
Collaborative, Segregated NIZK (CoSNIZK)
and More Efficient Lattice-Based
Direct Anonymous Attestation

Liqun Chen2 , Patrick Hough1 , and Nada El Kassem2

1 Mathematical Institute
Oxford University

patrick.hough@maths.ox.ac.uk
2 Surrey Centre for Cyber Security, Guildford, UK

University of Surrey
{liqun.chen, nada.elkassem}@surey.ac.uk

Abstract. Direct Anonymous Attestation (DAA) allows a (host) device
with a Trusted Platform Module (TPM) to prove that it has a certified
configuration of hardware and software whilst preserving the privacy of
the device. All deployed DAA schemes are based on classical security
assumptions. Despite a long line of works proposing post-quantum de-
signs, the vast majority give only theoretical schemes and where concrete
parameters are computed, their efficiency is far from practical.

Our first contribution is to define collaborative, segregated, non-interactive
zero knowledge (CoSNIZK). This notion generalizes the property of collab-
orative zero-knowledge as formalised by Ozdemir and Boneh [OB22] so
that the zero-knowledge property need only apply to a subset of provers
during collaborative proof generation. This if of particular interest for
proxy-cryptography in which part of an expensive but sensitive computa-
tion may be delegated to another party. We give a lattice-based CoSNIZK
based on the highly efficient proof framework in [LNP22].

Our main contribution is the construction of a DAA based on the hardness
of problems over module lattices as well as the ISISf assumption recently
introduced in [BLNS23]. A key component of our work is the CoSNIZK
construction which allows the TPM and host to jointly create attestations
whilst protecting TPM key material from a potentially corrupt host. We
prove the security of our DAA scheme according to the well-established
UC definition of [CDL16a]. Our design achieves DAA signatures more
than 1.5 orders of magnitude smaller than previous works at only 38KB
making it the first truly practical candidate for post-quantum DAA.

1 INTRODUCTION

Direct Anonymous Attestation (DAA) is a cryptographic protocol which allows
a Trusted Platform Module (TPM) to serve as a root of trust for a host device
in which it is embedded. The TPM does so by creating attestations about the

https://orcid.org/0000-0003-2680-4907
https://orcid.org/0000-0003-4037-5512
https://orcid.org/0000-0002-2827-6493

state of the host system e.g., by certifying the boot sequence of the host system.
Such attestations convince a remote verifier that the device it is communicating
with comprises trusted hardware and is running correct software. A core designs
principle of DAA is that such attestations are made in a privacy-preserving
manner. That is, a verifier can check that such attestations originate from a
certified device without learning anything about the identity of the TPM. Further-
more, DAA supports user-controlled-linkability through choice of a basename bsn.
Attestations (signatures) made with a fresh basename or bsn = ⊥ are unlinkable
while repeatedly signing with the same basename creates attestations that are
linkable.

One can view DAA as a variant of group signatures in which a single issuer
controls the admission of members to the group. Moreover, the opening property
is replaced by user-controlled-linkability. Importantly, DAA signatures cannot be
created without the approval and involvement of the TPM so that a potentially
corrupt host (e.g., running malicious software) cannot produce attestations alone.

Conceived by Brickell, Camenisch, and Chen [BCC04] in 2004 and standard-
ized by the Trusted Computing Group (TCG) as TPM 1.2 (2004) [Gro04] and
TPM 2.0 (2014) [Gro14], DAA is deployed in billions [Gro19] of devices worldwide
including embedded devices, servers, and the majority of enterprise PCs. TPM
2.0 supports a suite of elliptic-curve based DAA designs [EB,BCL08,CPS09]
which are further included in the ISO standard ISO/IEC 20008-2 [Int13, Int15].
Owing to its wide deployment and standardization, there has been a huge
body of additional work relating to DAA aiming to improve its security and
efficiency [BFG+11,CCD+17,CDL16a,CDL15,CDL17,CU15,Xi14,SRC12].

DAA has also been used as a basis for a number of other privacy-enhancing
protocols and for an increasing number of practical applications in a society
for which awareness of private authentication is on the rise. A variant of DAA
called Enhanced Privacy ID (EPID) is used in Intel SGX [BL07] and DAA is
also in the Fast IDentity Online (FIDO) [CDE+17] authentication framework in
which a TPM produces attestations that new authentication keys are securely
stored on the TPM. More recently, DAA has been proposed for authentication
in vehicle-to-vehicle communication [CTY+21] wherein tracking of drivers must
be prevented.

The security of all DAA schemes currently supported by TPMs rely on
classical hardness assumptions; factorization in the RSA setting or finding discrete
logarithms in the elliptic curve setting. Upon the arrival of quantum computers, all
cryptography built on such problems will be deemed insecure. Moreover, prompted
by the selection of post-quantum secure NIST standards for key-exchange and
digital signature algorithms [Nat22], there is a rapidly increasing adoption of post-
quantum secure alternative designs. Indeed, the EU Horizon2020 FutureTPM
project [Con18] was established with the aim of designing a ‘FutureTPM’ with
post-quantum security. The project is planning to consider the adoption of the
Kyber [BDK+17], Dilithium [DKL+18] and SPHINCS+ [BHK+19] algorithms of
key exchange and plain signatures. However, there is still much more work to
be done in designing efficiency privacy-preserving designs with post-quantum

2

security. Regarding DAA, there have been a number of works aiming at post-
quantum security [EE17,ECE+19,ECE+18,CDE+23,CKLL19]. As with many
post-quantum designs, most are built using computational problems over lattices.

Unfortunately, these works largely provide only a theoretical framework for
post-quantum DAA. In particular, all but [CKLL19] give only asymptotic param-
eters and thus no concrete efficiency can be ascertained. Regarding, [CKLL19],
the authors give a rough estimate for the size of their DAA signatures at 2MB
without providing justification for their parameter selection. Comparing this to
deployed DAA schemes based on classical hardness assumptions, this signature
size is over 1000 times larger. As a general rule-of-thumb, post-quantum secure
schemes being adopted to replace classical ones come with a communication cost
roughly 25-30X higher. The gap in post-quantum DAA efficiency to this range
and the number of works attempting to cross that gap evidence the challenge
of instantiating such a complex protocol from post-quantum assumptions. It
is clear that a design of significant novelty is needed to bring the efficiency of
post-quantum DAA into the realm of practicality.

A key technical question in designing a DAA scheme is how the TPM and Host
can jointly create attestations in a way that (1) requires the TPM’s involvement
so as to stop a malicious host making false attestations and (2) that protects the
sensitive material stored on the TPM from the possibly corrupt host. A naive
solution to this would be to require the TPM to store all credentials and create
all attestations itself, only passing them to the host for broadcasting to verifiers.
However, in reality the TPM is a highly constrained device, both in terms of
storage and computation. Thus, in order to realize a practical DAA, some of this
storage and computation must be delegated to the host. These two entities must
now work collaboratively to prove the integrity of the platform (i.e. knowledge of
valid credentials).

This kind of scenario is not uncommon in cryptography. Indeed, distributed
provers were considered by Pedersen as early as 1991 [Ped91] in the context of
undeniable signatures. Here, the prover’s interaction is required to validate a
given signature. Recently, a number of works have considered the distributed
prover setting [DPP+22,DFK+23,WZC+18]. A recent work by Odzemir and
Boneh [OB22] explores collaborative zk-SNARKS and their potential applications
to healthcare, credit-score computation, and private audits of multiple parties.

In DAA, we have two parties (a TPM and host) who must work collaboratively
to create zero-knowledge proofs (of credentials). However, the setting is subtly
different to the standard multi-prover setting in that the host’s share of the
witness need not be cryptographically hidden from the TPM. That is, while
the zero-knowledge property of the final proof is required, the host’s witness
share does not need to be hidden to the TPM during proof generation. In fact,
this one-sided zero-knowledge property is not unique to DAA. Indeed, so-called
‘proxy-cryptography’ [ID03] is often employed for reasons of efficiency, usability,
and scalability. In one example, the president delegates part of her signing key
to her assistant. This can be used to sign in the president’s name only when the
vice president has already added his signature to a document. This allows the

3

president to sign while absent but only in combination with the vice-president’s
signature.

For constrained devices such as a TPMs, Intel’s SGX, or Apple’s ‘T-series’
hardware chips (macbooks) and secure enclaves (iphones), the natural questions
arise: (1) can their crypographic key material be partially delegated to allow
for greater efficiency or even new functionality and (2) does one-sided witness
privacy allow for more efficient solutions than treating all parties as equals in
a standard multi-prover collaborative proof and (3) can one construct a more
efficient DAA using these combined ideas?

1.1 Our Results
We present a lattice-based DAA scheme based on the module learning with errors
(MLWE), short integer solution (MSIS), and MNTRU problems. Additionally,
inspired by the anonymous credentials work of Bootle et al. in [BLNS23], we
make use of the ISISf assumption introduced there. Along the way we formalise the
the notion of collaborative, segregated NIZK (CoSNIZK), giving a construction
based on the highly efficient LNP proof framework [LNP22]. Finally, we provide
concrete parameters to securely instantiate our DAA design which lead to a
signature size (38KB) 1.5 orders of magnitude smaller than the state of the art
and a 4-fold reduction in TPM key size. This ends a long line of work seeking to
provide post-quantum secure DAA with truly practical efficiency.

Collaborative, Segregated NIZK. We begin by introducing the notion of collabo-
rative, segregated non-interactive zero-knowledge (CoSNIZK). This generalizes
the concept of collaborative zero-knowledge as formalized by Ozdemir and Boney
in [OB22] so that the zero-knowledge property need only apply to a subset of
(segregated) provers during collaborative proof generation. We give a lattice-based
CoSNIZK based on the highly efficient proof framework in [LNP22]. Moreover, this
construction allows one party to delegate part of its witness to another (freeing
up storage) and the resulting proof size is unchanged from the single-prover
setting.

Module NTRU-ISISf for hash-and-sign blind-signatures. In [BLNS23], the authors
introduce a new family of lattice problems whose members are conducive to
efficient zero-knowledge proofs for proving knowledge of a solution. The authors
show how this is a natural extension of the SIS and ISIS assumptions upon
which hash-and-sign GPV signatures [GPV08] are based. Where the authors
of [BLNS23] use this assumption in conjunction with ring variants of LWE and
SIS, we show how it can be made compatible with module lattices and so make
use of the more efficient trapdoor sampling techniques used in [CPS+19].

A More Efficient LDAA. We combine the building blocks above to present a
new lattice-based DAA scheme and provide concrete parameters. The efficiency
significantly improves upon the state-of-the-art in [CKLL19], reducing the DAA
signature size by 52 times to 38KB. As compared to deployed classical schemes,
this lands within the range often considered for practical use.

