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Abstract. HyperPlonk is a recent SNARK proposal (Eurocrypt’23) that
features a linear-time prover and supports custom gates of larger degree
than Plonk. For the time being, its instantiations are only proven to be
knowledge-sound (meaning that soundness is only guaranteed when the
prover runs in isolation) while many applications motivate the stronger
notion of simulation-extractability (SE). Unfortunately, the most efficient
SE compilers are not immediately applicable to multivariate polynomial
interactive oracle proofs. To address this problem, we provide an instan-
tiation of HyperPlonk for which we can prove simulation-extractability
in a strong sense. As a crucial building block, we describe KZG-based
commitments to multivariate polynomials that also provide simulation-
extractability while remaining as efficient as malleable ones. Our proofs
stand in the combined algebraic group and random oracle model and
ensure straight-line extractability (i.e., without rewinding).
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1 Introduction

A standard technique to obtain succinct non-interactive arguments of knowledge
(SNARKs) is to compile a polynomial interactive oracle proof (PIOP) [11] using a
polynomial commitment scheme (PCS) [39]. The resulting interactive argument
system can then be made non-interactive using the Fiat-Shamir heuristic [26].
Many popular SNARKs (including Sonic [46], Plonk [30], STARK [9], Marlin
[19] or Gemini [13]) were designed using this methodology. In order to obtain
concretely efficient SNARKs, two widely used polynomial commitment schemes
(PCS) are KZG [39] and FRI [8].

Most SNARKs are proven to be knowledge-sound, which only guarantees
soundness against a stand-alone prover. In practical applications, however, cheat-
ing provers can copy proofs from one another and even tamper with proofs
generated by honest parties in an attempt to prove a related statement with-
out knowing underlying witnesses. The notions of simulation-soundness [49] and
simulation-extractability [22] rule out these malleability attacks. In particular,
simulation-extractability (SE) ensures knowledge-soundness even when the ad-
versary can observe proofs generated by honest parties and try to create a proof
of its own by mauling honestly generated proofs. Simulation-extractability is thus



an important security property in all applications where succinct arguments are
widely available online.

The most efficient simulation-extractable SNARKs often require a scheme-
specific analysis [38,3] or, in instantiations of the PIOP paradigm, require specific
conditions on the underlying PIOP and polynomial commitments [31,24,41]. To
our knowledge, existing generic approaches either fail to preserve succinctness
[43] or introduce significant overhead [2] by relying on additional primitives.

In this paper, we further investigate the (non-black-box) simulation-extracta-
bility of SNARKs obtained by compiling multivariate PIOPs using pairing-based
polynomial commitments like KZG. We focus on the recent HyperPlonk con-
struction of Chen et al. [18], which improves Plonk so as to obtain a linear-time
prover and larger-degree custom gates by working over the Boolean hypercube.
We provide a simulation-extractable instantiation of HyperPlonk in the com-
bined algebraic group and random oracle (AGM+ROM) model using appropri-
ate polynomial commitments that are themselves proven simulation-extractable.
Our security proof features a straight-line knowledge extractor that extracts wit-
nesses without rewinding in order to make the reduction tighter.

To this end, we build suitable simulation-extractable polynomial commit-
ments to multivariate polynomials since HyperPlonk heavily relies on multilinear
polynomial commitments over the Boolean hypercube.

1.1 Contributions

We first construct pairing-based simulation-extractable polynomial commitments
(SE-PCS) in the combined algebraic group and random oracle model. For mul-
tivariate and univariate polynomials, we obtain these by tweaking KZG-based
commitments [39,56] and prove simulation-extractability in a strong sense.

Our multivariate PCS is obtained by modifying a multivariate PCS sug-
gested by Zhang et al. [56], which is itself a randomized variant the multivariate
extension of KZG from [47]. Just like its deterministic version [47], the mul-
tivariate PCS of [56] is actually malleable. However, we show that it can be
made simulation-extractable (by introducing a random oracle) at a moderate
cost using an approach of “proving knowledge of an evaluation proof” via the
Fiat-Shamir paradigm [26]. This approach only slightly increases the complexity
of the scheme (by introducing only one additional scalar in the proof without
significantly affecting computational costs) and leverages the non-malleability
properties [25] of the Fiat-Shamir transform. Despite the use of Fiat-Shamir, we
can prove simulation-extractability in the AGM+ROM without rewinding.

