
BackdoorIndicator: Leveraging OOD Data for
Proactive Backdoor Detection in Federated Learning

Songze Li∗

Southeast University
songzeli@seu.edu.cn

Yanbo Dai∗

HKUST(GZ)
ydai851@connect.hkust-gz.edu.cn

Abstract
In a federated learning (FL) system, decentralized data owners
(clients) could upload their locally trained models to a cen-
tral server, to jointly train a global model. Malicious clients
may plant backdoors into the global model through uploading
poisoned local models, causing misclassification to a target
class when encountering attacker-defined triggers. Existing
backdoor defenses show inconsistent performance under dif-
ferent system and adversarial settings, especially when the
malicious updates are made statistically close to the benign
ones. In this paper, we first reveal the fact that planting subse-
quent backdoors with the same target label could significantly
help to maintain the accuracy of previously planted back-
doors, and then propose a novel proactive backdoor detection
mechanism for FL named BackdoorIndicator, which has the
server inject indicator tasks into the global model leveraging
out-of-distribution (OOD) data, and then utilizing the fact
that any backdoor samples are OOD samples with respect
to benign samples, the server, who is completely agnostic
of the potential backdoor types and target labels, can accu-
rately detect the presence of backdoors in uploaded models,
via evaluating the indicator tasks. We perform systematic and
extensive empirical studies to demonstrate the consistently
superior performance and practicality of BackdoorIndicator
over baseline defenses, across a wide range of system and
adversarial settings.

1 Introduction

Federated learning (FL) [36] is an emerging collaborative
training paradigm, which enables the use of computing re-
sources from multiple data owners to jointly train a global
model under the coordination of a center server. For every
global round in FL, decentralized clients locally train models
using private training data, and then provide the server with
these model updates, instead of their raw data, for aggrega-
tion to generate the global model for the next round. Despite

∗The two authors contributed equally to this work.

of respecting participants’ privacy, FL systems have shown
to be vulnerable to a series of malicious attacks, especially
poisoning attacks [2, 3, 12, 15, 16, 40, 57].

Adversaries could participate in the training procedure of
FL to upload carefully designed updates to manipulate the
global model’s performance. Poisoning attacks can be cate-
gorized into untargeted attacks [7, 12, 18, 45] and backdoor
attacks [2, 3]. While untargeted attackers aim to compromise
the overall performance of the global model, backdoor attack-
ers try to have the model misclassify to a particular target
label only when encountering predefined triggers. Previous
works have successfully planted backdoors in FL models. For
instance, Bagdasaryan et al. [2] replace the global model with
the backdoor model, through uploading a poisoned model
whose parameters are scaled up to cancel the effect of benign
updates during model aggregation; Wang et al. [52] propose to
plant edge-case backdoors utilizing data which lives in the tail
of the input distribution, to enhance the backdoor’s durabil-
ity and stealth. Compared with untargeted attacks, backdoor
attacks are especially destructive due to their stealthy nature,
as they do not influence the model behavior when backdoor
triggers are not present. This makes effectively defending
backdoor injection a challenging problem.

Previous methods to defend against backdoor attacks in
FL mainly rely on modification and scrutinisation on the
received model updates, and fall into two categories: 1) influ-
ence reduction [5, 37, 39, 49, 56] and 2) detection and filter-
ing [4,14,38,41,43,46,53,58]. Influence reduction based meth-
ods generally assume that backdoor updates are the minority
compared to benign updates. Thus, the influence of backdoor
updates on the global model can be restricted by either con-
straining the norm of model updates to an agreed bound, or
adding a sufficient amount of noise to the global model. These
methods can slow down the rate of the backdoor injection.
However, a strong attacker who can keep participating in the
training procedure, or can control multiple clients in a single
global round can still effectively inject the backdoor [49, 57];
Detection and filtering methods build upon the assumption
that introducing backdoor tasks makes the uploaded model

different from benign updates in the parameter space. These
methods focus on designing mechanisms to identify backdoor
updates, based on certain distance metrics evaluated on re-
ceived model parameters [15,41]. Several methods (e.g., [43])
also try to detect backdoor updates through manually defined
fine-grained features. Uploaded models with abnormal values
in these features are marked as suspicious, and then ruled out
from aggregation.

Table 1: Detection performance of FLAME when the attacker
adopts different poisoned learning rates (plrs). The perfor-
mance is evaluated through true positive rate (TPR), false
postive rate (FPR) and backdoor accuracy (BA).

plr TPR FPR BA

0.01 0.0 44.2 83.0
0.025 1.6 44.0 88.1
0.04 38.8 40.1 90.8

0.055 100.0 33.6 13.0

Detecting and suppressing backdoors by purely examining
and comparing model parameters may fall short, under cer-
tain system settings and adversarial strategies. For instance,
for a highly non-IID data distribution, the poisoned update
from some backdoor attack with a small learning rate can be
even closer to a benign update in parameter space, compared
with other benign updates, making it impossible to detect
this poisoned update. We empirically demonstrate the insuf-
ficiency of the current backdoor defenses through training
a CIFAR10 [28] model on an FL system with 100 clients.
The dataset is partitioned onto the clients following a non-IID
fashion, using Dirichlet sampling [21] with parameter α= 0.2.
In each global round, 10 clients are randomly selected to con-
tribute to model update. Each benign client locally trains for
2 iterations with a learning rate of 0.05. A vanilla backdoor
attacker controlling a single client tries to inject pixel-pattern
backdoor [17] into the global model, through locally train-
ing the model on the dataset containing backdoor samples.
We evaluate the detection performance of FLAME [41], the
state-of-the-art (SOTA) FL backdoor defense method, using
the metrics of true positive rate (TPR): the ratio between
the number of detected backdoor updates and the total num-
ber of backdoor updates; false positive rate (FPR): the ratio
between the number of incorrectly detected benign updates
and the total number of benign updates; and backdoor accu-
racy (BA). As shown in Table 1, while FLAME successfully
detects all backdoor updates when the attacker uses a compa-
rable poisoned learning rate (plr) of 0.055, the TPR decays
quickly to 0 as the attacker reduces its learning rate. This
leads to a backdoor accuracy of more than 80%, rendering
the FLAME defense ineffective. Also, the FPRs across all
settings are quite high. We note that the case could be even
worse if the attacker plants more stealthy backdoors, e.g.,
edge-case backdoor [52], and Chameleon [10]. Considering
the inherent limitation of the detection frameworks based on
the examination and comparison of model parameters, a new

detection paradigm is needed to provide consistent defense
performance across different settings of FL training.

In this work, we first conduct investigation on the effects of
multiple backdoors on each other when planted sequentially.
We observe that planting subsequent backdoor task with the
same target label could help to maintain the persistence of
the previously planted backdoors, once the misleading effect
caused by batch normalization (BN) statistics shift is elimi-
nated. Motivated by this observation, we propose a proactive
backdoor detection method, BackdoorIndicator, through uti-
lizing the intrinsic property of backdoor tasks, which is that
backdoor samples are out-of-distribution (OOD) samples with
respect to benign samples from the target class. Specifically,
the server will first prepare an indicator dataset using OOD
data. At the beginning of each global round, the server injects
an indicator task into the global model based on the indica-
tor dataset, and then broadcasts the global model to selected
clients. After receiving model updates from clients, the server
checks the accuracy of the indicator task after correcting the
BN statistics shift. The server marks those updates, whose
indicator accuracy is above some threshold, as suspicious, and
rules them out from aggregation.

We provide extensive experimental results on three im-
age datasets EMNIST [9], CIFAR10 and CIFAR100 [28],
with three model architectures VGG16 [48], ResNet18, and
ResNet34 [19]. We evaluate the performance of BackdoorIndi-
cator under various adversarial scenarios, where the attacker
could control either a single or multiple clients, upload dif-
ferent types of backdoors using different training algorithms,
and adopt different poisoned learning rates. We also perform
experiments for different non-IID degrees of the FL system.
We compare with several SOTA detection methods to demon-
strate the consistent superiority of BackdoorIndicator. We
further explore the influence of several key hyper-parameters
on the detection performance of the proposed method, show-
ing that BackdoorIndicator is easy to implement, and does
not exert much computation overhead to the FL system.

In summary, our contribution is of three folds: 1) We reveal
the effect that subsequently planted backdoors could help to
maintain the accuracy of previously planted backdoors, which
sheds light on a new paradigm to design backdoor detection
methods; 2) We propose a novel proactive backdoor detec-
tion mechanism for FL, BackdoorIndicator, through utilizing
the intrinsic property of backdoor tasks and leveraging OOD
data to identify backdoor updates; 3) We provide extensive
empirical results to show that BackdoorIndicator consistently
outperforms five SOTA backdoor detection methods across
various adversarial and system scenarios.

2 Background

2.1 Federated Averaging

FedAVG [2] is the baseline algorithm for implementing FL
systems. Specifically, we assume that each client i holds a
local dataset Di. FedAVG aims to minimize the summation
of the local empirical losses ∑

K
i=1 Li(θ) of K participating

clients in a decentralized manner, where we denote Li as
the cross-entropy loss over Di, and θ as the global model. In
each global round t, the server first broadcasts the current
global model θt to a subset St of randomly selected clients.
Each selected client then trains the local model θt

i based on θt

through optimizing Li over its local dataset Di, and then sends
θt

i backdoor to the central server. After receiving all updates
from clients, the server then aggregates all updates through
θt+1 = 1

|St | ∑i∈St θt
i to get the global model for the next round.

In the rest of the paper, we use FedAVG for FL training.

2.2 Backdoor Training Algorithms in FL

A backdoor attacker could choose different malicious training
algorithms to inject the backdoor model. The attacker could
simply replace a part of benign samples with constructed back-
door samples, and perform mini-batch stochastic gradient de-
scent on the mixed training data. We denote this method as the
vanilla backdoor algorithm. Based on the vanilla method, pre-
vious works have proposed more advanced methods to escape
from defenses. The attacker could train the backdoor model
using projected gradient descent (PGD) [49], where in each it-
eration the backdoor model is trained and then projected onto
an ℓ2 ball around the model of the previous iteration. This
could help to escape from the norm-clipping defense which
regularizes the norm of each received model update within a
norm bound. The attacker could also adopt Neurotoxin [57] or
Chameleon [10] to inject more durable backdoors in FL. To
implement Neurotoxin, the attacker first computes gradients
over its benign dataset, and identifies the top-k% coordinates
of benign gradients that are frequently updated by benign sam-
ples; the attacker proceeds to exclude these parameters from
backdoor training, through projecting the backdoor model, ini-
tially trained in an unconstrained way, onto the bottom-(1-k%)
parameters. Chameleon tries to enhance the backdoor durabil-
ity in FL through utilizing sample relationships. It identifies
two types of samples which dominate backdoor persistence
in FL, and utilizes contrastive learning to adjust the distance
between backdoor samples and these two types of samples
in feature space. Without modifying the model architecture,
it proceeds to train the classifier of the model while freezing
the feature encoder.

Previous studies have also proposed customized backdoor
attacks, for attackers who control multiple clients. Specifi-
cally, to plant pixel-pattern backdoors in a distributed manner,
DBA [54] is designed to decompose the global trigger into

separate local patterns, which are then embedded into the
datasets of multiple corrupted clients. 3DFed [30] is a recently
proposed backdoor attack that achieves SOTA performance
against various defense mechanisms. It proposes to camou-
flage the backdoor model through backdoor training with
constrained loss, noise mask, and decoy model. The method
first trains the backdoor model through adding a constraining
term, which is proportional to the Euclidean distance between
the trained backdoor model and the global model, to the loss
function. It then adds each backdoor model with some noise
to hide features that can be identified by the central server.
The sum of these noise masks is zero so that the global model
will not be influenced if all backdoor updates are accepted
into aggregation. For detection mechanisms which apply di-
mensionality reduction techniques, e.g., principal component
analysis (PCA), 3DFed proposes to upload extra decoy mod-
els to fool such mechanisms to select garbage dimensions
on which backdoor updates are not separated from benign
ones. The hyper-parameters of these three modules can also
be dynamically adjusted through acquiring feedback from
indicators planted in previous rounds.

