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Abstract
We use pairings over elliptic curves to give a collusion-resistant traitor tracing scheme where

the sizes of public keys, secret keys, and ciphertexts are independent of the number of users.
Prior constructions from pairings had size Ω(N1/3). Our construction is non-black box.

1 Introduction
Traitor tracing [CFN94] aims to deter piracy by enabling a distributor of encrypted content to
trace the source of leaked decryption keys. Collusion-resistant traitor tracing guarantees security,
even if arbitrarily many users pool their keys, and even if they attempt to obfuscate their keys
within pirate decoders. A central goal has been to develop schemes with small keys and ciphertexts.
The first scheme with parameters sub-linear in the number of users N uses cryptographic pairings
to achieve parameters of size Θ(N1/2) [BSW06]. Subsequently, other tools such as functional
encryption, obfuscation, and lattices have been used to obtain schemes with parameters independent
of N [GGH+13, BZ14, GKW18]. However, despite being used for the first sub-linear traitor tracing
scheme, pairings have so far been unable to replicate these subsequent successes using other tools.
Indeed, the best known pairings-based schemes have parameters of size Θ(N1/3) [Zha20, GLW23].
A major open question for roughly 18 years has therefore been whether optimal traitor tracing is
possible from pairings. Our main result resolves this question, showing the following:
Theorem 1. Assume there exists a pairing over elliptic curves where either (1) K-LIN holds or (2)
the pairing is symmetric and Decisional Bilinear Diffie-Hellman (DBDH) holds. Then there exists
optimal (embedded identity) traitor tracing.

Theorem 1 follows from this more general theorem, which is then instantiated via pairings:
Theorem 2. Assume the existence of (1) selectively secure attribute-based encryption (ABE) for
policies represented by log-depth arithmetic formula over an exponentially-large field F followed by
a “not equal to zero” test, and (2) weak pseudorandom functions (PRFs) computable by log-depth
arithmetic formula over F using pre-computation. Then there exists an (embedded identity) traitor
tracing scheme where all parameters sizes are independent of the number of users.

Above, being computable “using pre-computation” means that we can compute PRF(k, r) in
log-depth with the additional help of a pre-computed “hint” hr that depends only on the input r
but is independent k (see Definition 10). The needed ABE and PRF can be instantiated under
assumptions on pairings; see Section 6 which shows how Theorem 1 follows from Theorem 2.
Theorem 2 makes non-black box use of the weak PRF, and Theorem 1 makes non-black box use of
group operations in the target group of the pairing.
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1.1 Techniques

ABE+MFE=TT. To prove Theorem 2, we depart significantly from the usual approaches to
build traitor tracing from pairings, and instead start with the abstract approach given in [GKW18]
from the lattice-based setting. They construct traitor tracing from two other objects: attribute-based
encryption (ABE) and mixed function encryption (MFE). MFE has secret keys for attributes x
and ciphertexts with attributes y 1. “Secret” ciphertexts have attributes and require the master
secret key to generate. One security requirement, called Ciphertext Attribute Security, is that the
adversary learns nothing about y except for the values R(x, y) for secret key attributes x in the
adversary’s possession. Moreover, MFE has a public encryption procedure that produces “public”
ciphertexts with no attributes. These ciphertexts decrypt to 1 under all secret keys, and a separate
security notion called Accept Security requires that public ciphertexts are indistinguishable from
secret ciphertexts with attributes y, unless one has a secret key for x such that R(x, y) = 0.

In [GKW18], it is shown how to build MFE from specific lattice techniques. Next, [GKW18]
shows that attribute-based encryption (ABE) allows for upgrading MFE to include a payload message
m, which we call “message-carrying MFE,” or mcMFE. Correctness requires message recovery if
R(x, y) = 1, and Message Hiding Security requires that the message is hidden if the adversary only
has keys with R(x, y) = 0. A special case of mcMFE where the relation is R(id, t) = 1(id ≤ t) is
called Private Linear Broadcast Encryption (PLBE), defined in [BSW06]. [BSW06] show that PLBE
implies traitor tracing: the secret key for a user id is simply the secret key for x = id. Traitor tracing
ciphertexts are then public attribute-less ciphertexts. To trace a pirate decoder D, compute for each
t = 0, · · · , N the probability pt that D decrypts ciphertexts with attribute y = t. A good decoder
implies large decryption probability on public ciphertexts, which then implies via Accept Security a
large pN , since all secret keys decrypt attribute N . Meanwhile, t = 0 cannot be decrypted by any
secret key, meaning p0 is small. Thus, there must be a gap between some pt and pt−1. Then the
ciphertext attribute hiding implies this gap can only occur at identities id = t controlled by the
adversary. [GKW18] instantiates the ABE from lattices, as was previously shown in [GVW13].

Attempting to Instantiate with Pairings. In [GKW18], this framework is instantiated with
ABE and MFE built from lattices. Here, we will use ABE built from pairings. Unlike lattice-
based ABE, ABE from pairings is only known to support shallow computations such as log-depth
(arithmetic) formula, and other similar models [GPSW06, IW14, CGW15, LL20]. However, as long
as our MFE is computable by such shallow programs, this will not be a limitation.

A more challenging issue is to construct a suitable MFE from pairings. In [GKW18], it is explained
that we only need MFE where Ciphertext Attribute and Accept Security hold when the adversary
can see only two ciphertexts, but an unbounded number of secret keys. If we ignore the public
attribute-less encryption, then MFE coincides with secret key functional encryption (FE), and we can
construct such a 2-ciphertext-secure FE scheme from even one-way functions [GVW12]. However,
obtaining public attribute-less ciphertexts with Accept Security seems much more challenging,
and [GKW18] use specific lattice techniques to achieve this.

In [CVW+18], a potentially more general approach is shown: they build the needed MFE by
starting from any 2-ciphertext FE – which can be instantiated from general tools – and compiling it
into an MFE scheme using a certain type of obfuscation called lockable obfuscation [GKW17, WZ17].

1The definition of MFE given in [GKW18] considers the case R(x, y) = y(x) where y is interpreted as a function,
but we consider a more abstract version here.
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Unfortunately, we do not have anything remotely close to the functionality of lockable obfuscation
from pairings. Therefore, following either [GKW18] or [CVW+18], the available techniques for
realizing MFE appear firmly rooted in the capabilities of lattice-based cryptography.

Solution: Pseudorandom Ciphertexts. Our first observation is that we can obtain a form
of pseudorandomness for ciphertexts in 2-ciphertext secure FE built from general tools. We start
with a 2-ciphertext secure FE scheme such as [SS10, GVW12, KMUW18] built using garbled
circuits/randomized encodings. At a high level, ciphertexts for these systems are secret keys for a
CPA-secure encryption scheme, and the secret keys are encryptions of garbled circuit labels. By
instantiating the CPA-secure scheme and garbled circuits correctly, then we show that a uniformly
random ciphertext for the FE scheme – which again is comprised of keys for the CPA-secure scheme
– looks exactly like an honest ciphertext for attribute y, as long as the adversary has only secret keys
for attributes x such that R(x, y) = 1. This means we can publicly encrypt to this FE by simply by
choosing a random bit string as our public ciphertext, resulting in an MFE scheme.

Unfortunately, even though ciphertext attribute security holds for two ciphertexts, pseudoran-
domness only holds for one ciphertext, and fails for if the adversary sees a second ciphertext. Thus,
we do not achieve the 2-ciphertext Accept Security required to plug into [GKW18].

Why do we need 2-ciphertext security? We now briefly recall why two ciphertexts are needed.
The issue is that security for MFE is described as a game between challenger and adversary, where
the adversary has to distinguish the ciphertexts. On the other hand, traitor tracing corresponds to
a decoder-based notion of security, where the adversary outputs a decoder, and the decoder (rather
than the adversary) must distinguish ciphertexts. While it is intuitive that decoder-based security
should follow from ordinary security, the naive proof – where the adversary simply runs the decoder
it produces on the given ciphertext – actually does not work. This is because some decoders may
have positive signed advantage (correct more often than not) while others have negative signed
advantage (incorrect more often than not). It is also infeasible to learn which is the case by testing
with just a single ciphertext. The advantage of the adversary in the obvious “proof” is exactly
the mean signed advantage over all decoders, which could in fact be zero even if all the decoders
have large absolute distinguishing advantage. In this event, one can break decoder-based security
whereas the reduction fails to contradict the assumed decoder-free notion of security.

Instead, using two ciphertexts, [GKW18] show that the reduction’s advantage can be made
the mean squared advantage. While this reduces the overall advantage in amplitude, it makes the
advantage always positive. Every decoder with non-zero advantage will contribute positively to the
reduction’s advantage, allowing the proof of decoder-based security to go through. This issue and
similar resolutions have also appeared in differential privacy contexts [BZ16, KMUZ16, KMUW18].

Our Solution: allowing some distinguishing advantage. We will attempt to obtain Accept
Security for two ciphertexts, and hence decoder-based security, by composing several instances of a
scheme with Accept Security for just one ciphertext, such as is guaranteed by the MFE from above.
We can do this at either the level of the MFE, or at the level of the mcMFE after combining with
ABE. It turns out our proofs are slightly simplified working at the level of mcMFE. Our basic idea is
to have ℓ independent (mc)MFE systems. Each user will get an (mc)MFE secret key for each system.
To generate a ciphertext, a random index i ∈ [ℓ] is chosen, which indicates which (mc)MFE to use.
The ciphertext then consists of i together with the ciphertext c for the corresponding (mc)MFE.
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The intuition is that, except with probability 1/ℓ, two ciphertexts will be encrypted under
different (mc)MFE instances, allowing us to invoke the underlying 1-ciphertext security for those
instances. This unfortunately does not quite work, as secret key sizes grow with ℓ, there is no way to
make ℓ any larger than a polynomial, meaning there is a non-negligible chance of both ciphertexts
using the same instance. When this happens, there is no security. This prevents us from achieving
the existing notions of decoder-based Accept Security.

However, we show that this construction does give some guarantee. In particular, if we let ∆ be
the decoder’s advantage, we show that E[∆2] ≲ 1/ℓ. This is not as good as what true 2-ciphertext
security can achieve (E[∆]2 ≈ 0), and as a result cannot be plugged directly into the framework
of [GKW18]. However, by making additional modifications to the framework, we are able to use
this weaker guarantee to nevertheless obtain optimal traitor tracing. We now explain.

Let ∆i be the signed advantage of the decoder in distinguishing secret ciphertexts from public
ciphertexts, when the ciphertext uses system i. ∆ is then the mean of the ∆i. We first show that
we can bound E[∆i∆j ] ≈ 0 for i ̸= j. This adapts the existing proofs of decoder-based security
from 2-ciphertext security, but the intuition is that now the proof will involve a ciphertext for i
and a ciphertext for j; since i ̸= j, this means each instance sees at most one ciphertext, so we
can rely only on 1-ciphertext security. On the other hand, we do not have any non-trivial bounds
for E[∆2

i ], since this would require two ciphertexts for the same instance i 2. Fortunately, we can
always trivially bound E[∆2

i ] ≤ 1. Taken together, this shows that E[∆2] ≲ 1/ℓ.
What can we do with such a bound? Unfortunately, even with E[∆2] ≈ 1/ℓ, it is possible for ∆

to occasionally be very large, even 1. The only thing we can conclude with this bound is that ∆
cannot be too high too often.

Next, if we take ℓ to be a sufficiently high constant (ℓ = 5 suffices), we can get the following
guarantee: suppose a decoder has advantage, say, 19/20 on public attribute-less ciphertexts. Then
in the event that ∆ is small (say, ∆ ≤ 9/10), the decoder must have advantage at least 1/20 on
secret ciphertexts with attributes. Moreover, by our bound on E[∆2], we can conclude that this
event happens with probability at least, say, 1/162 3.

We also observe that while we only get weak decoder-based Accept Security, the construction
preserves the 2-ciphertext security of the underlying scheme for the other security properties of the
(mc)MFE – ciphertext-attribute and message hiding – and hence we have strong decoder-based
security for these properties. Therefore, once we have a decoder that has has non-zero constant
decryption probability for secret ciphertexts with attributes, we can employ the existing tracing
techniques to accuse a user. Indeed, the existing tracing techniques, when using strong decoder-based
security, work even for decoders that have an inverse-polynomially small decryption probability.
Remark 3. We note that the 2-ciphertext secure FE constructions from the literature similarly
starts with a 1-ciphertext secure FE, and compile it into a scheme secure against two (or more)
ciphertexts. However, the construction is somewhat more complicated that ours. As a plus, they
achieve actual 2-ciphertext security for ciphertext attribute hiding, whereas our simpler compiler is
not enough to lift 1-ciphertext to 2-ciphertext security. However, those constructions do not work to
give 2-ciphertext pseudorandomness.

Remark 4. One may be tempted to use our analysis to prove a similar statement for the other
mcMFE security properties, removing the need for a 2-ciphertext secure mcMFE entirely. However,

22-ciphertext security would show E[∆2
i ] = 0.

3See the proof of Theorem 44, which gives a more general trade-off of parameters. Different settings of parameters
could yield different concrete efficiency in the ultimate traitor tracing scheme.
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there are multiple reasons this will not work. One problem is a technical issue that our proof actually
requires the reduction to estimate the success probability of the decoder on public attribute-less
ciphertexts; this is possible in our proof since such ciphertexts can be generated at will. When
translating to the other decoder-based notions – which compare secret ciphertexts with different
attributes – we would need to be able to generate many secret ciphertexts with attributes, which is
not possible in the reduction. Another problem is that tracing accuses any user corresponding to a
jump in decryption probability. In general, we need to accuse users even when the jump size is very
small, namely smaller than the reciprocal of the number of collusions. But translating our analysis
above to the other mcMFE security properties would only ensure that the jumps at honest users are
sometimes bounded by a constant, meaning honest users will be sometimes accused. Instead, we still
need strong decoder-based security (following from 2-ciphertext security) to argue that the jumps
at honest users are tiny. Fortunately, our compiler preserves the 2-ciphertext security (and hence
decoder-based security) for the other mcMFE security properties.