Along the way, we also provide a new security proof (in the algebraic group
model) for the multivariate PCS of Zhang et al. [56], in its simplest variant where
commitments only consist of one group element. While the original proof was
given under a knowledge assumption (more precisely, a parameterized variant
of the knowledge-of-exponent assumption [20]) in the standard model and for a
less efficient variant of the scheme, it was recently shown to be incorrect [42].
Our new proof stands in the algebraic group model and generalizes the result
Kohrita and Towa [42] who gave a new proof in the univariate case.
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Using our simulation-extractable multivariate PCS, we then give a simulation-
extractable variant of HyperPlonk which preserves its linear complexity at the
prover. Again, we can prove security in the AGM+ROM without rewinding.

As a result of independent interest, we describe a new randomized variant of
univariate KZG commitments, which is more efficient than the standard random-
ized variant (described in [39]) of KZG commitments. In particular, its hiding
and zero-knowledge properties do not require the commitment randomness to be
as large as the degree of the committed polynomial, even when many evaluations
are given out. This variant is proven simulation-extractable and is more efficient
than the one implied by our simulation-extractable variant of [56].

1.2 Technical Overview

In SNARK constructions relying on a trusted setup, proving SE via the mod-
ular frameworks of [31,41] requires to provide a trapdoor-less zero-knowledge
simulator, which does not use the trapdoor of the SRS but proceeds by only
programming random oracles. In the zero-knowledge version of HyperPlonk [18,
Appendix A], the simulator uses a ZK simulator described in [54] for sumcheck
protocols [45]. However, the latter zero-knowledge sumcheck simulator assumes
that the underlying multivariate PCS has zero-knowledge evaluation proofs (see
[18, Lemma A.2] and [54, Theorem 3]). While the commitment scheme of Zhang
et al. [56] satisfies this property, its simulator is not trapdoor-less. Moreover, it
does not provide the weak unique response property required by [41] because
its evaluation proofs are publicly randomizable. For the same reason, we cannot
easily extend the ideas of [24] to the multivariate setting since they require an
even stronger property on behalf of the polynomial commitment.

To overcome the above hurdle, we construct a variant of the multivariate
PCS of [56] which is trapdoor-less zero-knowledge and satisfies a strong flavor
of simulation-extractability.

Our multivariate PCS system commits to polynomials in the same way as
its malleable counterpart [56]. However, we use a different non-interactive eval-
uation protocol, which proceeds by having the committer prove knowledge of
an evaluation proof of the original PCS scheme [56]. This can be done effi-
ciently by exploiting the malleability of the initial evaluation proofs. In groups
(𝔾, �̂�,𝔾T ) endowed with a bilinear map e : 𝔾× �̂�→ 𝔾T , the malleable PCS of
[56] commits to polynomials f ∈ ℤp[X1, . . . , Xℓ] via commitments of the form
C = gf(α1,...,αℓ)+r·αr , for a random r ∈ ℤp and where (α1, . . . , αℓ, αr) are secrets
hidden in the structured reference string (SRS). The correctness of evaluations
y = f(z1, . . . , zℓ) is proven via group elements π = (π1, . . . , πℓ, πr) ∈ 𝔾ℓ+1 satis-
fying a pairing-product equation of the form

F (srs, C, y) =
ℓ∏
i=1

e(πi, ĝ
αi · ĝ−zi) · e(πr, ĝαr ), (1)

where F is a function of the SRS, C is the commitment and y ∈ ℤp is the
claimed output. Instead of revealing π as the original scheme does, we exploit
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the linearity properties of equation (1) which make it possible to efficiently prove
knowledge of (π1, . . . , πℓ, πr) ∈ 𝔾ℓ+1 satisfying (1) via a standard Schnorr-like
Σ-protocol [50] allowing to prove knowledge of homomorphism pre-images. Al-
though the product (1) allows randomizing the underlying π, we can achieve
simulation-extractability by exploiting the non-malleability [25] of Fiat-Shamir
when (C, y, z = (z1, . . . , zℓ)) are included in the inputs of the random oracle.

