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Abstract. Homomorphic encryption can address key privacy challenges in cloud-based outsourcing by
enabling potentially untrusted servers to perform meaningful computation directly on encrypted data.
While most homomorphic encryption schemes offer addition and multiplication over ciphertexts na-
tively, any non-linear functions must be implemented as costly polynomial approximations due to this
restricted computational model. Nevertheless, the CGGI cryptosystem is capable of performing arbi-
trary univariate functions over ciphertexts in the form of lookup tables through the use of programmable
bootstrapping. While promising, this procedure can quickly become costly when high degrees of preci-
sion are required. To address this challenge, we propose Ripple: a framework that introduces different
approximation methodologies based on discrete wavelet transforms (DWT) to decrease the number
of entries in homomorphic lookup tables while maintaining high accuracy. Our empirical evaluations
demonstrate significant error reduction compared to plain quantization methods across multiple non-
linear functions. Notably, Ripple improves runtime performance for several realistic benchmarks, such
as logistic regression and cross-correlation, among others.

Keywords: Applied Cryptography · Homomorphic Encryption · Lookup Tables · Privacy-Enhancing Tech-
nologies · Encrypted Computation.

1 Introduction

Cloud computing enables corporations to leverage powerful computational resources, while avoiding the cost
and upkeep associated with maintaining local computing infrastructure. Along with numerous benefits, this
gives rise to privacy concerns over outsourced data as cloud service providers can possibly view data stored on
their servers, and malicious actors have increasingly targeted cloud servers as they can be treasure troves of
proprietary information from multiple clients [29,46]. While encryption techniques such as AES can be used
to protect data confidentiality, the encrypted data must be static and the cloud cannot apply meaningful
processing on ciphertexts (aside from storage). Thus, if a client wants to modify their data, they will have
to download the ciphertexts, decrypt them, perform a computation to update the plaintext data, re-encrypt
them, and re-upload the result to the cloud.

Homomorphic encryption (HE) is a powerful technique that helps address privacy concerns in cloud
computing by allowing computation on encrypted data [19]. With HE, a client can encrypt sensitive data,
upload the corresponding ciphertexts to the cloud, have the cloud apply an arbitrary algorithm such as
image classification, and then receive a valid encryption of the results, which can only be decrypted with the
client’s secret key. In this way, the cloud learns nothing about the contents of the input data, intermediate
results, or the output of the encrypted computation.

⋆ The first two authors have equal contribution and appear in alphabetical order.
This work has been supported by NSF CAREER award #2239334.



Nevertheless, for many HE schemes such as BGV [5], BFV [18], and CKKS [7], evaluating non-linear
functions directly remains impossible, as only addition and multiplication operations can be executed over
ciphertexts. Conversely, CGGI [9] allows encrypted lookup tables (LUTs) which allow non-linear functions to
be computed exactly. Unfortunately, this operation is quite costly and becomes significantly more expensive as
the plaintext modulus increases. Likewise, both the time and memory required to generate the lookup tables
scale exponentially with the input’s precision, with LUT sizes of 32 bits and larger becoming impractical.3

One solution to this problem is to simply quantize the LUT inputs (i.e., reduce the bit width) to lower
the number of entries in the lookup table, resulting in faster evaluation and LUT generation times. The
reduced precision caused by quantization, however, can negatively impact a wide variety of applications
that require high precision. For instance, quantization in deep neural networks can result in non-negligible
accuracy loss [26] and thus lead to incorrect classifications. Particularly, errors occurring due to quantization
in early layers will propagate to subsequent layers, resulting in an avalanche effect, where the errors are
compounded in each layer. Indeed, this effect is not limited to privacy-preserving inference and can happen
in any application.

In this work, we propose the Ripple framework that offers new efficient techniques for encrypted LUT
evaluation. Ripple provides all of the same benefits of quantization in terms of latency reduction while mini-
mizing the accuracy loss resulting from reduced precision and bit widths. Our approach leverages the discrete
wavelet transform (DWT) [42] to approximate non-linear functions and generate significantly smaller lookup
tables while maintaining high accuracy. Moreover, Ripple employs multiple DWT families and introduces be-
spoke HE-friendly protocols tailored to each family to maximize accuracy and minimize latency. For instance,
we find that some DWT families benefit from multiple LUTs while others need only a single LUT evaluation.
We apply Ripple to a variety of non-linear functions that are widely used across several domains from ma-
chine learning [6,15] to statistics [39], as well as multiple realistic applications for homomorphic encryption
[44,24], such as logistic regression inference and edge detection. Our contributions can be summarized as
follows:

– We introduce Ripple to construct smaller encrypted LUTs with wavelet techniques without sacrificing
accuracy.

– We propose multiple protocols for evaluating wavelet-encoded LUTs in the encrypted domain.

– We implement a suite of commonly adopted non-linear functions and optimize with Ripple, along with
a set of representative benchmarks from various domains.

Roadmap: Section 2 provides a brief background on homomorphic encryption and the discrete wavelet
transform. Sections 3 and 4 outline our encrypted lookup table methodology based on the DWT, as well as
our novel optimizations, while Section 5 introduces a representative set of applications that can benefit from
our methodologies. Section 6 presents our experimental evaluations for each application, demonstrating the
efficacy of our approach, and Section 7 discussed related works and how they compare to Ripple. Lastly, our
concluding remarks appear in Section 8.

2 Preliminaries

2.1 Homomorphic Encryption Overview

The key characteristic of all HE schemes is malleability, where ciphertexts can be manipulated to change the
underlying plaintext data predictably. All HE schemes can be roughly divided into two categories depending
on the primary computational domain: arithmetic-based schemes and Boolean-based schemes.

3 We empirically observed even 32-bit encrypted LUTs with the state-of-the-art TFHE-rs [47] HE library require
approximately 515 GB of RAM and 65 minutes. For reference, 30-bit LUTs took almost 15 minutes requiring over
120 GB.
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2.1.1 Arithmetic-Based Schemes

This category consists of schemes that are primarily used for addition and multiplication over ciphertexts that
encrypt modular integers or floating point numbers. We note that partial HE schemes such as Paillier [37]
and unpadded RSA [40] fall into this category, but only allow for one type of operation (i.e., addition or
multiplication) and are therefore only used in niche applications. The other cryptosystems in this category
encompass schemes that can be instantiated as both leveled and fully homomorphic encryption, depending
on whether or not a bootstrapping mechanism is added. The BGV [5] and BFV [18] cryptosystems are
used for encrypting integers modulo a configurable plaintext modulus. On the other hand, an approximate
scheme called CKKS [7] encrypts either complex or floating point numbers and the error that is inherent in
homomorphic encryption is treated similarly to floating point arithmetic error.

In fact, this error is integral to all HE schemes that derive their security from the Learning With Errors
(LWE) [38] or Ring-LWE (RLWE) [35] problems. Ciphertexts take the form of tuples of high-degree poly-
nomials, and a small amount of random noise is injected into the coefficients upon encryption. The noise
compounds as operations are conducted on the data; additively for ciphertext additions and multiplicatively
for ciphertext multiplication. If the noise is allowed to grow past a certain threshold, it will begin to corrupt
the underlying plaintext message.

This has huge ramifications and there are two primary mechanisms for noise reduction. The first is
a computationally efficient procedure called modulus switching that reduces the size of the coefficients of
the ciphertext polynomials. Reducing the coefficient modulus also serves to scale down the noise, which
essentially reduces it. Aside from noise reduction, this technique will also speed up subsequent operations
as the total size of the ciphertext is also reduced. Nevertheless, this technique can only be invoked a finite
number of times, and eventually, it will not be possible to reduce the modulus size further.

Implementations that incorporate a bootstrapping procedure can reduce the noise indefinitely by homo-
morphically evaluating the decryption circuit of the cryptosystem (resulting in a ciphertext with lower noise).
Also, the bootstrapping procedure regenerates the ciphertext modulus, allowing for more modulus switching
operations in between bootstraps. These FHE contexts can evaluate arbitrarily deep arithmetic circuits, but
the cost of bootstrapping remains extremely high relative to other HE operations. The overall latency of
bootstrapping can range from several seconds to several minutes on a CPU depending on the parameter sets
used.

