
Speeding up Preimage and Key-Recovery
Attacks with Highly Biased Differential-Linear

Approximations

Zhongfeng Niu1, Kai Hu2,4,6, Siwei Sun1,3⋆, Zhiyu Zhang1, Meiqin Wang2,4,5

1 School of Cryptology, University of Chinese Academy of Sciences,
Beijing, China {niuzhongfeng, sunsiwei}@ucas.ac.cn

zhangzhiyu14@mails.ucas.ac.cn
2 School of Cyber Science and Technology, Shandong University,

Qingdao, Shandong, China {kai.hu, mqwang}@sdu.edu.cn
3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

4 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China.

5 Quan Cheng Shandong Laboratory, Jinan, China
6 School of Physical and Mathematical Sciences, Nanyang Technological University,

Singapore, Singapore

Abstract. We present a framework for speeding up the search for preim-
ages of candidate one-way functions based on highly biased differential-
linear distinguishers. It is naturally applicable to preimage attacks on
hash functions. Further, a variant of this framework applied to keyed
functions leads to accelerated key-recovery attacks. Interestingly, our
technique is able to exploit related-key differential-linear distinguishers
in the single-key model without querying the target encryption ora-
cle with unknown but related keys. This is in essence similar to how
we speed up the key search based on the well known complementation
property of DES, which calls for caution from the designers in building
primitives meant to be secure in the single-key setting without a thor-
ough cryptanalysis in the related-key model. We apply the method to
sponge-based hash function Ascon-HASH, XOFs XOEsch/Ascon-XOF and
AEAD Schwaemm, etc. Accelerated preimage or key-recovery attacks are
obtained. Note that all the differential-linear distinguishers employed in
this work are highly biased and thus can be experimentally verified.

Keywords: Differential-linear, Preimage attack, Key-recovery attack,
Sponge function, Hash function, AEAD

1 Introduction

Searching for preimages and secret keys are central topics in the cryptanaly-
sis of symmetric-key cryptographic primitives. However, we see obvious limita-
tions of the currently available techniques when it comes to the cryptanalysis
⋆ The corresponding author

of permutation-based primitives, especially the sponge-based constructions [BD-
PVA07, BDPA08], which underlies the design of the SHA3 standard [BDPA13]
and the new NIST LWC standard Ascon [DEMS21]. Since the sponge construc-
tion has emerged as a versatile tool for building various cryptographic primitives,
including hash functions [BDP+18], Message Authentication Codes [BDPA11],
and Authenticated Encryption with Associated Data (AEAD) schemes [DEMS21],
cryptanalysis of sponge-based constructions has drawn a lot of attention.

The linear structure [GLS16, LSLW17, LS19, HLY21, LIMY21] and Meet-
in-the-Middle (MitM) techniques [QHD+23, QZH+23] are two major strategies
for preimage attacks on sponge-based hash functions, whereas the cube-like at-
tacks [DMP+15, DEMS15, HWX+17, BCP22] have dominated the key-recovery
attacks on sponge-based AEADs. However, for ciphers with more complicated
round functions (e.g., ARX constructions), the applicability of the above-mentioned
techniques are extremely limited. For example, to the best of our knowledge,
there are no preimage attacks on Esch/XOEsch (the hash function/XOF in the
NIST LWC finalist Sparkle suite) from the open literature.1 In terms of its
AEAD Schwaemm, all known attacks are proposed by its designers, which either
require a data complexity beyond the data limit imposed by the designers or
omit the whitening operation, making the attacks invalid. As summarized by
the NIST report:

“All of these attacks on Schwaemm variants require data beyond the data
limit made by the submitters ... There is no known cryptanalysis on the
hash variants ...” (see [TMC+23, Page 34])

Despite this situation, it seems that we are more capable of performing distin-
guishing attacks on the underlying permutations of the sponge-based construc-
tions. In particular, the differential-linear (DL) technique [LH94] is frequently
employed and often shows remarkable effectiveness against permutation-based
primitives, including ARX designs [BBC+22]. In [NSLL22], several DL distin-
guishers for the round-reduced Sparkle permutation (the underlying permuta-
tion of Schwaemm) or its building blocks were identified. There exist even de-
terministic DL approximations for the 4-round Alzette [BBdS+20], the core
non-linear component of Sparkle. For the Ascon permutation, 4- and 5-round
practical DL distinguishers were found [DEMS15, BDKW19], much stronger
than differential or linear distinguishers. Nevertheless, it is challenging to trans-
late these distinguishers into meaningful (preimage or key-recovery) attacks.

Our Contributions. We propose a strategy for speeding up the search for a
preimage of a one-way function based on highly biased differential-linear distin-
guishers.2 By regarding a keyed primitive as a parameterized one-way function,
the strategy can be adapted to accelerate key-recovery attacks. We demonstrate
1 In [SS22], Schrottenloher and Stevens identified practical distinguishers of the

Sparkle permutation with the MitM technique. However, there is no obvious way to
transform them into meaningful attacks on the corresponding hash or AEAD mode.

2 Strictly, the one-way function here should be called a candidate for one-way function,
since for ideal one-way functions there should be no highly biased distinguishers.

2

the versatility of the method by applying it to various cryptographic primitives
with sponge constructions, small S-boxes, or ARX components. The results are
summarized in Table 1 and Table 2.
Preimage Attacks on XOEsch and Ascon-XOF. We present the first preimage at-
tacks on XOEsch384 and XOEsch256 reduced to 1.5 and 2.5 steps (0.5 step means
an extra nonlinear layer). For Ascon-XOF, our method provides a new approach
for performing preimage attacks which can reach 4 rounds of Ascon-XOF as the
linearization [LHC+23] and MitM techniques [QHD+23]. All of our attacks re-
quire negligible or insignificant memory.
Key-Recovery Attacks on Schwaemm. When there are a huge number of highly
biased differential-linear approximations, we introduce a dedicated time-memory
trade-off technique relying on a large hash table for testing the equations induced
by the differential-linear approximations, based on which we present the first
valid key-recovery attacks on the AEAD Schwaemm. For 3.5 and 4.5 steps of
Schwaemm, our attacks are about 263 or 2126 times faster than the brute-force
search. These attacks bear some resemblances to Daemen’s attack on Even-
Mansour [Dae91] and the “slidex” attack [DKS12] on Prince [BCG+12].
Key-Recovery Attacks on Full Crax-S-10. We present a key-recovery attack on
the full Crax-S-10 in the single-key model by exploiting a set of 1-round related-
key DL distinguishers, and it is 20.47 times faster than the brute-force key search.
This attack does not have any practical impact on the security of Crax-S-10.
However, it calls for caution from the designers in designing primitives meant
to be secure in the single-key setting without a thorough cryptanalysis in the
related-key model. Note that there are other attacks able to exploit related-key
distinguishers in the single-key model (e.g., the biclique attacks [BKR11]).
New Preimage Attacks on Sponge-based Hash Functions. We propose a new
framework for preimage attacks on sponge-based hash functions, which is use-
ful for a hash function claiming a security level higher than half of its ca-
pacity. The framework first recovers a capacity part in the squeezing phase,
then uses an internal-collision phase to meet the initial input specified by the
targeted hash function. With Floyd’s cycle-finding algorithm [Flo67, Sas14],
the inner-collision phase requires a negligible amount of memory. At CRYPTO
2022 [LM22], Lefevre and Mennink proved that the preimage security bound of a
sponge-based hash built on a random permutation is min{max{2n−r′

, 2c/2}, 2n}
work, where n is the digest size, c is the capacity of the sponge (during absorp-
tion), and r′ is the rate (during squeezing). As a result, the security bound of
Ascon-HASH against preimage attacks can be improved to 192-bit. Under the
new security bound, we manage to give a preimage attack on up to 4 rounds
of Ascon-HASH. However, we note that our work does not influence the original
design since the designers only claim a 128-bit security.

Limitations. Our method is an exhaustive search in nature, similar to the
technique employed to speed up the exhaustive key search based on the com-
plementation property of DES [HMS+76]. When the number of highly biased
differential-linear distinguishers is small, the speed-up effect is marginal. When

3

there are a huge number of differential-linear distinguishers, we can skip a lot of
evaluations of the targeted one-way function during the exhaustive search. How-
ever, in this case, the complexity for testing the differential-linear approximation
equations is not negligible and thus we have to use large hash tables to avoid the
corresponding complexities. Moreover, our method is only effective with highly
biased differential-linear approximations, which is difficult to find in general.

Table 1: The preimage and collision attacks on XOEsch, Ascon-XOF and
Ascon-HASH. Except for the 6-round preimage attack on Ascon-XOF, the suc-
cess probability of all preimage attacks in this table are approximately 0.63.

Target Attack
type

Round
(Step) Time Mem. Output

length
Security

claim Meth. Ref.

XOEsch384 Preimage
1.5 2123.64 Neg. 128 2128 DL Sect. 5.2

2186.64 Neg. 192 2192 DL Sect. 5.2

2.5 2125.76 211 128 2128 DL Sect. 5.3
2188.76 211 192 2192 DL Sect. 5.3

XOEsch256 Preimage 1.5 2123.64 Neg. 128 2128 DL Sect. F.1

2.5 2125.66 211 128 2128 DL Sect. F.2

Ascon-XOF Preimage

2 2103 Neg. 128 2128 Cube-like [ASC]

3 2120.58 239 128 2128 MitM [QHD+23]
3 2114.53 230 128 2128 MitM [QZH+23]
3 2112.21 Neg. 128 2128 Lin. [LHC+23]
3 2120.02 Neg. 128 2128 DL Sect. K

4 2124.67 250 128 2128 MitM [QHD+23]
4 2124.49 Neg. 128 2128 Lin. [LHC+23]
4 2125.47 Neg. 128 2128 DL Sect. 6

6† 2127.3 Neg. 128 2128 Algebraic [DEMS21]

Ascon-HASH

Preimage 3 2183.98 Neg. 256 2192 MitM-DL Sect. L
4 2188.61 Neg. 256 2192 MitM-DL Sect. 7

Collision
2 2125 Neg. 128 2128 Diff. [ZDW19]
2 2103 Neg. 128 2128 Diff. [GPT21]
3 2121.85 2121 128 2128 MitM [QZH+23]
4 2126.77 2126 128 2128 MitM [QZH+23]

DL: Differential-linear, Lin.: Linearization, †: No padding bits

2 Notations and Preliminaries

For a positive integer a, we denote by [a] the set {0, 1, . . . , a − 1}, log(a) the
base-2 logarithm of a and ln(a) the base-e logarithm of a. Let F2 = {0, 1} be the
binary field and Fn

2 be the set of all n-bit strings. For x ∈ Fn
2 , wt(x) represents

the Hamming weight of x. The exclusive-or of x ∈ Fn
2 and y ∈ Fn

2 is denoted by
x⊕y, and x ·y =

⊕n−1
i=0 xiyi is the dot product, where xi and yi are the i-th bits

of x and y, respectively. For x ∈ Fn
2 , and A ⊆ Fn

2 , we overload the ⊕ operator and
define the x-translation x⊕A of A to be the set {x⊕y : y ∈ A}. The set A∪{0}

4

Table 2: Results on AEADs and block ciphers. Note that all previous state-
recovery attacks on Schwaemm AEADs either omit the whitening (labeled by ⊖)
or surpass the data limit set by designers (labeled by ⊘). The success probability
of all our key-recovery attacks for 4.5-step Schwaemm is 0.63.

Target Attack
type Step Time Data Mem. Security

claim Method Ref.

Schwaemm
256-128 Key-rec.

3.5 265.3 264 264 2120 DL Sect. 8.1
3.5 264 1 Neg. 2120 Structural Sect. M

4.5 265.4 264 264 2120 DL Sect. 8.2

Schwaemm
192-192

State-rec.⊖ 3.5 2128 264 2128 2184 Data T-O [BBdS+21]
Key-rec. 3.5 2129 264 264 2184 DL Sect. N.1

State-rec.⊖ 4.5 2128+τ 2128−τ 2128+τ 2184 Bir. Diff. [BBdS+21]
Key-rec. 4.5 2129 264 264 2184 DL Sect. N.1

Schwaemm
256-256

State-rec.⊖ 3.5 2192 264 2192 2248 Data T-O [BBdS+21]
State-rec.⊖ 3.5 2192 1 Neg. 2248 Bir. Diff. [BBdS+21]
State-rec.⊘ 3.5 2224+τ 2224−τ 2224+τ 2248 Bir. Diff. [BBdS+21]

Key-rec. 3.5 2129.32 2128 2128 2248 DL Sect. N.2

State-rec.⊖ 4.5 2192 + 2160+τ 2160−τ 2192 2248 Bir. Diff. [BBdS+21]
Key-rec. 4.5 2129.37 2128 2128 2248 DL Sect. N.2

Schwaemm
128-128

State-rec.⊖ 3.5 264 264 264 2120 Data T-O [BBdS+21]
Key-rec. 3.5 265.32 264 264 2120 DL Sect. N.3

State-rec.⊖ 4.5 296+τ 296−τ 296+τ 2120 Guess Det. [BBdS+21]
Key-rec. 4.5 265.37 264 264 2120 DL Sect. N.3

Crax-S-10 Key-rec. 10 2127.53 2 Neg. 2128 DL Sect. O

DL: Differential-linear, Data. T-O: Data trade-off, Bir. Diff.: Birthday differential

is abbreviated as Â, and ⟨A⟩ represents the linear space spanned by A. Thus
⟨A⟩ = ⟨Â⟩. Let V ⊆ Fn

2 be a linear space of dimension dim(V) = d spanned by
{α0, . . . , αd−1}. Then, let V⊣ ⊆ Fn

2 be a linear space spanned by {β0, . . . , βn−d−1}
such that the vectors in {α0, . . . , αd−1, β0, . . . , βn−d−1} are linearly independent.
Then, Fn

2 can be split into a direct sum V⊕V⊣, where V⊣ contains |V⊣| = 2n−d

elements and dim(V⊣) = n− d. We call V⊣ an algebraic complementary of V.

Lemma 1. Let V ⊆ Fn
2 be a linear space. Then

⋃
x∈V⊣ x ⊕ V = Fn

2 . Moreover,
For x, y ∈ V⊣, x ⊕ V ∩ y ⊕ V ̸= ∅ if and only if x = y. That is, the 2n−dim(V)

subsets x⊕ V with x ∈ V⊣ form a partition of Fn
2 .

Remark 1. For a linear space V ⊆ Fn
2 , V⊣ is not always equal to V⊥ = {x ∈

Fn
2 : x · y = 0 for all y ∈ V}. For example, if V = {00, 11} ∈ F2

2, then a choice
of V⊣ is {00, 01}, and V⊥ = {00, 11}. But if V is spanned by unit vectors,
then V⊥ is an algebraic complementary of V. Note that may be other algebraic
complementaries. For example, Let V = ⟨1000, 0100⟩. Then, both ⟨1111, 1010⟩
and ⟨0010, 0001⟩ are algebraic complementaries of V.

Let f : Fm
2 → Fn

2 be a vectorial Boolean function. The correlation c of the
differential-linear approximation of f with input difference δ ∈ Fm

2 and linear
mask λ ∈ Fn

2 is defined as c = 1
2m

∑
x∈Fm

2
(−1)λ·(f(x)⊕f(x⊕δ)), where −1 ≤ c ≤

5

1 [LH94]. Note that when c > 0, the value of λ · (f(x) ⊕ f(x ⊕ δ)) is biased
towards 0, and when c < 0, the value of λ · (f(x) ⊕ f(x ⊕ δ)) is biased towards
1. In short, we have Pr[λ · (f(x) ⊕ f(x ⊕ δ)) = 0] = 1

2 + c
2 , i.e., when c ̸= 0,

λ · (f(x) ⊕ f(x ⊕ δ)) is biased towards ζc = (−1)Sign(c)+1
2 , where Sign(z) = 1

when z > 0, and Sign(z) = 0 when z < 0. One DL distinguisher of f with the
difference-mask (δ, λ) whose correlation is c is denoted by δ

f−→
c

λ.

3 Speed up Preimage Recovery with DL Distinguishers

Let F : Fm
2 → Fn

2 be a one-way function. Then, for a given image O of F , we can
check whether one of x and x⊕ δ is a preimage in the naive way by evaluating F
on x and x⊕δ. Now, let us assume that there is a deterministic differential-linear
approximation (δ, λ) such that for all x ∈ Fm

2 the equation λ·(F (x)⊕F (x⊕δ)) = 0
is fulfilled. Then, for a given image O of F , we can check whether one of x and
x⊕ δ is a preimage in the following way. First, evaluate F on x with y = F (x).
If y = O, we are done. Otherwise, λ · (y ⊕ O) = 0 is a necessary condition for
x ⊕ δ to be a preimage of O. Therefore, we bypass the evaluation of F (x ⊕ δ)
when λ · (y ⊕ O) ̸= 0. The net effect is that we check 2 messages (x and x⊕ δ)
with about 1.5 evaluations of F which speeds up the search. Motivated by this
simple idea, we present a general framework for speeding up preimage attacks
when multiple highly biased differential-linear approximations are available.

3.1 A General Framework for Speeding up Preimage Attacks

Let D = {δ0, δ1, . . . , δs−1} ⊆ Fm
2 be a set of s nonzero differences. For each δi

(0 ≤ i < s), there is a set Mi = {λi,0, λi,1, . . . , λi,ℓi−1} of ℓi linear-independent
linear masks, such that each (δi, λi,j) forms a DL distinguisher with correlation
ci,j . Algorithm 1 speeds up the search for a preimage from N translations of D̂.

Given an image O of F , Algorithm 1 checks N translations in its N while-
loops. In each loop, F is evaluated on a random element x with y = F (x). If
y = O, we are done. Otherwise, the other s elements in x⊕D have to be checked.
In a naive approach, s evaluations of F should be performed, including F (x⊕δ0),
. . ., and F (x ⊕ δs−1). However, according to Line 8 to Line 13 of Algorithm 1,
elements in {x⊕ δi : δi ∈ D, PreTest(y, O, δi,Mi) = 1} are rejected without the
evaluations of F . To put it another way, only elements in

Sx,D = {x⊕ δi : δi ∈ D, PreTest(y, O, δi,Mi) = 0}

are evaluated by F , where x⊕δi ∈ Sx,D is signified by reject = 0 in Algorithm 1.
The test performed in Line 9 of Algorithm 1 can be regarded as a filtering process.
We call Sx,D the set of translation survivors. The saved evaluations of F are the
source of the acceleration. Algorithm 1 performs N(1 + |Sx,D|) evaluations of F ,
where |Sx,D| denotes the average size of Sx,D for a random x. Note that PreTest()
can be implemented with various strategies. For illustration, we first show how

6

Algorithm 1: Speed up the preimage search with DL distinguishers
Input: O ∈ Fn

2 ; The sets of input differences D = {δ0, . . . , δs−1} and linear
masks Mi = {λi,0, . . . , λi,ℓi−1} for 0 ≤ i < s such that (δi, λi,j) is a
differential-linear approximation of F with correlation ci,j

Output: A preimage x such that F (x) = O or ⊥
1 cnt← 0
2 while cnt < N do
3 Randomly generate an input x ∈ Fm

2
4 cnt← cnt + 1
5 y ← F (x)
6 if y = O then
7 return x ▷ x is a preimage of O

8 for 0 ≤ i < s do
9 reject← PreTest(y, O, δi,Mi) ▷ Perform some statistical test

10 if reject = 0 then
11 y′ ← F (x⊕ δi)
12 if y′ = O then
13 return x⊕ δi

14 return ⊥

the complexity and success probability of Algorithm 1 behave under the so-
called “strictest” strategy given in Algorithm 2, where we reject an element in a
translation whenever one of the differential-linear approximations is not fulfilled.

Algorithm 2: Implement PreTest() with the strictest strategy
Input: y = F (x) for some x ∈ Fm

2 , the image O, δi ∈ D, linear masks
Mi = {λi,0, . . . , λi,ℓi−1} such that (δi, λi,j) is a differential-linear
approximation of F with correlation ci,j

Output: 0 or 1
1 for 0 ≤ j < ℓi do
2 if λi,j · (y ⊕O) ̸= ζci,j then
3 return 1

4 return 0

Complexity Analysis. When PreTest() is instantiated with Algorithm 2,
Sx,D = {x ⊕ δi : δi ∈ D, λi,j · (y ⊕ O) = ζci,j , 0 ≤ j < ℓi}. For each i such
that O ̸= F (x ⊕ δi), the event λi,j · (y ⊕ O) = ζci,j

for all j ∈ {0, . . . , ℓi − 1}
holds with a probability of 2−ℓi . Thus, on average we expect |Sx,D| =

∑s−1
i=0 2−ℓi .

Consequently, the complexity of Algorithm 1 is about N
(

1 +
∑s−1

i=0 2−ℓi

)
evalu-

7

ations of F . Generally, the complexity of the dot products (line 2 of Algorithm 2)
is negligible compared with the complexity due to the evaluations of F .

Success Probability. The probability q of hitting a preimage in one while-loop
of Algorithm 1 with a random guess x ∈ Fm

2 can be computed as 3

q ≥ Pr[F (x) = O] +
s−1∑
i=0

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]. (1)

For 0 ≤ i < s, we have

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]
= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O] Pr[F (x⊕ δi) = O]

= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O]
(
1− 2−n

)i+1 2−n

= pi

(
1− 2−n

)i+1 2−n > pi

(
1− 2−n

)s 2−n, (2)

where pi =
∏ℓi−1

j=0

(
1
2 + |ci,j |

2

)
. Substituting Equation (2) into Equation (1) gives

q > 1
2n +

∑s−1
i=0 pi

(
1− 1

2n

)s 1
2n . Since s ≪ 2n and

(
1− 1

2n

)s =
(
1− 1

2n

)2n s
2n ≈

e− s
2n ≈ 1, we have

q >
1
2n

+
s−1∑
i=0

pi

2n
= 2log(s+1)−n 1

s + 1

(
1 +

s−1∑
i=0

pi

)
= ρτ,

where τ = 2log(s+1)−n and ρ = 1
s+1 (1 +

∑s−1
i=0 pi). Therefore, the success prob-

ability that a preimage is detected after N while-loops of Algorithm 1 is lower
bounded by Psuc = 1 − (1 − ρτ)N . For the sake of comparison with exhaustive
search, in this work, we always set N = (ρτ)−1 to make the success probability
to be about 1 − e−1 ≈ 0.63, since the success probability to find a preimage
of a one way function F : Fm

2 → Fn
2 by randomly checking 2n inputs is about

1− lim(1− 1/2n)2n ≈ 1− e−1 ≈ 0.63. In the above analysis, we assume that the
randomly selected translations x ⊕ D̂ are disjoint. The following Lemma shows
that this assumption is reasonable when m is large.

Lemma 2. Let D ⊆ Fm
2 such that |D| = s, and x0, . . . , xα−1 are randomly

generated elements in Fm
2 . The probability that the translations xi ⊕ D̂ for 0 ≤

i < α are not mutually disjoint is upper bounded by (s+1)2α(α−1)
2m+1 .

Proof. See Section A of Supplementary Material. ⊓⊔

For example, in the preimage attack on the 4-round Ascon-XOF given in
Section 6, we have m = 320, s = 63, and α = 2122. According to Lemma 2, the
probability that the randomly generated α = 2122 translations are not mutually
disjoint is upper bounded by 2−65, which is negligible.
3 For simplicity, we assume that there is one and only one preimage in the search

space, i.e., F (x⊕ δi) = O implies F (x) ̸= O and F (x⊕ δj) ̸= O, j ̸= i.