2.3 Backdoor Defenses in FL

We proceed to introduce several SOTA backdoor detection
mechanisms in the following.
Multi-Krum [4] is a byzantine-robust aggregation proto-
col which is initially proposed to ensure the convergence
of distributed stochastic gradient descent, under untargeted
attackers. Specifically, for n participating clients with IID
data, Multi-Krum could effectively ensure convergence with
f malicious clients in a single round, as long as 2 f +2 < n.
For every received model update, the server first identifies
n− f −1 closest updates in Euclidean distance, and then sum-
marizes them to compute a score. The update with the lowest
score is added to the candidate set. The server then iterates to
perform selection with the rest of the updates until m updates
are selected. The global model for the next round is computed
through aggregating the updates from the candidate set.
Deepsight [43] attempts to identify backdoor updates through
measuring the fine-grained difference between model updates.
It generally assumes that the training data of backdoor models
exhibits less heterogeneity than that of benign models. Thus,
it proposes several metrics, including Division Differences
(DDifs) and Normalized Energy Updates (NEUPs), to reveal
the distribution of labels in the used training data. While
DDifs measures the difference between the predicted scores
of the local and global models, NEUPs analyzes the total mag-
nitude of the updates for the individual neurons of the output
layer. After computing these metrics, the method divides all
received updates into clusters based on DDifs, NEUPs, and
cosine similarity. Subsequently, it marks all updates with con-
siderably low NEUPs as poisoned, and high NEUPs as benign.
The method then accepts all updates in the cluster with suf-

ficient amount of benign models. Deepsight also enforces a
maximal ℓ2 norm of all updates and clip them to the agreed
bound if necessary. Finally, the final accepted updates are
aggregated to the new global model.
Foolsgold [15] assumes that the diversity of the model updates
can be utilized to separate malicious updates from benign
ones, as benign clients have unique data distributions while
attackers share the same objective. Specifically, the method
maintains a history of updates from each client, and computes
cosine similarity between pair-wise historical updates. Instead
of directly ruling out suspicious updates, Foolsgold mitigates
attacks through assigning low weight for updates with large
cosine similarity with others during aggregation.
RFLBAT [53] assumes that the difference between benign
and backdoor updates can be amplified and further identi-
fied through dimensionality reduction. The server adopting
RFLBAT filters out suspicious updates in two rounds. For the
first round, the server performs PCA on all received updates
wi to get dimension-reduced updates w′i. The server then com-
putes pair-wise Euclidean distance based on w′i, and filters
out outliers. For the second round, the server divides these
accepted updates into clusters using K-means [1], and selects
the optimal cluster based on cosine similarity. The server pro-
ceeds to exclude outliers in the optimal cluster using pair-wise
Euclidean distance to get finally accepted updates.
FLAME [41] estimates and injects sufficient amount of noise
to eliminate backdoors. The amount of noise needed is min-
imized through dynamically filtering out backdoor updates
and restricting update norms. Specifically, the method first
carries out model clustering to identify and filter out suspi-
cious updates with large deviation. The accepted updates are
then imposed a maximal ℓ2 norm, and are then clipped to the
median of the norm of all accepted updates m. Finally, the
server adds a Gaussian noise N (0,σ2) to each update, where

σ = m
ε
·
√

2ln 1.25
δ

for some privacy budgets ε and δ.

2.4 Motivation and Overview of Solution
We highlight that the above FL backdoor detection and re-
moval methods are based on computing some statistics of the
uploaded model parameters. This basic approach of examin-
ing model statistics makes these methods inherently ineffec-
tive, in scenarios where attackers can fabricate backdoor up-
dates that are statistically close or even identical to the benign
ones, as demonstrated by our motivating experiments in In-
troduction. As a major contribution of this work, we propose
a fundamentally different principle in designing backdoor
defenses in FL, based upon two key observations: 1) all back-
door samples are essentially out-of-distribution (OOD) data
to the benign dataset; and 2) subsequently injected backdoors
on the same target label (not necessarily the same trigger)
can help to maintain the accuracy of the previously injected
backdoors. Consequently, we propose a novel FL backdoor
defense mechanism BackdoorIndicator, which has the server

train the global model on OOD data as an indicator task before
sending it to the clients, and detect for any potential backdoor
injections via evaluating the indicator task. In contrast to sta-
tistical defenses, BackdoorIndicator remains effective across
all FL settings and adversarial strategies, as the leveraged
observations hold true as long as there is a backdoor attempt,
for arbitrary data distributions across clients.

3 BackdoorIndicator

3.1 Threat Model
We begin to formalize the setting through defining the threat
model in terms of the goal and capability of both the attacker
and the defender.
Attacker’s Goal and Capability. The attacker aims to in-
ject backdoors into the FL model by corrupting local clients,
making the model misbehave when encountering certain back-
door triggers while leaving other tasks uninfluenced. Once
the attacker successfully corrupts a client, it has full control
over the client’s training and model uploading process. In
this paper, we focus on targeted backdoor attackers who aim
to make the model misclassify all images with the backdoor
trigger into a specific class, denoted as the target class. The
attacker could begin the poisoning from any global round in a
continuous fashion. Notably, we leave it free for the attacker
to choose different types of backdoors for injection. We also
do not make constraints on the number of participating clients
the attacker could corrupt in every global round. As far as we
know, our paper assumes the strongest attacker ever among
all backdoor detection works, which makes the setting much
more realistic and challenging for successful defense.
Defender’s Goal and Capability. The defender intends to
detect backdoors embedded in uploaded local models through
certain defense protocol, and rules out potential malicious
models from aggregation. The defender does not have access
to either the raw data or the data distribution of local clients,
but does have white-box access to models uploaded from par-
ticipating clients. We assume that the defender has no access
to data which is in the same distribution with the raw data of
local clients.

3.2 Key Intuition
We illustrate the key intuition behind our proposed defense,
through experimentally exploring the effects of multiple back-
doors on each other, when planted sequentially. We focus on
investigating how the subsequent backdoor task influences
those who have been planted in the model.

In the following, we consider a centralized setting where an
attacker has white-box access to the training process. Specif-
ically, we assume that the adversary is running an image
classification task on CIFAR10 using ResNet18. While train-
ing the main task, the adversary tries to sequentially inject two

different backdoors, which are the car-with-vertically-striped-
walls-in-the-background semantic backdoor [2] as task A ,
and the pixel-pattern backdoor [17] as task B , into the model.
The backdoor poisoning is done by mixing up benign images
(xb,yb) and backdoor images (xp,yp) to construct the mali-
cious training dataset D1 = {{(xb,yb)

i}N
i=1,{(xp,yp)

j}M
j=1}

with N benign images and M backdoor images. The attacker
first injects backdoor A into the model starting from iter-
ation tA . When the training iteration reaches tB , backdoor
A will not be further injected. Instead, images from back-
door B will be supplemented to construct malicious training
dataset D2 = {{(xb,yb)

i}N
i=1,{(xB

p ,y
B
p)

j}M
j=1}. Notably, two

backdoor tasks share the same target label, i.e., yA
p = yB

p . To
better illustrate the influence of injecting backdoor B on the
backdoor A , we also consider another scenario where back-
door B will no longer be introduced after iteration tB . The
variation of accuracy with training iteration for different tasks
is shown in Figure 1. While the accuracy of backdoor A
gradually declines to 0 after the adversary stops poisoning,
planting subsequent backdoor B has marginal effect in main-
taining the accuracy of A , compared to stopping injecting B
after iteration tB .

0
0

20

40

60

80

100

A
cc

ur
ac

y

42 43 44 45t t
Iteration (1e3)

Main Task
Backdoor Task
Backdoor Task

0
0

20

40

60

80

100

A
cc

ur
ac

y

42 43 44 45t t
Iteration (1e3)

Main Task
Backdoor Task
Backdoor Task

Figure 1: Accuracy of backdoor A task with (Left) and with-
out (Right) backdoor B task involved after iteration tB .

Nevertheless, we find that the maintaining effect shown in
Figure 1 is rather misleading due to batch normalization (BN)
statistics shift. BN [23] is a widely employed technique to
facilitate and stabilize model training. During training, for
each training batch, the BN layer normalizes the output of the
former layer, utilizing the empirical mean and variance com-
puted from the batch. A running average of the mean and the
variance across all batches is utilized for normalization during
inference. In such a case, due to change of the training data,
the estimated mean and variance after iteration tB gradually
deviate from those of task A , and are thus no longer applica-
ble in evaluating the maintaining effect. To overcome such
BN statistics shift, we save the estimated running mean µtB−1
and variance σtB−1 in iteration tB −1, and further replace the
estimated BN statistics with µtB−1 and σtB−1 in evaluating
task A . As it is shown in Figure 2, planting the subsequent
backdoor task with the same target label significantly helps to
maintain the accuracy of the previously planted backdoor. In
contrast, the accuracy of backdoor A task quickly fades when

there is no subsequent backdoor injected after iteration tB .1

0
0

20

40

60

80

100

A
cc

ur
ac

y

42 43 44 45t t
Iteration (1e3)

Main Task
Backdoor Task
Backdoor Task

0
0

20

40

60

80

100

A
cc

ur
ac

y

42 43 44 45t t
Iteration (1e3)

Main Task
Backdoor Task
Backdoor Task

Figure 2: Accuracy of backdoor A with (Left) and without
(Right) backdoor B involved after iteration tB . BN statistics
are replaced with the estimated statistics in iteration tB −1.

These experimental results reveal the fact that under appro-
priate evaluation, the persistence of the previously injected
backdoor could be tremendously enhanced by the subse-
quently planted backdoor. The reason behind the maintaining
effect touches the intrinsic property of backdoor tasks - back-
door samples are out-of-distribution (OOD) samples with
respect to benign samples from the target class. Training
backdoor tasks generally constructs OOD mappings between
backdoor samples and the target class, while keeping the orig-
inal in-distribution (ID) mappings between benign samples
and the target class unaffected. When the adversary stops
training backdoor tasks, only ID mappings are introduced
and the OOD mappings are gradually erased. In such a case,
injecting subsequent backdoor helps to maintain the previous
OOD mappings, thanks to the shared OOD characteristics
relative to the ID data, even for different backdoor triggers
and types, and hence the accuracy of the previously planted
backdoor can be preserved.

The above observations motivate us to design a novel back-
door detection mechanism which does not rely on statistical
comparison of received updates. The idea is that the server in
FL can inject certain “backdoor task”, termed as the indica-
tor task, before broadcasting the global model to the clients.
The accuracy of the designed indicator task is expected to
quickly fade under benign training at the clients, but will be
maintained by backdoors injected at adversarial clients. After
receiving all uploaded models, the server can then check the
accuracy of the indicator task after correcting the BN statis-
tics shift. All updates with high accuracy on the indicator
task are considered suspicious and filtered out from aggrega-
tion. The major challenge here is that the server, in the FL
setting, is completely agnostic of the unknown backdoors po-
tentially injected by adversarial clients, and we need to design
an indicator task, whose accuracy is well maintained by any
unknown backdoors. We achieve this goal by proposing a
novel backdoor detection mechanism in FL, BackdoorIndica-
tor, who leverages OOD data to construct the indicator task.

1Note that the observations made here are for this particular example to
motivate our design, but may not hold for arbitrary backdoor combinations.

We next proceed to describe the details of BackdoorIndicator.

3.3 Detailed Methodology

Algorithm 1: BackdoorIndicator
Input: Indicator Dataset Do, number of training

iterations and learning rate in training the
indicator task: E, η, weight of the
regularization term λ and suspicious threshold
εI . set of the selected local client at round t: St .

Output: Global model at global round t +1: Gt+1

// Server initialize at global round t
1 The server saves estimated running mean and variance

as µM and σM . wind ← Gt

2 for e = 1, ...,E do
3 The indicator model wind =

wind−η∇(Ltask(wind ,Do)+λ||wind−Gt ||2)
4 end
5 The server saves estimated running mean and variance

as µI and σI .
6 The server replace the BN statistics in wind with µM

and σM .
7 The server broadcasts wind
// Clients perform local training

8 Clients initialize with wind
9 for client i ∈ St do

10 for ei = 1, ...,Ei do
11 Local model Li = Li−ηi∇Ltask(Li,Di

b)
12 end
13 end
14 Clients update ∆wi = Li−wind to the server

// Server checks indicator accuracy and
aggregates

15 A← []
16 for i ∈ St do
17 Li← wind +∆wi
18 Li←(replace BN statistics with µI and σI)
19 {α1,α2, ...,αN}← (check the accuracy of the

indicator task on Li)
20 αm = max({α1,α2, ...,αN})
21 if αm < εI then
22 A← [A; i] /* Accept update i */
23 end
24 end
25 Gt+1 = wind +

1
|A| ∑i∈A ∆wi

To implement BackdoorIndicator, the server first needs to
prepare some OOD data and corresponding indicator task. In
each FL training round, the server starts with saving the BN
statistics of the global model from the last round, denoted
as µM and σM . Then the server trains over the OOD data to
inject the indicator task, and records the estimated running

means µI and variances σI in BN layers. Afterwards, the
server replaces the BN statistics in the trained model with
µM and σM to alleviate any influence of indicator task on the
main task performance, and broadcasts the indicator-injected
global model to the selected clients.