4

2 Preliminary

2.1 The Ring Rq

We define Φ : Rq → (Zdq)> to be the map that sends a polynomial a ∈ Rq to its
(column) coefficient vector. We define Rot : Rq → Zd×dq to be the map that sends
a polynomial a ∈ Rq to a matrix whose i’th column is Φ(a ·Xi mod (Xd + 1)).
It is easily checked that Rot(a)Φ(b) = Φ(a · b) and that this notation extends
naturally to vectors and matrices of polynomials. We will often use ~a in place of
Φ(a) to ease presentation. When using hash functions, we will denote their image
space using subscripts. For example, HRq maps an input to an element of Rq
Viewing ring elements in their coefficient embedding we can consider their `1, `2,
and `∞-norms, extending their definitions in the natural way for k-dimensional
vectors a ∈ Rk. For an elements a ∈ Rq, we may sometimes write a mod p to
mean that a’s coefficients are reduced modulo p so that (a mod p) ∈ Rp. We
denote by HS , a hash function with target space S. In zero-knowledge arguments,
this will also be used to denote the random oracle. For a polynomial x ∈ Rq, we
denote by x̃ its constant coefficient. We denote by ~x a column vector of integers
and for x ∈ Rnq , we denote by ~x the nd-length coefficient column vector.

2.2 Module-LWE and Module-SIS Problems

The security of our scheme relies on the lattices problems Module-SIS (MSIS)
and Module-LWE (MLWE)

Definition 1 (MLWEn,m,χ). Let n,m be positive integers, and χ be an error
distribution over Rq3. The Module-LWE problem then asks an adversary A
to distinguish between the following two cases: 1) (A,As mod q) for A ←
R
n×(n+m)
q , and secret vector s← χn+m and 2) (A,b)← R

n×(n+m)
q ×Rnq .

Definition 2 (MSISn,m,B). Let n,m be positive integers, and 0 < B < q. Then,
given A ∈ Rn×mq , the Module-SIS problem asks an adversary A to find z ∈ Rmq
such that Az = 0 mod q and 0 < ‖z‖2 ≤ B.

Definition 3 (MNTRUn,m,χ,q [CPS+20]). Let n be a positive integer and χ
be a bounded distribution over Rq. The Module-NTRU problem then asks an
adversary A to distinguish between the following two cases: (1) F−1g ∈ Rnq for
secret (F,g)← χn×n × χn, and (2) h ∈ Rnq for uniform h $← Rnq .

2.3 NTRU Lattices

In this section, and wherever NTRU trapdoor sampling is referred to in this work,
we consider a ring R̂ := Z[X]/(X d̂ + 1) of dimension d̂. This is to distinguish
3 Note, we do not include q and d as parameters in the subscript of MLWEn,m,χ for
cleaner notation. It is thus implicit that all computational assumptions are defined
with respect to Rq in this work.

5

between the ring over which MLWE and MSIS are defined. Given a basis B, we
denote the Gram-Schmidt orthogonalisation of B by B̃. Let d̂ be a power of two,
q be a positive integer, g ∈ R̂n̂q , and F ∈ R̂n̂×n̂q be invertible. Let h = F−1g ∈ R̂n̂q
and define the NTRU module as

LNTRU := {(u,v) ∈ R̂n̂+1 : u+ vTh = mod q}.

LNTRU admits bases in the form of

BNTRU :=
(
−h In̂
q 0n̂

)
and BF,g :=

(
g −F
g0 −fT0

)
.

As with any module, LNTRU can be seen as a Z-lattice over Q(n̂+1)d̂.

Lemma 1 ([CPS+20]). There is an efficient algorithm NTRU.TrapGen(q, d̂, n̂)
which outputs h and a basis B of LNTRU such that

∥∥B̃
∥∥

2 ≤ γ · q1/(n̂+1), where
γ = 1.17 for n̂ = 1, 2 and γ = 1.24 for n̂ = 3. Furthermore, let ε = 1/(4

√
λ). There

is a PPT algorithm GSampler, which takes (h,BF,g)← NTRU.TrapGen(d̂, n̂, q),
standard deviation spre > 0 and a target vector c ∈ R̂q as input and outputs
e ∈ R̂n̂+1

q such that

∆
([

1 hT
]−1
spre

(c),GSampler(h,BF,g, spre, c)
)
≤ 2−λ,

as long as

spre ≥ γq1/(n̂+1)·ηε(Z(n̂+1)d̂) where ηε(Z(n̂+1)d̂) ≈ 1
π
·

√
1
2 log

(
2d̂(n̂+ 1)(1 + 1

ε
)
)
.

2.4 The Int-NTRU-ISISf Problem

We recall the falsifiable (interactive) Int-NTRU-ISISf assumption as introduced
by Bootle et. al in [BLNS23]. Note the slight modification we make to the relation
a winning output must satisfy. In particular, the vector 1> is used to compress
the right hand side of the relation into a single ring element. This is needed
in order to apply the trapdoor sampling techniques of [CPS+20] in the module
NTRU setting.

Definition 4 (The Int-MNTRU-ISISf Problem (Interactive)). Define the
system parameters sp = (q, d, n,m,N, s,Bs,Bm) as a tuple of functions of the
security parameter λ. Let f : [N] → Rnq be an efficiently computable function.
We say an adversary A solves the Int-MNTRU-ISISf if it wins the experiment
defined in Figure 1.

Concrete instantiation of f . We instantiate f , as in [BLNS23], using a binary
encoding function parameterized by an integer t ∈ N and a matrix B ∈ Znd×tq .
The function f is then defined as

f(x) := Φ−1(B · bin(x)) ∈ Rnq ,

where bin ∈ {0, 1}t is a binary decomposition of x− 1. Hence, N = 2t.

6

ExpInt-MNTRU-ISISf
sp (A)

1: (h,BF,g)← NTRU.TrapGen(q, n, d)
2: A :=

[
1 hT

]
3: C← R

n×(n+m)
q

4: M = ∅
5: (x∗, s∗,m∗, r∗)← AOpre (A,C)
6: if (m∗ /∈M)

∧
(

As∗ = 1>
(
f(x∗) + C

[
m∗
r∗

]))
∧ (0 < ‖s∗‖ ≤ Bs) ∧ (‖m∗‖, ‖r∗)‖ ≤ Bm)

7: then return 1
8: else return 0

Opre(m, r)
1: if ‖m, r‖ < Bm
2: then return ⊥
3: x← [N]

4: s← A−1
s

(
1>
(
f(x) + C

[
m
r

]))
5: M←M∪ {m}
6: return (x, s)

Fig. 1. The interactive ISISf experiment

2.5 The LNP Proof System

Throughout this work, as in many privacy-enhancing protocols, parties will prove
that they have behaved according to the protocol ‘in zero-knowledge’. That is,
without exposing any information intended to be kept secret.

We employ the lattice-based proof system in [LNP22]. Herein, we may refer
to this proof system as the ‘LNP’ proof. The authors provide a highly efficient
framework for proving a wide range of lattice relations. In particular, one can
prove exact norm bounds of secret vectors satisfying some given relation. In this
work we will apply these techniques to relations of the form

Ps = v over Rq, (1)

where P and v are a public matrix and vector of elements in Rq whilst s is a
secret vector of such elements. Given s such that (1) s satisfies Equation (1) and
(2) ‖s‖ ≤ B for some bound B, one can prove both (1) and (2). Furthermore, the
authors provide a SAGE tool for computing secure parameters for such a proof.

The techniques of [LNP22] are highly involved and a full presentation of
the core proof structure would not be practical. Instead we give a high-level
overview of the key ideas. For a full exposition of the details, we direct the reader
to [LNP22, Section 5.1]. One key observation used in the LNP proof system
is that the inner product of two vectors ~r and ~s can be made to appear as
the constant coefficient in a polynomial product of two polynomials which are
functions of ~r and ~s. Then, by using a proof of polynomial product and hiding
all but one coefficient, it is possible to prove vector inner products modulo q.
Noting that the inner product of a vector with itself is by definition the `2-norm
squared of that vector, one has a method for proving vector norm values modulo
q. Secondly, using an inexpensive ‘range proof’ one can prove that the norm of a
vector is not bigger than q. Thus, by combining these two strategies, one can lift
the norm proof over Zq to one over Z as required. The first step in employing
the techniques of [LNP22] is to write the relation to be proven as a relation over

7

Zq so that one is always proving a relation of the following form

RGen := {X := (P,~v),W := ~s1 | P ∈ Znd×m1d
q , ~v ∈ Zndq ,~s1 ∈ Zm1d

q : P ~s1 = ~v ∧ ‖~s1‖2 ≤ Bs}. (2)

This can be done by using rotation matrices and coefficient vectors defined by
Rot and Φ.

Challenge Space. For reference, we recall the challenge space used by the LNP
proof system [LNP22]. Let ξ, µ > 0 and k be a power-of-two. Define the challenge
space C as C := {c ∈ Rq : ‖c‖∞ ≤ ξ ∧ σ(c) = c ∧ 2k

√
‖c2k‖1 ≤ ν}. We use the

experimental values from [BLNS23], ensuring that for c sampled uniformly from
the space of infinity-norm ξ-bounded elements, it holds that 2k

√
‖c2k‖1 ≤ ν with

probability > 99%. We use d = 128, ξ = 2, ν = 59, k = 32, which give |C| > 2147.

3 Collaborative Segregated NIZK

In this section we consider a special case of distributed-prover zero-knowledge,
often referred to as distributed, interactive zero-knowledge (DIZK) or collabora-
tive, non-interactive zero-knowledge (CoNIZK). We will use the name CoNIZK as
coined by Ozdemir and Boneh in [OB22] (though there the authors consider collab-
orative zk-SNARKs). In the CoNIZK setting, a set of participants U := {Pi}i∈[N]
each hold a share Wi in some witness W := {Wi}i∈[N]. Their aim, through
collaboration, is to prove that (X,W) ∈ R for some public statement X and NP
language L defined by the relation R. The resulting proof should be correct,
sound, and zero-knowledge in the usual sense. Furthermore, the proof generation
procedure should not reveal any information about a participant’s witness share
to the other participants. One can thus think of zero-knowledge as being both
local (protecting witness shares between provers) and global (protecting the full
witness and its shares from any external party).

We consider a generalization of CoNIZK in which the zero-knowledge property
may not protect the witness shares of some parties involved in the proof genera-
tion process. That is, witness share information of some parties may be leaked
internally during the proof creation but the resulting proof is still zero-knowledge
with respect to the full witness W. To formalize this idea we consider that par-
ties are segregated into two groups; those which we call closed lie in Uc whilst
open parties lie in Uo. Closed parties are those for whom local zero-knowledge
applies (their witness shares remain hidden) whilst open parties may leak some
information about their witness shares through the proof generation procedure.4
Herein, we will refer to this primitive as collaborative, segregated non-interactive
zero-knowledge, denoted CoSNIZK which we now formally define.

3.1 Syntax

A segregated, non-interactive collaborative proof CoSNIZK is defined for a set
U of N provers and a relation R(X,W1, . . . ,WN). Furthermore, U = Uc t Uo is
4 Setting Uo = ∅ recovers the CoNIZK setting defined in [OB22].