Additionally, this class of schemes is not well-suited for evaluating non-linear operations as the only
supported operations are addition and multiplication. For instance, many activation functions in machine
learning constructions, like ReLU and sigmoid, can not be directly implemented. Instead, one must use
a polynomial approximation that must be balanced to yield an acceptable trade-off between accuracy and
latency. A high-degree polynomial can closely mimic the behavior of a non-linear function but requires several
homomorphic multiplications and additions to evaluate.

2.1.2 Boolean-based Schemes

Instead of encrypting integers or floating point numbers, this class of schemes encrypts individual bits (or
low-precision integers in certain cases). The addition and multiplication primitives are replaced by encrypted
gate operations, such as AND, OR, and NOT gates. In practice, most logic gates are implemented as a series
of linear operations between ciphertext polynomials followed by a functional bootstrap, which serves to scale
the output to the expected value. Because Boolean schemes can support all standard logic gates, they are
capable of executing arbitrary algorithms.

The DM cryptosystem [16] was the first of these schemes and is meant to operate solely as an FHE
construction. Compared to the relatively slow bootstrapping speeds of the arithmetic-based schemes, DM
is capable of evaluating a bootstrap in less than a second. A successor to this scheme, known as CGGI [8],
boasts an even faster bootstrapping speed of approximately 10 milliseconds on a CPU. Both of these schemes
lack a mechanism to enable batching, but what they lack in throughput, they make up for in terms of lower
latency operations.

Additionally, compared to the prior class of HE schemes, Boolean schemes do not need to utilize poly-
nomial approximations. Indeed, non-linear operations can be implemented exactly as a Boolean circuit. As
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an example, the ReLU activation function is directly mapped to a multi-bit comparator circuit followed by
a multiplexer. However, this may require a larger number of Boolean gates and the majority of gate types
require at least one bootstrapping operation, resulting in relatively high latency for large circuits. Prior
frameworks, such as the Google Transpiler [21], ArctyrEX [22], and HELM [23], exploit the inherent circuit-
level parallelism to reduce the latency of circuit evaluation. Even still, the performance of these frameworks is
limited by the critical path (or greatest depth) of the homomorphic circuit. Additionally, all three approaches
rely on logic and/or high-level synthesis methods to convert input programs to optimized Boolean circuits,
which results in very high pre-processing cost for non-trivial applications.

Alternatively, with proper parameter selection, Boolean schemes can also encrypt low-precision integers
instead of bits. In the case of CGGI, this encoding allows for ciphertext addition and multiplication with a
public constant, but not multiplication between two ciphertexts (distinguishing this mode from arithmetic-
based schemes). Notably, it still retains the functional bootstrap and this can be utilized to evaluate N :N
lookup tables, as discussed in the following subsection. This approach combines some of the key strengths
of both arithmetic-based schemes and the Boolean mode of operation in the form of natively supported
multi-bit arithmetic, as well as a mechanism for exactly evaluating non-linear functions.

The primary challenge is the restriction on the size of the underlying plaintext space, but this can be
overcome by representing high-precision plaintext values as vectors of ciphertexts, where each encryption
encodes a low-precision chunk of the original message. This very methodology is employed in the TFHE-rs
library [47] in two different ways: a Chinese remainder theorem (CRT) method and a radix method. The
former involves generating multiple residues by reducing an input message by a series of co-prime bases and
encrypting each residue as a separate ciphertext. Upon decryption, the residues are combined to form the
final higher-precision result. The second method involves decomposing the input data into a series of digits,
each of which is decrypted individually. Ripple utilizes the latter approach as it provides a convenient way to
truncate ciphertexts, which is an integral operation in the DWT protocols explained in the following section.
Truncating the digits of a ciphertext array encoded with the radix decomposition can be done with negligible
latency overhead as no FHE operations are required.

2.2 Programmable Bootstrapping (PBS)

A crucial feature of the DM and CGGI FHE cryptosystems is the functional bootstrap, which takes advan-
tage of the programmability of the bootstrapping algorithm employed in these schemes. A polynomial with
crafted coefficients that encodes the set of desired output messages is rotated by an encrypted value and
the first encrypted coefficient corresponding to the constant term of the polynomial is extracted. These two
procedures, called blind rotation and extraction, form the core bootstrapping steps.

By encoding chosen lookup table (LUT) entries in the coefficients of the polynomial to be rotated, one
can evaluate a LUT T over a ciphertext. Essentially, this can be done by rotating the LUT polynomial by
an encrypted amount (corresponding to the input ciphertext) and extracting the entry corresponding to the
constant term. The result is a valid encryption that encodes the mapping from a LUT input to a desired LUT
output. Thus, it allows computing arbitrary univariate functions by evaluating a function in the plaintext
domain across all possible inputs and encoding them in the polynomial utilized during bootstrapping. This
generalized bootstrapping technique is called programmable bootstrapping (PBS) [11,34]. Although the LUT
needs to be relatively small to maintain efficient cryptographic parameter sets, it has two main advantages.
First, it can encode any arbitrary univariate function, and second, it leads to a significant performance boost
as it replaces expensive operations that otherwise would require multiple additions and multiplications.

2.3 The Discrete Wavelet Transform (DWT)

A Discrete Wavelet Transformation (DWT) is a process of splitting a discretely sampled signal into two parts:
the approximation and the detail coefficients [42]. The former is half of the size of the original signal but
encompasses the most interesting parts of it, while the latter contains information about the error incurred
by the approximation coefficients. When combining both the detail coefficients and the approximation, one
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Fig. 1: Two DWT iterations. The signal s can be represented by the approximation a(s) (green) and the

details d(s) (gray).

can reconstruct the original signal. Fig. 1 illustrates the original signal on top and three applications of the

DWT. In the first level (L0), we deconstruct the signal on top to approximation (a
(s)
0 ) and detail coefficients

(d
(s)
0 ). Then, we can repeat the same process by treating the L0 approximation as a new signal and thus

get new approximation (a
(s)
1 ) and detail coefficients (d

(s)
1 ) at level 1, and so on. In Fig. 1, notice that given

the L2 approximation and detail coefficients along with the L1 and L0 detail coefficients, it is sufficient for
recovering the original signal.

There exist multiple wavelet families such as the Daubechy (Db) wavelets and the Biorthogonal wavelets.
A special case of the Db wavelets is the Db-1 – or Haar – wavelet. The core idea in all families is a matrix
multiplication with a constant matrix W , where W differs based on the family. Haar uses an orthogonal
matrix to obtain the approximation coefficients, which are calculated by averaging every two consecutive
points of the original signal. Biorthogonal, on the other hand, relies on two different matrices, where the
transpose of one matrix is the inverse of the other. We delve more into the details of both wavelet families
in Section 3.

2.3.1 Haar DWT

Haar applies a linear transformation to the input signal and generates the approximation and detail coeffi-
cients. Starting with a signal s = [s0, s1, . . . , s2N−1] of length 2N , the Haar DWT generates the approxima-
tion coefficients a = [a0, . . . , aN−1] and the detail coefficients d = [d0, . . . , dN−1], each with N entries. More
specifically, the approximations are generated as ak = (s2k + s2k+1)/2, while the details are generated by
dk = (s2k − s2k+1)/2 for k ∈ [0, . . . , N).

It is easy to see that when the Haar DWT is applied to a one-hot vector, it results in yet another one-hot
vector, albeit scaled. The index of the non-zero value in the new vector is in fact the old index divided by 2,
which is akin to removing the last bit of the index. Therefore, we can simply truncate the value to get rid
of the least significant bits and end up with the value that we want to do the lookup at. In effect, we have
manually applied the Haar DWT transform to the one-hot vector using only truncation.

5



2.3.2 Biorthogonal DWT

The linear transformation in Haar can be seen as a matrix multiplication with some public orthogonal
matrix.4 The Biorthogonal DWT on the other hand, requires two different matrices, where the transpose of
one matrix is the inverse of the other, i.e., MT

1 = M−1
2 . In this case, M1 is used for the decomposition of the

signal, while M2 is used for the reconstruction.
In Haar, we observe that the points in the approximation coefficient are averaged from the input signal S

and the details are complementary in order to be able to recover S. Conversely, in Biorthogonal wavelets, the
approximations and details are computed with weighted averages [42]. Since the Biorthogonal wavelets have
more non-zero filters, when the transform is applied to a one-hot vector, the result is not a one-hot vector.
Even so, we can manually calculate the resulting vector as it is a weighted average of the two consecutive
values starting at the most significant bits of the original index. The weights depend on the least significant
bits of the original index; hence, by splitting the original index into the MSBs and LSBs, we can calculate
the transformed vector.

