = (σ′
1, σ

′
2, . . . , σ

′
N) is a valid witness against x =

((M1, pk1), . . . , (MN , pkN)), then every signature σ′
e for e ∈ [N] is a valid Lo-

quat signature. We can rewrite σ′
e = (σe, (s

(e)
i,j)i∈[m],j∈[n]). Then, we prove that

for all e ∈ [N], 1 ← L-Verify(σe,Me, pke, L-pp). We first split the tasks of
Loquat verification to three parts:

1. verifying hash chain and Merkle tree;
2. verifying non-interactive univariate sumcheck proof;
3. verifying quadratic residuosity of ob against pkIi,j + Tb for all b ∈ [1, B].

Since the hash chain, Merkle tree, and non-interactive univariate sumcheck
are directly proven in the circuit, then they are valid for each signature with
the same probability ϵ − eSNARK. Now we argue that if there exists a set of valid

(s
(e)
i,j)i∈[m],j∈[n] such that

(
s
(e)
i,j

)2

= o
(e)
i,j ·

(
α ·

(
pk

(e)
Ii,j

+ T
(e)
i,j

)
+

(
1−

(
pk

(e)
Ii,j

+ T
(e)
i,j

)))
,

47

then the verification of quadratic residuosity of o
(e)
i,j against pk

(e)
Ii,j

+ T
(e)
i,j for all

i ∈ [n], j ∈ [M] and e ∈ [N] must also pass.

Indeed, since the circuit proves that the computation of t
(e)
i,j is correct for ev-

ery b ∈ [1, B] and i ∈ [1, n], where t
(e)
i,j = o

(e)
i,j ·

(
α ·

(
pk

(e)
Ii,j

+ T
(e)
i,j

)
+

(
1−

(
pk

(e)
Ii,j

+ T
(e)
i,j

)))
,

and it proves that t
(e)
i,j is a quadratic residue by finding some s

(e)
i,j (outside of the

circuit) such that
(
s
(e)
i,j

)2

= t
(e)
i,j , it implies that L0(o

(e)
i,j) = pk

(e)
Ii,j

+ T
(e)
i,j for

non-zero o
(e)
i,j . Specifically, we can argue the following two cases:

1. L0(o
(e)
i,j) = 0 and pk

(e)
Ii,j

+ T
(e)
i,j = 1. We prove that in this case, s

(e)
i,j doesn’t

exist. Since t
(e)
i,j is computed in the form of o

(e)
i,j · (α · 1 + (1− 1)) = o

(e)
i,j α,

where α is a public quadratic non-residue. If o
(e)
i,j = 0, then o

(e)
i,j is a quadratic

residue, and α · o(e)i,j is a quadratic non-residue, and there does not exist a

valid s
(e)
i such that

(
s
(e)
i,j

)2

= α · o(e)i,j . Thus the SNARK proof fails that

contradicts with the assumption where Σ is a valid aggregate signature.

2. L0(o
(e)
i,j) = 1 and pk

(e)
Ii,j

+ T
(e)
i,j = 0. In this case, s

(e)
i,j doesn’t exist as well.

Since t
(e)
i,j = o

(e)
i,j · (α · 0 + (1− 0)) = o

(e)
i,j and L0(o

(e)
i,j) = 1 implies that o

(e)
i,j

is a quadratic non-residue, then there does not exist a valid s
(e)
i,j such that(

s
(e)
i,j

)2

= o
(e)
i,j . Thus the SNARK proof fails in this case, which contradicts

with the assumption where Σ is a valid aggregate signature.

Therefore, for any non-zero o
(e)
i,j , Σ is a valid aggregate signature implies that

L0(o
(e)
i,j) = pk

(e)
Ii,j

+ T
(e)
i,j for all b ∈ [1, B] and i ∈ [1, n]. To sum up, the signature

σi for all i ∈ [1, n] is valid. Thus, B is able to forge the signature against Loquat
in the URS model using A. ⊓⊔

B.5 Proof of Theorem 5

Proof. The security proof is similar to the the proof of Theorem 4, where given
a challenge public key pk1, if A outputs a valid SNARK proof πk after k times
of the proof recursion, by making at most qs queries to the signing oracle, then
the algorithm B can break the unforgeability of Loquat in the URS model
running ESNARK. Namely, after A terminates, ESNARK is able to extract a valid
witness w = (σ′

1, . . . , σ
′
N) recursively.