After the clients finish local training and upload local mod-
els back to the server, the server first replaces BN statistics in
received models with µI and σI , and then checks the accuracy
of the indicator task. Any received model with the accuracy
exceeding certain threshold is considered suspicious and will
be ruled out from aggregation. Detailed algorithm is shown
in Algorithm 1. We next elaborate details in each step.
Indicator Task Selection. The server faces two crucial chal-
lenges when designing the indicator task: the server is ag-
nostic of 1) the types and triggers; and 2) the target labels of
potentially injected backdoors.

To tackle the first challenge, the selected indicator task
should be effective for all potential backdoors, which means
that the OOD mapping introduced by the indicator task should
be maintained by any type of injected backdoor. Inspired
by the fact that all backdoor samples are essentially OOD
samples with respect to the benign samples of the target class,
we choose a certain amount of out-of-distribution samples,
which have distinct real labels with samples from the benign
dataset, to construct the indicator dataset. For example, we
could sample data from EMNIST dataset or from CIFAR100
dataset to construct the indicator dataset for the training on
CIFAR10. Specifically, let (xb,yb), (xo,yro) be the benign and
indicator feature-label pair respectively, where yro represents
the real label of xo. Also, we denote Yb, Yro as the benign and
indicator label space separately. The server should inject the
indicator task which satisfies Yb∩Yro = /0 to achieve decent
detection performance. Notably, such indicator data is easy to
acquire as it does not require access to the in-distribution data.
The server could adopt public datasets, generated samples or
simply randomly generated noise masks.

To address the second challenge, while the server does
not know the target labels of potential backdoors, it should
uniformly sample labels from the benign label space, and
assign the label to each of the indicator samples. That is, the
construction of the indicator dataset D0 is done such that

Do = {(xi
o,y

i
o)}N

i=1, yi
o ∼U(Yb). (1)

Injecting Indicator Task. At the beginning of every FL
global round t, the server first saves the estimated running
mean µM and running variance σM of the global model Gt .
The server proceeds to train the indicator task using the con-
structed indicator dataset, via optimizing the cross-entropy
loss Ltask. To control the influence of injecting the indica-
tor task on the main task, we add a regularization term to
punish updates which deviate too much from the original
model. Specifically, let wind be the indicator model, the server
minimizes the following loss with respect to Do.

L = Ltask +λ|̇|wind−Gt ||2, (2)

where λ denotes the weight of the regularization term. After
the server finishes training the indicator task, it records the esti-
mated running mean µI and variance σI of the indicator model,
and then replaces the BN statistics with previously saved µM
and σM . This can help to reduce the influence brought by
injecting the indicator task on the main task accuracy, caused
by the difference in the data distribution between the indicator
dataset and main task dataset. The server then broadcasts the
indicator model to selected clients, who then conduct local
training using their private datasets, and upload the updated
local model back to the server.
Inspecting Indicator Accuracy. After receiving models from
clients, the server proceeds to inspect the performance of the
indicator task on each model. As the first step, the server re-
places BN statistics of each received model with the saved µI
and σI , correcting the BN statistics shift. Next, the server eval-
uates the accuracies of samples belonging to different labels in
the indicator dataset. Specifically, suppose that the main task
has N = Yb classes, the server computes an accuracy array
Acc = {α1,α2, ...,αN}, where αi represents the test accuracy
of all data samples assigned label i in the indicator dataset Do.
The server then selects the maximum value αm in Acc, and
regards it as the indicator accuracy. If the indicator accuracy
αm of a local model exceeds the suspicious threshold εI , the
model will be marked as backdoor model and excluded from
aggregation. The corresponding label m is considered to be
the backdoor target label of the attacked model.

4 Evaluation

In this section, we provide extensive experimental results
to demonstrate the effectiveness of BackdoorIndicator, by
comparing its backdoor detection performance with sev-
eral SOTA backdoor detection mechanisms, including Multi-
Krum [4], Deepsight [43], Foolsgold [15], RFLBAT [53]
and FLAME [41]. Specifically, we consider scenarios where
an adversary launches backdoor attacks of different types,
using different malicious training algorithms, and starting
from different global rounds. We also consider the scenar-
ios where the attacker could train the backdoor model us-
ing different poisoned learning rates (plrs), and control ei-
ther a single client or multiple ones in each global round.
We further conduct experiments in FL systems with dif-
ferent non-IID degrees to demonstrate the universal supe-
riority of BackdoorIndicator. Finally, we reveal how sev-
eral key hyper-parameters influence the detection perfor-
mance of BackdoorIndicator. Our code is available at https:
//github.com/ybdai7/Backdoor-indicator-defense.

4.1 Experiment Setup

Our experiment implements an FL system running image
classification tasks using FedAVG [36], on a single machine

using an NVIDIA GeForce RTX 4090 GPU with 24GB mem-
ory. We evaluate the performance of the proposed method on
three computer vision datasets: CIFAR10, CIFAR100 [28],
and EMNIST [9] with three model architecture: VGG16 [48],
ResNet18, and ResNet34 [19]. During the training process,
10 out of total 100 clients are randomly selected to contribute
to aggregation in every global round. For all three datasets,
we randomly split the dataset over clients in a non-IID fashion
utilizing Dirichlet sampling [21]. The sampling parameter α

is set to 0.2 by default to represent a challenging setting of se-
vere data heterogeneity. We also evaluate BackdoorIndicator
under different non-IID settings.
Evaluation Metric. We evaluate the detection performance
through a set of metrics: true positive rate (TPR), false posi-
tive rate (FPR), and backdoor accuracy (BA). TPR suggests
how well the detection mechanism identifies adversarial back-
doors, which is computed as the ratio of correctly identified
malicious updates to the total number of malicious updates.
FPR indicates how well the detection mechanism discrimi-
nates backdoor updates with benign updates. It is computed
as the ratio of benign clients who are mistakenly classified
as malicious to the total number of benign updates. As the
true negative rate (TNR) and false negative rate (FNR) can
be computed as 1 minus FPR and TPR respectively, we only
show results of TPR and FPR to evaluate different backdoor
defenses methods. BA is the accuracy of the backdoor task
on the global model when the attacker stops poisoning.
Attack Settings. We validate the defense performance of our
proposed method through considering an attacker who aims
to inject different types of backdoor using different malicious
training algorithms. Malicious training algorithms and back-
door types are considered as main factors that influence the
strength and stealth of the injected backdoor. Pixel-pattern
backdoors [17] are the most widely evaluated backdoor in FL
settings, which overlay fixed pixel-patterns over the original
image as the backdoor trigger. The backdoor trigger chosen
for Blendeded backdoors [6] is randomly generated noise
map sampled from uniform distribution, which is mixed up
with benign images to construct backdoor samples. While
aforementioned backdoors need to modify benign images
to construct backdoor images, semantic backdoors [2] can
be chosen as any naturally occurring feature of the physical
world, and do not require the attacker to modify original im-
ages. Specifically, we choose the semantic backdoor to be
the car-with-vertically-striped-walls-in-the-background [2] in
CIFAR10. Edge-case backdoors [52] proceed to poison the
model using data that lives in the tail of the input distribution.
Model updates trained utilizing such data are considered to be
less likely to conflict with other benign updates. This results
in a more durable backdoor model against the vanishing back-
door effect [10, 57], and also a more stealthy model which
can escape from backdoor detection.

As for the malicious training algorithm, an Vanilla back-
door attacker first constructs a malicious training dataset

https://github.com/ybdai7/Backdoor-indicator-defense
https://github.com/ybdai7/Backdoor-indicator-defense

Table 2: Detection performance of all evaluated methods under single client attack with different settings on CIFAR10. The
performance is evaluated through the triplet of TPR/FPR(BA). The poisoning lasts for 250 global rounds.

train alg. bkdr. types rds. No defense Multi-Krum Deepsight Foolsgold RFLBAT FLAME Indicator

Vanilla

semantic
400 0.0/0.0 (46.2) 0.0/44.3 (71.2) 4.4/5.7 (38.9) 49.2/47.9 (18.2) 0.4/7.3 (33.0) 0.0/43.5 (44.6) 72.3/26.0 (0.0)
800 0.0/0.0 (54.3) 0.0/44.3 (81.4) 0.8/4.0 (58.1) 40.4/51.8 (47.7) 0.4/13.0 (45.4) 0.0/44.1 (48.6) 90.1/22.5 (0.0)

1200 0.0/0.0 (83.2) 0.4/44.2 (81.5) 3.6/6.5 (60.8) 54.8/53.4 (60.9) 1.2/12.5 (63.7) 0.8/44.1 (95.4) 86.4/23.9 (0.0)

pixel
400 0.0/0.0 (41.3) 0.0/44.3 (76.8) 0.4/2.5 (46.9) 66.4/48.2 (23.6) 0.4/6.1 (55.2) 0.0/44.0 (69.2) 95.2/25.7 (6.2)
800 0.0/0.0 (71.6) 0.0/44.2 (80.2) 8.0/4.6 (46.8) 68.4/49.9 (47.9) 0.0/11.6 (68.8) 0.0/44.1(87.4) 95.2/22.2 (9.5)

1200 0.0/0.0 (78.3) 0.4/44.2 (91.3) 6.0/6.1 (44.7) 71.2/51.7 (44.9) 0.8/13.1 (77.9) 1.6/44.0 (88.1) 99.2/15.0 (15.5)

blend
400 0.0/0.0 (46.4) 0.0/44.3 (65.1) 3.6/6.2 (56.2) 3.6/45.4 (64.5) 0.0/8.3 (79.1) 0.0/44.0 (70.5) 63.6/37.2 (29.8)
800 0.0/0.0 (73.3) 0.0/44.2 (83.8) 4.0/6.0 (78.7) 19.6/46.6 (77.3) 0.0/11.7 (88.3) 0.4/44.0 (90.2) 72.4/27.9 (5.1)

1200 0.0/0.0 (79.5) 0.4/44.2 (90.9) 8.8/10.0 (72.9) 28.4/47.7 (74.3) 0.0/12.3 (90.4) 2.4/44.0 (92.1) 83.9/25.0 (7.2)

edge
400 0.0/0.0 (38.12) 0.0/44.3 (48.1) 1.2/3.0 (50.0) 4.0/44.5 (47.7) 0.0/8.3 (61.2) 0.0/43.4 (76.6) 63.6/26.0 (22.5)
800 0.0/0.0 (39.9) 0.0/44.3 (86.7) 2.4/5.1 (54.0) 24.4/48.6 (41.6) 0.0/11.2 (58.3) 0.8/44.0 (79.2) 78.8/18.2 (25.7)

1200 0.0/0/0 (49.4) 0.0/44.3 (66.5) 5.2/7.5 (46.2) 23.6/46.1 (42.4) 0.4/13.9 (53.8) 0.0/44.2 (87.8) 73.2/23.3 (12.1)

PGD

semantic
400 0.0/0.0 (39.2) 0.0/44.3 (83.6) 3.2/4.5 (54.7) 34.4/43.6 (21.4) 0.4/7.4 (42.6) 0.0/43.7 (81.4) 90.8/24.8 (0)
800 0.0/0.0 (43.2) 0.0/44.3 (72.8) 7.6/5.8 (12.5) 26.4/44.4 (53.5) 0.0/12.3 (60.6) 0.4/44.0 (97.3) 73.6/23.5 (0)

1200 0.0/0.0 (60.2) 0.0/44/3 (86.0) 3.2/5.0 (38.5) 38.4/48.5 (44.0) 0.0/12.0 (57.4) 0.0/44.3 (96.8) 74.8/19.6 (0)

pixel
400 0.0/0.0 (48.8) 0.0/44.3 (73.6) 8.0/8.6 (31.4) 66.4/49.1 (10.3) 0.0/7.6 (52.8) 0.0/43.8 (73.9) 77.6/28.0 (23.3)
800 0.0/0.0 (58.2) 0.0/44.3 (85.5) 0.2/5.8 (36.3) 67.6/51.6 (47.0) 0.0/11.0 (71.6) 0.0/44.1 (87.3) 87.6/20.7 (13.5)

1200 0.0/0.0 (71.7) 0.0/44.3 (92.6) 8.4/7.9 (45.8) 71.6/52.6 (56.2) 0.0/12.4 (79.6) 0.4/44.0 (94.0) 94.0/18.9 (12.3)

blend
400 0.0/0.0 (82.1) 0.0/44.2 (77.3) 4.0/6.5 (62.3) 74.0/47.6 (18.2) 0.0/6.3 (85.2) 0.0/44.0 (91.3) 80.8/41.4 (5.2)
800 0.0/0.0 (72.4) 0.0/44.3 (84.0) 4.0/4.1 (65.5) 54.4/49.2 (58.0) 0.8/10.3 (72.3) 0.0/44.2 (98.0) 66.8/25.6 (22.6)