8

the disjoint union of a set of Nc closed users Uc and No open users Uo so that
N = Nc +No. A CoSNIZK is a tuple (CoSetup,CoProve,CoVerify):

• CoSetup(λ,R)→ pp: On input security parameter λ and relation R, outputs
public parameters pp.
• CoProve(pp,X,W1, . . . ,WN)→ π: On input the public parameters, statement

X and N private witness shares W1, . . . ,WN , outputs a proof π.
• CoVerify(pp,X, π) → 0/1: On input public parameters pp, statement X, and
proof π, returns 0 or 1 indicating reject or accept respectively.

Informally, a CoSNIZK proof system is secure if it satisfies the following properties.
Completeness: Honest provers with valid witness produce a valid proof. Knowledge
Soundness: Only provers that know a valid witness can construct a valid proof. t-
Zero-Knowledge: Up to t colluding dishonest provers learn nothing about witnesses
of the other closed users through CoProve, other than the validity of the whole
witness.

3.2 Security

Definition 5 formally states the security properties required of a CoSNIZK proof
system5. Note, the definition is given in the random oracle model.

Definition 5 (Collaborative, Segregated NIZK). Let H be a secure hash
function. A collaborative, segregated NIZK, or CoSNIZK, for a relation R, secure
against t malicious provers is a collaborative proof ΠCoSNIZK := (CoSetup,CoProve,
CoVerify) with the following properties:

• Completeness: For all (X,W) ∈ R, the following is negligible in λ:

Pr
[

CoVerifyH(pp,X, π) = 0 : pp← CoSetupH(λ,R)
π ← CoProveH(pp,X,W)

]
.

• Knowledge Soundness: For all X, for all efficient provers U := {P∗1 , . . . ,P∗N},
there exists an efficient extractor CoExt such that

Pr
[

(X,W) ∈ R :
pp← CoSetupH(λ,R)
W← CoExtH,UH

(pp,X)

]
≥ Pr

[
CoVerifyH(pp,X, π) = 1 : pp← CoSetupH(λ,R)

π ← UH(pp,X)

]
− ε,

for negligible ε.
• t-Zero-Knowledge: For all efficient A controlling a set UA := {P1, . . . ,Pk}
of k ≤ t provers containing at most Nc − 1 provers, there exists an efficient
simulator Sim such that for all X,W, and for all efficient distinguishers D,

∣∣∣∣∣∣Pr

DH′(tr) = 1 :
pp← CoSetupH(λ,R)
b← R(X,W) ∈ {0, 1}

tr← CoSimH(pp,X, {Wj}j∈UA∪(Uo\UA), b)

− Pr [DH(tr) = 1 : pp← CoSetup(λ,R)
tr← ViewH

A[X,W]

]∣∣∣∣∣∣ ,
5 Since soundness only considers efficient provers, the protocol is an argument of
knowledge. Nevertheless, we refer to it as a ‘proof’ for convenience in this work.

9

is negligible where tr is a transcript, ViewH
A[X,W] denotes the view of A when all

provers interact with input X and W. H′ denotes the (possibly) re-programmed
random oracle created by CoSim.

As is true for the collaborative zk-SNARK definitions in [OB22], some properties
in Definition 5 differ from their NIZK analogues in a few ways. Importantly, in the
distributed setting, prover i could choose its Wi arbitrarily and then later learn if
the resulting combined witness is valid. This is unavoidable information learned
about the other witness which we model by explicitly providing the validity of
the combined witness to the simulator. Thus, only the validity of the final witness
is revealed.

Knowledge soundness establishes only distributed knowledge in the sense
defined by Halpern and Moses in [HM84]. That is, provers could pool their
information to determine the N witnesses. It does not however prove that Pi
knows Wi. This is an inherent feature of the non-interactive nature of the proof
which obscures the number of provers from the verifier.

The most significant modification, and where our definition generalizes those
in [OB22], is in the t-zero-knowledge property. Here, the adversary may corrupt
any set of k provers (either open or closed) and must not be able to learn any
information about the witnesses held by the remaining honest closed provers. We
thus provide the simulator with witnesses of all corrupted provers and those of
any honest open provers. This models that the local zero-knowledge property
only holds for the un-corrupted open parties. Again, considering a setup without
any open provers, we recover the definition of [OB22].

3.3 Two-Party CoSNIZK from Lattices

We present a two-party (dual-prover) CoSNIZK protocolΠCoSNIZK for the standard
lattice relation

Ps1 = v,

defined over Rq for some public matrix P ∈ Rn×m1
q , secret s1

6 ∈ Rm1
q , and pubic

v ∈ Rnq . We would additionally like to prove something about the norm of s1. At
this point, we note that it suffices to prove the equation Rot(P)~s1 = ~v over Zq,
where ~s and ~v are the image of s1 and v under Φ respectively i.e. their column
vectors of coefficients. Indeed, as in the proof system of [LNP22], our first step is
always to define the statement/relation over Zq and proceed from there. In what
follows, it is assumed that P1 is the open prover and P2 is closed7. We consider
that P1 holds a witness W1 = s11 and P2 holds a witness W2 = s12. Moreover
we consider the setting in which these are additive shares in the full witness so

6 The suffix here is to aid in the proof presentation where we distinguish it from the
commitment randomness s2.

7 This is to aid presentation by removing ‘c’ and ‘o’ labels throughout.

10

that s1 = s11 + s12
8. Then, without loss of generality, and denoting P := Rot(P),

we define a proof system with respect to the following relation.

R :=

X := (P,~v),

W := ~s1 :=
[
~s11
~s12

] ∣∣∣∣∣ P ∈ Znd×m1d
q ,

~v ∈ Zndq ,~s1 ∈ Zm1d
q

:
P~s1 = ~v ∧ ‖~s11‖2 = Bs11 ,

∧ ‖~s12‖2 = Bs12

 . (3)

We consider exact norm arguments on the witness since, as shown in [LNP22], one
can always apply Lagrange’s sum-of-four-squares theorem to create a modified
witness and linear relation with exact norm claims whose validity implies the
original norm inequalities. In the following protocol description, we will use A,a, a
for matrices of polynomials, vectors of polynomials, and single polynomials and
we will use A,~a,~a when considering the rotation matrix of A, and the coefficient
vectors of a and a respectively.

CoSetup(λ,R): We define the common random string consisting of uniformly
random matrices which are used for the ABDLOP commitment [LNP22]:

crs := (A1,A2,By,Br,b) ∈ RkMSIS×m1
q ×RkMSIS×m2 ×R256/d×m2 ×Rτ×kMLWE ×Rm2 ,

where kMSIS and m2 are parameters set so that MSIS and MLWE are hard. We
are now ready to describe the CoProve algorithm.

CoProve(pp,X,W1,W2):

Round 1. In this round, the two proves need to create a commitment to the
vector s1 as well as commitments to masking vectors y1,y2,y3 and to a vector r
with constant coefficients equal to zero. This work is split between P1 and P2 as
follows.

Let s11 and s12 to be P1 and P2’s additive shares of s1 respectively. P1 then
samples s2 ← χm2 where χ is a probability distribution on ternary polynomials
in Rq. It also samples yi ← Dmi

si
for i = 1, 2 and y3 ← D256

s3
. Finally it samples

a polynomial vector r← {x ∈ Rq : x̃ = 0}τ and computes the commitments

tA1 := A1s11 + A2s2, w := A1y1 + A2y2,

ty := Bys2 + y3, tr := Brs2 + r.

P1 then sends these to P2 who computes tA := tA1 + A1s12. The first message
and corresponding challenge are then a1 := (tA, ty, tr,w) and

(R0,R1) := H(1, crs,X, a1) ∈ {0, 1}256×m1d × {0, 1}256×m1d.

8 Additive shares are the most common kind of shares considered in the distributed
setting. We note that e.g. multiplicative shares could be converted to additive shares
if needed.

11

Round 2. P1 and P2 now jointly create the response for the approximate proof
of shortness for s1. P2 begins by passing P1 the challenge R := R0 − R1. P1
then computes ~z31 := ~y3 + R~s11 and applies rejection sampling on ~z31 before
passing it to P2. P2 then computes ~z3 := ~z31 + R~s12, performing a second round
of rejection sampling, returning to the beginning of the round upon rejection.
The second message and corresponding challenge are then a2 := ~z3 and

(γi,j)i∈[τ],j∈[256+nd+2] := H(2, crs,X, a1, a2) ∈ Zτ×(256+nd+2)
q .

Round 3. The goal of the provers is now to jointly prove the following relations
over Zq:

(1) ~z3 = ~y3 + R~s1, (2) P~s1 = ~v, (3) 〈~s11,~s11〉 = B2
s11
, (4) 〈~s12,~s12〉 = B2

s12
.

By way of example, let us consider relation (3). Proving this equation over Zq is
equivalent to proving that the constant coefficient of σ(s11)>s11−B2

s11
is equal to

zero. In a similar way, the provers now aim to create a polynomial hi for which,
if its constant coefficient is zero, the relations above hold with high probability
over Zq. This is done as follows. For each i ∈ [τ], P1 creates the polynomial

hi1 := ri +
256∑
j=1

γi,j · (σ(rj)>s11)

+
nd∑
j=1

γi,256+j · (σ(pj)>s11 − σ(êj)>v)

+ γi,256+nd+1 · (σ(s11)>s11 − B2
s11

),

where rj is the polynomial vector such that its coefficient vector is the j-th row
of R. Similarly, pj corresponds to the j’th row of P and êj is the polynomial
vector so that Φ(êj) is a unit vector with its j-th element being 1. P1 then sends
hi1 to P2. P2 then computes

hi2 :=
256∑
j=1

γi,j · (σ(rj)>s12 + σ(êj)>y3 − zj)

+
nd∑
j=1

γi,256+j · (σ(pj)>s12 − σ(êj)>v)

+ γi,256+nd+2 · (σ(s12)>s12 − B2
s12

),

where zj is simply the j-th component of ~z3. P2 then computes hi := hi1 + hi2
for each i ∈ [τ]. By definition of r, the constant coefficients of h1, ..., hτ are
all zero and the other coefficients are masked by ri. The third message and
the corresponding challenge are then a3 := (h1, . . . , hτ) and µ := (µi)i∈[τ] =
H(3, crs,X, a1, a2, a3) ∈ Rτq .