3 The Ripple Framework

As mentioned in Section 2.2, a key feature of the CGGI cryptosystem is the ability to evaluate a lookup
table with the programmable bootstrapping mechanism. Complex non-linear functions can now be encoded
as LUTs and evaluated homomorphically, eliminating the need to perform expensive polynomial approxima-
tions. Unfortunately, as the size of the LUT grows, this technique becomes prohibitively expensive (recall
footnote 3), and thus many non-linearities are impossible to evaluate in applications that require high pre-
cision.

We address this challenge by utilizing the DWT to reduce the size of LUTs without sacrificing correctness.
Ripple is the first framework to explore wavelet approximations for FHE as a way to accelerate programmable
bootstrapping. Our key observation is that if we apply the DWT to signals that represent smooth functions
(e.g., logarithm, square root, sigmoid, etc.), then the detail coefficients are relatively small compared to the
approximation coefficients. This means that our approximation is sufficient to represent the original signal
and we can completely disregard the detail coefficients while maintaining a minimal error relative to the
original function. Utilizing this observation, we can zero out the details in Fig. 1, and by just applying the
DWT a single time, we can halve the size of the LUT. This signal might still be quite big, so we can repeat
the same process and half the LUT size even further. Of course, as this is an approximation, the smaller the
LUT size, the higher the error we might have. With Ripple, however, these errors are marginal as we show
in Section 6.

Ripple’s Key Observation. The core idea behind Ripple relies on the orthogonality or biorthogonality
of the DWT transform applied to the inner product. Consider the fact that the inner product between
two vectors v and u is equal to the product between the transpose of the first vector and the second, i.e.,
⟨v,u⟩ = vT ·u. As described in Section 2.3, the DWT of both v and u is a multiplication with a matrix W ,

which we can view as DWT(v) = W · v. This results in a vector
[
a(v)

d(v)

]
, where a(v) and d(v) represent the

approximation and detail coefficients of v, respectively. Similarly for DWT(u) = W ·u we get a(u) and d(u).
Observe that using orthogonality,

⟨DWT(v),DWT(u)⟩ = ⟨W · v,W · u⟩
= (W · v)T ·W · u
= vT ·WT ·W · u
= vT · I · u = vT · u = ⟨v,u⟩.

(1)

We remark that the inner product of two vectors is equal to the sum of the inner product of the approxi-
mation coefficients and the inner product of the detail coefficients of the DWT transforms of the vectors, as

4 An orthogonal matrix M has the property that MMT = I, where I is the identity matrix. A matrix M is orthogonal
if its transpose (MT ) is equal to its inverse (M−1).
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follows:

(W · v)T ·W · u =
[a(v)

d(v)

]T ·
[a(u)

d(u)

]
= a(v)T · a(u) + d(v)T · d(u).

In Ripple, we represent ⟨v,u⟩ as ⟨a(v),a(u)⟩ + ⟨d(v),d(u)⟩ which is approximately equal to the inner
product of their respective approximation coefficient vectors a(v) and a(u). By dropping the detail coefficients,
we get the approximation of the original inner product via the inner product of the approximation coefficients,
which is key to our proposed lookup methodology. Thus, ⟨v,u⟩ = ⟨DWT(v),DWT(u)⟩ ≈ ⟨a(v),a(u)⟩.

This works nicely for orthogonal DWTs, but for the Biorthogonal DWT, we need extra considerations.
Instead of applying the same transformation to both v and u, we have to apply the decomposition matrix
to one, while applying the reconstruction matrix to the other. Since applying the reconstruction matrix
is equivalent to applying the decomposition matrix with filters flipped, this can also be thought of as a
decomposition. Then, by biorthogonality of these matrices, the same observation holds and ⟨v,u⟩ = ⟨M1 ·
v,M2 · u⟩ ≈ ⟨a(v),a(u)⟩.

Applying our Observation to the Encrypted Domain. In Eq. (1), we can view v as a one-hot vector
where the non-zero value is at the index of the ciphertext and u as a public LUT T ′. Then, the inner product
⟨v,u⟩ will yield the lookup value in table T ′ at the non-zero index of v, which is the lookup value at the
ciphertext. In particular, ⟨a(v),a(u)⟩ will be an approximation of this lookup. Notably, the approximation
of the lookup table is easy to calculate since it is in plaintext, while we need a way to efficiently calculate
the approximation vector of the one-hot vector that represents the ciphertext. Fortunately, it turns out that
this approximation vector can be calculated by a weighted sum of lookups.

Of course, the aforementioned technique is not practical in HE, but programmable bootstrapping (PBS)
can be leveraged for this exact purpose. Starting with a ciphertext x′ we can evaluate the LUT T ′ on x′

homomorphically and obtain ciphertext y′ = T ′(x′). The novelty of Ripple here lies in the fact that x′ has
fewer bits than x and T ′ has fewer entries than T , while y′ is a very close approximation to y = T (x). Ripple
focuses on the two most popular DWT families: Haar and Biorthogonal, which are both viable and constitute
a tradeoff between accuracy and latency (as discussed in Section 6). In the following subsections, we describe
how Ripple formulates and evaluates encrypted lookup tables with each of the two DWT families.

0 1 1 0 . . . 1 1 0 1 1 0

2 bits

0 1 1 0 . . . 1 1 0 1

(a) Truncation of multiples of 2-bits.

0 1 1 0 . . . 1 1 0 1 1 0

0 0 1 1 . . . 0 1 1 0

(b) Truncation of odd bit sizes.

Fig. 2: Two scenarios of truncating the least significant bits of a radix ciphertext, where each digit encrypts
two bits of data. With this configuration, it is far more efficient to truncate an even number of bits, while
truncating an odd number of bits is computationally expensive.
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Efficient Truncation. The speedups gained from the DWT techniques revolve around reducing the total
size of the LUT to be evaluated. However, in the encrypted domain, it is impossible to reduce the number of
LUT entries without also decreasing the underlying plaintext modulus. Simply shifting to isolate MSBs and
LSBs for LUT evaluation will result in virtually no speedup as the total ciphertext size and dimensions will
be identical to the original, and only the underlying message is manipulated. However, we can leverage the
radix decomposition mode of TFHE-rs (where encrypted values are represented as vectors of ciphertexts) to
effectively reduce the number of ciphertexts instead of shifting to isolate bits. An example of this approach is
shown in Fig. 2a. If each digit of the encrypted value can encode two bits of information, a truncation can be
performed by simply discarding digits; this approach is essentially free as no HE operations are required. At
the same time, the total number of ciphertexts encompassing the encrypted value is reduced and the overall
number of PBS required to evaluate a full lookup table is decreased. The key restriction of this approach
is that the number of bits to be truncated must be a multiple of the bit-width of each digit. If this is not
the case, as in Fig. 2b, the entire ciphertext array must be shifted, requiring multiple PBS operations and
non-negligible overheads. After the shift is done, the blocks that encode all zeros (i.e., the left-most block in
Fig. 2b) can be discarded. We observe that it is possible to avoid this inefficient truncation through careful
parameterization of the DWT, as discussed in each of the following subsections.

LSB

MSB

T1

(W/2 bits)

T2

(W/2 bits)

x′

(W/2 bits)

x
(W bits)

y

(W bits)

Fig. 3: Haar DWT LUT example approximating y = T (x) by computing y = T1(x
′)∥T2(x

′), where x′ = x ≫
W/2.

3.1 PBS with Haar DWT

Let W be the total bit width of our input radix-decomposed ciphertext vector. Naturally, we can represent
the function that we want to approximate as a LUT T that maps k-bit inputs to k-bit outputs. For simplicity,
we can assume that k = W . Creating a LUT of 2W entries, however, is not always feasible. For instance,
W = 64 requires generating and storing 264 LUT entries, which is completely impractical. A straightforward
option is to truncate our input ciphertexts by J bits and limit T to only have 2W−J entries and operate over
W − J bit inputs and outputs. As it turns out, this approximation incurs high errors and is not sufficient
for most applications.