1200 0.0/0.0 (70.1) 0.0/44.3 (88.4) 1.6/5.2 (72.3) 49.2/51.1 (69.4) 0.4/11.7 (88.3) 1.2/44.0 (91.9) 88.8/22.1 (14.7)

edge
400 0.0/0.0 (56.2) 0.0/44.2 (56.9) 3.6/5.9 (45.9) 32.8/47.1 (39.7) 0.0/7.8 (50.5) 0.0/43.9 (40.6) 52.0/24.5 (23.1)
800 0.0/0.0 (60.5) 0.0/44.3 (84.4) 2.4/4.5 (60.6) 52.4/50.3 (44.7) 0.4/11.6 (45.4) 0.0/44.1 (68.3) 64.8/25.6 (13.5)

1200 0.0/0.0 (63.7) 0.0/44.3 (80.4) 6.8/8.0 (58.8) 9.6/47.6 (63.1) 0.0/14.1 (48.1) 0.4/44.1 (75.4) 65.2/20.8 (10.4)

Neurotoxin

semantic
400 0.0/0.0 (74.6) 0.0/44.2 (85.4) 4.8/5.7 (13.2) 29.6/44.0 (31.9) 0.0/8.1 (26.2) 0.0/43.2 (70.6) 71.6/38.2 (0.0)
800 0.0/0.0 (80.2) 0.0/44.3 (93.1) 8.0/8.3 (59.0) 46.4/47.8 (44.0) 0.4/10.0 (61.9) 0.8/44.0 (88.8) 75.6/22.7 (28.2)

1200 0.0/0.0 (93.7) 0.8/44.2 (91.7) 8.0/6.8 (56.6) 58.4/50.5 (62.4) 0.8/13.1 (74.5) 0.0/44.2 (90.2) 72.0/22.0 (27.7)

pixel
400 0.0/0.0 (59.6) 0.0/44.2 (70.6) 9.6/8.5 (30.2) 32.4/48.0 (27.8) 0.0/6.7 (56.2) 0.0/43.8 (80.0) 57.2/38.9 (32.7)
800 0.0/0.0 (74.0) 0.0/44.3 (80.3) 6.0/5.4 (34.2) 39.2/53.1 (64.5) 0.0/12.0 (69.0) 0.0/44.1 (87.3) 95.6/20.2 (5.9)

1200 0.0/0.0 (80.4) 0.0/44.3 (91.2) 4.8/5.4 (40.5) 62.4/45.9 (61.1) 0.4/11.5 (85.2) 0.8/44.1 (92.0) 90.0/20.6 (5.2)

blend
400 0.0/0.0 (78.9) 0.0/44.2 (89.6) 4.4/5.6 (55.4) 42.0/49.1 (29.3) 0.0/7.6 (63.7) 0.0/44.0 (73.0) 44.0/18.3 (26.1)
800 0.0/0.0 (85.3) 0.0/44.3 (97.4) 2.4/6.0 (55.5) 41.2/47.4 (60.1) 0.0/10.9 (68.6) 0.0/44.0 (86.2) 70/17.5 (34.2)

1200 0.0/0.0 (83.6) 0.0/44.3 (91.4) 6.0/5.3 (64.3) 59.2/47.6 (63.3) 0.4/14.4 (74.5) 0.8/44.0 (90.6) 78.4/22.7 (7.4)

edge
400 0.0/0.0 (58.5) 0.0/44.2 (37.5) 4.8/4.5 (28.8) 30.8/43.2 (31.2) 0.0/6.3 (50.5) 0.0/43.8 (57.9) 77.4/28.3 (5.5)
800 0.0/0.0 (46.9) 0.0/44.3 (58.5) 5.6/5.8 (47.5) 37.2/54.2 (46.2) 0.4/11.8 (54.0) 0.0/44.0 (69.0) 50.0/29.7 (25.6)

1200 0.0/0.0 (64.3) 0.4/44.2 (75.9) 10.4/7.4 (63.0) 7.6/47.3 (59.4) 0.4/15.1 (61.1) 0.8/44.0 (80.0) 81.6/17.2 (19.5)

Chameleon

semantic
400 0.0/0.0 (20.6) 0.0/44.3 (20.7) 3.2/6.5 (20.8) 0.0/49.3 (10.2) 0.0/8.3 (14.8) 0.0/43.7 (28.6) 16.8/24.6 (19.6)
800 0.0/0.0 (35.2) 0.0/44.3 (52.4) 4.0/4.5 (25.1) 40.4/45.9 (23.1) 0.0/12.6 (49.1) 4.0/43.7 (39.0) 59.6/23.6 (16.4)

1200 0.0/0.0 (58.7) 0.0/44.3 (60.9) 6.4/11.7 (50.0) 7.6/47.4 (42.0) 0.0/11.6 (52.9) 1.6/44.0 (77.1) 64.0/21.2 (6.2)

pixel
400 0.0/0.0 (58.1) 0.0/44.3 (61.1) 9.2/7.4 (34.1) 51.2/47.8 (32.9) 0.0/8.4 (43.2) 1.2/43.7 (66.9) 74.0/24.6 (19.0)
800 0.0/0.0 (84.6) 0.4/44.2 (88.4) 3.2/4.2 (48.8) 70.0/50.5 (38.1) 0.4/10.3 (74.5) 1.2/43.9 (91.1) 76.4/16.4 (15.1)

1200 0.0/0.0 (80.2) 0.0/44.2 (95.1) 4.0/4.0 (55.6) 57.6/45.9 (58.4) 0.4/13.1 (83.6) 5.2/43.5 (90.4) 81.6/19.4 (18.0)

blend
400 0.0/0.0 (87.0) 0.0/44.3 (96.9) 4.4/7.7 (75.0) 0.8/49.1 (82.0) 0.0/6.5 (85.5) 0.0/43.9 (85.7) 53.2/27.2 (29.7)
800 0.0/0.0 (81.0) 0.0/44.3 (82.5) 1.6/5.0 (62.2) 29.6/50.3 (72.0) 0.8/10.8 (64.0) 0.0/44.3 (90.7) 64.8/24.1 (28.1)

1200 0.0/0.0 (82.3) 0.4/44.2 (91.2) 4.8/6.6 (72.5) 0.0/48.9 (87.0) 0.0/12.8 (80.2) 2.8/43.8 (96.1) 68.8/21.8 (29.8)

edge
400 0.0/0.0 (40.6) 0.0/44.3 (51.4) 1.6/5.7 (44.1) 0.0/45.7 (41.6) 0.0/8.6 (48.2) 0.0/44.1 (53.4) 28.0/27.5 (11.8)
800 0.0/0.0 (53.5) 0.0/44.3 (61.3) 8.4/5.2 (43.3) 48.8/49.2 (44.5) 0.0/11.4 (50.0) 0.4/44.1 (93.2) 56.0/23.9 (19.5)

1200 0.0/0.0 (60.6) 0.4/44.2 (86.5) 9.6/9.0 (49.7) 34.0/46.2 (46.8) 0.0/11.6 (55.1) 1.6/44.0 (86.7) 77.6/18.9 (28.6)

through mixing up backdoor samples with benign samples;
the backdoor model is then trained on the constructed dataset
through optimizing the cross-entropy loss. PGD backdoor
attacker, however, trains the backdoor model using projected
gradient descent (PGD) [49], which periodically projects the
model parameters on a ball centered around the model of the
previous iteration, to escape the norm-clipping defense that
mitigates the effect from abnormally large updates. We also
consider two malicious training algorithms, Neurotoxin [57]

and Chameleon [10], which aim to plant more durable back-
doors. While Neurotoxin tries to inject the backdoor using
parameters which are not frequently updated by benign clients,
Chameleon enhances the backdoor durability through utiliz-
ing sample relationships, and trains the backdoor model using
supervised contrastive learning [26].

We consider scenarios where the backdoor attacker can
choose to either corrupt a single or multiple clients in every
global round, and train the backdoor model with different poi-

soned learning rates (plr). We additionally evaluate two more
malicious training algorithms, DBA [54] and 3DFed [30],
designed especially for multiple client attacks. DBA decom-
poses a global pixel-pattern trigger into separated local pat-
terns, and then embeds them into the dataset of multiple cor-
rupted clients for local poisoning to achieve a more persistent
and stealthy backdoor. 3DFed proposes to camouflage back-
door models through three well-designed evasion modules,
and dynamically adjust the hyper-parameters through obtain-
ing feedback from previous global round.

Also, we do not impose constraints on the global round at
which the attacker initiates poisoning. Specifically, we assume
that the attacker may start poisoning from global rounds 400,
800, or 1200, representing distinct training stages of the main
task. Once the poisoning begins, the attacker consistently par-
ticipates and injects backdoor models for a specified number
of global rounds, determined according to specific tasks.
Baseline Defenses. We compare with multiple SOTA back-
door detection methods described in Section 2.3, which are
Multi-Krum [4], Deepsight [43], Foolsgold [15], RFLBAT
[53] and FLAME [41]. Specifically, as Foolsgold assigns
weight for different model updates instead of directly ruling
out suspicious updates, we choose updates whose assigned
weights are smaller than 0.5 to compute the TPR and FPR.
Indicator Settings. To successfully implements Back-
doorIndicator, the server needs to sample a certain number
of OOD data to construct the indicator dataset. We randomly
select samples from CIFAR100 to construct the indicator
dataset for CIFAR10 task. While for CIFAR100 and EMNIST
task, the indicator dataset is built by samples from CIFAR10.
We set the size of the indicator dataset to 800 by default. For
detailed hyper-parameter settings, the weight of the regulation
term λ in (2) is set to 0.1, and the suspicious threshold is set
to 95 for CIFAR10 and EMNIST tasks, and 85 for CIFAR100
tasks. At the beginning of every global round, the server trains
the indicator task for 200 iterations. We also vary the source,
size of the indicator dataset, and several key hyper-parameters
to reveal their influence on the detection performance.

4.2 Detection Performance

Performance under single client attack. Table 2 presents
the detection performance of all evaluated methods on CI-
FAR10 under single client attack with various adversarial
settings. Compared with other detection mechanisms, Back-
doorIndicator achieves both the lowest backdoor accuracy
and the highest TPR under all considered adversarial set-
tings. We can also see that the FPR of BackdoorIndicator
is only about the half of the method with the second highest
TPR. For vanilla attackers with the intention to inject pixel-
pattern backdoors, BackdoorIndicator successfully identifies
over 95% of all malicious updates and limits the backdoor
accuracy at around 10%. Specifically, for the attacker who
starts poisoning at 1200 global rounds, BackdoorIndicator

achieves 99.2% TPR and 15.5% BA, and only misclassifies
15.0% of benign updates as backdoor updates. Foolsgold has
44.9% BA and 71.2% TPR, which is the second highest of
all evaluated methods. However, to achieve such detection
performance, Foolsgold misclassifies over half of the benign
updates as backdoor updates, which is three times higher than
that of BackdoorIndicator.

Table 3: Detection performance of all evaluated methods on
CIFAR100 and EMNIST under single client attack. The ma-
licious training algorithm and the backdoor type are Vanilla
and pixel-pattern. The adversary starts poisoning from 1200
global round. The poisoning lasts for 250 global rounds.

methods CIFAR100 EMNIST

No defense 0.0/0.0 (84.5) 0.0/0.0 (91.8)
Multikrum 0.0/44.3 (87.8) 5.0/43.5 (99.1)
Deepsight 6.4/2.7 (61.3) 19.0/12.8 (51.4)
Foolsgold 0.0/0.0 (84.4) 52.0/46.4 (73.6)
RFLBAT 0.4/9.7 (85.5) 1.0/10.0 (90.4)
FLAME 0.4/44.2 (87.8) 41.0/39.6 (97.6)
Indicator 85.2/15.8 (7.3) 99.0/35.4 (9.6)

BackdoorIndicator can effectively detect more stealthy
backdoors injected by vanilla adversaries. Specifically, Back-
doorIndicator could identify blended backdoors with 83.9%
TPR and 7.2% BA, and edge-case backdoors with 73.2% TPR
and 12.1% BA. However, Foolsgold can only successfully de-
tect 28.4% and 23.6% of backdoor updates for blended back-
door and edge-case backdoor respectively, resulting 74.3%
and 42.4% BA for these two backdoors.

BackdoorIndicator can also successfully identify backdoor
updates trained with more advanced algorithms. For PGD
attackers who inject pixel-pattern backdoor from 1200 global
rounds, BackdoorIndicator filters out 94.0% of all backdoor
updates to achieve 12.3% BA, while the largest TPR of the
rest methods is 71.6% with 56.2% BA. BackdoorIndicator
achieves the best performance for pixel-pattern backdoor up-
dates trained using Neurotoxin and Chameleon from 1200
global rounds, with the TPR/FPR (BA) triplet as 90.0/20.6
(5.2) and 81.6/19.4 (18.0) respectively.

