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Abstract. Boolean Searchable Symmetric Encryption (SSE) enables secure outsourcing of
databases to an untrusted server in encrypted form and allows the client to execute secure
Boolean queries involving multiple keywords. The leakage of keyword pair result pattern (KPRP)
in a Boolean search poses a significant threat, which reveals the intersection of documents
containing any two keywords involved in a search and can be exploited by attackers to re-
cover plaintext information about searched keywords (USENIX Security’16). However, existing
KPRP-hiding schemes either rely on Bloom filters (S&P’14, CCS’18), leading to high false pos-
itive search results (where non-matching documents could be erroneously identified as matches)
that hinder the extension to multi-client settings (CCS’13), or require excessive server storage
(PETS’23), making them impractical for large-scale sparse databases.
In this paper, we introduce Hidden Boolean Search (HBS), the first KPRP-hiding Boolean SSE
scheme with both negligible false positives (essential for satisfying the standard correctness
definition of SSE) and low server storage requirements. HBS leverages a novel cryptographic
tool called Result-hiding Filter (RH-filter). It distinguishes itself as the first tool that supports
computationally correct membership queries with hiding results at nearly constant overhead.
With the help of RH-filter, compared to the most efficient KPRP-hiding scheme (CCS’18) in
terms of overall storage and search efficiency, HBS surpasses it across all performance metrics,
mitigates false positives, and achieves significantly stronger query expressiveness. We further
extend HBS to the dynamic setting, resulting in a scheme named DHBS, which maintains
KPRP-hiding while ensuring forward and backward privacy—two critical security guarantees
in the dynamic setting.

Keywords: Boolean Searchable Symmetric Encryption, Keyword Pair Result Pattern, False Positive
Rate, Sparse Database, Low Server Storage

1 Introduction

Searchable symmetric encryption (SSE) enables the client to outsource a database to an untrusted
server and search the database securely and efficiently. The most common type of search is to look for
documents that contain a keyword, referred to as a single-keyword search, and has been extensively
studied in the existing literature [SWP,CGKO,KPR,CJJ+a,SPS,Bos,BMO,SDY+20,SYL+,CPPJ,
ZSL+b,SSL+,YCR]. However, to meet the demands of a broader range of application scenarios, more
complex queries are required to be supported. These include but are not limited to Boolean search
[CJJ+b,LPS+,KMa,PM,PPSY,YZCR], range search [ZSL+a,WCb], and ranked search [MZK,KLSN].
In particular, a Boolean search allows the client to build a Boolean formula by combining multiple
keywords with the Boolean operators AND(∧), OR(∨), and NOT(¬) and search for the documents
satisfying the Boolean formula. Hereafter, we use ψ(w1, · · · , wn) to denote an arbitrary Boolean
formula involving n keywords w1, · · · , wn.
KPRP Leakage. Implementing secure and efficient Boolean SSE solutions is non-trivial since there
is a trade-off between security, performance, and query expressiveness. To ensure practicality, the
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existing solutions usually choose to leak a small amount of information (referred to as leakage) to
the server. For instance, most of the Boolean SSE solutions in the literature reveal the keyword pair
result pattern (KPRP) within a search. KPRP refers to the intersection of the documents matched by
any two keywords involved in a search. Let DB(w) represent the document identifiers matched by a
keyword w. KPRP related to a Boolean search ψ(w1, · · · , wn) could be denoted as DB(wi)∩DB(wj)
for any 1 ≤ i < j ≤ n. However, leakage-abuse attacks [CGPR,BKMb,PW] show that some leakage
profiles are unacceptable as they can be utilized to recover the database and queries. In particular,
Zhang et al.’ [ZKP] file-injection attack can exploit KPRP to recover plaintext information about wi

for 1 ≤ i ≤ n. Achieving KPRP-hiding is essential to mitigate this attack. According to [LPS+,YZCR],
KPRP-hiding guarantees that a Boolean search does not disclose which document belongs to DB(wi)∩
DB(wj) for any 1 ≤ i < j ≤ n, except for the information that can be inferred from the final search
result, namely the document identifiers matched by the search.
Naive Solution. Boolean SSE can be naively achieved through any single-keyword SSE scheme.
Specifically, within a Boolean search ψ(w1, · · · , wn), for 1 ≤ i ≤ n, the client can issue a single-keyword
search on wi and receive DB(wi). Then, it computes the final search result DB(ψ(w1, · · · , wn))
by combining the received single-keyword results. If the single-keyword search is response-hiding,
which means that it does not reveal the search result to the server, the whole search process will
not reveal KPRP. However, the optimal computational and communication overhead achievable is
O(

∑n
i=1 |DB(wi)|), which makes the solution highly inefficient when one or more involved keywords

match a large number of documents. Furthermore, the naive solution may lead to undesirable leakage.
For example, if the utilized single-keyword SSE reveals the response length (i.e., |DB(wi)|), which
cannot currently be hidden without incurring significant overhead (scaling at least linearly with the
maximum possible response length for a search) [KMb,PPYY,WCa], it exposes the instantiated naive
solution to a wider range of leakage-abuse attacks [CGPR,BKMb,OKa]. Hence, there is a crucial need
to devise KPRP-hiding schemes that not only enhance search efficiency but also mitigate unintended
leakage.
Limitations of Existing KPRP-hiding Solutions. In the literature, four Boolean SSE schemes
have been proposed to achieve KPRP-hiding with sub-linear search efficiency: Blind Seer [PKV+],
HXT [LPS+], Rphx [JcCQ+22], and HDXT [YZCR]. We notice that all of these schemes employ search
methodologies that involve querying the membership of specific keyword-document pairs within the
database (a keyword-document pair is said to exist in the database if the document contains the
keyword). Throughout this process, the membership query result for any given keyword-document pair
must remain concealed from the server. Failure to do so may leak KPRP. For example, in a Boolean
search ψ(w1, · · · , wn), if the server learns that two keyword-document pairs, (w1, id) and (w2, id),
exist in the database, it can deduce that id belongs to DB(w1) ∩ DB(w2), thereby compromising
KPRP-hiding.

Three out of these four schemes, namely Blind Seer [PKV+], Rphx [JcCQ+22], and HXT [LPS+],
employ the Bloom filter [Blo70] to implement membership queries on keyword-document pairs. A
Bloom filter is a vector that represents a set and facilitates rapid membership queries. These three
schemes leverage a specific property of the Bloom filter to hide membership query results effectively.
This property allows a Bloom filter to be trivially encrypted so that the access pattern (i.e., the
sequence of accessed filter entries) resulting from a membership query does not reveal the query’s
outcome, while maintaining high query efficiency. However, a Bloom filter may erroneously indicate
that a keyword-document pair belongs to the database when it does not, resulting in what is known
as a false positive. False positives could lead to search results containing documents that do not meet
the corresponding search criteria. For example, in HXT, the false positive rate for a search can be as
high as |DB(w1)|

106 . This implies that HXT is almost certain to return unmatched documents for some
searches, especially for large-scale databases. In this paper, we use the term noticeable false positive
rate to refer to a false positive rate that fails to reach a negligible level. Achieving a negligible false
positive rate is crucial for meeting the standard correctness definition of SSE (provided in Section
2.4). More importantly, as highlighted by Jarecki et al. [JJK+], noticeable false positives hinder the
extension of SSE schemes to multi-client settings, as clients may access documents that they are not
authorized to view.

HDXT [YZCR] is the only one that does not use the Bloom filter. Instead, it employs a mapping
table that associates each possible keyword-document pair with a bit, indicating whether the pair
exists in the database. While this encrypted mapping table can help achieve negligible false positive
rates, it does require substantial server-side storage linear with |W| · |D|, where |W| and |D| denote
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the total number of keywords and documents, respectively. In the case of sparse databases, the server
must allocate excessive space to store nonexistent data, resulting in poor practicality and scalability.

Given the current state of research, a question naturally emerges:

Is it inevitable that achieving KPRP-hiding would entail noticeable false positive rates or excessive
server storage?

Our Contributions and Techniques. In this paper, we introduce the first KPRP-hiding Boolean
SSE scheme with both negligible false positive rates and low server storage requirements (lower than
all the above KPRP-hiding solutions). In alignment with most KPRP-hiding solutions [PKV+,LPS+,
JcCQ+22], we primarily focus on the static setting and name our static scheme: Hidden Boolean
Search (HBS). We also consider the extension to the dynamic setting and name the dynamic solution
Dynamic Hidden Boolean Search (DHBS).

HBS adopts the OXT-based search framework, which was developed by Cash et al. [CJJ+b] in
their Boolean SSE scheme OXT and is still being followed by state-of-art works [LPS+,PM,YZCR].
Taking a conjunctive search w1 ∧ · · · ∧wn as an example, the OXT-based framework enables a search
first to identify the documents matching the least frequently occurring keyword (selected as w1, called
s-term) and subsequently obtain the search result by checking if each identified document contains the
other (n−1) keywords (each is called x-term). OXT fails to achieve KPRP-hiding. The cornerstone of
implementing KPRP-hiding within the OXT-based search framework is to conceal whether a document
matched by the s-term contains a x-term, except that it is revealed by the final search result. To achieve
this security property efficiently without introducing drawbacks in the other two KPRP-hiding OXT-
based schemes, namely noticeable false positive rates in HXT [LPS+] and extensive server storage in
HDXT [YZCR], we introduce a novel cryptographic tool named Result-hiding Filter (RH-filter). As
far as we know, RH-filter is the first tool supporting encrypted membership queries that achieve both
result concealment and computational correctness without relying on intricate cryptographic schemes
such as ORAM [SvDS+,WNL+]. Surprisingly, with the assistance of RH-Filter, HBS achieves desirable
correctness and low server storage without sacrificing search efficiency and shows impressive query
expressiveness. In Table 1, we present a comparison of HBS and DHBS with existing KPRP-hiding
schemes. The main contributions can be summarized as below:
1. Introduce a Novel Cryptographic Tool RH-filter. As far as we know, ORAM-based Obliv-

ious Set [WNL+] is the only existing cryptographic tool that supports result-hiding member-
ship queries with negligible false positive rates, where result-hiding refers to the concealment
of membership query results. In this paper, we introduce a cryptographic tool RH-filter, which
achieves significant performance improvements, e.g., constant-level computational overhead and
sub-logarithmic communication overhead, by sacrificing a slight degree of security, i.e., revealing
which queries are for the same element. For clarity and broader applicability, we formally define
this tool and provide rigorous proofs of its correctness and security.

2. Propose a KPRP-Hiding Scheme HBS that Exhibits Notable Advantages in Multiple
Aspects.
– Correctness. HBS is the first KPRP-hiding solution to achieve negligible false positive rates

with low storage overhead, which depends solely on the number of items in the database.
Also, we extend HBS to multi-client settings, as detailed in Section 6, to emphasize the critical
importance of achieving negligible false positive rates.

– Query Expressiveness. HBS is the first constant-round solution to achieve KPRP-hiding
for all Boolean queries, notably demonstrating sub-linear efficiency for Boolean queries in
the search normal form (SNF) [CJJ+b]. SNF refers to search queries that can be expressed
as w1 ∧ ψ(w2, · · · , wn) where wi indicates a keyword and ψ signifies any arbitrary Boolean
formula. Only Blind Seer [PKV+] in the literature can achieve KPRP-hiding for all Boolean
queries without relying on trusted hardware. However, this comes at the cost of requiring
logarithmic round complexity. In Appendix A, we explain the limitations of HXT and HDXT
regarding query expressiveness.

– Performance. Compared to HXT, the current leading KPRP-hiding solution in terms of
overall storage and search efficiency 1, HBS surpasses it across all performance metrics.

1 While HDXT demonstrates superior search efficiency compared to HXT, this enhancement is offset by a
substantial increase in storage requirements, tens to hundreds of times greater.
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3. Extension to the Dynamic Setting. SSE that supports secure updates is referred to as dynamic
SSE (DSSE). Our DSSE scheme DHBS achieves the correctness and query expressiveness of HBS
while demonstrating desirable security and performance.
– Security. DHBS attains the same level of security as the sole existing KPRP-hiding DSSE

scheme, HDXT, by providing KPRP-hiding along with forward and backward privacy. Note
that forward and backward privacy are two crucial security properties in the dynamic setting
and have been extensively discussed in previous works [BMO,CPPJ,ZSL+b,SSL+,PM,YZCR].

– Performance. Compared to HDXT, DHBS offers a significant advantage in curtailing server
storage overhead by tens to hundreds of times. While its search complexity depends on the
total number of updates (HDXT does not), our experimental results showcase that DHBS
sustains high efficiency even after substantial updates. Consequently, we contend that DHBS
is better suited than HDXT for specific datasets, such as sparse databases and those with
infrequent updates.

Table 1. Comparison with Existing KPRP-hiding Boolean SSE Schemes

Schemes
Search Server

Storage SNF Negligible
False PositivesComputation Communication Rounds

Id Doc
Static Setting

Blind Seer [PKV+] O(γnm log |D|) O((γnm log |D|) O(log |D|) O(log |D|) O(|W||D|) ✓ ✗

HXT [LPS+] O(γnm1) O(γnm1) 2 3 O(ξN) ✗ ✗
HBS O(nm1) O(πnm1) 2 2 O(φπN) ✓ ✓

Dynamic Setting
HDXT [YZCR] O(u1 + nm1) O(u1 + nm1) 2 3 O(|W||D|) ✗ ✓

DHBS O(u1 + τnm1) O(u1 + πτnm1) 2 3 O(φπN+) ✓ ✓

The table presents KPRP-hiding solutions that achieve sub-linear search efficiency without relying on trusted hardware.
The columns labeled ‘Id’ and ‘Doc’ represent the number of interaction rounds required to search for the intended document
identifiers and document contents, respectively. The column ‘SNF’ indicates whether the corresponding scheme achieves KPRP-
hiding for all Boolean queries in SNF. |W|, |D|, and N denote the number of keywords, documents, and keyword-document
pairs that exist in the database, respectively. n represents the number of keywords involved in the search. m1 and m denote
the number of documents matched by w1 and by the query, respectively. The parameters γ and ξ for the Bloom filter are set
to 20 and 29, respectively, in [PKV+, LPS+]. The parameters φ and π for the RH-filter are set to 2 and 8 in the paper. u1

represents the number of documents matched by w1 in the initial database, plus the number of updates related to w1 after the
setup. τ is the total number of updates divided by a large constant. N+ is the number of the keyword-document pairs exiting
in the initial database, plus the number of updates after the setup.

2 Preliminaries

In this section, we begin by introducing the notations employed throughout the subsequent sections.
Following this, we proceed to present formal definitions for three cryptographic primitives: T-set,
RH-filter, and Boolean SSE.

2.1 Notations

We use {0, 1}l to denote the set of all binary strings of length l, {0, 1}∗ to stand for the set formed of
arbitrary-length strings, and [1, ζ] to denote the set of elements from 1 to an integer ζ. With a1 ← a2

we denote the value of a2 is assigned to a1, and with a1
$← S we denote that a1 is sampled uniformly at

random from the set S. We use |X| to represent the cardinality of a container X, e.g., a set/list/map.

2.2 T-set

T-set [CJJ+b] enables a data owner that possesses a number of documents, each containing specific
keywords, to associate a list of fixed-sized tuples with each keyword. Later, the data owner can
produce tokens related to keywords to retrieve the associated lists. The set of all keywords present in
the database is denoted as W. T-set comprises the following three algorithms:

– TSetSetup(1λ,T)→ (TSet,KT ): Taking the security parameter λ and a table T that associates
each keyword in W to a list of tuples as inputs, it produces two outputs: TSet and KT .
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– TSetGetTag(KT , w) → stag: On input the key KT and a keyword w ∈ W, it outputs the
corresponding query token stag.

– TSetRetrieve(stag,TSet) → T[w]: Taking as input a query token stag related to a keyword w
and TSet, it outputs T[w].

Intuitively, an implementation of T-set is considered correct if, for any given security parameter
λ, set of keywords W, and table T, and for each keyword w ∈W, TSetRetrieve(stag,TSet) always
outputs the list T[w] when (TSet,KT ) ← TSetSetup(1λ,T) and stag ← TSetGetTag(KT , w). In
terms of security, the main objective of T-set is to protect the confidentiality of information about
the tuples in T and the keywords they are associated with, except for the retrieval results produced
by TSetRetrieve. As in [CJJ+b], we allow T-set to reveal a small amount of information, which we
refer to as the leakage LT = (Ltup

T (T),Ltag
T (T, w)). The formal definitions for correctness and security

are provided in Appendix B.