As we have proved in Section B.4, where if the adversary A who outputs
a valid (ordinary) SNARK proof, the extractor can extract the corresponding
witness. We now show the process of recursive extraction.

If πγ is a valid SNARK proof, then 1 ← SNARK-V((Cγ ,Rγ), πγ ,x), where
x = ((M,PK)γ ,xγ−1). ESNARK runs in time tSNARK to extracts w which is a valid
SNARK witness w = (Γγ , πγ−1) with probability at least ϵγ = 1− eSNARK. Hence,
all signatures in Γγ are valid (i.e., the last chunk of signatures) and the previous

48

proof πγ−1 is valid against xγ−1. Since πγ−1 is a valid SNARK proof, then
the extractor extracts a witness wγ−1 = (Γγ−1, πγ−2) with probability at least
ϵγ−1 = 1− ϵγ − eSNARK. In other words, signatures in Γγ−1 are all valid and πγ−2

is a valid SNARK proof against xγ−2. The recursive process repeats γ times,
with the final probability ϵ1 = 1− γ · eSNARK, the extractor extracts a list of valid
signatures w1 = Γ1, which contains a valid signature against (M,PK)1. ⊓⊔

C Analysis of Signatures’ SNARK-Friendliness

C.1 Loquat

We first analyse the number of arithmetic operations (mainly multiplications)
and hash evaluations involved in Loquat verification algorithm.

Hash Evaluations There are three parts in Loquat verification that requires
hash evaluations, including

• Recompute hash chain.

• Expand the challenges.

• Verifying Merkle Commitments.

Recompute Hash Chain. We denote the security parameter to be λ.

1. Recompute h1 ← H1(rootc, (Ti,j)i∈[m],j∈[n],M) : H1 : {0, 1}4λ → {0, 1}2λ.
2. Recompute h2 ← H2((oi,j)i∈[m],j∈[n], h1): H2 : {0, 1}(B+2)λ → {0, 1}2λ.
3. Recompute h3 ← H3(roots, S, h2): H3 : {0, 1}6λ → {0, 1}2λ.
4. For i = [4, 5 + r], recompute hi ← Hi(root, hi−1): Hi : {0, 1}4λ → {0, 1}2λ.

Overall, the verifier computes 3 + r hash evaluations with input length 4λ, 1
evaluation with input length (B + 2)λ, and 1 evaluation with input length 6λ.

Expand the Challenges. For expanding h1, instead of getting (Ii,j)i∈[m],j∈[n] ∈
I, we let the prover and the verifier expand h1 to get indices (Ii,j)i∈[m],j∈[n] ∈ [L].
This change effectively reduces the required output length for expanding h1.
Similarly, expanding h5+r to obtain indices in [|U |]. Since 2η code elements are
hashed together, the number of leaf nodes in each tree decreases to |U |/2η.

1. (Ii,j)i∈[m],j∈[n] ← Expand(h1): output length {0, 1}B×log2 L.

2. ((λi,j)i∈[m], ϵj)j∈[n]: output length {0, 1}Bλ+2nλ.

3. e← Expand(h4): output length {0, 1}16λ.
4. (S1, . . . , Sκ)← Expand(h5+r): output length {0, 1}(log |U |−2)κ.

5. For i = 3 and i ∈ [5, 4 + r], output length {0, 1}2λ. If using algebraic hash
functions and set output length to be 2λ, then we can omit the expansions
in these steps.

49

Verifying Merkle Commitments. We first introduce several optimisations in
order to reduce the total number of constraints. We choose t = ⌈log2(κ)− 1⌉ as
in Fractal [27].