Finishing Touches. We are not quite done. The above scheme only traces decoders that have a
high (but constant) success probability (e.g. 19/20). This is called a threshold scheme [NP98], and
is typically considered to not be a complete solution to traitor tracing. Moreover, even with such a
decoder, we are only guaranteed to be able to trace it when ∆ is not too large (e.g. ∆ ≤ 9/10),
which is with constant probability (e.g. probability 1/162). Schemes that only guarantee tracing
occasionally are called risky traitor tracing schemes [GKRW18]. Fortunately, [Zha20] shows a generic
compiler which turns any risky threshold scheme into an ordinary (non-risky, non-threshold) scheme.
The blow-up is polynomial in the security parameter as well as the inverse of riskiness and the error
rate of trace-able decoders. For us, both these quantities are constant, meaning the blow-up is just
polynomial in the security parameter, independent of the number of users. This scheme is capable of
tracing identities coming from a polynomial-sized set (logarithmic bit-length), but we also show how
to extend to a scheme with embedded identities where tracing recovers a polynomial-length identity.

We also need to ensure that ABE for low-depth function classes – the best we know how to
achieve from pairings – is sufficient. Fortunately, the MFE construction that ABE is applied to only
needs a weak PRF plus other simple algebraic operations. By using such a scheme computable in
low-depth, we obtain a MFE construction where decryption can be evaluated by log-depth arithmetic
formula. We just need the ABE scheme to handle the MFE decryption, meaning ABE for log-depth
arithmetic formula suffices. Theorem 2 follows. We then get Theorem 1 by instantiating both the
ABE and weak PRF scheme from pairings, which actually requires some work due to apparent gaps
in the current understanding of low-depth cryptography; see discussion below in Section 1.2 and
solutions in Section 6.

Remark 5. Our framework above can also be adapted to the lattice setting. While this does not give
any new feasibility result, it completely removes the need for lockable obfuscation from [CVW+18],
resulting in a much more efficient construction.

1.2 Discussion, Other Related Work, And Open Problems

Obfuscation from well-founded assumptions. In [JLS21, JLS22], it is shown how to construct
obfuscation and functional encryption from assumptions on pairings, plus the assumed hardness of
(a slightly nonstandard of) the learning parity with noise (LPN) problem and the assumed existence
of pseudorandom generators (PRGs) with polynomial stretch where each output bit depends on a
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constant number of input bits (called constant locality). The resulting functional encryption then
implies PLBE suitable for traitor tracing. Going this route means making three qualitatively very
different computational assumptions, all of which seem crucial to employing their techniques. In
contrast, we only need to assume cryptographic pairings.

Parameter-sizes in traitor tracing systems. We only mention a few of the many works on
traitor tracing, focusing exclusively on the collusion-bounded setting. The first work achieving
sub-linear ciphertexts is [BSW06]. Many works focus on the size of the ciphertext alone, in which case
it is possible to achieve constant-sized ciphertexts from general public key encryption [BN08, BP08].
However, these works have massive secret keys growing quadratically in the number of users.
Sometimes, other trade-offs in terms of parameter sizes are possible, as shown in [Zha20]. When
bounding all terms simultaneously, the best-known traitor tracing schemes prior to our work are:
N1/3 from pairings [Zha20, GLW23], constant-size from LWE [GKW18], or constant-size from
obfuscation and related primitives [GGH+13, BZ14, GVW19].

Private vs public tracing. Our traitor tracing scheme requires the master secret key in order
to trace, which we will call secret tracing. Many other schemes also require secret tracing, such
as the aformentioned works of [BSW06, Zha20, GLW23]. Alternatively, some schemes have public
tracing where anyone can trace. When restricting to public tracing, the best known schemes are
those from obfuscation and related primitives [GGH+13, BZ14, GVW19], as well as [BW06] who
achieve N1/2-sized parameters from pairings. An interesting open question is then to obtain publicly
traceable traitor tracing systems from pairings (or lattices) with constant-sized parameters.

Black-box vs non-black box use of cryptography. Our construction makes non-black box use
of the pseudorandom function; in contrast the bulk of traitor tracing schemes from the literature,
including all prior pairing-based schemes, only require black-box use of cryptography4. An interesting
question is therefore whether traitor tracing based on black-box use of pairings can do better than
N1/3, or whether there is a lower-bound. We note that optimal traitor tracing from LWE [GKW18]
also makes non-black-box use of cryptography.

Log-depth Cryptography. Log-depth cryptosystems are known from a number of building
blocks [NR97, NRR00, BPR12, ABG+14]. In our work, we use log-depth-computable weak PRFs
from certain cryptographic groups. Indeed, in Section 6, we explain how ElGamal encryption [ElG84]
and generalizations can be viewed as weak PRFs computable in log-depth (with pre-computation).

While not necessary for this work, our study of low-depth PRFs lead us to the following interesting
question. Namely, while we are able to obtain weak PRFs computable in log-depth from K-LIN, it
does not appear known whether the same is possible for strong PRFs. In [NR97], a log-depth strong
PRF is given based on DDH in the multiplicative group Z∗p. While this construction generalizes
to have provable security under K-LIN [LW09, EHK+13], it is not clear if the computations are
still log-depth. Concretely, whereas [NR97] uses an iterated scalar multiplication in the exponent,
generalizations [LW09, EHK+13] use an iterated multiplication of K ×K matrices. Iterated scalar
multiplication can be computed by log-depth boolean formula [BCH84], but the same is unlikely to

4Black-box use of cryptography is not to be confused with black box tracing algorithms that only make queries to
a decoder rather than inspect its code. The vast majority of schemes in the literature, including ours, employ tracing
algorithms making black box use of the decoder. See [Zha21] for an exception.
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be true for the iterated multiplication of non-constant-size matrices 5. Note that for weak PRFs as
we need, we can use an ElGamal-like structure, which we show is computable in log-depth, with
appropriate pre-computation.

Another interesting question is the following. The PRF from [NR97] (and also the weak PRF
we use) is only log-depth computable if the underlying group is the multiplicative group over a
finite field. However, it is not clear if this generalizes to other groups used in cryptography, such
elliptic curve groups. Note that pairings are groups over elliptic curves. However, the target
group in pairings fortunately is a finite-field group, and typical assumptions in the pairing imply
corresponding assumptions in the target group. Hence, while we cannot use the source group of a
pairing for our weak PRF, we can use the target group instead.

Remark 6. We also observe that [NR97] only claims to be log-depth in the multiplicative group of
prime-order fields. This is not sufficient for us, since the target group of pairings typically lies in a
field of prime-power order. We show how to extend to arbitrary fields in Section 6. This involves
performing iterated field multiplications in log depth for arbitrary fields, which follows standard
techniques but to the best of our knowledge had not appeared in the literature before.

1.3 Paper Outline

Here, we explain how Theorem 2 follows from a combination of known and new results, the new
results being proved in various sections of this paper. Recall that we assume a weak PRF computable
by log-depth arithmetic formula over a field F, as well as ABE for this class of formula.

• NEW, Section 3, Theorem 27: We show that weak PRFs imply a Mixed Functional Encryption
(MFE) construction that is both 2-Bounded Selective Ciphertext Attribute Hiding (2-SEL-
CTXT) secure and 1-Bounded Selective Accept (1-SEL-ACC) secure (Definitions given in
Section 2). If the weak PRF can be computed via log-depth arithmetic formula (using
pre-computation), then so can the decryption of our MFE.

• [GKW18] (described formally in Theorem 22): We then use the assumed ABE to lift the MFE
into an message carrying MFE (mcMFE), which is also 2-SEL-CTXT secure and 1-SEL-ACC
secure as well as 2-Bounded Selective Message-Hiding (2-SEL-M) secure (defined in Section 2).

• [GKW18] (described formally in Theorem 23): In the resulting mcMFE, the decoder-based
security notions SEL-DEC-CTXT and SEL-DEC-M (defined in Section 2) follow from 2-SEL-
CTXT and 2-SEL-M security, respectively, following [GKW18]. However, since we only have
1-SEL-ACC security, the decoder-based notion SEL-DEC-ACC does not follow.

• NEW, Section 4, Theorem 44: On the other hand, we show how to compile a mcMFE scheme
with 1-SEL-ACC security into one satisfying a weak decoder version of Accept security, (called
weak SEL-DEC-ACC security, Defined in Section 4).

5In the case of constant K, we can get very close to log-depth, namely depth O(log(n) log∗(n)) [All04]. Note also
that iterated matrix multiplication for constant-sized matrices can be carried out by log-depth arithmetic formula.
However, for applications to PRFs, the iterated multiplication needs to be followed by a group exponentiation, which
requires the bit representation of the matrix product. With arithmetic formula, this is not possible. Hence, it seems
boolean formula are needed for the iterated multiplication, even if we ultimately want an arithmetic formula. It
appears open to achieve truly log-depth boolean formula for iterated multiplication of even constant-sized matrices.
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• NEW, Section 5, Theorems 48 and 49: Such a mcMFE with SEL-DEC-CTXT, SEL-DEC-
M, and weak SEL-DEC-ACC security then gives an risky threshold tracing scheme with
asymptotically optimal parameters (variants of traitor tracing defined in Section 2).

• [Zha20], (described formally in Theorem 21): Such a risky threshold tracing scheme implies
an optimal (non-risky, non-threshold) traceable scheme, completing the proof of Theorem 2.

In Section 6 we then discuss how to instantiate the assumed ABE and weak PRF. In particular,
both can be instantiated from either the DBDH or K-LIN assumptions on pairings over elliptic
curves. This proves Theorem 1.

2 Definitions and Notation
Let PPT denote “probabilistic polynomial time.” Let NC1 be the set of functions with inputs/outputs
in {0, 1}∗ computable by polynomial-time-uniform log-depth boolean formula. For a family F = (Fκ)κ

of fields, let NC1(F) be the set of functions computable by polynomial-time-uniform arithmetic
formula over F. We can interpret {0, 1} ⊆ F and can “arithmetic-ize” any boolean formula, showing
that NC1 ⊆ NC1(F) for any family of fields F. Finally, let NC1

̸=0(F) be the set of functions whose
inputs are vectors over F and outputs are in {0, 1}, computable as 1(f(x) ̸= 0), where f(x) ∈ NC1(F).
Here 1(X) is the indicator function, which is 1 if X is true and 0 if X is false.

We will sometimes parameterize families of objects by more then one input, in which case we
write, e.g., (Rκ1,κ2)κ1,κ2 . Note that we can turn such a singe-parameter family using index (κ1, κ2),
which is mapped to the integers in a standard way.

2.1 Traitor Tracing

We define traitor tracing following the modern conventions established in [NWZ16, GKRW18,
GKW18]. Our exact formalization is similar to that from [Zha20]. A traitor tracing scheme for a
key space K = (Kλ)λ is a tuple Π = (Setup, KeyGen, Enc, Dec, Trace) of probabilistic polynomial
time (PPT) algorithms with the following syntax:

Setup(1λ, 1ν)→ (mpk, msk)
KeyGen(msk, id)→ skid

Enc(mpk)→ (c, k)
Dec(skid, c)→ k

TraceD(msk, 1N , 11/ϵ)→ A

where

mpk : master public key
msk : master secret key

id ∈ {0, 1}ν : user’s identity
skid : secret key for id

c : ciphertext
k ∈ Kλ : encapsulated key

D : pirate decoder
N : number of users
ϵ : D’s advantage

A ⊆ {0, 1}ν : accused users

Above, TraceD means that Trace makes queries to D, each query incurring unit cost.
Definition 7 (Correct Traitor Tracing). A traitor tracing scheme Π is correct if, for every polynomial
ν(λ) there exists a negligible function negl such that for all λ ∈ N and id ∈ {0, 1}ν(λ):

Pr
[
Dec(skid, c) ̸= k :

(mpk,msk)←Setup(1λ,1ν(λ))
(c,k)←Enc(mpk)

sk id←KeyGen(msk,id)

]
≤ negl(λ) .
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Definition 8 ((ϵ, δ)-Threshold Risky Traceability). Let ϵ(λ) and δ(λ) be a functions. Π is (ϵ, δ)-
threshold risky traceable if, for every polynomial ν(λ) and every PPT stateful adversary A, there
exists a negligible function negl(λ) such that for all λ ∈ N, the advantage of A is at most negl(λ) in
the following experiment:

• Run (mpk, msk)← Setup(1λ, 1ν(λ)) and send mpk to A.

• A can now make arbitrarily-many queries on identities id ∈ {0, 1}ν(λ), and receives skid ←
KeyGen(msk, id). Let C be the set of queried id.

• A produces a decoder D and an integer 1N represented in unary such that |C| ≤ N . Run
A← TraceD(msk, 1N , 11/ϵ(λ)).

• Let Goodϵ(λ)(D, mpk) be the event that 2× Pr
[
D(c, kb) = b : (c,k0)←Enc(mpk)

b←{0,1},k1←Kλ

]
− 1 ≥ ϵ(λ). The

advantage of A is the maximum of Pr[A ⊈ C] and δ(λ)× Pr[Goodϵ(λ)(D, mpk)]− Pr[|A| > 0].

We say Π is δ-risky traceable if it is (ϵ, δ)-risky threshold traceable for all inverse polynomials ϵ.
We say Π is ϵ-threshold traceable if it is (ϵ, 1)-risky threshold traceable. Finally, we say that Π is
traceable if it is 1-risky traceable.

The requirement that Pr[A ⊈ C] is negligible means that honest users outside of C are never
accused. The requirement that δ(λ)×Pr[Goodϵ(λ)(D, mpk)]−Pr[|A| > 0] is negligible says that if D
is able to distinguish honest keys k from random ones in Kλ (in other words, the decoder is “good”),
then there is roughly a δ(λ) chance that the decoder will be traced to some user. When δ = 1, this
means that good decoders are essentially always traced to a user. Combined with never accusing an
honest user, this means that an adversarial user must accused if the decoder is good.

Notice that the syntax of a traitor tracing scheme as in Definition 8 does not allow the run-times
or parameters to depend on the number of keys given out (except for Trace since it depends on N).

Variations. In an index-only scheme, we place the additional requirement on the adversary that
for each queried id, id ∈ [N ]. Since N must be a polynomial, we can always upper bound N ≤ 2λ.
Hence, we will always take ν = λ, and omit ν as an input to Setup.