2.3 Result-hiding Filter

This section introduces a cryptographic primitive named as the Result-hiding Filter, abbreviated
as RH-filter. A RH-filter serves as an encrypted representation of a set and facilitates membership
queries. The security requirement for an RH-filter encompasses not only safeguarding plaintext in-
formation related to the contents of the set and the queries, but also the crucial task of concealing
membership query results. The latter security property is referred to as result-hiding. RH-filter will
play a central role in our SSE protocols. Presenting its abstract definition not only aids in com-
prehending our protocol but also opens the possibility of its broader application in other suitable
scenarios. Formally, RH-filter consists of the following five algorithms:

– RHFSetup(1λ)→ KF : Taking as input the security parameter λ, the algorithm outputs a secret
key KF .

– RHFEncrypt(KF ,∆) → ES: Taking as input the secret key KF and a set ∆, the algorithm
outputs the encrypted structure ES.

– RHFGetTok(KF , δ)→ etok: Taking as input the secret key KF and an element δ, the algorithm
outputs the encrypted token etok.

– RHFRespond(etok,ES)→ res: Taking as input the token etok and the encrypted structure ES,
the algorithm outputs the response res.

– RHFTest(KF , δ, res)→ b ∈ {0, 1}: On input the secret key KF , the element δ, and the response
res, the algorithm outputs a bit b.

In Definition 1, we define the correctness of the RH-filter within the context of computational
correctness. Here, we introduce the function In(δ,∆), which yields 1 when δ ∈ ∆, and outputs 0 if
δ /∈ ∆.

1) RHFSetup(1λ) is run to generate KF .
2) A chooses a set ∆ and is provided the encrypted structure ES← RHFEncrypt(KF ,∆).
3) A adaptively selects elements and performs queries. For each selected element δ, A makes

a query on δ as follows: ① A is given the token etok ← RHFGetTok(KF , δ); ② A exe-
cutes RHFRespond(etok,ES) to obtain the response res; ③ A receives the query result bδ ←
RHFTest(KF , δ, res).

4) The game outputs 1 if, in phase 3), A chooses an element δ on which the query result bδ is not the
output of In(δ,∆).

Fig. 1. RHFCorr
Π
A(λ)

Definition 1 (Correctness of RH-filter). Let Π be a RH-filter implementation. We say Π sat-
isfies correctness if for any security parameter λ and any PPT adversary A, there exists a negligible
function negl such that:
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Pr[RHFCorr
Π
A(λ) = 1] ⩽ negl(λ)

where the game RHFCorr
Π
A(λ) is defined in Figure 1.

In regard to security, we stipulate that the encrypted structure ES only reveals |∆|, and the
encrypted token etok only leaks the repetition of the queried elements. We use a function tp to
capture the repetition of queries. Formally, let M be the sequence of the queried elements, where
M[i] represents the elements involved in the i-th query. For an element δ, tp(δ) = {i|M[i] = δ}. In
Definition 2, we give the simulation-based security definition for RH-filter.

RHFREAL
Π
A(λ):

1) RHFSetup(1λ) is run to generate KF .
2) A adaptively selects elements. For each el-

ement δ, A is given the token etok ←
RHFGetTok(KF , δ).

3) A chooses a set ∆ and is given the encrypted
structure ES← RHFEncrypt(KF ,∆).

4) A repeats step 2).
5) A outputs a bit b.

RHFIDEAL
Π
A,S(λ):

1) S(⊥) outputs nothing.
2) A chooses elements in an adaptive way. For

an element δ, A is given the token etok ←
S(tp(δ)).

3) A selects a set ∆ and receives ES← S(|∆|).
4) A repeats step 2).
5) A outputs a bit b.

Fig. 2. Real and Ideal Games for RH-filter

Definition 2 (Security of RH-filter). We say a RH-filter implementation Π is semantically
secure if for any security parameter λ and any PPT adversary A, there exist a a simulator S and a
negligible function negl such that:

|Pr[RHFREAL
Π
A(λ) = 1]− Pr[RHFIDEAL

Π
A,S(λ) = 1]| ⩽ negl(λ)

where the games RHFREAL
Π
A(λ) and RHFIDEAL

Π
A,S(λ) are defined in Figure 2.

2.4 Boolean Searchable Symmetric Encryption

The database DB is represented as {(idi,Wi)}|D|i=1, where a document with the identifier idi ∈ {0, 1}λ
contains a set of keywords Wi ⊆ {0, 1}∗. D = {idi}|D|i=1 denotes the set of all the document identifiers.
W = ∪|D|i=1Wi is the set of all the keywords. Let ψ(w) be a Boolean formula over a collection of
keywords w ⊆ W with Boolean operators ∧, ∨, and ¬. DB(ψ(w)) represents the identifiers of the
documents that satisfy ψ(w). An identifier idi is said to satisfy ψ(w) iff ψ(w) is evaluated to be true
after replacing every keyword in ψ(w) with true or false according to whether the keyword belongs
to Wi or not. Boolean DSSE consists of the following three protocols (for static SSE, the state s and
the update protocol are excluded from the subsequent protocols and definitions).

– Setup(λ,DB;⊥)→ (K, s; EDB): The client takes as input a security parameter λ and a database
DB, and outputs a secret key K and an initial state s. The server outputs the encrypted database
EDB.

– Search(K, s, ψ(w); EDB)→ (s′,DB( ψ(w)); EDB′): On input the secret key K, the current state
s, and a Boolean formula ψ(w), the client outputs a possibly updated state s′ and the search
result DB( ψ(w)). The server inputs the encrypted database EDB and outputs a possibly updated
encrypted database EDB′.

– Update(K, s, op, w, id; EDB) → (s′; EDB′): On input the secret key K, the latest state s, an
update operator op ∈ {add, del}, a keyword w, and a document identifier id, the client outputs an
updated state s′. With the encrypted database EDB as the input, the server outputs the possibly
updated encrypted database EDB′.
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The correctness requirement concerning SSE is that for any database DB, any encrypted database
EDB generated from SSE.Setup or SSE.Update, and any Boolean formula ψ(w), the search query
on ψ(w) returns DB(ψ(w)) to the client except for negligible probability. Following [CGKO,KPR,
CJJ+a], we have Definition 3.

Definition 3 (Correctness of SSE). Let Π = {Setup, Search, Update} denote a DSSE scheme.
We say Π is computationally correct if for any security parameter λ and any PPT adversary A, there
exist a negligible function negl such that:

Pr(SSECORRECT
Π
A(λ) = 1) ⩽ negl(λ)

where SSECorrect
Π
A(λ) is defined as:

SSECORRECT
Π
A(λ): A chooses a database DB, and obtains EDB by calling Setup(λ,DB). Then it

performs search queries Search(ψ(w)) and update queries Update(op, w, id) in an adaptive way. The
game outputs 1 if the result of a search query on a Boolean formula ψ(w) is not the set DB(ψ(w)).

We use the function L = (LStp( DB), LSrch( DB, ψ(w), LUpdt( DB, op, w, id)) to denote the
leakage profile for the setup, search, and update protocols. Definition 4 presents the security definition
for SSE, which is borrowed from [KPR,CJJ+a].

Definition 4 (Adaptive Security of SSE). Let Π = {Setup, Search, Update} denote a SSE
scheme. We say Π is L − adptively − secure if for any security parameter λ, any probabilistic
polynomial-time adversaries A, there exist a a simulator S and a negligible function negl such that:

|Pr[SSEREAL
Π
A(λ) = 1]− Pr[SSEIDEAL

Π
A,S,L(λ) = 1]| ⩽ negl(λ)

where SSEREAL
Π
A(λ) and SSEIDEAL

Π
A,S,L(λ) are defined as:

– SSEREAL

∏
A (λ): At first, A chooses a database DB, and obtains EDB by invoking the proto-

col Setup(λ,DB). Then it repeatedly performs search queries Search(ψ(w)) and update queries
Update(op, w, id) in an adaptive way. A outputs a bit b.

– SSEIDEAL
Σ
A,S,L(λ): A chooses a database DB, and calls S(LStp(DB)) to get the encrypted database

EDB. After that, it adaptively performs search and update queries by calling S(LSrch(DB, ψ(w)))
and S(LUpdt(DB, op, w, id)), respectively. A outputs a bit b.

The concept of keyword pair result pattern (KPRP) was first introduced by Zhang et al. [ZKP]
to describe the intersection of documents that match any two keywords involved in a Boolean search
query. Hiding KPRP from the server is crucial for mitigating the injection attack proposed in [ZKP].
We borrow the definition for KPRP-hiding from [YZCR], as presented in Definition 5.

Definition 5 (KPRP-hiding). We say a Boolean SSE scheme satisfies KPRP-hiding if LSearch(
DB, ψ(w)) does not reveal which identifiers belong to DB(wi) ∩ DB(wj) except for the information
revealed by DB(ψ(w)), for arbitrary two keywords wi and wj that belong to w.

3 A RH-filter Construction

In this section, we present a construction for RH-filter. Before delving into the core idea and con-
struction details, we begin by illustrating the challenges associated with achieving the desired security
guarantee while maintaining high efficiency.
Design Challenges. The primary challenge in implementing a RH-filter lies in efficiently achieving
result-hiding. This challenge arises because adversaries may attempt to compromise result-hiding by
analyzing variations in the access patterns resulting from queries. For instance, an adversary could
potentially deduce the presence of a queried element by scrutinizing the number of accesses made
to ES by each query. To address this issue, a strategy involves the utilization of Oblivious RAM
(ORAM) techniques [Gol,SvDS+], as done in the Oblivious Set proposed by Wang et al. [WNL+], to
render access patterns resulting from queries indistinguishable. This effectively ensures that a query
no longer leak any information. However, the adoption of ORAM introduces a significant overhead
due to the necessity of continuously shuffling data.
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RHFSetup(1λ):

1: kf1
$← {0, 1}λ, kf2

$← {0, 1}λ
2: return KF = (kf1, kf2)

RHFEncrypt(KF ,∆):

1: (kf1, kf2)← KF

2: Choose a constant φ and set ζ ← φ|∆|
3: Choose a hash H : {0, 1}∗ → [1, ζ]
4: ES← empty array
5: for 1 ≤ i ≤ ζ do
6: ES[i]← empty set
7: end for
8: for each δ ∈ ∆ do
9: tag1 ← F (kf1, δ), pos← H(tag1)

10: tag2 ← F (kf2, δ)
11: ES[pos]← ES[pos] ∪ {tag2}
12: end for
13: Find the position j with |ES[j]| being the

largest among all the sets in ES
14: π ← |ES[j]|.
15: for 1 ≤ i ≤ ζ do
16: while |ES[i]| < π do
17: tag2

$← {0, 1}λ
18: ES[i]← ES[i] ∪ {tag2}

19: end while
20: end for
21: return ES

RHFGetTok(KF , δ):

1: (kf1,−)← KF , tag1 = F (kf1, δ)
2: return etok = tag1

RHFRespond(etok,ES):

1: pos← H(etok)
2: return res = ES[pos]

RHFTest(KF , δ, res):

1: (−, kf2)← KF

2: tag2 = F (kf2, δ)
3: if tag2 ∈ res then
4: return 1
5: else
6: return 0
7: end if

Fig. 3. Our RH-filter Construction

Core Idea. To achieve result-hiding while ensuring high efficiency, our approach prevents access
patterns from disclosing membership query results, rather than rendering these patterns entirely
indistinguishable. To realize this, we design the encrypted structure ES as an array of sets possessing
three properties: ① every element δ, regardless of its presence within the set, can be mapped to a
position (pos) within ES in a pseudorandom manner. ② given an element δ and the corresponding
position pos, ES[pos] securely records δ only when δ belongs to the set ∆. ③ within ES, each position
holds a set, and all these sets have the same size, composed of seemingly random strings. During
a query for a specific element δ, we assure that the adversary only observes that the set ES[pos]
is accessed, where pos indicates the position corresponding to δ in ES. ES[pos] is passed on to the
querier that then obtains the result by locally checking whether ES[pos] records δ or not.
Construction Details. We provide the pseudocodes for our RH-filter construction in Figure 3. The
construction relies on a pseudorandom function (PRF) (F : {0, 1}λ × {0, 1}∗ → {0, 1}λ) and a hash
function (H : {0, 1}∗ → [1, ζ], with ζ = φ|∆|, where φ is a constant).

3.1 Correctness and Security of RH-filter Construction

Our RH-filter construction guarantees computational correctness. Intuitively, during a membership
query on an element δ, if δ ∈ ∆, the query result must be 1 because both F and H are deterministic.
When δ /∈ ∆, as long as F is a secure PRF, the probability distribution of the query returning 1 should
be indistinguishable from the distribution where an element is uniformly and randomly selected from
{0, 1}λ and happens to equal to one of the elements stored in ES[H(etok)], where etok is the query
token corresponding to δ. The security of F also ensures that each element in ES[H(etok)] is indis-
tinguishable from one randomly and uniformly selected from {0, 1}λ. Consequently, the probability
of false positives is guaranteed to be negligible. Let £ denote the RH-filter construction described
above. Formally, we have Theorem 6.
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Theorem 6. If F (kf2, ·) is a secure PRF, then our RH-filter construction £ satisfies the computa-
tional correctness defined in Definition 1.

Proof: The proof is presented in Appendix C.1.

For the security of our RH-filter construction, we have Theorem 7.

Theorem 7. If F is a secure PRF and the hash function H is modeled as a random oracle, our
RH-filter construction £ satisfies the semantic security defined in 2.

Proof: The proof is presented in Appendix C.2.

3.2 Performance of RH-filter Construction

Let π represent the maximum number of elements in ∆ that can be mapped by H to the same
hash value. RHFSetup(1λ,∆) incurs a computational time cost of O(φπ|∆|) for generating the
array ES, which has a size of O(φπ|∆|). The generation of etok in RHFGetTok(KF , δ) involves a
computational overhead of O(1), and etok itself has a size of O(1). RHFRespond(etok,ES) entails
an O(1) computational overhead for retrieving res, which has a size of O(π). RHFTest(KF , δ, res)
checks the existence of a tag in res, resulting in an O(1) computational overhead.

When H follows a uniformly random distribution, Gonnet [Gon81] and Larson [rL82] have demon-
strated that the expected value of π is quite reasonable and grows very slowly (O(log ζ/ log log ζ) when
φ is fixed). In our experiments, assuming |∆| = 5.9 × 107, we observe that π equals 11 and 8 for φ
values of 1 and 2, respectively. Furthermore, in Appendix C.3, we provide evidence that selecting a
very small φ value, e.g., 1 or 2, can achieve an exceptional trade-off between the storage requirement
and query efficiency, i.e., the trade-off between φπ and π.

Client
1: Select key ks for PRF F
2: Select keys kx and ki for PRF Fp

3: T← empty array indexed by keywords from W
4: XSet← empty set
5: for each w ∈W do
6: strap← F (ks, w)
7: (kz, ke)← (F (strap, 1), F (strap, 2))
8: t← empty list, c← 0
9: Randomly permute the entries of DB(w)

10: for each id in DB(w) do
11: c← c+ 1
12: xind← Fp(ki, id), z ← Fp(kz, c)
13: y ← xind · z−1

14: kd ← F (ke, c), e← kd ⊕ id

15: t← t ∪ {(e, y)}
16: xtag ← gFp(kx,w)·xind

17: XSet← XSet ∪ {xtag}
18: end for
19: T[w]← t
20: end for
21: (TSet,KT )← TSetSetup(T)
22: KF ← RHFSetup(λ)
23: ES← RHFEncrypt(KF ,XSet)
24: Send TSet and ES to the server
25: return K = (ks, kx, ki,KT ,KF )

Server
26: return EDB = (TSet, ES)

Fig. 4. HBS.Setup(1λ,DB;⊥)

4 HBS Protocol

In this section, we introduce a Boolean SSE protocol HBS. For simplicity, our focus here is on ex-
plaining how HBS manages conjunctions in the form of w1 ∧ con(w2, · · · , wn), where con represents
arbitrary conjunction over w2, · · · , wn. Here wi (2 ≤ i ≤ n) could indicate a negated term, e.g.,
¬w2∧w3∧¬w4, where a negated term returns the documents that do not contain the given keyword.
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Client:
1: (ks, kx, ki,KT ,KF )← K
2: stag ←TSetGetTag(KT , w1)
3: (kf1, kf2)← KF

4: Send stag and kf1 to the server
5: strap← F (ks, w1)
6: kz ← F (strap, 1)
7: for c = 1, 2 · · · and until server sends stop do
8: xtokenc ← empty list
9: for i = 2 to n do

10: xtokc,i ← gFp(kz ,c)·Fp(kx,wi)

11: xtokenc ← xtokenc ∪ {xtokc,i}
12: end for
13: Send xtokenc to the server
14: end for

Server:
15: Responds← empty list
16: t←TSetRetrieve(stag,TSet)
17: for c = 1, · · · , |t| do
18: (−, y)← t[c]
19: respondc ← empty list
20: for i = 2 to |xtokenc|+ 1 do
21: xtokc,i ← xtokenc[i− 1]
22: xtag ← (xtokc,i)

y

23: etok ← F (kf1, xtag)
▷ Equivalent to executing

RHFGetTok(KF , xtag) provided in Figure 3
24: res← RHFRespond(etok,ES)
25: respondc ← respondc ∪ {(xtag, res)}
26: end for
27: Responds← Responds ∪ {respondc}
28: end for

29: When last tuple in t is reached, send stop to
the client.