Ripple takes a different approach: First, we apply the Haar DWT over the public LUT T iteratively J
times by dropping the detail coefficients to end up with an approximation T ′ of our original function. The
new table T ′ now operates over W −J bits. Observe, however, that our input ciphertext vector is still W -bits
long. To index T ′, Ripple truncates the vector to encode W−J bits so it can be used during PBS to index the
LUT. As long as W − J bits is a multiple of the size of our radix digits, the truncation is free. Conveniently,
this is the index needed for the approximation vector a(v). This results in an output ciphertext vector also
encoding W − J bits.

As we started with an W -bit input ciphertext vector, after approximating the function we need to end
up with a W -bit output as well. To do so, we repeat the same process twice by building two LUTs (T1 and
T2); one for the LSBs and one for the MSBs. In both cases, the truncated W − J bit input ciphertext vector
is used to index the LUT. This is illustrated in Fig. 3, where J = W/2. Note that each of T1 and T2 has
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W/2 bits and thus takes approximately half the time to be evaluated compared to a W -bit LUT (which is
not even possible to practically create for large W ). Additionally, both tables can be evaluated in parallel
and finally, the two outputs can be concatenated to get the final encrypted result encoding W bits of data.

We remark that, in certain functions, we only need to evaluate the LSB table and we can avoid evaluating
T2 altogether. For instance, any function where the output can fit in less than half the bit width, such as
the square root or Sigmoid activation function, only needs a single LUT evaluation.

MSB

LSB

m1

(J bits)

m2 = m1 − 1
(J bits)

T ′

J bits

x
(W bits)

ℓ
(W − J bits)

ℓ1 = ℓ · α1 + β1

(d bits)

ℓ2 = ℓ · α2 + β2

(d bits)

y1 = T ′(m1) · ℓ1
(W bits)

y2 = T ′(m2) · ℓ2
(W bits)

y = y1 + y2
(W bits)

Fig. 4: Biorthogonal DWT LUT example approximating y = T (x) by computing y = T ′(m1) ·ℓ1+T ′(m2) ·ℓ2,
where m1 = x ≫ (W − J), m2 = m1 − 1, ℓ = x mod 2W−J , ℓ1 = ℓ · α1 + β1, and ℓ2 = ℓ · α2 + β2 with
α1, α2, β1, β2 being public scalars.

3.2 PBS with Biorthogonal DWT

The Haar DWT is quite efficient since its approximation vector is again one-hot and hence only has a single
approximation that needs to be looked up; however, this benefit also comes at a limitation. Namely, all
the points that have the same most significant bits evaluate to the same value. The Biorthogonal DWT
overcomes this challenge by making use of the least significant bits of the input ciphertext, as well as the
most significant bits. This comes at the cost of doing two lookups followed by two multiplications and an
addition, but results in more accurate approximations. In the end, we get significantly better compression,
in fact, the same compression used in JPEG2000 [41].

The Biorthogonal DWT follows a similar approach as the Haar DWT, yet incurs more operations as its
linear transformation computes weighted averages. Contrary to Haar where we had to evaluate two separate
LUTs, in Biorthogonal wavelets we need to evaluate a single LUT (T ′) across two different indices. We
observe that this can also be done using two LUTs, where, as an optimization, the second one equals the
first one shifted by an index.

Fig. 4 demonstrates how Ripple approximates an LUT with Biorthogonal wavelets. First, we extract the
most significant bits (MSBs) from the input to be used for the lookup, and the least significant bits (LSBs),
which will be used to combine the lookups via their weighted average. Starting with a W -bit input x, we split
it into two parts of J and W − J bits, which we call m1 and ℓ, respectively. Here, J is equal to the depth of
the DWT applied. The former (m1) represents the J MSBs of x and it serves two purposes. First, from m1,
we create m2 as m1−1. Then, we use both m1 and m2 to index two consecutive entries of the DWT-encoded
LUT and we end up with ciphertexts T ′(m1) and T ′(m2). The latter (ℓ) represents the W −J LSBs of x and
is used to compute two linear expressions with public constant values α1, α2, β1, and β2 as ℓ1 = ℓ · α1 + β1,
and ℓ2 = ℓ · α2 + β2. These values come from the non-zero entries of the approximation coefficients vector
a(v): α1 = −1, α2 = 1, β1 = 2J , and β2 = 0. Lastly, we multiply T ′(m1) by ℓ1 and T ′(m2) by ℓ2 computing
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the inner product in the DWT domain, so we go back to W bits and sum the two ciphertexts together to
get our final output.

We are usually able to compress the LUT for the Biorthogonal DWT into J bits as these values don’t
have to cover the entire output range of the function, unlike Haar. However, when this is not possible, we
employ a similar method of evaluating multiple LUTs in parallel with the same J-bit inputs and combine
the J-bit outputs to form a higher bit-width result.

4 Function-centric Compression

In this Section, we investigate two optimizations to further reduce the LUT sizes of specific classes of
non-linear functions; namely, we propose optimizations for symmetrical functions and functions where the
complex non-linearity converges to some value outside a certain interval.

4.1 Symmetrical Functions

First, we exploit the symmetry of certain functions to further reduce the LUT size. This class includes
common functions in machine learning, such as reciprocal, sigmoid (σ), hyperbolic tangent (tanh), and the
error function (erf). More formally, these functions exhibit the following property: 1

−x = − 1
x , σ(−x) =

1− σ(x), tanh(−x) = −tanh(x) and erf(−x) = −erf(x). Therefore, if we know the sign of the input, we can
evaluate the function strictly in the positive domain and then use this intermediate result to calculate the
actual value by taking into account the sign of the input.

To apply this technique, the function must exhibit symmetry around zero, but we note that any symmetric
function can be shifted to exhibit this required symmetry. For example, sigmoid becomes symmetric around
zero after it is moved down on the y-axis by 0.5: σ(−x)− 0.5 = −(σ(x)− 0.5). We stress that this technique
easily generalizes to any symmetric function and reduces the size of the LUT by 2× as only half the domain
needs to be evaluated.

In general, we call a function f(x) symmetric around the symmetry point (xsym, ysym) if f(xsym − x) −
ysym = csym · (f(xsym + x)− ysym), for symmetry constant csym. The symmetry constant defines the symmetry
relationship; for instance if csym = 1 then the function is reflected along the y-axis (like f(x) = x2) while if
csym = −1 then the function is reflected along the line y = −x (like f(x) = tanh(x)). It is easy to see that,
given f(x) at some value xsym + δ, we can compute f at xsym − δ simply by noting:

f(xsym − δ) = f(xsym − δ)− ysym + ysym

= csym · (f(xsym + δ)− ysym) + ysym

= csym · f(xsym + δ) + (1− csym) · ysym.

Fig. 5 demonstrates a function with xsym, ysym and csym = −1. Notice that for sigmoid, we have xsym = 0, ysym =
0.5 and csym = −1, hence we get σ(−x) = −σ(x) + 1. Further, if we set g(x) = f(xsym + x) and use the
absolute value |x− xsym| and x− xsym < 0:

g(x) =(1 + (x− xsym < 0) · (csym − 1)) · g(|x− xsym|)
+ (x− xsym < 0) · (1− csym) · ysym.

Note that this equation holds for all values x whether positive or negative. Thus, we build our LUT based
on g(x); we can use this equation to evaluate f at any value x.

4.2 Convergent Functions

Another class of functions that can be optimized are those that are nearly a piecewise polynomial function.
This way we can evaluate polynomials and support them with a LUT for the complex parts.
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A special case of this includes functions that are nearly constant outside a certain bounded interval.
Coincidentally, sigmoid, tanh, and erf are also prominent examples of this. For instance, sigmoid is nearly
1 above a threshold of 8 and nearly 0 below −8 with less than 0.0003 of maximum difference. For tanh,
the maximum difference is 0.0003 outside [−4, 4], while for erf the difference is 1.54 · 10−8 outside the same
interval as tanh.

Given a function f(x) and an interval [xleft, xright], we say this function is convergent if there exists
a piecewise polynomial p(x) such that for x /∈ [xleft, xright], |f(x) − p(x)| < ϵ for a small constant ϵ. To
approximate such convergent functions, we can check whether the input is inside the interval and select the
lookup value T (x) or the polynomial value accordingly as:

f(x) ≈ (x ∈ [xleft, xright]) · T(x) + p(x).

ysym

xsym

sym

yright

yleft
xleft xright x

y

Fig. 5: Sigmoid like function where the symmetry point is xsym and ysym. xleft and xright represent the bounds
out of which the function converges to yright and yleft, respectively.