Schemes defined as in Definition 8 without the index-only modification are typically called
embedded identity schemes, first explored by [NWZ16]. An intermediate notion called index-based
embedded identity [GKW19] has identities comprising two parts (i, id), where id ∈ {0, 1}ν represents
the identity, and i ∈ {0, 1}λ is an index. It is guaranteed that the indices of all secret keys given out
are distinct, and that the N produced by A bounds all indices i. Thus, i serves the role of index in
an index-only scheme, while id is an identity additionally recovered during tracing.

Note that the key-space K is mostly irrelevant, since we can expand the key size either by
applying pseudorandom generators or by combining several encapsulated keys.

Above, we give a variation of traitor tracing that is a key encapsulation mechanism (KEM). By
having the key k one-time pad the message, we can readily turn such a scheme into a traitor tracing
scheme that actually encrypts messages. We focus on KEMs for ease of notation.

Optimal Schemes. Our formalization of traitor tracing guarantees that parameters and run-times
are independent of the number of colluding users, except for Trace (since it depends on N). We will
call such schemes as optimal. Most schemes in the literature are not optimal, and have running
times and parameter sizes depend polynomially on the upper bound N on the number of users.
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2.2 Weak PRFs

Definition 9. A weak PRF with key space K = (Kλ)λ, input space R = (Rλ)λ and output space
O = (Oλ)λ is a deterministic polynomial time algorithm PRF : Kλ ×Rλ → Oλ such that, for any
PPT adversary A and polynomial ℓ(λ), there exists a negligible negl(λ) such that for every λ ∈ N,∥∥∥∥Pr

[
A( (ri, ci)i ) = 1 :

k←Kλ,
r1,··· ,rℓ←Rλ
ci←PRF(k,ri)

]
− Pr

[
A( (ri, ci)i ) = 1 :

k←Kλ,
r1,··· ,rℓ←Rλ

ci←Oλ

]∥∥∥∥ ≤ negl(λ) .

Definition 10. We say that PRF is computable by a circuit class C = (Cλ)λ with pre-computation if
there exists a uniform family of circuits C = (Cλ)λ, Cλ ∈ Cλ as well as a polynomial-time procedure
H (not necessarily in C) such that PRF(k, r) = Cλ(k, H(r)) for each k ∈ Kλ.

We will always set C to be the set NC1(F) for a field family F.

2.3 Attribute-Based Encryption (ABE)

Here, we define attribute-based encryption. There are two formulations of ABE in the literature,
key-policy ABE where keys are associated with functions and ciphertexts with attributes, and
ciphertext-policy ABE where ciphertexts are associated with functions and keys with attributes. In
this work, we use a version implied by both.

Let R = {Rκ}κ where Rκ : {0, 1}m(κ) × {0, 1}n(κ) → {0, 1} be a family of binary relations, and
K = (Kλ)λ a family of sets. Then an attribute-based encryption (ABE) scheme for R and K is a
tuple Π = (Setup, KeyGen, Enc, Dec) with the following syntax:

Setup(1λ, 1κ)→ (mpk, msk)
KeyGen(msk, x)→ skx

Enc(mpk, y)→ (c, k)
Dec(skx, c)→ k

where

mpk : master public key
msk : master secret key

x ∈ {0, 1}m(κ) : secret key attribute
y ∈ {0, 1}n(κ) : ciphertext attribute

skx : secret key for x
c : ciphertext

k ∈ Kλ : key encapsulated in c

Definition 11 (Correct ABE). An ABE scheme Π is correct if, for every polynomial κ(λ), there
exists a negligible function negl(λ) such that for all λ ∈ N and all x, y ∈ {0, 1}m(κ(λ)) × {0, 1}n(κ(λ))

such that Rκ(λ)(x, y) = 1,

Pr
[
Dec(skx, c) ̸= k :

(mpk,msk)←Setup(1λ,1κ(λ))
skx←KeyGen(msk,x)
(c,k)←Enc(mpk,y)

]
≤ negl(λ) .

Definition 12 (Message Hiding). An ABE scheme Π is selectively message hiding secure (SEL-M
secure) if, for every polynomial κ(λ) and every PPT stateful adversary A, there exists a negligible
function negl(λ) such that for all λ ∈ N, the advantage of A is at most negl(λ) in the following:

• Run A(1λ) to get a ciphertext attribute y∗ ∈ {0, 1}n(κ(λ)).

• Run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A makes arbitrarily-many adaptive queries on secret key attributes x ∈ {0, 1}m(κ(λ)) such that
R(x, y∗) = 0, and receives skx ← KeyGen(msk, x).
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• At some point, A asks for the ciphertext challenge ciphertext. In response, it receives (c∗, k∗b )
where (c∗, k∗0)← Enc(mpk, y∗), k∗1 ← Kλ, and b← {0, 1}.

• A can continue making secret key attribute queries on x such that R(x, y∗) = 0.

• Finally, A outputs a bit b′. The advantage of A is ∥2× Pr[b′ = b]− 1∥.

2.4 Secret Key Functional Encryption (FE) and Mixed FE (MFE)

Let R = {Rκ}κ where Rκ : {0, 1}m(κ) × {0, 1}n(κ) → Zκ be a family of relations. Then a (secret
key) functional encryption (FE) scheme for R is a tuple ΠFE = (Setup, KeyGen, EncSK, Dec) and a
mixed FE (MFE) is a tuple ΠMFE = (Setup, KeyGen, EncSK, EncPK, Dec) with the following syntax:

Setup(1λ, 1κ)→ (mpk, msk)
KeyGen(msk, x)→ skx

EncSK(msk, y)→ c
EncPK(mpk)→ c

Dec(skx, c)→ b

where

mpk : master public key
msk : master secret key

x ∈ {0, 1}m(κ) : secret key attribute
y ∈ {0, 1}n(κ) : ciphertext attribute

skx : secret key for x
c : ciphertext

b ∈ {0, 1} : output bit

An MFE additionally requires Zκ = {0, 1}. We will only consider secret key FE and will henceforth
drop the modifier “secret key”. Note that mpk only serves a role in MFE, but is unused in FE.

Definition 13 (Correct FE). An FE scheme Π is correct if, for every polynomial κ(λ), there exists
a negligible function negl(λ) such that for all λ ∈ N and all x, y ∈ {0, 1}m(κ(λ)) × {0, 1}n(κ(λ)),

Pr
[
Dec(skx, c) ̸= Rκ(x, y) :

(mpk,msk)←Setup(1λ,1κ(λ))
skx←KeyGen(msk,x)

c←EncSK(msk,y)

]
≤ negl(λ) .

Definition 14 (Correct MFE). An MFE scheme Π is correct if, (1) it is correct as an FE scheme,
and (2) for every polynomial κ(λ), there exists a negligible function negl(λ) such that for all λ ∈ N
and all x, y ∈ {0, 1}m(κ(λ)) × {0, 1}n(κ(λ)),

Pr
[
Dec(skx, c) ̸= 1 :

(mpk,msk)←Setup(1λ,1κ(λ))
skx←KeyGen(msk,x)

c←EncPK(mpk)

]
≤ negl(λ) .

That is, ciphertexts generated from EncPK behave as if they poses attribute y such that R(x, y) = 1.

Ciphertext Attribute Security. Security for FE (and one of the needed properties for MFE)
roughly requires that nothing about the ciphertext attribute y is revealed, except for the values
R(x, y) for x among secret key attributes seen by the adversary.

Definition 15 (q-bounded ciphertext attribute hiding). Let q(λ) be a function. An FE/MFE Π is
q-bounded selective ciphertext attribute secure (q-SEL-CTXT secure) if, for every polynomial κ(λ)
and every stateful PPT adversary A, there exists a negligible function negl(λ) such that, for every
λ ∈ N, the advantage of A is at most negl(λ) in the following experiment:

• Run A(1λ) to get two lists of ciphertext attributes y∗0, y∗1 ∈ ({0, 1}n(κ(λ)))q(λ).
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• Now run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A makes arbitrary-many queries on key attributes x such that R(x, y∗0,i) = R(x, y∗1,i) for all i ∈
[q(λ)], where y∗b,i ∈ {0, 1}n(κ(λ)) is the ith component of y∗b ; it receives skx ← KeyGen(msk, x).

• Choose a random bit b ∈ {0, 1}. A gets ciphertexts {c∗b,i}i∈[q(λ)−1] for c∗b,i ← EncSK(msk, y∗b,i).

• A outputs a bit b′. The advantage of A is ∥2× Pr[b′ = b]− 1∥

Remark 16. Our use of q here is off by 1 from [GKW18]. [GKW18] consider a definition where
there is one “challenge” ciphertext that must be distinguished, plus the adversary gets to see q
additional ciphertexts for attributes of its choice. They use q to count the number of additional
ciphertexts, meaning the total number of ciphertexts seen by the adversary is q + 1. We instead use
q as the total number of ciphertexts seen in order to be consistent with usage in the FE literature.

Accept security. For MFE systems, we also require accept security, which captures that public
ciphertexts produced by EncPK should be computationally indistinguishable from ciphertexts with
any attribute y satisfying R(x, y) = 1 for secret keys skx that the adversary has seen.

Definition 17 (q-bounded accept security). Let q(λ) be a function. An MFE Π is q-bounded
selective accept secure (q-SEL-ACC secure) if, for every polynomial κ(λ) and for every stateful PPT
adversary A, there exists a negligible function negl(λ) such that, for every λ ∈ N, the advantage of
A is at most negl(λ) in the following experiment:

• Run A(1λ) to get a list of ciphertext attributes y∗ ∈ ({0, 1}n(κ(λ)))q(λ)−1.

• Now run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A now makes queries on key attributes x with the guarantee that R(x, y∗i ) = 1 for each
i ∈ [q(λ)], where y∗i is the ith component of y∗; it receives in response skx ← KeyGen(msk, x).

• Choose a random bit b ∈ {0, 1}. A now receives ciphertexts {c∗b,i}i∈[q(λ)−1] where c∗0,i ←
EncSK(msk, y∗i ), and c∗1 ← EncPK(mpk).

• A outputs a bit b′. The advantage of A is ∥2× Pr[b′ = b]− 1∥.

2.5 Message Carrying MFE (mcMFE)

Here, we define Message Carrying MFE (mcMFE). This includes private linear broadcast encryption
(PLBE) as a special case, versions of which imply traitor tracing [BSW06, GKW18]. By considering
a more general version, we also include concepts such as embedded identity PLBE, which is used to
build embedded identity traitor tracing [GKW19].

Let R = {Rκ}κ where Rκ : {0, 1}m(κ) × {0, 1}n(κ) → Z be a family of relations. Then a mcMFE
scheme for R and key space K = (Kλ)λ is a tuple Π = (Setup, KeyGen, EncSK, EncPK, Dec) that is a
mixed FE scheme with an added KEM functionality, meaning encryption produces additionally a key
k. Decryption reveals k if R(x, y) = 1; otherwise k is hidden. For publicly generated attribute-less
ciphertexts, decryption under any secret key reveals k. It has the following syntax:
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Setup(1λ, 1κ)→ (mpk, msk)
KeyGen(msk, x)→ skx

EncSK(msk, y)→ (c, k)
EncPK(mpk)→ (c, k)

Dec(skx, c)→ k

where

mpk : master public key
msk : master secret key

x ∈ {0, 1}m(κ) : secret key attribute
y ∈ {0, 1}n(κ) : ciphertext attribute

skx : secret key for x
c : ciphertext

k ∈ Kλ : key encapsulated in c

Definition 18 (Correct mcMFE). A mcMFE scheme Π is correct if, for every polynomial κ(λ), there
exists a negligible function negl(λ) such that for all λ ∈ N and all x, y ∈ {0, 1}m(κ(λ)) × {0, 1}n(κ(λ)),

Pr
[
Dec(skx, c) ̸=

{
k if Rκ(x, y) = 1
⊥ otherwise

:
(mpk,msk)←Setup(1λ,1κ(λ))

skx←KeyGen(msk,x)
c←EncSK(msk,y)

]
≤ negl(λ) , and

Pr
[
Dec(skx, c) ̸= k :

(mpk,msk)←Setup(1λ,1κ(λ))
skx←KeyGen(msk,x)
(c,k)←EncPK(mpk)

]
≤ negl(λ) .

Definition 19 (q-bounded Message Hiding). Let q(λ) be a function. An mcMFE Π is q-bounded
selective message hiding secure (q-SEL-M secure) if, for every polynomial κ(λ) and every stateful
PPT adversary A, there exists a negligible function negl(λ) such that, for every λ, the advantage of
A is at most negl(λ) in the following experiment:

• Run A(1λ) to get ciphertext attribute y∗ ∈ {0, 1}n(κ(λ)) as well as ciphertext attribute list
Y ∈ ({0, 1}n(κ(λ)))q(λ)−1.

• Now run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A can now make arbitrary queries on key attributes x with the guarantee that R(x, y∗) = 0; it
receives in response skx ← KeyGen(msk, x).

• Choose a random bit b ∈ {0, 1}. A now receives ciphertexts {(ci, ki)}i∈[q(λ)−1] and (c∗, k∗b )
where (ci, ki)← EncSK(msk, Yi), (c∗, k∗0)← EncSK(msk, y∗), and k∗1 ← Kλ.

• A outputs a bit b′. The advantage of A is ∥2× Pr[b′ = b]− 1∥.

It is also straightforward to define notions of q-SEL-CTXT and q-SEL-ACC for mcMFE,
analogous to Definitions 15 and 17.

Decoder-based security. An important tool for realizing traitor tracing decoder-based security.
This is because traitor tracing adversaries (such as Definition 8) produce decoders, and the natural
reductions to the underlying cryptographic building blocks therefore have adversaries produce
decoders which then break some security property. It is therefore useful for many of our definitions
to consider security against such decoder-producing adversaries.

Definition 20 (Selective decoder-based ciphertext attribute security). An mcMFE Π is selective
decoder-based ciphertext attribute secure (SEL-DEC-CTXT secure) if, for every polynomial κ(λ),
every stateful PPT adversary A, and every inverse-polynomial ϵ(λ), there exists a negligible function
negl(λ) such that, for every λ ∈ N, the advantage of A is at most negl(λ) in the following experiment:

• Run A(1λ) to get ciphertext attributes y∗0, y∗1 ∈ {0, 1}n(κ(λ)).
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• Now run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A can now make arbitrary queries on key attributes x with the guarantee that R(x, y∗1) =
R(x, y∗2); it receives in response skx ← KeyGen(msk, x).