8

3.2 Implement PreTest() with More Advanced Statistical Tests
For the sake of completeness and possible further improvement, we introduce
some more advanced strategies for implementing PreTest(). However, we strongly
encourage the readers first skipping this part since it introduces an additional
layer of technical complexity for understanding the core idea. Moreover, since we
only use a limited number of DL distinguishers with extremely high correlations
in all the concrete cryptanalysis of this work, these more advanced statistical
tests do not lead to observable improvements. Therefore, in the applications, we
will employ the strictest strategy by default. In addition, with the maximum
likelihood strategy and the LLR strategy given in the following, the time com-
plexity of the preimage attack on 4-round Ascon-XOF presented in Section 6 can
be marginally improved by a factor of 20.06, the details can be found in Section I
and Section J of Supplementary Material.

Algorithm 3: Implement PreTest() with the threshold strategy
Input: y = F (x) for some x ∈ Fm

2 , the preimage O, δi ∈ D, linear masks
Mi = {λi,0, . . . , λi,ℓi−1} such that (δi, λi,j) is a DL approximation of F
with correlation ci,j , and the threshold γi

Output: 0 or 1
1 num← 0
2 for 0 ≤ j < ℓi do
3 if λi,j · (y ⊕O) = ζci,j then
4 num← num + 1

5 if num < γi then
6 return 1
7 return 0

The Threshold Strategy. In Algorithm 3, an element in a translation is ac-
cepted only when there are at least γi fulfilled linear approximations. Therefore,
the strictest approach given in Algorithm 2 is a special case of the threshold
strategy with γi set to its maximum (i.e., γi = ℓi). In this strategy, the complex-
ity of Algorithm 1 is N(1+

∑s−1
i=0 qi) evaluations of F , where qi =

∑ℓi

z=γi

(
ℓi

z

)
2−ℓi .

The success probability can be estimated as 1−(1−ρτ)N , where τ = 2log(s+1)−n,
ρ = 1

s+1 (1 +
∑s−1

i=0 pi), u = (u0, . . . , uℓi−1) ∈ Fℓi
2 , and

pi =
∑

u∈Fℓi
2 ,

wt(u)<γi

ℓi−1∏
j=0

(
1
2 + (−1)uici,j

2

)
.

The detailed analysis can be found in Section C.1 of Supplementary Material.

The Maximum Likelihood Strategy. This strategy is implemented in Al-
gorithm 4. We define L(i) : Fm

2 7→ Fℓi
2 to be the function mapping x ∈ Fm

2 to

9

(λi,0 · (F (x)⊕F (x⊕ δi)), . . . , λi,ℓi−1 · (F (x)⊕F (x⊕ δi))). For u ∈ Fℓi
2 , let g

(i)
u =

Prx∈Fm
2

[L(i)(x) = u] and Nγi
= {u ∈ Fℓi

2 : g
(i)
u ≥ γi}. In this strategy, an element

in a translation is accepted if and only if (λi,0 ·(y⊕O), . . . , λi,ℓi−1 ·(y⊕O)) ∈ Nγi
.

Therefore, Sx,D = {x⊕ δi : δi ∈ D, (λi,0 · (F (x)⊕O), . . . , λi,ℓi−1 · (F (x)⊕O)) ∈
Nγi
}, and on average we expect |Sx,D| =

∑s−1
i=0

|Nγi
|

2ℓi
for a random x. Conse-

quently, the complexity of Algorithm 1 is about N
(

1 +
∑s−1

i=0
|Nγi

|
2ℓi

)
evalua-

tions of F . The success probability can be estimated as Psuc = 1 − (1 − ρτ)N ,
where τ = 2log(s+1)−n, ρ = 1

s+1 (1 +
∑s−1

i=0 pi), pi =
∑

u∈Nγi
g

(i)
u . Let a =

(a0, . . . , aℓi−1) ∈ Fℓi
2 , according to [Lu15, HCN08],

g(i)
u = 1

2ℓi

∑
a∈Fℓi

2

(−1)a·u

∑
x∈Fm

2

(−1)
((∑ℓi

j=0
ajλi,j

)
·(F (x)⊕F (x⊕δi))

) .

Furthermore, if the differential-linear approximations (δi, λi,j), 0 ≤ j < ℓi of
F with correlation ci,j are independent with each other, g

(i)
u can be computed

as g
(i)
u =

∏ℓi−1
j=0

(
1
2 + (−1)uici,j

2

)
, for u = (u0, . . . , uℓi−1) ∈ Fℓi

2 . The detailed
analysis can be found in Section C.2 of Supplementary Material.

Algorithm 4: A maximum likelihood strategy to implement PreTest()
Input: y = F (x) for some x ∈ Fm

2 , the preimage O, δi ∈ D, linear masks
Mi = {λi,0, . . . , λi,ℓi−1} such that (δi, λi,j) is a differential-linear
approximation of F with correlation ci,j , and the set Nγi .

Output: 0 or 1
1 v ← (λi,0 · (y ⊕O), . . . , λi,ℓi−1 · (y ⊕O))
2 if v ∈ Nγi then
3 return 0
4 else
5 return 1

The LLR Strategy. See Section C.3 of Supplementary Material.

4 The Framework for Speeding up Key-Recovery Attacks

Let F : Fm
2 × Fn

2 → Fn
2 be a keyed function with F (K, P) = C and K being the

secret key. In typical key-recovery attacks, the adversary is free to make her own
choices of P . Suppose that we have a deterministic related-key DL distinguisher
such that λ · (F (K, P) ⊕ F (K ⊕ δ, P ⊕ δ′)) = 0. In addition, C = F (K, P) and
C ′ = F (K, P ⊕δ′). Then, we can check whether one of k and k⊕δ is a candidate
key by computing c = F (k, P). If c = C, then k is a candidate for the correct

10

key. Also, λ · (c ⊕ C ′) = 0 is necessary for k ⊕ δ being a candidate for K with
k ⊕ δ = K, since in this case λ · (c⊕ C ′) = λ · (F (k, P)⊕ F (k ⊕ δ, P ⊕ δ′)) = 0
according to the deterministic distinguisher. Therefore, we bypass the evaluation
of F (k ⊕ δ, P ⊕ δ′) when λ · (c⊕C ′) ̸= 0. The net result is that we check 2 keys
(k and k ⊕ δ) with about 1.5 evaluations of F . We emphasize that in the whole
process, we do not query the encryption oracle with K⊕ δ. Therefore, the attack
exploits related-key differential-linear distinguishers in the single-key model.

Given (P, C), the function FP (·) = F (·, P) can be regarded as a one-way
function parameterized by P . Therefore, the preimage K for C can be recovered
with similar methods given in Section 3. For simplicity, we just give one full ex-
ample in Algorithm 5 with the strictest strategy for the statistical test described
in Algorithm 6. Let D =

{
(δ0, δ′

0), (δ1, δ′
1), . . . , (δs−1, δ′

s−1)
}
⊆ Fm+n

2 be a set
of s differences where δi ̸= 0 (0 ≤ i < s), and for each difference (δi, δ′

i), there
is a set Mi = {λi,0, λi,1, . . . , λi,ℓi−1} of ℓi linearly-independent linear masks.
Each ((δi, δ′

i), λi,j) forms a DL distinguisher with correlation ci,j . In contrast
to preimage attacks (Algorithm 1) where the search terminates whenever a
preimage is identified, a key-recovery attack has to find the actual key used.
To this end, Algorithm 5 requires that D̂K = DK ∪ {0} = {0, δ0, δ1, . . . , δs−1}
to be a linear space. In this way, the full key space Fm

2 is covered by the
2m−dim(D̂K) = 2m−log(s+1) translations of D̂K (Lemma 1). Algorithm 5 checks
these translations in its 2m−log(s+1) for-loops. In each loop, F is evaluated on a
random key k with c = F (k, P). If c = C, k is a key candidate, and we confirm
it with additional plaintext-ciphertext pairs. Otherwise, the other s elements in
k⊕ D̂K have to be checked. Similarly to Algorithm 1, only elements in the set of
translation survivors Sk,DK

= {k ⊕ δi : δi ∈ DK , KeyTest(c, Ci, (δi, δ′
i),Mi) = 0}

are evaluated by F , where k⊕δi ∈ Sk,DK
is signified by reject = 0 in Algorithm 6.

Again, the saved evaluations of F are the source of the acceleration.

Complexity Analysis. When KeyTest() is instantiated with Algorithm 6,
Sk,DK

= {k ⊕ δi : δi ∈ D, λi,j · (c ⊕ Ci) = ζci,j
, 0 ≤ j < ℓi}. In each for-loop

of Algorithm 5 (line 4), F is evaluated once on a randomly selected k ∈ D̂⊣
K to

encrypt a plaintext P , and then F is evaluated |Sk,DK
| times. For each i such that

Ci ̸= F (k⊕δi, P⊕δ′
i), the event λi,j ·(c⊕Ci) = ζci,j

for all j ∈ {0, · · · , ℓi−1} holds
with a probability of 2−ℓi . Thus, on average we expect |Sk,DK

| =
∑s−1

i=0 2−ℓi .
Consequently, the complexity of Algorithm 5 is about 2dim(D̂⊣

K)(1 +
∑s−1

i=0 2−ℓi)
evaluations of F , where dim(D̂⊣

K) = m− log(s + 1) according to Lemma 1.

Success Probability. Since the translations k ⊕ D̂K of D̂K with k ∈ D̂⊣
K form

a partition of Fm
2 , the correct key K must be in one of the translations for some

k, where K is randomly chosen from Fm
2 . The probability q of hitting the correct

key by Algorithm 5 can be estimated as

q = 1
s + 1 +

s−1∑
i=0

pi

s + 1 = 1
s + 1

(
1 +

s−1∑
i=0

pi

)
, (3)

11

Algorithm 5: Speed up the key-recovery with DL distinguishers
Input: D = {(δ0, δ′0), · · · , (δs−1, δ′s−1)} ⊆ Fm+n

2 , and Mi = {λi,0, . . . , λi,ℓi−1}
for 0 ≤ i < s such that ((δi, δ′i), λi,j) is a related-key DL appoximation
of F with correlation ci,j , and D̂K = {0} ∪ {δ0, · · · , δs−1} is a linear
subspace of Fm

2 .
Output: The master key K

1 Randomly choose a plaintext P , derive C = F (K, P)
2 for 0 ≤ i < s do
3 Ci = F (K, P ⊕ δ′i)

4 for k ∈ D̂⊣K do
5 c← F (k, P)
6 if c = C then
7 if F (k, P ⊕ δ′i) = Ci, 0 ≤ i < s then
8 return k ▷ a few of (P ⊕ δ′i, Ci) suffice

9 for 0 ≤ i < s do
10 reject← KeyTest(c, Ci, (δi, δ′i),Mi)
11 if reject = 0 then
12 if F (k ⊕ δi, P ⊕ δ′i) = Ci, 1 ≤ i < s then
13 return k ⊕ δj ▷ a few of (P ⊕ δ′i, Ci) suffice

Algorithm 6: A strictest approach to implement KeyTest()
Input: c = F (k, P), Ci = F (K, P ⊕ δ′i), (δi, δ′i) ∈ Fm

2 × Fn
2 , and

Mi = {λi,0, . . . , λi,ℓi−1} such that ((δi, δ′i), λi,j) is a related-key DL
appoximation of F with correlation ci,j

Output: 0 or 1
1 for 0 ≤ j < ℓi do
2 if λi,j · (c⊕ Ci) ̸= ζci,j then
3 return 1

4 return 0

where pi =
∏ℓi−1

j=0

(
1
2 + |ci,j |

2

)
. The detailed analysis can be found in Section D

of Supplementary Material. If we only use deterministic DL distinguishers as we
do in all of our concrete cryptanalysis in this paper, the success probability of
Algorithm 5 is about 1.

Remark 2. In Algorithm 5, we require D̂K to be a linear space. Although in all
concrete applications in the following sections this condition is fulfilled, theo-
retically, this condition is not necessary. If the D̂K = {0, δ0, δ1, . . . , δs−1} is not
a linear subspace, the key search can be accelerated with Algorithm 9 given in
Section E of the Supplementary Material.

12

Next, we show how to use a large hash table to speed-up the key search when
there are a huge number of differential-linear approximations by a contrived ex-
ample. This technique is applied in the analysis of Schwaemm in Section 8, and
Section N in Supplementary Material. Let F : F256

2 ×F256
2 → F256

2 be a keyed func-
tion mapping (K, P) to C = F (K, P). Let D = {(δ′

0, δ0), · · · , (δ′
2128−2, δ2128−2)}

be a set of differences, such that D̂K = {0, δ0, · · · , δ2128−2} forms a linear space
with dimension 128. Let Mi = {λ0, · · · , λ127} be a set of linear masks for
0 ≤ i < 2128 − 1, such that λj · (F (k ⊕ δi, P ⊕ δ′

i) ⊕ F (k, P)) = 0 for all
j ∈ {0, · · · , 127} and i ∈ {0, · · · , 2128 − 2} deterministically. In addition, let
L = (λ0, · · · , λ127)T , which can be regarded as a 128 × 256 binary matrix (i.e.,
a linear transformation). The procedure of the attack is given in Algorithm 7.
Firstly, from Line 3 to Line 5 of Algorithm 7, we need to evaluate 2128 times
F and 2128 times L. In each for-loop at Line 6, on average, we need to perform
F (Line 7) one time, L (Line 10) one time, F (Line 12) one time on average,
and one hash table lookup. Since the for loop will repeat 2256−128 times, we
need to perform 2128 + 2128 times F , 2128 times L, and 2128 hash table lookups.
Therefore, the time complexity is 3 × 2128 times F , 2 × 2128 times L, and 2128

times hash table lookups.

Algorithm 7: Speed up key-recovery attacks with hash tables
Input: D and Mi for 0 ≤ i < 2128 − 1
Output: The master key K

1 Randomly choose a plaintext P
2 C ← F (K, P) // Query the oracle

3 for 0 ≤ i < 2128 − 1 do
4 Cδi ← F (K, P ⊕ δ′i) // Query the oracle
5 Insert δi into a hash table at address L(Cδi)

6 for k ∈ D̂⊣K do
7 c← F (k, P)
8 if c = C then
9 return k

10 Addr← L(c)
11 for δ at address Addr of the hash table do
12 C′ ← F (k ⊕ δ, P)
13 if C′ = C then
14 return k ⊕ δ

15 return ⊥

13

5 Application I: Preimage Attacks on XOEsch

XOEsch512 and XOEsch384 are two XOFs of the NIST LWC finalist Sparkle
family built with the sponge structure, whose parameters and security bounds
are listed in Table 3. The structure of XOEsch384 is given as an example in
Figure 1. According to the specification of XOEsch, only when necessary, the
message is padded. Thus, we always assume that there are no padding bits in the
message in our attacks. Also, different from most sponge-based hash functions,
XOEsch applies an Mw operation to its message blocks before absorbing them.

Table 3: Parameters used by XOEsch256 and XOEsch384 with the digest length
being t > 0. Our attacks are applied to the cases with t = 128 and t = 192.

Instance Size Security Claim

Permutation Rate Capacity Collision (2nd) Preimage

XOEsch256 384 128 256 min{128, t/2} min{128, t}
XOEsch384 512 128 384 min{192, t/2} min{192, t}

⊕

0
256

0
256

M4

M0‖0128

Sp
ar

kl
e5

12

⊕

256

256

M4

M1‖0128

Sp
ar

kl
e5

12

⊕

256

256

M4

M2‖0128 ⊕M−1(CM)

Sp
ar

kl
e5

12

128

D0

Fig. 1: The structure of XOEsch384. In this example, the input is a 3-block mes-
sage (M0, M1, M2), the output is a 1-block digest D0. CM is a constant to dif-
ferentiate different instances of Esch and XOEsch.

Definition 1. Let w > 1 be an integer. Mw permutes (F32
2 × F32

2)w such that

Mw ((x0, y0), . . . , (xw−1, yw−1)) = ((u0, v0), . . . , (uw−1, vw−1)) ,

where the branches (ui, vi) are defined as

ty ←
w−1⊕
i=0

yi, tx ←
w−1⊕
i=0

xi,

{
ui ← xi ⊕ ℓ(ty)
vi ← yi ⊕ ℓ(tx)

∀i ∈ {0, . . . , w − 1},

where ℓ is a linear operation.

Lemma 3 (Fixed Point). Let zi ∈ F64
2 for 0 ≤ i < w. If

⊕w−1
i=0 zi = 0, then

Mw (z0, z1, . . . , zw−1) = (z0, z1, . . . , zw−1).

14

Proof. According to Definition 1,
⊕w−1

i=0 zi = 0 implies tx = ty = 0. ⊓⊔

Lemma 4 (Mask Invariance). Let λ ∈ F64
2 \{0} and zi ∈ F64

2 for 0 ≤ i < w.
Define γ = (γ0, γ1, . . . , γw−1) ∈ F64×w

2 and γi ∈ {0, λ} (0 ≤ i < w). If there are
even-number out of the w components of γ being λ ̸= 0, we have

γ · (z0, z1, . . . , zw−1) = γ · (z′
0, z′

1, . . . , z′
w−1),

where (z′
0, z′

1, . . . , z′
w−1) =Mw(z0, z1, . . . , zw−1).

Proof. See Section B of Supplementary Material. ⊓⊔

Lemma 5 (Valid Input). Let (ui, vi) ∈ F32
2 × F32

2 for 0 ≤ i < w such that

(ui, vi) = (ℓ(v0 ⊕ v1), ℓ(u0 ⊕ u1)) for 2 ≤ i < w.

Then, there is a unique ((x0, y0), (x1, y1), (0, 0), . . . , (0, 0)) ∈ (F32
2 ×F32

2)w satisfy-
ing Mw((x0, y0), (x1, y1), (0, 0), . . . , (0, 0)) = ((u0, v0), . . . , (uw−1, vw−1)), where{

(x0, y0) = (u0 ⊕ ℓ(v0 ⊕ v1), v0 ⊕ ℓ(u0 ⊕ u1))
(x1, y1) = (u1 ⊕ ℓ(v0 ⊕ v1), v1 ⊕ ℓ(u0 ⊕ u1))

. (4)

Proof. See Section B of Supplementary Material. ⊓⊔

Sparkle is a family of ARX-based permutations used by the hash functions
XOEsch as well as its XOFs XOEsch and the AEAD Schwaemm [BBdS+21]. Fig-
ure 2a illustrates the structure of the 1.5-step Sparkle512 permutation, where
Aci

: F32
2 × F32

2 → F32
2 × F32

2 is an ARX box parameterized with a constant ci

named as Alzette (see Figure 2b). For convenience, the input and output of
the j-th step of the Sparkle permutation are denoted by Xj = (Xj

0 , . . . , Xj
z−1)

and Y j = (Y j
0 , . . . , Y j

z−1), where z = 4, 6, 8 for Sparkle256, Sparkle384 and
Sparkle512, respectively (see Figure 2a as an example).

We apply Algorithm 1 and give the preimage attacks on 1.5- and 2.5-step
XOEsch384 in Sections 5.2 and 5.3, respectively. In Section F of Supplementary
Material, we give the preimage attacks on 1.5- and 2.5-step XOEsch256. In Sec-
tion G, we provide preimage attacks on variants of XOEsch384 and XOEsch256
where the two Alzette ARX boxes in the first round are parameterized with the
same constants. The results justify the choice of the designers to use different
constants to parameterize different Alzette ARX boxes.

5.1 DL Distinguishers for Alzette

We identify 15 groups of DL distinguishers with the method given in [NSLL22],
which are listed in Table 4. The absolute correlations of these distinguishers
are extremely high and have been verified experimentally. Let the set of input
differences of Ac be a linear space D̂Alzette spanned by b0 = (0x80000000, 0x0),
b1 = (0x40000000, 0x0), b2 = (0x20000000, 0x0), and b3 = (0x0, 0x40000000).

15

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

Xj
0 Xj

1 Xj
2 Xj

3 Xj
4 Xj

5 Xj
6 Xj

7

M4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

Y j+1
0 Y j+1

1 Y j+1
2 Y j+1

3 Y j+1
4 Y j+1

5 Y j+1
6 Y j+1

7

(a) The structure of 1.5-step of Sparkle512 permu-
tation. In this instance, there are 8 64-bit branches.

x y

≫ 31

≫ 24
c

≫ 17

≫ 17
c

≫ 0

≫ 31
c

≫ 24

≫ 16
c

u v
1

(b) Alzette parameterized by c.

Fig. 2: Illustration of Sparkle and Alzette.

Thus, D̂Alzette = ⟨b0, b1, b2, b3⟩, and any difference δ ∈ D̂Alzette can be written
as δ =

∑3
i=0 aibi where ai ∈ F2, denoted by (a0a1a2a3)δ. For example, since

(0xa0000000, 0x40000000) = b0⊕ b1⊕ b3, (0xa0000000, 0x40000000) is accord-
ingly denoted by (1101)δ. Each linear mask of Ac we used has only two active
bits: one is in the left branch, and the other is in the right. So we use the two
indices of the active bits in the left and right branches to denote the masks. For
example, (0, 31)λ represents the mask (0x80000000, 0x1).

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

0 0 0 0 0 0 0 0

M4

M
0 ||0

1
2
8

M4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

X−1

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

X−1
0 X−1

1 X−1
2 X−1

3 X−1
4 X−1

5 X−1
6 X−1

7

M4

M
1 ||0

1
2
8

M4

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

T0 T1

λ λ 0 0 0 0 00 0

λ
λ

λ

λ

0

0

000 0 λ
λ

λ

λ

0

0

δ δ 0 0 0 0 0 0

Fig. 3: Preimage attack on the 1.5-step XOEsch384 with a 128-bit digest. We use
two message blocks (M0, M1) in this attack.

16

Table 4: The DL distinguishers of Ac with absolute correlations. These input
differences form DAlzette and D̂Alzette is a linear space. All or the first five linear
masks in the table head form Mi for each δi ∈ DAlzette.

Diff.\Mask (17, 1)λ (18, 2)λ (19, 3)λ (5, 21)λ (4, 20)λ (14, 30)λ (28, 12)λ

(0010)δ 1 1 1 ≥ 0.96 ≥ 0.94 ≥ 0.96 ≥ 0.90

(0100)δ 1 1 1 ≥ 0.96 ≥ 0.94 ≥ 0.94 ≥ 0.86

(1000)δ 1 1 1 ≥ 0.96 ≥ 0.92 ≥ 0.92 ≥ 0.82

(0110)δ 1 1 1 ≥ 0.96 ≥ 0.94 ≥ 0.94 ≥ 0.88

(1010)δ 1 1 1 ≥ 0.96 ≥ 0.94 ≥ 0.94 ≥ 0.84

(1100)δ 1 1 1 ≥ 0.96 ≥ 0.94 ≥ 0.94 ≥ 0.86

(1110)δ 1 1 1 ≥ 0.96 ≥ 0.94 ≥ 0.94 ≥ 0.88

(0001)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.916 ≥ 0.84

(0011)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.84

(0101)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.84

(0111)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.84

(1011)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.84

(1101)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.84

(1111)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.84

(1001)δ ≥ 0.92 ≥ 0.92 ≥ 0.94 ≥ 0.92 ≥ 0.86

5.2 Preimage Attack on the 1.5-Step XOEsch384

Our preimage attack works for the 1.5-step XOEsch384 with a digest length
between 128 and 192 bits, and to ensure the disjointness of the generated trans-
lations, it requires 2 message blocks (M0, M1). Here we take the instance with a
128-bit digest illustrated in Figure 3 as an example. The 128-bit digest (T0, T1) ∈
F64×2

2 can be inverted through Alzette ARX boxes Ac0 and Ac1 . Thus, if
the linear masks employed for (X1

2 , . . . , X1
7) in the attack are inactive, we can

safely skip the Alzette ARX boxes in the last step. In addition, for any given
M0, X−1 can be derived. Consequently, we only need to focus on the function
FLSM : F128

2 → F128
2 mapping M1 to (X1

0 , X1
1).