30: Send Responds to the client

Client:
31: ck← empty set, ke ← F (strap, 2)
32: for c = 1 to |Responds| do
33: matchc ← true
34: respondc ← Responds[c]
35: for i = 2 to n do
36: (xtag, res)← respondc[i− 1]
37: b← RHFTest(KF , xtag, res)
38: if (b = 1 and wi is a negated term) or

(r = 0 and wi is a non-negated term) then
39: matchc ← false
40: Break the loop for i
41: end if
42: end for
43: if matchc = true then
44: kd ← F (ke, c), ck← ck ∪ {(c, kd)}
45: end if
46: end for
47: Send ck to the server

Server:
48: R← empty set
49: for each (c, kd) ∈ ck do
50: (e,−)← t[c]
51: id← kd ⊕ e
52: R← R ∪ {id}
53: end for
54: Send R to the client

Fig. 5. HBS.Search(K,w1 ∧ con(w2, · · · , wn); EDB)

HBS is built based on an adapted version of OXT, introduced by Jarecki et al. [JJK+] to facilitate
the expansion of OXT into multi-client settings. We refer directly to this adapted version as OXT
in the section. As depicted in Figures 4 and 5, we employ black text to denote components aligned
with OXT and blue text to highlight our innovative parts. The protocol relies on two PRFs: F :
{0, 1}λ × {0, 1}∗ → {0, 1}λ and Fp : {0, 1}λ × {0, 1}∗ → Z∗p, with p denoting the prime order of a
cyclic group Gp. It also incorporates the T-set and our RH-filter, which are utilized in a fully black-box
and semi-black-box manner, respectively. Furthermore, we assume that the length of each document
identifier is λ.
Setup. In the setup protocol, OXT generates TSet and XSet. TSet is created using the T-set to
encrypt the array T indexed by keywords from W. For each keyword w ∈W, T[w] stores a tuple list
t of size |DB(w)|. In t, the c-th tuple contains (e, y), where e represents the ciphertext of the c-th
document identifier id in DB(w) (after a random permutation of the document identifiers in DB(w)),
and y ∈ Z∗p, computed from w, id, and c, will serve as auxiliary information for related search queries.
XSet consists of a set of tags, with each tag corresponding to every keyword-document pair in the
database. These tags are computed as xtag = gFp(kx,w)·Fp(ki,id) for each pair (w, id). HBS differs from
OXT in two respects. First, while OXT employs ke, derived pseudorandomly from each keyword w,
to encrypt each document identifier within DB(w), HBS takes an additional step by deriving another
key, kd, from ke and the counter c, and uses kd to encrypt the c-th document identifier id in DB(w)
via e = kd ⊕ id. The benefit of this modification is that it makes retrieving documents using the
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searched document identifiers more efficient by saving one round of interaction. We will detail this
point later. Second, to achieve KPRP-hiding, HBS encrypts XSet using our RH-filter to obtain ES.
HBS combines TSet and ES to form the final encrypted database.

We adopt the general assumptions of SSE, whereby each document is encrypted using a symmetric
encryption algorithm and tagged with its identifier before being transmitted to the server.
Search. Within a search query w1 ∧ con(w2, · · · , wn), following OXT, the client generates the stag
and xtokenc for c = 1, 2 · · · until server sends a stop signal. The server uses the stag to retrieve the
tuple list t associated with w1 from TSet. With xtokenc = {xtokc,i}ni=2 and the element y present
in the c-th tuple within t, the server calculates (xtokc,i)

y. This calculation results in the xtag for
the keyword-document pair (wi, id), where id represents the document identifier concealed in the
c-th tuple of t. In the following discussion, we denote this id as DB(w1)[c]. This particular step is a
noteworthy feature of OXT, as it empowers the server to compute the xtag for (wi,DB(w1)[c]), all
while safeguarding DB(w1)[c] from disclosure to either the client or the server. A vital implication of
this feature is that it renders OXT well-suited for multi-client settings by preventing the client from
learning which document identifiers (other than those included in the final search result) belong to
DB(w1), which might not be authorized for access. In HBS, we have retained this mechanism from
OXT.

In the subsequent step of OXT, the server verifies the existence of (wi,DB(w1)[c]) within the
database by examining whether the corresponding xtag is present in XSet or not. This process aids
in filtering out the documents that satisfy the search query. However, this step in OXT reveals KPRP,
as it discloses whether DB(w1)[c] belongs to DB(w1) ∩DB(wi).

To achieve KPRP-hiding, HBS employs the RH-filter and introduces an additional round. In
particular, during the initial round of HBS, the data transmitted to the server encompass not only
the stag and xtokens but also the first key, kf1, from our RH-filter. Following OXT, for 1 ≤ c ≤ |t|
and 2 ≤ i ≤ |xtokenc| + 1, the server in HBS obtains the xtag for (wi,DB(w1)[c]). Subsequently,
utilizing the client’s kf1, the server computes the RH-filter token etok for each xtag by executing
F (kf1, xtag). It then proceeds with the RHFRespond(etok,ES) to derive the RH-filter response, res,
for each xtag. The pairs (xtag, res) generated during iterations for the same c are inserted into a list,
respondc. The produced respondc is integrated into a higher-dimensional list, denoted as Responds.
The server sends Responds to the client.

Upon receiving Responds, the client initiates the verification process to determine whether
DB(w1)[c] matches con(w2, · · · , wn) for 1 ≤ c ≤ |Responds|. To verify if DB(w1)[c] matches the i-th
term for 2 ≤ i ≤ n, the client first retrieves respondc from Responds[c] and then accesses the (i− 1)-
th entry (xtag, res) within respondc, The determination of whether the document with the identifier
DB(w1)[c] contains the keyword wi precisely corresponds to the output of RHFTest(KF , xtag, res).
Subsequently, considering whether wi is a non-negated term or not, the client gains insight into
whether DB(w1)[c] matches the i-th term. Upon confirming that DB(w1)[c] matches con(w2, · · · , wn)
(indicated by a flag matchc in the pseudocodes), the client computes the key kd from ke and c, where
ke is derived from w1, and adds (c, kd) to the set ck. By repeating the above steps for each list within
Responds, ck accumulates all the counters and secret keys associated with identifiers from DB(w1)
that meet the search query criteria.

The set ck is transmitted to the server, where each counter c stored in ck is employed to pinpoint
the ciphertext e of DB(w1)[c]. The server then utilizes the associated secret key in ck to decrypt
e, revealing the plaintext identifier. The collection of all decrypted identifiers constitutes the search
result R.

Importantly, once R is obtained, the server can proceed to locate the encrypted documents cor-
responding to the document identifiers in R. These encrypted documents are subsequently returned
to the client, along with R. It is worth noting that, while HBS requires an additional round to obtain
matching document identifiers compared to OXT, the number of rounds needed for both HBS and
OXT remains the same when considering the retrieval of encrypted documents, which are two rounds.

4.1 Correctness of HBS

The correctness of HBS hinges upon the correctness of its T-set, the correctness of our RH-filter,
and the distinctiveness of the xtag associated with each keyword-document pair. Specifically, we can
establish the distinctiveness of each xtag by relying on the security of PRFs and the hardness of the
Decision Diffie-Hellman (DDH) assumption [Bon]. Hereafter, we provide Theorem 8.
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Theorem 8. If the T-set adheres to the correctness presented in Definition 10, the RH-filter is in-
stantiated with the construction in Section 3, F and Fp are secure PRFs, and the DDH assumption
holds within the group Gp, then, for any security parameter λ and any PPT adversary A, there exists
a negligible function negl(λ) such that:

Pr[SSECORRECT
HBS
A (λ) = 1] ≤ negl(λ)

Proof: The proof is presented in Appendix D.1.

4.2 Security of HBS

In this section, we write a conjunction as q = q[1] ∧ con(q[2], · · · , q[n]). We use Q to record the
list of issued search queries. Each search query is expressed as (t, q), where t represents the times-
tamp of the query q. To facilitate secure analysis, we employ the T-set implementation [CJJ+b]
to instantiate the T-set utilized within HBS. The T-set has the leakage profile LT = (Ltup

T (T) =∑
w∈W |T[w]|,L

tag
T (T, w) =⊥), where

∑
w∈W |T[w]| = N in HBS. Moreover, a T-set query over a

keyword w always exposes T[w]. Following [YZCR], we introduce several leakage functions below.
EP(q[1]) is the equality pattern for the s-term q[1], which outputs which past search queries use

q[1] as the s-term. Formally, EP(q[1]) = {t|(t, q′) ∈ Q and q[1] = q′[1]}.
For every search query q′ that happened before q, if there exists two indices i ≥ 2 and j ≥ 2

such that q[i] = q′[j] and DB(q[1]) ∩ DB(q′[1]) is not an empty set, the conditional intersection
pattern IP(q[1], q[i]) outputs the timestamp of q′, the index j, and the set DB(q[1]) ∩ DB(q′[1]).
Formally, IP(q) = (IP(q[1], q[i]))ni=2, where IP( q[1], q[i]) = {(t, j, DB(q[1]) ∩ DB(q′[1])| (t, q′) ∈ Q
and ∃j ≥ 2 : q[i] = q′[j] and DB( q[1]) ∩ DB( q′[1]) ̸= ∅}.

Intuitively, the setup phase of HBS leaks the size of EDB, which reveals N . Within a conjunction,
the T-set query for q[1] only exposes T[q[1]], revealing |DB(q[1])| and EP(q[1]) to the server. Each xtag
is determined uniquely by its corresponding keyword-document pair, which means that xtag values
expose the repetitiveness of related keyword-document pairs. Specifically, this allows the server to
link the current conjunction to the previous ones where the s-term matches at least one identifier
from DB(q[1]), and one of the x-terms corresponds to q[i] for an index i ranging from 2 to n. The
information leaked does not exceed what is captured by IP(q). Formally, we have Theorem 9.

Theorem 9. If F and Fp are secure PRFs, the T-set implementation has the leakage profile LT =
(Ltup

T (T) =
∑

w∈W |T[w]|,L
tag
T (T, w) =⊥), the RH-filter is instantiated with the construction provided

in Section 3, and the DDH assumption holds in a cyclic group Gp, HBS is Lhbs-adaptively secure where

(A) LSetup
hbs (DB) = N

(B) LSearch
hbs (DB, q) = (DB(q), |DB(q[1])|, EP(q[1]), IP(q))

Proof: The proof is presented in Appendix D.2.

4.3 Performance of HBS

In HBS, the client calculates xtokenc for c incrementing from 1 until it receives a stop signal from
the server. However, if this stop signal is not received promptly, the client may compute an excess of
xtoken lists, surpassing |DB(w1)|. We contend that this is an issue shared with OXT. To address this
problem, the client can either store the document count corresponding to keywords locally or request
|t| from the server at the beginning of a search. For the latter method, the number of rounds required
for both HBS and HXT in Table 1 should each be increased by 1. In our analysis, aligning with OXT,
we assume that the client only needs to compute |DB(w1)| xtokens within a search.
Setup. The setup phase creates TSet and ES. With the T-set implementation from [CJJ+b], con-
structing TSet incurs a computational complexity of O(N), and the size of TSet is also O(N). ES is
generated by encrypting XSet, which has a size of N , using our RH-filter. According to Section 3.2,
this process carries a computational complexity of O(φπN) and yields ES of size O(φπN), where the
value of φπ is reasonably small, such as 16 in our experiments.
Search. Within a search query q = w1 ∧ con(w2, · · · , wn), the T-set query on w1 incurs O(1)
computational complexity for the client and O(|DB(w1)|) computational complexity for the server.
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Simultaneously, the client computes (n − 1)|DB(w1)| tokens and transmits them to the server,
incurring O(n|DB(w1)|) computational and communication overhead. The server then calculates
(n − 1)|DB(w1)| xtags, executes RHFGetTok and RHFRespond (n − 1)|DB(w1)| times, and sends
the obtained xtags and the data outputted by RHFRespond to the client. It causes O(n|DB(w1)|)
computational complexity and incurs a communication overhead of O(πn|DB(w1)|). After that, the
client invokes RHFTest (n − 1)|DB(w1)| times, producing O(n|DB(w1)|) computational complex-
ity. Afterward, the client and the server incur a computational and communication complexity of
O(|DB(q)|) to retrieve the documents in DB(w1) that match q. In summary, the entire search intro-
duces O(n|DB(w1)|) computational overhead and O(πn|DB(w1)|) communication overhead.
Comparison with Previous Works. In OXT, the required server storage is O(N), and the search
overhead is O(n|DB(w1)|) in both computation and communication. Compared to OXT, HBS achieves
KPRP-hiding at the cost of an increased performance overhead. However, we assert that this level
of performance penalty remains quite reasonable. As shown in Table 1, in contrast to HXT, which
currently stands as the most efficient solution for achieving KPRP-hiding in terms of overall search
and storage efficiency, HBS outperforms HXT across all performance metrics. This achievement is
particularly noteworthy considering that HBS ensures negligible false positive rates and supports all
Boolean queries (as demonstrated in Section 5), two features not offered by HXT.

Table 1 shows that the performance of HXT involves two parameters for the Bloom filter: ξ and
γ, where ξ represents the size of the Bloom filter, and γ is the number of hash functions used by the
Bloom filter. In HXT, ξ and γ are set to 29 and 20, which are larger than the values for φπ and π,
respectively. This setting for ξ and γ results in a false positive rate of 1

106 for a single Bloom filter
query, which translates to a maximum false positive probability of |DB(w1)|

106 for a conjunctive query
in HXT. To reduce this probability, increasing the values of ξ and γ is necessary, but the reduction in
false positives would be very limited. In comparison, in HBS, the maximum false positive rate for a
search query is the sum of π|DB(w1)|

2λ
and the probability of breaking the security of the pseudorandom

function F , which is negligible with λ.
We note that our comparison excludes two other KPRP-hiding schemes, namely Blind Seer [PKV+]

and HDXT [YZCR], because that Blind Seer requires a non-constant number of rounds of interactions
for a search query, and HDXT incurs excessive storage overhead.

5 Processing All Boolean Queries with HBS

HBS can accommodate arbitrary Boolean queries while maintaining sub-linear search efficiency for
Boolean queries in SNF.
Respond to Boolean Queries in SNF. A Boolean expression in SNF can be represented as a
disjunction of several conjunctions, each with the s-term. Formally, q = w1 ∧ ψ(w2, · · · , wn) can be
expressed as q1 ∨ · · · ∨ qη, where qε (1 ≤ ε ≤ η) is a conjunction with w1. For instance, w1 ∧ (w2 ∨
¬w3 ∧ w4) could be rewritten as (w1 ∧ w2) ∨ (w1 ∧ ¬w3 ∧ w4).

To respond to w1 ∧ (w2 ∨¬w3 ∧w4), following the search process of a conjunction, e.g., w1 ∧w2 ∧
w3∧w4, as described in Section 4, the client of HBS can obtain the xtags for keyword-document pairs
(wi, id) for 2 ≤ i ≤ 4 and each id ∈ DB(w1), along with the corresponding RH-filter responses. The
client can then use RHFTest to determine if each xtag is a member of XSet, indicating the existence
of the corresponding keyword-document pair in the database. With this information, the client can
identify which documents in DB(w1) satisfy either w2 or ¬w3∧w4, determining the positions of these
documents within DB(w1). Subsequently, the client can calculate the corresponding key, kd, for each
matching position c and insert (c, kd) into set ck. As illustrated in Figure 5, ck is then transmitted
to the server, which computes the search results R.

For a Boolean query in SNF, the search steps closely resemble those for conjunctions involving the
same keywords, with only a slight alteration in the criteria used to ascertain whether a document in
DB(w1) meets the entire search query. Consequently, the asymptotic complexities introduced by the
SNF query are the same as those for a conjunction query. In terms of security, a SNF query reveals
no more information than a conjunction, as there is no change in the server’s perspective.
Respond to All Boolean Queries. HBS inherits its capability to handle arbitrary Boolean queries
directly from OXT [CJJ+b]. This is accomplished by representing any Boolean query ψ(w1, · · · , wn)
as "True∧ψ(w1, · · · , wn)" (where "True" means matching all documents). After this transformation,
the Boolean query is converted into a SNF query and can be processed as described earlier.
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In Appendix A, we show that the above strategy can be applied to HXT and HDXT to enhance their
query expressiveness. However, due to their inherent design limitations, neither of the two schemes
can achieve the same level of query expressiveness as HBS. Specifically, HXT cannot efficiently support
Boolean queries involving negated terms. Both HXT and HDXT fail to ensure KPRP-hiding for SNF
queries of the form w1 ∧ ψ(w2, · · · , wn) if ψ involves a disjunction with a single keyword.