In the following analysis, we mainly consider the verification of main code-
word (i.e., the polynomials that are evaluated over the code domain U). This is
because the hash calls of other rounds in LDT can be small with the optimisa-
tion.

1. Verify 4·κMerkle tree authentication paths for rootc, roots, rooth, rootf(0) ,
with the number of leaf nodes |U |/2η and tree cap t: 4×κ×(log2(|U |)−η−t)
invocation to HMT : {0, 1}4λ → {0, 1}2λ.

2. Recompute κ leaf nodes for each tree: 4×κ invocations toHleaf : {0, 1}2
η+1λ →

{0, 1}2λ.
3. Recompute tree cap: 4 calls to Hcap : {0, 1}2

t−1λ → {0, 1}2λ.

Hash-based Computations Number of Hashes
Recompute Hash Chain 5 + r
Expand Challenges 4

Verify Merkle Commitments 4κ(log2(|U |)− η − t+ 1) + 4
Total 4κ(log2(|U |)− η − t+ 1) + r + 13

Table 7. Number of Hash Evaluations in Loquat Verification

Algebraic Operations The algebraic operations of Loquat verifier mainly
involves

1. Interpolate the challenge polynomial (q̂j(x))j∈[n] and evaluate the polyno-
mial on κ · 2η points.

2. Recompute code elements for rational constraints and interleaved code.
3. Verify polynomials to check round consistency in the low-degree test.
4. Check if L0(ob) = pkIi,j + Tb for all b ∈ [B].

For interpolating the polynomial q̂j(x)j∈[n], the verifier is given vectors qj =
(λ1,j , λ1,jI1,j , . . . , λm,j , λm,jIm,j) and a multiplicative coset H ⊂ F with |H| =
2m. According to [53], polynomial evaluation over a smooth multiplicative sub-
group of size n can be performed in O(n log n) field operations via FFT and IFFT
respectively. Hence, interpolating (q̂j(x))j∈[n] requires 2mn× (1 + logm) opera-
tions. Then, the verifier evaluates (q̂j(x))j∈[n] on κ · 2η, with κ · 2ηn(1 + logm)
operations. Hence, the total number of interpolating and evaluating polynomial
n(2m+ κ · 2η)(1 + logm) operations.

The verifier next re-computes code elements for rational constraint p̂(x)

which is defined as p̂(s) = |H|(zf̂(s)+ŝ(s))−|H|ZH(s)ĥ(s)−(zµ+S)
|H|s , for s ∈ Q, where Q

50

denotes the LDT queries (|Q| = κ · 2η). To recompute f̂(s) =
∑n

j=1 ϵj f̂j(s), the
number of multiplications is n·κ·2η, while the number of addition is (n−1)·κ·2η.
To recompute f̂j(s) = ĉj(s) · q̂j(s) requires n ·κ ·2η multiplicaitons. To recompute
µ =

∑m
i=1(

∑n
j=1 λi,joi,j), which requires B multiplications and B− 1 additions.

To recompute Zµ + S requires 1 multiplication and 1 addition. Thus, the re-
computation of p̂(s) requires 5 · κ · 2η multiplications and 3 · κ · 2η additions.

The verifier also needs to recompute the interleaved code according to the
following equation:

f̂ (0)(x) = e1 ·
n∑

j=1

(ĉ′j(x)) + e2 · ŝ(x) + e3 · ĥ(x) + e4 · p̂(x)

+e5 · x(ρ∗−ρ1)|U | · ĉ′(x) + e6 · x(ρ∗−ρ2)|U | · ŝ(x)

+e7 · x(ρ∗−ρ3)|U | · ĥ(x) + e8 · x(ρ∗−ρ4)|U | · p̂(x)

Since x(ρ∗−ρi)|U | where i ∈ {1, . . . , 4} can be computed outside of the circuit,

the total number of multiplications to recompute codeword for f̂ (0) is 8 · κ · 2η,
while the total number of additions is (n+ 6) · κ · 2η.