• A outputs a decoder D.

• The advantage of A is Pr
[
Goodϵ(λ)(D, msk, y∗0, y∗1)

]
where Goodϵ(λ)(D, msk, y∗0, y∗1) is the event

∥ Pr[D(EncSK(msk, y∗0)) = 1]− Pr[D(EncSK(msk, y∗1)) = 1] ∥ ≥ ϵ(λ) .

Likewise, it is straightforward to define decoder-based notions SEL-DEC-M and SEL-DEC-ACC.

Private Linear Broadcast Encryption (PLBE). PLBE is mcMFE for the relation RPLBE =
(RPLBE

κ )κ where RPLBE
κ : [2κ]× [0, 2κ]→ {0, 1} is defined as RPLBE(id, t) = 1(id ≤ t). Note that we

normally set κ = λ, meaning all the parameters of the PLBE will be fixed polynomials in λ.

Embedded Identity PLBE (EIPLBE). EIPLBE is mcMFE for the two-parameter relation
RPLBE = (REIPLBE

κ,ℓ )κ,ℓ with two indices, where secret key attributes are pairs (j, id) ∈ [2κ]× {0, 1}ℓ
and ciphertexts attributes are tuples (t, i) ∈ [0, 2κ]× [0, ℓ]. REIPLBE

κ,ℓ is defined as

REIPLBE
κ,ℓ ((j, id), (t, i)) =

{
1( j ≤ t ) if i = 0
1( j < t ∨ (j, idi) = (t, 1) ) if i > 0 .

2.6 Existing Results

Eliminating Riskiness and Thresholds in Tracing. The usual goal has been to construct
optimal traceable schemes without any riskiness or threshold. However, the following theorem
of [Zha20] shows that it suffices to build a (ϵ, δ)-threshold risky scheme for any constant ϵ, δ:

Theorem 21 (Special case of [Zha20]). Fix constants ϵ, δ ∈ (0, 1). If there exists an optimal
(ϵ, δ)-threshold risky traceable scheme, then there exists an optimal traceable scheme.

From MFE and ABE to mcMFE. The following is easily adapted from [GKW18].

Theorem 22 ([GKW18]). Let ΠMFE be an MFE scheme for relation R. Suppose there exists an
ABE scheme ΠABE that is SEL-M secure and whose relation is the decryption function for ΠMFE.
Then there exists a mcMFE scheme ΠmcMFE for R such that:

• ΠmcMFE is q-SEL-M secure for any polynomial q.

• If ΠMFE is q-SEL-CTXT (resp. q-SEL-ACC) secure, then so is ΠmcMFE.

Obtaining Decoder-based mcMFE security. The following is also from [GKW18].

Theorem 23 ([GKW18]). For X ∈ {M,CTXT,ACC}, if an mcMFE protocol Π is 2-SEL-X secure,
it is also SEL-DEC-X secure.
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Traitor Tracing from mcMFE. The following are proved in [GKW18] and [GKW19] respectively.

Theorem 24 ([GKW18]). If there exists a PLBE scheme that is SEL-DEC-M, SEL-DEC-CTXT,
and SEL-DEC-ACC secure, then there exists a traceable index-only traitor tracing scheme.

Theorem 25 ([GKW19]). If there exists an a EIPLBE scheme that is SEL-DEC-M, SEL-DEC-
CTXT, and SEL-DEC-ACC secure, then there exists a traceable index-based embedded-identity
traitor tracing scheme.

We also have the following theorem from [GKW19], which shows how to generically turn an
index-based embedded-identity scheme into a full embedded-identity scheme:

Theorem 26 ([GKW19]). If there exists a traceable index-based embedded-identity traitor tracing
scheme, then there exists a traceable (non-index-based) embedded-identity traitor tracing scheme.

3 MFE From Weak PRFs
Our main theorem of this section is the following:

Theorem 27. Let R = (Rκ)κ ∈ NC1(F) for a family of fields F = (Fκ)κ where F is super-polynomially
large in κ. Assume there exists a weak PRF PRF computable in NC1(F) using pre-computation.
Then there is a MFE scheme for R that is simultaneously 2-SEL-CTXT secure and 1-SEL-ACC
secure, where decryption function is in NC1

̸=0(F).

By combining with Theorem 22 due to [GKW18], we immediately obtain:

Corollary 28. Make the same assumptions as Theorem 27 plus additionally assume the existence
of SEL-M secure attribute-based encryption for NC1

̸=0(F). Then there exists a mcMFE scheme for R
that is simultaneously 2-SEL-CTXT secure, 2-SEL-M secure, and 1-SEL-ACC secure.

Note that this is not enough to obtain traitor tracing through existing frameworks. This is
because applying Theorem 24 from [GKW18] or Theorem 25 from [GKW19] requires decoder-based
security for the underlying (message-carrying) MFE. In our case, we can get decoder-based Ciphertext
Attribute security by applying Theorem 23 since we have security for two ciphertexts. However, we
only obtain Accept security for a single ciphertext, which is insufficient to get decoder-based Accept
security. However, we will later show (Section 4) how to turn a 1-SEL-ACC secure scheme into a
scheme with a weak form of decoder security, which we show suffices for traitor tracing.

Our construction here will follow the techniques of [SS10, GVW12, KMUW18], but we will take
care to instantiate the techniques in a way that enables pseudorandomness of the ciphertexts.

3.1 Building Block: Low-Depth CPA-secure Encryption

Definition 29. A CPA-secure symmetric encryption scheme is a pair Π = (Enc, Dec) of PPT
algorithms and associated message and ciphertext spacesM = (Mλ)λ and C = (Cλ)λ with the syntax:

Enc(k, m)→ c
Dec(k, c)→ m

where
k ∈ {0, 1}λ : secret key

m ∈Mλ : message
c : ciphertext
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• Correctness: There exists a negligible function negl(λ) such that, for every λ > 0 and every
m ∈Mλ, Pr[Dec(k, Enc(k, m) ̸= m : k ← {0, 1}λ] ≤ negl(λ).

• CPA Security: For every stateful adversary A, there exists a negligible function negl such
that the advantage of A is at most negl(λ) in the following experiment:

– Choose a random bit b and random key k ← {0, 1}λ.
– Run A(1λ). A can now make arbitrarily many queries on pairs m0, m1 ∈ Mλ. In

response, it receives Enc(k, mb).
– Finally, A produces a bit b′. The advantage of A is 2 Pr[b′ = b]− 1.

In this work, we will additionally use the following statistical property in our encryption scheme:

Definition 30. We say an symmetric key encryption scheme Π is key non-committing under
random messages if there exists a negligible function negl such that, for every λ ∈ N, the distributions
(k, k′, Enc(k, m)) and (k, k′, Enc(k′, m)) are negl(λ) close, where k, k′ ← {0, 1}λ and m←Mλ.

Lemma 31. Assume the existence of a weak PRF PRF that is computable in NC1(F) using pre-
computation. Then there exists a CPA-secure symmetric encryption scheme Π where decryption is
computable in NC1(F). Moreover, Π is key non-committing under random ciphertexts.

Proof. Let Enc(k, m) = (hr, PRF(k, r) + m) for a random choice of r. Dec then computes PRF(k, r)
from k, hr in NC1(F), and then uses it to un-mask m. CPA-security readily follows from the security
of the weak PRF. That decryption is computable in NC1(F) follows immediately from the ability
to compute PRF(k, r) in NC1(F). For the key non-committing property, on a random message,
Enc(k, m) is just hr together with a random string. hr is independent of the key k. Therefore,
Enc(k, m) for a random message m is independent of the key. Note that the message-space can be
made arbitrarily long with the same key: divide the message into blocks and encrypt each block
separately. This preserves both CPA security and key-non-committing under random messages.

3.2 Building Block: Random Randomized Encodings

Definition 32. Let R = (Rκ)κ be a family of two-input functions R : {0, 1}m(κ) × {0, 1}n(κ) → Zκ

for some sets Zκ. A random randomized encoding (RRE) for R is a pair of PPT algorithms
Π = (Enc, Dec) where:

• Enc(x)→ (Li,b)i∈[n(κ)],b∈{0,1}.

• For a string y ∈ {0, 1}n(κ), Pr[Dec( (Li,yi)i∈[n(κ)]) = R(x, y)] = 1.

• There exists a negligible function negl(κ) such that, for any x, y, the distribution of the
labels (Li,yi)i∈[n(κ)] ∈ {0, 1}p(κ)×n(κ) is negl(κ)-close to a uniform string L ∈ {0, 1}p(κ)×n(κ)

conditioned on Dec(L) = R(x, y). Moreover, for a uniform random string L, Dec(L) is
negl(κ)-close to uniform in Zκ.

Note that plain randomized encodings only require that the distribution of labels for a pair
(x, y) is essentially independent of x, y, only depending on R(x, y). The labels could be arbitrarily
structured, however. RREs strengthen this to require the labels to be as random as possible, subject
to the correctness of the scheme. Nevertheless, we show the following:
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Lemma 33. For any field F = (Fκ)κ of size super-polynomial in κ and for any R ∈ NC1(F), there
is an RRE where Dec ∈ NC1(F).

Proof. In [BOC92] it is shown how to turn any depth-d binary-input arithmetic formula f : {0, 1}n →
F into a matrix branching program, comprising 2×4d invertible matrices in F3×3. That is, a collection
of matrices (Mi,b)i∈[ℓ],b∈{0,1} where ℓ = 4d and an input function inp : [ℓ]→ [n] such that (1) Mj,b is
an invertible matrix in F3×3 and (2) we have

ℓ∏
j=1

Mi,xinp(j) =

 1 f(x) 0
0 1 0
0 0 1


.

where the product is carried out with j = 1 on the left and j = ℓ on the right. By padding
with identity matrices, we can take ℓ = n × 2d and inp(j) = j mod n, independent of f (except
through its depth). Here, it is understood that mod outputs elements in [n]. Moreover, by left- and
right-multiplying by “booked” matrices s = (1 0 0) and t = (0 1 0)T , we have that

s ·

 ℓ∏
j=1

Mj,xj mod n

 · t = f(x) .

We now apply Kilian re-randomization [Kil88]. We choose random invertible matrices R1, · · · , Rℓ−1 ∈
F3×3, and define:

M̂j,b = Rj−1 ·Mj,b ·R−1
j for j ∈ [2, t− 1] , M̂1,b = s ·M1,b ·R−1

1 , M̂t,b = Rt−1 ·Mt,b · t

Such re-randomization maintains that
ℓ∏

j=1
M̂j,xj mod n

= f(x) .

The algorithm Enc(x) therefore lets fx(y) = R(x, y) with x hard-coded, and samples the matrices
M̂j,b for fx. Then it sets Li,b = (M̂j,b)j:j mod n=i. Dec simply extracts all the matrices, orders
them appropriately, and multiplies them. Since Dec is just an iterated matrix multiplication with
constant-sized matrices, it can be computed in NC1(F).

Observe that (Li,yi)i∈[n] ≡ (M̂j,yj mod n
)j∈[ℓ], which, by the re-randomization is seen to be

distributed uniformly among lists of matrices conditioned on (1) the matrices being invertible, and
(2) their product being R(x, y). Since the field F has super-polynomial size, random matrices are
invertible with all but negligible probability. As such, we can drop condition (1) and only negligibly
change the distribution. The result is that (Li,yi)i∈[n] are statistically close to random conditioned
on Dec((Li,yi)i∈[n]) = R(x, y). It is also straightforward that the product of random matrices in F is
statistically close to uniform, as long as F is super-polynomial.

3.3 An FE for One Ciphertext

We first focus on the easier case where we only ask for 1-SEL-CTXT security and (a version of)
1-SEL-ACC security. In Section 3.4 we will upgrade the construction to 2-SEL-CTXT security
while preserving 1-SEL-ACC security. Our 1-ciphertext secure scheme here will closely follow that
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of [SS10], and in Section 3.4 we will upgrade to a 2-ciphertext secure scheme following the techniques
in [GVW12, KMUW18]. In both cases, we will point out additional features that allow us to
ultimately obtain a MFE scheme with useful Accept security.

Let R = (Rκ)κ ∈ NC1(F). Let Πsk = (Encsk, Decsk) be a CPA secure symmetric key encryption
scheme, and let ΠRRE = (EncRRE, DecRRE) be a random randomized encoding.

Construction 34. Let ΠFE = (SetupFE, KeyGenFE, EncSKFE, DecFE) be defined as:

• SetupFE(1λ, 1κ): sample symmetric encryption keys ki,b ← {0, 1}λ for i ∈ [n(κ)], b ∈ {0, 1}.
Sample u ∈ {0, 1}n(κ). Output msk = (u, (ki,b)i∈[n(κ)],b∈{0,1}). mpk is empty.

• KeyGenFE(msk, x): Run EncRRE(x) → (Li,b)i∈[n(κ)],b∈{0,1}. Now set si,b = Encsk(ki,b, Li,b⊕ui
).

Output skx = (si,b)i∈[n(κ)],b∈{0,1}.

• EncSKFE(msk, y): Output c = (y′, (ci)i∈[n(κ)]) where y′ = y ⊕ u and ci = ki,y′
i
.

• DecFE(skx, c): Let L′i = Decsk(ci, si,y′
i
). Output DecRRE((L′i)i∈[n(κ)]).

Correctness follows immediately from the correctness of the underlying building blocks. For
security, while [SS10] flip the roles of ciphertext and secret key, and also use public key encryption
instead of symmetric key encryption, the proof of security nevertheless easy applies to our scheme.
In fact, they achieve an even stronger notion of security that hides both the ciphertext attributes
and key attributes. We define this notion next.

Definition 35 (q-bounded key/ciphertext attribute hiding). Let q(λ) be a function. An FE Π
is q-bounded selective key/ciphertext attribute secure (q-SEL-KEY-CTXT secure) if, for every
polynomial κ(λ) and every stateful PPT adversary A, there exists a negligible function negl(λ) such
that, for every λ, the advantage of A is at most negl(λ) in the following experiment:

• Run A(1λ) to get two lists of ciphertext attributes y∗0, y∗1 ∈ ({0, 1}n(κ(λ)))q(λ).