4.3 Convergent Symmetrical Functions

Bringing together optimizations for symmetrical and convergent functions, we devise a function evaluation
protocol in Alg. 1 (Note that only f(x) − p(x) needs to be symmetric). We start by extracting the most
significant bit, which is the sign bit of ct (called ltz for “less than zero” since this bit is 0 for positive values
and 1 for negative). Then we calculate the sign as -1 (if ltz is 1) or 1 (if ltz is 0) and the absolute value
(abs in line 5 in Alg. 1) of the ct by multiplying it by the sign. Next, we use the LUT method to look
up the function value at abs. Note that this could be the desired DWT LUT and involves truncation and
multiplication operations. We bring it all together using the symmetry of the function (in line 7 in Alg. 1).
Next, we check if the abs is in the LUT domain. Notice that since the function is symmetric, we only have
to check one end of [xleft, xright], which we call threshold = xright−xsym. Then we evaluate the polynomial
approximation at abs. Finally, we merge the results using the convergence property.

For example, to evaluate sigmoid, we define the functions:

PBS(abs) = σ(abs) for abs ∈ [0, 8]

Compare(abs, threshold) = abs < threshold

Poly(abs, ltz, check) = (1− check) · (1− ltz).

Then we call Evaluate with xsym = 0, ysym = 0.5 and csym = −1. On the other hand, for a non-convergent
symmetrical function like reciprocal f(x) = 1

x , we set Compare(. . . ) = 1 and Poly(. . . ) = 0.

5 Real-World Applications

In this Section, we introduce the benchmarks utilized in our evaluation of Ripple. We provide specific
methodologies to concretely showcase how Ripple can be incorporated into each of these various use-cases,
which encompass several different problem domains.
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Algorithm 1 LUT Evaluation for Symmetric Convergent Functions

Public Inputs: func ▷ Function to be evaluated.
xsym ▷ X-coordinate of the symmetry point.
ysym ▷ Y-coordinate of the symmetry point.
csym ▷ Symmetry coefficient.
threshold ▷ LUT boundary.

Private Input: ct ▷ Encrypted input value.
1: procedure Evaluate(func, xsym, ysym, csym, ct)
2: ct ← ct - xsym ▷ Shift to symmetry point.
3: ltz ← ExtractSign(ct) ▷ Get the sign bit.
4: sign ← 1 - 2 · ltz ▷ Calculate the sign as -1 or 1.
5: abs ← sign · ct ▷ Compute the absolute value.
6: eval ← PBS(abs) ▷ The LUT evaluation on abs.
7: sym← (1 + ltz · (csym− 1)) · eval+ ltz · (1− csym) · ysym
8: check ← Compare(abs, threshold) ▷ Is abs in LUT domain?
9: poly ← Poly(abs, ltz, check) ▷ Polynomial evaluation.
10: return check · sym+ poly

5.1 Logistic Regression

Logistic Regression (LR) is a widely studied application in FHE from genome-wide association studies [30] to
more generic applications [44,24] such as natural language processing [2]. This machine learning construction
is particularly well-suited to binary classification problems and is akin to a single-layer neural network with a
sigmoid activation. Overall, LR poses a challenge to run homomorphically as the whole benchmark is neither
well suited to arithmetic or Boolean schemes. The fully-connected layer, which involves multiplying inputs
with a set of trained plaintext weights and then accumulating the products, is efficient to compute with
an arithmetic-based scheme but not a Boolean-based scheme. On the other hand, the Sigmoid activation
function is non-linear, and therefore arithmetic schemes are not well equipped to evaluate it, while Boolean-
based schemes are suited for it. The LUT-based approach that Ripple employs proves a great option for this
benchmark, as the multi-bit encoding allows for efficient addition and multiplication while also allowing the
sigmoid to be implemented directly with a programmable bootstrap. Prior works, which utilize arithmetic-
based schemes, employ a Taylor series expansion of the sigmoid function and evaluate the first terms (e.g.,
σ(X) = 1/2 + X/4 + (X3)/48 + . . . ) [31] by upscaling the sigmoid to σ(X) = 24 + 12X + X3 + . . . and
relying on the client to compute the scaled-down final result. Using more terms in the Taylor series increases
both the latency as well as the noise growth due to the increasing numbers of additions and multiplications,
but yields higher accuracy.

In Ripple, we take a different approach and replace the polynomial approximations with DWT-encoded
lookup tables that compute directly the sigmoid activation function. This way, the end-to-end application is
evaluated solely on the server side (i.e., without client-side scaling). First, the server pre-generates the lookup
tables needed for the evaluation of the sigmoid activation. We note that this is a one-time preprocessing cost
and the generated LUT can be re-used an arbitrary number of times for inference. The fully connected layer
is implemented as a parallel series of multiplications between the plaintext weights and encrypted inputs,
which is efficient in the CGGI cryptosystem. We then evaluate the non-linear sigmoid function directly with
a DWT LUT construction and send the classification result back to the client. The client decrypts the result,
which represents the probability that the encrypted input belongs to the first class.

For our implementation, we utilize the Palmer penguin dataset [27], where each input consists of eight
attributes that correspond to physical characteristics of penguins (e.g., bill length, flipper length, body mass,
etc.). The goal is to classify the inputs into the correct species of penguin: Adelie, Gentoo, or Chinstrap.
Since logistic regression is particularly well-suited for binary classification, we remove entries in the dataset
corresponding to the Chinstrap species.

Notably, an emergent way to do LR inference with FHE is to use the CKKS cryptosystem [7] for the fully
connected layer and then scheme switch to CGGI to do the truncation and the DWT LUT. This would utilize
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the best of both worlds and achieve fast additions and multiplications under CKKS and DWT-encoded PBS
under CGGI. Unfortunately, the current state-of-the-art scheme switching techniques are not at the point yet
where this is feasible. We empirically tested this theory with the OpenFHE framework [1] that implements
both CGGI and CKKS, as well as scheme switching between the two. Nevertheless, OpenFHE lacks a radix
ciphertext mechanism to achieve arbitrarily high precision and bit width. For the dataset that we employ
in this work, we require a minimum of 24 bits of plaintext per ciphertext (or radix ciphertext), which is not
achievable at the time of writing with the OpenFHE implementation of CGGI.

5.2 Euclidean Distance

Euclidean distance is a formula for computing the distance between two n-dimensional points u = (u1, u2, . . . ,
un) and v = (v1, v2, . . . , vn) in the Euclidean space. It has a plethora of applications from statistics and
cluster analysis [6] to facial recognition [36] and has drawn the interest of recent FHE works [44,24]. The
Euclidean distance can be computed by d(u,v) =

√∑n
i=1(ui − vi)2; however, computing non-linearities

(e.g., the square root in the above formula) in the encrypted domain is not a trivial task. Thus, many prior
FHE works resort to computing the squared Euclidean distance and return it to the user, who in turn, needs
to compute the final square root in the clear after decrypting. This is problematic for applications that
require computing Euclidean distances as intermediate steps, as the cloud would have to engage the client
to decrypt, compute the square root, and then re-encrypt and upload the new ciphertext. As a case in point,
the Euclidean distance is commonly used as a distance metric in K-Nearest Neighbor classifiers [12].

5.3 Correlation Coefficient

The correlation coefficient is a statistical metric for quantifying the degree of linear association between two
variables, ranging from -1 to 1 [3]. Correlation coefficients are crucial in assessing the extent of association
between different variables or datasets in various applications ranging from finance and medical analytics
[17,33] to IoT and weather prediction [32,28]. More specifically, we are interested in the Pearson product-
moment correlation coefficient, or Pearson’s r, to measure linear relationships between two features u and
v. Pearson’s r is defined as the ratio of the covariance of u and v (i.e., Cov(u,v)) to the product of their
standard deviations (i.e., σu and σv), more formally:

ru,v =
Cov(u,v)

σuσv
=

∑n
i=1(ui − ū)(vi − v̄)√∑n

i=1(ui − ū)2
√∑n

i=1(vi − v̄)2
.

This formula shows that if larger u values tend to correspond to larger v values (and vice versa), then r is
positive with 1 denoting a perfect positive correlation. On the other hand, if u and v do not move in tandem,
then r is negative, with −1 being the perfect negative correlation.