6 Multi-client Setting

An important contributions of HBS is the reduction of false positive rates in search results to be
negligible. As emphasized by Jarecki et al. [JJK+], this contribution holds particular significance in
multi-client settings, where noticeable false positive search results can provide clients with access to
unauthorized documents. In this section, we aim to underscore the importance of this contribution
by providing a straightforward example of extending HBS to function in a multi-client setting. Below,
we will solely focus on the SNF queries that HBS can effectively support. We note that part of the
idea is borrowed from [JJK+].

We consider a straightforward threat model where the data owner D, who is fully trusted, out-
sources its database to an honest-but-curious server and permits multiple honest-but-curious clients
to submit specific search queries without the possibility of collusion with the server. To operate
within this model, during the setup phase, D invokes HBS.Setup(1λ,DB;⊥) to obtain the secret
key K = (ks, kx, ki, kT , kF ) and uploads the encrypted database EDB to the server. To authorize a
client U to perform a search query w1 ∧ ψ(w2, · · · , wn), D computes stag ← TSetGetTag(KT , w1),
strap← F (ks, w1), the list X = {gwi}ni=2, and sendsMtoku = (stag, strap,X,KF ) to U . To perform
the search using tokenu, U follows the HBS search protocol provided in Figure 5. However, there is
no need for U to calculate stag (skip Line 2) and strap (skip Line 5), and U calculates xtokc,i as
X[i− 1]Fp(kz,c).

In this setting, we can observe that the client U will not obtain the document identifiers in
DB(w1) that do not match the search query. Furthermore, the final search result will not include any
documents that do not match the search query except for a negligible probability. In Appendix E, we
consider a more complex scenario in which clients may exhibit malicious behavior, a situation also
discussed in previous works [JJK+, SLS+].

1: Run Σ.Setup(1λ; DB), after which the client
gets the secret key KΣ and the state sΣ , and the
server receives the encrypted database EDBΣ .

Client
2: KF ← RHFSetup(λ), ∆← empty set
3: for each (w, id) existing in DB do
4: ∆← ∆ ∪ {(w, id)}
5: end for
6: ES0 ← RHFEncrypt(∆)

7: Send ES0 to the server
8: Ca← empty table
9: Choose ρ as the maximum capacity of Ca

10: τ ← 0
11: return K = (KΣ ,KF ) and s = (sΣ ,Ca, ρ, τ)

Server
12: ESs← empty list, ESs← ESs ∪ {ES0}
13: return EDB = (EDBΣ ,ESs)

Fig. 6. DHBS.Setup(1λ,DB;⊥)

7 Supporting Dynamic Databases with DHBS

In this section, we introduce DHBS, a KPRP-hiding solution designed for the dynamic setting, allowing
updates to keyword-document pairs. However, it is important to clarify that while DHBS shares a
similar search logic with HBS, it does not use the xtag-based method in HBS. This is because multiple
updates to the same keyword-document pair could cause xtag duplication, posing a threat to security.
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1: Run Σ.Update(KΣ , sΣ , op, w, id; EDBΣ)
to update sΣ and EDBΣ

Client
2: Ca[w, id]← op
3: if |Ca| = ρ then
4: τ ← τ + 1, (kf1, kf2)← KF

5: kf1τ ← F (kf1, τ), kf2τ ← F (kf2, τ)
6: KFτ ← (kf1τ , kf2τ )
7: ∆τ ← empty set
8: for each key (w′, id′) in Ca do
9: op′ ← Ca[w′, id′]

10: ∆τ ← ∆τ ∪ {(op′, w′, id′)}
11: end for
12: ESτ ← RHFEncrypt(KFτ ,∆τ )
13: Clear Ca, Send ESτ to the server
14: end if
15: return s = (sΣ ,Ca, ρ, τ)

Server
16: if receives ESτ then
17: ESs← ESs ∪ {ESτ}
18: end if
19: return EDB = (EDBΣ ,ESs)

Fig. 7. DHBS.Update(K, s, op, w, id; EDB)

DHBS combines a response-hiding single-keyword DSSE scheme, Σ, with RH-filters, all employed in
a fully black-box manner. In Figures 6 - 8, we provide the pseudocodes for DHBS. Note that the
pseudocodes for the search protocol use conjunctive search without any negated term as a simplified
example, but it can be extended to support all Boolean queries in the same manner as HBS.

During the setup, given the initial database DB, DHBS initiates Σ’s setup protocol (i.e., exe-
cuting Σ.Setup(1λ,DB)) to produce the secret key KΣ , the state sΣ , and the encrypted database
EDBΣ supporting single-keyword searches. Simultaneously, it creates RH-filter ES0 with the key KF

(obtained through RHFSetup(1λ)) for all the keyword-document pairs existing in DB. KΣ , sΣ , and
KF are kept by the client, while EDBΣ and ES0 are uploaded to the server.

During an update (op, w, id) where op is add or del, DHBS simply invokes Σ’s update protocol
to update sΣ and EDBΣ . The challenge then lies in reflecting this update in the subsequent filtering
processes during searches. To address this, a client-side table, Ca, is introduced to cache updates
(Ca[w, id] ← op). Ca has two parameters: ρ for maximum capacity and τ for the number of times
Ca reaches capacity. When Ca is full, all cached updates must be evicted to the server-side and then
cleared from Ca. The eviction of cached updates involves creating a new RH-filter, ESτ , for all cached
update operations, and uploading it to the server. This causes the server to maintain a list of RH-
filters ESs = {ES0, ...,ESτ}. Moreover, note that when creating ESτ , the secret key used, denoted as
KFτ , is derived from KF and τ . The step is to conserve client storage space by eliminating the need
for storing a unique key pair for each RH-filter.

Within a search (e.g., w1 ∧ · · · ∧wn), the search protocol of Σ is first executed, which enables the
client to receive DB(w1). Next, the client determines which document identifiers in DB(w1) match
the other searched keywords. When checking if the c-th document identifier id in DB(w1) matches
keyword wi, where 2 ≤ i ≤ n, the client first looks into the local cache Ca: if Ca[wi, id] exists,
then its corresponding op being add or del determines whether (wi, id) exists in the database or not.
Otherwise, if Ca[wi, id] is absent, the client queries remote RH-filters, sending RH-filter tokens to the
server to retrieve responses regarding (add,wi, id) or (del, wi, id) in ESj from j = τ to 1 and (wi, id)
in ES0. Analyzing RH-filter responses from j = τ to 1, if the response from ESj indicates (add,wi, id)
(or (del, wi, id)), the client concludes the existence (or absence) of (wi, id) without checking responses
from ESj−1, · · · ,ES0. If no relevant updates related to (wi, id) are found from ESτ to ES1, the client
proceeds to test the response from ES0, determining the final check result.

7.1 Security of DHBS

In the literature, forward and backward privacy [BMO] are two crucial security notions for DSSE.
Forward privacy prevents the server from linking an update to previous searches, while backward
privacy ensures that a search does not reveal the entries that were deleted from the database. Note
that there are three types of backward privacy: from Type-I that has the least leakage to Type-III
which reveals the most information [BMO,YZCR]. The definitions for forward and backward private
Boolean DSSE can be found in [YZCR].
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1: Run Σ.Search(KΣ , sΣ , w1; EDBΣ), where the
client receives DB(w1)

Client
2: (kf1, kf2)← KF

3: for j = τ to 1 do
4: kf1j ← F (kf1, j), kf2j ← F (kf2, j)
5: KFj ← (kf1j , kf2j )
6: end for
7: for c = 1 to |DB(w1)| do
8: id← the c-th identifier in DB(w1)
9: DTokc ← empty table

10: for i = 2 to n do
11: for j = τ to 1 do

▷ DTokc[i, j, op] is the token for querying the
response of whether ESj includes (op, wi, id).

12: DTokc[i, j, add]←
RHFGetTok(KFj , (add,wi, id))

13: DTokc[i, j, del]←
RHFGetTok(KFj , (del, wi, id))

14: end for
▷ DTokc[i, 0,⊥] is the token for querying the

response of whether ES0 includes (wi, id).
15: DTokc[i, 0,⊥]←

RHFGetTok(KF , (wi, id))
16: end for
17: Send DTokc to the server
18: end for

Server
19: while receives DTokc do
20: DRc ← empty table
21: for i = 2 to n do
22: for j = τ to 1 do
23: ESj ← ESs[j + 1]
24: DRc[i, j, add]←

RHFRespond(DTokc[i, j, add],ESj)
25: DRc[i, j, del]←

RHFRespond(DTokc[i, j, del],ESj)
26: end for
27: ES0 ← ESs[1]
28: DRc[i, 0,⊥]←

RHFRespond(DTokc[i, 0,⊥],ES0)
29: end for
30: Send DRc to the client
31: end while

Client
32: R← empty set
33: while receives DRc do
34: matchc ← true
35: id← the c-th identifier in DB(w1)
36: for i = 2 to n do
37: if Ca[wi, id] = add then
38: Continue with the

next iteration for i (Line 36)
▷ To test (wi+1, id)

39: else if Ca[wi, id] = del then
40: matchc ← false
41: Terminate the loop for i and con-

tinue with the next iteration for DRc (Line 33)
▷ To test next identifier

42: else if Ca[wi, id] does not exist then
43: for j = τ to 1 do
44: ra ← RHFTest(

KFj , (add,wi, id),DRc[i, j, add])
45: rd ← RHFTest(

KFj , (del, wi, id),DRc[i, j, del])
46: if ra = 1 then
47: Terminate the loop for j and

continue with the next iteration for i (Line 36)
48: else if rd = 1 then
49: matchc ← false
50: Terminate the loop for j and

i, and continue with the next iteration for DRc

(Line 33)
51: end if
52: end for
53: r ← RHFTest(KDF ,

(wi, id),DRc[i, 0,⊥])
54: if r = 1 then
55: Continue with the

next iteration for i
56: else if r = 0 then
57: matchc ← false
58: Terminate the loop for i and con-

tinue with the next iteration for DRc (Line 33)
59: end if
60: end if
61: end for
62: if matchc = true then
63: R← R ∪ {id}
64: end if
65: end while

Fig. 8. DHBS.Search(K, s, w1 ∧ · · · ∧ wn; EDB)
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For an update query, DHBS invokes the single-keyword DSSE Σ to update EDBΣ . Meanwhile,
the update is either cached locally or included in an RH-filter, which is then sent to the server. From
this process, the server only learns the update leakage of Σ and the size of the RH-filter (that reveals
the value of ρ). During a search, to test whether a keyword-document pair (w, id) is in the database,
the client issues RH-filter queries. Recall that a RH-filter query only reveals when the same query
occurs. Same as HBS, from the repetition of RH-filter queries, the server only can link this search to
previous ones whose s-term matches id and that uses w as one of x-terms, which is captured by the
conditional intersection pattern IP. As in Section 4.2, let q represent a search. The search leakage
profiles of DHBS are composed of |DB(q[1])|, IP(q), and the search leakage of Σ over q[1].

If Σ satisfies both forward and backward privacy, DHBS reveals neither any association of an
update with previous searches nor any information about a deleted entry. Therefore, DHBS inherits
forward and backward security properties from Σ. This also indicates that the type of backward
privacy that DHBS can achieve is equivalent to that of Σ.
Client-side Security. In the earlier discussion, we highlight that when developing DHBS, we opt
not to utilize the xtag-based method employed in HBS. However, we acknowledge that this decision
involves a trade-off, which allows the client within a search to obtain all document identifiers matched
by the keyword w1. Nevertheless, DHBS maintains negligible false positive rates in the final search
results, ensuring that the client will not receive the contents of documents that do not match the
search query, except for a negligible probability. In this context, DHBS still offers superior client-side
security compared to the Bloom-filter-based KPRP-hiding solutions [PKV+, JcCQ+22,LPS+] while
achieving the same level of client-side security as HDXT.

7.2 Performance of DHBS

For an update query, adding it to the cache Ca incurs a computational overhead of O(1) for the client.
When the cache size exceeds ρ, a new RH-filter for ρ update operations is created and transmitted to
the server, incurring O(φπρ) computational and communication overhead. On average, the overhead
per update amortizes to O(φπ). To respond to a search query, following the single-keyword search
on w1, the client needs to verify the existence of (n − 1)|DB(w1)| keyword-document pairs in the
database. For each pair checked, the client sends 2τ + 1 RH-filter tokens to the server that returns
2τ+1 RH-filter responses. Subsequently, in the worst-case scenario, the client must test all the received
RH-filter responses. Assuming the search protocol of Σ costs PΣ for computational overhead and MΣ

for communication overhead per execution, the overall computational and communication overhead
incurred by DHBS becomes O(PΣ + nτ |DB(w1)|) and O(MΣ + πτn|DB(w1)|), respectively. In table
1, we assume that Σ in DHBS is instantiated using MITRA [CPPJ], a forward and Type-II backward
private DSSE single-keyword DSSE scheme, consistent with HDXT.

The value τ is determined by the number of updates occurring after the setup divided by ρ,
indicating that as the number of updates increases, the rate of decline in DHBS’s search performance
could periodically accelerate. In Section 8.2, the experimental results show that even after 106 updates,
DHBS remains highly efficient. However, to ensure that DHBS consistently maintains high efficiency
regardless of Nu, a viable approach is to integrate updates from multiple RH-filters into a single
RH-filter. To achieve this, during the eviction process of updates, apart from creating a RH -filter for
the cached updates, all cached updates should be encrypted and uploaded to the server. Then, when
the client is idle and has sufficient storage available, assuming it intends to merge from ESx1

to ESx2
,

it can download the encrypted updates corresponding to ESx1
, · · · ,ESx2

, decrypt them, create a new
RH-filter ESx3 for them, upload ESx3 to the server, and remove ESx1 , · · ·ESx2 . In subsequent search
processes, the steps for querying from ESx1 to ESx2 are replaced with querying ESx3 , reducing the
search burden by a factor of (x2 − x1).

8 Experimental Evaluation

In this section, we present the experimental results to demonstrate the practicality of HBS and DHBS.
To evaluate the performance of HBS, we select HXT [LPS+] as the baseline, which is recognized in the
literature as the most efficient KPRP-hiding scheme in terms of overall storage and search efficiency.
However, it is important to note that, compared to HBS, HXT has noticeable false positive rates and
considerably weaker query expressiveness. In addition, we emphasize that we refrain from comparing
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the search efficiency of DHBS with that of the other KPRP-hiding dynamic solution, HDXT [YZCR].
For the dataset used in this experiment, HDXT requires storage capacity exceeding the server’s storage
limit of 4TB, which is several hundred times greater than that required by DHBS2.
Implementation. We utilize the C++ implementation of HXT from [YZCR] and implement HBS
and DHBS in the same manner. Specifically, we utilize the Crypto++ library [Dai] to implement the
cryptographic operations: AES-ECB-128 + SHA-256 for PRFs, SHA-256 for hash functions, and the
elliptic curve secp256r1 for group operations. RocksDB [Fac] is employed for storage, and gRPC [Goo]
facilitates communication between the client and the server. Following [LPS+], we set γ and ξ for
the Bloom filter to 20 and 29, respectively. For RH-filters used by HBS, we set parameter φ to 2,
which results in π being 8 for the dataset used. These prototypes are deployed on two machines
running Ubuntu 18.04 LTS. The server machine featured 16× Intel Core Processor (Broadwell, IBRS
2.15GHz), 64GB RAM, and 4TB of hard drive space. The client machine has 16 cores (Intel Core
i9-9900 CPU 3.10 GHz), 32GB memory, and 400GB disk space.
Dataset. Our experiments utilize a real-world dataset from Wikimedia [wik], comprising 124989
keywords, 453337 documents, and 59434360 keyword-document pairs.
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Fig. 9. Search Performance of 2-conjunctions

8.1 Search Performance of Static Solutions

In this subsection, we conduct a comprehensive evaluation of search performance for conjunctions
of two keywords and n (n ≥ 2) keywords, respectively, comparing HBS and HXT. The evaluation

2 For very dense datasets, this gap can be reduced, but it remains substantial, e.g., several dozen times larger
than that of DHBS.
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Fig. 10. Search Performance of n-conjunctions

metrics include the computational time spent by the client and the server and the end-to-end search
latency (total time for search completion). Each search is repeated 100 times, and the average time
is reported. Moreover, we evaluate the communication overhead for each unique search query by
quantifying the volume of data exchanged between the client and the server.