12

Round 4. The goal of the proovers is to now jointly prove the τ quadratic
equations defined by the hi above. With high probability, it suffices to prove the
following equation, constructed by linearly combining the τ equations

0 =
τ∑
i=1

(256∑
j=1

γi,j · (σ(rj)>s1 + σ(êj)>y3 − zj)

+
nd∑
j=1

γi,256+j · (σ(pj)>s1 − σ(êj)>v)

+ γi,256+nd+1 · (σ(s11)>s11 − B2
s11

)
+ γi,256+nd+2 · (σ(s12)>s12 − B2

s12
)

+ ri − hi
)

(4)

Let us define

B :=
[
By

Bg

]
, tB :=

[
ty
tr

]
, m :=

[
y3
r

]
, ŝ1 :=

s11

σ(s11)
m

σ(m)

 , and ŝ2 :=

s12

σ(s12)
0
0

 .
Further, defining ŝ := ŝ1 + ŝ2, we note that Equation (4) may be written as

ŝ>D2ŝ + d>1 ŝ + d0 = 0,

where D2, d1, and d0 are public matrices (see [BLNS23, Section 6] for how they
are constructed). Now, we run the sub-protocol for proving a single quadratic
equation with automorphisms as described in [LNP22] but we split the work
between P1 and P2.
P2 begins by sending (ŝ2)>D2 and D2ŝ2 to P1. P1 can now compute the

garbage term

f1 := (ŝ1)>D2y + (ŝ2)>D2y + y>D2ŝ1 + y>D2ŝ2 + d1y,

where y := [y1 | σ(y1) | −By2 | −σ(By2)]>. P1 can then further create the
commitment t := b>s2 + f1 to f1. Then it sets f0 := y>D2y + b>y2. These can
then be passed to P2 who computes the challenge. Thus the fourth message and
corresponding challenge are a4 := (t, f0) and c := H(4, crs,X, a1, a2, a3, a4) ∈ C.

Final round. Given the challenge c, P1 begins by computing responses zi1 :=
csi1 +yi for i = 1, 2, applying rejection sampling to them and passing them to P2.
The host then computes zi := zi1 + csi2. The final message is then a5 := (z1, z2)
and the proof output by provers is then

π := (a1, a2, a3, a4, a5).

When made non-interactive via the Fiat-Shamir transform, we note that w need
not be sent, nor any of the challenges except c since these are all computable
from the other proof elements.

13

CoVerify(pp,X, π): Given a proof π the verifier recomputes the corresponding
challenges as well as D2, d1, and d0. Denoting

z :=

z1

σ(z1)
ctB −Bz2

σ(ctB −Bz2)

 ,
the verifier outputs 1 if all the following relations hold:

‖z1‖2
?
≤ B1, ‖z2‖2

?
≤ B2, ‖~z3‖2

?
≤ B3,

h̃i
?= 0 for i ∈ [τ],

A1z1 + A2z2
?= w + ctA,

z>D2z + cd>1 z + c2d0 − (ct− b>z2) ?= f0,

and 0 otherwise.

We now show that ΠCoSNIZK is a secure CoSNIZK in the sense of Definition 5.
Since these security properties are both heavily related and rely on those proven
in [LNP22], we give only a proof sketch.

Theorem 1. Let H be a secure hash function. Then ΠCoSNIZK := (CoSetup,
CoProve,CoVerify) is a complete, knowledge sound, and 1-zero-knowledge CoSNIZK
for the relation R.

Proof sketch. Completeness follows directly from the completeness of the LNP
proof system. Knowledge soundness also follows from the LNP framework: from
the perspective of an extractor, properties that hold for a malicious prover also
hold for a malicious collection of provers.

Zero knowledge also follows from the LNP proof system since this property is
only intended to protect P1’s witness and one can view P1’s messages in CoProve
as an LNP transcript for proving knowledge of s11. In the case that b = 1 (W
is a valid witness), then the LNP zero-knowledge property implies that π can
be simulated from X. Thus the adversary’s view can be simulated from π and
the witness of the corrupt prover (P2). If b = 0 (the witness is invalid) then the
adversary’s view can be directly simulated from the witness of the corrupt prover
and ⊥.

4 A New DAA Scheme

4.1 DAA Functionality and Properties

In a DAA scheme there are four main entities: a number of trusted platform
modules (TPMs), a number of hosts, an issuer and a number of verifiers. We
denote TPMs, hosts, and the issuer byM, H, and I respectively. A TPM and its
corresponding host together form a platform which can engage in a join protocol

14

with the issuer who decides whether the platform can become a member. Once a
member, TPM and host can jointly creates signatures with respect to basenames
bsn. Signing with respect to fresh basenames or bsn = ⊥ yield anonymous,
unlinkable signatures. That is, any verifier can check, via a deterministic Verify
algorithm, that the signature stems from a legitimate platform without learning
anything about the identity of the signer. If a platform signs repeatedly using
the same basename bsn 6= ⊥, it should be publicly checkable, via a deterministic
link algorithm, that those signatures stem from the same platform. DAA also
supports key-based revocation where signatures fail verification if they stem from
a TPM whose secret key is registered in a revocation list RL of rogue TPMs.

At a high level, DAA must satisfy the following security and privacy properties.
These properties are captured by the formal security model of DAA in [CDL16b]
in which the authors define the ideal functionality Fdaa for DAA in the UC
framework.

Anonymity: An adversary given two signatures with respect to two different
basenames or bsn = ⊥ cannot tell whether the signatures originate from the
same or two different honest platforms.

(One More) Unforgeability: When the issuer is honest, an adversary control-
ling n TPMs cannot create more than n unlinkable DAA signatures for the
same basename bsn 6= ⊥.

Non-Frameability No adversary can create a signature on a message m and
basename bsn which links to another signature created by an honest TPM
who never signed m w.r.t. bsn.

4.2 The Protocol

We begin by giving a high-level overview of our new DAA scheme suppressing, for
now, the artefacts needed for proving its security in the UC model such as session
identifiers. In the same vein, we present the join and signing protocols in their
complete, interactive form without separating them into sub-stages. This is done
to aid the reader’s intuition and again we leave the syntactic rearrangements
needed for UC compatibility to Section 5. We present the join and signing phases
in Figures 2 and 3 respectively.

Setup. Let q, n, n̂,m, and N be positive integers such that q = p1p2, a product
of two primes of the form pi = 5 mod 8, p1 < p2. Let d be a power of two 9

and let s, sNTRU Bs, and Bm be positive reals. Let d̂ be a positive multiple of
d. Define the system parameters sp = (q, d, n, n̂,m,N,B,U, sNTRU, spre,Bs,Btsk).
B ∈ Znd×t is sampled uniformly and used to define the function f as described in
Section 2.4 andN is the maximum number of platforms that can join. U is sampled
uniformly from Zn2d×256

q . The issuer’s public key is ipk = (C1,C2,h, bsnI) where
C1,C2 ∈ Rn×n, h ∈ Rnq , bsnI is basename unique to the issuer, and its secret
key is isk = BF,g which is a short basis for the NTRU lattice LNTRU defined by h.
Note, h, and BF,g are generated using NTRU.TrapGen as described in Lemma 1.
9 for the purposes of this work, the reader can think of d as being 64 or 128.

15

Join. The TPM samples e = (e1, e2)← Rn3 ×Rn3 and e3 ← {0, 1}256 and sets its
secret key tsk = (e1, e2, e3). Next, the TPM computes

u1 := C1e1 + C2e2 ∈ Rnq , (5)

and sends u1 along with a proof of knowledge πjoin ← ProveH
join(u1; (e1, e2))

of (e1, e2) satisfying Equation (5) such that ‖e1‖2, ‖e2‖2 ≤ Btsk. The TPM
then computes the value D := HRn×n

q
(bsnI). It then computes the error term

e′ := HRn
3
(e3, bsnI) and outputs the pseudonym nym = De1 + e′ ∈ Rnq .

The issuer, upon receiving (u1, πjoin, nym) will check the validity of the proof,
aborting if it does not pass. Furthermore, the issuer checks that the TPM
hasn’t joined previously i.e. is not in the members list ML, and that it isn’t
on the revocation list RL of rogue TPMs. To execute the first check, we define
the CheckML algorithm, which takes as input the members list ML containing
pseudonyms nymi submitted in previous successful join requests and the TPM’s
nym. The issuer rejects the TPM’s join request if ‖nym− nymi‖2 ≤ 2Btsk for any
i. For the revocation check, CheckRL, the issuer checks that for each TPM secret
key e1 ∈ RL, ‖nym−De1‖2 is not less than Btsk rejecting the join request if so.

Next the issuer samples x $← [N], computes f(x) := Coeffs−1(B ·bin(x)) ∈ Rnq .
Next, the issuer constructs c := 1>(f(x) + u1) ∈ Rq, where 1 is the column
vector containing n entries of the constant polynomial 1. The issuer then samples
a credential as s← GSampler(h,BF,g, spre, c), such that ‖s‖2 ≤ Bs and[

1 hT
]

s = c mod Rq, (6)

It then passes (s, x) to the host who checks that s is short and satisfies
Equation (6). It then stores the credential cred = (s, x).

Mi(tsk := (e1, e2, e3)) Hi(ipk := (C1,C2,h)) I(isk := BF,g,ML)

u1 := C1e1 + C2e2

πjoin ← ProveH
join(u1; (e1, e2))

u1, πjoin u1, πjoin

0/1← CheckML(nym,ML)
0/1← CheckRL(nym,RL)

0/1← VerifyH
join(u1; C1,C2)

abort if any output 0

x
$← [N]

c := 1>(f(x) + u1) ∈ Rq
s← GSampler(h,BF,g, σcred, c)

cred := (s, x) (s, x)

Fig. 2. The Join protocol for ΠLDAA.

16

Constructing πjoin. We now detail the non-interactive zero-knowledge proof
framework used by the platform in the join protocol.
It suffices for the TPM to prove knowledge of short e1, e2 ∈ Rnq satisfying the
module-LWE instance [

C−1
2 C1 In

] [e1
e2

]
= C−1

2 u1. (7)

More precisely, the TPM proves that ‖e1‖2, ‖e2‖2 ≤ Btsk for Btsk =
√
nd. Prove

this relation is exactly dealt with in [LNP22, Section 6.2] where the authors show
how one only needs to commit to e1 and prove that∥∥∥∥[e1

C−1
2 C1e1 −C−1

2 u

]∥∥∥∥
2

=
∥∥∥∥[In

C−1
2 C1

]
e1 −

[
0

C−1
2 u1

]∥∥∥∥
2
≤ Btsk.

We adopt the same parameters as given in [LNP22, Section 6.2] which yield a
proof size for πjoin of 14.4KB. Finally, the proof inherits the security properties
of correctness, zero-knowledge, and knowledge soundness. For now, we refer
to [BLNS23, Lemmata 5.5 and 5.6] and [LNP22, Theorem B.7] for the formal
statement of these results respectively. We will state these properties explicitly
for πsign in the next section.

Sign. To sign a message m with respect to a basename bsn (if bsn =⊥, the
TPM chooses one uniformly at random from the space of basenames, B), the
TPM creates the value D := HRn×n

q
(bsn). It then computes the error term

e′ := HRn
3
(e3, bsn) and outputs the pseudonym nym = De1 + e′ ∈ Rnq .