The DL approximations for FLSM are derived from DL distinguishers of
Alzette. Given any DL approximation (δ, λ) of Ac1 with correlation c listed in
Table 4, we set the linear mask of X1 to be Λ(X1) = (λ, λ, 0, 0, 0, 0, 0, 0). Ac-
cording to Lemma 4, the linear mask Λ(Y 0) of Y 0 is (0, λ, λ, 0, 0, λ, λ, 0). Let the
difference of M1 be ∆(M1) = (δ, δ). According to Lemma 3, the difference of X0

is ∆(X0) = (δ, δ, 0, 0, 0, 0, 0, 0). As highlighted in Figure 3, only Ac1 has nonzero
input difference and nonzero output linear mask at the same time. Therefore,
the correlation of the above DL approximation for FLSM is c.

The attack applies Algorithm 1 to FLSM and proceeds as follows in the t-th
while-loop of Algorithm 1. Set M0 to be the 128-bit encoding of the integer t,
and generate one random message block M1 ∈ F128

2 . Compute the value x =
(x0, x1) for (X1

0 , X1
1) from M0 and M1. If x = (x0, x1) = (A−1

c0 (T0), A−1
c1 (T1)) =

17

(X1
0 , X1

1), we are done with (M0, M1) being the preimage of (T0, T1). Otherwise,
for each δi ∈ DAlzette, we test whether λi,j · (x⊕ (X1

0 , X1
1)) = ζci,j

for all λi,j ∈
Mi (DAlzette and Mi are given in Table 4). If δi passes the test, we compute
the value x′ = (x′

0, x′
1) for (X1

0 , X1
1) from the message (M0, M1 ⊕ (δi, δi)). If

x′ = (x′
0, x′

1) = (A−1
c0 (T0), A−1

c1 (T1)), (M0, M1⊕(δi, δi)) is a preimage for (T0, T1).
Note that with our approach for selecting (M0, M1), the translations checked in
the first N while-loops with N < 2128 are guaranteed to be disjoint since the
first 128 bits of two messages in the translations checked in different while-loops
encode different integers.

Complexity and Success Probability. According to Table 4, the size of the
set D of input differences is s = |D| = |DAlzette| = 15, ρ ≈ 2−0.26 and τ =
2log(s+1)−n = 2−124. The expectation of |Sx,D| =

∑s−1
i=0 2−ℓi is about 2−1.71.

Therefore, we set N = (ρτ)−1 = 2124.26 to make the success probability to be
0.63. The time complexity of the attack is about N(1 + 2−1.71) = 2124.26 × (1 +
2−1.71) ≈ 2124.64 evaluations of FLSM .

In our attack, the selection of the N = 2124.26 translations can be optimized
by randomly choosing, e.g., 2100.26 M0 and under each chosen M0 we choose 224

M1 randomly. With this technique, the computation of M0 is negligible compared
to other parts. Moreover, considering that the nonlinear operations in XOEsch
is much more costly than the linear layer, we approximately regard the cost of
FLSM as that of one step of Sparkle512. The 1.5-step XOEsch384 instance with
a 128-bit digest requires about one 1.5-step Sparkle512 (2 nonlinear layers).
Consequently, the complexity of the attack is approximately 2123.64 1.5-step
XOEsch384 evaluations.

Complexity for the XOEsch384 with a 192-bit Digest. The digest of this
instance consists of 2 blocks (one is 128-bit and the other is 64-bit) generated by
two iterations of the 1.5-step Sparkle permutation. We perform a similar attack
to match the first block, and only when the first match is successful we continue
to match the second block. Since the probability of the first matching is very low,
the cost for the second matching is negligible. The complexity is about 2186.64

1.5-step XOEsch384 calculations whose success probability is at least 0.63.

5.3 Preimage Attack on the 2.5-Step XOEsch384

Our second application is to the 2.5-step XOEsch384. Akin to the preimage attack
on the 1.5-step XOEsch384, we take the 128-bit-digest instance of XOEsch384 as
an example. To ensure the disjointness of the generated translations, this attack
requires 2127 translations of a 1-dimensional linear space, so we use 2 message
blocks denoted by (M0, M1) (see Figure 4).

The 128-bit digest (T0, T1) ∈ F64×2
2 can be inverted through Alzette ARX

boxes Ac0 and Ac1 . Thus, if the linear masks employed for (X2
2 , . . . , X2

7) in the
attack are inactive, we can safely skip the Alzette ARX boxes in the last step.
In addition, when we choose an M0, X−1 will be obtained. Consequently, in
our preimage attack on the 2.5-step XOEsch384, we only need to focus on the
second message block, i.e., M1. Different from the 1.5-step attack, the function

18

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

0 0 0 0 0 0 0 0

M4

M
0 ||0

1
2
8

M4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

M4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

X−1

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

X−1
0 X−1

1 X−1
2 X−1

3 X−1
4 X−1

5 X−1
6 X−1

7

M4

M
1 ||0

1
2
8

M4

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

M4

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

T0 T1

λ λ 0 0 0 0 0 0

λ
λ

λ

λ

0

0

000 0 λ
λ

λ

λ

0

0

δ 0 0 δ δ δ 0 0

δ δ δ
δ

0

0

0

0

0
δ

0
δ

0

0

0

0

Fig. 4: Illustration of the preimage attacks on the 2.5-step XOEsch384 with a
128-bit digest. This attack also uses a 2-block message (M0, M1).

that we apply Algorithm 1 to is FLSL : F256
2 → F128

2 mapping (Y 0
0 , Y 0

1 , Y 0
2 , Y 0

3)
to (X2

0 , X2
1), rather than function sending M1 to (X2

0 , X2
1), because the 2.5-step

Sparkle512 is more complicated and more difficult to allow DL distinguishers.
Next, we introduce the DL distinguishers for FLSL. Given any DL approx-

imation (δ, λ) of Ac5 with correlation c, we set the linear mask of X2 to be
Λ(X2) = (λ, λ, 0, 0, 0, 0, 0, 0). According to Lemma 4, the linear mask Λ(Y 1) of
Y 1 is (0, λ, λ, 0, 0, λ, λ, 0). For the difference of Y 0, we set it to be ∆(Y 0) =
(δ, δ, 0, 0, 0, 0, 0, 0). The difference of X1 will be ∆(X1) = (δ, 0, 0, δ, δ, δ, 0, 0), ac-
cording to Lemma 3. Now, as highlighted in Figure 4, only the input difference
and output linear mask of Ac5 in the second step are both nonzero. Therefore,
the correlation of the above DL approximation for FLSL is c.

When applying Algorithm 1 to FLSL, under each M0 that we have chosen,
we need to guess and check a value for (Y 0

0 , Y 0
1 , Y 0

2 , Y 0
3), say y = (y0, y1, y2, y3),

and quickly check y′ = (y0 ⊕ δ, y1 ⊕ δ, y2, y3) with the DL distinguishers. In this
process, both y and y′ are possible to be a preimage of (T0, T1). However, due
to the existence of M4 in the absorption phase and more critically, the second
128-bit input of this M4 should be 0 (see Figure 1), there is a risk that the
recovered y or y′ does not correspond to any valid M1.

To address this risk, we do pre-computations to search for some 3-tuples
(γ0, γ1, δ) satisfying

A−1
c0 (γ0)⊕A−1

c0 (γ0 ⊕ δ) = A−1
c1 (γ1)⊕A−1

c1 (γ1 ⊕ δ). (5)

19

When X−1 is known, based on any pre-computed (γ0, γ1, δ) we can choose y
and y′ such that both y and y′ can lead to a valid M1 in the following way,{

y = (y0, y1, y2, y3) = (γ0, γ1, γ2, γ3)
y′ = (y0 ⊕ δ, y1 ⊕ δ, y2, y3) = (γ0 ⊕ δ, γ1 ⊕ δ, γ2, γ3)

(6)

where {
(uj , vj) = A−1

cj
(γj)⊕X−1

j , j ∈ {0, 1}
γi = Aci

(
(ℓ(v0, v1), ℓ(u0, u1))⊕X−1

i

)
, i ∈ {2, 3}

.

It can be checked y = (y0, y1, y2, y3) and y′ = (y0 ⊕ δ, y1 ⊕ δ, y2, y3) respectively
guarantee that (A−1

c0 (y0), A−1
c1 (y1), A−1

c2 (y2), A−1
c3 (y3)) ⊕ (X−1

0 , X−1
1 , X−1

2 , X−1
3)

and (A−1
c0 (y0⊕δ), A−1

c1 (y1⊕δ), A−1
c2 (y2), A−1

c3 (y3))⊕(X−1
0 , X−1

1 , X−1
2 , X−1

3) satisfy
Lemma 5 (it this case, the w in Lemma 5 should be instanced as 4). Hence, no
matter whether Algorithm 1 returns y from Line 7 or y′ from Line 13, we are
sure that M1 exists.

In terms of the pre-computation, we simply try different γ0, γ1 ∈ F64
2 for one

given δ to see if Equation (5) holds. When it holds, (γ0, γ1, δ) is one such 3-tuple
we need. Since Equation (5) holds with a probability of about 2−64 (two 64-bit
values are equal), trying 274 different (γ0, γ1) for one δ, we can expect to collect
210 (γ0, γ1, δ). For the sake of convenience, we put all these collected 3-tuples
into a table Sδ. Equation (5) implies that it is impossible to use more than
one different δ’s, because for t different δ’s, we need to find (γ0, γ1) to satisfy t
Equation (5) with different δ’s, which has a probability of 2−64t. (γ0, γ1) has at
most 2128 possibilities, so t has to be 1. For this attack, we choose δ = (1001)δ

that has a group of DL distinguishers as

δ = (1001)δ,M =
{

(25, 9)λ, (26, 10)λ, (27, 11)λ, (28, 12)λ,

(29, 13)λ, (30, 14)λ, (11, 27)λ, (12, 28)λ,

}
(7)

Every DL distinguisher in this group has a correlation cj ≥ 0.998 (we have
verified them practically). We do not use the DL distinguisher groups in Table 4
because the above one has more masks and higher correlation which leads to
a better complexity (using any group of the DL distinguishers in Table 4 also
leads to valid attack, with a slightly higher complexity).

Now, we are ready to apply Algorithm 1 to FLSL. It proceeds as follows in
each while-loop of Algorithm 1. Set M0 to be the 128-bit encoding of the inte-
ger t. The corresponding X−1 can be derived. Under each X−1, we choose one
(γ0, γ1, δ) in Sδ and generate y according to Equation (6). Compute the value x =
(x0, x1) for (X1

0 , X1
1) from M0 and y. If x = (x0, x1) = (A−1

c0 (T0), A−1
c1 (T1)) =

(X2
0 , X2

1), we are done with (M0, y) that can lead to a preimage of (T0, T1) ac-
cording to Equation (4). Otherwise, for y′ = y ⊕ (δ, δ, 0, 0), we test whether
λ · (x ⊕ (X2

0 , X2
1)) = ζcj for all λj ∈ M. If y′ passes the test, we compute

the value x′ = (x′
0, x′

1) for (X2
0 , X2

1) from M0 and y′. If x′ = (x′
0, x′

1) =
(A−1

c0 (T0), A−1
c1 (T1)) = (X2

0 , X2
1), we can compute the preimage for (T0, T1) from

(M0, y′) following Equation (4).

20

Complexity and Success Probability. The size of the output of FLSL is
n = 128 bits. Since we only use one difference, s = |D| = 1, so ρ ≈ 2−0.01 and
τ = 2log(s+1)−n = 2−127. The expectation of |Sx,D| =

∑s−1
i=0 2−ℓi is about 2−8.

Thus, to make the success probability of this attack to be about 0.63, we set
N = (ρτ)−1 = 2127.01. The time complexity of the attack can be estimated as
N(1 + 2−8) = 2127.01 × (1 + 2−8) ≈ 2127.02 evaluations of FLSL. In our attack,
the selection of the N = 2127.01 translations can be optimized by randomly
choosing, e.g., 2117.01 M0 and under each chosen M0 we traverse all 210 (γ0, γ1, δ)
in Sδ. With this technique, the computation of M0 is negligible compared to
other parts. Generating y from (γ0, γ1, δ) costs 4 Alzette operations. Further,
when pre-computing (γ0, γ1, δ), we can actually store (A−1

c0 (γ0), A−1
c1 (γ1)). Thus,

the cost can be reduced to 2 Alzette operations (0.25 steps of Sparkle512).
Moreover, considering that the nonlinear operations in XOEsch is much more
costly than the linear layer, we approximately regard the cost of FLSL as that of
one step of Sparkle512. Thus, to check y costs about 1.25 steps of Sparkle512.
The 2.5-step XOEsch384 instance with a 128-bit digest requires about one 2.5-
step Sparkle512 (3 nonlinear layers). Consequently, the complexity of the attack
is approximately 2127.02 × 1.25/3 ≈ 2125.76 2.5-step XOEsch384 evaluations.

Complexity for the XOEsch384 with a 192-bit Digest. In the case where
the digest is 192-bit (2 blocks), a similar attack as the above one can be mounted.
Two blocks of message can provide at most 2137 translations of D̂ = {0, δ}. We
need to use 3-block messages here, denoted by (M0, M1, M2). But still, (M0, M1)
are computed once for every 210 (γ0, γ1, δ), using three blocks has no (significant)
influence on our complexity. The two digest blocks also have little influence of
our attack, except that when our guess matches the first block, we need to
continue to match the second block. Since the probability that the first block
is matched is very small, the cost for the second matching can be ignored. The
final complexity is about 2188.76 2.5-step XOEsch384 calculations with a 192-bit
digest. The successful probability is still about 0.63.

6 Application II: Preimage Attacks on Ascon-XOF

Ascon has been selected as the NIST LWC standard [DEMS21]. In this section,
we give the preimage attacks on the 4-round Ascon-XOF with a 128-bit output.
In Section K of Supplementary Material, we present preimage attacks on 3-round
Ascon-XOF. A description of the Ascon hash family and its underlying permu-
tation can be found in Section H of Supplementary Material. Note that the last
linear layer of Ascon permutation can be omitted without affecting our attacks,
since an independent and invertible part of the linear layer is applied to the rate
which is easy to reverse, and for simplicity, the last linear layer is ignored.

DL Distinguishers for Ascon-XOF. The state of the Ascon permutation can
be represented as four 64-bit words, arranged into 4 rows and 64 columns. The
differences and linear masks of the DL distinguishers used in the attacks have
only 1 or 2 active bits within the first word. Therefore, we can denote the dif-

21

IV‖0256 320
p4

⊕

c

r

M0

p4
⊕

c

r

M1

p4
⊕

c

r

M2

p4
⊕

c

r

M3

p4
⊕

c

r

M4

p4
c

r

T0

p4

r

T1

Absorbing Squeezing

Fig. 5: Illustration of the preimage attack on Ascon-XOF with 5 message blocks.
The differences are applied to M4 whereas the masks are put on T0.

ferences and masks by the column indices of the active bits. For example, (0)
means a difference or a linear mask with one active bit located at the 0-th row
and 0-th column of the (4 × 64)-bit state. The DL distinguishers employed in
the 4-round attack are produced with D = {δ0 = (0), · · · , δ62 = (62)} and the
corresponding Mi = {(i + 8), (i + 30), (i + 50), (i + 54)}, 0 ≤ i < 63. According to
the padding rule of Ascon-XOF, the message is padded with at least one “1” bit,
and thus the last bit of the difference of the messages cannot be active, which
is reflected by (63) /∈ D. The absolute correlations of the 4-round distinguishers
for all 0 ≤ i < 63 are listed as follows:

(i) 4R−−→
0.25

(i + 8), (i) 4R−−→
0.25

(i + 30), (i) 4R−−→
0.44

(i + 50), (i) 4R−−→
0.50

(i + 54).

Since D̂ is not a linear space, we have to choose the translations of D̂ in a
sufficiently large space to guarantee the disjointness. For Ascon-XOF with a 128-
bit digest, we need about 2128−log(|D̂|) = 2122 translations. As shown in Figure 5,
if we use 5-block messages (M0, M1, M2, M3, M4) ∈ F64×5

2 to randomize the
selection of the 2122 translations, then the probability that they are not disjoint
is about (642 × 2244)/2321 ≈ 2−65 according to Lemma 2, which is negligible.4

Remark 3. All the DL distinguishers of Ascon in this work are identified with
the method given in [LLL21], and the correlations of all distinguishers have
been experimentally verified. When the theoretical correlations differ from the
experimental correlations, we take the experimental ones.

Given the 128-bit hash digest (T0, T1) ∈ F64×2
2 of Ascon-XOF, to recover the

preimage (M0, M1, M2, M3, M4), we apply Algorithm 1 to the function mapping
(M0, M1, M2, M3, M4) to (T0, T1), where the input differences of the distinguish-
ers are injected through M4 and the linear masks are applied to T0. In the
attack, we first randomly choose a value for (M0, M1, M2, M3) and generate the
intermediate state X right before the absorbing of M4. Then, based on X and
M4 we compute the value x0 ∈ F64

2 for T0. If x0 = T0, we continue to generate
x1 and check if x1 = T1. If (x0, x1) = (T0, T1), (M0, M1, M2, M3, M4) is then a
preimage. Otherwise, for δi ∈ D, we check if λ · (x0 ⊕ T0) = ζci,j

holds for all
4 We can also choose these translations x ⊕ D̂ by selecting x only in ⟨D̂⟩⊣, but this

will increase the time complexity by a factor of 2. Because for each while-loop in
Algorithm 1, two Ascon permutations are evaluated.

22

0 ≤ j < 4. If δi passes the filter, we use X and M4 ⊕ δi to generate x′
0 and

check if x′
0 = T0. If so, we continue to generate x′

1 and check whether x′
1 = T1.

If (x′
0, x′

1) = (T0, T1), (M0, M1, M2, M3, M4 ⊕ δi) is a preimage of (T0, T1).

Complexity and Success Probability. The output length in this application
is n = 128. According to our DL distinguishers, the size of the set D of input
differences is s = |D| = 63, so ρ ≈ 2−2.16 and τ = 2log(s+1)−n = 2−122. The ex-
pectation of |Sx,D| =

∑s−1
i=0 2−4 is about 21.98. Thus, we let N = (ρτ)−1 = 2124.16

to make the success probability of this attack be 0.63. The time complexity of
the attack can be estimated as N(1 + 21.98) = 2124.16 × (1 + 21.98) ≈ 2126.47

evaluations of 4-round Ascon permutation.
In our attack, the selection of the N = 2124.16 translations can be optimized

by randomly choosing, e.g., 2104.16 (M0, M1, M2, M3) and under each chosen
(M0, M1, M2, M3) we choose 220 M4 randomly. With this technique, the compu-
tation of (M0, M1, M2, M3) is negligible compared to other parts. Considering
that Ascon-XOF with a 128-bit digest requires at least 2 Ascon permutations. Our
complexity can be scaled to 2125.47 4-round Ascon-XOF operations. The memory
cost is negligible. It is interesting to see that, our preimage attack, as well as
the previous two preimage attacks [QHD+23, LHC+23] that can reach 4 rounds
of Ascon-XOF all have a similar time complexity (the MitM attack additionally
costs a significant memory complexity). In addition, by employing the maxi-
mum likelihood strategy and the LLR strategy presented in Section 3, we can
marginally improve the time complexity of the attack by a factor of 20.06, and
the details are given in Section I and Section J of the Supplementary Material.

7 Application III: Preimage Attack with State Recovery
and MitM

We first apply a similar idea of the preimage attacks in previous sections to
recover a particular state of the squeezing phase, then an MitM phase follows to
find a proper preimage for the target hash value. As shown in Figure 6, given
a hash output (T0, T1, T2, T3) ∈ F64×4

2 , we first recover the capacity part ST c of
ST by Algorithm 1 with the knowledge of (T1, T2, T3). Then, ST = (T0, ST c) can
be recovered. Secondly, we enumerate (M0, M1) to derive a table TL containing
2128 states of SL. Also, with ST and all possible (M3, M4), we derive a table TR

storing 2128 possible SR. Comparing TL and TR, we can find a pair of (SL, SR)
that collide in their capacity part (a 256-bit collision). Finally, we compute M2
from the rate parts of SL and SR. The obtained (M0, M1, M2, M3, M4) is then a
preimage of (T0, T1, T2, T3). Note that the MitM process can be made memoryless
with Floyd’s cycle-finding algorithm [Flo67, Sas14].

The designers claimed that Ascon-HASH provides 128-bit security with respect
to preimage attacks [DEMS21]. However, at CRYPTO 2022 [LM22], Lefevre
and Mennink proved that the preimage security bound of a sponge built on an
ideal permutation is around min {max {n− r′, c/2} , n}-bit, where n is the digest
size, c the capacity of the sponge (during absorption), and r′ the rate (during

23

IV‖0256 320
pa

⊕

c

r

M0

pb
⊕

c

r

M1

pb
⊕

SL SR

c

r

M2

pb
⊕

c

r

M3

pb
⊕

c

r

M4

pb

ST

c

r

T0

pb
c

r

T1

pb
c

r

T2

pb

r

T3

Absorbing Squeezing

Fig. 6: Illustration of the DL-MitM preimage attack on Ascon-HASH.

squeezing). Considering this proof, the preimage security bound of Ascon-HASH
can be updated to 2192 from 2128. In this section, we give a preimage attack on
4-round Ascon-HASH with less than 2192 Ascon-HASH calls. In Section L, we give
the 3-round attack.

The most critical step of the above attack is the recovery of ST c. To speed
up the recovery of ST c with Algorithm 1, the input differences of our DL distin-
guishers should be active in this part. Thus, if the difference is active in the j-th
(0 ≤ j < 64) bit of the i-th word 1 ≤ i < 5 of the Ascon state, the difference
is denoted by (64 × i + j). Simultaneously, the output mask has active bits in
T1, thus they are denoted by the column index such as (k), 0 ≤ k < 64. In this
way, a DL distinguisher is determined by such a pair of difference and mask. For
example, (64 × i + j) and (k) mean a DL distinguisher for 4-round Ascon per-
mutation whose input difference is active in the capacity part of the input and
output mask is active in the first word of the output. The absolute correlations
of the 4-round distinguishers for 0 ≤ i < 64 are listed as follows

(128 + i) 4R−−→
0.36

(i + 32), (128 + i) 4R−−→
0.68

(i + 54), (128 + i) 4R−−→
0.24

(i + 60).

Since the 64 differences are all active in the third word of ST , we can choose
disjoint x⊕ D̂ by letting x ∈ ⟨D̂⟩⊣. We first guess a y ∈ F256

2 for the capacity of
ST , together with T0, we can generate a x1 ∈ F64

2 through the 4-round Ascon
permutation. If x1 = T1, we continue to generate x2 and x3 and check if they
match T2 and T3, respectively. If all match well, y is a valid capacity of ST .
Otherwise, for δi ∈ D, we check if λi,j · (x1 ⊕ T1) = ζci,j for 0 ≤ j < 3. If all DL
distinguishers hold, we test if y ⊕ δi is a valid capacity for ST .

Complexity and Success Probability. In the recovery of ST , the output
includes 3 blocks whose length is n = 192. The size of the differences used is s =
|D| = 64. Therefore, ρ ≈ 2−1.46 and τ = 2log(s+1)−n = 2−185.98. The expectation
of |Sx,D| =

∑63
i=0 2−3 is about 22.98. Thus, we let N = (ρτ)−1 = 2187.44 to

make the success probability be 0.63. The time complexity of the attack can be
estimated as N(1+23) = 2187.44×(1+23) ≈ 2190.61 evaluations of 4-round Ascon
permutation. In the recovery process, only when T1 is matched, we continue to
check if T2 and T3 are also matched. Therefore, the computation for T2 and T3
are small. Considering that Ascon-HASH performs at least 4 permutations, the
main part of our calculation is 1/4 of the Ascon-HASH computations. Thus, the
complexity for recovering ST c is about 2188.61.