BackdoorIndicator can identify backdoor planted from dif-
ferent training stages. Vanilla attackers can successfully plant
blended backdoors against other methods through poison-
ing model starting from 400 global rounds, which is the
early training stage. The highest TPR and the lowest BA
for all evaluated methods is 3.6% and 56.2%, compared
with BackdoorIndicator which detects 63.6% of backdoor
updates and achieves 29.8% BA. Attackers could also adopt
more advanced algorithm to increase BA for blended back-
door. Chameleon attackers achieve a BA higher than 75%
against other methods. However, they still fail to bypass Back-
doorIndicator, which achieve 53.2% TPR and 29.7% BA.
These results not only demonstrate the strong capability of

Table 4: Detection performance of all evaluated methods on CIFAR10 under single client attack with different non-IID settings
and poisoned learning rate (plr). The malicious training algorithm and the backdoor type are Vanilla and pixel-pattern. The
adversary starts poisoning from 1200 global round. The performance is evaluated through the triplet of TPR/FPR (BA). The
poisoning lasts for 250 global rounds.

alpha plr No defense Multi-Krum Deepsight Foolsgold RFLBAT FLAME Indicator

0.2

0.01 0.0/0.0 (66.8) 0.0/44.2 (86.7) 10.4/6.0 (31.3) 76.8/53.1 (24.8) 0.4/12.2 (67.3) 0.0/44.2 (83.0) 98.0/19.7 (11.5)
0.025 0.0/0.0 (78.3) 0.4/44.2 (91.3) 6.0/6.1 (44.7) 71.2/51.7 (44.9) 0.8/13.1 (77.9) 1.6/44.0 (88.1) 99.2/15.0 (15.5)
0.04 0.0/0.0 (79.3) 7.6/43.4 (93.5) 7.6/7.1 (46.2) 60.0/55.4 (74.7) 1.6/12.9 (90.3) 38.8/40.1 (90.8) 96.0/21.2 (18.6)

0.055 0.0/0.0 (88.1) 100.0/33.6 (9.3) 7.6/7.4 (49.8) 47.6/47.8 (84.0) 2.0/13.1 (88.0) 100.0/33.6 (13.0) 97.6/21.2 (9.6)

0.5

0.01 0.0/0.0 (74.6) 0.0/44.3 (87.4) 19.2/6.3 (40.1) 54.8/39.6 (68.5) 1.6/14.5 (69.4) 0.0/44.3 (87.7) 99.2/9.9 (10.7)
0.025 0.0/0.0 (88.3) 0.0/44.3 (89.9) 7.6/5.4 (68.0) 65.6/36.5 (79.2) 0.0/13.4 (75.8) 0.8/44.2 (88.9) 89.6/13.1 (23.3)
0.04 0.0/0.0 (90.0) 0.4/44.2 (94.5) 11.6/8.5 (60.9) 29.2/48.0 (90.4) 0.0/4.7 (89.1) 1.6/44.2 (93.0) 87.6/19.5 (34.1)

0.055 0.0/0.0 (92.5) 5.2/43.7 (93.9) 10.8/6.5 (71.2) 47.2/41.3 (88.1) 1.2/13.6 (91.2) 99.6/33.7 (10.5) 87.2/21.2 (26.3)

0.9

0.01 0.0/0.0 (84.5) 0.0/44.3 (87.5) 23.2/10.6 (68.2) 56.8/34.5 (59.1) 0.0/11.6 (85.6) 0.0/44.3 (89.3) 100.0/9.5 (9.6)
0.025 0.0/0.0 (84.2) 0.0/44.3 (89.7) 22.8/10.8 (76.3) 43.6/33.1 (84.5) 1.6/13.7 (87.5) 0.4/44.2 (90.2) 92.4/6.6 (13.3)
0.04 0.0/0.0 (90.1) 2.0/44.0 (92.5) 16.4/6.8 (78.7) 39.2/29.3 (89.0) 0.0/10.7 (89.7) 1.2/44.1 (91.6) 90.0/19.4 (47.6)

0.055 0.0/0.0 (90.1) 24.4/41.7 (93.7) 11.6/5.3 (77.1) 43.6/33.1 (90.0) 1.6/12.0 (90.6) 54.4/38.4 (90.6) 89.6/18.6 (56.2)

BackdoorIndicator in identifying backdoors, but also suggests
that it can effectively discriminate between backdoor and be-
nign updates. This could help to protect the global model from
backdoor poisoning, while maintaining a fast and accurate
training of the main task.

BackdoorIndicator can still effectively reduce the backdoor
accuracy, even when its detection performance declines as
adversaries inject backdoors in the early training stage. For
blended backdoor updates trained using Neurotoxin, the TPR
of BackdoorIndicator drops from 70% to 44.0% if the attacker
starts poisoning from 400 global rounds rather than 800. How-
ever, BackdoorIndicator still achieves a lower BA of 26.1%
with 44.0% TPR. We argue that it is due to the difficulty of
injecting backdoors into a model that is far from convergence:
in the following training process, benign updates are more
likely to conflict with backdoor updates, resulting in a slow
increase of BA even when there is no defense.

Table 2 also reveals that, BackdoorIndicator’s ability of
precisely distinguishing backdoor updates and benign updates
gets stronger if the attack happens later in the training stage.
To defend a vanilla pixel-pattern backdoor attack, the FPR
of BackdoorIndicator decreases from 25.7% to 22.2%, and
further to 15.0% as the attack starts later. This is because
benign updates becomes smaller in magnitude and closer to
each other in distance, resulting in a lower false alarm rate.

We find that all evaluated methods except for BackdoorIndi-
cator and Foolsgold fails to detect backdoor updates. We argue
that it is because of the challenging adversarial training setting
and non-IID degree of the data. It is hard for these methods
to effectively detect backdoor models trained using a small
learning rate in highly non-IID settings. We follow up to study
their influence on the detection performance.

An interesting observation in Table 2 is that the utilization
of alternative backdoor detection techniques, such as FLAME,
would unexpectedly lead to an improvement in backdoor accu-
racy. This is because the considered attackers could fabricate
poisoned models to make them statistically close to the benign

ones by using small learning rate. In such scenarios, statistical
methods, like FLAME, fail to detect any backdoor updates,
while still mark and filter out around 44% benign updates.
This will lead to a decrease in the number of accepted updates,
and consequently an increase in the aggregation weights of
backdoor updates, which is computed as one divided the to-
tal number of accepted updates. This eventually leads to an
improvement in backdoor accuracy compared with scenarios
without any defenses.

We also compare the detection performance on more
datasets. We present a part of results in Table 3 and the full
results in Appendix A. The proposed method still achieves
the lowest BA, and the highest TPR for both CIFAR100 and
EMNIST. Specifically, BackdoorIndicator identifies 85.2% of
backdoor updates, which restricts backdoor accuracy at 7.3%,
and only misclassifies 15.8% benign models as malicious on
CIFAR100. However, other evaluated methods fail to filter
out backdoor updates, among which Deepsight achieves the
highest TPR as 6.4% and the lowest BA as 61.3%. The perfor-
mance of these methods improves on EMNIST with the high-
est TPR as 52.0% and the lowest BA as 51.4%. Nevertheless,
BackdoorIndicator still achieves the best performance with the
TPR/FPR (BA) triplet as 99.0%/35.4% (9.6%). This further
demonstrates the universal effectiveness of ackdoorIndicator
across different datasets.

Performance under different non-IID degrees and poi-
soned learning rates. Table 4 exhibits detection performance
of all evaluated methods under different non-IID degrees and
multiple poisoned learning rates (plr). BackdoorIndicator can
stably identify malicious updates regardless of the change in
plr. For the highly non-IID setting of α = 0.2, BackdoorIndi-
cator detects 98.0% backdoor updates when plr equals 0.01,
and also achieve 97.6% TPR with 0.055 plr. However, the
change in plr substantially influences the performance of the
other methods. FLAME and Multi-Krum can effectively iden-
tify backdoor updates trained using large plr while fail to
detect any malicious update trained using small plr. This is

Table 5: Detection performance of all evaluated methods on CIFAR10 under multiple client attack. The backdoor type are Vanilla
and pixel-pattern. The adversary starts poisoning from global round 1200 for CIFAR100, and 400 for EMNIST. The performance
is evaluated through the triplet of TPR/FPR (BA). The poisoning ends until 360 backdoor models are injected.

train alg. bkdr. % No defense Deepsight Foolsgold RFLBAT RFLBAT FLAME Indicator

Vanilla
20% 0.0/0.0 (88.4) 11.7/9.7 (56.6) 99.7/42.5 (8.5) 0.0/16.8 (85.5) 0.0/16.8 (85.5) 0.0/49.0 (94.5) 97.2/23.5 (10.6)
40% 0.0/0.0 (89.2) 5.6/17.2 (71.7) 100.0/36.1 (9.5) 0.1/19.8 (88.6) 0.1/19.8 (88.6) 0.0/61.6 (97.3) 95.8/14.8 (14.7)
60% 0.0/0.0 (91.3) 10.0/44.4 (95.3) 100.0/30.3 (9.5) 0.1/34.4 (91.9) 0.1/34.4 (91.9) 0.0/77.8 (97.4) 93.8/19.4 (6.1)

DBA 40% 0.0/0.0 (87.1) 21.1/15.8 (85.2) 99.7/35.8 (7.8) 0.0/22.3 (75.2) 0.0/22.3 (75.2) 0.0/62.3 (94.4) 98.6/21.1 (4.8)

3DFed 20% 0.0/0.0 (78.6) 16.7/10.0 (36.8) 99.1/42.1 (9.2) 0.0/14.8 (70.8) 0.0/14.8 (70.8) 3.3/48.4 (93.0) 98.3/20.3 (6.7)

Table 6: Performance on different model architectures under
single client attack for CIFAR10 task. The backdoor type are
Vanilla and pixel-pattern. The adversary starts poisoning from
1200 global round, and continues for 250 rounds.

architecture ResNet34 VGG16

No defense 0.0/0.0 (77.3) 0.0/0.0 (76.7)
Multikrum 0.7/44.1 (88.4) 0.7/44.1 (86.6)
Deepsight 11.3/6.5 (42.2) 6.7/4.3 (56.4)
Foolsgold 61.3/46.8 (31.7) 21.3/35.0 (76.2)
RFLBAT 0.0/14.0 (61.4) 0.7/12.3 (79.2)
FLAME 0.0/44.0 (91.4) 1.3/43.9 (85.2)
Indicator 91.9/38.0 (14.3) 95.3/10.5 (13.6)

because that these two methods identify potential malicious
updates based on certain distance measure, and updates with
abnormal distance features will be marked as outliers. In such
a case, it is much harder for these methods to detect backdoor
models trained using small plr which makes the backdoor
models closer to the global model. In contrast, Foolsgold and
Deepsight show weaker detection ability as the plr increases.
Specifically for Foolsgold, as it assigns lower weights for up-
dates that have strong similarity with others, backdoor updates
trained using larger plr exhibit larger differences from benign
updates, making them harder for Foolsgold to identify.

We also note that BackdoorIndicator consistently performs
well under different non-IID settings, with an average TPR of
over 90%. For the rest methods, Foolsgold exhibits weaker
performance in more IID setting, while Deepsight shows
stronger sensitivity in identifying backdoor updates when
α grows larger. FLAME shows better performance as non-
IID degree gets stronger. Under the setting where plr equals
0.055, FLAME achieves 100% TPR when α equals 0.2 and
54.5% TPR when α equals 0.9.
Performance under multiple client attack. Table 5 presents
the detection performance when attackers control multiple ma-
licious clients in every global round. We find that the proposed
method can successfully defend against backdoor attacks even
when 60% of the clients are malicious. BackdoorIndicator
achieves over 93% TPR and limits BA at around 10% in all
the evaluated tasks. We also note that Foolsgold can iden-
tify over 99% of backdoor updates in all evaluated multiple
client attack settings, which shows stronger detection ability
compared with when facing single client attack. However, the

FPRs of Foolsgold are still about twice compared with the
FPR of BackdoorIndicator. This indicates that BackdoorIndi-
cator can precisely discriminate between benign and backdoor
updates even under multiple client attack.
Performance for different model architectures. We also
conduct experiments to demonstrate the effectiveness of Back-
doorIndicator on different model architectures. As is shown in
Table 6, the detection performance of BackdoorIndicator re-
mains the strongest for both ResNet34 and VGG16, yielding
the lowest BA among all evaluated methods.

Table 7: Main task accuracy (LEFT) when applying Back-
doorIndicator, and (RIGHT) when not applying any defense
mechanism, under single client attack with different malicious
training algorithms, backdoor types, and injection rounds on
CIFAR10. The poisoning lasts for 250 global rounds.