At this point, the platform (TPM and Host) collectively know short e1, e2,
e′, s, and x, satisfying

nym = De1 + e′, (8)[
1 hT

]
s = 1> (f(x) + C1e1 + C2e2) . (9)

In order to create a signature on m with respect to bsn, the platform creates
a proof of knowledge πsign ← ΠH

CoSNIZK((nym,D,h,C1,C2, f), (e1, e2, e′, s, x)) of
these short elements satisfying Equations (8) and (9) (where the message is
included in the hash input of the non-interactive proof). That is, the TPM
and host engage in a collaborative, segregated non-interactive proof (CoSNIZK)
procedure. In particular, they follow the two-party CoSNIZK design presentedx in
Section 3.3 where the TPM plays the role of a ‘closed’ prover (P1) and the host is
an open prover (P2). The host then outputs the signature sig = (nym, bsn, πsign).
We give more details of the corresponding relation and proof below.

Verify. Given a message m, signature sig = (nym, bsn, πsign), and issuer public
key ipk, the verifier checks the proof πsign (recovering D from bsn). Further,
the verifier checks the signature against the list of revoked TPMs by running
CheckRL(nym,RL) as described above. If all checks pass, it outputs 1 and 0
otherwise.

17

Mi(tsk := (e1, e2, e3),m, bsn) Hi(cred := (s, x),m, bsn)

if bsn = ⊥, bsn $← B

D := H
Rn×n

q
(bsn)

e′ := HRn
3

(e3, bsn)
nym := De1 + e′

nym

〈ProveH
sign((nym,D,h,C1,C2), (e1, e2, e′, s, x))〉

sig := (nym, bsn, πsign)

Fig. 3. The Sign protocol for ΠLDAA. The penultimate line denotes the interaction
between the TPM and Host to produce πsign (see below for πsign construction details).

Link. On input two verifying signatures (µ1, bsn, sig1) and (µ2, bsn, sig2) on
messages µ1 and µ2 for the same basename, the linking algorithm proceeds as
follows:

1. If nym1 = nym2, it outputs 1
2. Otherwise it checks that ‖nym1−nym2‖2 ≤ 2Btsk, outputting 1 if so. Otherwise

it returns 0.10

Constructing πsign. Here, we give provide some further details of how the platform
uses the CoSNIZK protocol in Section 3.3 to generate πsign. As mentioned above,
the TPM plays the role of a closed prover (no information about its witness share
is learned by the host or verifier) and the host is an open prover (its witness
share, the credential, can be learnt by the TPM but not by the verifier).

We begin by determining the statement and witness to be proven, and thus
the relation which defined the CoSNIZK.
We first combine Equations (8) and (9) into an equation of the form defined by
the relation in Equation (2). It is easily derived that, after some rearrangement,
Equations (8) and (9) can be written as one equation over Zq of the form

[
Id Φ(h>) −J1 −J2 −J3 0
0 0 0 Rot(D) 0 Ind

]
~s
~u
~e1
~e2
~e′

 =
[
~0
~nym

]
∈ Z(n+1)d

q , (10)

where J1 ∈ Zd×tq and J2, J3 ∈ Zd×ndq are matrices resulting from the product
of 1> with (f(x) + C1e1 + C2e2) on the righ-hand side of Equation (9). Note
that the apparent mismatch of dimensions on the left hand side of Equation (10)
because the first two columns of the public matrix multiply with s (which has
length 2, see Lemma 1 for the NTRU trapdoor structure). As well as the linear
10 Though Step 1 is subsumed by Step 2, equality is much easier to check and so this

flow makes linking more efficient for honestly generated signatures.

18

relation Equation (10), we must further prove the following quadratic relations:
‖~s‖2 ≤ Bs, 〈~u,~u− 1〉 = 0, and ‖~e1‖2, ‖~e2‖2,

∥∥~e′∥∥2 ≤ Btsk, where B~u = Φ(f(x))11.
Note, the two-norm of a ring element can be equivalently expressed as the inner
product of its coefficient vector with itself.

We now observe that, by Lagrange’s sum-of-four-squares Theorem, there exists
a := (a1, a2, a3, a4, 0, . . . , 0)> ∈ Zdq such that

∥∥[~s | ~a]>
∥∥

2 = Bs. Let us redefine,
via abuse of notation, ~s :=

[
~s ~a
]>. A similar elongation and reassignment can

be performed on ~e1,~e2, and ~e′. Further, note that by inserting columns of zeros
in the correct places to first matrix on the left-hand side of Equation (10), we
can replace the secret vectors in the second matrix with their elongated versions
whilst preserving the linear relation. The advantage now is that all norm bounds
(quadratic relations) to be proven are exact rather than inequalities. This makes
the proof structure much cleaner. Finally, we extend the vector ~u with zeros to
have length d so that the whole secret vector has length a multiple of d. Again
we insert (d− t) columns of zeros into the public matrix to preserve the original
equation. At this point, let us note the length of the secret vector in Equation (10):
(3n+ 1)d+ (n̂+ 1)d̂. In the following, we define m1 := (3n+ 1)d+ (n̂+ 1)d̂/d,
where we assume d̂ is a multiple of d. Thus, m1 is the number of ring elements
in the secret vector.

In order to refer to objects in Equation (10), let us label the matrices and
vectors (left to right) as P, s1, and v respectively. At this point the proof proceeds
exactly as described in Section 3.3. To help the reader, we fill in a few details of
selected proof rounds to help connect that proof flow with the particular relation
considered here.

Round 1. Let us define s(t)
1 and s(h)

1 to be the TPM and Host’s additive shares of
s1 respectively so that s(t)

1 := [0 | 0 | e1 | e2 | e′]> and s(h)
1 := [s | u | 0 | 0 | 0]>,

where u := Φ−1(~u).

Round 3. Here, the goal of the platform is now to jointly prove the following
relations over Zq:

(1) ~z3 = ~y3 + R~s1, (2) P~s1 = ~v, (3) 〈~s,~s〉 = B2
s , (4) 〈~u,~u−~1〉 = 0,

(5) 〈~e1,~e1〉 = B2
tsk, (6) 〈~e2,~e2〉 = B2

tsk, (7) 〈~e′,~e′〉 = B2
tsk

The corresponding τ equations created by the TPM are, for i ∈ [τ]

h
(t)
i := ri +

256∑
j=1

γi,j · (σ(rj)>s(t)
1 + σ(êj)>y3 − z(t)

j)

+
(n+1)d∑
j=1

γi,256+j · (σ(pj)>s(t)
1 − σ(êj)>v) + γi,256+(n+1)d+3 · (σ(e1)>e1 − B2

tsk)

11 Note that proving knowledge of a preimage of f(x) = y is equivalent to proving
knowledge of a binary ~u such that B~u = Φ(y).

19

+ γi,256+(n+1)d+4 · (σ(e2)>e2 − B2
tsk) + γi,256+(n+)d+5 · (σ(e′)>e′ − B2

tsk)

The host then computes the following before combining with h(t)
i and completing

the round.

h
(h)
i :=

256∑
j=1

γi,j · (σ(rj)>s(h)
1 + σ(êj)>y3 − z(h)

j)

+
(n+1)d∑
j=1

γi,256+j · (σ(pj)>s(h)
1 − σ(êj)>v) + γi,256,(n+1)d+1 · (σ(s)>s− B2

s)

+ γi,256,(n+1)d+2 · (σ(u)>(u− 1)).

Round 4. The goal of the platform is to now jointly prove the τ quadratic
equations defined by the hi above. With high probability, it suffices to prove the
following equation, constructed by linearly combining the τ equations

0 =
τ∑
i=1

(256∑
j=1

γi,j · (σ(rj)>s1 + σ(êj)>y3 − zj)

+
(n+1)d∑
j=1

γi,256+j · (σ(pj)>s1 − σ(êj)>v) + γi,256,(n+1)d+1 · (σ(s)>s− B2
s)

+ γi,256,(n+1)d+2 · (σ(u)>(u− 1)) + γi,256,(n+1)d+3 · (σ(e1)>e1 − B2
tsk)

+ γi,256,(n+1)d+4 · (σ(e2)>e2 − B2
tsk) + γi,256,(n+)d+5 · (σ(e′)>e′ − B2

tsk)

+ ri − hi
)

(11)

Security. We now give lemmas for the security of the CoSNIZK πsign. Though its
security is already inherited from Theorem 1, we present lemmas which make
explicit the parameter constraints which must hold for the security of πsign to
inherit its CoSNIZK security from [LNP22]. These results are due to [LNP22]
and so we only state them here. For their proof we refer the reader to the
aforementioned work. Since we assume an honest TPM in this work, any added
security concerns that might arise from the splitting of proof work between TPM
and host could only come from elements sent from the TPM to the host. It is
easy to see that, if parameters are chosen according to the following lemmas,
no information about the TPM secret key is leaked to the host. Observe that if
one considers only objects passed from TPM to host, they constitute an ‘LNP
transcript’ for a proof of only the TPMs share which is thus hidden from the
host. Furthermore, any objects passed from the host to the TPM need not hide
the credential from the TPM. Recall that the storage of the credential on the

20

host is purely to reduce the storage and computational requirements of the TPM.
Moreover, the TPM need not check that the host is using the correct credential
since if not, resulting DAA signatures will not verify.

Lemma 2 (Correctness of underlying LNP proof). Let α1, α2, α3 ∈ O(
√
λ),

d ∈ O(λ). Recall ν, ωmax from Section 2.5 and define the following standard devi-
ations:

s1 := α1ν‖s1‖2, s2 := α2ν
√
m2d, s3 := α3‖s1‖2ωmax,

and the corresponding rejection rates for i ∈ {1, 2, 3} :

Mi := exp
(√

2(λ+ 1)
log e · 1

αi
+ 1

2α2
i

)
.

Then the underlying LNP proof system is correct.

Lemma 3 (Zero-Knowledge of underlying LNP proof). α1, α2, α3 ∈ O(
√
λ),

d ∈ O(λ). Recall ν, ωmax from Section 2.5 and define the following standard devi-
ations:

s1 := α1ν‖s1‖2, s2 := α2ν
√
m2d, s3 := α3‖s1‖2ωmax,

and the corresponding rejection rates for i ∈ {1, 2, 3} :

Mi := exp
(√

2(λ+ 1)
log e · 1

αi
+ 1

2α2
i

)
.

Then the underlying LNP proof system is zero-knowledge under the
MLWE(kMSIS+256/d+τ+1),m2,χ,q assumption.

Finally, we come to soundness. The proof of this lemma can be found in [LNP22,
Theorem B.7].

Lemma 4 (Knowledge Soundness of underlying LNP proof). Let B :=
8ν
√
B2

1 + B2
2 and

q > max
(
b, 16m1dB3,

2
ωmax(λ)B

2
3

)
.

Then there exists an extractor E with the following properties. Given oracle access
to any (potentially dishonest) prover P∗, which outputs a valid LNP proof with
probability ε, the extractor runs in expected polynomial (in statement) number of
steps and with probability at least

ε−
(

2
|C|

+ p
−d/2
1 + p−λ1 + 2−128

)
,

it either outputs s1 ∈ Rm1
q such that P ~s1 = ~v and ‖s‖2 = B, or an MSISkMSIS,m1+m2,B

solution for the matrix
[
A1|A2

]
.