24

When a ST is recovered, we proceed with the internal collision phase. When
using 5 messages, the 256-bit internal collision with two 2128 sets (TSL

and TSR
)

has a birthday probability. Considering that the collision phase costs around 2128

computations, which is negligible compared to the recovery of ST c phase, we can
trade some time and memory with the successful probability. For example, we
can use 7 message blocks, and make TSL

and TSR
have sizes of, e.g., 2130, then the

successful probability of the internal collision phase will boost to extremely close
to 1. Further, with Floyd’s cycle-finding algorithm [Flo67, Sas14], the internal-
collision phase can require a negligible memory cost, so the internal collision
phase can be made memoryless. Hence, the time complexity and the success
probability are as the same as the recovery of ST c, which is 2188.61 and 0.63.

8 Application IV: Key-Recovery Attack on Schwaemm

We apply our key-recovery attacks introduced in Section 4 to Schwaemm, the
AEAD scheme of the Sparkle family [BBdS+21]. Schwaemm consists of four
members, including Schwaemm256-256, Schwaemm192-192, Schwaemm128-128, and
Schwaemm256-128, where Schwaemmr-c instantiates a sponge structure with rate r
and capacity c using the permutation Sparkle(r + c) : Fr+c

2 → Fr+c
2 . Our attack

focuses on the initialization phase of the Schwaemm family with reduced steps,
where the initial state is loaded with r-bit nonce and c-bit key, and processed
with the permutation Sparkle(r + c) reduced to R steps. The first r-bit output
after the initialization phase is known to the attacker. Our task is to recover the
c-bit key. This section shows the attacks on 3.5- and 4.5-step Schwaemm256-128.
In Section N of Supplementary Material, we give the key-recovery attacks on the
other three instances of Schwaemm reduced to 3.5 and 4.5 steps.

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

N0 N1 N2 N3 K0 K1

M3

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X3

Y 3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

C0 C1 C2 C3

δ δ
0

0
δ

δ

δ
δ

0
0

δ

δ

0 0 0 δ 0 δ

0 0 0
0

0

0

∗
0 0

0

∗

0

0 ∗ ∗ 0 0 0

λ 0 0
0

0

0

0
0 0

0
0

0

0 0 0 λ 0 0

Fig. 7: The initialization phase of Schwaemm256-128 reduced to 3.5 steps. The
blue values represent the differences whereas the red ones are linear masks.

25

8.1 Key-Recovery Attack on 3.5-Step Schwaemm256-128

Figure 7 shows the initialization phase of Schwaemm256-128 reduced to 3.5 steps,
where (N0, N1, N2, N3) ∈ F64×4

2 is the 256-bit nonce, (K0, K1) ∈ F64×2
2 is the

128-bit key, and (C0, C1, C2, C3) ∈ F64×4
2 is the 256-bit output known to the

attackers. For the convenience of description, the input and output of the j-th
step of the Sparkle permutation are denoted by Xj = (Xj

0 , . . . , Xj
5) and Y j =

(Y j
0 , . . . , Y j

5), respectively. Under this notation, we have (X0
0 , X0

1 , X0
2 , X0

3) =
(N0, N1, N2, N3) and (Y 3

0 , Y 3
1 , Y 3

2 , Y 3
3) = (C0, C1, C2, C3). Given the values of

(C0, C1, C2, C3) and (Y 0
4 , Y 0

5), one can obtain the values of (X3
0 , X3

1 , X3
2 , X3

3)
and (K0, K1). Therefore, our strategy is to apply Algorithm 5 to the function
FLSLSL mapping Y 0 to X3 to recover (Y 0

4 , Y 0
5).

We first introduce the DL distinguishers used for FLSLSL. As shown in
Figure 7, let Λ(X3) = (0, 0, 0, λ, 0, 0) with λ ∈ F64

2 \{0} be the linear mask
of X3. The consequent linear mask of Y 2 is Λ(Y 2) = (λ, 0, 0, 0, 0, 0). We set
the difference of Y 0 to be ∆(Y 0) = (δ, 0, δ, δ, 0, δ) with δ ∈ F64

2 \{0}. Accord-
ing to Lemma 3, the difference of X1 is ∆(X1) = (0, 0, 0, δ, 0, δ), and thus
the difference of X2 is ∆(X2) = (0, ∗, ∗, 0, 0, 0), where ∗ can be any nonzero
value. Since ∆(X2

0) = 0, for any nonzero δ and nonzero λ, λ · ∆(X3
3) = 0

holds with certainty. In the application of Algorithm 5 (with necessary tweaks),
(Y 0

4 , Y 0
5) and (Y 0

0 , Y 0
1 , Y 0

2 , Y 0
3) respectively play the roles of the key and the

plaintext, D = {(δ, 0, δ, δ, 0, δ) : δ ∈ F64
2 \{0}}, DK = {(0, δ) : δ ∈ F64

2 \{0}},
D̂K = {(0, δ) : δ ∈ F64

2 }, D̂⊣
K = {(v, 0) : v ∈ F64

2 }, and the set of masks for all
differences in D can be the same M = {(0, 0, 0, ei, 0, 0) : 0 ≤ i < 64}, where ei is
the i-th unit vector of F64

2 .
In the attack, we randomly choose a value y = (y0, y1, y2, y3) for (Y 0

0 , Y 0
1 ,

Y 0
2 , Y 0

3), invert it to obtain the corresponding nonce n = (n0, n1, n2, n3), and
query the Schwaemm256-128 initialization oracle with the n to encrypt a plain-
text p. From the resulting ciphertext z and p, we can deduce the value c =
(c0, c1, c2, c3) for C = (C0, C1, C2, C3). Inverting c we get x = (x0, x1, x2, x3) for
(X3

0 , X3
1 , X3

2 , X3
3). Next, for every δ ∈ F64

2 \{0}, we choose yδ = (y0, y1, y2, y3)δ =
y ⊕ (δ, 0, δ, δ) for (Y 0

0 , Y 0
1 , Y 0

2 , Y 0
3), and invert it to obtain nδ. With the en-

cryption oracle we can get xδ = (x0, x1, x2, x3)δ = (x0,δ, x1,δ, x2,δ, x3,δ) for
(X3

0 , X3
1 , X3

2 , X3
3). Then, for each v = (v, 0) ∈ D̂⊣

K , we guess the value of (Y 0
4 , Y 0

5)
to be v. Compute FLSLSL(y, v), and set w = (w0, w1, w2, w3) be the first four
64-bit words of FLSLSL(y, v). If w = x, v is a candidate for (Y 0

4 , Y 0
5), and we

can confirm its correctness by using additional data. If v is not a candidate for
(Y 0

4 , Y 0
5) (i.e., w ̸= x) or v fails to be confirmed as the key, we use the aforemen-

tioned DL distinguishers for FLSLSL to quickly filter out those vδ = (v, δ) that
cannot be the right value. According to the DL distinguisher, for any nonzero
λ, if the difference of Y 0 is ∆(Y 0) = (δ, 0, δ, δ, 0, δ), λ · ∆(X3

3) = 0. We have
known that w3 is the result of (y, v) = (y0, y1, y2, y3, v, 0) and x3,δ is the result
of (yδ, Y 0

4 , Y 0
5) (x3,δ is obtained by calling the oracle queried with nδ). Since

y⊕yδ = (δ, 0, δ, δ), if v⊕ (Y 0
4 , Y 0

5) = (v, 0)⊕ (Y 0
4 , Y 0

5) = (0, δ), λ · (w3⊕x3,δ) = 0
is for sure. Hence, (v, δ) cannot be the right value of (Y 0

4 , Y 0
5) if λ ·(w3⊕x3,δ) ̸= 0

for any nonzero λ. Equivalently, only if λ · (w3 ⊕ x3,δ) = 0 for all λ ∈ F64
2 \{0},

26

(v, δ) can be a candidate (for a wrong (v, δ), it holds with probability of 2−64,
which is the source of the filtering).

Note that λ ·(w3⊕x3,δ) = 0 for any nonzero λ is equivalent to that w3 = x3,δ.
Therefore, instead of calculating λ · (w3 ⊕ x3,δ), we can store all x3,δ as well as
its corresponding yδ into a hash table H as H [x3,δ] = yδ. Then, we only need to
use w3 to find a collision in H. Note that using this hash table does not increase
the memory complexity, because we are always having to store yδ. When x3

3
collides with any value in H, we go to confirm vδ = (v, δ) with additional data.

Complexity and Success Probability. To obtain x and xδ, we need to invert
y and yδ, then call the Schwaemm256-128 initialization oracle to obtain c and
cδ, and invert them to x and xδ, respectively. This process costs about 264 +
2/4×264 Schwaemm256-128 initialization operations. For each of the 264 v ∈ D̂⊣

K ,
we need to conduct one FLSLSL and one table-lookup. On average, there is one
vδ that collides with one element of H, so we need another FLSLSL operation
to confirm it. Thus, this phase costs about 265 conductions of FLSLSL. Since
FLSLSL contains 2 nonlinear layers, its cost can be regarded as 2/4 of the 3.5-step
Schwaemm256-128 initialization operation. So, the cost of this phase is regarded as
264 Schwaemm256-128 initializations. Finally, the whole time complexity is about
264 +2/4×264 +264 ≈ 265.3 Schwaemm256-128 initialization operations. The data
complexity is 264 nonces. The memory complexity is to store H, which is about
264 256-bit blocks. Since all DL distinguishers in this application is deterministic,
the success probability of recovering it is 1, according to Equation (18).

Remark 4. For Schwaemm256-128, there exist structural attacks with compara-
ble complexities. One of these structural attacks is described in Section M in
Supplementary Material. This attack was pointed out by one of the reviewers.

8.2 Key-Recovery Attack on 4.5-Step Schwaemm256-128

Prepending one round to the 3.5-step attack, we can extend the key-recovery
attack to 4.5 steps. Note that choosing any value for (Y 1

2 , Y 1
3 , Y 1

4 , Y 1
5) is possible

by controlling the specific nonce value. At the first glance, we can apply Algo-
rithm 5 to the function FLSLSL mapping Y 1 to X3 to recover (Y 1

0 , Y 1
1) then

obtain the key. However, the (Y 0
4 , Y 0

5) in the 3.5-step attack is a fixed value
directly related to (K0, K1), on the contrary, (Y 1

0 , Y 1
1) here varies according to

different (Y 1
2 , Y 1

3 , Y 1
4 , Y 1

5). Hence, our task is to recover (Y 1
0 , Y 1

1) that matches
the corresponding (Y 1

2 , Y 1
3 , Y 1

4 , Y 1
5).

The DL distinguisher for FLSLSL is the same with the 3.5-step attack ex-
cept for a step slide. In this attack, it is (Y 1

0 , Y 1
1) and (Y 1

2 , Y 1
3 , Y 1

4 , Y 1
5) that

respectively play the roles of the key and the plaintext. Thus, the parame-
ters of this attack change accordingly. D = {(δ, 0, δ, δ, 0, δ) : δ ∈ F64

2 \{0}},
DK = {(δ, 0) : δ ∈ F64

2 \{0}}, D̂K = {(δ, 0) : δ ∈ F64
2 }, D̂⊣

K = {(0, v) : v ∈ F64
2 },

and Mi = {(0, 0, 0, ei, 0, 0) : 0 ≤ i < 64}, where ei is the i-th unit vector of F64
2 .

We start by choosing a y = (y2, y3, y4, y5) for (Y 1
2 , Y 1

3 , Y 1
4 , Y 1

5). See Fig-
ure 8, y can be inverted uniquely to n = (n0, n1, n2, n3). We call the 4.5-
step Schwaemm256-128 initialization oracle with n to encrypt a plaintext p,

27

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

N0 N1 N2 N3 K0 K1

M3

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X3

Y 3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X4

Y 4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

C0 C1 C2 C3

δ δ
0

0
δ

δ

δ
δ

0
0

δ

δ

0 0 0 δ 0 δ

0 0 0
0

0

0

∗
0 0

0

∗

0

0 ∗ ∗ 0 0 0

λ 0 0
0

0

0

0
0 0

0
0

0

0 0 0 λ 0 0

Fig. 8: The illustration of the first steps of the key-recovery attack on 4.5-step
Schwaemm256-128 initialization. The underlying permutation is Sparkle384. The
blue values represent the differences whereas the red values are masks.

during the process γ = (γ0, γ1) is the intermediate value for (Y 1
0 , Y 1

1). From
the resulting ciphertext z and p, we can deduce the value c = (c0, c1, c2, c3)
for C = (C0, C1, C2, C3). Inverting c we get the value x = (x0, x1, x2, x3) for
(X4

0 , X4
1 , X4

2 , X4
3). Next, for every δ ∈ F64

2 \{0}, we choose yδ = y⊕ (δ, δ, 0, δ) for
(Y 1

2 , Y 1
3 , Y 1

4 , Y 1
5), and invert it to obtain nδ. With the encryption oracle we can

get xδ = (x0, x1, x2, x3)δ = (x0,δ, x1,δ, x2,δ, x3,δ) for (X4
0 , X4

1 , X4
2 , X4

3), where
γδ = (γ0,δ, γ1,δ) is the intermediate value for (Y 1

0 , Y 1
1).

Similar to the 3.5-step attack, for each v = (0, v) ∈ F64
2 , we guess the value

(γ0, γ1) to be v. Compute FLSLSL(v, y), and set w = (w0, w1, w2, w3) be the
first four 64-bit words of FLSLSL(v, y). If w = x, v is a candidate for γ. Then,
we invert (v, y) to get (n, k) and use k to test other nδ and xδ to confirm k. If
v is not the candidate (i.e., w ̸= x) or k fails to be confirmed as the key. We use
the DL distinguishers of FLSLSLS to quickly filter those vδ = (δ, v) that cannot
be a candidate. According to the DL distinguisher, for any λ ̸= 0, if ∆(Y 1) =
(δ, 0, δ, δ, 0, δ), λ ·∆(X4

3) = 0. The state Y 1 for w3 is (v, y), whereas the state Y 1

for x3,δ is (γδ, yδ). Since y⊕yδ = (δ, δ, 0, δ), if v⊕γδ = (0, v)⊕(γ0,δ, γ1,δ) = (δ, 0),
λ · (w3 ⊕ x3,δ) = 0 occurs for any nonzero λ and (0, v) ⊕ (δ, 0) = (δ, v) will be
regarded as a candidate for γδ = (γ0,δ, γ1,δ). To detect λ · (w3 ⊕ x3,δ) = 0, we
can also use a hash table as we did in the 3.5-step attack to quickly find the
collision between w3 and x3,δ. If γδ = (δ, v) for some δ and v, it can be detected
and then confirmed by other data.

Complexity and Success Probability. The 4.5-step attack requires 264 cho-
sen nonces. To prepare these nonces, we need to first invert all of them from
(Y 1

2 , Y 1
3 , Y 1

4 , Y 1
5) to the nonce, then call the Schwaemm256-128 initialization oracle

to handle all the nonces to derive the corresponding outputs. After that, we invert

28

the output back through one nonlinear layer. This process costs 264 + 3/5× 264

4.5-steps initializations. When recovering (Y 1
0 , Y 1

1), it fully follows Algorithm 5,
which mainly costs about 265 FLSLSL operations for all the translations, which
is equivalent to 2/5 × 265 the Schwaemm256-128 initializations. Thus, the final
time complexity is about 265.4 Schwaemm256-128 initializations. The memory
complexity is also for storing the hash table, which is about 264 256-bit blocks.
Different from the 3.5-step attack where the only key can always be recovered,
γδ (include γ that can be seen γδ with δ = 0) is not necessarily hit by Algo-
rithm 5. Only when γδ = (δ, v) = (0, v) ⊕ (δ, 0) for at least one v ∈ F64

2 , it can
be hit and recovered. Assume that the mapping sending (K0, K1) to (Y 1

0 , Y 1
1) is

a random function. For a specific v ∈ F64
2 , the probability that γδ is hit by (δ, v)

is approximately 2−64; for all v ∈ F64
2 , the probability that at least one v ∈ F64

2
makes γδ be hit is about 1− (1− 2−64)264 ≈ 1− e−1 ≈ 0.63.
Remark 5. In the specification [BBdS+21], a data limit for Schwaemm256-128
was set to be 268 bytes, i.e., 263 256-bit blocks. The authors wrote, “The data
limits correspond to 264 blocks of r bits rounded up to the closest power of two
...”. Thus, the data limit should be 264 256-bit blocks for Schwaemm256-128. Our
attack costs 264 256-bit blocks, which is valid considering the latter data limit.

9 Conclusion

This work shows that the preimage and key-recovery attacks can be acceler-
ated in a generic way whenever a proper set of highly biased differential-linear
distinguishers are identified for the targeted (parameterized) one-way function.
The technique is quite versatile as demonstrated by the applications. From these
applications, we see that it is possible to exploit related-key differential-linear
distinguishers in the single-key model without querying the encryption oracle
with unknown but related-keys. This evidence the importance of security anal-
ysis in the related-key model, and alert the designers in designing primitives
meant to be secure only in the single-key model without thorough related-key
cryptanalysis. On the other hand, the limitation of the method is that it relies on
extremely strong distinguishers and it is exhaustive search in nature. We believe
that this technique will find more applications in the future.

Acknowledgment. We thank the reviewers for their valuable comments. This
work is supported by National Key Research and Development Program of
China (2022YFB2701900, 2018YFA0704702), the Natural Science Foundation
of China (62032014, U2336207), and the Fundamental Research Funds for the
Central Universities. Kai Hu and Meiqin Wang are supported by the Major Basic
Research Project of Natural Science Foundation of Shandong Province, China
(Grant No. ZR202010220025), Department of Science & Technology of Shandong
Province (No.SYS202201), Quan Cheng Laboratory (Grant No. QCLZD202301,
QCLZD202306). Finally, Kai Hu is also supported by the Program of Qilu Young
Scholars of Shandong University, the France-Singapore NRF-ANR research grant
NRF2020-NRF-ANR072, the Singapore NRF Investigatorship research grant
NRF-NRFI08-2022-0013.

29

References
ASC. Lightweight Cryptography Standardization Process: NIST

Selects Ascon. https://csrc.nist.gov/News/2023/
lightweight-cryptography-nist-selects-ascon.

BBC+22. Christof Beierle, Marek Broll, Federico Canale, Nicolas David, Anto-
nio Flórez-Gutiérrez, Gregor Leander, María Naya-Plasencia, and Yosuke
Todo. Improved Differential-Linear Attacks with Applications to ARX
Ciphers. J. Cryptol., 35(4):29, 2022.

BBdS+20. Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju
Wang. Alzette: A 64-Bit ARX-box - (Feat. Crax and Trax). In Daniele
Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020, volume 12172 of LNCS, pages 419–448. Springer, 2020.

BBdS+21. Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Qingju
Wang, and Alex Biryukov. Schwaemm and Esch: lightweight authenticated
encryption and hashing using the Sparkle permutation family. NIST round,
3, 2021.

BCG+12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof
Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and
Tolga Yalçin. Prince - A Low-Latency Block Cipher for Pervasive Com-
puting Applications, - Extended Abstract. In Xiaoyun Wang and Kazue
Sako, editors, Advances in Cryptology - ASIACRYPT 2012, volume 7658
of Lecture Notes in Computer Science, pages 208–225. Springer, 2012.

BCP22. Jules Baudrin, Anne Canteaut, and Léo Perrin. Practical Cube At-
tack against Nonce-Misused Ascon. IACR Trans. Symmetric Cryptol.,
2022(4):120–144, 2022.

BDKW19. Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman.
DLCT: A New Tool for Differential-Linear Cryptanalysis. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2019, volume 11476 of LNCS, pages 313–342. Springer, 2019.

BDP+18. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
Ronny Van Keer, and Benoît Viguier. KangarooTwelve: Fast Hashing
Based on Keccak-p. In Bart Preneel and Frederik Vercauteren, editors,
Applied Cryptography and Network Security - 16th International Confer-
ence, ACNS 2018, volume 10892 of LNCS, pages 400–418. Springer, 2018.

BDPA08. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On
the Indifferentiability of the Sponge Construction. In Nigel P. Smart, edi-
tor, Advances in Cryptology - EUROCRYPT 2008, volume 4965 of Lecture
Notes in Computer Science, pages 181–197. Springer, 2008.

BDPA11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Duplexing the Sponge: Single-Pass Authenticated Encryption and Other,
applications. In Ali Miri and Serge Vaudenay, editors, Selected Areas in
Cryptography - SAC 2011, volume 7118 of LNCS, pages 320–337. Springer,
2011.

BDPA13. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 313–314.
Springer, 2013.

30

https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon

BDPVA07. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge functions. In ECRYPT hash workshop, volume 2007, 2007.

BKR11. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Bi-
clique cryptanalysis of the full AES. In Dong Hoon Lee and Xiaoyun
Wang, editors, Advances in Cryptology - ASIACRYPT 2011, volume 7073
of Lecture Notes in Computer Science, pages 344–371. Springer, 2011.

Dae91. Joan Daemen. Limitations of the Even-Mansour Construction. In Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in
Cryptology - ASIACRYPT 1991, volume 739 of LNCS, pages 495–498.
Springer, 1991.

DEMS15. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Cryptanalysis of Ascon. In Kaisa Nyberg, editor, Topics
in Cryptology - CT-RSA 2015, volume 9048 of LNCS, pages 371–387.
Springer, 2015.

DEMS21. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer. Ascon v1.2: Lightweight Authenticated Encryption and Hashing.
J. Cryptol., 34(3):33, 2021.

DKS12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryp-
tography: The Even-Mansour Scheme Revisited. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT
2012, volume 7237 of LNCS, pages 336–354. Springer, 2012.

DMP+15. Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced, keccak sponge function. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015, volume 9056 of
Lecture Notes in Computer Science, pages 733–761. Springer, 2015.

Flo67. Robert W. Floyd. Nondeterministic Algorithms. J. ACM, 14(4):636–644,
1967.

GLS16. Jian Guo, Meicheng Liu, and Ling Song. Linear Structures: Applica-
tions to Cryptanalysis of Round-Reduced, keccak. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology - ASIACRYPT 2016,
volume 10031 of Lecture Notes in Computer Science, pages 249–274, 2016.

GPT21. David Gérault, Thomas Peyrin, and Quan Quan Tan. Exploring
Differential-Based Distinguishers and Forgeries for Ascon. IACR Trans.
Symmetric Cryptol., 2021(3):102–136, 2021.

HCN08. Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional linear
cryptanalysis of reduced round Serpent. In Yi Mu, Willy Susilo, and Jen-
nifer Seberry, editors, Information Security and Privacy, 13th Australasian
Conference, ACISP 2008, volume 5107 of LNCS, pages 203–215. Springer,
2008.

HLY21. Le He, Xiaoen Lin, and Hongbo Yu. Improved Preimage Attacks on
4-Round Keccak-224/256. IACR Trans. Symmetric Cryptol., 2021(1):217–
238, 2021.

HMS+76. Martin Hellman, Ralph Merkle, Richard Schroeppel, Lawrence Washing-
ton, Whitfield Diffie, and P Schweitzer. Results of an initial attempt to
cryptanalyze the NBS Data Encryption Standard. 1976.