In Ripple, we are interested in the scenario where one party (i.e., the client) possesses multiple features
of the same type and another party (i.e., the server) possesses a vector of features of a different type. The
client is interested in learning whether there is a correlation between their private features and the server’s
features but neither party is willing to disclose them. For instance, imagine a company (the client) owning
customer demographics, such as age or income, while another company (the server) holds sales data. We can
utilize Ripple to encrypt the demographic information of the client and send it to the server, which in turn
can compute the correlation coefficient between the income or age of customers and their purchasing habits.
We further observe that we can combine several of the operations into a single LUT. For instance, note that
one of the square roots in the denominator relies entirely on plaintext values (the cloud data does not need
to be encrypted as it will never leave the cloud’s server). We can therefore compute the full denominator in a
single LUT, which will compute the square root over the encrypted data corresponding to vector u, multiply
it with a plaintext constant representing

√∑n
i=1(vi − v̄)2, and finally compute the reciprocal of the product.

However, because TFHE-rs operates over integers, the reciprocal will always be equal to 0 or 1 (since the
denominator will be greater than or equal to 1). To avoid this, instead of computing the reciprocal, we divide
a large-scale factor (e.g., 1000) by the denominator. After the rest of the algorithm is computed, the client
simply needs to perform a division on the decrypted value by the scale factor to recover the expected answer.
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(a) Original. (b) Filtered.

Fig. 6: Edge detection example using the Prewitt operator.

5.4 Edge Detection with the Prewitt Operator

Image processing applications have recently become prominent targets for FHE; from simple blurring and
sharpening filters [23,21] to the Roberts Cross edge-detection operator [43]. Under the hood, all these ap-
plications perform convolutions as a kernel between an image and a filter, which moves pixel by pixel. More
specifically, the Roberts cross operator applies a 2× 2 filter and approximates the image gradient by taking
the square root of the sum of squares of two distinct convolutions of the image. These convolutions capture
the discrepancies between pixels that are diagonally adjacent to each other. Computing the square root over
encrypted data in certain FHE cryptosystems is prohibitively expensive, which leads [43] to completely omit
its calculation.

A more advanced edge detection algorithm compared to the Roberts cross is the Prewitt operator, which
uses two 3×3 matrices to calculate the pixel gradients in a region, i.e., directional changes in image intensity
or color [14]. Prewitt excels in images with some level of noise and clear grayscale gradients as it achieves
noise reduction by averaging the pixels. At its core, for each pixel, it performs two matrix multiplications
with the masks and then sums the resulting vectors to compute two values. Finally, the Prewitt operator
computes a magnitude as the square root of the sum of the squares of these two values.

In Ripple, we implemented the Prewitt operator utilizing our DWT technique for computing the square
root. In Fig. 6a, we show the original image, whereas in Fig. 6b we show how the resulting image looks like
after applying the Prewitt operator with Ripple. We observe that we can modify the traditional Prewitt
filters, which are originally defined as

f1 =

 1 1 1
0 0 0
−1 −1 −1

 , f2 =

1 0 −1
1 0 −1
1 0 −1

 ,

and require a series of scalar multiplications when performing the convolution between f1 and f2 and the
input image. Specifically, we observe that we can scale these filters to consist solely of powers of 2 or 0, which
allows us to perform simple shifts instead. In this case, the filters become

f ′
1 =

 2 2 2
0 0 0
−2 −2 −2

 , f ′
2 =

2 0 −2
2 0 −2
2 0 −2

 .

For 0 entries, we can avoid computation since the product is necessarily an encryption of 0 while the
product with −2 can be computed as a left shift by 1 followed by a negation, which is efficient in CGGI.

6 Experimental Evaluation

6.1 Experimental Setup

We implemented Ripple using the state-of-the-art TFHE-rs [47] library.5In our experiments, we compare
Ripple against HELM [23], Romeo [25], and Google Transpiler [21], as well as baseline implementations in

5 Ripple is open-source at https://github.com/NillionNetwork/ripple.
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Fig. 7: Approximation errors for multiple non-linear functions for varying compressed LUT sizes with Ripple.

TFHE-rs that use LUTs configured for the full bit width of each application. For Ripple, we implemented
three variants: (a) a quantized version that is similar to the baseline, but, in this case, we truncate before
applying the LUTs in a similar way to preparing inputs for a Haar DWT lookup, (b) a Haar DWT variant,
and (c) a Biorthogonal DWT variant. It is expected that the quantized version will outperform both the
Haar and Biorthogonal DWT-encoded LUTs in terms of latency, with the last two incurring significantly
fewer errors.

We perform a series of experiments varying from simple non-linear functions (in Section 6.2) to more
elaborate applications presented in Section 5 (in Section 6.3). For all experiments, we used a c5.12xlarge

AWS EC2 instance with 48 virtual cores running Ubuntu 22.04. Also, for all TFHE-rs modes, we used a
parameter set corresponding to approximately 128 bits of security [4]. Specifically, we utilized parameters that
allow for each ciphertext to hold two data bits and two bits of carry used for intermediate computations. All
radix ciphertexts are constructed as vectors of ciphertexts constructed with these parameters. Additionally,
in all our experiments, the LUT generations are pre-computed offline by the server.

6.2 Non-Linear Functions

6.2.1 Ripple Approximations

In Table 1 we compare the Ripple approximations with both the Haar and Biorthogonal wavelet families
against a baseline TFHE-rs implementation (using a non-DWT LUT with the full bit-width) and also a quan-
tized TFHE-rs (i.e., approximation) version that truncates half of the bit-width of the inputs. Specifically,
we consider a series of non-linear functions including reciprocal, square root, and the sigmoid activation
function. Our comparisons emphasize the time to evaluate each non-linear function in seconds as well as
the mean absolute error (MAE), which is the sum of absolute errors divided by the number of samples.
We perform three blocks of experiments for the same functions with different combinations of word sizes
(W), precision values (k), and LUT sizes (T). We experimentally observed that setting T to W/2 yields the
fastest runtime while minimizing the MAE. We set the precision k between the T and W because otherwise,
quantization misses all the information in the fractional bits.

In Table 1, we observe that the runtime of all quantization, Haar DWT, and Biorthogonal DWT is faster
than baseline, and increasingly so as the word size increases. This is intuitive as the LUTs are smaller, and
therefore there are fewer PBS operations across the radix ciphertext. In the case of the Biorthogonal DWT,
the extra computation associated with the multi-bit additions and multiplications is offset by the parallelism
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Table 1: Overview of runtime improvement (in seconds) and mean absolute error (MAE) over non-linear
operations for Ripple using Haar and Biorthogonal wavelets, as well as quantized TFHE-rs. Our baseline
uses LUT sizes (T) to be equal to the word size (W), while the Ripple quantized version, as well as the Haar
and Biorthogonal DWT variants, use approximations with T bits; k represents the precision.

Op. W k T
Base-
line

Quant. Haar Bior.

Time MAE Time MAE Time MAE
√
x

16 12 8

3.1 1.6 1.15e-2 1.6 5.41e-3 2.2 2.97e-4
1/x 3.1 1.6 3.83e-3 1.6 1.96e-3 2.2 2.21e-4
1/√x 5.9 3.2 2.79e-3 1.6 1.45e-3 2.1 1.97e-4
log x 3.1 1.6 7.05e-2 1.6 2.17e-2 2.2 1.21e-2

σ(x)† 6.3 3.2 2.08e-3 1.6 1.02e-3 2.3 1.07e-4

erf(x)‡ 3.1 1.6 4.08e-3 1.6 2.05e-3 2.4 1.52e-4

tanh(x)§ 3.2 1.6 4.09e-3 1.6 2.07e-3 2.4 1.72e-4
√
x

24 16 12

9.5 2.4 2.79e-3 2.3 1.37e-3 3.1 1.92e-5
1/x 9.5 2.4 2.45e-4 2.4 1.26e-4 3.1 8.62e-6
1/√x 18.1 4.8 2.19e-4 2.4 1.14e-4 3.1 8.24e-6
log x 9.5 2.4 1.73e-3 2.3 8.61e-4 3.1 7.42e-6
σ(x)∗ 19.0 4.8 1.97e-2 2.3 6.37e-5 3.3 6.73e-6
erf(x)∗ 9.4 2.4 3.96e-3 2.4 1.28e-4 3.3 8.89e-6
tanh(x)∗ 9.5 2.4 3.96e-3 2.4 1.28e-4 3.3 9.41e-6
√
x

32 20 16

N/A 3.2 6.93e-4 3.2 3.45e-4 4.2 1.35e-6
1/x N/A 3.2 1.57e-5 3.2 8.03e-6 4.2 5.37e-7
1/√x N/A 6.3 1.49e-5 3.2 7.70e-6 4.1 5.07e-7
log x N/A 3.2 3.99e-4 3.2 1.47e-4 4.1 1.31e-4
σ(x)∗ N/A 6.3 7.68e-6 3.2 3.97e-6 4.3 4.20e-7
erf(x)∗ N/A 3.1 1.54e-5 3.2 7.95e-6 4.3 5.31e-7
tanh(x)∗ N/A 3.2 1.54e-5 3.2 7.91e-6 4.3 5.19e-7

† The Sigmoid function σ(x) = 1/(1+e−x).
‡ The error function erf(x) = 2/π

∫ x

0
e−t2 dt.