Train alg. bkdr types 400 800 1200

Vanilla

semantic 82.3/82.1 86.2/86.4 87.0/88.7
pixel 82.2/80.5 82.6/85.5 87.2/87.9
blend 81.9/81.1 84.0/83.6 86.9/87.4
edge 82.4/79.4 85.2/84.9 87.2/88.2

PGD

semantic 80.3/82.5 86.4/85.1 87.6/86.9
pixel 79.4/80.3 85.8/86.2 87.2/87.0
blend 81.0/82.8 82.7/85.8 86.6/87.3
edge 82.9/80.1 86.5/87.9 86.1/86.5

Neurotoxin

semantic 79.8/81.3 82.3/83.7 86.7/86.0
pixel 80.9/79.3 85.2/85.6 87.1/87.3
blend 79.5/82.9 84.6/84.1 86.1/86.9
edge 81.9/81.0 83.6/82.5 86.3/88.1

Chameleon

semantic 81.5/78.6 83.8/84.3 87.3/86.4
pixel 79.2/79.9 86.3/85.6 87.2/87.9
blend 78.8/80.8 85.3/87.3 86.8/86.0
edge 80.7/83.4 85.4/86.0 87.3/86.9

BackdoorIndicator does not degrade main task accuracy.
As it is shown in Table 7, we further provide the main task
accuracy with the same setting in Table 2, when applying
BackdoorIndicator and when not applying any defense mech-
anism. We can see that although the proposed defense slightly
impacts the main task accuracy in some cases, applying Back-
doorIndicator achieves almost identical main task accuracy
for most settings to when not applying any defenses.

4.3 Impact of Hyper-parameters

We proceed to reveal the influence of several key hyper-
parameters on the performance of BackdoorIndicator. In the

following experiments, we assume that vanilla attackers start
to inject backdoors from 1200 global rounds, and keep poi-
soning for 100 global rounds. We repeat each task for 5 times,
and present the mean value and the standard deviation.

Table 8: Performance of BackdoorIndicator which collects
data from different sources to construct the indicator dataset.
MA* indicates the main task accuracy without replacing BN
statistics with the main BN statistics after injecting the indi-
cator task. The size of the indicator dataset is 800.

source TPR/FPR MA* MA

CIFAR100 95.6±3.7/22.4±3.6 84.3±2.4 84.8±1.4
EMNIST 93.0±4.2/32.3±1.7 72.7±3.1 87.0±1.3

300k random 95.8±1.7/19.0±1.4 84.1±3.0 83.1±1.0
random noise 90.0±7.0/41.3±8.6 69.6±4.2 85.2±1.7

Influence of the source of indicator dataset. Table 8 pro-
vides the performance of the proposed method which collects
data from different sources to build the indicator dataset. We
find that the detection performance is rather insensitive to
the data source that is used to construct the indicator dataset.
Constructing the indicator dataset using data from EMNIST
and even uniformly sampled random noise can achieve 93.0%
TPR and 90.0% TPR respectively. However, the FPR in these
scenarios, which are 32.3% and 41.3%, increases substan-
tially compared to 22.4% FPR and 19.0% FPR, in which case
the defender samples data from CIFAR100 and 300k random
images [20] to build the indicator dataset respectively.

We also note that BN statistics is crucial in correctly evalu-
ating the main task accuracy (MA). For the indicator dataset
which consists of data sampled from EMNIST and random
noise, the MA, without replacing BN statistics with the main
BN statistics after injecting the indicator task, is around 72.7%
and 69.6% respectively; while the MAs are about 87.0% and
85.2% when using main BN statistics. On the other hand, the
influence of whether replacing BN statistics with the main
BN statistics is relatively negligible for indicator dataset with
CIFAR100 and 300K random data. Utilizing the BN statistics
from the indicator dataset may cause degradation of the main
task, especially for an indicator dataset that is considerably
different from the main dataset. Thus, it is crucial for the de-
fender, who is agnostic to the data distribution of the main
task, to replace BN statistics with the main BN statistics to
avoid potential drop of MA.

Table 9: Performance of BackdoorIndicator with different
sizes of the indicator dataset.

size TPR/FPR

100 96.6±4.8/53.2±4.2
200 88.6±10.7/23.5±2.3
500 93.2±6.8/23.7±2.7
800 95.6±3.7/22.4±3.6

1100 96.2±3.6/19.3±2.3

Influence of the size of indicator dataset. We provide ex-
periments to explore how the size of the indicator dataset

influences the detection performance. As is shown in Table
9, the decrease in the size of the indicator dataset causes neg-
ligible influence in identifying the backdoor updates. With
merely 100 samples in the indicator dataset, BackdoorIndica-
tor is able to identify around 96.6% of all malicious updates.
Nevertheless, the FPR with 100 samples is around 53.2%,
indicating a weak ability in precisely discriminating between
benign and malicious updates. This problem can be effec-
tively addressed through having 200 samples in the indicator
dataset. In such a case, BackdoorIndicator achieves around
23.5% FPR, which is about the same performance when the
size equals 800. This suggests that the defender does not
need to collect a large number of indicator data to implement
BackdoorIndicator.

For main tasks with more classes, the defender gener-
ally needs to construct a relatively large indicator dataset
to ensure sufficient number of samples for all potential
adversary-chosen labels. However, evaluation results in Table
3 show that implementing BackdoorIndicator with the indi-
cator dataset of 800 samples can secure the CIFAR100 main
task from backdoor attacks with the TPR/FPR (BA) triplet
as 85.2/15.8 (7.3). The detection performance with approx-
imately 8 OOD-samples-per-class for CIFAR100 is compa-
rable to applying the indicator dataset with 200 samples in
Table 9 for CIFAR10, which corresponds to 20 OOD-samples-
per-class. This is because the indicator task is much easier
to be forgotten by the benign updates, when there are more
classes. Therefore, to achieve comparable difference between
the indicator task accuracies of the benign and backdoor up-
dates (and hence similar backdoor detection performance),
the task with a dataset of more classes can afford to use a
smaller number of OOD samples per class. This also suggests
that the size of the indicator dataset does not need to increase
linearly with the number of classes, further demonstrating the
practicality of BackdoorIndicator.

Table 10: Performance of BackdoorIndicator with different
numbers of training iterations.

training iterations TPR/FPR

10 95.0±1.4/16.0±2.8
200 95.6±3.7/22.4±3.6

Influence of indicator training iterations. We also provide
experiments to show that implementing the proposed method
does not add too much computation overhead to the FL sys-
tem. Table 10 shows that training the indicator task for 10
iterations can achieve around 95.0% TPR and 16.0% FPR,
which is comparable with training for 200 iterations.

The above set of experiments demonstrates that the indi-
cator dataset is easy to construct: no strict requirements on
the data source (even random noise suffices), and only a few
hundred samples are needed; and the training of indicator
task is lightweight: only a few iterations are needed. These
features make the deployment of BackdoorIndicator widely

feasible in practical FL systems.

Table 11: Performance of BackdoorIndicator with different
values of λ.

λ TPR/FPR MA

0 89.0±3.7/20.7±5.7 76.1±8.2
0.01 96.3±2.3/19.3±4.8 81.0±3.4
0.1 95.6±3.7/22.4±3.6 84.8±1.4
0.2 94.7±3.3/18.8±7.8 86.8±0.4
0.3 97.0±1.6/14.9±3.6 86.0±2.2

Influence of λ in training the indicator task. Table 11 illus-
trates the performance of the proposed method with different
λ, which is the weight of the regularization term in training
the indicator task. We observe a sizable decrease in MA as λ

decreases. Specifically, BackdoorIndicator achieves around
76.1% MA when we exclude the regularization term from
training. The MA gradually increases to 84.8% and further to
86.8% as λ is increased to 0.1 and 0.2 respectively. Without
proper regularization in the change of the model parameter,
the model gradually forgets the main task, causing a drop in
the MA. Thus, a sufficiently large λ needs to be chosen to
make BackdoorIndicator effective.
Influence of the suspicious threshold εI . A proper suspicious
threshold needs to be chosen to achieve a decent performance
in both identifying backdoor updates and discriminating with
benign updates. For the same task, decreasing εI undoubtedly
boosts TPR and FPR simultaneously, resulting in a stronger
ability in detecting malicious updates while a weaker ability
in distinguishing benign updates. For different tasks, as is
shown in Table 2 and 3, BackdoorIndicator achieves compa-
rable performance for CIFAR100 with εI = 85 and CIFAR10
with εI = 95 under the same adversarial setting. This is be-
cause that the maintaining effect of clients’ backdoors on the
indicator task is weaker when there are more classes, which
causes the accuracy of the indicator task to decline and a
relatively smaller εI is needed.

5 Resilience to Adaptive Attacks
Knowing how BackdoorIndicator operates, adversaries may
adopt adaptive attacks to bypass the detection. We consider
such attack settings and strategies utilizing pre-training.
Pre-training. As shown in Table 4, the increase in the poi-
soned learning rates results in the decrease of the detection
performance of BackdoorIndicator. This is because the indi-
cator task is forgotten more quickly when the attacker trains
a backdoor model with a larger learning rate. Thus, adaptive
attackers could pre-train the model using its benign dataset to
first erase the indicator task, and then train the model using
the constructed backdoor dataset to escape from the detection
of BackdoorIndicator.

We proceed to demonstrate the performance of the above
adaptive attack against BackdoorIndicator. We assume that
an adaptive attacker first trains the model using the benign

dataset for 10 iterations with 0.05 learning rate. The attacker
then trains the backdoor model using the constructed mali-
cious dataset with a plr of 0.025. We assume that the attacker
adopts a vanilla training algorithm and intends to inject pixel-
pattern backdoors. We repeat each task for 3 times, and report
the mean value and the standard deviation. The evaluated
dataset is CIFAR10.

Table 12: Performance of BackdoorIndicator w./wo. norm
clipping defense (NCD) against adaptive attack.

method TPR/FPR (BA)

Indicator wo. NCD 53.0±9.6/19.3±4.2 (39.1±15.1)
Indicator w. NCD 75.3±8.0/13.6±8.2 (9.9±1.8)

As is shown in Table 12, BackdoorIndicator only identify
53.0% of all malicious updates and achieves around 39.1%
BA, indicating the effectiveness of the adaptive attack. To
this end, we further modify the proposed defense to improve
resilience to the above adaptive attack. Specifically, for the
pre-training step to be effective, the uploaded local model
of an adaptive attack needs to be sufficiently different from
the global model with indicator task injected. Motivated by
this, we propose to leverage norm clipping defense (NCD),
which clips the norm of each received update to a fixed bound,
to mitigate the forgetting of the indicator task, potentially
introduced by adaptive attackers through pre-training. We
observe from Table 12 that BackdoorIndicator equipped with
NCD can now effectively detect around 75% of backdoor
updates, and limit the BA to merely around 9.9%.

6 Discussion

The proposed BackdoorIndicator can be composed with other
statistical defenses for FL, further improving effectiveness.
For example, BackdoorIndicator can replace the dynamic
clustering component in FLAME to serve as a more precise
backdoor detector, which could help to further minimize the
amount of noise needed in FLAME. Given that the design
principle of BackdoorIndicator based on detection of OOD
task injection is orthogonal to those of statistical methods,
incorporating BackdoorIndicator is expected to provide mul-
tiplicative gains on defense performance. Nevertheless, while
it is not the focus of this paper, we envision that future works
could seek to combine BackdoorIndicator with other detection
methods to build stronger FL backdoor defense mechanisms.

Despite the effectiveness of BackdoorIndicator corrobo-
rated by empirical evaluations, it is also important to under-
stand the theoretical explanation behind the maintaining effect
on injected backdoors. We envision that future research could
provide theoretical analysis to further facilitate the under-
standing of BackdoorIndicator, guiding the development of
stronger backdoor detection mechanisms.