HWX+17. Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and
Jingyuan Zhao. Conditional Cube Attack on Reduced-Round Keccak
Sponge Function. In Jean-Sébastien Coron and Jesper Buus Nielsen, edi-
tors, Advances in Cryptology - EUROCRYPT 2017, volume 10211 of Lec-
ture Notes in Computer Science, pages 259–288, 2017.

31

LH94. Susan K. Langford and Martin E. Hellman. Differential-Linear Crypt-
analysis. In Yvo Desmedt, editor, Advances in Cryptology - CRYPTO ’94,
volume 839 of LNCS, pages 17–25. Springer, 1994.

LHC+23. Huina Li, Le He, Shiyao Chen, Jian Guo, and Weidong Qiu. Automatic
Preimage Attack Framework on Ascon Using a Linearize-and-Guess Ap-
proach. Cryptology ePrint Archive, 2023.

LIMY21. Fukang Liu, Takanori Isobe, Willi Meier, and Zhonghao Yang. Algebraic
Attacks on Round-Reduced Keccak. In Joonsang Baek and Sushmita Ruj,
editors, Information Security and Privacy - 26th Australasian Conference,
ACISP 2021, volume 13083 of LNCS, pages 91–110. Springer, 2021.

LLL21. Meicheng Liu, Xiaojuan Lu, and Dongdai Lin. Differential-Linear Crypt-
analysis from an Algebraic Perspective. In Advances in Cryptology -
CRYPTO 2021, volume 12827 of LNCS, pages 247–277. Springer, 2021.

LM22. Charlotte Lefevre and Bart Mennink. Tight Preimage Resistance of the
Sponge Construction. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology - CRYPTO 2022, volume 13510 of Lecture Notes
in Computer Science, pages 185–204. Springer, 2022.

LS19. Ting Li and Yao Sun. Preimage Attacks on Round-Reduced Keccak-
224/256 via an Allocating, approach. In Yuval Ishai and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2019, volume 11478 of
Lecture Notes in Computer Science, pages 556–584. Springer, 2019.

LSLW17. Ting Li, Yao Sun, Maodong Liao, and Dingkang Wang. Preimage Attacks
on the Round-reduced Keccak with Cross-linear Structures. IACR Trans.
Symmetric Cryptol., 2017(4):39–57, 2017.

Lu15. Jiqiang Lu. A methodology for differential-linear cryptanalysis and its
applications. Des. Codes Cryptogr., 77(1):11–48, 2015.

NSLL22. Zhongfeng Niu, Siwei Sun, Yunwen Liu, and Chao Li. Rotational
Differential-Linear Distinguishers of ARX Ciphers with Arbitrary Output
Linear Masks. In Advances in Cryptology - CRYPTO 2022, volume 13507
of LNCS, pages 3–32. Springer, 2022.

QHD+23. Lingyue Qin, Jialiang Hua, Xiaoyang Dong, Hailun Yan, and Xiaoyun
Wang. Meet-in-the-Middle Preimage Attacks on Sponge-Based Hashing.
In Advances in Cryptology - EUROCRYPT 2023, volume 14007 of LNCS,
pages 158–188. Springer, 2023.

QZH+23. Lingyue Qin, Boxin Zhao, Jialiang Hua, Xiaoyang Dong, and Xiaoyun
Wang. Weak-Diffusion Structure: Meet-in-the-Middle Attacks on Sponge-
based, Hashing Revisited. IACR Cryptol. ePrint Arch., page 518, 2023.

Sas14. Yu Sasaki. Memoryless Unbalanced Meet-in-the-Middle Attacks: Impos-
sible Results, and applications. In Ioana Boureanu, Philippe Owesarski,
and Serge Vaudenay, editors, Applied Cryptography and Network Security -
12th International Conference, ACNS 2014, volume 8479 of Lecture Notes
in Computer Science, pages 253–270. Springer, 2014.

SS22. André Schrottenloher and Marc Stevens. Simplified MITM Modeling for
Permutations: New (Quantum) Attacks. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022, volume
13509 of LNCS, pages 717–747. Springer, 2022.

TMC+23. Meltem Sönmez Turan, Kerry McKay, Donghoon Chang, Jinkeon Kang,
Noah Waller, John M Kelsey, Lawrence E Bassham, and Deukjo Hong.
Status report on the final round of the NIST lightweight cryptography
standardization process. 2023.

32

ZDW19. Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision Attacks
on Round-Reduced Gimli-Hash/Ascon-XOF/Ascon-HASH. IACR Cryptol.
ePrint Arch., page 1115, 2019.

33

Supplementary Material

A Proof of Lemma 2

Proof. For two randomly chosen xi and xj , the event that there is at least one
element of xi⊕D̂ appearing in xj⊕D̂ is denoted as ei,j . Then the event ei,j means
that there exits an element γ = γ1 ⊕ γ2 where γ1, γ2 ∈ D̂ such that xi = xj ⊕ γ.
Thus, for some a ∈ Fm

2 , we have

Pr[ei,j |xj = a] ≤ (s + 1)2

2m
.

Then, we can see that

Pr[ei,j] =
∑

a∈Fm
2

Pr[ei,j |xj = a] Pr[xj = a] = 1
2m

∑
a∈Fm

2

Pr[ei,j |xj = a] ≤ (s + 1)2

2m

We denote the event that any two translation of D̂ among

x0 ⊕ D̂, x1 ⊕ D̂, . . . , xα−1 ⊕ D̂

share a common value by A. Then, A =
⋃

0≤i,j<α ei,j . Therefore, we have

Pr[A] = Pr

 ⋃
0≤i,j<α

ei,j

 ≤ ∑
0≤i,j<α

Pr[ei,j] ≤ (s + 1)2α(α− 1)
2m+1 .

⊓⊔

B Proofs of Lemmas 4 and 5

The following is the proof of Lemma 4:

Proof. Let zi = (xi, yi) ∈ F32×2
2 (0 ≤ i < w) and Iλ = {0 ≤ i < w : γi = λ}.

Then
LHS = γ · (z0, z1, z2, z3, . . . , zw−1) = λ ·

⊕
i∈Iλ

(xi, yi).

Simultaneously, z′
i = (xi ⊕ ℓ(ty), yi ⊕ ℓ(tx)), where tx and ty are calculated ac-

cording to Definition 1. Therefore,

RHS = γ ·
(
z′

0, z′
1, z′

2, z′
3, . . . , z′

w−1
)

= λ ·
⊕
i∈Iλ

(xi ⊕ ℓ(ty), yi ⊕ ℓ(tx)) ,

when |Iλ| is even, all ℓ(tx) and ℓ(ty) are canceled. Thus LHS = RHS, which ends
the proof. ⊓⊔
The following is the proof of Lemma 5:

34

Proof. According to Definition 1, we have the follow equations:{
(u0, v0) = (x0 ⊕ ℓ(y0 ⊕ y1), y0 ⊕ ℓ(x0 ⊕ x1))
(u1, v1) = (x1 ⊕ ℓ(y0 ⊕ y1), y1 ⊕ ℓ(x0 ⊕ x1))

Thus, u0 ⊕ u1 = x0 ⊕ x1 and v0 ⊕ v1 = y0 ⊕ y1. Replace x0 ⊕ x1, y0 ⊕ y1 with
u0 ⊕ u1 and v0 ⊕ v1, respectively, we derive{

(x0, y0) = (u0 ⊕ ℓ(v0 ⊕ v1), v0 ⊕ ℓ(u0 ⊕ u1)
(x1, y1) = (u1 ⊕ ℓ(v0 ⊕ v1), v1 ⊕ ℓ(u0 ⊕ u1)

Thus, any ((u0, v1), (u1, v1)) can lead to a unique ((x0, y0), (x1, y1)).
In addition, according to Definition 1 again, for 2 ≤ i < w,

(ui, vi) = (ℓ(y0 ⊕ y1), ℓ(x0 ⊕ x1)) = (ℓ(v0 ⊕ v1), ℓ(u0 ⊕ u1)) .

⊓⊔

C More Advanced Statistical Tests

C.1 The Analysis of the Threshold Strategy Given in Algorithm 3

Let D = {δ0, δ1, . . . , δs−1} ⊆ Fm
2 be a set of s nonzero differences. For each δi

(0 ≤ i < s), there is a set Mi = {λi,0, λi,1, . . . , λi,ℓi−1} of ℓi linearly-independent
linear masks, such that each (δi, λi,j) forms a DL distinguisher with correlation
ci,j . For δi ∈ D and 0 ≤ j < ℓi, let wi,j = ζci,j

⊕ λi,j · (y ⊕O), then

num = ℓi −
ℓi−1∑
j=0

wi,j .

In Algorithm 3, an element in a translation is accepted only when the num is at
least γi. Let pi be probability that the num is at least γi when F (x ⊕ δi) = O
and qi be probability that the num is at least γi when F (x⊕ δi) ̸= O. Then,

pi =
∑

u∈Fℓi
2 ,

wt(u)<γi

ℓi−1∏
j=0

(
1
2 + (−1)uici,j

2

)
and qi =

ℓi∑
z=γi

(
ℓi

z

)
2−ℓi

Complexity Analysis. When PreTest() is instantiated with Algorithm 3,
Sx,D = {x⊕δi : δi ∈ D, num ≥ γi}. On average, we expect |Sx,D| =

∑s−1
i=0 qi for a

random x. Consequently, the complexity of Algorithm 1 is about N
(

1 +
∑s−1

i=0 qi

)
evaluations of F . Generally, the complexity of the inner products is negligible
compared with the complexity due to the evaluations of F .

35

Success Probability. The probability q of hitting a preimage in one while-loop
of Algorithm 1 with a random guess x ∈ Fm

2 can be computed as

q ≥ Pr[F (x) = O] +
s−1∑
i=0

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]. (8)

For 0 ≤ i < s, we have

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]
= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O] Pr[F (x⊕ δi) = O]

= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O]
(

1− 1
2n

)i+1 1
2n

= pi

(
1− 1

2n

)i+1 1
2n

> pi

(
1− 1

2n

)s 1
2n

, (9)

where

pi =
∑

u∈Fℓi
2 ,

wt(u)<γi

ℓi−1∏
j=0

(
1
2 + (−1)uici,j

2

)
.

Substituting Equation (9) into Equation (8) gives

q >
1
2n

+
s−1∑
i=0

pi

(
1− 1

2n

)s 1
2n

.

Since s≪ 2n and
(
1− 1

2n

)s =
(
1− 1

2n

)2n s
2n ≈ e− s

2n ≈ 1, we have

q >
1
2n

+
s−1∑
i=0

pi

2n
= 2log(s+1)−n 1

s + 1

(
1 +

s−1∑
i=0

pi

)
= ρτ,

where τ = 2log(s+1)−n and ρ = 1
s+1 (1 +

∑s−1
i=0 pi). Therefore, the success prob-

ability that a preimage is detected after N while-loops of Algorithm 1 is lower
bounded by Psuc = 1 − (1 − ρτ)N . In this work, we always set N = (ρτ)−1 to
make the success probability to be about 1− e−1 ≈ 0.63.

C.2 The Analysis of the Maximum Likelihood Strategy

Let D = {δ0, δ1, . . . , δs−1} ⊆ Fm
2 be a set of s nonzero differences. For each

δi ∈ D, there is a set Mi = {λi,0, λi,1, . . . , λi,ℓi−1} of ℓi linearly independent
linear masks, such that each (δi, λi,j) forms a DL distinguisher with correlation
ci,j . We define L(i) : Fm

2 7→ Fℓi
2 to be the function mapping x ∈ Fm

2 to

(λi,0 · (F (x)⊕ F (x⊕ δi)), · · · , λi,ℓi−1 · (F (x)⊕ F (x⊕ δi)))

36

For u ∈ Fℓi
2 , let g

(i)
u = Prx∈Fm

2
[L(i)(x) = u] and

Nγi
= {u ∈ Fℓi

2 : g(i)
u ≥ γi}.

For g
(i)
u , according to [Lu15, HCN08], we have

g(i)
u =

∑
x∈Fm

2

θ(u⊕ L(i)(x))

= 1
2ℓi

∑
a∈Fℓi

2

(−1)a·u
∑

x∈Fm
2

(−1)a·L(i)(x)

= 1
2ℓi

∑
a=(a0,··· ,aℓi−1)∈Fℓi

2

(−1)a·u

∑
x∈Fm

2

(−1)
((∑ℓi

j=0
ajλi,j

)
·(F (x)⊕F (x⊕δi))

)
where θ : Fℓi

2 → {0, 1} such that

θ(v) =
{

1, v = 0
0, otherwise

.

Then, we can implement PreTest() with the maximum likelihood strategy as
shown in Algorithm 4.

Complexity Analysis. When PreTest() is instantiated with Algorithm 4,
Sx,D = {x ⊕ δi : δi ∈ D, (λi,0 · (F (x) ⊕ O), · · · , λi,ℓi−1 · (F (x) ⊕ O) ∈ Nγi

}.
Thus, on average we expect |Sx,D| =

∑s−1
i=0

|Nγi
|

2ℓi
for a random x. Consequently,

the complexity of Algorithm 1 is about N
(

1 +
∑s−1

i=0
|Nγi

|
2ℓi

)
evaluations of F .

Success Probability. The probability q of hitting a preimage in one while-loop
of Algorithm 1 with a random guess x ∈ Fm

2 can be computed as

q ≥ Pr[F (x) = O] +
s−1∑
i=0

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]. (10)

For 0 ≤ i < s, we have

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]
= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O] Pr[F (x⊕ δi) = O]

= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O]
(

1− 1
2n

)i+1 1
2n

= pi

(
1− 1

2n

)i+1 1
2n

> pi

(
1− 1

2n

)s 1
2n

, (11)

37

where pi =
∑

u∈Nγi
g

(i)
u . If the differential-linear approximations (δi, λi,j), 0 ≤

j < ℓi of F with correlation ci,j are independent with each other, for u =
(u0, · · · , uℓi−1) ∈ Fℓi

2 ,

g(i)
u =

ℓi−1∏
j=0

(
1
2 + (−1)uici,j

2

)
. (12)

Substituting Equation (11) into Equation (10) gives

q >
1
2n

+
s−1∑
i=0

pi

(
1− 1

2n

)s 1
2n

.

Since s≪ 2n and
(
1− 1

2n

)s =
(
1− 1

2n

)2n s
2n ≈ e− s

2n ≈ 1, we have

q >
1
2n

+
s−1∑
i=0

pi

2n
= 2log(s+1)−n 1

s + 1

(
1 +

s−1∑
i=0

pi

)
= ρτ,

where τ = 2log(s+1)−n and ρ = 1
s+1 (1 +

∑s−1
i=0 pi). Therefore, the success prob-

ability that a preimage is detected after N while-loops of Algorithm 1 is lower
bounded by Psuc = 1 − (1 − ρτ)N . In this work, we always set N = (ρτ)−1 to
make the success probability to be about 1− e−1 ≈ 0.63.

C.3 The Analysis of the LLR Strategy Given in Algorithm 8

This strategy is implemented in Algorithm 8. Let D = {δ0, δ1, . . . , δs−1} ⊆ Fm
2

be a set of s nonzero differences. For each δi (0 ≤ i < s), there is a set Mi =
{λi,0, λi,1, . . . , λi,ℓi−1} of ℓi linearly-independent linear masks, such that each
(δi, λi,j) forms a DL distinguisher with correlation ci,j . For δi ∈ D, 0 ≤ j < ℓi,
let wi,j = λi,j · (y ⊕O). Let Di

0 and Di
1 be the distributions

Di
0 : (B(0, πi

0), . . . ,B(0, πi
ℓi−1))

Di
1 : (B(0, 0.5), . . . ,B(0, 0.5))

where πi
j = 1+ci,j

2 , 0 ≤ j < ℓi and B(0, p) is a Bernoulli distribution with
parameter p. Let gi

0 and gi
1 be the probabilities that

wi = (wi,0, . . . , wi,ℓi−1)

is the result of sampling from Di
0 (i.e., from the real distribution) or Di

1 (i.e.,
the random distribution). Then,

gi
0 =

ℓi−1∏
j=0

(πi
j)wi,j (1− πi

j)1−wi,j and gi
1 =

ℓi−1∏
j=0

2−1.

38

Like [BBC+22], we define the LLR statistics as ln(gi
0

gi
1
) which is equal to

1
2

ℓi−1∑
j=0

ln(1− c2
i,j) + 1

2

ℓi−1∑
j=0

(−1)wi,j ln(1 + ci,j

1− ci,j
) + ℓi ln 2.

In Algorithm 8, an element in a translation is accepted only when the LLR
statistic is at least γi. Let θ : Fℓi

2 × R→ {0, 1} be a function define as

θ(u, γi) =
{

1 1
2
∑ℓi−1

j=0 ln(1− c2
i,j) + 1

2
∑ℓi−1

j=0 (−1)uj ln
(

1+ci,j

1−ci,j

)
+ ℓi ln 2 ≥ γi

0 Otherwise

where u = (u0, · · · , uℓi−1) ∈ Fℓi
2 . Let pi be probability that the LLR statistic is

at least γi when F (x ⊕ δi) = O and qi be probability that the LLR statistic is
at least γi when F (x⊕ δi) ̸= O. We have

pi =
∑

u∈Fℓi
2 ,

θ(u,γi)=1

ℓi−1∏
j=0

(
1
2 + (−1)uici,j

2

)
and qi =

∑
u∈Fℓi

2 ,

θ(u,γi)=1

2−ℓi . (13)

Algorithm 8: The LLR-based statistical test to implement PreTest()
Input: y = F (x) for some x ∈ Fm

2 , the preimage O, δi ∈ D, linear masks
Mi = {λi,0, . . . , λi,ℓi−1} such that (δi, λi,j) is a differential-linear
approximation of F with correlation ci,j , and the threshold γi

Output: 0 or 1
1 LLR ← ℓi ln 2
2 for 0 ≤ j < ℓi do
3 LLR ← LLR + 1

2 ln(1− c2
i,j) + 1

2 (−1)λi,j ·(y⊕O)⊕ζci,j ln(1+ci,j

1−ci,j
)

4 if LLR < γi then
5 return 1
6 return 0

Complexity Analysis. When PreTest() is instantiated with Algorithm 8,
Sx,D = {x ⊕ δi : δi ∈ D, LLR ≥ γi}. Thus, on average we expect |Sx,D| =∑s−1

i=0 qi for a random x. Consequently, the complexity of Algorithm 1 is about
N
(

1 +
∑s−1

i=0 qi

)
evaluations of F .

Success Probability. The probability q of hitting a preimage in one while-loop
of Algorithm 1 with a random guess x ∈ Fm

2 can be computed as

q ≥ Pr[F (x) = O] +
s−1∑
i=0

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]. (14)

39

For 0 ≤ i < s, we have

Pr[F (x⊕ δi) = O and x⊕ δi ∈ Sx,D]
= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O] Pr[F (x⊕ δi) = O]

= Pr[x⊕ δi ∈ Sx,D | F (x⊕ δi) = O]
(

1− 1
2n

)i+1 1
2n

= pi

(
1− 1

2n

)i+1 1
2n

> pi

(
1− 1

2n

)s 1
2n

, (15)

where

pi =
∑

u∈Fℓi
2 ,

θ(u,γi)=1

ℓi−1∏
j=0

(
1
2 + (−1)uici,j

2

)
.

Substituting Equation (15) into Equation (14) gives

q >
1
2n

+
s−1∑
i=0

pi

(
1− 1

2n

)s 1
2n

.

Since s≪ 2n and
(
1− 1

2n

)s =
(
1− 1

2n

)2n s
2n ≈ e− s

2n ≈ 1, we have

q >
1
2n

+
s−1∑
i=0

pi

2n
= 2log(s+1)−n 1

s + 1

(
1 +

s−1∑
i=0

pi

)
= ρτ,

where τ = 2log(s+1)−n and ρ = 1
s+1 (1 +

∑s−1
i=0 pi). Therefore, the success prob-

ability that a preimage is detected after N while-loops of Algorithm 1 is lower
bounded by Psuc = 1 − (1 − ρτ)N . In this work, we always set N = (ρτ)−1 to
make the success probability to be about 1− e−1 ≈ 0.63.

D Success Probability of Algorithm 5

Since the translations k ⊕ D̂K of D̂K with k ∈ D̂⊣
K form a partition of Fm

2 , the
correct key K must be in one of the translations for some k, where K is randomly
chosen from Fm

2 . The probability q of hitting the correct key by Algorithm 5 can
be estimated as

q = Pr[k ⊕K = 0] +
s−1∑
i=0

Pr[k ⊕K = δi and k ⊕ δi ∈ Sk,DK
]. (16)

For 0 ≤ i < s, Pr[k ⊕K = δi and k ⊕ δi ∈ Sk,DK
] equals to

Pr[k ⊕ δi ∈ Sk,DK
| k ⊕K = δi] Pr[k ⊕K = δi] = pi

1
s + 1 , (17)

40

where pi =
∏ℓi−1

j=0

(
1
2 + |ci,j |

2

)
. Substituting Equation (17) into Equation (16)

gives

q = 1
s + 1 +

s−1∑
i=0

pi

s + 1 = 1
s + 1

(
1 +

s−1∑
i=0

pi

)
. (18)

If we only use deterministic DL distinguishers as we do in all of our concrete
cryptanalysis in this paper, the success probability of Algorithm 5 is about 1.

E Weaken the Conditions Imposed on the Differences

If the D̂K = {0, δ0, δ1, . . . , δs−1} is not a linear subspace, the key search can
be accelerated with Algorithm 9. Since the translations k ⊕ ⟨D̂K⟩ of ⟨D̂K⟩ with

Algorithm 9: Speed up the key-recovery with DL distinguishers
Input: D = {(δ0, δ′0), · · · , (δs−1, δ′s−1)} ⊆ Fm+n

2 , and Mi = {λi,0, . . . , λi,ℓi−1}
for 0 ≤ i < s such that ((δi, δ′i), λi,j) is a related-key DL appoximation
of F with correlation ci,j , and D̂K = {0} ∪ {δ0, · · · , δs−1}.

Output: The master key K

1 Randomly choose a plaintext P , derive C = F (K, P)
2 for 0 ≤ i < s do
3 Ci = F (K, P ⊕ δ′i)

4 for k ∈ ⟨D̂K⟩
⊣ do

5 k′ ← A random element in ⟨D̂K⟩
6 c← F (k ⊕ k′, P)
7 if c = C then
8 if F (k ⊕ k′, P ⊕ δ′i) = Ci, 0 ≤ i < s then
9 return k ⊕ k′ ▷ a few of (P ⊕ δ′i, Ci) suffice

10 for 0 ≤ i < s do
11 reject← KeyTest(c, Ci, (δi, δ′i),Mi)
12 if reject = 0 then
13 if F (k ⊕ k′ ⊕ δi, P ⊕ δ′i) = Ci, 1 ≤ i < s then
14 return k ⊕ k′ ▷ a few of (P ⊕ δ′i, Ci) suffice

k ∈ ⟨D̂K⟩
⊣

form a partition of Fm
2 , the correct key K must be in one of the

translations for some k, where K is randomly chosen from Fm
2 . The probability

q of finding the correct key by Algorithm 5 can be computed as

q = Pr[k ⊕ k′ = K] +
s−1∑
i=0

Pr[k ⊕ k′ ⊕ δi = K and k ⊕ k′ ⊕ δi ∈ Sk⊕k′,DK
]. (19)

For 0 ≤ i < s, we have

41

Pr[k ⊕ k′ ⊕K = δi and k ⊕ k′ ⊕ δi ∈ Sk⊕k′,DK
]

= Pr[k ⊕ k′ ⊕ δi ∈ Sk⊕k′,DK
| k ⊕ k′ ⊕K = δi] Pr[k ⊕ k′ ⊕K = δi]

= Pr[k ⊕ k′ ⊕ δi ∈ Sk⊕k′,DK
| k ⊕ k′ ⊕K = δi]

1
| ⟨D̂K⟩ |

= pi
1

| ⟨D̂K⟩ |
, (20)

where pi =
∏ℓi−1

j=0

(
1
2 + |ci,j |

2

)
. Substituting Equation (20) into Equation (19)

gives

q = 1
| ⟨D̂K⟩ |

+
s−1∑
i=0

pi

| ⟨D̂K⟩ |
= 1
| ⟨D̂K⟩ |

(
1 +

s−1∑
i=0

pi

)
= s + 1
| ⟨D̂K⟩ |

ρ,

where ρ = 1
s+1 (1 +

∑s−1
i=0 pi). The complexity of Algorithm 9 is about

| ⟨D̂K⟩
⊣ |
(

1 +
s−1∑
i=0

2−ℓi

)

evaluations of F . If we repeat Algorithm 9 q−1 = ρ−1 |⟨D̂K ⟩|
s+1 times, the success

probability is at least 1− (1− q)q−1 ≈ 0.63. The time complexity is about

ρ−1 | ⟨D̂K⟩ |
s + 1 | ⟨D̂K⟩

⊣ |
(

1 +
s−1∑
i=0

2−ℓi

)
= 2m−log(s+1)ρ−1

(
1 +

s−1∑
i=0

2−ℓi

)

evaluations of F . Generally, the complexity of the inner products is negligible
compared with the complexity due to the evaluations of F .