§ The hyperbolic tangent function tanh(x) = (ex−e−x)/(ex+e−x).
∗ For these bounded functions where W − k > 4 we use the methodology explained in
Section 4.

inherent in the algorithm. We observe that, for word size 16, the speedup is around 2× while for word size
24, the speedup is closer to 3 − 4×, and for word size 32, the baseline is not possible to evaluate on our
experimental server, as the RAM required to generate the encrypted LUTs exceeds 500 gigabytes for 32-bit
tables. The Haar DWT is usually the same speed as quantization as both involve reducing the bit-width of
the input by half and evaluating an LUT, but it is more accurate by halving the error observed. On the other
hand, the Biorthogonal DWT is slower than the other two due to the overhead of multiplications, however,
it is an order of magnitude more accurate.

6.2.2 DWT Compression

To better understand the accuracy difference between quantization and various DWT methods (i.e., Haar
and Biorthogonal), we plot the average approximation errors for various compressed LUT sizes in Fig. 7. We
also evaluate a third DWT variant, Db-2 (which is the second wavelet after Haar in the Debauchies family of
wavelets), to illustrate the benefits of Haar and Biorthogonal. We start with a word size of 20 and a precision
of 16 and proceed to compress the tables to varying sizes from 4 to 18 bits (the x-axes). Interestingly, the
errors vary based on the approximated non-linear function.
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From the trend, it is easy to see that the Haar DWT is twice as accurate as quantization throughout,
while Db-2 and Biorthogonal DWTs are (in most cases) orders of magnitude more accurate. The difference
in accuracy is most drastic around half the word size, which is 10 in this case. As the LUT size increases,
the error of quantization and Haar DWT decreases linearly to the LUT size, while the respective errors
of Db-2 and Biorthogonal DWTs decay exponentially to the LUT size until we reach a LUT size of 10-14
bits. The accuracy of the Biorthogonal DWT seems almost equivalent to Db-2 DWT and better by a factor
of approximately 2 after some compression threshold. This suggests that Biorthogonal DWT gives better
accuracy for the functions under evaluation.

Biorthogonal’s superior accuracy, coupled with the fact that Db-2 is more expensive to evaluate due
to an increased number of LUT evaluations, leads us to discard it altogether. On the other hand, since
Biorthogonal is more expensive than Haar, we can evaluate the trade-off based on our application. If we
need higher accuracy, we can go with Biorthogonal DWT, while if speed is of the essence, we can choose
Haar DWT.

We observe the trends across the board, however, there are some differences between functions. For square
root (Fig. 7a), Db-2 starts performing very poorly as the compressed LUT size decreases past 14. Reciprocal
(Fig. 7b) and reciprocal square root (Fig. 7c) follow this trend, except for sizes 15-18 we have that Haar
and quantization are more accurate than Biorthogonal and Db-2. Logarithm (Fig. 7d), sigmoid (σ, Fig. 7e),
and tanh (Fig. 7g) follow the same trend with slight boundary effects (i.e., divergent behavior around the
boundaries) for compressed LUT sizes over 16. Error function (Fig. 7f) experiences boundary effects when
DWT is applied an odd number of times, hence we get a zigzag pattern for the error for compressed LUT
sizes between 10 and 20 bits. Other functions experience this boundary effect for compressed LUTs with
larger bit sizes, resulting in a paradoxically higher error when the compressed LUT size is above 16. The
boundary effects can be attributed to DWT filters wrapping around the columns of the DWT matrix.

Table 2: Overview of bounded symmetrical function optimizations. Baseline: we compress a LUT with size
equal to the word size (W) to LUT size (T); Optimization: we compress LUT with size (T+3) to LUT size
(T). We report the maximum absolute error.

Op. W k T
Haar Bior.

Baseline Opt. Diff. Baseline Opt. Diff.

σ(x)
24 16 12

7.82e-3 2.57e-4 30× 3.60e-5 1.65e-5 2.2×
erf(x) 3.52e-2 1.11e-3 32× 3.34e-4 3.43e-5 9.7×
tanh(x) 3.12e-2 9.82e-4 32× 2.67e-4 3.01e-5 8.9×

σ(x)
32 20 16

7.81e-3 1.61e-5 485× 3.16e-5 1.04e-6 30×
erf(x) 3.52e-2 6.93e-5 508× 3.16e-4 2.15e-6 147×
tanh(x) 3.12e-2 6.15e-5 507× 2.51e-4 1.90e-6 132×

6.2.3 Function-centric Compression

In Table 2 we compare Ripple’s optimizations for convergent symmetrical functions with both Haar and
Biorthogonal wavelet families, against a baseline without the optimizations. We start with a word size equal
to 24 bits (or 32 bits) and using the optimizations, we bring this down to 19 bits (or 23 bits), respectively,
by reducing the domain of the integer part of the LUT from [−256, 256] to [0, 8] (or from [−2048, 2048] to
[0, 8]). This effectively means that we now have 19 (or 23 bits) to represent a significantly smaller domain. We
compare the maximum absolute error observed using the baseline and optimizations. Specifically, we observe
a significant decrease in the error for Haar DWT on the order of 30× for 24 bits and 500× for 32 bits, while
the decrease for Biorthogonal is about 10× for 24 bits and 100× for 32 bits, respectively. The improvement
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in Biorthogonal is lower due to its already remarkable compression capabilities. Given the great increase in
accuracy, applying these optimizations is beneficial when the computational overhead is acceptable.

6.3 Applications

32 64
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Ru
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me
 (s
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.)

N/
A

N/
A

Ripple (Quant.)
Ripple (Haar)
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HELM (Arithmetic)
HELM (LBB)

Transpiler (Yosys)
Transpiler (XLS)
Romeo

Fig. 8: Runtime comparisons for Euclidean distance between Ripple’s three variants (Quantization, Haar
DWT, and Biorthogonal DWT), TFHE-rs (baseline), HELM, Google Transpiler, and Romeo for vectors of
32 and 64 elements. Note that HELM, Transpiler, and Romeo only implement the squared Euclidean distance
(i.e., without the square root computation). We use a word size W of 32 bits for all frameworks. Lastly, for
32 and 64 bits, the TFHE-rs baseline is not applicable (N/A) as the resources required for the LUT are
impractical (see footnote 3).

6.3.1 Euclidean Distance

For this benchmark, shown in Fig. 8, we use W = 32 bits and utilize a client and server vector of lengths 32
and 64 to demonstrate scalability. All Ripple variants perform the full Euclidean distance computation, while
the related works compute the squared Euclidean distance and neglect the final square root calculation. We
note that the TFHE-rs baseline is unable to evaluate the Euclidean distance with the required wordsize due
to the astronomical cost of building 32-bit encrypted LUTs. For the Google Transpiler, we utilize both logic
synthesis backends (i.e., Google XLS and Yosys), which optimize the circuit in different ways. For HELM,
we utilize both LUT circuit modes (i.e., many-to-many LUTs for the arithmetic mode and a circuit of 2:1
LUTs for “lossless bidirectional bridging” or LBB). Overall, all three Ripple configurations outperform the
related works in terms of latency while still taking into account the square root operation. However, as
we observed in Table 1 the Haar and Biorthogonal approaches achieve significantly better approximations
than the quantization variant. Notably, Haar also exhibits very competitive latencies across all non-linear
functions and benchmarks.