While the above idea is simple, proving the simulation-extractability of the
Fiat-Shamir-compiled evaluation proof is non-trivial when it comes to achiev-
ing straight-line extraction. To this end, we extend an observation from [29]
which shows that, in the AGM, Schnorr signatures can be proven secure with-
out rewinding. In our SE-PCS, in order to prove knowledge of (π1, . . . , πℓ, πr)
satisfying (1), we reveal (π1, . . . , πℓ) in the clear but we prove knowledge of πr.
The Σ-protocol has a verification equation of the form

R = e(Sπ, ĝ
αr ) ·

(
F (srs, C, y) ·

ℓ∏
i=1

e(πi, ĝ
αi · ĝ−zi)−1

)−c

,

where Sπ is a blinded version of πr and c ∈ ℤp is a Fiat-Shamir challenge
obtained by hashing R ∈ 𝔾T along with (C, y,z) and (π1, . . . , πℓ). In the com-
bined AGM+ROM model, when the adversary makes a random oracle query
involving a tuple (R,C, y, z), it has to provide algebraic representations of group
elements R and C with respect to previously observed elements of the same
group. From these representations, the knowledge extractor can infer polyno-
mials R[X1, . . . , Xℓ, Xr], {Ai[X1, . . . , Xℓ, Xr]}ℓi=1 and f [X1, . . . , Xℓ] such that
C = gf(α1,...,αℓ)+r·αr , R = e(g, ĝ)R(α1,...,αℓ,αr), and πi = gAi(α1,...,αℓ,αr) for each
i ∈ [ℓ]. If y ̸= f(z1, . . . , zℓ), we can use an argument reminiscent of Katz-Wang
signatures [40] and argue that a certain (ℓ + 1)-variate polynomial – which is
computable from R[X1, . . . , Xℓ, Xr], {Ai[X1, . . . , Xℓ, Xr]}ℓi=1 and f [X1, . . . , Xℓ]
– is non-zero with overwhelming probability. In turn, this non-zero polynomial
determines a univariate polynomial whose roots contain the discrete logarithm
α ∈ ℤp hidden in the structured CRS (g, (g(α

i))mi=1, (ĝ
(αi))ni=1).

In order to build an SE variant of HyperPlonk, we use our SE-PCS in the
following way. Like Plonk [30], HyperPlonk proceeds by having the prover define
an N × 3 matrix of which the rows M = {(Li, Ri, Oi)}Ni=1 contain the left/right
inputs and the output of each gate. It commits to a multilinear M [X1, . . . , Xℓ]
whose evaluations over the Boolean hypercube are the entries of M. Then, it
proves that M [X] satisfies a “gate identity” by showing that some polynomial
f [X] defined as a function of M [X] and circuit-dependent polynomials cancels
everywhere on the hypercube {0, 1}ℓ. Next, in order to prove that M is con-
sistent with the wiring of the circuit, it proves that M [X] satisfies a “wiring
identity” M(x) = M(σ̂(x)) for all x ∈ {0, 1}ℓ, for some circuit-dependent per-
mutation σ̂. This is done by showing that M [X] satisfies a product argument
over {0, 1}ℓ, by adapting a technique used in Plonk [30] and inspired from [7].
In turn, the product relation is proven by showing that another polynomial van-
ishes over {0, 1}ℓ and that some related polynomial ṽ[X] evaluates to 1 on the
input (1, 1, . . . , 1, 0).
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In order to obtain a trapdoor-less simulator for HyperPlonk, we choose a
multilinear polynomial M̂ [X] that satisfies the gate identity, but not the wiring
identity (which is always possible without knowing a witness). Then, we can eas-
ily prove that the appropriate polynomials vanish everywhere on {0, 1}ℓ (since
M̂ [X] is a valid witness for the zerocheck arguments) but, since M̂ [X] does not
satisfy the wiring identity and the underlying product relation, the correspond-
ing polynomial ṽ[X] does not evaluate to 1 on (1, 1, . . . , 1, 0). However, we can
simulate a proof of the latter false statement using our SE-PCS construction.