To check round consistency in the low-degree test, we can use the constraint
system designed in Fractal [27, Section 12.2.2]. That is, given an identifier of a
coset S ⊂ U , checking round consistency costs 2|S|+O(log(|S|)), where |S| = 2η

Since we choose the localisation parameter η = 2, |S| = 2η = 4. Since we have r
rounds, with each round, the verifier interpolate and evaluation κ polynomials
with degree 2η − 1, the total cost is r · κ · (2η+1 + η).

Finally, we analyse the number of constraints to check L0(oi,j) = pkIi,j +Ti,j

for all i ∈ [m], j ∈ [n]. In order to avoid heavy computation of Legendre PRF in
the circuit, we let the verifier computes ti,j = oi,j ·(α ·(pkIi,j +Ti,j)+1−(pkIi,j +
Ti,j)) and then checks if s2i,j = ti,j (i.e., check if ti,j is a quadratic residue). This
step costs 3B multiplications and 4B additions. We summarise the analysis in
Table 8.

Algebraic Computations Number of Operations
Interpolate and Evaluate q̂(x) n(2m+ κ · 2η)(1 + logm).

Recompute Missing Code Elements (2n+ 13)κ · 2η +B + 1
Verify Round Consistency of LDT r · κ · (2η+1 + η)

Check Quadratic Residues 3B

Total
κ · 2η(3n+ n logm+ 13 + 2r) +
2mn(1 + logm) + nrκ+ 4B + 1

Table 8. Number of Algebraic Operations in Loquat Verification

51

C.2 Other Signature Schemes

We analyse the algebraic operations and hash operations involved in Picnic
[25, 45], LegRoast [16], Banquet [6], Rainer[30], and SHPINCS+[14] using the
following method.

Picnic1 (without preprocessing) [25] Choose the MPC-in-the-head param-
eter n = 3 and the repetition parameter M = 438 with security level 128, the
number of multiplications is 2,680,560, while the number of hash operations is
7,008 in the signature verification algorithm.

Picnic3 (with preprocessing) [45] Choose the MPC-in-the-head parameter
n = 16, the repetition parameter M = 604, and the preprocessing parameter
τ = 68, with security level 128. The number of multiplications is 3,121,200 while
the number of total hash operations is 1,679,784 in the signature verification
algorithm.

LegRoast [16] Choose the MPC-in-the-head parameter n = 16, the repetition
parameter M = 54, and the Legendre PRF parameter B = 9, β = 0.449 with
NIST security level I. The choice of these parameters result in best verification
time. The number of multiplications is 26,631 and the number of hash operations
is 10,152 in the signature verification algorithm.

Banquet [6] Choose the MPC-in-the-head parameter n = 16 and the number
of parallel executions τ = 41 for 128-bit security (result in best verification time),
the verification algorithm has 4,147 hash evaluations and 11,348,390 algebraic
computations.

Rainer [30] Choose the MPC-in-the-Head parameter N = 16 and repetition
parameter τ = 33 for Rainer3 with 128-bit security (result in best verification
time), the verification algorithm has 3,337 hash evaluations and 25,763,233 al-
gebraic computations.

SPHINCS+. In SPHINCS+ [14, Table 1], the authors provided an overview of
the number of hash calls required for key generation, signing, and verification. We
use the parameters of SPHINCS+(128s), where n = 16, h = 63, d = 7, log(t) =
12, k = 14, w = 16, and len = 35 with security level 133, to obtain the total
number of hash invocations in key generation (305,663), sign (2,397,129), and
verification (4,172). We also consider SPHINCS+(128f), with parameters n =
16, h = 66, d = 22, log(t) = 6, k = 33, w = 16, and len = 35 for security level
128. The resulting total number of hash invocations in key generation is 4,775,
signing is 111,353, and verification is 12,639.

52

	Loquat: A SNARK-Friendly Post-Quantum Signature based on the Legendre PRF with Applications in Ring and Aggregate Signatures