21

5 Security Proof

We now show that our DAA protocol satisfies the desired DAA security guarantees
captured through the ideal functionality Fdaa [CDL16b]. Before presenting our
proof sketch, we first discuss how the protocols and algorithms presented in
Section 4 have to be “UC-fied”.

5.1 UC Wrapper for our Protocol

To date, the only sound security notion for DAA is an ideal functionality in the
Universal Composability framework. Describing protocols in the UC framework
requires some extra care to include session identifiers, explicit party inputs in
interactive protocols, as well as to reflect the abstract modeling of keys and secure
channels. We start by describing the necessary sub-functionalities our protocol
relies on, and then discuss how to map our protocols to the interfaces required by
the DAA ideal functionality Fdaa. In the following discussion, the reader may find
it useful to refer to the full Fdaa functionality which we enclose in Appendix A.

Sub-Functionalities. We assume a common reference string functionality FDcrs and
a certificate authority functionality Fca available to all parties. The later allows
the issuer to register his public key, and FDcrs is used to provide all entities with
the system parameters.

For the communication between TPM and issuer (via the host) in the join
protocol, we use the semi-authenticated channel Fauth∗ introduced in [CDL16b].
For all communication between a host and TPM we assume the secure message
transmission functionality Fsmt (enabling authenticated and encrypted commu-
nication). In practice, Fsmt is naturally guaranteed by the physical proximity of
the host and TPM forming the platform.

In the description of the protocol, we assume that parties call FDcrs and Fca
to retrieve the public key of another party. Further, if any of the checks in the
protocol fails, the protocol ends with a failure message ⊥. The protocol also
outputs ⊥ whenever a party receives an input or message it does not expect (e.g.,
protocol messages arriving in the wrong order.)

Fdaa Interfaces. The Fdaa functionality considers an issuer I and the platform
consisting of a TPMMi and a host Hi. In UC, different instances of a protocol
are separated through unique session identifiers sid = (I, sid′). In the real-world
these are mapped to the issuer public key, and all parties use the sid to link their
stored key material to the particular issuer.

Setup. I upon input (SETUP, sid) generates his key pair (ipk, isk). It registers
the public key (sid, ipk) at Fca, stores the secret key as (sid, isk) and ends with
output (SETUPDONE, sid).

22

Join. To distinguish several join sessions that might run in parallel, we use a
unique sub-session identifier jsid that is given as additional input to all parties. The
join protocol starts when Hj receives the input (JOIN, sid, jsid,Mi) upon which it
triggersMi to generate u1 along with the proof πjoin, and send it via Fauth∗ to I.
When I receives the message it outputs (JOINPROCEED, sid, jsid,Mi). The join
session is complete when the issuer receives an input telling him to proceed with
join session jsid, upon which it returns cred = (s, x). This explicit interaction with
the issuer allows the issuer to perform some additional check to decide whether
Mi is allowed to join. The host stores the credential as (sid,Mi, cred) and the
TPM stores its secret key as (sid,Hj , tsk) i.e., both “remember” with whom they
joined. The join ends withMi outputting (JOINCOMPLETE, sid, jsid).

Sign. Signing is a protocol run between a TPMMi and a hostHj . Again, we use a
unique sub-session identifier ssid to allow for multiple sign sessions and unique iden-
tification of the particular session in the UC interfaces. The host Hj upon input
(SIGN, sid, ssid,Mi,m, bsn), retrieves its join record (sid,Mi, cred) and aborts if
no such record is found. It sends (ssid,m, bsn) to the TPM which then checks that
a key record (sid,Hj , tsk) exists and outputs (SIGNPROCEED, sid, ssid,m, bsn).
The signature is completed whenMi receives the input (SIGNPROCEED, sid, ssid),
upon which it computes nym. The explicit input from the TPM is necessary to
ensure that the TPM in fact “approved” the attestation of m and bsn. Finally,
the host outputs the jointly computed signature as (SIGNATURE, sid, ssid, σ).

Verify and Link. Here both algorithms are simply re-labeled as UC interfaces
with the ipk being replaced with sid, i.e. both algorithms are made available
through interfaces (VERIFY, sid,m, bsn, σ,RL) and (LINK, sid, σ,m, σ′,m′, bsn) re-
spectively.

Theorem 2. The protocol ΠLDAA presented in Section 4 securely realizes Fdaa
[CDL16b] in the (Fauth∗ ,Fca,Fsmt,FDcrs)-hybrid and random oracle model under
static corruptions, if the MLWE, MSIS, MNTRU, and Int-MNTRU-ISISf assump-
tions hold.

Owing to the long proof inherent in the UC framework, we include a proof
sketch of Theorem 2 in ??. The proof follows a similar argument to the ones
presented in existing DAA works.

6 Performance

In this section we analyze the performance of our new lattice-based DAA scheme.
Let us begin by setting the target bit-security parameter λ = 128. Throughout

this section we aim for an implicit lattice dimension of at least 1024 for all
lattice assumptions. As is common for achieving the above security level for
this dimension, we use a prime 32-bit modulus q = 232 − 99. We then ensure
a negligible soundness error as prescribed Lemma 4 by choosing the soundness
boosting parameter τ = 4, which ensures that q−τ and q−d are negligible for all

23

sensible values of d. Let us denote by mjoin
1 ,mjoin

2 the lengths of the vectors s1 and
s2 in the join protocol. Similarly, we define mjoin

1 ,mjoin
2 to be the corresponding

quantities in the sign protocol.
We now choose values of kJoin

MSIS andmjoin
2 so that MLWE is hard with parameters

((ksign
MSIS + 256/d+ τ + 1),mjoin

2 − (ksign
MSIS + 256/d+ τ + 1), χ, q) and MSIS is hard

w.r.t. (ksign
MSIS,m

join
1 +mjoin

2 , Bjoin).
Similarly, we choose ksign

MSIS and msign
2 , so that MLWE is hard w.r.t ((ksign

MSIS +
256/d + τ + 1),msign

2 − (ksign
MSIS + 256/d + τ + 1), χ, q) and MSIS is hard w.r.t.

(ksign
MSIS,m

sign
1 +msign

2 , Bsign) where χ is the uniform distribution of ternary elements
of R and Bjoin and Bsign are the two-norms of the vector [s1 s2]> in each phase.

In order to estimate the hardness of MSIS we use the relation due to Micciancio
and Regev [MR09], which states that LLL will recover a short vector of 2-norm
2(2
√
d log2 q log2 δ). δ is the root Hermite factor and δ < 1.0045 gives rise to at least

128 bits of security.
For MLWE hardness estimation we follow convention by using the estimator

[APS15]. This estimates the cost of BKZ conservatively by focusing only on the
cost of a single uSVP oracle call, a core operation in BKZ. We assume 8d uSVP
calls required for a lattice dimension d, following convention.

We must also estimate the security of the issuer’s NTRU public key. Here,
we use an implicit lattice dimension of n̂ · d̂ and modulus q. We use standard
deviation

σNTRU = γ · 1√
d̂(n̂+ 2− i)

· q1/(d̂+1), (12)

for constructing the i-th row of h := F−1 · g as prescribed by the pre-image
sampling techniques of [CPS+20], which requires γ = 1.24 for d̂ = 3. We then
run the estimator of [Dv21] for the hardness of NTRU with these parameters.
Note, n̂ > 3 would lead us into so-called ‘overstretched’ parameters since larger
n̂ forces smaller NTRU keys by Equation (12). We set the standard deviations
σ1, σ2 and σ3 needed for the correctness and zero-knowledge properties of the
LNP proof system, taking σ1 := ν‖s1‖2, σ2 := ν

√
m2d, σ3 := ‖s1‖2ωmax.

Finally, we set the bounds B1, B2, and B3 for the verification checks using
the standard tail bound of σ

√
2d for the two-norm of an elements of length d,

sampled from a discrete Gaussian of parameter σ. The resulting parameter set is
shown in Table 2.

Total sizes. We now compute the total communication cost for ΠLDAA. Beginning
with the proofs, we inherit the proof size for πjoin from [LNP22, Section 6.2]
which yield a proof size for πjoin of 14.4KB, where one can use their Huffman
encoding technique on z1 since the committed vector e1 can be seen as coming
from a discrete Gaussian on parameter

√
2/3 (for ternary e1).

Next, using the parameters of Table 2, we have that the size of πsign is 33.6KB.
A signature also comprises a pseudonym nym and basename of size 8d log q and
128 bits respectively. Thus, the final signature size is 37.7 KB.

24

Scheme TPM key size signature size

[CKLL19] 3KB > 2MB
Ours 0.77KB 37.7KB

Table 1. Key and signatures sizes for the previous state-of-the-art lattice DAA scheme
[CKLL19] as compared to this work.

parameters description value

λ security parameter 128
q modulus 232 − 99
d ring dimension for R 128
d̂ ring dimension for NTRU ring R̂ 384
ξ max coeff. of chal. space element 2
ν k-bound on chal. space element 59
τ # gargage terms rj for boosting soundness 4
m2 len. of s2 in ABDlOP commitment 25
kjoin

MSIS height of A1,A2 in ABDLOP for join 9
ksign

MSIS height of A1,A2 in ABDLOP for sign 9
χ distribution from which s2 is sampled BS1

N max # of platforms that can join 240

n dim. of TPM keys e1, e2 ∈ Rq 8
γ Gram-Schmidt slack for falcon sampling 1.5
n̂ dimension of NTRU public key h 3

sNTRU s.d. for sampling NTRU trapdoor 8.1
mjoin

1 len. of witness s1 in join 8
msign

1 len. of witness s1 in sign 34
ωmax(128) approx. rang proof param.

√
337

sjoin
1 s.d. for sampling y1 in join 4480

sjoin
2 s.d. for sampling y2 in join 7920

sjoin
3 s.d. for sampling y3 in join 587

ssign
1 s.d. for sampling y1 in sign 1929375

ssign
2 s.d. for sampling y2 in sign 7920

ssign
3 s.d. for sampling y3 in sign 252990
Bjoin

1 verification bound for z1 in join 202742
Bjoin

2 verification bound for z2 in join 633568
Bjoin

3 verification bound for z3 in join 1.7
√

256
Bsign

1 verification bound for z1 in sign 87313590
Bsign

2 verification bound for z2 in sign 633568
Bsign

3 verification bound for z3 in sign 1.7
√

256

Table 2. Example parameters for ΠLDAA.

Comparison with existing works. Table 1 displays the TPM key sizes and DAA
signature sizes for our work and we include the estimates provided for the same

25

quantities in [CKLL19] which represents the current state-of-the-art. Furthermore,
we note that the signature size provided in [CKLL19] is a very rough lower bound
since the authors calculate this figure by arguing that ‘most polynomials in Rq
have coefficients smaller than q’. Our numbers are based on the actual storage
needed for fully-fledged ring elements. All previous works give only asymptotic
parameters.

Thus, our work represents a four-fold reduction in TPM key size and impor-
tantly a reduction by 1.5 orders of magnitude (53 times) in signature size over
the state-of-the-art.