• Choose a random bit b ∈ {0, 1}. Now run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A can now make arbitrary queries on pairs of key attributes x0, x1 with the guarantee that
R(x0, y∗0,i) = R(x1, y∗1,i) for all i ∈ [q(λ)], where y∗b,i ∈ {0, 1}n(κ(λ)) is the ith component of y∗b ;
it receives in response skx ← KeyGen(msk, xb).

• A now receives ciphertexts {c∗b,i}i∈[q(λ)−1] where c∗b,i ← EncSK(msk, y∗b,i).

• A outputs a bit b′. The advantage of A is ∥2× Pr[b′ = b]− 1∥.

Lemma 36. If Πsk is CPA secure and ΠRRE is a random randomized encoding, then ΠFE in
Construction 34 is q-SEL-KEY-CTXT secure for q ∈ {0, 1}.

Proof. We give the proof for completeness. We prove the case q = 1, the case q = 0 follows from a
similar but simpler argument. Let A be a supposed adversary for 1-SEL-KEY-CTXT security. We
bound the advantage of A through a sequence of hybrids, which we show are indistinguishable.

Hybrid 0. In this hybrid, A plays the 1-SEL-KEY-CTXT game with b = 0, meaning the ciphertext
c∗ it sees is an encryption with ciphertext attribute y∗0 (since q = 1, we drop the index i), and the
secret key queries are answered using attribute x0.
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Hybrid 1. This is identical to Hybrid 0, except that in each secret key query, we replace si,1−y′
i

with si,1−y′
i
← Encsk(ki,1−y′

i
, 0), setting the terms to be encryptions of 0. The indistinguishability

between Hybrid 0 and Hybrid 1 follows from the fact that A never sees ki,1−y′
i
, meaning we can

invoke the CPA security of Πsk to replace any ciphertext encrypted under these keys with encryptions
of 0. Notice now that the values Li,(1−y′

i)⊕ui
= Li,1−yi are not used to generate the secret key.

Hybrid 2. This is identical to Hybrid 1, except that for secret key query on key attribute x0,
we generate the Li,yi as uniform random strings, conditioned on DecRRE((Li,yi)i∈[n]) = R(x0, y∗0).
Indistinguishability from Hybrid 1 follows from the security of ΠRRE.

Observe that now the view of the adversary looks like the following. Keys ki are sampled
uniformly (which will ultimately be set to ki,y′

i
) as well as keys k′i (which will ultimately be set to

ki,1−y′
i
). Then for each secret key query on key attributes x0, x1, the query is answered as follows:

choose random (Li)i such that DecRRE((Li)i) = R(x, y∗0) = R(x0, y∗0). Let si,y′
i

= Encsk(ki, Li) and
si,1−y′

i
= Encsk(k′i, 0). The ciphertext is c = (y′, (ki)i). Here, y′ = y∗0 ⊕ u.

Hybrid 3. This is identical to Hybrid 2, except that we now generate (Li)i as random strings
such that DecRRE((Li)i) = R(x1, y∗1). Moreover, we generate y′ = y∗1 ⊕ u. Observe that R(x0, y∗0) =
R(x1, y∗1), so the distribution on (Li)i is unaffected. Moreover, observe that u does not appear
anywhere else in the view of A, meaning y′ is simply a uniform random bit string in either of Hybrid
3 or Hybrid 2. Thus, Hybrid 2 and Hybrid 3 are perfectly indistinguishable. Now in Hybrid 3, we
see that the ciphertext is generated by encrypting the attribute y∗1, and secret keys are generated
according to x1.

Hybrids 4,5. These are identical to Hybrids 1,0, respectively, except that we change the ciphertext
to be generated by encrypting y∗1 and secret keys are generated using attribute x1. Indistinguishability
follows from analogous arguments. The result is that in Hybrid 5, A plays the 1-SEL-KEY-CTXT
game with b = 1. By the indistinguishability of each adjacent hybrid, we have that Hybrids 0 and 5
are indistinguishable to A, thus showing that the advantage is negligible.

Pseudorandom ciphertexts. We prove a useful pseudorandom ciphertext property of ΠFE,
which will be useful later in Section 3.4.

Definition 37 (Pseudorandom ciphertexts). An FE Π is has pseudorandom ciphertexts if for every
polynomial κ(λ) and every stateful PPT adversary A, there exists a negligible function negl(λ) such
that, for every λ, the advantage of any A is at most negl(λ) in the following experiment:

• Run A(1λ) to get ciphertext attribute y∗ ∈ {0, 1}n(κ(λ)).

• Now run (mpk, msk)← SetupFE(1λ, 1κ(λ)) and send mpk to A.

• A can now make arbitrary queries on distributions D over key attributes x. The distribution
is represented as a sampling circuit, so that the running time of the distribution is no longer
than the bit-length of its description. A guarantees to select D from the set of distributions
where R(x, y∗) is uniform. Note that this condition is not efficiently checkable. In response,
sample x← D(), and send skx ← KeyGen(msk, x) to A.
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• Then, choose a random bit b ∈ {0, 1}. A receives ciphertexts c∗b where c∗0 ← EncSKFE(msk, y∗)
and c∗1 is a random bit string in the ciphertext space.

• A outputs a bit b′. The advantage of A is ∥Pr[b′ = b]− 1/2∥.

Lemma 38. If Πsk is CPA-secure and is key non-committing under random messages (Definition 30),
then ΠFE in Construction 34 has pseudorandom ciphertexts.

Proof. Let A be a supposed adversary for ciphertext pseudorandomness. We prove security through
a sequence of hybrids.

Hybrid 0. This is the hybrid where A receives c∗ ← EncSKFE(msk, y∗). Write c∗ = (y′, (ci)i∈[n(κ)])
where y′ = y ⊕ u and ci = ki,y′

i
.

Hybrid 1. This is identical to Hybrid 0, except that we replace all components si,1−y′
i

in each secret
key seen by A with encryptions of random strings. Since A never sees ki,1−y′

i
, indistinguishability of

Hybrid 0 and Hybrid 1 follows from the security of Πsk.

Hybrid 2. Here, we additionally replace all components si,y′
i

in each secret key with encryptions
of random strings, so all components are random. For indistinguishability from Hybrid 1, consider
the secret keys seen in Hybrid 1, which can be simulated only with the labels Li,yi . By the security
of ΠRRE, the distribution of the labels L = (Li,yi)i for each key is statistically close to uniform
conditioned on DecRRE(L) = R(x, y∗). But the guarantee of the distribution on x is that R(x, y∗) is
uniform. Hence, the distribution of L is simply statistically close to uniform, yielding Hybrid 2.

Hybrid 3. This is identical to Hybrid 2, except we switch to si,b being encryptions of random
strings under keys k′i,b that are chosen independently from ki,b. Indistinguishability from Hybrid 2
follows since the si,b in Hybrid 2 are encryptions of random strings and Πsk is key non-committing,
meaning the si,b in Hybrid 2 are statistically independent of the key used to encrypt them.

At this point, observe that the ciphertext c∗ is independent of all secret keys. Moreover, c∗ just
consists of a list of encryption keys which are all random, together with y′ = u⊕ x, which is also
random since u does not appear anywhere else in Hybrid 3. Hence, in Hybrid 2 it is equivalent to
draw c∗ uniformly at random.

Hybrids 4,5,6. These are identical to Hybrids 2,1,0, respectively, except that c∗ is replaced with
random strings. The end result is that in Hybrid 6, A is playing the ciphertext pseudorandomness
game in the case where we generate c∗ randomly, thus proving ciphertext pseudorandomness.

3.4 An FE for Two Ciphertexts

We now achieve ciphertext attribute security for two ciphertexts, following techniques from [GVW12,
KMUW18]. This construction will ultimately give the MFE guaranteed by Theorem 27.

Let Rκ ∈ NC1(F). Let R′κ : Fm(κ)+3 × Fn(κ)+1 → F be the arithmetic formula derived from Rκ

as R′κ((x, r0, r1, s), (y, u)) = s× (1−Rκ(x, y)) + r0 + ur1. The degree of the resulting polynomial is
exponential in the depth of the formula for Rκ; since the depth of Rκ is logarithmic, this means the
degree of R′κ is some polynomial D(κ). Suppose we instantiate ΠFE for the arithmetic formula class
R′ = (R′κ)κ.
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Construction 39. Let ΠFE2 = (SetupFE2, KeyGenFE2, EncSKFE2, DecFE2) be defined as:

• SetupFE2(1λ, 1κ): Let U = λD(κ) + 1 and T = U2. Assume F has size at least U . For t ∈ [T ],
run mskt ← SetupFE(1λ, 1κ). Output msk = (mskt)t∈[T ].

• KeyGenFE2(msk, x): choose two random degree U − 1 polynomials rx,0, rx,1 : F → F such
that rx0(0) = rx,1(0) = 0. Choose a random sx ← F. Then for each t ∈ [T ], run skx,t =
KeyGenFE(mskt, (x, rx,0(t), rx,1(t), sx)). Output skx = (skx,t)t∈[T ].

• EncSKFE2(msk, y): Choose a random polynomial map q : F → Fm(λ) of degree λ such that
q(0) = y. Choose a random set S ⊆ [T ] of size U . Also choose random u ∈ F. For each
t ∈ S, run ct ← EncFE(mskt, (q(t), u)). Write S = {t1, · · · , tU}. Let v ∈ FU be the linear
interpolation vector such that p(0) = ∑

i∈[U ] vip(ti) for all polynomials p of degree U − 1.
Output c = (S, v, (ct)t∈S).

• DecFE2(skx, c): For each t ∈ S, let pt = DecFE(skx,t, ct). Then pt is the evaluation of some
degree U − 1 polynomial p(t) on the U points in S. Compute p(0) = ∑

i∈S vip(ti). Output 1 if
p(0) = 0, and output 0 otherwise.

Remark 40. This construction is almost identical to that of [KMUW18], except for the multiplication
by sx (whereas they have no sx). Also, the original version of [KMUW18] only used a single
polynomial rx. However, their scheme using only a single rx is actually insecure and there is a small
bug in their proof (confirmed to us by the authors of [KMUW18]). Using two polynomials as we do is
necessary, and we prove it works below in Lemma 41, thus fixing the bug in their proof/construction.
In response to our observation, [KMUW18] have also updated their construction analogously.

We briefly show correctness. By the correctness of ΠFE, pt = sx(1−R(x, q(t)))+rx,0(t)+urx,1(t).
Now consider the polynomial p(t) = sx(1−R(x, q(t))) + rx,0(t) + urx,1(t). Since q has degree λ, R
has degree D(κ) and rx,0, rx,1 have degree at most U − 1 = λD(κ), p(t) has degree at most U − 1.
Therefore, this p(t) is exactly the polynomial that gets interpolated during decryption. Then since
q(0) = y and rx,0(0) = rx,1(0) = 0, we must have p(0) = sx(1 − R(x, y)). If R(x, y) = 0, then
p(0) = sx, which with overwhelming probability is non-zero; likewise if R(x, y) = 1, then p(0) = 0.
Thus, DecFE2 outputs (with overwhelming probability) the bit R(x, y). We now explain security:

Lemma 41. If F is exponentially large and ΠFE in Construction 34 q-SEL-KEY-CTXT secure for
q ∈ {0, 1}, then ΠFE2 in Construction 39 is 2-SEL-CTXT secure.

Proof. Consider a supposed 2-SEL-CTXT adversary A which commits to two pairs of ciphertext
attributes y∗0, y∗1, and then only makes key queries on attributes x such that Rκ(x, y∗0,1) = Rκ(x, y∗1,1)
and Rκ(x, y∗0,2) = Rκ(x, y∗1,2). We prove security though a sequence of hybrids.

Hybrid 0. This is the case where the ciphertexts are encryptions of y∗0,1 and y∗0,2. Therefore,
ciphertext cβ for β ∈ {1, 2} is generated by choosing a random map qβ of degree λ such that
qβ(0) = y∗0,β, random scalars uβ ∈ F, a random set Sβ ⊆ [T ] of size U , and then setting cβ,t ←
EncFE(mskt, (qβ(t), uβ)) for t ∈ Sβ. Let cβ is set to cβ = (Sβ, vβ, (cβ,t)t∈Sβ

), where vβ is the
interpolation vector for Sβ . Finally, for each secret key x, let px,β,t = sx(1−R(x, qβ(t))) + rx,0(t) +
uβrx,1(t). Observe that, through decryption, the adversary can learn the values of px,β,t for t ∈ Sβ .

Let rx,0, rx,1 be the polynomials sampled when creating the key skx, and write skx = (skx,t)t

where skx,t ← KeyGenFE(mskt, (x, rx,0(t), rx,1(t), sx)).
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Hybrid 1. This is identical to Hybrid 0, except that now we condition on |S1 ∩ S2| ≤ λ. Since
S1, S2 are random subsets of size U in a universe of size U2, the expected size of |S1 ∩ S2| is 1.
Standard concentration inequalities show that the probability of being larger than λ is 2−Ω(λ).

Hybrid 2. Here, we additionally condition on the pairs (1, u0) and (1, u1) being linearly indepen-
dent. This occurs as long as u0 ̸= u1, which is true except with probability |F|−1. By the assumption
that |F| is exponentially large, this probability is negligible.

Hybrid 3. This is identical to Hybrid 2, except that we make the following changes. Let q′β be
a random polynomial of degree λ such that (1) q′β(t) = qβ(t) for t ∈ S1 ∩ S2, and (2) q′β(0) = y∗1,β.
Since S1 ∩ S2 is guaranteed to have size at most λ (by the conditions placed in Hybrid 1), (1) and
(2) give at most λ + 1 constraints on the degree-λ polynomial q′β, so such a polynomial must exist.

Next, for each secret key attribute x, let zx,β(t) = rx,0(t) + uβrx,1(t), and let z′x,β(t) = sx(1−
R(x, qβ(t))) + zx,β(t) − sx(1 − R(x, q′β(t))), which have degree U − 1. Then let r′x,0, r′x,1 be the
polynomials defined as: (

r′x,0(t)
r′x,1(t)

)
=
(

1 u0
1 u1

)−1

·
(

z′x,0(t)
z′x,1(t)

)
.