F Preimage Attacks on XOEsch256

In this section, we give the preimage attacks on XOEsch256 with an analogous
method for XOEsch384. The notations are also similar to those used in the attacks
on XOEsch384.

F.1 Preimage Attack on the 1.5-Step XOEsch-256

Our preimage attack works for 1.5-step XOEsch256 with a digest length of 128
bits, and to ensure the disjointness of the generated translations, it requires 2
message blocks (M0, M1). As shown in Figure 9, the 128-bit digest (T0, T1) ∈
F64×2

2 can be inverted through Alzette ARX boxes Ac0 and Ac1 . Thus, if the
linear masks employed for (X1

2 , . . . , X1
5) in the attack are inactive, we can safely

skip the Alzette ARX boxes in the last step. In addition, for any given M0,

42

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

0 0 0 X−1
3 X−1

4 X−1
5

M3

M
1 ||0

6
4

M3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

X−1

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

X−1
0 X−1

1 X−1
2 X−1

3 X−1
4 X−1

5

M3

M
0 ||0

6
4

M3

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

T0 T1

λ λ 0 0 0 0

λ

λ

λ
λ

000 0 λ
λ

λ

λ

δ δ 0 0 0 0

Fig. 9: Preimage attack on the 1.5-step XOEsch256.

X−1 can be derived. Consequently, we only need to focus on the function FLSM :
F128

2 → F128
2 mapping M1 to (X1

0 , X1
1).

The DL approximations for FLSM are derived from DL distinguishers of
Alzette. Given any DL approximation (δ, λ) of Ac1 with correlation c listed in
Table 4, we set the linear mask of X1 to be Λ(X1) = (λ, λ, 0, 0, 0, 0). According
to Lemma 4, the linear mask Λ(Y 0) of Y 0 is (0, λ, λ, 0, λ, λ). Let the difference of
M1 be ∆(M1) = (δ, δ). According to Lemma 3, the difference of X0 is ∆(X0) =
(δ, δ, 0, 0, 0, 0). As highlighted in Figure 9, only Ac1 has nonzero input difference
and nonzero output linear mask at the same time. Therefore, the correlation of
the above DL approximation for FLSM is c.

The attack applies Algorithm 1 to FLSM and proceeds as follows in the t-th
while-loop of Algorithm 1. Set M0 to be the 128-bit encoding of the integer t,
and generate one random message block M1 ∈ F128

2 . Compute the value x =
(x0, x1) for (X1

0 , X1
1) from M0 and M1. If x = (x0, x1) = (A−1

c0 (T0), A−1
c1 (T1)) =

(X1
0 , X1

1), we are done with (M0, M1) being the preimage of (T0, T1). Otherwise,
for each δi ∈ DAlzette, we test whether λi,j ·(x⊕(X1

0 , X1
1)) = ζci,j for all λi,j ∈Mi

(DAlzette and Mi are given in Table 4). If δi passes the test, we compute the value
x′ = (x′

0, x′
1) for (X1

0 , X1
1) from the message (M0, M1⊕(δi, δi)). If x′ = (x′

0, x′
1) =

(A−1
c0 (T0), A−1

c1 (T1)), (M0, M1⊕(δi, δi)) is a preimage for (T0, T1). Note that with
our approach for selecting (M0, M1), the translations we checked in the first N
while-loops with N < 2128 are guaranteed to be disjoint since the first 128 bits of
two messages in the translations checked in different while-loops encode different
integers.

Complexity and Success Probability. The digest length of this application
is also n = 128. According to Table 4, the size of the set D of input differences

43

is s = |D| = |DAlzette| = 15, so ρ ≈ 2−0.26 and τ = 2log(s+1)−n = 2−124. The
expectation of |Sx,D| =

∑s−1
i=0 2−ℓi is about 2−1.71. Thus, we set the number of

translations checked to be N = (ρτ)−1 = 2124.26 to make the success probability
be 0.63. The time complexity of the attack can be estimated as N(1 + 2−1.71) =
2124.26 × (1 + 2−1.71) ≈ 2124.64 evaluations of FLSM , where N = 2124.26 is the
number of translations checked in the attack.

The needed N = 2124.26 randomly-guessed translations required by Algo-
rithm 1 can be selected by randomly choosing, e.g., 2100.26 M0 and under each
chosen M0 we choose 224 M1 randomly. With such a skill, the computation of
M0 is negligible compared to the other parts. The core process of our attack
is to apply Algorithm 1 to FLSM . Considering that the nonlinear operations
in XOEsch is much more costly than the linear layer, we approximately regard
the cost of FLSM as that of one step of Sparkle192. The 1.5-step XOEsch256
instance with a 128-bit digest at best requires one 1.5-step Sparkle192 (2 non-
linear layers), so the complexity of our attack is approximately 2123.64 1.5-step
XOEsch256 conductions.

F.2 Preimage Attack on the 2.5-Step XOEsch256

Our second application is to the 2.5-step XOEsch256. Akin to the preimage attack
on the 2.5-step XOEsch384, we take the 128-bit-digest instance of XOEsch256
as an example. To ensure the disjointness of the generated cosets, this attack
requires 2127 cosets of a 1-dimensional linear space, so we use 2 message blocks
denoted by (M0, M1) (see Figure 10).

The 128-bit digest (T0, T1) ∈ F64×2
2 can be inverted through Alzette ARX

boxes Ac0 and Ac1 . Thus, if the linear masks employed for (X2
2 , . . . , X2

5) in the
attack are inactive, we can safely skip the Alzette ARX boxes in the last step.
In addition, when we choose an M0, X−1 will be obtained. Consequently, in
our preimage attack on the 2.5-step XOEsch256, we only need to focus on the
second message block, i.e., M1. Different from the 1.5-step attack, the function
that we apply Algorithm 1 to is FLSL : F192

2 → F128
2 that maps (Y 0

0 , Y 0
1 , Y 0

2)
to (X2

0 , X2
1), rather than the mapping that sends M1 to (X2

0 , X2
1), because the

2.5-step Sparkle384 is more complicated and more difficult to allow DL distin-
guishers.

Next, we introduce the DL distinguishers for FLSL. Given any DL approx-
imation (δ, λ) of Aci

with correlation ϵ, we set the linear mask of X2 to be
Λ(X2) = (λ, λ, 0, 0, 0, 0). According to Lemma 4, the linear mask Λ(Y 1) of Y 1 is
(0, λ, λ, 0, λ, λ). For the difference of Y 0, we set it to be ∆(Y 0) = (δ, δ, 0, 0, 0, 0).
The difference of X1 will be ∆(X1) = (δ, δ, 0, δ, δ, 0), according to Lemma 3.
Now, as highlighted in Figure 10, only the input difference and output linear
mask of Ac1 and Ac4 in the second step are both nonzero. Therefore, the corre-
lation of the above DL approximation for FLSL is ϵ2.

When applying Algorithm 1 to FLSL, under each M0 that we have chosen,
we need to guess and check a value for (Y 0

0 , Y 0
1 , Y 0

2), say y = (y0, y1, y2), and
quickly check y′ = (y0⊕ δ, y1⊕ δ, y2) with the DL distinguishers. In this process,

44

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

0 0 0 0 0 0

M3

M
0 ||0

6
4

M3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

X−1

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

X−1
0 X−1

1 X−1
2 X−1

3 X−1
4 X−1

5

M3

M
1 ||0

6
4

M3

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

c0 c1

λ λ 0 0 0 0

λ

λ

λ
λ

000 0 λ
λ

λ

λ

δ δ δ
δ

0

0

δ δ 0 δδ 0

0δ 0
δ

0

0

Fig. 10: Illustration of the preimage attacks on the 2.5-step XOEsch256.

both y and y′ are possible to be a preimage of (T0, T1). However, due to the
existence of M3 in the absorption phase and more critically, the second 128-bit
input of thisM3 should be 0 (see Figure 1), there is a risk that the recovered y
or y′ does not correspond to any valid M1.

To address this risk, we can reuse the pre-computated Sδ in Section 5.3.
When X−1 is known, based on any (γ0, γ1, δ) ∈ Sδ we choose y and y′ such that
both y and y′ can lead to a valid M1 in the following way,{

y = (y0, y1, y2) = (γ0, γ1, γ2)
y′ = (y0 ⊕ δ, y1 ⊕ δ, y2) = (γ0 ⊕ δ, γ1 ⊕ δ, γ2)

(21)

where {
(uj , vj) = A−1

cj
(γj)⊕X−1

j , j ∈ {0, 1}
γ2 = Ac2

(
(ℓ(v0, v1), ℓ(u0, u1))⊕X−1

2
) .

It can be checked that y = (y0, y1, y2) and y′ = (y0 ⊕ δ, y1 ⊕ δ, y2) respectively
guarantee that (

A−1
c0 (y0), A−1

c1 (y1), A−1
c2 (y2)

)
⊕
(
X−1

0 , X−1
1 , X−1

2
)

45

and
(A−1

c0 (y0 ⊕ δ), A−1
c1 (y1 ⊕ δ), A−1

c2 (y2))⊕ (X−1
0 , X−1

1 , X−1
2)

satisfy Lemma 5 (it this XOEsch256 case, the w in Lemma 5 should be instanced
as 3). Hence, no matter whether Algorithm 1 returns y from Line 7 or y′ from
Line 13, we are sure that M1 exists.

This attack also uses the group of DL distinguishers given in Equation 7. It
proceeds as follows in each while-loop of Algorithm 1. Set M0 to be the 128-bit
encoding of the integer t. The corresponding X−1 can be derived. Under each
X−1, we choose one (γ0, γ1, δ) in Sδ and generate y according to Equation (21).
Compute the value x = (x0, x1) for (X1

0 , X1
1) from M0 and y. If x = (x0, x1) =

(A−1
c0 (T0), A−1

c1 (T1)) = (X2
0 , X2

1), we are done with (M0, y) that can lead to a
preimage of (T0, T1) according to Equation (4). Otherwise, for y′ = y⊕(δ, δ, 0, 0),
we test whether λ · (x⊕ (X2

0 , X2
1)) = ζϵj for all λj ∈M. If y′ passes the test, we

compute the value x′ = (x′
0, x′

1) for (X2
0 , X2

1) from M0 and y′. If x′ = (x′
0, x′

1) =
(A−1

c0 (T0), A−1
c1 (T1)) = (X2

0 , X2
1), we can compute the preimage for (T0, T1) from

(M0, y′) following Equation (4).

Complexity and Success Probability. The output of FLSL is n = 128. Since
we only use one difference, the size of the set D of input differences is s = |D| =
1, so ρ ≈ 2−0.01 and τ = 2log(s+1)−n = 2−127. The expectation of |Sx,D| =∑s−1

i=0 2−ℓi is about 2−8. Thus, to make the success probability of this attack be
about 0.63, we set N = (ρτ)−1 = 2127.01. The time complexity of the attack can
be estimated as N(1 + 2−8) = 2127.01 × (1 + 2−8) ≈ 2127.02 evaluations of FLSL.

In our attack, the selection of the N = 2127.02 cosets can be optimized
by randomly choosing, e.g., 2117.02 M0 and under each chosen M0 we tra-
verse all 210 (γ0, γ1, δ) in Sδ. With this technique, the computation of M0
is negligible compared to other parts. Generating y from (γ0, γ1, δ) costs 3
Alzette operations. Further, when pre-computing (γ0, γ1, δ), we can actually
store (A−1

c0 (γ0), A−1
c1 (γ1)). Thus, the cost can be reduced to 1 Alzette operations

(1/6 steps of Sparkle384). Moreover, considering that the nonlinear operations
in XOEsch is much more costly than the linear layer, we approximately regard
the cost of FLSL as that of one step of Sparkle384. Thus, to check y costs us
about 1 + 1/6 steps of Sparkle384. The 2.5-step XOEsch384 instance with a
128-bit digest requires about one 2.5-step Sparkle384 (3 nonlinear layers). Con-
sequently, the complexity of the attack is approximately 2127.02× 7/18 ≈ 2125.66

2.5-step XOEsch256 evaluations.

G Preimage Attack on the 2.5-Step Variant XOEsch

In this section, we give preimage attacks on variants of the 2.5-step XOEsch384
and XOEsch256 where the first two Alzette’s in the first step are parameter-
ized by the same constant. If the two Alzette’s use the same parameters, our
attack can have a better complexity, which provides justification for the de-
signers’ choice to parameterize different Alzette with different constants. For

46

convenience, we denote the variants of XOEsch384 and XOEsch256 by XOEsch⋆384
and XOEsch⋆256, respectively. Their underlying permutations are also variant of
Sparkle, denoted by Sparkle⋆512 and Sparkle⋆384, respectively.

G.1 Preimage Attack on the 2.5-Step Variant XOEsch384

Ac Ac Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

0 0 0 0 0 0 0 0

M4

M
0 ||0

1
2
8

M4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

M4

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

X−1

X0

Y 0

Ac Ac Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

X−1
0 X−1

1 X−1
2 X−1

3 X−1
4 X−1

5 X−1
6 X−1

7

M4

M
1 ||0

1
2
8

M4

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

M4

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

T0 T1

λ λ 0 0 0 0 0 0

λ
λ

λ

λ

0

0

000 0 λ
λ

λ

λ

0

0

δ 0 0 δ δ δ 0 0

δ δ δ
δ

0

0

0

0

0
δ

0
δ

0

0

0

0

Fig. 11: Illustration of the preimage attack on the 2.5-step variant XOEsch384,
note that the first two Alzette’s in the first step are parameterized by the same
constant.

The preimage attack on the 2.5-step XOEsch⋆384 is similar to that on the
2.5-step XOEsch384, except that for any (y0, y1) satisfying y0 = y1, it is free to
obtain

A−1
c (y0)⊕A−1

c (y0 ⊕ δ) = A−1
c (y1)⊕A−1

c (y1 ⊕ δ).
Hence, in the attack, we can choose (y, y) for (Y 0

0 , Y 0
1), and calculate (y2, y3) for

Y 0
2 , Y 0

3 to satisfy the Lemma 5 to guarantee that there exists an M1. This means
all DL distinguishers in Table 4 can be used in this attack. The attack process
is almost the same with Section 5.3, so we omit the details.

47

Complexity and Success Probability. The digest length is still n = 128. The
difference set has a size s = DAlzette = 15, so ρ ≈ 2−0.36 and τ = 2log(s+1)−n =
2124. The expectation of |Sx,D| is about 2−1.67.

To make the success probability be 0.63, we set N = (ρτ)−1 = 2124.36. The
time complexity is then N (1 + |Sx,D|) = 2124.36 × (1 + 2−1.67) ≈ 2124.75 FLSL

operations.
Considering that the nonlinear operations in XOEsch⋆ is much more costly

than the linear layer, by counting the number of involved Alzette we can regard
the cost of the 1.5 step of Sparkle⋆512 as 1/2 of the 2.5-step Sparkle⋆512. Thus,
the time complexity is 2123.75 2.5-step Sparkle⋆512 operations. Considering that
XOEsch⋆384 with a 128-bit operation only generates one block of digest, so at
the best case one execution of XOEsch⋆384 costs only one 2.5-step Sparkle⋆512.
Similar to the preimage attack on the 2.5-step XOEsch384, on average one guess
of our attack costs approximately only one 2.5-step Sparkle⋆512. As a result,
our complexity is still 2123.75 2.5-step XOEsch⋆384.

Complexity for the XOEsch⋆384 with a 192-Bit Digest. In the case of a
192-bit output, the digest consists of 2 blocks. A similar attack as the above one
can be mounted, where the messages are also 2-block ones (that can be split
into two phases to choose). The two digest blocks have little influence on our
attack, except that when our guess matches the first block, we need to continue
to match the second block. Since the probability that the first block is matched
is very small, the cost for the second matching is negligible. The final complexity
is about 2186.75 2.5-step XOEsch⋆384 calculations. The successful probability is
still about 0.63.

G.2 Preimage Attack on the 2.5-Step Variant XOEsch256

The preimage attack on the 2.5-step XOEsch⋆256 is also similar to that on the
XOEsch256, except that for any (y0, y1) satisfying y0 = y1, it is free to obtain

A−1
c (y0)⊕A−1

c (y0 ⊕ δ) = A−1
c (y1)⊕A−1

c (y1 ⊕ δ).

Hence, we only need to choose (y, y) for (Y 0
0 , Y 0

1), and compute y2 for Y 0
2 to

satisfy the Lemma 5 to make sure that there must exist an M1. This means all
DL distinguishers in Table 4 can be used in this attack. Thus, we will not use
the DL distinguishers in Equation (7). Instead, we will use all the 16 groups of
DL distinguishers in Table 4. See Figure 12, every DL distinguisher for Alzette
with a correlation of c is mapped to one DL distinguisher for XOEsch⋆256 with
a correlation of c2.

Complexity and Success Probability. The digest length is n = 128. Accord-
ing to Table 4, the difference set has a size s = |DAlzette| = 15, so ρ ≈ 2−0.67 and
τ = 2log(s+1)−n = 2−124. The expectation of |Sx,D| is about 2−1.67. To make the
success probability be 0.63, we set N = (ρτ)−1 = 2124.67. The time complexity
is then N (1 + |Sx,D|) = 2124.67 × (1 + 2−1.67) ≈ 2125.06.

In the above attack process, for every guess of M0 and (X0
0 , X0

1), we only
need to compute (X2

0 , X2
1), which costs 1 step of Sparkle⋆384. Considering that

48

Ac Ac Ac2 Ac3 Ac4 Ac5

0 0 0 0 0 0

M3

M
0 ||0

6
4

M3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

X−1

X0

Y 0

Ac Ac Ac2 Ac3 Ac4 Ac5

X−1
0 X−1

1 X−1
2 X−1

4 X−1
5 X−1

6

M3

M
1 ||0

6
4

M3

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X2

Y 2

Ac0 Ac1 Ac2 Ac4 Ac5 Ac6

c0 c1

λ λ 0 0 0 0

λ

λ

λ
λ

000 0 λ
λ

λ

λ

δ δ δ
δ

0

0

δ δ 0 δδ 0

0δ 0
δ

0

0

Fig. 12: Illustration of the preimage attacks on the 2.5-step XOEsch⋆256.

the nonlinear operations in XOEsch⋆ is much more costly than the linear layer, by
counting the number of involved Alzette we can regard the cost of the 1.5 step
of Sparkle⋆384 as 1/2 the 2.5-step Sparkle⋆384. Thus, the time complexity is
2124.06 2.5-step Sparkle384 operations.

Considering that XOEsch⋆256 with a 128-bit operation only generates one
block of digest, so at the best case one execution of XOEsch⋆256 costs only
one 1.5-step Sparkle⋆384. Though our attack uses 2 block messages, we can
actually randomly select many M0 and under each of them we randomly select
(X0

0 , X0
1) to construct sufficient translations of D̂Alzette. Obviously, we only need

to calculate M0 once for all its corresponding (X0
0 , X0

1). Thus, on average one
guess of our attack also costs approximately only one 2.5-step Sparkle⋆384. As
a result, our complexity is still 2124.06 2.5-step XOEsch⋆256.

H Specification of the Ascon Hash Family

The hash functions in the Ascon family adopt the sponge mode [BDPA08]
as illustrated in Figure 13. Both the hash functions with fixed output size
(Ascon-Hash and Ascon-Hasha) and the XOFs with variable output size (Ascon-XOF

49

IV‖0256 320
pa

⊕

c

r

M0

pb
⊕

c

r

M1

pb
⊕

c

r

Ms

pa
c

r

H0

pb
c

r

pb

Hd`/re

Initialization Absorbing Squeezing

Fig. 13: The hash function structure of Ascon hash family

and Ascon-XOFa) internally use the same permutation with different rounds. The

Table 5: Parameters for Ascon-XOF and Ascon-XOFa.

Target Size of Rounds IV
State Rate Capacity Digest Pre. Sec. pa pb

Ascon-XOF 320 64 256 ℓ min(128, ℓ) 12 12 00400c0000000000
Ascon-XOFa 320 64 256 ℓ min(128, ℓ) 12 8 00400c0400000000

structure of Ascon hash family is shown in Figure 13. pa and pb are iterative
permutations with a and b rounds, respectively. Since this paper focuses on the
Ascon-XOF, we list the parameters used for Ascon-XOF and Ascon-XOFa in Ta-
ble 5. This paper targets 3- and 4-round Ascon-XOF, which is naturally applicable
to Ascon-XOFa.

The round function p = pL ◦ pS ◦ pC operates on a 320-bit state arranged
into five 64-bit words. The three components are described as follows,

Addition of Constants (pC). An 8-bit constant is XORed to the bit positions
56, . . . , 63 of the second 64-bit word at each round.

x4

x3

x2

x1

x0

pC
pS

pL

Fig. 14: The state of Ascon permutation, and illustration of pC , pS and pL.

50

Substitution Layer (pS). Update each slice of the 320-bit state by applying
the 5-bit S-box defined by the following algebraic normal forms:

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0
y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0
y2 = x4x3 + x4 + x2 + x1 + 1
y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0
y4 = x4x1 + x4 + x3 + x1x0 + x1

y0 ← Σ0(x0) = x0 + (x0 ≫ 19) + (x0 ≫ 28)
y1 ← Σ1(x1) = x1 + (x1 ≫ 61) + (x1 ≫ 39)
y2 ← Σ2(x2) = x2 + (x2 ≫ 1) + (x2 ≫ 6)
y3 ← Σ3(x3) = x3 + (x3 ≫ 10) + (x3 ≫ 17)
y4 ← Σ4(x4) = x4 + (x4 ≫ 7) + (x4 ≫ 41)

Linear Diffusion Layer (pL). Apply a linear transformation Σi to each 64-bit
word yi with 0 ≤ i < 5, where Σi is defined as above.

I Improved Preimage Attack on 4-round Ascon-XOF with
the Maximum Likelihood Strategy

The DL distinguishers employed in the 4-round attack are produced with D =
{δ0 = (0), · · · , δ62 = (62)} and the corresponding

Mi = {(i + 8), (i + 30), (i + 50), (i + 54), (i + 27), (i + 47)}, 0 ≤ i < 63.