7 Future Work

An obvious next step would be to implement our proposed DAA protocol to asses
its practical efficiency. At present, the TPM specification [CCD+17] provides
interfaces optimized for operations over classical groups (e.g. group exponen-
tiation). The EU Horizon2020 FutureTPM project [Con18] has ongoing work
to design a specification appropriate for post-quantum DAA designs to be ef-
ficiently implemented and we intend to inform that process with the design in
this work. Unfortunately it is hard to assess the running time of any design from
post-quantum assumptions owing to the lack of an updated specification but a
proof-of concept implementation would be a good first step.

26

References

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015. 24

BCC04. Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel,
editors, ACM CCS 2004, pages 132–145. ACM Press, October 2004. 2

BCL08. Ernie Brickell, Liqun Chen, and Jiangtao Li. Simplified security notions of
direct anonymous attestation and a concrete scheme from pairings. Cryp-
tology ePrint Archive, Report 2008/104, 2008. https://eprint.iacr.org/
2008/104. 2

BDK+17. Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS – Kyber: a
CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report
2017/634, 2017. https://eprint.iacr.org/2017/634. 2

BFG+11. D. Bernhard, G. Fuchsbauer, E. Ghadafi, N.P. Smart, and B. Warinschi.
Anonymous attestation with user-controlled linkability. Cryptology ePrint
Archive, Report 2011/658, 2011. https://eprint.iacr.org/2011/658. 2

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework.
In ACM CCS, pages 2129–2146, 2019. 2

BL07. Ernie Brickell and Jiangtao Li. Enhanced privacy ID: A direct anonymous
attestation scheme with enhanced revocation capabilities. Cryptology ePrint
Archive, Report 2007/194, 2007. https://eprint.iacr.org/2007/194. 2

BLNS23. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessan-
dro Sorniotti. A framework for practical anonymous credentials from lattices.
In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptol-
ogy - CRYPTO 2023 - 43rd Annual International Cryptology Conference,
CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part II, volume 14082 of Lecture Notes in Computer Science, pages 384–417.
Springer, 2023. 1, 4, 6, 8, 13, 17

CCD+17. Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick,
and Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for provably
secure anonymous attestation. In 2017 IEEE Symposium on Security and
Privacy, pages 901–920. IEEE Computer Society Press, May 2017. 2, 26

CDE+17. J. Camenisch, M. Drijvers, A. Edgington, A. Lehmann, R. Lindemann, and
R. Urian. Fido ecdaa algorithm, implementation draft, 2017. 2

CDE+23. Liqun Chen, Changyu Dong, Nada El Kassem, Christopher J. P. New-
ton, and Yalan Wang. Hash-based direct anonymous attestation.
Springer, PQ Crypto, 2023. https://link.springer.com/chapter/10.
1007/978-3-031-40003-2_21. 3

CDL15. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally composable
direct anonymous attestation. Cryptology ePrint Archive, Report 2015/1246,
2015. https://eprint.iacr.org/2015/1246. 2

CDL16a. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation
using the strong Diffie Hellman assumption revisited. Cryptology ePrint
Archive, Report 2016/663, 2016. https://eprint.iacr.org/2016/663. 1,
2

27

https://eprint.iacr.org/2008/104
https://eprint.iacr.org/2008/104
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2011/658
https://eprint.iacr.org/2007/194
https://link.springer.com/chapter/10.1007/978-3-031-40003-2_21
https://link.springer.com/chapter/10.1007/978-3-031-40003-2_21
https://eprint.iacr.org/2015/1246
https://eprint.iacr.org/2016/663

CDL16b. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Universally compos-
able direct anonymous attestation. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume
9615 of LNCS, pages 234–264. Springer, Heidelberg, March 2016. 15, 22, 23,
31, 33

CDL17. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attestation
with subverted TPMs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part III, volume 10403 of LNCS, pages 427–461. Springer,
Heidelberg, August 2017. 2

CKLL19. Liqun Chen, Nada El Kassem, Anja Lehmann, and Vadim Lyubashevsky. A
framework for efficient lattice-based DAA. In Liqun Chen, Chris J. Mitchell,
Thanassis Giannetsos, and Daniele Sgandurra, editors, Proceedings of the 1st
ACM Workshop on Workshop on Cyber-Security Arms Race, CYSARM@CCS
2019, London, UK, November 15, 2019, pages 23–34. ACM, 2019. 3, 4, 25,
26

Con18. FutureTPM Consortium. Future proofing the connected world: A
quantum-resistant trusted platform module. https://futuretpm-project.
technikon.com/, 2018. Accessed: 2024-05-25. 2, 26

CPS09. L. Chen, D. Page, and N.P. Smart. On the design and implementation of an
efficient DAA scheme. Cryptology ePrint Archive, Report 2009/598, 2009.
https://eprint.iacr.org/2009/598. 2

CPS+19. Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre
Wallet, and Keita Xagawa. ModFalcon: compact signatures based on module
NTRU lattices. Cryptology ePrint Archive, Report 2019/1456, 2019. https:
//eprint.iacr.org/2019/1456. 4

CPS+20. Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre
Wallet, and Keita Xagawa. ModFalcon: Compact signatures based on
module-NTRU lattices. In ASIACCS 20, pages 853–866. ACM Press, 2020.
5, 6, 24

CTY+21. Liquan Chen, Tianyang Tu, Kunliang Yu, Mengnan Zhao, and Yingchao
Wang. V-LDAA: A new lattice-based direct anonymous attestation scheme
for vanets system. Secur. Commun. Networks, 2021:4660875:1–4660875:13,
2021. 2

CU15. Liqun Chen and Rainer Urian. DAA-A: direct anonymous attestation with
attributes. In Mauro Conti, Matthias Schunter, and Ioannis G. Askoxylakis,
editors, Trust and Trustworthy Computing - 8th International Conference,
TRUST 2015, Heraklion, Greece, August 24-26, 2015, Proceedings, volume
9229 of Lecture Notes in Computer Science, pages 228–245. Springer, 2015.
2

DFK+23. Sourav Das, Rex Fernando, Ilan Komargodski, Elaine Shi, and Pratik Soni.
Distributed-prover interactive proofs. In Guy N. Rothblum and Hoeteck
Wee, editors, Theory of Cryptography - 21st International Conference, TCC
2023, Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part I,
volume 14369 of Lecture Notes in Computer Science, pages 91–120. Springer,
2023. 3

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. IACR TCHES, 2018(1):238–268,
2018. https://tches.iacr.org/index.php/TCHES/article/view/839. 2

28

https://futuretpm-project.technikon.com/
https://futuretpm-project.technikon.com/
https://eprint.iacr.org/2009/598
https://eprint.iacr.org/2019/1456
https://eprint.iacr.org/2019/1456
https://tches.iacr.org/index.php/TCHES/article/view/839

DPP+22. Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran
Vinayagamurthy. How to prove any NP statement jointly? Efficient
distributed-prover zero-knowledge protocols. PoPETs, 2022(2):517–556,
April 2022. 3

Dv21. Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How stretched is
overstretched? LNCS, pages 3–32. Springer, Heidelberg, 2021. 24

EB. Jiangtao Li Ernie Brickell, Liqun Chen. A New Direct Anonymous Attestation
Scheme from Bilinear Maps. 2

ECE+18. Nada El Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani, Jan
Camenisch, and Patrick Hough. L-DAA: Lattice-based direct anonymous
attestation. Cryptology ePrint Archive, Report 2018/401, 2018. https:
//eprint.iacr.org/2018/401. 3

ECE+19. Nada El Kassem, Liqun Chen, Rachid El Bansarkhani, Ali El Kaafarani,
Jan Camenisch, Patrick Hough, Paulo Martins, and Leonel Sousa. More
efficient, provably-secure direct anonymous attestation from lattices. Future
Generation Computer Systems Journal, 2019. https://www.sciencedirect.
com/science/article/abs/pii/S0167739X19300536. 3

EE17. Rachid El Bansarkhani and Ali El Kaafarani. Direct anonymous attestation
from lattices. Cryptology ePrint Archive, Report 2017/1022, 2017. https:
//eprint.iacr.org/2017/1022. 3

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May
2008. 4

Gro04. Trusted Computing Group. Trusted platform module (tpm) library specifi-
cation, 2004. 2

Gro14. Trusted Computing Group. Trusted platform module (tpm) library specifi-
cation, 2014. 2

Gro19. Trusted Computing Group. Tpm 2.0: A brief overview, 2019. 2
HM84. Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge

in a distributed environment. In Robert L. Probert, Nancy A. Lynch, and
Nicola Santoro, editors, 3rd ACM PODC, pages 50–61. ACM, August 1984.
10

ID03. Anca-Andreea Ivan and Yevgeniy Dodis. Proxy cryptography revisited. In
Proceedings of the Network and Distributed System Security Symposium,
NDSS 2003, San Diego, California, USA. The Internet Society, 2003. 3

Int13. International Organization for Standardization (ISO). Iso/iec 20008-2:2013,
security techniques, anonymous digital signatures, part 2: Mechanisms using
a group public key, 2013. 2

Int15. International Organization for Standardization (ISO). Iso/iec 11889-1:2015,
trusted platform module library, part 1: Architecture, Y2015. 2

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. LNCS, pages 71–101. Springer, Heidelberg, 2022. 1, 4, 7, 8, 10, 11,
13, 14, 17, 20, 21, 24

MR09. Daniele Micciancio and Oded Regev. Lattice-based Cryptography, pages
147–191. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. 24

Nat22. National Institute of Standards and Technology (NIST). Nist post-quantum
cryptography standardization - selected algorithms, 2022. 2

29

https://eprint.iacr.org/2018/401
https://eprint.iacr.org/2018/401
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19300536
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19300536
https://eprint.iacr.org/2017/1022
https://eprint.iacr.org/2017/1022

OB22. Alex Ozdemir and Dan Boneh. Experimenting with collaborative zk-
SNARKs: Zero-knowledge proofs for distributed secrets. pages 4291–4308.
USENIX Association, 2022. 1, 3, 4, 8, 10

Ped91. Torben Pryds Pedersen. Distributed provers with applications to undeniable
signatures. In Donald W. Davies, editor, EUROCRYPT’91, volume 547 of
LNCS, pages 221–242. Springer, Heidelberg, April 1991. 3

SRC12. Ben Smyth, Mark D. Ryan, and Liqun Chen. Formal analysis of privacy in
direct anonymous attestation schemes. Cryptology ePrint Archive, Report
2012/650, 2012. https://eprint.iacr.org/2012/650. 2

WZC+18. Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. DIZK: A distributed zero knowledge proof system. IACR Cryptol.
ePrint Arch., page 691, 2018. 3

Xi14. Li Xi. Daa-related apis in tpm2.0 revisited. Cryptology ePrint Archive,
Paper 2014/052, 2014. https://eprint.iacr.org/2014/052. 2

30

https://eprint.iacr.org/2012/650
https://eprint.iacr.org/2014/052

A The DAA Ideal Functionality

Here we recall the DAA ideal functionality defined by Camenisch, Drijvers, and
Lehmann [CDL16b] in the universal composability model.