Observe that the r′x,0(t), r′x,1(t) have degree t− 1.
In Hybrid 3, we now switch to skx,t ← KeyGenFE(mskt, (x, rx,0(t)′, rx,1(t)′, sx)) and cβ,t ←

EncFE(mskt, (q′β(t), uβ)). Observe that, by our choice of r′x,β(t) and q′β(t), when the adversary tries
to decrypt the ciphertexts using its secret keys, even with this change it still recovers exactly the
values px,β,t. Moreover, for t ∈ S1 ∩ S2, we have that q′β(t) = qβ(t) and rx,β(t)′ = rx,β(t). Thus,
the only t where the ciphertext and secret key attributes changed are t /∈ S1 ∩ S2. For these t, the
adversary only sees a single ciphertext, and since decryption preserves the values of px,β,t, we can
invoke the 1-SEL-KEY-CTXT security of Π, showing that this change is un-detectable.

Hybrids 4,5. These are identical to Hybrids 1, 2, respectively, except that we continue using
r′x,β(t) and q′β(t). Observe that in Hybrid 5, because qβ(t) is a random polynomial conditioned on
qβ(0) = y∗0,β, we have that q′β(t) is a random polynomial conditioned on q′β(t) = y∗1,β. While the
two polynomials are correlated, A’s view in Hybrid 3 is independent of qβ(t) except through q′β(t).
Likewise, rx,β(t)′ are random polynomials with a constant coefficient of 0. Moreover, while r′x,β(t)
and rx,β(t) are correlated, A’s view is independent of rx,β(t) except through r′x,β(t). Thus, secret
keys are still distributed correctly in this case, and ciphertexts are correctly distributed encryptions
of y∗1,1 and y∗1,2. Since Hybrid 5 is indistinguishable from Hybrid 0, this proves Lemma 41.

3.5 Our MFE

We now explain how to turn Construction 39 into an MFE with 1-SEL-ACC security. To do so, we
let mpk = (λ, κ), which determines all other parameters in Construction 39. Then we define:

• EncPK(mpk): choose a random set S ⊆ [T ] of size U . Let v be the interpolation vector for
S. For each t ∈ S, let ct denote (y′t, (ct,i)i∈[n(κ)]) where y′t ≥ {0, 1}n(κ) and ct,i ← {0, 1}λ are
chosen uniformly. Output c = (S, v, (ct)t∈S).
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Lemma 42. Assuming ΠFE has pseudorandom ciphertexts and q-SEL-KEY-CTXT security for
q ∈ {0, 1}, then ΠMFE = (SetupFE2, KeyGenFE2, EncSKFE2, EncPK, DecFE2) is 1-SEL-ACC secure.

Proof. Consider a supposed 1-SEL-ACC adversary A which commits to a ciphertext attribute y∗,
and then only makes key queries on attributes x such that Rκ(x, y∗) = 0. Then we have that
R′κ((x, r0, r1, s), (y∗, u)) = s + r0 + ur. We prove security via hybrids:

Hybrid 0. Here, the ciphertext seen by A is generated as c∗ ← EncSKFE2(msk, y∗). Write
c∗ = (S, v, (ct)t∈S). We will need the fact that the interpolation vector v satisfies v · 1 ̸= 0, where 1
is the all-1’s vector. Indeed, consider the constant polynomial p(t) = 1. The guarantee of v is that
v · (p(t))t∈S = v · 1 = p(0) = 1 ̸= 0.

Hybrid 1. This is the same as Hybrid 0, except that for t /∈ S we replace the secret key components
skx,t for each x with KeyGenFE(mskt, (x, r′x,0(t), r′x,1, s′x)) for arbitrary r′x,0, r′x,1, s′x independent of
rx,0, rx,1, sx. This follows from 0-SEL-KEY-CTXT security since A receives no ciphertexts relative
to mskt. Note that after this replacement, A only “sees” rx,0(t), rx,1(t) for t ∈ S. Let rx ∈ FU be
the vector of the values rx,0(t) + urx,1(t) for t ∈ S. Since rx,0(t), rx,1(t) are random degree U − 1
polynomials conditioned having a 0 constant coefficient, so is rx,0(t) + urx,1(t), and we therefore see
that rx is a random vector such that v · r = 0.

Hybrid 2. This is the same as Hybrid 1, except that for t ∈ S, we replace each ciphertext
component ct in c∗ with random bits. We claim that this is indistinguishable from Hybrid 1 by the
ciphertext pseudorandomness of ΠFE. Indeed, observe that the adversary receives a single ciphertext
ct relative to each mskt. Let wx(t) := R′κ((x, rx,0(t), rx,1(t), sx), (y∗, u)) = sx + rx,0(t) + urx,1(t).
Let wx be the vector of the wx(t), which is equal to rx + sx1. For fixed u, rx is uniform in a
subspace of dimension U − 1, and sx1 is uniform in a subspace of dimension 1. Since v · 1 ̸= 0
and the subspace containing rx is orthogonal to v, the two subspaces containing rx and sx1 only
intersect at the origin. Hence, the subspaces span the entirety of FU , and hence wx = rx + sx1 is
uniform in FU . This holds for each secret key attribute x queried by the adversary, and the wx

are independent. Thus, we have, for each t ∈ S, component t of each secret key is a secret key
for ΠFE where the attribute (x, r0, r1, s) is such that R′κ((x, r0, r1, s), (y∗, u)) is uniform. We can
therefore invoke ciphertext pseudorandomness of ΠFE for each component t ∈ S to conclude that we
can replace the corresponding ciphertext components ct with uniform bits.

Hybrid 3. Here, for t /∈ S we go back to skx,t ← KeyGenFE(mskt, (x, rx,0(t), rx,1(t), sx)), again
using 0-SEL-KEY-CTXT. The result is that we have replaced all the ct in c∗ with uniform random
bits, which is equivalent to generating c∗ ← EncPK(mpk).

3.6 Decryption in NC1
̸=0(F)

We briefly explain how DecFE2 ∈ NC1
̸=0(F), under the assumptions of Theorem 27. DecFE2 first

runs DecFE several times in parallel to compute p(t). In turn, each run of DecFE performs several
parallel symmetric key decryptions Decsk to recover terms in the matrix branching program, followed
by an evaluation of DecRRE. Decsk just involves a PRF computation and a field subtraction, and
we assumed the PRF is computable in log-depth by arithmetic formula. DecRRE is an iterated
matrix product of constant-size matrices. This can be computed by a log-depth sequence of matrix
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multiplications, and since the matrices are constant-size each matrix multiplication involves a
constant number of arithmetic operations. By arranging the multiplications into a binary tree, the
result is that DecRRE is computable by log-depth arithmetic computations. Thus, computing p(t)
takes only log depth.

Next DecFE2 computes an inner product of the vector of p(t) with v, which again can be computed
by log-depth arithmetic formula. Finally, DecFE2 performs a “not equal to zero” check to get the
output. The end result is that DecFE2 is computable in NC1

̸=0(F).

4 Weak Decoder-Based Accept Security
Here, we assume we have an mcMFE scheme for some relation R, which is simultaneously 2-
SEL-CTXT secure, 2-SEL-M secure, and 1-SEL-ACC secure, such as the mcMFE guaranteed by
Corollary 28. Following Theorem 23 as proved in [GKW18], the mcMFE also has decoder-based
notions SEL-DEC-M and SEL-DEC-CTXT security. But because we do not have 2-SEL-ACC
security, we do not have SEL-DEC-ACC security, which means we cannot use existing frameworks
(Theorems 24 and 25, [GKW18, GKW19]) to get traitor tracing.

We therefore give a new, significantly weaker, notion of decoder-based accept security for mcMFE.
We also show a compiler that takes any 1-SEL-ACC secure mcMFE, and compiles it into a scheme
satisfying our weak decoder-based definition, while also preserving 2-SEL-M and 2-SEL-CTXT
security. Then in Section 5 we show, despite having a much weaker decoder-based security, that it
nevertheless suffices for traitor tracing.

Definition 43 (Weak decoder-based accept security). An mcMFE Π is weak selective decoder-based
accept secure (weak SEL-DEC-ACC secure) if there are constants α, β, γ ∈ (0, 1) such that, for every
polynomial κ(λ) and every stateful PPT adversary A, there exists a negligible function negl(λ) such
that and every λ, the following is true:

• Run A(1λ) to get ciphertext attribute y∗ ∈ {0, 1}n(κ(λ)).

• Now run (mpk, msk)← Setup(1λ, 1κ(λ)) and send mpk to A.

• A can now make arbitrary queries on key attributes x with the guarantee that R(x, y∗) = 1; it
receives in response skx ← KeyGen(msk, x). Let X be the set of all queries x that are made.

• A outputs a decoder D.

• Let Adv(D, mpk) = 2 Pr[D(c, kb) = b : (c,k0)←EncPK(mpk)
k1←Kκ,b←{0,1} ] − 1 be the advantage of D in distin-

guishing real keys from random for publicly generated ciphertexts. Let Adv′(D, msk, y∗) =
2 Pr[D(c, kb) = b : (c,k0)←EncSK(msk,y∗)

k1←Kκ,b←{0,1} ]− 1 be the advantage for ciphertexts with attribute y∗.

Let Goodα(D, mpk) be the event Adv(D, mpk) ≥ α, and Good′β(D, msk, y∗) be the event
Adv′(D, msk, y∗) ≥ β. Then Pr[Good′β(D, msk, y∗)] ≥ γ Pr[Goodα(D, mpk)]− negl(λ).

Our main theorem of this section will be:

Theorem 44. Let Π be a 1-SEL-ACC secure mcMFE for relation R. Then there exists a protocol
Π′ for R that is weak SEL-DEC-ACC secure, such that the sizes of all parameters and running times
in Π′ are at most a constant-factor worse than in Π. If Π is q-SEL-CTXT secure, then so is Π′.
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By combining with Corollary 28 and Theorem 23, we immediately obtain:

Corollary 45. Let R = (Rκ)κ be a relation that is computable by log-depth arithmetic formula
over an exponentially large field F = (Fκ)κ. Assume the existence of a weak PRF PRF with
outputs in F and which is computable by log-depth arithmetic formula over F using pre-computation.
Moreover assume the existence of SEL-M secure attribute-based encryption for log-depth arithmetic
formula over F followed by a “not equal to zero” test. Then there exists an mcMFE for R that is
simultaneously SEL-DEC-CTXT secure, SEL-DEC-M secure, and weak SEL-DEC-ACC secure.

Proof of Theorem 44. Let Π = (Setup, KeyGen, EncPK, EncSK, Dec) be the assumed mcMFE. Fix
any constants ℓ, α, β, γ such that

0 < β < α < 1 , 0 < γ < 1 , ℓ ∈ N and ℓ(1− γ)(α− β)2 > 4 .

For example, take ℓ = 5, α = 19/20, β = 1/20, γ = 1/162.

Construction 46. Let Π′ = (Setup′, KeyGen′, EncPK′, EncSK′, Dec′) be defined as follows:

• Setup′(1λ, 1κ): for ζ ∈ [ℓ], run (mpkζ , mskζ)← Setup(1λ, 1κ) and output (mpk′, msk′) where
mpk′ = (mpkζ)ζ and msk′ = (mskζ)ζ .

• KeyGen′(msk′, x): for ζ ∈ [ℓ] run skx,ζ ← KeyGen(mskζ , x) and output sk′x = (skx,ζ)ζ .

• EncSK′(msk′, y): sample ζ ← [ℓ], run (c, k)← EncSK(mskζ , y), and output c′ = (ζ, c) and k.

• EncPK′(mpk′): sample ζ ← [ℓ], run (c, k)← EncPK(mpkζ), and output c′ = (ζ, c) and k.

• Dec′(sk′x, c′): run Dec(skx,ζ , c).

Correctness of Π′ follows immediately from the correctness of Π. Also, that Π′ preserves q-SEL-
CTXT security is immediate. We now prove weak SEL-DEC-ACC security of Π′ assuming the
1-SEL-ACC security of Π. Let κ(λ) be a polynomial and A be a hypothetical adversary for the
SEL-DEC-ACC security of Π′. Let

δ(λ) = γ Pr[Goodα(D, mpk′)]− Pr[Good′β(D, msk′, y∗)] .

We must show that δ(λ) is negligible. Let pζ = Pr
[
D(c, kb) = b : (c,k0)←EncSK(mskζ ,y∗)

k1←Kκ,b←{0,1}

]
and qζ =

Pr
[
D(c, kb) = b : (c,k0)←EncPK(mpkζ)

k1←Kκ,b←{0,1}

]
. Let p = ∑

ζ pζ/ℓ and q = ∑
ζ qζ/ℓ. Let ∆ζ = pζ − qζ and

∆ = ∑
ζ ∆ζ/ℓ = p− q. ∆ and ∆ζ are therefore random variables taking values in [−1, 1]. Now we

will show that the linear correlation between distinct ∆i is small.

Lemma 47. Let Ev be an event that is efficiently recognizable given the inputs and outputs of A.
If Π is q-SEL-ACC secure, then there is a negligible function negl such that for all i, j ∈ [ℓ], i ̸= j,
∥E[ ∆i∆j | Ev ]∥ × Pr[Ev] ≤ negl(λ).

Proof. Let B(i,j) be the following adversary for the 1-SEL-CTXT security of Π:

• B(i,j)(1λ) runs y∗ ← A(1λ), (mpkζ , mskζ)← Setup(1λ, 1κ(λ)) for ζ ∈ [ℓ] \ {i}, and outputs y∗.

• When B(i,j) receives mpk, it sets mpki = mpk and mpk′ = (mpkζ)ζ∈[ℓ], which it sends to A.
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• When A queries key attribute x, B queries x, receiving skx in response. It sets skx,i = skx

and computes skx,ζ ← KeyGen(mskζ , x) for ζ ∈ [ℓ] \ {i}. It sends sk′x = (skx,ζ)ζ∈[ℓ] to A.