Note that according to the padding rule of the Ascon-XOF, the message is padded
with at least one “1” bit, and thus the last bit of the difference of the messages
cannot be active, which is reflected by (63) /∈ D. The absolute correlations of the
4-round distinguishers for all 0 ≤ i < 63 are listed as follows:

(i) 4R−−→
0.25

(i + 8), (i) 4R−−→
0.25

(i + 30), (i) 4R−−→
0.44

(i + 50), (i) 4R−−→
0.50

(i + 54),

(i) 4R−−→
0.14

(i + 27), (i) 4R−−→
0.16

(i + 47).

Since D̂ is not a linear space, we have to choose the translations of D̂ in a
sufficiently large space to guarantee the disjointness. For Ascon-XOF with a 128-
bit digest, we need approximately 2128−log(|D̂|) = 2128−log(64) = 2122 translations.
As shown in Figure 5, if we use 5-block messages (M0, M1, M2, M3, M4) ∈ F64×5

2
to randomize the selection of the 2122 translations, then the probability that
they are not disjoint is about (642 × 2244)/2321 ≈ 2−65 according to Lemma 2,
which is negligible.5

Given the 128-bit hash digest (T0, T1) ∈ F64×2
2 of Ascon-XOF, to recover the

preimage (M0, M1, M2, M3, M4), we apply Algorithm 1 to the function mapping
(M0, M1, M2, M3, M4) to (T0, T1), where the input differences of the distinguish-
ers are injected through M4 and the linear masks are applied to T0. In the
attack, we first randomly choose a value for (M0, M1, M2, M3) and generate the
5 We can also choose the translations x⊕ D̂ by selecting x only in ⟨D̂⟩⊣, but this will

increase the time complexity by a factor of 2. Because for each while-loop in Algo-
rithm 1, two Ascon permutations are evaluated while the current method requires
one.

51

intermediate state X right before the absorbing of M4. Then, based on X and
M4 we compute the value x0 ∈ F64

2 for T0. If x0 = T0, we continue to generate
x1 and check if x1 = T1. If (x0, x1) = (T0, T1), (M0, M1, M2, M3, M4) is then
a preimage. Otherwise, for δi ∈ D, we check if λ · (x0 ⊕ T0) = ζci,j holds for
all 0 ≤ j < 4. If δi passes the PreTest(), where PreTest() is instantiated with
Algorithm 4, we use X and M4 ⊕ δi to generate x′

0 and check if x′
0 = T0. If so,

we continue to generate x′
1 and check whether x′

1 = T1. If (x′
0, x′

1) = (T0, T1),
(M0, M1, M2, M3, M4 ⊕ δi) is a preimage of (T0, T1). In addition, for 0 ≤ i < 64,
we set γi = 0.0504984 and

Nγi
= {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}.

We define L(i) : F64×5
2 7→ F6

2 to be the function mapping x ∈ F64×5
2 to

ei+8 · (F (x)⊕ F (x⊕ δi)),
ei+30 · (F (x)⊕ F (x⊕ δi)),
ei+50 · (F (x)⊕ F (x⊕ δi)),
ei+54 · (F (x)⊕ F (x⊕ δi)),
ei+27 · (F (x)⊕ F (x⊕ δi)),
ei+47 · (F (x)⊕ F (x⊕ δi))

T

Only when
ei+8 · (F (x)⊕O),
ei+30 · (F (x)⊕O),
ei+50 · (F (x)⊕O),
ei+54 · (F (x)⊕O),
ei+27 · (F (x)⊕O),
ei+47 · (F (x)⊕O)

T

∈ Nγi
,

Algorithm 4 will output 0. For 0 ≤ j ≤ 63, ej · (F (x) ⊕ F (x ⊕ δi)) is the
output of different S-box in Ascon permutation, then we can consider these D-L
approximation with same input difference is independent with each other. Thus,
according to Equation (12), for u ∈ Nγi , g

(i)
u = Prx∈F5×64

2
[L(i)(x) = u] is equal

to

g
(i)
(0,0,0,0,0,0) =

(
1
2

+
0.25

2

)2 (1
2

+
0.44

2

)(
1
2

+
0.5
2

)(
1
2

+
0.14

2

)(
1
2

+
0.26

2

)
= 0.0697359

g
(i)
(0,0,0,0,0,1) =

(
1
2

+
0.25

2

)2 (1
2

+
0.44

2

)(
1
2

+
0.5
2

)(
1
2

+
0.14

2

)(
1
2

−
0.26

2

)
= 0.0526078

g
(i)
(0,0,0,0,1,0) =

(
1
2

+
0.25

2

)2 (1
2

+
0.44

2

)(
1
2

+
0.5
2

)(
1
2

−
0.14

2

)(
1
2

+
0.26

2

)
= 0.0504984

So we can get qi = 3
64 and

pi = g
(i)
(0,0,0,0,0,0) + g

(i)
(0,0,0,0,0,1) + g

(i)
(0,0,0,0,1,0) = 0.1728421

Complexity and Success Probability. The output length in this application
is n = 128. According to our DL distinguishers, the size of the set D of input

52

differences is s = |D| = 63, so ρ = 1
64 (1+

∑62
i=0 pi) ≈ 2−2.43 and τ = 2log(s+1)−n =

2−122. The expectation of |Sx,D| =
∑62

i=0 qi is about 21.56. Thus, we let N =
(ρτ)−1 = 2124.16 to make the success probability of this attack be 0.63. The time
complexity of the attack can be estimated as N(1+21.98) = 2124.43×(1+21.56) ≈
2126.41 evaluations of 4-round Ascon permutation. In our attack, the selection
of the N = 2124.43 translations can be optimized by randomly choosing, e.g.,
2104.43 (M0, M1, M2, M3) and under each chosen (M0, M1, M2, M3) we choose
220 M4 randomly. With this technique, the computation of (M0, M1, M2, M3) is
negligible compared to other parts. Considering that Ascon-XOF with a 128-bit
digest requires at least 2 Ascon permutations. Our complexity can be scaled to
2125.41 4-round Ascon-XOF operations. The memory cost is negligible. Compared
with the strictest approach, there are 20.06 improved.

J Improved Preimage Attack on 4-round Ascon-XOF with
the LLR Strategy

The DL distinguishers employed in the 4-round attack are produced with D =
{δ0 = (0), · · · , δ62 = (62)} and the corresponding

Mi = {(i + 8), (i + 30), (i + 50), (i + 54), (i + 27), (i + 47)}, 0 ≤ i < 63.

Note that according to the padding rule of the Ascon-XOF, the message is padded
with at least one “1” bit, and thus the last bit of the difference of the messages
cannot be active, which is reflected by (63) /∈ D. The absolute correlations of the
4-round distinguishers for all 0 ≤ i < 63 are listed as follows:

(i) 4R−−→
0.25

(i + 8), (i) 4R−−→
0.25

(i + 30), (i) 4R−−→
0.44

(i + 50), (i) 4R−−→
0.50

(i + 54),

(i) 4R−−→
0.14

(i + 27), (i) 4R−−→
0.16

(i + 47).

Since D̂ is not a linear space, we have to choose the translations of D̂ in a
sufficiently large space to guarantee the disjointness. For Ascon-XOF with a 128-
bit digest, we need approximately 2128−log(|D̂|) = 2128−log(64) = 2122 translations.
As shown in Figure 5, if we use 5-block messages (M0, M1, M2, M3, M4) ∈ F64×5

2
to randomize the selection of the 2122 translations, then the probability that
they are not disjoint is about (642 × 2244)/2321 ≈ 2−65 according to Lemma 2,
which is negligible.6

Given the 128-bit hash digest (T0, T1) ∈ F64×2
2 of Ascon-XOF, to recover the

preimage (M0, M1, M2, M3, M4), we apply Algorithm 1 to the function mapping
(M0, M1, M2, M3, M4) to (T0, T1), where the input differences of the distinguish-
ers are injected through M4 and the linear masks are applied to T0. In the
6 We can also choose these translations x⊕ D̂ by selecting x only in ⟨D̂⟩⊣, but this will

increase the time complexity by a factor of 2. Because for each while-loop in Algo-
rithm 1, two Ascon permutations are evaluated while the current method requires
one.

53

attack, we first randomly choose a value for (M0, M1, M2, M3) and generate the
intermediate state X right before the absorbing of M4. Then, based on X and
M4 we compute the value x0 ∈ F64

2 for T0. If x0 = T0, we continue to generate
x1 and check if x1 = T1. If (x0, x1) = (T0, T1), (M0, M1, M2, M3, M4) is then
a preimage. Otherwise, for δi ∈ D, we check if λ · (x0 ⊕ T0) = ζci,j

holds for
all 0 ≤ j < 4. If δi passes the PreTest(), where PreTest() is instantiated with
Algorithm 8, we use X and M4 ⊕ δi to generate x′

0 and check if x′
0 = T0. If so,

we continue to generate x′
1 and check whether x′

1 = T1. If (x′
0, x′

1) = (T0, T1),
(M0, M1, M2, M3, M4 ⊕ δi) is a preimage of (T0, T1). In addition, for 0 ≤ i < 64,
we set γi = 6.988 and

Mi = {(i + 8), (i + 30), (i + 50), (i + 54), (i + 27), (i + 47)}.

For u ∈ F6
2, according to the definition of θ(u, γi) in Section C.3, we have

θ(u, γi) =
{

1 u ∈ {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1)}
0 Otherwise

.

Thus, according to Equation (13), qi = 3
64 and pi = 0.1728421.

Complexity and Success Probability. The output length in this application
is n = 128. According to our DL distinguishers, the size of the set D of input
differences is s = |D| = 63, so ρ = 1

64 (1+
∑62

i=0 pi) ≈ 2−2.43 and τ = 2log(s+1)−n =
2−122. The expectation of |Sx,D| =

∑62
i=0 qi is about 21.56. Thus, we let N =

(ρτ)−1 = 2124.16 to make the success probability of this attack be 0.63. The time
complexity of the attack can be estimated as N(1+21.98) = 2124.43×(1+21.56) ≈
2126.41 evaluations of 4-round Ascon permutation.

In our attack, the selection of the N = 2124.43 translations can be optimized
by randomly choosing, e.g., 2104.43 (M0, M1, M2, M3) and under each chosen
(M0, M1, M2, M3) we choose 220 M4 randomly. With this technique, the compu-
tation of (M0, M1, M2, M3) is negligible compared to other parts. Considering
that Ascon-XOF with a 128-bit digest requires at least 2 Ascon permutations.
Our complexity can be scaled to 2125.41 4-round Ascon-XOF operations. The
memory cost is negligible. Compared with the strictest approach, there are 20.06

improved.

K Preimage Attacks on 3-Round Ascon-XOF

Notations for DL Distinguishers of the Ascon Permutation. Considering
that the DL distinguishers will be used in analyzing the Ascon-XOF, the input
differences and output masks of the DL distinguishers for the Ascon permutation
in this paper are active only in the first word, and only those with 1 or 2 active
bits are considered. As a result, we denote the differences and masks by the
colunmn indices of their active bits. For example, (0) means an input difference
or an output mask that is active in the first bit of the first word.

54

DL Distinguishers of Ascon Permutation. We apply the method in [LLL21]
to the 3-round Ascon permutation. There are two types of DL distinguishers are
considered for our preimage attack on the 3-round Ascon-XOF.

– Type-1 DL distinguishers:

δi = (i),Mi =

(i + 2), (i + 9), (i + 12), (i + 15), (i + 21),
(i + 22), (i + 30), (i + 31), (i + 32), (i + 33),
(i + 37), (i + 43), (i + 44), (i + 50), (i + 52),
(i + 53), (i + 54), (i + 55), (i + 57), (i + 59),
(i + 63)

0 ≤ i < 64

(22)
The correlation of all DL distinguishers (δi, λi,j), λi,j ∈ Mi are 1, where
ℓi = |Mi| = 21.

– Type-2 DL distinguishers:

∆i+64 = (i, i + 22),Mi+64 =

(i + 2), (i + 12), (i + 15), (i + 21),
(i + 31), (i + 37), (i + 43), (i + 44),
(i + 52), (i + 53), (i + 54), (i + 55),
(i + 59), (i + 62)

 0 ≤ i < 64

(23)
The correlation of all DL distinguishers (δi+64, λ64+i,j), λ64+i,j ∈Mi+64 are
1, where ℓ64+i = |M64+i| = 14.

We note that the padding rule of the Ascon-XOF is to append at least 1 bit
“1” to the message, thus the last bit of messages cannot have an active difference.
Hence, ∆i, i ∈ {63, 105, 127} cannot be used in our attack. Finally, we will have
125 deterministic DL distinguishers in hand.

Let D = {δi : i ∈ {0, 1, . . . , 127}\{63, 105, 127}}, Mi = {λi,j : 0 ≤ i <
128, 0 ≤ j < ℓi} derived from Equations (22) and (23). Then the input differences
and output masks of the distinguishers used in our preimage attack are specified
by these D and Mi.

The preimage attack is similar to Section 6, where 5 message blocks are
used, denoted by (M0, M1, M2, M3, M4) ∈ F64×5

2 . The 128-bit output consists
of two blocks, denoted by (T0, T1) ∈ F64×2

2 . Thus, with a direct application of
Algorithm 1, we can recover a preimage of a given (T0, T1), as we did for the
4-round Ascon-XOF.

Complexity and Success Probability. The digest length is n = 128. The
number of differences in D is s = 125, so ρ = 1 and τ = 2log(s+1)−n = 2−121.02.
The expectation of |Sx,D| =

∑
i 2−ℓi ≈ 2−8.03. To make the success probability

be 0.63, we let N = (ρτ)−1 = 2121.02. The time complexity is N (1 + |Sx,D|) =
2121.02 × (1 + 2−8.83) ≈ 2121.02 4-round Ascon permutations.

Although our attack uses 5-block messages, we can select the last block under
each fixed first 4 blocks. Thus, the cost for computing the first 4 blocks can be
much smaller than that for the last block. Considering that Ascon-XOF with a

55

128-bit digest requires at least calculating 2 Ascon permutations. Our complexity
can be scaled to 2120.02 Ascon-XOF conductions. The memory cost is negligible.

L MitM-DL Preimage Attack on 3-Round Ascon-HASH

Similar to the 4-round attack 7, here we also focus on the recovery of ST c. We
again apply the method in [LLL21] to the 3-round Ascon permutation. We derive
64 groups of DL distinguishers for the 3-round Ascon-HASH. The ith (0 ≤ i < 64)
group of the DL distinguishers are as follows,

δ64,i = (64 + i),M64,i =

(i + 9), (i + 15), (i + 21), (i + 22), (i + 30),
(i + 31), (i + 32), (i + 33), (i + 37), (i + 43),
(i + 44), (i + 50), (i + 52), (i + 53), (i + 54),
(i + 55), (i + 57), (i + 59), (i + 63)

The correlation of all DL distinguishers (δ64,i, λi,j) and λi,j ∈ M64,i are 1,

where ℓ64,i = |M64,i| = 19. Thus, we will use the set of difference D = {δ64,i :
0 ≤ i < 64}, and then |D̂| = 65.

As we will see later, we need N = 2192−log(65) disjoint translations of D̂. If we
directly apply Lemma 2, the space we choose these disjoint translations should
be significantly larger than 2384, which cannot be satisfied because the capacity
part of ST is with a size of only 2256. Therefore, we choose translations of D̂ as
x⊕D̂ where x ∈ ⟨D̂⟩. According to Lemma 1, these translations must be disjoint.

Note that the differences δ64,i, 0 ≤ i < 64 are all active in the second word
of ST , thus if we choose N = 2192−log(65) values that the second word is zero
(the nonzero bits are only possible in the third, forth and fifth rows), we can
choose 2192−log(65) disjoint translations of D̂. Hence, we can apply Algorithm 1
to recover ST , the process is very similar to the previous applications.

Complexity and Success Probability. In the case of recovering ST c, n = 192,
s = |D| = 64. So ρ = 1 and τ = 2log(s+1)−n = 2−185.98. On average, |Sx,D| = 2−15.
We let N = (ρτ)−1 = 2185.98 to make the success probability be 0.63. The
complexity is N (1 + |Sx,D|) = 2185.98 × (1 + 2−15) ≈ 2185.98.

To recover ST c, we need to perform the Ascon permutation that follows
ST . Only when T1 is matched, we continue to check if T2 and T3 are also
matched. Therefore, the computation for T2 and T3 are small. Considering that
Ascon-HASH performs at least 4 permutations, the main part of our calculation
is 1/4 of the Ascon-HASH computations. Thus, the complexity for recovering ST c

is about T/4 ≈ 2183.98.
When a ST is recovered, we proceed with the internal collision phase. When

using 5 messages, the 256-bit internal collision with two 2128 sets (TSL
and

TSR
) has a birthday successful probability. Considering that the collision phase

costs around 2128 computations, which is negligible compared to the recovery
of ST c phase, we can actually trade some time and memory complexity with
the successful probability. For example, we can use 7 message blocks, and make

56

TSL
and TSR

have sizes of, e.g., 2130, then the successful probability of the
internal collision phase will boost to extremely close to 1. Further, with Floyd’s
cycle-finding algorithm [Flo67, Sas14], the internal-collision phase can require a
negligible memory cost, so the internal collision phase can be made memoryless.
Hence, the time complexity and the successful probability are as the same as the
recovery of ST c.

M The trivial attack for 3.5 Steps Schwaemm256-128

In this section, we will introduce the structural attack for 3.5-step Schwaemm256-
128. Firstly, we randomly chose a nonce n, then call the 3.5-step Schwaemm256-
128 initialization oracle with n to encrypt a plaintext p. From the resulting ci-
phertext z and p, we can deduce the value c = (c0, c1, c2, c3) for C = (C0, C1, C2, C3).
As shown in Fig. 7, we can know X2

0 from C3 due to C3 = Ac3(Ac0(X2
0)). And

Y 1
2 and Y 1

4 are known from the nonce n. If we obtain the intermediate value Y 1
0

and Y 1
1 , we can get the Key (K0, K1).

According to
X2

0 = Y 1
4 ⊕ Y 1

1 ⊕ ℓ(Y 1
0 ⊕ Y 1

1 ⊕ Y 1
2),

where ℓ the the linear operation insideM3, we can get a linear system with 128
variables and 64 equations. Then, we can get 264 possible values for (Y 1

0 , Y 1
1).

Corresponding 264 key candidates can be computed backwards by the (Y 1
0 , Y 1

1).
By testing these 264 possible keys with c0, c1 and c2, we can find the correct
(K0, K1). The data and memory complexities are both 1 and the time complexity
is about 264.

N Key-Recovery Attacks on Schwaemm192-192,
Schwaemm256-256 and Schwaemm128-128

Similar to the attack on Schwaemm256-128 we have exemplified in Section 8,
this section presents key-recovery attacks on 3.5- and 4.5-step Schwaemm192-192,
Schwaemm256-256 and Schwaemm128-128.

The notations are similar to those in Section 8. (N0, . . . , Nh1−1) ∈ F64h1
2 is the

64h1-bit nonce, (K0, . . . , Kh2−1) ∈ F64h2
2 is the 64h2-bit key, and (C0, . . . , Ch1−1) ∈

F64h1
2 is the 64h1-bit output known to the attackers. For the convenience of de-

scription of the attacks, the input and output of the j-th step of the Sparkle per-
mutation are denoted by Xj = (Xj

0 , . . . , Xj
h1+h2−1) and Y j = (Y j

0 , . . . , Y j
h1+h2−1),

respectively.

N.1 Key-Recovery Attack on Schwaemm192-192

In this subsection, we apply Algorithm 5 to the 3.5-step Schwaemm192-192 to
recover all its 192-bit key. The attack can be naturally extended to 4.5 steps
with the same method as Section 8.2.

57

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

N0 N1 N2 K0 K1 K2

M3

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

M3

X3

Y 3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5

C0 C1 C2

λλ λ
λ

0

0

λ λ λ
λ

0

0

λ 0 λ 0 0 0

∗ 0 00 0 0

0 0 ∗ 0 0 0

δ0 δ1 δ2δ 0 0

0 0 0 δ 0 0

Fig. 15: The illustration of 3.5 steps of Schwaemm192-192 initialization. The un-
derlying permutation is Sparkle384. The blue values represent the differences
whereas the red values are masks.

Our strategy is to apply Algorithm 5 to the function FLSLSL mapping Y 0

to X3 to recover (Y 0
3 , Y 0

4 , Y 0
5). We first introduce the DL distinguishers used

for FLSLSL. As shown in Figure 15, let Λ(X3) = (λ, 0, λ, 0, 0, 0) with λ ∈
F64

2 \{0} be the linear mask of X3. The consequent linear mask of Y 2 is Λ(Y 2) =
(λ, λ, 0, λ, λ, 0). We set the difference of Y 0 to be ∆(Y 0) = (δ, 0, 0, δ0, δ1, δ2)
with δ ∈ F64

2 \{0} and (δ0, δ1, δ2) = M3(δ, 0, 0). According to Lemma 3, the
difference of X1 is ∆(X1) = (0, 0, 0, δ, 0, 0), and thus the difference of X2 is
∆(X2) = (0, 0, ∗, 0, 0, 0), where ∗ can be any nonzero value. Since ∆(X2

0) =
∆(X2

1) = 0, for any nonzero δ and nonzero λ, λ · (∆(X3
0) ⊕ ∆(X3

2)) = 0
holds with certainty. In the application of Algorithm 5 (with necessary tweaks),
(Y 0

3 , Y 0
4 , Y 0

5) and (Y 0
0 , Y 0

1 , Y 0
2) respectively play the roles of the key and the

plaintext, D = {(δ, 0, 0, δ0, δ1, δ2) : δ ∈ F64
2 \{0}, (δ0, δ1, δ2) = M3(δ, 0, 0) },

DK = {(δ0, δ1, δ2) : (δ0, δ1, δ2) = M3(δ, 0, 0), δ ∈ F64
2 \{0}}, D̂K = {(δ0, δ1, δ2) :

(δ0, δ1, δ2) = M3(δ, 0, 0), δ ∈ F64
2 }, and the sets of masks for all difference

can be the same M is a set of 64 bases of all Λ(X3). For example, we use
M = {(ei, 0, ei, 0, 0, 0) : 0 ≤ i < 64} where ei is the i-th unit vector in F64

2 .

In the attack, we randomly choose a value y = (y0, y1, y2) for (Y 0
0 , Y 0

1 , Y 0
2),

invert it to obtain the corresponding nonce n = (n0, n1, n2), and query the
Schwaemm192-192 initialization oracle with the nonce n to encrypt a plaintext p.
From the resulting ciphertext z and p, we can deduce the value c = (c0, c1, c2) for
C = (C0, C1, C2). Inverting c we get the value x = (x0, x1, x2) for (X3

0 , X3
1 , X3

2).
Next, for every δ ∈ F64

2 \{0}, we choose yδ = (y0, y1, y2)δ = y ⊕ (δ, 0, 0) for
(Y 0

0 , Y 0
1 , Y 0

2), and invert it to obtain nδ. With the encryption oracle we can get
xδ = (x0, x1, x2)δ = (x0,δ, x1,δ, x2,δ) for (X3

0 , X3
1 , X3

2).