Fig. 4. The Setup and Join related interfaced of Fdaa.

31

Fig. 5. The Sign, Verify, and Link interfaces of Fdaa.

32

B Proof sketch of Theorem 2

Here we give a detailed proof sketch for Theorem 2.

To show that no environment, E , can distinguish the real world, in which it is
working with ΠLDAA and adversary A, from the ideal world, in which it uses
Fdaa with simulator S, we use a sequence of games. We start with the real world
protocol execution. In the next game we construct one entity C that runs the
real world protocol for all honest parties. Then we split C into two pieces, a
functionality F and a simulator S, where F receives all inputs from honest parties
and sends the outputs to honest parties. We start with a useless functionality,
and gradually change F and update S accordingly, to end up with the full Fdaa
and a satisfying simulator.

The proof closely follows the structure of the UC proof by Camenisch et al.
in [CDL16b], with the crucial steps occurring in Game 7, where the signatures
of honest platforms are replaced by signatures on “dummy” keys (guaranteeing
anonymity), and Games 12–15 where we let the functionality enforce the expected
unforgeability and non-frameability properties. For unforgeability we rely on the
security of credentials created by the issuer. This is exactly the Int-MNTRU-ISISf
assumption which guarantees that only the issuer can produce the preimage s
which forms part of the credential.

Game 1. This is the real world protocol.

Game 2. The challenger C now receives all inputs and simulates the real world
protocol for honest parties. Since C gets all inputs, it can simply run the real
world protocol. It also simulates all hybrid functionalities, but does so honestly, so
E does not see any difference. By construction, this is equivalent to the previous
game.

Game 3. We now split C into a “dummy functionality” F and simulator S. F
receives all inputs, and simply forwards them to S. S simulates the real world
protocol and sends the outputs it generates to F , who then outputs them to E .
This game only restructures the previous game.

Game 4. In this game we let our intermediate F handle the setup related
interfaces using the procedure specified in F . Consequently, F expects to receive
the algorithms (ukgen, sig, ver, link, identify) from the simulator. ukgen is used to
generate the secret keys of all honest TPMs by sampling them as described in the
join phase of Section 4.2. For ver, and link, S can simply provide the algorithms
from the real-world protocol, where it omits the revocation check from ver. The
sig algorithm will be a combination of the join and sign procedure though, as
it will be used to create anonymous signatures for honest platforms for which
it uses a fresh TPM key whenever the platform signs w.r.t. a new basename.
Thus, to internally create signatures via sig, the algorithm must first create a
valid membership credential for the freshly chosen tsk and then sign with this

33

new credential. So sig must contain the issuer’s private key, which the simulator
S has to be able to get.

When I is honest, S is running the issuer, i.e., it knows its secret key and sets
the sig algorithm accordingly. When I is corrupt, S starts the simulation when
the issuer registers his key with Fca that is controlled by the simulator. Since
the public key comes with a proof of knowledge of the issuer’s secret key, S can
extract the secret key from there and define the sig algorithm accordingly. By the
zero-knowledge property of the proof system, this game hop is indistinguishable
for the adversary.

Finally, for identify which is used to check whether a signature (σ,m, bsn)
belongs to a certain tsk, we use roughly the same procedure as for revocation
checks. That is, the algorithm parses σ = (nym, d, bsn), tsk = (e1, ∗), and checks
that ‖(nym−De1)‖ is small. If so it outputs 1, and 0 otherwise. Recall that we
compute pseudonyms for random d when bsn = ⊥, so this check works for all
cases.

Game 5. F now handles the verify and link queries using the provided algorithms
ver and link from the previous game, rather than forwarding the queries to S.
We do not let F perform the additional checks (Checks (ix) – (xvi)) done by F ,
though, but add these only later. For Check (xii), F rejects a signature when a
matching tsk′ ∈ RL is found, but does not exclude honest TPMs from this check
yet.

Because verify and link do not involve network traffic, the simulator does
not have to simulate traffic either, we must only make sure the outputs do not
change. F executes the algorithms that S supplied, and S supplied them in such
a way that they are equivalent to the real world algorithms, so the outcome will
clearly be equivalent.

Game 6. In this step we change F to also handle the join-related interfaces,
meaning it will receive the inputs and generate the outputs. We let F run the
same procedure as F , but again omit the additional checks (Checks (ii)–(iv)).

In the final join interface JOINCOMPLETE, the simulator has to provide the
secret key tsk of the TPM. When the TPM is honest, S knows the key anyway
and uses it towards F . If the TPM is corrupt and either the issuer or host is
honest, S extracts the vector e1 from the proof πjoin that it receives in the role
of the honest I or Hj using the knowledge soundness of the proof system and
sets tsk← (e1,⊥). Note that we do not extract nor set the part e3 of the TPM’s
secret key. This has no impact though, as tsk will only be used for internal checks
by identify for which only e1 is used.

Finally, note that F sets tsk := ⊥ when both the TPM and host are honest.
However, this has no impact yet, as the signatures are still created by the
simulator and the verify and link interfaces of F do not run the additional checks
that make use of the internally stored records and keys.

Overall, this game hop is indistinguishable by the knowledge soundness of
πjoin.

34

Game 7. We now transform F such that it internally handles the signing queries
of honest platforms instead of merely forwarding them to S. Thus, this game hop
proves the anonymity of our DAA scheme.

Again, F uses the sign interfaces from F , with the difference that it does not
perform the Check (v) – (vii) which we only add in a later game.

When both the TPM and the host are honest, F creates the signatures
internally in an unlinkable way: It chooses a new tsk per basename and TPM, or
per signature when bsn = ⊥ and then runs the sig algorithm for that fresh key.
As described earlier, sig starts by internally “issuing” a membership credential
on tsk using the issuer’s secret key that is included in sig. F keeps the internally
chosen keys 〈Mi, bsn, tsk〉 in a list DomainKeys to ensure consistency if a TPM
wishes to reuse the basename.

This change is indistinguishable by the zero-knowledge of πsign. The reduction
can be done in a straightforward manner, using a hybrid argument to replace
the signatures one-by-one.

Game 8. We change F such that it no longer informs S which message and
basename are being signed. Thus, when the TPM and host are both honest, S
does not learn m or bsn but only its leakage l(m, bsn). Recall, that signatures
for honest platforms are generated by the functionality now, so S merely as to
mimic communication between the honest TPM and host.

Game 9. We now add the constraint that when I is honest, F only allows
platforms that joined to sign, which is checked via the list Members. Note that for
our simulation we only care about platforms that are at least “partially” honest,
i.e., the host and/or TPM are honest, as otherwise there is nothing to simulate.
For such platforms, this check will not change the view of E using the simulator
S from the previous game: in the real world, an honest host and TPM both
check that they have a joined before signing. In the ideal world, S makes join
queries towards F ensuring that the joined platforms (with honest entities) are
in Members, and thus F still allows any signing that could take place in the real
world.

Game 10. In this game we let F additionally check the validity of every new tsk
that is generated or received in the join and sign interface.

If the TPM is corrupt, F checks that CheckSkCorrupt(tsk) = 1 for the tsk that
the simulator extracted from πjoin (Check (iv)). This check prevents the adversary
from choosing different keys tsk 6= tsk′ that both fit to the same signature. By
uniqueness of solutions to MLWE only one secret e1 satisfying the nym-part of
the signature (also for the “random” pseudonyms when bsn = ⊥). As there is
only a single tsk for every valid signature where identify(σ,m, bsn, tsk) = 1, this
check will never fail.

For keys of honest TPMs, F verifies that CheckSkHonest(tsk) = 1 whenever
it receives or generates a new tsk (Check (iii) and (v)). With these checks we
avoid the registration of keys for which matching signatures already exist. Since
keys for honest TPMs are chosen uniformly at random from an exponentially

35

large group and every signature has exactly one matching key, the chance that a
signature under that key already exists is negligible.

Game 11. We now add the checks to F that F runs in the sign interfaces when
internally generating signatures for honest platforms. After creating a signature,
F checks whether the signature verifies and matches the right key (Check (vi)
and (vii)). As S supplied proper algorithms and the signature scheme is complete,
these checks will obviously always succeed.
F also checks with the help of its internal key records Members and DomainKeys

that no one else already has a key which would match this newly generated
signature (Check viii). As signatures match only a single TPM key and we choose
keys of honest platforms at random from a large domain, this can happen only
with negligible probability.

In the next four game hops, we let F perform the four additional checks that
are done by F in the verification interface, i.e., we rely on F to enforce the
desired unforgeability and non-frameability guarantees. We now show that
this check does not change the verification outcome, as any signature that would
previously pass will still pass.

Game 12. F now performs an additional check during verification, it checks
whether it finds multiple tsk values matching this signature, and if so, it rejects
the signature. It is easy to see that there is only one tsk per signature for which
identify will output 1, as there is only one e1 that can lead to the pseudonym
nym (by the hardness of MLWE). Moreover, if the proof πsign is valid, multiple
matching tsk values breaks the soundness of the proof system.

Game 13. When I is honest, F now only accepts signatures on tsk values that I
has issued a membership credential on. Under the existential unforgeability of
the membership credential, this check changes the verification outcome only with
negligible probability. Valid signatures using tsk values not certified by the issuer
break the soundness of πsign (and thus break the Int-NTRU-ISISf problem).

Game 14. F now prevents forging signatures using an honest TPM’s tsk. If the
environment can distinguish this game hop, i.e., it can create a valid signature
σ for message m and basename bsn that traces via identify to an honest TPM,
but that TPM has never signed m, bsn. We can use this to break the MLWE
problem. Again, the reduction can be done in a straight-forward manner: We
use the MLWE challenge as u1 for a randomly chosen honest TPM during the
join protocol (with the possibly corrupt issuer). DAA signatures for this honest
TPM are merely simulated. If we see a valid signature that we never created, we
extract e1 from the accompanying πsign and output that as the MLWE solution.

Game 15. Check (xii) is added to F , this ensures that honest TPMs are not being
revoked. If an honest TPM is simulated by means of the Ring-LWE problem
instance, if a proper key RL is found, it must be the secret key of the target
instance. This is again equivalent to solving the MLWE problem.

36

Game 16. We now let F perform all the additional checks F makes for link queries.
The output of F based on these checks is still consistent with the output which
the link algorithm would give: If there is a tsk that matches one signatures but not
the other, by the knowledge soundness of πsign we have that the pseudonyms are
not based on the same tsk, and thus must differ which results in link outputting
0. If there is a tsk that matches both signatures, again by knowledge soundness
of πsign we have that the pseudonyms are based on the same tsk and must be
equal, resulting in link outputting 1.

Now F is equal to Fdaa, concluding our proof sketch.

37

	Collaborative, Segregated NIZK (CoSNIZK) and More Efficient Lattice-Based Direct Anonymous Attestation