7 Related Work

Federated Learning. Multiple variants of FedAVG are pro-
posed to tackle the data heterogeneity problem in FL. Fed-
Prox [31] argues that simply adding a proximal term to con-
strain local updates from deviating from the global model
could help to enhance the performance under non-IID setting.
SCAFFOLD [25] tries to mitigate the statistical heterogeneity
through correcting client drifts using control variates. Another
line of work, named personalized FL, attempts to handle the
heterogeneity through training distinct models for different
clients. Per-FedAVG [11] utilize the Model-Agnostic Meta-
Learning (MAML) framework to find an initial global model
that local clients can easily adapt to their dataset through
performing a few steps of gradient descent. pFedMe [50]
formulates the problem in a bi-level way, and solve it using
Moreau envelops as clients’ loss function, which achieves
better performance compared with Per-FedAVG.
Backdoor attack is an emerging security threat in training
deep neural networks (DNNs). Except for the BadNets [17],
which first reveal the vulnerability of DNNs against backdoor
attack, a series of works proposes more stealthy backdoor
attacks to escape from detection algorithms. The adversarial
backdoor embedding algorithm [47] not only optimizes the
original loss function of the model, it also seeks to maximize
the indistinguishability of the hidden representations of poi-
soned data and clean data. Composite attacks [33] proposes to
use backdoor triggers composed from existing benign features
of multiple labels to elude detection. Li et al. [32] explores
sample-specific backdoor attack, where the backdoor trigger
for each sample is distinct. The method only needs to modify a
small amount of perturbation to original images, which makes
the trigger invisible. Apart from the successful implementa-
tion of backdoor attacks in poisoning DNNs, it has also been
shown to effectively attack other deep learning paradigms. In
continual learning setting, Kang et al. [24] shows that attacker
could plant an input-aware backdoor to stealthily promote for-
getting on the previous task while retaining high accuracy
at the current task. Yang et al. [55] shows that multi-modal
models are also vulnerable to poisoning attacks.
Backdoor defenses in training deep learning neural networks
can be mainly categorized into: pruning-based defenses, trig-
ger synthesis based defenses, and saliency map based defenses.
For pruning based methods, Liu et al. [34] proposes to prune
backdoor-related neurons to remove backdoors based on the
observation that these neurons are usually dormant during the
inference process. Neural cleanse [51] is the first proposed
trigger synthesis based method, which first obtains potential
backdoor trigger for each class, and proceeds to reconstruct
the final trigger and its target label through anomaly detection.
The following work [42] argues acquiring the entire trigger
distribution is essential for effective defending against back-
door attacks. Thus, the method adopts generative modeling to
recover the whole trigger distribution. For saliency map based

defenses, SentiNet [8] utilizes the Grad-CAM [44] to extract
critical regions from input, and then locate the trigger regions
based on the boundary analysis. NeuronInspect [22] exhibits
a similar idea through identifying the existence of backdoor
attacks by generating heatmaps from the output layer. The
method proceeds to extract key features and apply an anomaly
detector to identify backdoor updates.
Backdoor attacks and defenses in FL. We further review
several recent works on backdoor attacks and defenses in
FL, which are not evaluated in this paper. F3BA [13] tries to
mount backdoor attacks through only compromising a small
fraction of least important parameters, and further optimize
the trigger to improve effectiveness. CerP [35] casts the dis-
tributed backdoor attack as a joint optimization process to
reduce the bias between benign and backdoor updates. These
two works try to fabricate malicious updates to make them
statistically close to benign ones to escape from backdoor
detection, which utilize the inherent weakness of statistical
backdoor defenses as revealed in our paper. However, the pro-
posed backdoor samples are still OOD samples with respect
to benign ones from the target class. Planting these backdoors
will still maintain the indicator accuracy, and eventually be
identified and filtered out by BackdoorIndicator.

A recent work [27] proposes a novel backdoor attack
method, AutoAdapt, which leverages the Augmented La-
grangian method for constraint optimization to create back-
door models which can automatically adapt to various defense
metrics to evade detection. However, AutoAdapt is not ap-
plicable in attacking BackdoorIndicator. This is because the
indicator dataset is kept secret in the server, and is agnostic
to the attacker, which renders the attacker impossible from
computing the defense metric to adapt backdoor models to
evade the BackdoorIndicator detection.

For other backdoor defense mechanisms in FL, BayBFed
[29] relies on a Bayesian statistical method to filter out back-
door updates, which still suffers from the inherent weakness
of statistical backdoor defenses. ADFL [59] utilizes GAN to
revise the global model and eliminate the planted backdoors.
However, this method requires the server to access a part of
clean training data, which is rather impractical in FL.

8 Conclusion

We propose a novel proactive backdoor detection method
BackdoorIndicator, to detect potential backdoors injected to
the clients’ updates in federated learning. BackdoorIndicator
builds upon the maintaining effect of subsequent backdoors on
the previous ones and the fact that backdoor samples are OOD
samples compared to benign samples from the target class,
designs indicator task leveraging OOD samples to identify and
rule out backdoor updates. Extensive experiments show the
superior performance and practicality of BackdoorIndicator,
under a wide range of system and adversarial settings.

Acknowledgement

This work is in part supported by the National Nature Science
Foundation of China (NSFC) Grant 62106057.

References

[1] David Arthur and Sergei Vassilvitskii. k-means++: the
advantages of careful seeding. In Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, page 1027–1035, USA, 2007.
Society for Industrial and Applied Mathematics.

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Debo-
rah Estrin, and Vitaly Shmatikov. How to backdoor
federated learning. In International Conference on
Artificial Intelligence and Statistics, pages 2938–2948.
PMLR, 2020.

[3] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mit-
tal, and Seraphin Calo. Analyzing federated learning
through an adversarial lens. In International Conference
on Machine Learning, pages 634–643. PMLR, 2019.

[4] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-
raoui, and Julien Stainer. Machine learning with adver-
saries: Byzantine tolerant gradient descent. Advances in
Neural Information Processing Systems, 30, 2017.

[5] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong.
Provably secure federated learning against malicious
clients. In Proceedings of the AAAI conference on artifi-
cial intelligence, volume 35, pages 6885–6893, 2021.

[6] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learn-
ing systems using data poisoning. arXiv preprint
arXiv:1712.05526, 2017.

[7] Yudong Chen, Lili Su, and Jiaming Xu. Distributed sta-
tistical machine learning in adversarial settings: Byzan-
tine gradient descent. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 1(2):1–25,
2017.

[8] Edward Chou, Florian Tramer, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attacks against
deep learning systems. In 2020 IEEE Security and
Privacy Workshops (SPW), pages 48–54. IEEE, 2020.

[9] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and
Andre Van Schaik. Emnist: Extending mnist to hand-
written letters. In 2017 international joint conference
on neural networks (IJCNN), pages 2921–2926. IEEE,
2017.

[10] Yanbo Dai and Songze Li. Chameleon: Adapting to
peer images for planting durable backdoors in feder-
ated learning. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett, editors, Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages
6712–6725. PMLR, 23–29 Jul 2023.

[11] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
Personalized federated learning with theoretical guar-
antees: A model-agnostic meta-learning approach. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 3557–3568. Curran
Associates, Inc., 2020.

[12] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and
Neil Zhenqiang Gong. Local model poisoning attacks
to byzantine-robust federated learning. In Proceedings
of the 29th USENIX Conference on Security Symposium,
pages 1623–1640, 2020.

[13] Pei Fang and Jinghui Chen. On the vulnerability of
backdoor defenses for federated learning. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
37(10):11800–11808, Jun. 2023.

[14] Clement Fung, Chris J. M. Yoon, and Ivan Beschastnikh.
The limitations of federated learning in sybil settings. In
23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 301–316,
San Sebastian, October 2020. USENIX Association.

[15] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh.
The limitations of federated learning in sybil settings.
In RAID, pages 301–316, 2020.

[16] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge,
and Michael Moeller. Inverting gradients-how easy is
it to break privacy in federated learning? Advances
in Neural Information Processing Systems, 33:16937–
16947, 2020.

[17] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Sid-
dharth Garg. Badnets: Evaluating backdooring attacks
on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[18] Rachid Guerraoui, Sébastien Rouault, et al. The hidden
vulnerability of distributed learning in byzantium. In
International Conference on Machine Learning, pages
3521–3530. PMLR, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard
Tang, Bo Li, Dawn Song, and Jacob Steinhardt. Pixmix:
Dreamlike pi sctures comprehensively improve safety
measures. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
16783–16792, 2022.

[21] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown.
Measuring the effects of non-identical data distribu-
tion for federated visual classification. arXiv preprint
arXiv:1909.06335, 2019.

[22] Xijie Huang, Moustafa Alzantot, and Mani Srivas-
tava. Neuroninspect: Detecting backdoors in neu-
ral networks via output explanations. arXiv preprint
arXiv:1911.07399, 2019.

[23] Sergey Ioffe and Christian Szegedy. Batch normaliza-
tion: Accelerating deep network training by reducing
internal covariate shift. In International conference on
machine learning, pages 448–456. pmlr, 2015.

[24] Siteng Kang, Zhan Shi, and Xinhua Zhang. Poison-
ing generative replay in continual learning to promote
forgetting. In International Conference on Machine
Learning, pages 15769–15785. PMLR, 2023.

[25] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri,
Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for
federated learning. In International Conference on Ma-
chine Learning, pages 5132–5143. PMLR, 2020.

[26] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot,
Ce Liu, and Dilip Krishnan. Supervised contrastive
learning. Advances in Neural Information Processing
Systems, 33:18661–18673, 2020.

[27] Torsten Krauß, Jan König, Alexandra Dmitrienko, and
Christian Kanzow. Automatic adversarial adaption for
stealthy poisoning attacks in federated learning. NDSS,
2024.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[29] Kavita Kumari, Phillip Rieger, Hossein Fereidooni, Mur-
tuza Jadliwala, and Ahmad-Reza Sadeghi. Baybfed:
Bayesian backdoor defense for federated learning. In
2023 IEEE Symposium on Security and Privacy (SP),
pages 737–754, 2023.

[30] Haoyang Li, Qingqing Ye, Haibo Hu, Jin Li, Leixia
Wang, Chengfang Fang, and Jie Shi. 3dfed: Adaptive
and extensible framework for covert backdoor attack in
federated learning. In 2023 IEEE Symposium on Secu-
rity and Privacy (SP), pages 1893–1907. IEEE, 2023.

[31] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings
of Machine Learning and Systems, 2:429–450, 2020.

[32] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li,
Ran He, and Siwei Lyu. Invisible backdoor attack
with sample-specific triggers. In Proceedings of the
IEEE/CVF international conference on computer vision,
pages 16463–16472, 2021.

[33] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang.
Composite backdoor attack for deep neural network by
mixing existing benign features. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pages 113–131, 2020.

[34] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks. In International symposium
on research in attacks, intrusions, and defenses, pages
273–294. Springer, 2018.

[35] Xiaoting Lyu, Yufei Han, Wei Wang, Jingkai Liu, Bin
Wang, Jiqiang Liu, and Xiangliang Zhang. Poisoning
with cerberus: Stealthy and colluded backdoor attack
against federated learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(7):9020–9028,
Jun. 2023.

[36] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Artificial intelligence and statistics, pages 1273–
1282. PMLR, 2017.

[37] H. B. McMahan, Daniel Ramage, Kunal Talwar, and
Li Zhang. Learning differentially private language mod-
els without losing accuracy. ArXiv, abs/1710.06963,
2017.

[38] Luis Muñoz-González, Kenneth T Co, and Emil C
Lupu. Byzantine-robust federated machine learning
through adaptive model averaging. arXiv preprint
arXiv:1909.05125, 2019.

[39] Mohammad Naseri, Jamie Hayes, and Emiliano De
Cristofaro. Local and central differential privacy for ro-
bustness and privacy in federated learning. Proceedings
2022 Network and Distributed System Security Sympo-
sium, 2020.

[40] Milad Nasr, Reza Shokri, and Amir Houmansadr. Com-
prehensive privacy analysis of deep learning: Passive
and active white-box inference attacks against central-
ized and federated learning. In 2019 IEEE symposium
on security and privacy (SP), pages 739–753. IEEE,
2019.

[41] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein
Yalame, Helen Möllering, Hossein Fereidooni, Samuel
Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, et al. {FLAME}: Taming backdoors in fed-
erated learning. In 31st USENIX Security Symposium
(USENIX Security 22), pages 1415–1432, 2022.

[42] Ximing Qiao, Yukun Yang, and Hai Li. Defending neu-
ral backdoors via generative distribution modeling. Ad-
vances in neural information processing systems, 32,
2019.

[43] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen,
and Ahmad-Reza Sadeghi. Deepsight: Mitigating back-
door attacks in federated learning through deep model
inspection. In NDSS, 2022.

[44] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv
Batra. Grad-cam: Visual explanations from deep net-
works via gradient-based localization. In Proceedings of
the IEEE international conference on computer vision,
pages 618–626, 2017.

[45] Virat Shejwalkar and Amir Houmansadr. Manipulating
the byzantine: Optimizing model poisoning attacks and
defenses for federated learning. In NDSS, 2021.

[46] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror:
Defending against poisoning attacks in collaborative
deep learning systems. In Proceedings of the 32nd
Annual Conference on Computer Security Applications,
pages 508–519, 2016.

[47] Reza Shokri et al. Bypassing backdoor detection al-
gorithms in deep learning. In 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), pages
175–183. IEEE, 2020.

[48] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[49] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh,
and H Brendan McMahan. Can you really backdoor
federated learning? arXiv preprint arXiv:1911.07963,
2019.

[50] Canh T Dinh, Nguyen Tran, and Josh Nguyen. Per-
sonalized federated learning with moreau envelopes.
Advances in Neural Information Processing Systems,
33:21394–21405, 2020.

[51] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. In 2019 IEEE Symposium on Secu-
rity and Privacy (SP), pages 707–723. IEEE, 2019.