2-conjunctions Following the methodology in [LPS+], we select two terms: v and a. The term v is
a variable with |DB(v)| increasing from 4 to 254651, while |DB(a)| is fixed at 232. We evaluate the
search performance for conjunctions v∧a and a∧ v. The experimental results are presented in Figure
9, with logarithmic scaling in both the X-Axis and Y-Axis.

The results align with the asymptotic complexities given in Section 4.3. As |DB(v)| increases, both
the computational time and the communication overhead for v ∧ a rise. In contrast, the overhead for
a ∧ v remains almost constant. This indicates that the search overhead for both HBS and HXT is
directly proportional to the number of documents matched by the s-term, while it is independent of
the number of documents matched by the x-term.

Comparing HBS and HXT, the figures demonstrate that HBS outperforms HXT in both the com-
putational and communication overhead for each 2-conjunction search. Specifically, for v ∧ a, the
end-to-end search efficiency of HBS is, on average, 136% better than that of HXT.

Notably, in Figure 9(b), there is a significant increase in the server’s computational time for both
HBS and HXT as |DB(v)| grows from nearly 2×104 to over 3×104. The increase is more pronounced for
HBS. Here, we explain that, in our experimental environment, data transmission speed is considerably
slower than computation speed. When |DB(v)| reaches around 2 × 104, to prevent the buffer, used
for storing the data to be transmitted, from overflowing, the server automatically suspends some
computation threads and waits, resulting in a sudden increase in its computational time. Due to the
higher computational efficiency of HBS compared to HXT, the threads on the server side of HBS
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wait longer, leading to a more significant increase in the time taken. This computational time can be
improved in a network environment with better bandwidth.

n-conjunctions For n-conjunctions, we select n− 1 terms: v1, · · · , vn−1. Subsequently, we conduct
the conjunction a ∧ v1 ∧ · · · ∧ vn−1, with term a consistent with the experiments for 2-conjunctions.
The experimental results are depicted in Figures 10.

The results convey that computational and communication overhead for both HBS and HXT
increases proportionally with n, aligning with asymptotic complexities. Furthermore, these figures
demonstrate that for n-conjunctions, HBS outperforms HXT, with the performance advantage of
HBS rising from 57% at n = 2 to 77% (at n = 11).
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Fig. 11. Search Time of DHBS

8.2 Search Performance of DHBS

In this sub-section, we evaluate the search performance of our dynamic solution DHBS. For this
experiment, we instantiate the single-keyword DSSE scheme Σ with MITRA [CPPJ]. Also, recall that
DHBS requires a local cache. The cache capacity (ρ) is set to 2× 105, utilizing approximately 1.2MB
of client-side storage space.

Similar to the methodology used in [YZCR], we generate two traces of 106 queries. Each query
is either a conjunctive query w1 ∧ · · · ∧ w5 with 1% probability, where wi for 1 ≤ i ≤ 5 represents
a distinct keyword, or an update query with a probability of 99%. We record the time taken for
each conjunctive query as our experimental results. The distinguishing factor between the two traces
lies in the ratio of |DB(w1)| to the total number of updates. This ratio (denoted as θ) amounts to
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approximately 1% in the first trace and 5% in the second. Our decision to generate these traces is
rooted in the performance analysis of DHBS detailed in Section 7.2, revealing that the time spent
processing w1 ∧ · · · ∧ w5 is predominately influenced by |DB(w1)| and τ . Adjusting θ enables us to
illustrate the impact of |DB(w1)| on search performance.

The experimental results are depicted in Figure 11. We observe a surge in search time approxi-
mately every ρ (i.e., 2 × 105) updates for each trace, indicating the influence of τ on search perfor-
mance. The search time exhibits some instability due to network bandwidth fluctuations and dynamic
thread pool management. Furthermore, comparing the results corresponding to the two traces reveals
the impact of |DB(w1)| on DHBS’s search performance. When θ increases from 1% to 5%, the av-
erage end-to-end search time grows by 4.2×, with client and server computation time increasing by
approximately 3.5×.

Importantly, when contrasting DHBS’s search time with that of HBS and HXT, as shown in
Figure 9, we observe that after experiencing 106 updates, the search efficiency of DHBS remains quite
acceptable. In the case of θ = 5%, the maximum time spent on a single search is less than 50s. It is
important to note that we set θ relatively high in this experiment. Recall that w1 should be the least
frequently occurring keyword among the involved keywords, so in practice, |DB(w1)| can be much
lower in many cases, indicating that DHBS can exhibit superior search performance.

Table 2. Comparison of Server Storage

HBS DHBS HXT [LPS+]
Setup 21.9 GB 17.5 GB 31.9 GB

After 106 updates Static 17.6 GB Static

8.3 Storage Overhead

In this sub-section, we evaluate the storage overhead of HBS and DHBS, comparing them with that
of HXT.

We evaluate the client storage required by DHBS, which amounts to 3.2 MB. There is no need to
assess the client storage required by HBS and HXT, as they only require storing several secret keys
on the client side.

We measure the server storage utilized by the three schemes mentioned above. Additionally, as
given in Table 1, the server storage used by DHBS grows with the number of updates. Consequently,
we also provide DHBS’s server storage usage after experiencing 106 updates. The results for server
storage requirements are displayed in Table 2. They indicate that HXT’s storage overhead is worse
than HBS and DHBS by 46% and 82%, respectively. DHBS exhibits the best storage efficiency among
the three schemes after the setup, because, as discussed in Section 7, DHBS does not utilize the xtag-
based method used by HBS and HXT. Moreover, the server storage required by DHBS only increases
by 0.1GB after 106 updates. This can demonstrate that DHBS demonstrates good scalability in terms
of server-side storage.

9 Related Work

SSE has been under investigation for over two decades, since it was first introduced by Song et
al. [SWP] in 2000. While conventional cryptographic techniques such as fully homomorphic encryption
[Gen,vDGHV] and ORAM [Gol,SvDS+] could theoretically achieve encrypted searches, SSE offers a
distinctive advantage: it aims for a much more practical performance by permitting a slight leakage to
the server. A significant challenge confronting the SSE community is the imperative to bolster security
in SSE schemes, driven by leakage cryptanalysis [IKK,CGPR,BKMb,OKa,OKb,GPP,ZKP,PWLP].
Developing approaches to enhance security while preserving practical performance is of paramount
importance but often poses considerable challenges.

The majority of prior research in SSE has predominantly revolved around single-keyword search
scenarios [SWP, CGKO, KPR, CJJ+a, SPS, Bos, BMO, SDY+20, SYL+, CPPJ, ZSL+b, SSL+, YCR].
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Conversely, the investigation into more expressive search queries has been somewhat overlooked. This
paper specifically addresses the support for Boolean searches. In this field, early solutions [GSW,
BKMa, BLL] are limited to support conjunctive queries and require overhead linear with the total
number of documents. Since 2013, research on Boolean SSE has allowed for a slight information
leakage to achieve sub-linear search efficiency. Existing Boolean SSE schemes are built mainly based
on several frameworks: OXT-based solutions [CJJ+b,LPS+,PM,YZCR,BTR+], Tree-based indexing
solutions [PKV+, LL, WL18, JcCQ+22], and IEX-based solutions [KMa, PPSY]. Note that HBS and
DHBS are constructed upon the OXT-based framework.
OXT-based Solutions. In 2013, Cash et al. [CJJ+b] introduced OXT, supporting all Boolean queries
in SNF with sub-linear search efficiency, by trading off a small degree of security. However, as analyzed
by Zhang et al. [ZKP], the leakage from OXT includes KPRP, which could be exploited by attackers
to recover plaintext information about searched keywords. In 2018, Lai et al. [LPS+] proposed HXT,
which hides KPRP by combining the Bloom filter and symmetric hidden vector encryption to opti-
mize the filtering process in OXT. In 2021, Patranabis and Mukhopadhyay [PM] extended OXT to
support updates, resulting in a scheme named ODXT. ODXT supports both forward and backward
privacy (Type-II) but fails to achieve KPRP-hiding. In 2023, Yuan et al. [YZCR] designed HDXT, the
first conjunctive DSSE scheme with the guarantee of KPRP-hiding. HDXT also ensures forward and
backward privacy (Type-I and Type-II). However, it requires extensive server storage, which grows
linearly with the number of all possible keyword-document pairs that may exist in the database, thus
affecting its scalability to large-scale sparse databases. The same year, Bag et al. [BTR+] raised an
approach named TWINSSE to convert schemes that support conjunctive queries into schemes that
support arbitrary Boolean queries by pre-selecting meta-keywords. They also instantiated their ap-
proach with OXT. However, there is no evidence that their method can inherit the KPRP-hiding
property from KPRP-hiding conjunctive schemes like HXT. Furthermore, its applicability to dynamic
databases is limited due to the need for pre-selected meta-keywords.
Tree-based Indexing Solutions. In 2014, Pappas et al. [PKV+] introduced tree-based indexing to
support all Boolean queries and developed the scheme Blind Seer. For conducting a Boolean search,
they combined Bloom filters and garbled-circuit-based secure computation [LP09] to securely traverse
the index tree, thereby disclosing only some search pattern. However, their approach makes the entire
search cost O(log |D|) round complexity. The subsequent tree-based solutions, including IBTree [LL],
VBTree [WL18], and Rphx [JcCQ+22], have moved away from employing secure two-party computa-
tion, achieving significantly enhanced performance. However, both IBTree and VBTree introduce more
severe search leakage than KPRP, revealing the documents matched by each searched keyword. In
contrast, Rphx ensures KPRP-hiding by delegating the task of traversing the index tree to Intel SGX
enclaves [CD16]. Note that Intel SGX has some security vulnerabilities, and no perfect countermea-
sure is available [FYDX21]. Furthermore, only VBTree supports dynamic databases while ensuring
both forward and backward privacy (Type-II).
IEX-based Solutions. In 2017, Kamara and Moataz [KMa] proposed IEX-series schemes, which are
grounded in the inclusion-exclusion principle of set theory. IEX distinguishes itself by achieving sub-
linear complexity to support all types of Boolean queries while necessitating only a single round of
interaction. Nevertheless, IEX-series schemes do not guarantee KPRP-hidng. Subsequently, in 2021,
Patel et al. [PPSY] put forward CNFFilter, aiming to enhance the security of IEX; however, it still falls
short of fully concealing KPRP. For this series of schemes, Kamara and Moataz [KMa] extended their
IEX approach to the dynamic setting, achieving solely forward privacy without considering backward
privacy.

10 Conclusion

In this paper, we propose HBS, a Boolean SSE scheme that represents the first KPRP-hiding solu-
tion that ensures negligible false positive rates in low server storage overhead. To develop HBS, we
introduce a novel cryptographic tool, RH-filter, which distinguishes itself as the inaugural solution
supporting computationally correct membership queries with nearly constant overhead while ensuring
the confidentiality of query results. Through extensive analysis and experiments, we showcase that
HBS also outperforms previous KPRP-hiding solutions in terms of query expressiveness and perfor-
mance. Furthermore, we extend HBS to operate in the dynamic setting, where the resulting scheme
maintains KPRP-hiding while ensuring both forward and backward privacy.
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A Limitations on Query Expressiveness in HXT and HDXT

HXT and HDXT represent two solutions for KPRP-hiding within the search framework of OXT. A
notable feature of OXT is its efficient support for arbitrary Boolean queries in SNF. Both HXT and
HDXT focus on handling conjunctive queries. However, the authors (Lai et al. [LPS+] and Yuan et
al. [YZCR]) did not provide clear specifications regarding the potential extension of HXT and HDXT
to achieve the same level of query expressiveness as OXT. In this section, we elucidate how HXT and
HDXT do not fully meet this standard.
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In a SNF query w1 ∧ ψ(w2, · · · , wn), OXT initially identifies documents matching w1 and then
refines the search result by testing whether each of these documents also satisfies ψ(w2, · · · , wn). This
refinement process involves querying the membership of keyword-document pair (wi, id) within the
database for each id ∈ DB(w1) and 2 ≤ i ≤ n. However, this process in OXT exposes the membership
status of each keyword-document pair (wi, id) to the server, consequently undermining KPRP. For
HXT and HDXT, their effectiveness in achieving KPRP-hiding for a conjunctive search w1 ∧ · · · ∧wn

hinges on how they test whether each document id ∈ DB(w1) matches the other n − 1 keywords.
Hereafter, we explain how their methodologies in this crucial aspect could fail to be extended to test
whether an id ∈ DB(w1) satisfies ψ(w2, ..., wn).

A.1 HXT

HXT employs a Bloom filter and a Symmetric Hidden Vector Encryption (SHVE) scheme to execute
the core functionality mentioned above. In the following, we provide a brief overview of the Bloom
filter and SHVE. Subsequently, we describe how HXT utilizes the two tools to achieve its objectives.
Finally, we discuss the limitations on query expressiveness in HXT.

A Bloom filter represents a set using a ζ-bit vector. Initially, an empty Bloom filter sets all bits
to 0. The insertion of an element involves mapping it to γ positions within the Bloom filter using
uniformly random hash functions and setting the corresponding bits to 1. To query membership for
an element, the positions corresponding to the element are computed. If all bits at these positions are
set to 1, the element is determined to belong to the set.

SHVE supports the encryption of a vector va into a ciphertext, after which it enables the genera-
tion of a query token linked to another vector vp. Utilizing this generated token and the ciphertext,
anyone can ascertain whether vp matches with va at specified positions, that is, whether vp[i] = va[i]
for every specified position i. Importantly, SHVE ensures the positions where vp and va match (or
mismatch) will not be disclosed in the event of a negative result.

During the setup phase, HXT incorporates the tags of keyword-document pairs existing in the
database into a Bloom filter BF and utilizes SHVE to encrypt BF to a ciphertext, which is then
outsourced to the server. In a conjunctive search w1 ∧ · · ·wn, the client and the server collaboratively
generate Bloom filters {BFid}id∈DB(w1), where BFid represents a Bloom filter containing the tags of
keyword-document pairs in {(wi, id)}ni=2. Subsequently, the client transmits a SHVE query token to
the server to inquire whether each BFid matches BF in the positions where BFid stores 1. If the above
query returns true, it signifies the existence of the keyword-document pair (wi, id) in the database
for each 2 ≤ i ≤ n. Throughout this process, the server can ascertain whether the tested document
identifier id simultaneously matches all the other n − 1 keywords, but if id does not simultaneously
match, the server remains unaware of which wi (2 ≤ i ≤ n) is contained (or not contained) in id,
thereby ensuring KPRP-hiding.

Lai et al. [LPS+] did not discuss the extensibility of HXT to support other types of Boolean
queries. However, given that HBS proposed in this paper is also based on the OXT framework,
it is natural to explore whether the method discussed in Section 5 for extending HBS to support
SNF queries could also apply to HXT. Recall that this extension involves transforming a SNF query
w1∧ψ(w2, · · · , wn) to a set of conjunctions, each including w1 and potentially involving some negated
terms (e.g., w1 ∧ w2 ∧ ¬w3). A SNF query can then be processed by performing each transformed
conjunction and taking the union of the search results for these conjunctions.
Failing to Support Conjunctions with Negated Terms Effectively. The first challenge in
extending HXT using this strategy is its ineffectiveness in supporting conjunctions with negated
terms. For example, to evaluate a conjunctive query like w1∧w2∧¬w3, the client must check whether
each document identifier id ∈ DB(w1) satisfies w2 ∧ ¬w3. This requires querying whether the Bloom
filter BF stores 1 in all γ positions corresponding to the tag of (w2, id) and 0 in at least one position
for the tag of (w3, id). Since there are 2γ − 1 combinations where BF stores 0 in at least one of the
γ positions, up to 2γ − 1 SHVE queries, each related to a different combination, could be issued in
order to obtain the final result. With γ typically set to 20 [LPS+, PKV+], a single negated term in
a conjunctive query could result in a cost over 106 times higher than that of a conjunction without
any negated term, and this cost increases linearly with the number of negated terms.
Failing to Support (or Achieve KPRP-hiding for) Certain Types of SNF Queries. Due to
HXT’s ineffectiveness in handling conjunctions with negated terms, it cannot be efficiently extended
to support any SNF query involving negated terms using the aforementioned strategy. Furthermore,
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even when HXT is extended to support SNF queries without negated terms, it may still fail to achieve
KPRP-hiding in certain cases. For instance, if a SNF query involves a disjunction with a single
keyword, e.g., w1 ∧ (w2 ∨ w3 ∧ w4), HXT could expose KPRP. This is because SHVE queries in the
conjunctions reveal whether a document identifier id ∈ DB(w1) satisfies w2 or w3 ∧w4 to the server,
exposing whether id belongs to DB(w1) ∩DB(w2).