58

Then, for each v = (v0, v1, v2) ∈ D̂⊣
K , we guess the value of (Y 0

3 , Y 0
4 , Y 0

5) to
be v. Compute FLSLSL(y, v), and set w = (w0, w1, w2) be the first three 64-bit
words of FLSLSL(y, v). If w = x, v is a candidate for (Y 0

4 , Y 0
5), and we can

confirm its correctness by using additional data.
If v is not a candidate for (Y 0

3 , Y 0
4 , Y 0

5) (i.e., w ̸= x) or v fails to be confirmed
as the key, we use the aforementioned DL distinguishers for FLSLSL to quickly
filter out those vδ = v ⊕ (δ0, δ1, δ2) = v ⊕M3(δ, 0, 0) that cannot be the right
value. According to the DL distinguisher, for any nonzero λ, if the difference
of Y 0 is ∆(Y 0) = (δ, 0, 0, δ0, δ1, δ2), λ · (∆(X3

0) ⊕∆(X3
2)) = 0. We have known

that w3 is the result of (y0, y1, y2, v0, v1, v2) and x3,δ is the result of the oracle
queried with nδ. Hence, v⊕M3(δ, 0, 0) cannot be the right value of (Y 0

3 , Y 0
4 , Y 0

5)
if λ · (w0⊕x0,δ⊕w2⊕x2,δ) ̸= 0 for any nonzero λ. Equivalently, only if λ · (w0⊕
x0,δ ⊕ w2 ⊕ x2,δ) = 0 for all λ ∈ F64

2 \{0}, v ⊕ (δ, 0, 0) can be a candidate (for a
wrong v ⊕M3(δ, 0, 0), it holds with probability of 2−64, which is the source of
the filtering).

Note that λ ·x = 0 for any nonzero λ is equivalent to λi ·x = 0 for all λi ∈M
because M is a set of bases for all λ. Let V (x) = (ν0, ν1, . . . , ν63) where νi = λi ·x
and λi ∈ M (note that the last three elements of λi ∈ M are always zero). To
check if λ · (w0 ⊕ x0,δ ⊕w2 ⊕ x2,δ) = 0 for all nonzero λ is equivalent to check if
V (x) = V (w) . Therefore, we can use a hash table to quickly find the collision
by storing V (x), and check if V (w) in the table. This process is a general case
of what we did in Section 8.

Complexity and Success Probability. In the data preparation phase, we
use 264 nonces, and invert the output by one nonlinear layer, so the time com-
plexity is approximately 264 + 2/4× 264 Schwaemm192-192 initializations. In the
guessing phase, the whole key space is divided into 2128 translations. Process-
ing each translation requires 1 conduction of FLSLSL and 1 table-lookup. On
average, there is one v ⊕ (δ0, δ1, δ2) that can pass the 64-bit filter. Thus, the
guessing phase is dominated by the 2129 conductions of FLSLSL. Since FLSLSL

contains 2 nonlinear layer, so its cost can be regarded as 2/4 of the 3.5-step
Schwaemm192-192 operation. Finally, the whole time complexity is about 2129

Schwaemm192-192 operations. The data complexity is obviously 264 nonces. The
memory complexity is to store H, which is about 264 192-bit blocks. Since all
DL distinguishers in this application is deterministic, the success probability of
recovering it is 1, according to Equation (18).

Extension to 4.5 Steps. With the same strategy as Section 8.2, we can prepend
a round to the 3.5-step attack to extend it to a 4.5-step one. The final time and
data complexity remains almost the same. But the success probability decrease
to 0.63.

N.2 Key-Recovery Attack on 3.5-Step Schwaemm256-256

In this subsection, we apply Algorithm 5 to the 3.5- and 4.5-step Schwaemm256-
256 to recover all its 256-bit key.

59

X0

Y 0

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

N0 N1 N2 N3 K0 K1 K2 K3

M4

X1

Y 1

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

M4

X2

Y 2

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

M4

X3

Y 3

Ac0 Ac1 Ac2 Ac3 Ac4 Ac5 Ac6 Ac7

C0 C1 C2 C3

λ0 λ1 λ2 λ3 0 0 0 0

λ0
λ0

λ1

λ1

λ2

λ2

λ3λ30 0 λ
λ

λ′
λ′

0

0

δ δ′ 0 0 δ0 δ1 δ2 δ3

0 0 0 0 δ δ′ 0 0

0 0 0 0 ∗ ∗ 0 0

∗ 0 0 ∗ 0 0 0 0

Fig. 16: The illustration of 3.5 steps of Schwaemm256-256. The underlying per-
mutation is Sparkle512. The blue values represent the differences whereas the
red values are masks.

Our strategy is to apply Algorithm 5 to the function FLSLSL mapping Y 0

to X3 to recover (Y 0
4 , Y 0

5 , Y 0
6 , Y 0

7). We first introduce the DL distinguishers used
for FLSLSL. As shown in Figure 16, let Λ(X3) = (λ0, λ1, λ2, λ3, 0, 0, 0, 0) with
(λ, λ′) ∈ F128

2 \{0} and (λ0, λ1, λ2, λ3) = M4(0, λ, λ′, 0) be the linear mask of
X3. The consequent linear mask of Y 2 is Λ(Y 2) = (0, λ, λ′, 0, λ3, λ0, λ1, λ2). We
set the difference of Y 0 to be ∆(Y 0) = (δ, δ′, 0, 0, δ0, δ1, δ2, δ3) with (δ, δ′) ∈
F128

2 \{0} and (δ0, δ1, δ2, δ3) = M4(δ, δ′, 0, 0). The difference of X1 is ∆(X1) =
(0, 0, 0, 0, δ, δ′, 0, 0), and thus the difference of X2 is ∆(X2) = (∗, 0, 0, ∗, 0, 0, 0, 0),
where ∗ can be any nonzero value. Since ∆(X2

1) = ∆(X2
2) = 0, for any nonzero

(δ, δ′) and nonzero (λ, λ′),

(M−1
4)T (0, λ, λ′, 0) · (∆(X3

0), ∆(X3
1), ∆(X3

2), ∆(X3
3)) = 0

holds with certainty (for simplicity, we useM4 as its corresponding matrix here).
In the application of Algorithm 5 (with necessary tweaks), (Y 0

4 , Y 0
5 , Y 0

6 , Y 0
7)

and (Y 0
0 , Y 0

1 , Y 0
2 , Y 0

3) respectively play the roles of the key and the plaintext,
D = {(δ, δ′, 0, 0, δ0, δ1, δ2, δ3) : (δ, δ′) ∈ F128

2 \{0}, (δ0, δ1, δ2, δ3) = M4(δ, δ′, 0, 0)
}, DK = {(δ0, δ1, δ2, δ3) : (δ0, δ1, δ2, δ3) = M4(δ, δ′, 0, 0), (δ, δ′) ∈ F128

2 \{0}},
D̂K = {(δ0, δ1, δ2, δ3) : (δ0, δ1, δ2, δ3) = M4(δ, δ′, 0, 0), (δ, δ′) ∈ F128

2 }, and Mi

is a set of 128 bases of all Λ(X3). Note that the last four elements of Λ(X3)
are always zero, so we actually can focus only on Λ((X3

0 , X3
1 , X3

2 , X3
3)). Since

Λ((Y 2
0 , Y 2

1 , Y 2
2 , Y 2

3)) = (0, λ, λ′, 0), Λ((Y 2
0 , Y 2

1 , Y 2
2 , Y 2

3)) has a set of bases with
{(0, ei, 0, 0) : 0 ≤ i < 64}⋃{(0, 0, ej , 0) : 0 ≤ j < 64} where ei and ej is
the unit vector of F64

2 . Thus, a set of bases of Λ((X3
0 , X3

1 , X3
2 , X3

3)) can be
M = {(M−1

4)T (0, ei, 0, 0) : 0 ≤ i < 64}⋃{(M−1
4)T (0, 0, ej , 0) : 0 ≤ j < 64}.

In the attack, we randomly choose a value y = (y0, y1, y2, y3) for (Y 0
0 , Y 0

1 , Y 0
2 , Y 0

3),
invert it to obtain the corresponding nonce n = (n0, n1, n2, n3), and query the

60

Schwaemm256-256 initialization oracle with the nonce n to encrypt a plaintext p.
From the resulting ciphertext z and p, we can deduce the value c = (c0, c1, c2, c3)
for C = (C0, C1, C2, C3). Inverting c we get the value x = (x0, x1, x2, x3) for
(X3

0 , X3
1 , X3

2 , X3
3). Next, for every δ = (δ, δ′) ∈ F128

2 \{0}, we choose yδ =
(y0, y1, y2, y3)δ = y⊕ (δ, δ′, 0, 0) for (Y 0

0 , Y 0
1 , Y 0

2 , Y 0
3), and invert it to obtain nδ.

With the encryption oracle we can get xδ = (x0, x1, x2, x3)δ = (x0,δ, x1,δ, x2,δ, x3,δ)
for (X3

0 , X3
1 , X3

2 , X3
3).

Then, for each v = (v0, v1, v2, v3) ∈ D̂⊣
K , we guess the value of (Y 0

4 , Y 0
5 , Y 0

6 , Y 0
7)

to be v. Compute FLSLSL(y, v), and set w = (w0, w1, w2, w3) be the first four
64-bit words of FLSLSL(y, v). If w = x, v is a candidate for (Y 0

4 , Y 0
5 , Y 0

6 , Y 0
7),

and we can confirm its correctness by using additional data.
If v is not a candidate for (Y 0

4 , Y 0
5 , Y 0

6 , Y 0
7) (i.e., w ̸= x) or v fails to be

confirmed as the key, we use the aforementioned DL distinguishers for FLSLSL

to quickly filter out those vδ = v ⊕ (δ0, δ1, δ2, δ3) = v ⊕ M4(δ, δ′, 0, 0) that
cannot be the right value. According to the DL distinguisher, for any nonzero
(λ, λ′), if the difference of Y 0 is ∆(Y 0) = (δ, δ′, 0, 0, δ0, δ1, δ2, δ3), (λ0, λ1, λ2, λ3) ·
(∆(X3

0), ∆(X3
1), ∆(X3

2), ∆(X3
3)) = 0. We have known that (w0, w1, w2, w3) is the

result of (y0, y1, y2, y3, v0, v1, v2, v3) and (x0,δ, x1,δ, x2,δ, x3,δ) is the result of the
oracle queried with nδ. Hence, v ⊕ (δ0, δ1, δ2, δ3) cannot be the right value of
(Y 0

4 , Y 0
5 , Y 0

6 , Y 0
7) if (λ0, λ1, λ2, λ3) · ((w0, w1, w2, w3)⊕ (x0,δ, x1,δ, x2,δ, x3,δ)) ̸= 0

for any nonzero (λ, λ′). Equivalently, only if (λ0, λ1, λ2, λ3) · ((w0, w1, w2, w3)⊕
(x0,δ, x1,δ, x2,δ, x3,δ)) = 0 for all (λ, λ′) ∈ F128

2 \{0}, v ⊕ (δ, δ′, 0, 0) can be a
candidate (for a wrong v ⊕ (δ, δ′, 0, 0), it holds with probability of 2−128).

Let V (x) = (ν0, ν1, . . . , ν63) where νi = λi · x and λi ∈ M. To check if
λ · ((w0, w1, w2, w3) ⊕ (x0,δ, x1,δ, x2,δ, x3,δ)) = 0 for all nonzero λ is equivalent
to check if V (x) = V (w) Therefore, we can use a hash table to quickly find
the collision by storing V (x), and check if V (w) in the table. This process is a
general case of what we did in Section 8.

Complexity and Success Probability. In the data preparation phase, we
call the Schwaemm256-256 initialization oracle to handle 2128 nonces, inverted by
y and yδ, and invert the output by one nonlinear layer, so the time complex-
ity is dominated approximately by the 2128 + 2/4 × 2128 initializations. In the
guessing phase, the whole key space is divided into 2128 translations. Processing
each translation requires 1 conduction of FLSLSL and 1 table-lookup. On aver-
age, one candidate can pass the filter. Thus, the guessing phase is dominated by
the 2129 conductions of FLSLSL. Since FLSLSL contains 2 nonlinear layer, so its
cost can be regarded as 2/4 of the 3.5-step Schwaemm256-256 operation. Finally,
the whole time complexity is about 2129.32 Schwaemm256-256 operations. The
data complexity is obviously 2128 nonces. The memory complexity is to store H,
which is about 2128 256-bit blocks. Since all DL distinguishers in this applica-
tion is deterministic, the success probability of recovering it is 1, according to
Equation (18).

Extension to 4.5 Steps. With the same strategy as Section 8.2, we can prepend
a round to the 3.5-step attack to extend it to a 4.5-step one. The final time and

61

data complexity remains almost the same. But the success probability decrease
to 0.63.

N.3 Key-Recovery Attack on 3.5-Step Schwaemm128-128

In this subsection, we apply Algorithm 5 to the 3.5- and 4.5-step Schwaemm128-
128 to recover all its 128-bit key.

X0

Y 0

Ac0 Ac1 Ac2 Ac3

N0 N1 K0 K1

M2

X1

Y 1

Ac0 Ac1 Ac2 Ac3

M2

X2

Y 2

Ac0 Ac1 Ac2 Ac3

M2

X3

Y 3

Ac0 Ac1 Ac2 Ac3

c0 c1

δ 0 δ0 δ1

0 δ 0

0 0 ∗ 0

∗ 0 0 0

0 λ λ1λ1
λ0

λ0

λ0 λ1 0 0

Fig. 17: The illustration of 3.5 steps of Schwaemm128-128. The underlying per-
mutation is Sparkle256. The blue values represent the differences whereas the
red values are masks.

Our strategy is to apply Algorithm 5 to the function FLSLSL mapping Y 0

to X3 to recover (Y 0
2 , Y 0

3). We first introduce the DL distinguishers used for
FLSLSL. As shown in Figure 17, let Λ(X3) = (λ0, λ1, 0, 0) with λ ∈ F64

2 \{0} and
(λ0, λ1) =M2(0, λ) be the linear mask of X3. The consequent linear mask of Y 2

is Λ(Y 2) = (0, λ, λ1, λ0). We set the difference of Y 0 to be ∆(Y 0) = (δ, 0, δ0, δ1)
with δ ∈ F64

2 \{0} and (δ0, δ1) = M2(δ, 0). The difference of X1 is ∆(X1) =
(0, 0, δ, 0), and thus the difference of X2 is ∆(X2) = (∗, 0, 0, 0), where ∗ can be
any nonzero value. Since ∆(X2

2) = 0, for any nonzero δ and nonzero λ,

(M−1
2)T (0, λ) · (∆(X3

0), ∆(X3
1)) = 0

holds with certainty (for simplicity, we useM2 as its corresponding matrix here).
In the application of Algorithm 5 (with necessary tweaks), (Y 0

2 , Y 0
3) and (Y 0

0 , Y 0
1)

respectively play the roles of the key and the plaintext, D = {(δ, 0, δ0, δ1) :
δ ∈ F64

2 \{0}, (δ0, δ1) = M2(δ, 0) }, DK = {(δ0, δ1) : (δ0, δ1) = M2(δ, 0), δ ∈
F64

2 \{0}}, D̂K = {(δ0, δ1) : (δ0, δ1) = M2(δ, 0), δ ∈ F64
2 }, and Mi is a set of

64 bases of all Λ(X3). Note that the last two elements of Λ(X3) are always

62

zero, so we actually can focus only on Λ((X3
0 , X3

1)). Since Λ((Y 2
0 , Y 2

1)) = (0, λ),
Λ((Y 2

0 , Y 2
1)) has a set of bases with {(0, ei) : 0 ≤ i < 64} where ei is the unit

vector of F64
2 . Thus, a set of bases of Λ((X3

0 , X3
1)) can be M = {(M−1

2)T (0, ei) :
0 ≤ i < 64}.

In the attack, we randomly choose a value y = (y0, y1) for (Y 0
0 , Y 0

1), invert
it to obtain the corresponding nonce n = (n0, n1), and query the Schwaemm128-
128 initialization oracle with the nonce n to encrypt a plaintext p. From the
resulting ciphertext z and p, we can deduce the value c = (c0, c1) for C =
(C0, C1). Inverting c we get the value x = (x0, x1) for (X3

0 , X3
1). Next, for every

δ ∈ F64
2 \{0}, we choose yδ = (y0, y1)δ = y ⊕ (δ, 0) for (Y 0

0 , Y 0
1), and invert it to

obtain nδ. With the encryption oracle we can get xδ = (x0, x1)δ = (x0,δ, x1,δ)
for (X3

0 , X3
1).

Then, for each v = (v0, v1) ∈ D̂⊣
K , we guess the value of (Y 0

2 , Y 0
3) to be v.

Compute FLSLSL(y, v), and set w = (w0, w1) be the first four 64-bit words of
FLSLSL(y, v). If w = x, v is a candidate for (Y 0

2 , Y 0
3), and we can confirm its

correctness by using additional data.
If v is not a candidate for (Y 0

2 , Y 0
3) (i.e., w ̸= x) or v fails to be confirmed

as the key, we use the aforementioned DL distinguishers for FLSLSL to quickly
filter out those vδ = v ⊕ (δ0, δ1) = v ⊕M2(δ, 0) that cannot be the right value.
According to the DL distinguisher, for any nonzero λ, if the difference of Y 0

is ∆(Y 0) = (δ, 0, δ0, δ1), (λ0, λ1) · (∆(X3
0), ∆(X3

1)) = 0. We have known that
(w0, w1) is the result of (y0, y1, v0, v1) and (x0,δ, x1,δ) is the result of the oracle
queried with nδ. Hence, v ⊕ (δ0, δ1) cannot be the right value of (Y 0

2 , Y 0
3) if

(λ0, λ1) · ((w0, w1) ⊕ (x0,δ, x1,δ)) ̸= 0 for any nonzero λ. Equivalently, only if
(λ0, λ1) · ((w0, w1) ⊕ (x0,δ, x1,δ)) = 0 for all λ ∈ F64

2 \{0}, v ⊕ (δ, 0) can be a
candidate (for a wrong v ⊕ (δ, 0), it holds with probability of 2−64).

Let V (x) = (ν0, ν1, . . . , ν63) where νi = λi · x and λi ∈ M. To check if
λ · ((w0, w1)⊕ (x0,δ, x1,δ)) = 0 for all nonzero λ is equivalent to check if V (x) =
V (w) Therefore, we can use a hash table to quickly find the collision by storing
V (x), and check if V (w) in the table. This process is a general case of what we
did in Section 8.

Complexity and Success Probability. In the data preparation phase, we use
264 nonces, and invert the output by one nonlinear layer, so the time complexity
is approximately 264 +2/4×264 Schwaemm128-128 initializations. In the guessing
phase, the whole key space is divided into 264 cosets. Processing each coset
requires 1 conduction of FLSLSL and 1 table-lookup. On average, there is one
v⊕ (δ0, δ1) that can pass the 64-bit filter. Thus, the guessing phase is dominated
by the 265 conductions of FLSLSL. Since FLSLSL contains 2 nonlinear layer,
so its cost can be regarded as 2/4 of the 3.5-step Schwaemm128-128 operation.
Finally, the whole time complexity is about 265.32 Schwaemm128-128 operations.
The data complexity is obviously 264 nonces. The memory complexity is to
store H, which is about 264 128-bit blocks. Since all DL distinguishers in this
application is deterministic, the success probability of recovering it is 1, according
to Equation (18).

63

Extension to 4.5 Steps. With the same strategy as Section 8.2, we can prepend
a round to the 3.5-step attack to extend it to a 4.5-step one. The final time and
data complexity remains almost the same. But the success probability decrease
to 0.63.

O Application V: Key-Recovery Attacks on Full
Crax-S-10

Crax-S-10 is a lightweight block cipher built on 10 iterations of the ARX box
Alzette [BBdS+20] whose key size and block size are 128-bit and 64-bit, respec-
tively. As illustrated in Figure 18, the master key K = (K0, K1) ∈ F64

2 × F64
2 is

divided into K0 and K1 and used alternately. In our attack, for 0 ≤ i < 10, the
64-bit input and output of Aci is written as Xi and Yi. Thus, Yi ⊕Ki = Xi+1.
With these notations, we have P ⊕K0 = X0 and C = K10 ⊕ Y9.

P

K0

0

Ac0

K1

1

Y 0

Ac1
X1

K2 = K0

2

Y 1

Ac2 · · · Ac7

K8 = K0

8

Ac8

K9 = K1

9

Ac9
X9

K10 = K0

Y 9

C

Fig. 18: The structure of Crax-S-10.

The basic idea of this attack is to use deterministic differential-linear distin-
guishers of Ac1 to bypass the Ac1 operation. Let (δ, λ) be a deterministic DL
distinguisher of Ac1 . We set the difference of K1 as ∆(K1) = δ and the mask of
Y 1 as Λ(Y 1) = λ. Then we derive a deterministic related-key DL distinguisher
for the second round of Crax-S-10, i.e., λ·(Ac1(K1⊕Y 1)⊕Ac1(K1⊕Y 1⊕δ)) = ζc.
Looking at the top-left corner of Table 4, each of the first 7 differences and their
first 3 linear masks form three correlation-1 DL distinguishers. We denote the
set of the 7 differences by D and it can be checked that D̂ is a linear space with
the dimension being 3.

For simplicity, we define a partial decryption D : F64×3
2 → F64

2 , (K0, K1, X9) 7→
Y 1. In our attack, we first call Crax-S-10 oracle to encrypt a plaintext p and
derive the corresponding ciphertext c. Then, we guess k0 for K0, and using k0
to partially encrypt p to get y0 for Y 0 and partially decrypt c to get x9 for X9.
Next, we guess k1 for K1 and compute x1 = Ac1(y0⊕k1) and y1 = D(k0, k1, x9).
Let γ = Ac1(x1), if γ = y1, (k0, k1) is a candidate for (K0, K1), we use an-
other plaintext-ciphertext pair to confirm it. If γ ̸= y1 or (k0, k1) is not the
correct key, for δi ∈ D, we compute y1

δi
= D(k0, k1 ⊕ δi, x9). If (k0, k1 ⊕ δi) is

the correct value of (K0, K1), it is necessary that the equation λi,j · (γ ⊕ y1
δi

) =
λi,j · (Ac1(k1 ⊕ y0) ⊕ D(k0, k1 ⊕ δi, x9)) = ζci,j

holds for 0 ≤ j < 3. If there is
0 ≤ j0 < 3 making this equation invalid, (k0, k1⊕ δi) is not the correct (K0, K1)
for certainty. Only those passing the filters will be checked using more data.

64

Complexity and Success Probability. Denote the cost of one Alzette by T .
For each guessed k0 for K0, we partially encrypt the plaintext and decrypt the
ciphertext for one round get Y 0 and X9, respectively, which costs 2T . Under each
guess of k0, the key space of K1 is divided into 261 translations. For each guessed
k1, we do 8 Alzette operations, i.e., 8T , to check if it is a valid candidate. If not,
for each δi ∈ D, we perform the partial decryption with D(k0, k1 ⊕ δi, ·), which
costs 7D = 49T (D is a 7-round decryption). On average 7×2−3 = 0.875 k1⊕ δi

can pass the filter, so to confirm them we need one more T for each of them.
Finally, the whole time complexity is 264 × (2T + 261 × (8T + 49T + 0.875T)) =
2130.85T . Since every Crax-S-10 costs 10×T , the time complexity of our attack is
2130.85−3.32 = 2127.53. The data complexity is 2 known plaintext-cipher pairs, the
first pair is used in the above attack process, the second pair is used to further
determine if the key candidate is the real master key (since the key length is
128, 2 plaintext-ciphertext pairs are necessary.)

Remark 6. From our the attack on Crax-S-10, we can see that highly biased
related-key DL distinguishers over a part of the block cipher could potentially be
transformed into a full-round attack. Although such transformations often lead
to attacks with marginal speedup, it is interesting to see how a local weakness is
transformed into a global attack. For a cipher E = E2 ◦E1 ◦E0, suppose we have
a significant enough distinguisher for E1. To transform the distinguisher into
a meaningful global attack, the data complexity for verifying the distinguisher
should be low. Otherwise, since we need to partially encrypt the plaintext and
decrypt the ciphertext to the input and output of E1, the cost for the partial
encryption and decryption would surpass the brute-force attack easily.

65

	Speeding up Preimage and Key-Recovery Attacks with Highly Biased Differential-Linear Approximations