• When A produces a decoder D, B(i,j) receives ciphertext/key pair (c∗, k∗). It determines in Ev
occurs. If not, it outputs a random bit. Otherwise, if Ev does occur, then B(i,j) sets k∗0 = k∗,
and chooses random z, z∗, β ← {0, 1}, k∗1 ← Kλ. It lets (d0, ℓ0,0) ← EncSK(mskj , y∗) and
(d1, ℓ1,0)← EncPK(mpkj) and ℓ0,1, ℓ1,1 ← Kλ. Finally, it outputs β ⊕

(
z∗ ⊕ D((i, c∗), k∗z∗)

)
⊕(

z ⊕ D((j, dβ), ℓβ,z)
)
.

Let W ∗
0 be 1 if and only if D((i, c∗), k∗z∗) = z∗ when (c∗, k∗0)← EncSK(mski, y∗). Let W ∗

1 be the same
but when (c∗, k∗0) ← EncPK(mpki). Likewise define Wβ to be 1 if and only if D((j, dβ), ℓβ,z) = z.
Remember that (d0, ℓ0,0) ← EncSK(mskj , y∗) and (d1, ℓ1,0) ← EncPK(mpkj). Then D is created
independently of b, β, z, z∗, c∗, k∗z∗ , dβ and ℓβ,z. Therefore, Ev is independent these terms. Then:

Pr[W ∗
0 = W0 = 1] = E[pipj ] Pr[W ∗

0 = W0 = 0] = E[(1− pi)(1− pj)]
Pr[W ∗

0 = W1 = 1] = E[piqj ] Pr[W ∗
0 = W1 = 0] = E[(1− pi)(1− qj)]

Pr[W ∗
1 = W0 = 1] = E[qipj ] Pr[W ∗

1 = W0 = 0] = E[(1− qi)(1− pj)]
Pr[W ∗

1 = W1 = 1] = E[qiqj ] Pr[W ∗
1 = W1 = 0] = E[(1− qi)(1− qj)]

The above hold even when the probabilities and expectations are conditioned on Ev. Therefore,

Pr[b′ = b] =1
2 Pr[¬Ev]

+ Pr[b = 0 ∧ β = 0] Pr[W ∗
0 = W0|Ev] Pr[Ev]

+ Pr[b = 0 ∧ β = 1] Pr[W ∗
0 ̸= W1|Ev] Pr[Ev]

+ Pr[b = 1 ∧ β = 0] Pr[W ∗
1 ̸= W0|Ev] Pr[Ev]

+ Pr[b = 1 ∧ β = 1] Pr[W ∗
1 = W1Ev] Pr[Ev]

=1
2 Pr[¬Ev] + 1

4 E[pipj + (1− pi)(1− pj) + pi(1− qj) + (1− pi)qj

+ qi(1− pj) + (1− qi)pj + qiqj + (1− qi)(1− qj)|Ev] Pr[Ev]

=1
2 Pr[¬Ev] + 1

2 E[1 + (pi − qi)(pj − qj)|Ev] Pr[Ev]

=1
2 + 1

2 E[∆i∆j |Ev] Pr[Ev] .

By the 1-SEL-ACC security of Π, we therefore have that ∥E[∆0∆1|Ev]∥ × Pr[Ev] ≤ negl(λ).

We now finish the proof of Theorem 44. Assume toward contradiction that δ(λ) is non-negligible.
Then there is an inverse polynomial T (λ) = n−O(1)) and infinite set Λ ∈ N such that δ(λ) ≥ T (λ)
for λ ∈ Λ. Let τ(λ) = Pr[Goodα(D, mpk′)]. Then τ(λ) ≥ δ(λ)/γ ≥ δ(λ) for λ ∈ Λ.

Let α′, γ′ be arbitrary constants such that β < α′ < α, γ′ > γ, and ℓ(1 − γ′)(α′ − β)2 > 4.
Such constants are guaranteed to exist since ℓ(1− γ)(α− β)2 > 4, meaning taking small enough
perturbations to α and γ will not violate the inequality.

Now we define Ev. Consider estimating q by generating O(λ)-many samples (c∗i , k∗i,0) ←
EncPK(mpk′), k∗i,1 ← Kλ, z ← {0, 1} and letting q̃ be the fraction of samples for which D(c∗i , k∗z) = z.
By standard concentration inequalities, we can guarantee that Pr[|q − q̃| < (α′ − α)/4] ≥ 1− 2−λ.
Let Ev be the probability that 2q̃ − 1 ≥ (α′ + α)/2.
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Thus Pr[Ev] ≥ Pr[Ev ∧ 2q − 1 ≥ α] ≥ Pr[2q − 1 ≥ α]− Pr[|q̃ − q| > (α′ − α)/4] = τ − 2−λ. By
similar logic, Pr[2q − 1 < α′ ∧ Ev] ≤ 2−λ. Recall that ∆ = ∑

ζ ∆ζ/ℓ, and ∆ζ ∈ [−1, 1]. Thus,

E[∆2|Ev] = 1
ℓ2

∑
ζ

E[∆2
ζ |Ev] +

∑
i,j∈[ℓ]

i ̸=j

E[∆i∆j |Ev]



≤ 1
ℓ2

ℓ +
∑

i,j∈[ℓ]
i ̸=j

E[∆i∆j |Ev]

 ≤ 1
ℓ

+ negl(λ)/ Pr[Ev] .

Then by Markov’s inequality, we have:

Pr[∆ ≥ (α′ − β)/2|Ev] = Pr[∆2 ≥ (α′ − β)2/4|Ev]

≤ 4 E[∆2|Ev]
(α′ − β)2 = 4

ℓ(α′ − β)2 + negl(λ)/ Pr[Ev] .

For large enough λ ∈ Λ, we can lower-bound Pr[Ev] ≥ τ(λ) − 2−λ ≥ T (λ) − 2−λ ≥ T (λ)/2,
which means we can lower bound Pr[∆ ≥ (α′ − β)/2|Ev] ≤ 4

ℓ(α′−β)2 + 2negl(λ)/T (λ). Since
2negl(λ)/T (λ) goes to zero for large enough λ ∈ Λ, we can bound Pr[∆ ≥ (α′ − β)/2|Ev] by any
constant larger than 1

ℓ(α′−β)2 . In particular, Pr[∆ ≥ (α′ − β)/2|Ev] ≤ (1 − γ′), or equivalently
Pr[∆ < (α′ − β)/2 ∧ Ev] ≥ γ′ Pr[Ev]. We therefore have that:

Pr[Good′β(D, msk, y∗)] = Pr[2p− 1 ≥ β]
≥ Pr[2q − 1 ≥ α′ ∧ |p− q| < (α′ − β)/2]
= Pr[2q − 1 ≥ α′ ∧ |∆| < (α′ − β)/2]
≥ Pr[2q − 1 ≥ α′ ∧ |∆| < (α′ − β)/2 ∧ Ev]
≥ Pr[|∆| < (α′ − β)/2 ∧ Ev]

− Pr[2q − 1 < α′ ∧ |∆| < (α′ − β)/2 ∧ Ev]
≥ Pr[|∆| < (α′ − β)/2 ∧ Ev]− Pr[2q − 1 < α′ ∧ Ev]
≥ γ′ Pr[Ev]− 2−λ ≥ γ′τ(λ)− (1 + γ′)2−λ

≥ γτ(λ) = γ Pr[Goodα(D, mpk)] ,

for large enough λ ∈ Λ. In other words, δ(λ) ≤ 0 for large enough λ ∈ Λ. But this contradicts
that δ(λ) ≥ T (λ) > 0 for λ ∈ Λ. Thus, δ(λ) must in fact negligible.

5 From Weak mcMFE to Risky Threshold Traitor Tracing
Following Corollary 45 in Section 4, we have an mcMFE for log-depth arithmetic formula that is
SEL-DEC-M and SEL-DEC-CTXT secure, but only weak SEL-DEC-ACC secure. Now observe that
RPLBE, REIPLBE ∈ NC1 ⊆ NC1(F). Thus, under the assumptions of Corollary 45, we have PLBE and
EIPLBE schemes that are SEL-DEC-M, SEL-DEC-CTXT, and weak SEL-DEC-ACC secure. We
now use these to build traitor tracing:
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Theorem 48. If there exists an a PLBE scheme that is SEL-DEC-M secure, SEL-DEC-CTXT
secure, and weak SEL-DEC-ACC secure, then there exists constants ϵ, δ and an (ϵ, δ)-threshold risky
traceable index-only traitor tracing scheme that is with stateless key generation.

Theorem 49. If there exists an a EIPLBE scheme that is SEL-DEC-M secure, SEL-DEC-CTXT
secure, and weak SEL-DEC-ACC secure, then there exists constants ϵ, δ and an (ϵ, δ)-threshold risky
index-based embedded-identity traitor tracing scheme.

The differences between our Theorems 48 and 49 and the analogous Theorems 24 and 25 as
proved in [GKW18, GKW19] is that our theorems only require weak decoder-based accept security,
but only achieve threshold risky traitor tracing. Fortunately, we can lift these theorems to the full
tracing setting using Theorem 21 from [Zha20]. In the embedded-identity case, we can also employ
Theorem 26 to move to a full (non-index-based) embedded-identity scheme. Combining these results
together therefore proves Theorem 2. It therefore remains to prove Theorems 48 and 49. Note that
Theorem 49 implies Theorem 48, but uses a different more complicated construction. We therefore
start with Theorem 48 as a warm-up.

5.1 The Index-only Case (Theorem 48)

Let ΠmcMFE = (Setup, KeyGen, EncSK, EncPK, Dec) be the assumed PLBE scheme that is SEL-
DEC-M secure, SEL-DEC-CTXT secure, and weak SEL-DEC-ACC secure. Let (α, β, γ) be the
constants for weak SEL-DEC-ACC security. Recall that PLBE schemes are mcMFE schemes with
the functionality R = (Rκ)κ where Rκ : [2κ]× [0, 2κ]→ {0, 1} is defined as R(id, t) = 1(id ≤ t). We
construct the following traitor tracing scheme:

Construction 50. Let ΠTT = (Setup′, KeyGen, Enc = EncPK, Dec, Trace), where Setup′(1λ) =
Setup(1λ, 1λ), setting κ = λ 6, and where TraceD(msk, 1N , 11/ϵ) works as follows:

• For each t ∈ [0, κ], let pt = 2×Pr
[
D(c, kb) = b : (c,k0)←EncSK(mpk,t)

k1←Kλ,b←{0,1}

]
− 1. Compute an estimate

p̃t of pt by taking O(λN2/β2) samples. The number of samples is chosen so that except with
probability 2−λ over the choice of samples, ∥p̃t − pt∥ < β/6(N + 1).

• Output A = {t ∈ [κ] : ∥p̃t − p̃t−1∥ > β/2(N + 1)}.

To show ΠTT is (ϵ = α, δ = γ)-threshold risky traceable, consider A outputting a decoder D.

Honest Users are Not Accused. Let C ⊆ [N ] be the set of identities id queried by A. Observe
that for t /∈ C, A does not possess any secret keys for identities id = t. Thus for id ∈ C,
Rκ(id, t) = Rκ(id, t− 1) = 0 (if id > t) or Rκ(id, t) = Rκ(id, t− 1) = 1 (if id < t). In other words, A
does not possess any secret keys that can distinguish ciphertext attribute t from t− 1. Therefore, by
SEL-DEC-CTXT security, except with negligible probability, ∥pt−pt−1∥ < β/6(N +1). Then by the
triangle inequality ∥p̃t−p̃t−1∥ ≤ ∥pt−pt−1∥+∥p̃t−pt∥+∥p̃t−1−pt−1∥ < 3×β/6(N +1) = β/2(N +1),
except with negligible probability. Therefore, t /∈ A. Thus, except with negligible probability, A ⊆ C.

6Recall that in index-only traitor tracing schemes, we can upper-bound the length of identities ν by λ. We therefore
set κ = ν = λ.
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Some user is accused with reasonable probability. We now show that if the decoder is
sufficiently good, some user will be accused with reasonable probability. For a decoder D and
public key mpk, recall that Goodα(D, mpk) means 2 × Pr

[
D(c, kb) = b : (c,k0)←Enc(mpk)

b←{0,1},k1←Kλ

]
− 1 ≥ α.

Define Good′β(D, msk) as 2×Pr
[
D(c, kb) = b : (c,k0)←Enc(msk,N)

b←{0,1},k1←Kλ

]
− 1 ≥ α. Since all id queried by the

adversary satisfy id ≤ N , we have Rλ(id, N) = 1. SEL-DEC-ACC security then means

Pr[Good′β(D, msk)] ≥ γ Pr[Goodα(D, mpk)]− negl(λ) .

Let Bad(D, msk) be the event that p0 ≥ β/(N + 1). Since id ≥ 1, we have that Rλ(id, 0) = 0 for
all id. By SEL-DEC-M security, we have that Pr[Bad(D, msk)] is negligible.

Now assume that Good′β(D, msk) happens and Bad(D, msk) does not. We show that we are very
likely to trace to a user. Indeed, Good′β(D, msk) means that pN ≥ β and Bad(D, msk) means that
p0 ≤ β/(N + 1). Therefore, there must exist a t ∈ [N ] such that |pt − pt−1| ≥ β/(N + 1). We
then have, via the triangle inequality, that |p̃t − p̃t−1| ≥ ∥pt − pt−1∥ − ∥p̃t − pt∥ − ∥p̃t−1 − pt−1∥ ≥
2β/3(N + 1) > β/2(N + 1) except with probability at most 2× 2−λ. In this case, t ∈ A, meaning A
is non-empty. Thus, Pr[|A| > 0] ≥ γ × Pr[Goodα(D, mpk)]− negl(λ), as desired.

5.2 The Index-Based Embedded-Identity Case (Theorem 49)

While Construction 50 has an identity-space that is exponential and therefore syntactically can be
used as an embedded-identity traitor tracing scheme, it lacks a security proof for this use case. This
is because tracing an exponentially-large identity-space using PLBE requires a variant of binary
search [NWZ16], meaning that the ciphertext attributes that the decoder is tested on depend on
the behavior of the decoder on numerous previous ciphertexts. This means the reduction proving of
traceability needs many ciphertexts; it turns out that the number of ciphertexts grows with the
number of colluding users. Unfortunately, the PLBE we obtain only has security for two ciphertexts,
which is insufficient, and any natural generation to handle a large number of ciphertexts will result
in ciphertexts that are too large. This issue is also why [GKW18] in the lattice setting cannot be
used as an embedded-identity scheme. Instead, as used in the lattice-based setting in [GKW19],
we will use EIPLBE, which enables a tracing algorithm where the attributes tested are fixed, and
independent of the decoder’s behavior on other ciphertexts. This allows a reduction to decoder-based
security, and in turn security for two ciphertexts.