A.2 HDXT

The main feature of HDXT is its ability to securely support update operations, but we do not need to
delve into this aspect here, as query expressiveness is solely related to its search strategy. HDXT utilizes
a mapping table and a Symmetric Hidden Map Encryption (SHME) scheme to determine whether
a document id ∈ DB(w1) matches other n − 1 keywords during a conjunctive search w1 ∧ · · · ∧ wn.
The mapping table (denoted as DB′) associates every possible keyword-document pair 3 with a bit
that indicates whether the pair exists in the database. The SHME scheme can encrypt a map ma

and support queries to determine whether the pairs in another map mp are all included in ma. If a
SHME query returns false, it does not reveal which pair in mp is included or not included in ma.
During the setup phase of HDXT, the client employs SHME to encrypt DB′ and sends the resulting
ciphertext to the server. To test whether a document id ∈ DB(w1) contains the other n−1 keywords,
HDXT enables the client to build a map Iid that associates (wi, id) (for 2 ≤ i ≤ n) with bit 1 and
issues a SHME query to check if all pairs in Iid are included in DB′.

In [YZCR], Yuan et al. demonstrated that HDXT can be extended to support conjunctive queries
with negated terms while ensuring KPRP-hiding, by modifying Iid to associate (wi, id) (2 ≤ i ≤ n)
with bit 1 or 0 based on whether wi is a non-negated term or negated term. However, since the result
for each SHME query is revealed to the server during the search, HDXT still faces the final query
expressiveness issue discussed earlier regarding HXT, i.e., it fails to achieve KPRP-hiding for a SNF
query if the SNF query involves a disjunction with a single keyword.

B Correctness and Security Definitions for T-set

Definition 10 (Correctness of T-set). Let Π represent a T-set implementation. We say that
Π satisfies correctness if for any security parameter λ and any PPT adversary A, there exists a
negligible function negl such that:

Pr[TSetCorr
Π
A(λ) = 1] ⩽ negl(λ)

where the game TSetCorr
Π
A(λ) is defined as follows:

TSetCorr
Π
A(λ): A chooses W and T, and receives TSet outputted by TSetSetup(1λ,T). Then it selects

keywords w ∈ W in an adaptive manner. For each selected w, A obtains the corresponding stag
produced by TSetGetTag(KT , w) and tw generated by TSetRetrieve(stag,TSet). The game outputs
1 if tw ̸= T[w] for any chosen keyword w.

Definition 11 (Security of T-set). Let Π be a T-set implementation. We say Π is LT−adaptively−
secure if for any security parameter λ, any PPT adversary A, there exist a simulator S and a negli-
gible function negl such that:

|Pr[TSREAL
Π
A(λ) = 1]− Pr[TSIDEAL

Π
A,S,LT

(λ) = 1]| ⩽ negl(λ)

where TSREAL
Π
A(λ) and TSIDEAL

Π
A,S,LT

(λ) are defined as:

– TSREAL
Π
A(λ): At first, A chooses W and T, and obtains TSet by calling TSetSetup(1λ,T). Then

it repeatedly selects w from W in an adaptive way. For each selected w, A receives stag outputted
by TSetGetTag(KT , w). A receives all the transcripts generated during the above operations and
outputs a bit b.

– TSIDEAL
Π
A,S,LT

(λ): A chooses W and T, and calls S(Ltup
T (T)) to get TSet. After that, it adaptively

chooses keywords w from W. For each w, it receives the output of S(Ltag
T (T, w),T[w]). A observes

the transcripts of all operations and outputs a bit b.
3 A keyword-document pair is possible as long as the keyword belongs to set W and the document identifier

belongs to set D.
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C Proof and Experiments for RH-filter Construction

In this section, we present the correctness proof, security proof, and parameter section experimental
results for the RH-filter construction introduced in Section 3.

C.1 Proof of Theorem 6

Proof. Given KF ← RHFSetup(1λ) and ES ← RHFEncrypt(KF ,∆), during a query on an element
δ, if δ ∈ ∆, then RHFTest(KF , δ,ES[H(etok)]), where etok ← RHFGetTag(KF , δ), must return 1.
This is due to the deterministic nature of both F and H, which ensures that tag2 = F (kf2, δ) must
correspond to one of the elements in the set ES[H(etok)]. Consequently, the game RHFCorr

£
A(λ)

can only output 1 when an adversary A selects a key δ that does not exist in ∆, and the result of
RHFTest(KF , δ,ES[H(etok)] is not ⊥. In other words, the probability of obtaining an output of 1 in
RHFCorr

£
A(λ) is indeed equal to the probability of a false positive event occurring in RHFCorr

£
A(λ).

To illustrate the negligible probability of false positives, we introduce a game, denoted as G£
c .

Additionally, we assume that an adversary never repeats a query, which does not affect the adversary’s
advantage since the algorithms involved in queries are all deterministic.

Game G£
c : In G£

c , the only difference from RHFCorr
£
A(λ) lies in the creation of a table F2

and the replacement of every call to F (kf2, δ) with the following procedure: if δ is a new input
to F (kf2, ·), selecting an output tag2 uniformly at random from {0, 1}λ and assigning it to F2[δ];
otherwise, outputting F2[δ]. Consequently, there exists a PPT adversary B for F such that

Pr[RHFCorr
£
A(λ) = 1]− Pr[G£

c = 1] ⩽ AdvPRF
F,B

where AdvPRF
F,B refers to the PRF advantage of adversary B on F .

Game G£
c outputs 1 only when a false positive event occurs. In a false positive event, for an element

δ that does not exist in ∆, RHFTest(KF , δ,ES[H(etok)]), where etok ← RHFGetTag(KF , δ), selects
a string tag2 uniformly at random from {0, 1}λ, but tag2 happens to be an element in ES[H(etok)]. As
every element in ES[H(etok)] was also selected from {0, 1}λ uniformly at random, this event occurs
with a probability of |ES[H(etok)]|/2λ, which is upper-bounded by |∆|/2λ.

Assuming that A can issue µ queries on keys that do not exist in ∆, we can deduce that

Pr[G£
c = 1] = Pr[ a false positive event happens in G£

c ] ≤
u|∆|
2λ

Given that A is a PPT adversary, µ|∆| can be bounded by a real polynomial in λ. Consequently,

the term
u|∆|
2λ

is negligible in λ.
In conclusion:

Pr[RHFCorr
£
A(λ) = 1] ⩽ AdvPRF

F,B +
u|∆|
2λ

C.2 Proof of Theorem 7

Proof. In Figure 12, we introduce the simulation experiment RHFIDEAL
£
A,S(λ). To establish the indis-

tinguishability of this simulation experiment from the real one, we progressively define three games:
G£

0 , G£
1 , and G£

2 as follows.
Game G£

0 : Game G£
0 is exactly the real experiment RHFREAL

£
A(λ).

Game G£
1 : In G£

1 , we create an empty table F1 and replace each call to F (kf1, δ) with the
following procedure: if δ is a new input to F (kf1, ·), choosing the output tag1 uniformly at random
from {0, 1}λ and setting F1[δ] to tag1, otherwise, outputting F1[δ]. Additionally, since the inputs to
F (kf2, ·) never repeat in G£

0 , we substitute each call to F (kf2, δ) with the selection of an output
uniformly at random from {0, 1}λ. To distinguish G£

1 from G£
0 , an adversary must compromise the

security of F (kf1, ·) or F (kf2, ·). That is, there exists a PPT adversary B for F such that

|Pr[G£
0 (λ) = 1]− Pr[G£

1 (λ) = 1]| ⩽ 2 ·AdvPRF
F,B

Game G£
2 : To create G£

2 , we replace every call to H in RHFEncrypt with the selection of an
output from [1, ζ] uniformly at random. Given that H is a random oracle and the set ∆ does not
contain duplicate elements, an adversary cannot distinguish G£

2 from G£
1 .
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1) S(⊥) creates an empty table F1.
2) A chooses elements in an adaptive way. For the i-th element δ, S(tp(δ)) runs the following three

procedures: ① If tp(δ) is not empty, it takes the minimal value j in tp(δ) and sets etok ← F1[j]; ② If
tp(δ) is empty, S selects etok

$← {0, 1}λ and sets F1[i] ← etok; ③ S delivers etok to A. In the end,
S records the total number of queries that happened in this phase, which is denoted as num.

3) A selects a set ∆. S(|∆|) runs the following four procedures: ① As in the real experiment, S chooses
a constant φ, sets ζ ← φ|∆|, and creates an array ES containing ζ empty sets; ② For 1 ≤ i ≤ |∆|, S
computes tag2

$← {0, 1}λ, pos $← [1, ζ], and sets ES[pos]← ES[pos] ∪ {tag2}; ③ S pads ES following
Line 14-20 in RHFEncrypt provided in Figure 3; ④ S gives ES to A.

4) A runs as in step 2), except that S of this phase sets F1[ num+ i] ← etok in procedure ②, instead
of updating F1[i].

5) A outputs a bit b.

Fig. 12. RHFIDEAL
£
A,S(λ)

Pr[G£
1 (λ) = 1] = Pr[G£

2 (λ) = 1]

RHFIDEAL
£
A,S(λ): The only distinction between G£

2 and RHFIDEAL
£
A,S(λ) is that the latter exper-

iment substitutes each key δ in F1 in the former experiment with the sequence number of the earliest
query regarding δ. The observations made by an adversary in both experiments are indistinguishable.
Consequently, we can draw the following conclusion:

|Pr[RHFREAL
£
A(λ) = 1]− Pr[RHFIDEAL

£
A,S(λ) = 1]| ⩽ 2 ·AdvPRF

F,B

‘

C.3 Parameter Selection for RH-filter
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Fig. 13. Trends of π and φ · π as φ Increases

The performance analysis provided in Section 3.2 demonstrates that, given a set ∆, the commu-
nication efficiency for a membership query improves as π decreases, while the encryption time and
the size of the encrypted structure ES depend on the product φπ. An increase in φ implies that
fewer elements will be mapped to the same hash, leading to a decrease of π. However, the impact of
increasing φ on φπ is not immediately intuitive.

In this section, we evaluate the trend of π and φπ by varying the parameter φ from 10−1 to 108,
using all the keyword-document pairs from the dataset in Section 8 as input. The experiment results,
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shown in Figure 13, are plotted on a logarithmic scale for both axes. The figure highlights three key
observations. First, as φ increases, π decreases and φ · π increases, indicating a trade-off between
storage and query efficiency for the RH-filter. Second, π remains small even when φ is very small.
For instance, when φ is set to 10−1, π is only 30. Third, as φ increases, the rate at which π decreases
slows down significantly while the growth trend of φ ·π is nearly linear. For instance, when φ increases
from 10−1 to 1, π decreases by 67%. However, there is no change in π when φ ranges from 104 to 107.
This demonstrates that setting φ to a small value (such as 1 or 2) is likely to achieve an exceptional
trade-off.

D Proofs for HBS

This section presents the correctness and security proofs for HBS.

D.1 Proof of Theorem 8

Proof. We establish the validity of Theorem 8 by constructing a hybrid of games denoted as GCor,0

through GCor,5.
Game GCor,0: Game GCor,0 is exactly the experiment SSECorrect

HBS
A (λ).

Game GCor,1: Game GCor,1 introduces a modification to the search protocol. As depicted in Fig-
ure 14, in GCor,1, we trigger an output of 1 if the resulting tuple list t, obtained through the execution
of TSetRetrieve(stag,TSet), does not match T[w1]. This modification leads to the inequality:

Pr[GCor,0 = 1] ≤ Pr[GCor,1 = 1] (1)

Game GCor,2: As illustrated in Figure 14, GCor,2 introduces a set of pseudocode lines enclosed
within single-layer boxes. Building upon GCor,1, GCor,2 also triggers an output of 1 of the result
bit, b, from RHFTest(KF , xtag, res) does not match In(xtag,XSet). Consequently, we establish the
following relationship:

Pr[GCor,1 = 1] ≤ Pr[GCor,2 = 1] (2)

Game GCor,3: In Figure 14, we introduce the pseudocodes enclosed by double-layer boxes to
create GCor,3. In GCor,3, we specify that the tuple list t, acquired through the search involving w1

within TSet, must precisely match T[w1]. Additionally, when verifying the membership of xtag, it is
mandated that the output b must align with In(xtag,XSet). Consequently, for any adversary A, we
can identify two adversaries, Bt and Br, such that:

Pr[GCor,2 = 1]− Pr[GCor,3 = 1] ≤ Advcorrtset,Bt
(λ) +Advcorr£,Br

(λ) (3)

where tset represents a T-set implementation, £ denotes our RH-filter construction as provided in
Section 3, and Advcorrtset,Bt

(λ) and Advcorr£,Br
(λ) represent the advantages that adversaries Bt and Br gain

in compromising the correctness of tset of £, respectively.
GCor,3 produces an output of 1 only under one condition: the existence of at least one keyword-

document pair (w, id) that is not present in the database, yet its xtag belongs to XSet. Below, we
construct two games, GCor,4 and GCor,5, to illustrate that the probability of this particular scenario
occurring is negligible.

Game GCor,4: As shown in Figure 15 and Figure 16, to construct GCor,4, we first create three
mapping tables, namely X , S, and I, corresponding to the functions Fp(kx, ·), F (ks, ·), and Fp(ki, ·),
respectively. The purpose is to replace every call to Fp(ki, ·) (resp. F (ks, ·) and Fp(kx, ·)) with a new
procedure. If the input i for Fp(ki, ·) (resp. F (ks, ·) and Fp(kx, ·)) is new, GCor,4 randomly selects an
output o from Z∗p (resp. {0, 1}λ and stores o in the respective mapping table I[i] (resp. S[i] and X [i]).
If i has been seen before, it simply retrieves the previously stored output.

Additionally, two mapping tables, KZ and Z, are created for functions F (strap, ·) and Fp(kz, ·),
respectively. For each new input of the form (strap, i) (resp. (kz, i)), the output is randomly and
uniformly selected from the set {0, 1}λ (resp. Z∗p) and stored in KZ[strap, i] (resp. Z[kz, i]). Note
that there can be |W| different strap and kz values used as secret keys for F (strap, ·) and F (kz, ·),
respectively.

Then, there exists a PPT adversary Bf such that:

Pr[GCor,3 = 1]− Pr[GCor,4 = 1] ≤ (|W|+ 1) ·AdvPRF
F,Bf

+ (|W|+ 2) ·AdvPRF
Fp,Bf

(4)
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Search(K,w1 ∧ con(w2, ·, wn); EDB) in GCor,1,

GCor,2 , and GCor,3 :

Client:
1: (ks, kx, ki,KT ,KF )← K
2: stag ←TSetGetTag(KT , w1)
3: (kf1, kf2)← KF

4: Send stag and kf1 to the server
5: strap← F (ks, w1), kz ← F (strap, 1)
6: for c = 1, 2 · · · and until server sends stop do
7: xtokenc ← empty list
8: for i = 2 to n do
9: xtokc,i ← gFp(kz ,c)·Fp(kx,wi)

10: xtokenc ← xtokenc ∪ {xtokc,i}
11: end for
12: Send xtokenc to the server
13: end for

Server:
14: Responds← empty list
15: t←TSetRetrieve(stag,TSet)
16: if t ̸= T[w1] then
17: Game GCor,1 GCor,2 outputs 1

18: end if

19: t← T[w1]

20: for c = 1, · · · , |t| do
21: (−, y)← t[c]
22: respondc ← empty list
23: for i = 2 to |xtokenc|+ 1 do
24: xtokc,i ← xtokenc[i− 1]
25: xtag ← (xtokc,i)

y

26: etok ← F (kf1, xtag)
▷ Equivalent to executing

RHFGetTok(KF , xtag) provided in Figure 3
27: res← RHFRespond(etok,ES)
28: respondc ← respondc ∪ {(xtag, res)}
29: end for
30: Responds← Responds ∪ {respondc}

31: end for
32: When last tuple in t is reached, send stop to

the client.
33: Send Responds to the client

Client:
34: ck← empty set, ke ← F (strap, 2)
35: for c = 1 to |Responds| do
36: matchc ← true
37: respondc ← Responds[c]
38: for i = 2 to n do
39: (xtag, res)← respondc[i− 1]
40: b← RHFTest(KF , xtag, res)
41: if b ̸= In(xtag,XSet) then

42: Game GCor,2 outputs 1

43: end if

44: b← In(xtag,XSet)

45: if (b = 1 and wi is a negated term) or
(r = 0 and wi is a non-negated term) then

46: matchc ← false
47: Break the loop for i
48: end if
49: end for
50: if matchc = true then
51: kd ← F (ke, c), ck← ck ∪ {(c, kd)}
52: end if
53: end for
54: Send ck to the server

Server:
55: R← empty set
56: for each (c, kd) ∈ ck do
57: (e,−)← t[c]
58: id← kd ⊕ e
59: R← R ∪ {id}
60: end for
61: Send R to the client