6.3.2 Logistic Regression

Fig. 9 showcases our logistic regression inference benchmark for four attributes. While our chosen dataset
is composed of entries with eight attributes, we truncate it to match the dimensions used in related works.
Additionally, related works utilize a low-degree polynomial approximation for the sigmoid. We observe that
Ripple is significantly faster than related works and also outperforms the TFHE-rs baseline using the full-bit
width. The only exception to this is with W = 16 bits, where the baseline outperforms the Biorthogonal
DWT; however, for 24 bits, the Biorthogonal DWT exhibits lower latency than the baseline.

To achieve high accuracy with our chosen dataset (i.e., two species of penguins), we utilize all eight
attributes with a wordsize of 24 bits. For this binary classification, all modes achieve 100% accuracy; the
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Fig. 9: Runtime comparisons for the logistic regression application for 4 attributes for word sizes of 16, 24,
and 32 bits. For 24 bits, the arithmetic mode of HELM as well as both modes of the Google Transpiler are
not applicable (N/A) as they rely on native word sizes. Lastly, for 32 bits, the TFHE-rs baseline is also N/A
as the resources required for the LUT are impractical (see footnote 3).

baseline latency is 13.3 seconds per inference, while the Biorthogonal DWT variant classifies in 7.8 seconds.
Lastly, the quantized variant that truncates half of the bits of the LUT input exhibits a latency of 6.2
seconds, while the Haar DWT slightly outperforms this with a latency of approximately 6 seconds.

6.3.3 Correlation Coefficient

We utilize W = 16 to compute the correlation coefficient and find that the baseline implementation using
the lookups with the full bit width requires 18.1 seconds. Similarly to the logistic regression with W = 16,
the Biorthogonal DWT exhibits a higher latency of approximately 19.4 seconds per evaluation. From these
results and the prior benchmarks, we observe that the Biorthogonal performs suboptimally for small word
sizes. However, Haar yields the lowest latency at 15 seconds per evaluation with the quantized variant taking
15.4 seconds on average.

6.3.4 Edge Detection

In our scenario, the client supplies an encrypted image where each monochrome pixel becomes an independent
radix ciphertext (encoding 8 bits of information). We utilize the two modified filters described in Section 5.4,
which are public and therefore not encrypted. We encrypt a 16 × 16 image as input and run the algorithm
across the three Ripple modes and baseline. Lastly, we employ W = 16 bits to avoid overflows during the
intermediate computations. Overall, we observe that the majority of the execution time is consumed by
all of the shifts and adds in the convolutions. The baseline implementation generates an encrypted output
image in 482.6 seconds while the quantized version takes 476.9 seconds. The fastest variant, as in the prior
benchmarks, is the Haar DWT at 471.2 seconds while the slowest is the Biorthogonal DWT at 588.5 seconds.
The high latency of the Biorthogonal variant is primarily due to the fact that the application exhibits a very
high degree of parallelism and therefore the parallelism inherent in the Biorthogonal LUT evaluation can
not be properly exploited as all of the CPU cores are saturated.

7 Related Works

Ducas and Micciancio [16] first proposed the idea of using LUTs to evaluate arbitrary binary gates in
HE, while Chillotti et al. [10] then extended this idea to evaluate arbitrary function evaluation as a tree of
leveled multiplexers. Adoption was very limited, however, as it required expressing programs as deterministic
automata and it needed the control inputs of the multiplexers to be fresh ciphertexts (i.e., could not perform
computation with them before to multiplexer). The programmable bootstrapping technique (PBS) introduced
in [11] allows for efficient and general-purpose LUT evaluation. HELM [23] built on this technique and
introduced a framework for automated conversion from Verilog hardware description language (HDL) to
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encrypted circuits. HELM employs three modes of operation, one that solely operates over binary gates, one
that operates over integers and utilizes secure LUT evaluations, and a mixed mode that operates over binary
circuits and “bridges” over to integers to securely evaluate a LUT and then “bridge” back to the binary
domain. However, HELM is only compatible with very low-precision LUTs as bridging from an integer to
multiple bits requires multiple N to 1 LUTs. Conversely, Ripple has high precision and requires smaller LUTs
to encode the same amount of information with negligible errors.

Romeo [25] and Google Transpiler [21] follow a similar approach as HELM, in that of relying on an HDL
and logic synthesis. The latter, provides two different front-ends, one based on Yosys [45] and another one
based on Google XLS [20]. Both works, however, rely on Boolean circuits and neither of them supports
LUTs, resulting in costly operations for evaluating non-linear functions.

In a different line of work, Chung et al. [13] evaluate LUTs under FHE with the BGV, BFV, and CKKS
cryptosystems. Their idea is to transform LUTs into low-degree multivariate polynomials and utilize the
packing (or batching) capabilities of the aforementioned cryptosystems to simultaneously evaluate multiple
LUTs. They demonstrate their approach by evaluating AES on an A-100 GPU in over 9.5 minutes (while
batching 2048 ciphertexts). Although the amortized cost per ciphertext is under a second, the latency of
this approach is far from practical. On the other hand, Ripple shows a way to accelerate LUT evaluation
without sacrificing correctness and is orthogonal to the underlying cryptosystem. As a matter of fact, our
techniques introduced in Ripple can be extended for BGV, BFV, and CKKS as well and further accelerate
LUT evaluation.

8 Concluding Remarks

In this work, we introduce the Ripple framework that leverages different approximation techniques based on
discrete wavelet transform families to reduce the number of homomorphic LUT entries in PBS. Previous works
focused either on polynomial approximations or on full-size LUTs; these techniques incur high-performance
overheads when high precision is required while the former also introduced non-negligible errors. Ripple,
on the other hand, maintains high accuracy while it reduces the LUT sizes. Our empirical evaluations
have shown significant error reduction compared to plain quantization methods across various non-linear
functions, varying from square root and reciprocal computations to more elaborate sigmoid and hyperbolic
tangent functions. A key benefit of Ripple is that it improves performance for several realistic benchmarks
without sacrificing accuracy, compared to equivalent applications that utilize the full bit widths and incur
slower LUT evaluation runtimes.
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4. Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor searching with
applications to lattice sieving. In Robert Krauthgamer, editor, 27th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 10–24, Arlington, VA, USA, January 10–12, 2016. ACM-SIAM.

5. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309–325, Cambridge, MA, USA, January 8–10, 2012. Association for Computing Machinery.

6. Randy L Carter, Robin Morris, and Roger K Blashfield. On the partitioning of squared euclidean distance and
its applications in cluster analysis. Psychometrika, 54(1):9–23, 1989.

7. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for arithmetic
of approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASI-
ACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437, Hong Kong, China,
December 3–7, 2017. Springer, Heidelberg, Germany.

8. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, Part I, volume 10031 of Lecture Notes in Computer Science, pages 3–33, Hanoi, Vietnam,
December 4–8, 2016. Springer, Heidelberg, Germany.

9. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster packed homomorphic operations
and efficient circuit bootstrapping for TFHE. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in
Cryptology – ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science, pages 377–408,
Hong Kong, China, December 3–7, 2017. Springer, Heidelberg, Germany.

10. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homomorphic en-
cryption over the torus. Journal of Cryptology, 33(1):34–91, January 2020.

11. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrapping enables efficient homomorphic
inference of deep neural networks. In Shlomi Dolev, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann,
editors, Cyber Security Cryptography and Machine Learning, pages 1–19, Cham, 2021. Springer International
Publishing.

12. Kittipong Chomboon, Pasapitch Chujai, Pongsakorn Teerarassamee, Kittisak Kerdprasop, and Nittaya Kerd-
prasop. An empirical study of distance metrics for k-nearest neighbor algorithm. In Proceedings of the 3rd
international conference on industrial application engineering, volume 2, page 4, Kitakyushu, Japan, 2015.

13. Heewon Chung, Hyojun Kim, Young-Sik Kim, and Yongwoo Lee. Amortized Large Look-up Table Evaluation
with Multivariate Polynomials for Homomorphic Encryption. Cryptology ePrint Archive, Paper 2024/274, 2024.
https://eprint.iacr.org/2024/274.

14. Wang Dong and Zhou Shisheng. Color Image Recognition Method Based on the Prewitt Operator. In 2008
International Conference on Computer Science and Software Engineering, volume 6, pages 170–173, Wuhan,
China, 2008. IEEE.

15. Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in deep learning: A
comprehensive survey and benchmark. Neurocomput., 503(C):92–108, sep 2022.
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