Let ΠmcMFE = (Setup, KeyGen, EncSK, EncPK, Dec) be the given EIPLBE scheme that is SEL-
DEC-M, SEL-DEC-CTXT, and weak SEL-DEC-ACC secure. Let (α, β, γ) be the constants for weak
SEL-DEC-ACC security. Recall that EIPLBE schemes are mcMFE schemes with the functionality
R = (Rκ,ℓ)κ,ℓ where Rκ,ℓ takes as input secret key attributes (j, id) ∈ [2κ]× {0, 1}ℓ and ciphertext
attributes (t, i) ∈ [0, 2κ]× [0, ℓ], and is defined as

Rκ,ℓ((j, id), (t, i, b)) =
{

1( j ≤ t ) if i = 0
1( j < t ∨ (j, idi) = (t, 1) ) if i > 0 .

We construct the following index-based embedded identity traitor tracing scheme:

Construction 51. Let ΠTT = (Setup′, KeyGen′, Enc = EncPK, Dec, Trace) where Setup′(1λ, 1ν) =
Setup(1λ, 1(λ,ν)), setting κ = λ, ℓ = ν, and where KeyGen′, Trace are defined as follows:

• KeyGen′(msk′, j, id) : run KeyGen(msk, (t, id)), where t is the index, and id is the identity.

29



• TraceD(msk, 1N , 11/ϵ) work as follows:

– For each t ∈ [0, κ], i ∈ [0, ℓ], let pt,i = 2 × Pr
[
D(c, kb) = b : (c,k0)←EncSK(mpk,(t,i))

k1←Kλ,b←{0,1}

]
− 1.

Compute an estimate p̃t,i of pt,i by taking O(λκ2/β2) samples. The number of samples
is chosen so that except with probability 2−λ over the choice of samples, ∥p̃t,i − pt,i∥ <
β/12(κ + 1).

– For each t such that ∥p̃t,0 − p̃t−1,0∥ > β/2(κ + 1)}, let idt ∈ {0, 1}ℓ be the string where
idt,i is set to 1 if and only if ∥p̃t,i − p̃t,0∥ < ∥p̃t,i − p̃t−1,0∥. Let A′ be the set of such t.

– Output A = {idt : t ∈ A′}.

To show ΠTT is (ϵ = α, δ = γ)-threshold risky traceable, consider A producing decoder D.

Honest Users are Not Accused. Let idt ∈ {0, 1}ℓ denote the identity associated with index t
(remember than in an index-based scheme the indices t are assumed to all be distinct). Let C ′ be
the set of indices t, and C the set of identities idt. Therefore, A sees secret keys for ΠmcMFE with
attributes (t, idt) for t ∈ C ′. By considering ciphertexts with attribute i = 0 and by an identical
analysis to the proof of Theorem 48 given in Section 5.1, we can conclude that Pr[A′ ⊈ C ′] ≤ negl(λ).
We therefore just need to show that for any t ∈ A′, that the corresponding identity produced by
Trace is exactly idt.

Toward that end, fix a t, and assume t ∈ A′. A receives an mcMFE secret key for attribute (t, idt),
and all other secret keys seen by A have indices different than t. Consider some position i ∈ [ℓ]. If
idt,i = 1, then Rκ((j, idj), (t, i)) = 1(j ≤ t) = Rκ((j, idj), (t, 0)) for all secret key attributes (j, idj)
seen by A. As such, in this case, by SEL-DEC-CTXT security, we have that except with negligible
probability ∥p(t,i)−pt,0∥ < β/12(κ+1). By the triangle inequality, except with negligible probability
∥p̃(t,i)− p̃t,0∥ < 3β/12(κ+1) = β/4(κ+1). Meanwhile, since ∥p̃t,0− p̃t−1,0∥ > β/2(κ+1), we have by
the triangle inequality that ∥p̃t,i− p̃t−1,0∥ > ∥p̃t,0− p̃t−1,0∥−∥p̃t,i− p̃t,0∥ > β/2(κ+1)−β/4(κ+1) =
β/4(κ + 1) > ∥p̃(t,i) − p̃t,0∥. Thus, Trace will claim idt,i = 1.

On the other hand, if idt,i = 0, then Rκ((j, idj), (t, i)) = 1(id ≤ t− 1) = Rκ((j, idj), (t− 1, 0)) for
all secret key attributes (j, idj) seen by A. As such, in this case, by SEL-DEC-CTXT security, we
have that except with negligible probability ∥p(t,i)−pt−1,0∥ < β/12(κ+1). By the triangle inequality,
except with negligible probability ∥p̃(t,i) − p̃t−1,0∥ < 3β/12(κ + 1) = β/4(κ + 1). Meanwhile, since
∥p̃t,0 − p̃t−1,0∥ > β/2(κ + 1), we have by the triangle inequality that ∥p̃t,i − p̃t,0∥ > ∥p̃t,0 − p̃t−1,0∥ −
∥p̃t,i − p̃t−1,0∥ > β/2(κ + 1)− β/4(κ + 1) = β/4(κ + 1) > ∥p̃(t,i) − p̃t−1,0∥. Thus, Trace will claim
idt,i = 0. Over all indices i > 0, if t ∈ A′, Trace will therefore correctly put idt ∈ A.

Therefore, we have that t ∈ A′ if and only if idj ∈ A. Since the only j placed in A′ are those
corresponding to adversarial identities, we therefore have that A ⊆ C.

Some user is accused with reasonable probability. By considering ciphertexts with attribute
i = 0 and by an identical analysis to the proof of Theorem 48 given in Section 5.1, we conclude that
Pr[|A′| > 0] ≥ γ × Pr[Goodα(D, mpk)] − negl(λ). Since A is empty if and only if A′ is empty, we
therefore have that Pr[|A| > 0] ≥ γ × Pr[Goodα(D, mpk)]− negl(λ).

6 Instantiation Details
We now instantiate the needed ABE and PRF in order to apply Theorem 2 to obtain Theorem 1.

30



6.1 Log-depth Computation over Finite Fields

In this work, we will need that various operations over finite fields are computable in log-depth.
This is well-known in prime-order fields or more generally the ring ZN [BCH84]. However, we were
not able to find the needed results for finite fields in the literature. So we prove them here:

Lemma 52. For any finite field, iterated addition and iterated multiplication are computable in
NC1.

Proof. For iterated addition over a finite field, we view the field as a vector space over the base
prime-order field. We can then perform iterated addition component-wise in parallel. Iterated
addition over the base field is then performed first over the integers, and then reduced mod the
prime order of the field, both operations being log-depth [BCH84].

Iterated multiplication requires a bit more work. Let F be the field in question, and suppose F
is not of prime order. Then it is an extension field of Zp for some prime p. Let the degree of the
extension be d. Then F is the set Zp[X]/q(X) for some irreducible polynomial q of degree d. We will
assume p > D where D := n(d− 1) and where n is the number of field elements to be multiplied.

Consider the goal multiplying field elements/polynomials r1(X), · · · , rn(X). That is we are
given the coefficients of these polynomials as (αi,j)i∈[n],j∈[0,d−1] representing ri(X) = ∑d−1

j=0 αi,jXj .
Our goal is to compute the coefficients (βj)j∈[0,d−1] representing the polynomial s(X) = ∑d−1

j=0 βjXj

such that s(X) = ∏n
i=1 ri(X) mod q(X). We do this in log-depth as follows:

1. For i = 1, · · · , n and u = 0, · · · , D, in parallel compute ri(u). This can be done in log-depth
as follows. Pre-compute the matrix M ∈ Z(D+1)×(D+1)

p defined as Mu,j = uj , where we take
00 = 1. Then the vector (ri(u))u∈[0,D] is just the matrix-vector product M · (αi,j)j∈[0,D], where
αi,j for j ≥ d are taken to be 0. Since M is pre-computed, carrying out the matrix-vector
product is simply an inner-product, which is one round of parallel integer multiplications
followed by an iterated addition (to compute the product over Z) followed by a modular
reduction (to compute the value in Zp), which are all computable in log-depth [BCH84].

2. Define s′(X) = ∏n
i=1 ri(X), which is s(X) without the reduction mod q(X). This is a degree

D polynomial. For u = 0, · · · , D, in parallel compute s′(u) = ∏n
i=1 ri(u) using the values ri(u)

computed in the previous step. This is an iterated integer multiplication (to compute the
product over Z) followed by a modular reduction (to compute the value in Zp), which are
both computable in log-depth [BCH84].

3. Interpolate the values s′(u) into the coefficients β′k such that s′(X) = ∑D
k=0 β′kXk. This is

computed as (β′k)k∈[0,D] = M−1 · (s′(u))u∈[0,D]. By pre-computing M−1 (M is invertible since
it is a square Vandermonde matrix), this is computable in log-depth analogous to Step 1.

4. Reduce s′(X) mod q(X) to obtain s(X). This is done as follows. For k ∈ [0, D], let
tk(X) = Xk mod q(X), which we write as tk(X) = ∑d−1

j=0 γk,jXj . Pre-compute the matrix
N ∈ Zd×(D+1)

p be defined as Nj,k = γk,j . Now output (βj)j∈[0,d−1] = N · (β′k)k∈[0,D]. Again,
this matrix-vector product is computable in log-depth.

Extension to fields of small characteristic. The above required p > D. This is the standard
setting arising in pairing-based cryptography, where p is typically exponential. Nevertheless, for
completeness we here sketch how to remove this restriction. First, we observe that the above
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algorithm is simply reducing iterated multiplication over F to iterated multiplication over a subfield.
We then just need to identify a sub-field F′ where (1) |F′| > D for interpolation, and (2) iterated
multiplication in F′ is computable by log-depth boolean formula. The case above used base field Zp

in the case p > D, but any other subfield satisfying (1) and (2) will do.
If p ≤ D, let k be the smallest integer such that pk > D; then pk ≤ D2. The field Fpk of size pk

satisfies (1), and we can compute iterated products as follows, satisfying (2):

• If any of the inputs ri are 0, output 0 and stop. From now on we assume ri ̸= 0.

• Let u ∈ Fpk be a generator of the multiplicative group of Fpk , which can be pre-computed.

• In parallel for each ri, compute si such that ri = usi . This can be done in log depth via
pre-computed tables, since the field is polynomial-sized.

• Iteratively add the Si and reduce mod pk − 1 (the order of the multiplicative group of Fpk),
which are both computable in log-depth [BCH84]. Let the result be s.

• Output us ∈ Fpk , again using pre-computed tables.

Now, Fpk may not be a sub-field of F. But the extension F′′ of degree k over F does have Fpk as a
sub-field. Therefore, to compute an iterated product over F, we compute it over F′′, which reduces
to computing it over F′ = Fpk , which satisfies the necessary conditions (1) and (2).

6.2 Log-Depth Weak PRFs

Theorem 53. Assume K-LIN holds in the multiplicative group of a finite field F. Then there exists
a weak PRF with outputs in F that is computable in NC1 using pre-computation.

Proof. Note that for K = 1, K-LIN is just DDH, and this case from [NR97], which actually achieves
a strong PRF and requires no pre-computation. While [NR97] can be generalized to be secure under
K-LIN, the resulting construction [LW09, EHK+13] does not appear to be computable in log-depth.
We therefore present a different construction, which is based on ElGamal encryption [ElG84], and
its generalizations to K-LIN for K > 1. The key is a vector k ∈ ZK

p . Then PRF takes as input
vectors r ∈ Fk, and computes ∏K

i=1 rki
i , which we will denote as rk. For computing in log-depth, we

let hr = (r, r2, · · · , r2t) where exponentiation is component-wise. Then the bits of k indicate which
of the components of hr need to be multiplied together.

For security, consider being given many samples of the weak PRF: (ri, rk
i ) for i ∈ [ℓ]. If we let

ri = gsi where si ∈ ZK
p and exponentiation is component-size, then the samples look like (gsi , gsi·k).

By arranging these samples into a matrix, we have that the input to the adversary is gA for matrix
A = (S | S · k). A is a random matrix in Zℓ×(K+1)

p with rank K. As shown by [EHK+13], gA is
indistinguishable from a random matrix with no rank constraints, under K-LIN. But this case
corresponds to replacing the PRF samples with uniformly random values.

6.3 ABE for Arithmetic Formula

Theorem 54 ([IW14, CGW15, LL20]). Assume either (1) there exists a pairing group (symmetric
or asymmetric) where the K-LIN assumption holds for some K, or (2) there exists a symmetric
pairing group where the DBDH assumption holds. Then there exists a family of prime-order fields
{Zq} and an attribute-based encryption scheme for NC1

̸=0({Zq)}.
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Note that ABE systems, such as those referenced in Theorem 54, are usually either key-policy
or ciphertext policy, where R(x, y) = x(y) or R(x, y) = y(x), interpreting either x or y as a function
of the other attribute. The functions x or y are then called policies instead of attributes. Both
key-policy and ciphertext policy ABE schemes for log-depth arithmetic formula yield an ABE as in
Definition 12, where R itself is computing the arithmetic formula. For example, by generating keys
with policy R(y, ·) with y hardcoded, we obtain the needed ABE from key-policy ABE.

6.4 Putting It All Together

First, we observe that K-LIN in a pairing group implies K-LIN in the target group of the pairing,
which is a subgroup of the multiplicative group of some finite field F. Likewise, DBDH in the pairing
implies DDH (equivalently, 1-LIN) in the target group. Then applying Theorem 53, we obtain the
needed PRF with log-depth boolean formula under pre-computation. These boolean formulas can
then be “arithmetic-ized” into log-depth arithmetic formula over any field. In particular, we can use
the field Zq arising from Theorem 54. The result is a weak PRF appropriate for combining with
Theorem 54 which can then be plugged into Theorem 2, giving Theorem 1.
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