Fig. 14. Search Protocol in Games GCor,1, GCor,2 , and GCor,3
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Setup(1λ,DB;⊥) in GCor,4 and GCor,5 :

Client
1: Select key ks for PRF F
2: Select keys kx and ki for PRF Fp

3: T← empty array indexed by keywords from W
4: XSet← empty set
5: for each w ∈W do
6: x

$← Z∗
p, X [w]← x

7: strap
$← {0, 1}λ, S[w]← strap

8: kz
$← {0, 1}λ, KZ[strap, 1]← kz

9: ke
$← {0, 1}λ, KZ[strap, 2]← ke

10: t← empty list, c← 0
11: Randomly permute the entries of DB(w)
12: for each id in DB(w) do
13: c← c+ 1
14: if I[id] exists then
15: xind← I[id]
16: else
17: xind

$← Z∗
p, I[id]← xind

18: end if
19: z

$← Z∗
p, Z[kz, c]← z

20: y ← xind · z−1

21: kd ← F (ke, c), e← kd ⊕ id
22: t← t ∪ {(e, y)}

23: xtag ← gx·xind, xtag
$← Gp

24: XG[w, id]← xtag, CD[w, c]← id

25: XSet← XSet ∪ {xtag}
26: end for
27: T[w]← t

28: for each id ∈ D \DB(w) do

29: XG[w, id]
$← Gp

30: end for
31: for each w′ ∈W \ {w} do

32: for c = (|DB(w)|+ 1) to |D| do

33: XT [w,w′, c]
$← Gp

34: end for
35: end for
36: end for
37: (TSet,KT )← TSetSetup(T)
38: KF ← RHFSetup(λ)
39: ES← RHFEncrypt(KF ,XSet)
40: Send TSet and ES to the server
41: return K = (ks, kx, ki, kz,KT ,KF )

Server
42: return EDB = (TSet,ES)

Fig. 15. Setup Protocol in Games GCor,4 and GCor,5

Game GCor,5: To construct the game GCor,5, we introduce the pseudocodes enclosed by single-
layer boxes, as shown in Figure 15 and Figure 16. Specifically, during the setup protocol, GCor,5

introduces three tables: XG, CD, and XT . XG stores the mapping between every keyword-document
pair (w, id) and the xtag of (w, id), regardless of whether (w, id) is in the database or not. Notably,
instead of calculating the xtag of (w, id) using an exponential operation, GCor,5 directly selects xtag
uniformly at random from Gp. CD is utilized to record the c-th document identifier id in DB(w)
by storing the correspondence between (w, c) and id. For a keyword w, any keyword w′ ̸= w, and
|DB(w)|+ 1 ≤ c ≤ |D|, XT [w,w′, c] stores an element selected from Gp uniformly at random.

GCor,5 requires modifications in the search protocol to ensure consistency. Specifically, within a
search query w1 ∧ con(w2, · · · , wn), after obtaining t = T[w1], it must ensure that xtokyc,i remains
equal to xtag of (wi, id) for 1 ≤ c ≤ |DB(w1)| and 2 ≤ i ≤ n, where y is taken from t[c] and id is
CD[w1, c]. Also, if the client does not receive the stop signal promptly, for c > |DB(w1)|, GCor,5 must
ensure that the value of xtokc,i is deterministic with respect to the s-term w1, the x-term wi, and
the counter c. To achieve th consistency, when generating xtokc,i, if 1 ≤ c ≤ |DB(w1)|, we take id
from CD[w1, c], computes y = I[id] · Z[kz, c]−1, and sets xtokc,i = XG[wi, id]

y−1

. If c > |DB(w1)|, we
set xtokc,i to be XT [w1, wi, c]. Note that in this proof, we assume that the client will compute and
transmit a maximum of |D| xtoken lists within a search query.

The distinction between GCor,4 and GCor,5 lies in how xtags and xtokens are obtained. In
GCor,4, each xtag and xtok are computed through exponentiation (xtag = gX [w]·I[id] and xtokc,i =
gZ[kz,c]·X [wi]), while in GCor,5, xtag and xtokc,i are uniformly distributed in Gp. As in [CJJ+b], we
reduce the advantage that an adversary can identify this difference to that of breaking the hard-
ness of DDH assumption. This reduction relies on a standard lemma derived from the DDH as-
sumption [CJJ+b]. The lemma considers vector a ∈ (Z∗p)α (i.e., a consists of α elements, where
every element is a member of Z∗p), vector b ∈ (Z∗p)α, vector ga = (ga[1], · · · , ga[α]) ∈ (Gp)

α,
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Search(K,w1 ∧ con(w2, ·, wn); EDB) in GCor,4

and GCor,5 :

Client:
1: (ks, kx, ki,KT ,KF )← K
2: stag ←TSetGetTag(KT , w1)
3: (kf1, kf2)← KF

4: Send stag and kf1 to the server
5: strap← S[w1], kz ← KZ[strap, 1]
6: for c = 1, 2 · · · and until server sends stop do
7: xtokenc ← empty list
8: for i = 2 to n do
9: xtokc,i ← gZ[kz ,c]·X [wi]

10: if c ≤ |DB(w1)| then

11: id← CD[w1, c]

12: y ← I[id] · Z[kz, c]−1

13: xtokc,i ← XG[wi, id]
y−1

14: else
15: xtokc,i ← XT [w1, wi, c]

16: end if
17: xtokenc ← xtokenc ∪ {xtokc,i}
18: end for
19: Send xtokenc to the server
20: end for

Server:
21: t← T[w1]
22: for c = 1, · · · , |t| do
23: (−, y)← t[c]
24: respondc ← empty list
25: for i = 2 to |xtokenc|+ 1 do
26: xtokc,i ← xtokenc[i− 1]
27: xtag ← (xtokc,i)

y

28: etok ← F (kf1, xtag)
▷ Equivalent to executing

RHFGetTok(KF , xtag) provided in Figure 3

29: res← RHFRespond(etok,ES)
30: respondc ← respondc ∪ {(xtag, res)}
31: end for
32: Responds← Responds ∪ {respondc}
33: end for
34: When last tuple in t is reached, send stop to

the client.
35: Send Responds to the client

Client:
36: ck← empty set, ke ← KZ[strap, 2]
37: for c = 1 to |Responds| do
38: matchc ← true
39: respondc ← Responds[c]
40: for i = 2 to n do
41: (xtag, res)← respondc[i− 1]
42: b← In(xtag,XSet)
43: if (b = 1 and wi is a negated term) or

(r = 0 and wi is a non-negated term) then
44: matchc ← false
45: Break the loop for i
46: end if
47: end for
48: if matchc = true then
49: kd ← F (ke, c), ck← ck ∪ {(c, kd)}
50: end if
51: end for
52: Send ck to the server

Server:
53: R← empty set
54: for each (c, kd) ∈ ck do
55: (e,−)← t[c]
56: id← kd ⊕ e
57: R← R ∪ {id}
58: end for
59: Send R to the client

Fig. 16. Search Protocol in Games GCor,4 and GCor,5
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vector gb = (gb[1], · · · , gb[β]) ∈ (Gp)
β , and matrix ga·b

T ∈ (Gp)
α×β where the (i, j)-th entry is

ga[i]·b[j]. The lemma can demonstrates that, for a vector a = (gX [w])w∈W ∈ (Gp)
|W| and a vec-

tor b that concatenates (gI[id])id∈D ∈ (Gp)
|D| and (gZ[kz,c])w∈W,c∈[1,D] ∈ (Gp)

|W|·|D|, the matric
ga·b

T ∈ (Gp)
|W|×(|D|+|W|·|D|) is computationally indistinguishable from a matrix M uniform over

(Gp)
|W|×(|D|+|W|·|D|), given that the DDH assumption holds.

Consequently, there exists a PPT adversary Bd such that:

Pr[GCor,4 = 1]− Pr[GCor,5 = 1] ≤ AdvDDH
Gp,Bd

(λ) (5)

A database can involve a total of |W| · |D| keyword-document pairs, with N of these pairs existing
within the database. In GCor,5, a xtag is assigned to each keyword-document pair. As each xtag is
chosen uniformly and randomly from the set Gp, the probability of a non-existing pair share the same
xtag with an existing pair is less than N · (|W| · |D| −N)/p. Consequently, we can establish that:

Pr[GCor,5 = 1] ≤ N · (|W| · |D| −N)

p
(6)

By following the inequalities from (1) to (6), we arrive at the conclusion:

SSECorrect
HBS
A (λ) ≤ Advcorrtset,Bt

(λ) +Advcorr£,Br
(λ) + 2 ·AdvPRF

F,Bf
+ 3 ·AdvPRF

Fp,Bf
+

AdvDDH
Gp,Bd

(λ) +
N · (|W| · |D| −N)

p

(7)

The T-set can be instantiated using the construction presented in [CJJ+b], leading to Advcorrtset,Bt
(λ)

being negligible. As demonstrated in Section 3.1, Advcorr£,Br
(λ), equivalent to Pr[RHFCorr

£
A(λ) = 1],

is also negligible. Therefore, we can confidently assert that the probability of compromising the
correctness of HBS is negligible.

D.2 Proof of Theorem 9

Proof. We construct a hybrid of games, through which we gradually prove that HBS is adaptively
secure with respect to the leakage function Lhbs.

Game G0: The sole distinction between G0 and the real experiment SSEREAL
HBS
A (λ) lies in the

guaranteed correctness of search results in G0. Figure 18 illustrates the alterations implemented by
G0 in the generation process of the set ck to ensure that the server always returns the search result R
as DB(q) for every search query q. Consequently, we can reduce the advantage of an adversary A in
distinguishing between G0 and SSEREALAHBS(λ) to the advantage of an adversary in compromising
the correctness of HBS. Then, there exists a PPT adversary, denoted as Bh, targeting the correctness
of HBS. such that:

|Pr[SSEREAL
HBS
A (λ) = 1]− Pr[G0 = 1]| ≤ AdvcorrHBS,Bh

(λ) (8)

where AdvcorrHBS,Bh
(λ) represents the advantage that Bh compromises the correctness of HBS.

Game G1: To create G1, we incorporate the pseudocodes enclosed within single-layer boxes shown
in Figure 17 and Figure 18. Building upon G0, G1 integrates the modifications introduced by game
GCor,4 into game GCor,3. These modifications entail the introduction of tables X , S, KZ, I, and Z for
PRFs. Note that both GCor,4 and GCor,3 were defined in Section 4.1. Furthermore, in G1, we introduce
a table KD for F (ke, ·). When presented with a new input in the format of (ke, c), we randomly select
an output value kd from the set {0, 1}λ and store it in KD[ke, c]. Subsequently, KD[ke, c] remains the
output for the input (ke, c). Then, there exists a PPT adversary Bf such that:

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ (2|W|+ 1) ·AdvPRF
F,Bf

+ (|W|+ 2) ·AdvPRF
Fp,Bf

(9)

Game G2: The modifications introduced by game G2 to game G1 are identical to those made
by game GCor,5 to game GCor,4. These changes are enclosed using double-layer boxes in Figure 17
and Figure 18. Specifically, within the setup protocol of G2, an xtag corresponding to a keyword-
document pair is randomly and uniformly selected from the group Gp. To facilitate the programming
of xtokens during the search protocol, tables XG, CD, and XT are introduced. In G2’s search protocol,
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Setup(1λ,DB;⊥) in G0, G1 , and G2 :

Client
1: Select key ks for PRF F
2: Select keys kx and ki for PRF Fp

3: T← empty array indexed by keywords from W
4: XSet← empty set
5: for each w ∈W do
6: ke ← F (strap, 2)
7: strap← F (ks, w)
8: (kz, ke)← (F (strap, 1), F (strap, 2))

9: x
$← Z∗

p, X [w]← x

10: strap
$← {0, 1}λ, S[w]← strap

11: kz
$← {0, 1}λ, KZ[strap, 1]← kz

12: ke
$← {0, 1}λ, KZ[strap, 2]← ke

13: t← empty list, c← 0
14: Randomly permute the entries of DB(w)
15: for each id in DB(w) do
16: c← c+ 1
17: xind← Fp(ki, id), z ← Fp(kz, c)

18: if I[id] exists then

19: xind← I[id]
20: else

21: xind
$← Z∗

p, I[id]← xind

22: end if

23: z
$← Z∗

p, Z[kz, c]← z

24: y ← xind · z−1

25: kd ← F (ke, c)

26: kd
$← {0, 1}λ, KD[ke, c]← kd

27: e← kd ⊕ id
28: t← t ∪ {(e, y)}
29: xtag ← gFp(kx,w)·xind

30: xtag ← gx·xind , xtag
$← Gp

31: XG[w, id]← xtag, CD[w, c]← id

32: XSet← XSet ∪ {xtag}
33: end for
34: T[w]← t

35: for each id ∈ D \DB(w) do

36: XG[w, id]
$← Gp

37: end for

38: for each w′ ∈W \ {w} do

39: for c = (|DB(w)|+ 1) to |D| do

40: XT [w,w′, c]
$← Gp

41: end for
42: end for
43: end for
44: (TSet,KT )← TSetSetup(T)
45: KF ← RHFSetup(λ)
46: ES← RHFEncrypt(KF ,XSet)
47: Send TSet and ES to the server
48: return K = (ks, kx, ki, kz,KT ,KF )

Server
49: return EDB = (TSet,ES)

Fig. 17. Setup Protocol in Games G0, G1 , and G2

if c ≤ |DB(q[1])|, the computation of xtokc,i involves the respective xtag and the element y from the
c-th tuple of T[q[1]]. This ensures that the server computes the correct xtags. If c > |DB(q[1])|,
xtokc,i is set to XT [q[1], q[i], c]. Drawing insights from the analysis of GCor,5 in Section 4.1, we can
confidently assert the existence of a PPT adversary Bd such that:

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ AdvDDH
Gp,Bd

(λ) (10)

Game G3: As depicted in Figure 19 and Figure 20, we construct G3 by removing redundant
pseudocode lines and selecting every element y from Z∗p uniformly at random and computes. This
change does not affect the distribution of transcripts. Consequently, we can deduce the following
result:

Pr[G2 = 1] = Pr[G3 = 1] (11)

Game G4: In this game, as demonstrated in Figure 19 and Figure 20, we employ the simula-
tor ST designed for the T-set instantiation, as presented in [CJJ+b]. The simulator ST is used to
generate TSet and stag in the setup and search protocols, respectively. Let tset represent the TSet
implementation. There exists a PPT adversary Bt for which:
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Search(K, q; EDB) in G0, G1 and G2 :

Client:
1: (ks, kx, ki,KT ,KF )← K
2: stag ←TSetGetTag(KT , q[1])
3: (kf1, kf2)← KF

4: Send stag and kf1 to the server
5: strap← F (ks, q[1]), kz ← F (strap, 1)

6: strap← S[q[1]], kz ← KZ[strap, 1]
7: for c = 1, 2 · · · and until server sends stop do
8: xtokenc ← empty list
9: for i = 2 to n do

10: xtokc,i ← gFp(kz ,c)·Fp(kx,q[i])

11: xtokc,i ← gZ[kz ,c]·X [q[i]]

12: if c ≤ |DB(q[1])| then

13: id← CD[q[1], c]

14: y ← I[id] · Z[kz, c]−1

15: xtokc,i ← XG[q[i], id]y
−1

16: else

17: xtokc,i ← XT [q[1], q[i], c]

18: end if
19: xtokenc ← xtokenc ∪ {xtokc,i}
20: end for
21: Send xtokenc to the server
22: end for

Server:
23: Run Line 15-29 in Figure 5
24: Send Responds to the client

Client:
25: ck← empty set, ke ← KZ[strap, 2]
26: for each id ∈ DB(q) do
27: c← the position of id within DB(w1)
28: kd ← F (ke, c)

29: kd ← KD[ke, c]
30: ck← ck ∪ {(c, kd)}
31: end for
32: Send ck to the server

Server:
33: Run Line 48-53 in Figure 5
34: Send R to the client

Fig. 18. Search Protocol in Games G0, G1 , and G2

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ AdvT-set
tset,Bt

(λ) (12)

where AdvT-set
tset,Bt

(λ) represents the advantage that an adversary Bt has in compromising the security
of tset.

Game G5: In this game, as indicated by the pseudocode enclosed within double-layer boxes in
Figure 19, we utilize SR(N) to generate ES, where SR serves as the simulator for the RH-filter
implementation presented in Section 3. Consequently, there exists a PPT adversary Br for which:

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ AdvRHF
£,Br

(λ) (13)

where AdvRHF
£,Br

(λ) represents the advantage that an adversary Br has in compromising the security
of our RH-filter construction £.