[52] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,
Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of
the tails: Yes, you really can backdoor federated learning.
Advances in Neural Information Processing Systems,
33:16070–16084, 2020.

[53] Yongkang Wang, Dihua Zhai, Yufeng Zhan, and Yuan-
qing Xia. Rflbat: A robust federated learning algorithm
against backdoor attack, 2022.

[54] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.
In International Conference on Learning Representa-
tions, 2019.

[55] Ziqing Yang, Xinlei He, Zheng Li, Michael Backes,
Mathias Humbert, Pascal Berrang, and Yang Zhang.
Data poisoning attacks against multimodal encoders. In
International Conference on Machine Learning, pages
39299–39313. PMLR, 2023.

[56] Dong Yin, Yudong Chen, Kannan Ramchandran, and
Peter L. Bartlett. Byzantine-robust distributed learn-
ing: Towards optimal statistical rates. In International
Conference on Machine Learning, 2018.

[57] Zhengming Zhang, Ashwinee Panda, Linyue Song, Yao-
qing Yang, Michael Mahoney, Prateek Mittal, Ram-
chandran Kannan, and Joseph Gonzalez. Neurotoxin:
Durable backdoors in federated learning. In Interna-
tional Conference on Machine Learning, pages 26429–
26446. PMLR, 2022.

[58] Lingchen Zhao, Shengshan Hu, Qian Wang, Jianlin
Jiang, Chao Shen, Xiangyang Luo, and Pengfei Hu.
Shielding collaborative learning: Mitigating poisoning
attacks through client-side detection. IEEE Transactions
on Dependable and Secure Computing, 18(5):2029–
2041, 2020.

[59] Chengcheng Zhu, Jiale Zhang, Xiaobing Sun, Bing
Chen, and Weizhi Meng. Adfl: Defending backdoor
attacks in federated learning via adversarial distillation.
Computers & Security, 132:103366, 2023.

Appendix

A Supplementary Experiments

We provide supplementary experimental results to show the
effectiveness of BackdoorIndicator under various adversarial
and system settings on CIFAR100 and EMNIST. As it is
shown in Table 13, 14, 15, 16, BackdoorIndicator consistently
achieves the best performance across all evaluated settings.

Table 13: Detection performance of all evaluated methods under single client attack with different settings on CIFAR100. The
performance is evaluated through the triplet of TPR/FPR(BA). The poisoning lasts for 100 global rounds.

train alg. bkdr types No defense Multi-Krum Deepsight Foolsgold RFLBAT FLAME Indicator

Vanilla

pixel 0.0/0.0 (84.5) 0.0/44.3 (87.8) 6.4/2.7 (61.3) 0.0/0.0 (84.4) 0.4/9.7 (85.5) 0.4/44.2 (87.8) 85.0/15.8 (7.3)
blend 0.0/0.0 (57.8) 0.0/44.0 (68.1) 10.0/4.1 (29.3) 0.0/0.0 (50.6) 1.0/11.4 (50.0) 0.0/44.0 (68.7) 80.0/20.5 (1.7)
edge 0.0/0.0 (73.3) 0.0/44.0 (81.8) 7.0/3.7 (70.7) 0.0/0.0 (80.8) 0.0/9.2 (78.5) 0.0/44.0 (71.6) 77.0/19.3 (10.4)

PGD

pixel 0.0/0.0 (74.4) 0.0/44.0 (80.0) 9.0/4.0 (31.7) 0.0/0.0 (77.5) 0.0/11.2 (73.7) 0.0/44.0 (73.8) 100.0/20.1 (0.5)
blend 0.0/0.0 (64.8) 0.0/44.0 (58.5) 13.0/5.9 (21.2) 0.0/0.0 (62.1) 0.0/11.6 (54.9) 0.0/44.0 (62.3) 100.0/21.6 (0.3)
edge 0.0/0.0 (75.0) 0.0/44.0 (88.7) 7.0/2.0 (60.6) 0.0/0.0 (67.8) 0.0/8.4 (81.4) 0.0/44.0 (84.9) 100.0/18.9 (0.0)

Neurotoxin

pixel 0.0/0.0 (73.0) 0.0/44.0 (81.4) 5.0/2.2 (50.9) 0.0/0.0 (75.7) 1.0/10.8 (77.8) 0.0/44.0 (79.1) 99.0/20.4 (1.4)
blend 0.0/0.0 (72.3) 0.0/44.0 (77.6) 9.0/2.9 (21.7) 0.0/0.0 (57.6) 0.0/10.4 (64.7) 0.0/44.0 (77.5) 89.0/19.6 (0.9)
edge 0.0/0.0 (72.5) 0.0/44.0 (81.1) 7.0/3.8 (69.8) 0.0/0.0 (69.9) 0.0/9.6 (64.7) 0.0/44.0 (89.6) 85.0/18.6 (3.1)

Chameleon

pixel 0.0/0.0 (61.2) 0.0/44.0 (72.4) 10.0/4.5 (35.1) 0.0/0.0 (57.3) 1.0/9.7 (64.6) 0.0/44.0 (64.6) 100.0/20.9 (0.9)
blend 0.0/0.0 (12.1) 0.0/44.0 (33.3) 4.0/0.8 (21.1) 0.0/0.0 (12.8) 1.0/11.5 (14.7) 0.0/44.0 (22.0) 79.0/23.9 (1.5)
edge 0.0/0.0 (30.7) 0.0/44.0 (61.4) 13.0/5.7 (34.2) 0.0/0.0 (20.4) 0.0/9.3 (47.4) 0.0/44.0 (50.8) 93.0/21.3 (0.0)

Table 14: Detection performance of all evaluated methods under single client attack with different settings on EMNIST. The
performance is evaluated through the triplet of TPR/FPR(BA). The poisoning lasts for 100 global rounds.

train alg. No defense Multi-Krum Deepsight Foolsgold RFLBAT FLAME Indicator

Vanilla 0.0/0.0 (91.8) 5.0/43.5 (99.1) 19.0/12.8 (51.4) 52.0/46.4 (73.6) 1.0/10.0 (90.4) 41.0/39.6 (97.6) 99.0/35.4 (9.6)
PGD 0.0/0.0 (96.3) 4.0/43.6 (99.9) 15.0/10.3 (40.4) 56.0/50.6 (62.3) 0.0/11.1 (99.1) 20.0/41.7 (99.7) 92.0/32.4 (10.1)

Neurotoxin 0.0/0.0 (81.8) 8.0/43.2 (99.7) 18.0/11.3 (57.1) 39.0/51.2 (97.4) 1.0/8.5 (82.6) 17.0/42.1 (96.2) 100.0/36.8 (10.1)
Chameleon 0.0/0.0 (92.5) 5.0/43.5 (97.6) 6.0/10.1 (99.9) 48.0/49.0 (82.3) 1.0/11.9 (99.8) 19.0/41.9 (9.7) 98.0/35.1 (10.1)

Table 15: Detection performance of all evaluated methods on CIFAR100 under single client attack with different non-IID settings
and poisoned learning rate (plr). The malicious training algorithm and the backdoor type are Vanilla and pixel-pattern. The
adversary starts poisoning from 1200 global round. The performance is evaluated through the triplet of TPR/FPR (BA). The
poisoning lasts for 100 global rounds.

alpha plr No defense Multikrum Deepsight Foolsgold RFLBAT FLAME Indicator

0.2

0.01 0.0/0.0 (62.9) 0.0/44.0 (73.3) 8.0/2.3 (38.5) 0.0/0.0 (65.1) 2.0/12.0 (61.8) 0.0/44.0 (63.1) 100.0/18.1 (0.6)
0.03 0.0/0.0 (78.7) 3.0/43.7 (80.1) 9.0/2.2 (34.5) 0.0/0.0 (75.5) 1.0/12.7 (78.1) 0.0/44.0 (76.3) 94.0/20.7 (1.2)
0.05 0.0/0.0 (82.7) 82.0/35.8 (50.6) 6.0/2.2 (38.6) 0.0/0.0 (83.7) 4.0/8.4 (82.8) 100.0/34.0 (0.9) 85.0/22.0 (13.9)

0.5

0.01 0.0/0.0 (63.7) 0.0/44.0 (74.9) 6.0/2.1 (34.2) 0.0/0.0 (61.4) 0.0/10.7 (66.2) 0.0/44.0 (60.8) 99.0/16.1 (0.7)
0.03 0.0/0.0 (78.4) 2.0/43.8 (83.5) 0.0/0.0 (42.4) 0.0/0.0 (75.4) 2.0/8.4 (80.9) 1.0/43.9 (78.4) 96.0/12.2 (0.9)
0.05 0.0/0.0 (83.5) 100.0/34.0 (0.9) 7.0/1.3 (32.2) 0.0/0.0 (79.5) 3.0/11.3 (83.3) 100.0/34.0 (0.9) 88.0/12.9 (6.3)

0.9

0.01 0.0/0.0 (68.5) 0.0/44.0 (72.8) 3.0/0.4 (38.4) 0.0/0.0 (66.0) 1.0/10.0 (66.7) 0.0/44.0 (55.4) 100.0/12.1 (0.5)
0.03 0.0/0.0 (78.9) 5.0/43.5 (81.6) 6.0/2.4 (40.0) 0.0/0.0 (78.1) 0.0/9.0 (78.3) 1.0/43.9 (72.6) 97.0/10.6 (1.2)
0.05 0.0/0.0 (81.2) 100.0/34.0 (0.9) 4.0/1.4 (44.7) 0.0/0.0 (82.1) 5.0/9.8 (83.5) 100.0/34.0 (0.9) 87.0/12.2 (8.4)

Table 16: Detection performance of all evaluated methods on EMNIST under single client attack with different non-IID settings
and poisoned learning rate (plr). The malicious training algorithm and the backdoor type are Vanilla and pixel-pattern. The
adversary starts poisoning from 1200 global round. The performance is evaluated through the triplet of TPR/FPR (BA). The
poisoning lasts for 100 global rounds.

alpha plr No defense Multikrum Deepsight Foolsgold RFLBAT FLAME Indicator

0.2

0.01 0.0/0.0 (73.1) 0.0/44.0 (97.4) 11.0/7.0 (42.8) 44.0/47.9 (79.2) 0.0/12.5 (63.6) 4.0/43.5 (99.6) 100.0/36.7 (10.1)
0.03 0.0/0.0 (82.1) 12.0/42.8 (96.1) 16.0/17.0 (68.8) 47.0/51.4 (94.7) 0.0/10.8 (97.2) 89.0/35.0 (10.4) 98.0/40.5 (10.0)
0.05 0.0/0.0 (93.1) 73.0/36.7 (99.8) 24.0/18.3 (69.0) 51.0/52.0 (55.7) 3.0/12.3 (95.8) 100.0/33.8 (10.1) 97.0/41.5 (10.1)

0.5

0.01 0.0/0.0 (77.8) 1.0/43.9 (99.5) 22.0/9.1 (97.5) 34.0/42.7 (91.1) 0.0/8.4 (91.2) 8.0/43.0 (99.8) 100.0/28.4 (10.1)
0.03 0.0/0.0 (98.9) 21.0/41.9 (99.9) 31.0/18.1 (94.2) 38.0/37.5 (99.5) 0.0/9.9 (99.5) 99.0/34.1 (10.3) 99.0/25.2 (10.0)
0.05 0.0/0.0 (99.1) 100.0/34.0 (10.0) 23.0/14.2 (99.8) 31.0/42.3 (99.6) 4.0/10.7 (98.9) 100.0/34.0 (10.0) 95.0/27.7 (10.0)

0.9

0.01 0.0/0.0 (96.0) 1.0/43.9 (97.7) 14.0/5.1 (83.4) 43.0/32.5 (93.6) 0.0/10.8 (96.8) 10.0/43.0 (99.9) 100.0/21.3 (10.0)
0.03 0.0/0.0 (95.6) 38.0/40.2 (99.8) 28.0/15.9 (85.2) 49.0/35.3 (96.7) 0.0/11.9 (99.9) 96.0/34.0 (10.0) 100.0/26.9 (10.0)
0.05 0.0/0.0 (99.9) 98.0/34.2 (10.0) 19.0/12.7 (98.4) 55.0/32.9 (99.5) 3.0/11.0 (99.7) 100.0/34.0 (9.9) 100.0/21.7 (10.0)

	Introduction
	Background
	Federated Averaging
	Backdoor Training Algorithms in FL
	Backdoor Defenses in FL
	Motivation and Overview of Solution

	BackdoorIndicator
	Threat Model
	Key Intuition
	Detailed Methodology

	Evaluation
	Experiment Setup
	Detection Performance
	Impact of Hyper-parameters

	Resilience to Adaptive Attacks
	Discussion
	Related Work
	Conclusion
	Supplementary Experiments