The Simulator S: Figure 21 and Figure ?? depict the construction for the simulator S.
S(N) generates TSet and ES following the same procedure as in G5.
In the ideal game, when processing a search query q, S initially selects the minimum timestamp

(denoted as w1) from EP(q[1]) to represent q[1]. If w1 = t, it indicates that q is the first search query
employing keyword q[1] as the s-term. In such a scenario, S is tasked with generating the tuple list
T[w1] by creating |DB(q[1])| tuples (e, y). Utilizing T[w1], S proceeds to execute ST to generate the
stag, following the procedure in G5. In both G5 and the ideal game, the tuples (e, y) within T are
uniformly distributed in ({0, 1}λ,Z∗p). Consequently, the distribution of stags produced by ST (T[w1])
in the ideal game remains consistent with that in G5.

In G5 (resp. the ideal game), an adversary A also has access to T[q[1]] (resp. T[w1]), as it is
returned when the server executes TSetRetrieve(stag,TSet). In G5, each entry in T[q[1]] corresponds
to a document identifier belonging to DB(q[1]). As G5 randomly permutes the entries in DB(w1)
before producing T[q[1]], the association between an entry in T[q[1]] and a document identifier in
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Setup(1λ,DB;⊥) in G3, G4 , and G5 :

Client
1: T← empty array indexed by keywords from W
2: XSet← empty set
3: for each w ∈W do
4: strap

$← {0, 1}λ, S[w]← strap

5: ke
$← {0, 1}λ, KZ[strap, 2]← ke

6: t← empty list, c← 0
7: Randomly permute the entries of DB(w)
8: for each id in DB(w) do
9: c← c+ 1

10: y
$← Z∗

p, Y[w, c]← y

11: kd
$← {0, 1}λ, KD[ke, c]← kd

12: e← kd ⊕ id
13: t← t ∪ {(e, y)}
14: xtag

$← Gp

15: XG[w, id]← xtag, CD[w, c]← id
16: XSet← XSet ∪ {xtag}
17: end for
18: T[w]← t

19: for each id ∈ D \DB(w) do
20: XG[w, id]

$← Gp

21: end for
22: for each w′ ∈W \ {w} do
23: for c = (|DB(w)|+ 1) to |D| do
24: XT [w,w′, c]

$← Gp

25: end for
26: end for
27: end for
28: (TSet,KT )← TSetSetup(T)
29: TSet← ST (N)

30: KF ← RHFSetup(λ)
31: ES← RHFEncrypt(KF ,XSet)

32: ES← SR(N)

33: Send TSet and ES to the server
34: return K = (KT ,KF )

Server
35: return EDB = (TSet,ES)

Fig. 19. Setup Protocol in Games G3, G4 , and G5

Search(K, q; EDB) in G3, G4 , and G5 :

Client:
1: (KT ,KF )← K
2: stag ←TSetGetTag(KT , q[1])
3: stag ← ST (T[q[1]])
4: (kf1, kf2)← KF

5: Send stag and kf1 to the server
6: strap← S[q[1]]
7: for c = 1, 2 · · · and until server sends stop do
8: xtokenc ← empty list
9: for i = 2 to n do

10: if c ≤ |DB(q[1])| then
11: id← CD[q[1], c]
12: y ← Y[q[1], c]
13: xtokc,i ← XG[q[i], id]y

−1

14: else
15: xtokc,i ← XT [q[1], q[i], c]
16: end if

17: xtokenc ← xtokenc ∪ {xtokc,i}
18: end for
19: Send xtokenc to the server
20: end for

Server:
21: Run Line 15-29 in Figure 5
22: Send Responds to the client

Client:
23: ck← empty set, ke ← KZ[strap, 2]
24: for each id ∈ DB(q) do
25: c← the position of id within DB(w1)
26: kd ← KD[ke, c], ck← ck ∪ {(c, kd)}
27: end for
28: Send ck to the server

Server:
29: Run Line 48-53 in Figure 5
30: Send R to the client

Fig. 20. Search Protocol in Games G3, G4 , and G5
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S(N):
Client

1: t← 0
2: TSet← ST (N), ES← SR(N)
3: Send TSet and ES to the server

AssignId(w1, id, C, CD,DC):

1: c
$← C[w1], C[w1]← C[w1] \ {c}

2: CD[w1, c]← id, DC[w1, id]← c, return c

S.(DB(q), |DB(q[1])|,EP(q[1]), IP(q)):

Client:
1: t← t + 1 ▷ t is the timestamp
2: w1 ← Min(EP(q[1]))
3: if w1 = t then
4: T[w1]← empty list

5: strap
$← {0, 1}λ, S[w1]← strap

6: ke
$← {0, 1}λ, KZ[strap, 2]← ke

7: for c = 1 to |DB(q[1])| do
8: e

$← {0, 1}λ, y $← Z∗
p, Y[w1, c]← y

9: Append (e, y) to T[w1],
10: end for
11: C[w1]← [1, |DB(q[1])|]
12: end if
13: stag ← ST (T[w1])
14: (kf1, kf2)← KF

15: Send stag and kf1 to the server
16: EP[t]← w1

17: I ← the set of all the document identifiers existing in
DB(q) and IP(q).

18: for each id ∈ I do
19: if DC[w1, id] does not exist then
20: AssignId(w1, id, C, CD,DC)
21: end if
22: end for
23: (IP(q[1], q[i]))ni=2 ← IP(q)
24: for i = 2 to n do
25: Ii ← the set of all the document identifiers existing

in IP(q[1], q[i])
26: for each id ∈ Ii do
27: c← DC[w1, id]
28: Find the entry (t′, j, Λ) in IP(q[1], q[i]) such

that t′ is the minimum timestamp whose corresponding
Λ contains id
▷ Next, proceed to determine the xtag corresponding

to (q[i], id), denoted as xtagc,i, where c = DC[w1, id]
29: if XG[t′, j, id] exists then
30: xtagc,i ← XG[t′, j, id]
31: else
32: w′

1 ← EP[t
′]

33: c′ ← AssignId(w′
1, id, C, CD,DC)

34: k ← 2
35: while CXG[t′, k, c′] exists do
36: XG[t′, k, id]← CXG[t′, k, c′]
37: Delete CXG[t′, k, c′]

38: k ← k + 1
39: end while
40: xtagc,i ← XG[t′, j, id]
41: end if
42: end for
43: end for
44: for each id ∈ I do
45: c← DC[w1||id]
46: for i = 2 to n do
47: if xtagc,i does not exist then

48: xtagc,i
$← Gp, XG[t, i, id]← xtagc,i

49: end if
50: end for
51: end for
52: for each c ∈ C[w1] do
53: for i = 2 to n do
54: xtagc,i

$← Gp, CXG[t, i, c]← xtagc,i
55: end for
56: end for
57: for i = 2 to n do
58: Find the entry (t∗, j,⊥) in IP(q[1], q[i]) such that

t∗ is the minimum timestamp for which EP[t∗] = w1

59: if t∗ exists then ▷ Indicate that q[1] = q∗[1] and
q[i] = q∗[j] for q∗ occurring at t∗ and for some j ≥ 2

60: for c = |DB(q[1])|+ 1 to |D| do
61: xtokc,i ← XT [t∗, j, c]
62: end for
63: else
64: for c = |DB(q[1])|+ 1 to |D| do
65: xtokc,i

$← Gp, XT [t, i, c]← xtokc,i

66: end for
67: end if
68: end for
69: for c = 1, 2 · · · and until server sends stop do
70: xtokenc ← empty list
71: for i = 2 to n do
72: if c ≤ |DB(q[1])| then
73: y ← Y[w1, c], xtokc,i ← xtagy−1

c,i

74: end if
75: xtokenc ← xtokenc ∪ {xtokc,i}
76: end for
77: Send xtokenc to the server
78: end for

Server
79: Run Line 15-29 in Figure 5
80: Send Responds to the client

Client:
81: ck← empty set, ke ← KZ[strap, 2]
82: for each id ∈ DB(q) do
83: c← DC[w1, id]
84: (e,−)← the c-th tuple in T[w1]
85: kd ← e⊕ id, ck← ck ∪ {(c, kd)}
86: end for
87: Send ck to the server

Server:
88: Run Line 48-53 in Figure 5
89: Send R to the client

Fig. 21. The Simulator S
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DB(q[1]) becomes randomized. To simulate this randomized correspondence, the simulator S utilizes
the tables C, CD, and DC. We note that simulating this correspondence is linked to simulating the
generation of xtags later on.

For any search query q, where w1 represents the keyword q[1], C[w1] is defined as a subset of
[1, |DB(q[1])|], where a member c indicates that the document identifier corresponding to the c-th
entry in T[w1] has not been determined. C[w1] is initialized as [1, |DB(q[1])|], while CD and DC are
initially empty. Whenever S learns that a document identifier id belongs to DB(q[1]), it invokes
the function AssignId(w1, id, C, CD,DC), determining the entry in T[w1] that corresponds to id.
This function uniformly and randomly selects an integer c from C[w1], removes c from C[w1], sets
CD[w1, c] ← id, and DC[w1, id] ← c. Finally, the function returns c. Notably, during a search query
q, S gains knowledge not only of the document identifiers belonging to DB(q[1]) through DB(q) and
IP(q) (Line 17-22) but also of document identifiers belonging to DB(q′[1]) for any previous search
query q′ whose timestamp t′ is included in IP(q). To address the latter case, S introduces a table EP,
which maps the timestamp t of a query q to w1 representing q[1]. When S learns that a document
identifier id is a member of DB(q′[1]) through IP(q) where q′ occurred at t′, it retrieves w′1 from EP[t′]
and invokes the function AssignId(w′1, id, C, CD,DC) to determine the entry in T[w′1] corresponding
to id (Line 32-33).

Then, S simulates the token list xtokenc = {xtokc,i}ni=2 for 1 ≤ c ≤ |DB(q[1])|. The key challenge
of simulating xtokc,i lies in the simulation of xtagc,i, denoting the xtag of (q[i], id) where id is the
document identifier corresponding to the c-th entry in T[w1]. To ensure consistency with G5’s dis-
tribution of xtags, the xtags of keyword-document pairs must be computed deterministically, and
the xtag of a fresh keyword-document pair should be selected uniformly at random from Gp. During
a search query q at timestamp t, to obtain the xtag of a keyword-document pair (q[i], id) for an
id ∈ DB(q[1]), S must check whether the xtag of (q[i], id) has been computed in a previous search
query. This information is captured by the leakage profile IP(q[1], q[i]), which is a part of IP(q). If
there exists an entry (t′, j, Λ) ∈ IP(q[1], q[i]) such that id is a member of the set Λ, it indicates that
the xtag of (q[i], id) has been computed in the search query q′ occurring at timestamp t′, where
q[i] = q′[j].
S must provide a method that allows a search query to access the xtag it needs, which has been

computed by previous search queries. To achieve this, S utilizes the table XG with a minor modifica-
tion: for any search query q occurring at any timestamp t and 2 ≤ i ≤ n, if q is the earliest query that
requires the xtag of (q[i], id) (denoted as xtagc,i where c← DC[w1, id]), during the execution of q, S
selects the xtagc,i from Gp uniformly at random and stores it in XG[t, i, id] (instead of XG[q′[i], id] in
G5) (Line 44-51). However, the subtle point is that the value of id may not be revealed to S during
the execution of q, as id may not be exposed by IP(q) and DB(q). To address this issue, S uses table
C and additionally introduces a new table: CXG. For each c ∈ C[w1] and 2 ≤ i ≤ n, S selects xtagc,i
from Gp uniformly at random and stores xtagc,i into CXG[t, i, c] (Line 52-56).

Next, we illustrate how S acquires the xtags that have been computed by previous search queries
through IP(q) (Line 24-43). For 2 ≤ i ≤ n, S extracts all the document identifiers present in
IP(q[1], q[i]) and stores them in the set Ii. For each id ∈ Ii, S finds the entry (t′, j, Λ) in IP(q[1], q[i])
such that t′ is the earliest timestamp whose corresponding Λ contains id. Based on the explanation in
the previous paragraph, the xtag of (q[i], id) is either stored in XG[t′, j, id] or included in CXG. In the
former case, S sets xtagc,i ← XG[t′, j, id] where c← DC[w1, id]. In the latter case, it indicates that the
position of the entry in T[w′1] (w′1 ← EP[t]) corresponding to id is still uncertain. In this situation, S
assigns id to the c′-th entry in T[w′1] and updates XG and CXG by setting XG[t′, k, id]← CXG[t′, k, c′]
and deleting CXG[t′, k, c′], for any k for which CXG[t′, k, c] exists. After that, the xtag of (q[i], id) is
precisely XG[t′, j, id].

After handling the case where 1 ≤ c ≤ |DB(q[1])|, S is also tasked with simulating the token
list xtokenc = {xtokc,i}ni=2 for c > |DB(q[1])|. The key to successfully achieve this simulation lies in
ensuring that xtokc,i follows a uniform distribution across Gp, and its value is determined solely by
q[1], q[i], and c. We achieve this by employing the table XT . Within our approach, XT [q[1], q[i], c]
from G5 is rewritten as XT [t∗, j, c], where t∗ represents the timestamp of the earliest query q∗ that
employs q[1] as the s-term and q[i] as one of the x-terms for some 2 ≤ i ≤ n, and j denotes the
corresponding index where q∗[j] = q[i]. As detailed in Line 58-62, S accesses xtokc,i (c > |DB(q[1])|)
that has already been computed through previous search queries, using the insights gleaned from
the leakage profile IP(q) and table XT . In instances where xtokc,i (c > |DB(q[1])|) has not yet been
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calculated by previous searches, S uniformly selects xtokc,i from Gp at random and assigns it to
XT [t, i, c], as illustrated in Line 63-66.

By following the above process, S successfully simulates the generation of {xtagc,i}ni=2 for 1 ≤ c ≤
|DB(q[1])| and {xtokc,i}ni=2 for |DB(q[1])|+ 1 ≤ c ≤ |D|. With {xtagc,i}ni=2 for 1 ≤ c ≤ |DB(q[1])|, S
computes xtokc,i ← xtag

Y[w1||c]−1

c,i , just as done in G5.
In the final step, S is required to simulate ck. The sole distinction from G5 in this context is

that S calculates kd using the formula e ⊕ id instead of retrieving it from table KD. Importantly,
this alteration does not impact the distribution of kd since, in both games, kd is deterministic with
respect to keyword q[1] and the counter c, and uniformly distributed over 0, 1λ.

Therefore, we can get that

Pr[G5 = 1] = Pr[SSEIDEAL
HBS
A,S,Lhbs

(λ) = 1] (14)

By summarizing equations (8) to (14), we can draw a conclusion.

|Pr[SSEREAL
HBS
A (λ) = 1]− Pr[SSEIDEAL

HBS
A,S,Lhbs

(λ) = 1]| ⩽ AdvcorrHBS,Bh
(λ) + (2|W|+ 1) ·AdvPRF

F,Bf
+

(|W|+ 2) ·AdvPRF
Fp,Bf

+AdvDDH
Gp,Bd

(λ) +AdvT-set
tset,Bt

(λ) +AdvRHF
£,Br

(λ)

(15)

E Multi-client Setting with Malicious Clients

A malicious client could potentially attempt unauthorized access, such as utilizing Mtoku for w1 ∧
w2 ∧ w3 ∧ w4 to search for documents matching w1 ∧ w2 ∧ w3. To address this challenge, a solution
can be implemented by having D and the server share a secret key ku and employing a keyed hash
function denoted as Hk : {0, 1}λ×{0, 1}∗ → {0, 1}λ. When D authorizes U to execute a search query
w1 ∧ ψ(w2, · · · , wn), D takes the initiative to generate the necessary tokens that U must transmit
to the server. These tokens include stag, kf1, {xtokenc}|DB(w1)|

c=1 , and their corresponding ck. Note
that D can obtain these data by executing this particular search query. Subsequently, D constructs
Mtoku = (stag, strap,X,KF , sig1 = Hk(ku, stag||kf1||{xtokenc}|DB(w1)|

c=1 ), sig2 = Hk(ku, sig1||ck))
and transmits Mtoku to client U .

In the execution of w1 ∧ · · ·ψ(w2, · · · , wn), alongside the HBS search procedure, the client U
also sends sig1 to the server during the first round of the search. The server, upon verifying that
Hk(ku, stag||kf1||{xtokenc}|DB(w1)|

c=1 ) is equivalent to sig1, proceeds to transmit the response Responds
for the first round to the client. If, on the other hand, the verification fails, the server halts the service.
In the second round, after receiving Responds, the client computes the corresponding ck and sends
it to the server along with sig2. The server then verifies whether sig2 matches Hk(ku, sig1||ck). Only
if this verification step succeeds will the server continue with the service. This robust mechanism
ensures that the client cannot engage in unauthorized access, as it lacks the capability to forge sig1
and sig2 without knowledge of ku.
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