1.3 Related Work

Simulation-soundness was first introduced by Sahai [49] and strengthened by
De Santis et al. [22] so as to further ensure extractability. Several techniques
based on OR proofs [22,36] have been proposed to generically build simulation-
extractable NIZK proofs by upgrading NIZK proofs satisfying the standard no-
tion of soundness. Among these, the technique of De Santis et al. [22] makes
non-black-box use of additional building blocks such as one-time signatures and
pseudorandom functions, which is generally very expensive. Optimizations of
this approach were considered in [43,2,1]. The compiler of Kosba et al. [43] fails
to preserve succinctness in the SNARK setting. While the lifting techniques of
[2,1] retain succcinctness, they introduce additional components such as key-
homomorphic signatures, which still introduce a significant overhead in terms
of proving/verification time or SRS size. The compilers of [1,32] further achieve
universal composability [17]. Ganesh et al. [32] notably achieve full succinctness
via a generic construction allowing to achieve UC security on top of simulation-
extractable SNARKs (in the non-programmable ROM).

A different approach proceeds via direct, scheme-specific security analyzes.
Groth and Maller [38] gave a simulation-extractable SNARK where proofs only
consist of 3 group elements. SE variants of Groth16 [37] were given in [14,4,6,3]
while the original version of the scheme [37] was proven [5] weakly simulation-
extractable (meaning that the adversary can randomize existing proofs but not
come up with a fake proof for a new statement). Lipmaa [44] gave a general
framework for constructing SE-SNARKs for R1CS statements [35] in an exten-
sion of the AGM allowing to oblivious sample group elements. The constructions
of [38,37,14,4,44,3] rely on a non-universal (i.e., circuit-dependent) CRS.

BulletProofs [15] was shown to provide simulation-extractability in the AGM
[34] and in the random oracle model [33,21]. Ganesh et al. [31] proved the
simulation-extractability of Plonk [30], Sonic [46] and Marlin [19] in the combined
random oracle and algebraic group model (AGM) [28] using a rewinding-based
proof. One disadvantage of their framework is the use of rewinding, which results
in non-tight reductions. Also, the proof of simulation-extractability given in [31]
for Plonk was recently found [41] to be flawed since the original Plonk uses a
deterministic variant of KZG commitments [39]. Specifically, the trapdoor-less
simulator of [31] was shown [41] to not provide statistical zero-knowledge.1 In

1 This does not contradict the stated zero-knowledge property of Plonk since the
simulator outlined in [30] uses the trapdoor of the CRS (unlike the one from [31]).
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[41], the authors showed that this problem can be fixed using a randomized
version of KZG commitments. A closer inspection suggests that, when instan-
tiated with randomized KZG commitments, Plonk can be proven simulation-
extractable without rewinding by applying the compiler of [41] since its knowl-
edge soundness can be argued via a straight-line extractor in the AGM.

A third approach builds SE-SNARKs using the PIOP paradigm by formal-
izing specific requirements on the underlying PIOP and PCS systems. A recent
work of Faonio et al. [24] suggests to use a weak form of simulation-extractable
polynomial commitments. While they prove such a weak form of simulation-
extractability for randomized KZG commitments, they only do it in the univari-
ate case and their techniques are not known to carry over to existing multivariate
PCS. The same holds for the framework of [41] as it requires a PCS satisfying
a notion of weak uniqueness, meaning that no PPT adversary should be able
to randomize a proof obtained from the simulator for the same evaluation pair
(z, y). Unfortunately, the most widely used multivariate extensions [47,56] of
KZG commitments do not satisfy the latter property since their proofs are pub-
licly randomizable (as explained in Supplementary Material E).

We note that Virgo [55] provides a construction of multilinear PCS from
univariate PCS using the univariate sumcheck protocol of Aurora [10]. However,
their transformation induces a substantial overhead and requires a prover of
super-linear (in fact, quasi-linear) time in order to obtain poly-logarithmic verifi-
cation time. While Gemini [13] does imply a multilinear-to-univariate conversion
that preserves the prover’s linear time complexity, it still increases the prover’s
overhead by a factor 3 (or even 4 according to [42, Table 1]) at each evaluation
proof. In [42], Kohrita and Towa [42] gave a more efficient generic construc-
tion of multilinear PCS from additively homomorphic univariate PCS. When
instantiated with KZG-based commitments, their multilinear PCS scheme has
a faster verification algorithm than [56] with only 3 pairing evaluations instead
of O(µ), where µ is the number of variables. On the downside, it increases the
number of exponentiations at the prover (which can be as large as 225 for large
circuits) by a factor 2.5 at each evaluation proof. Kohrita and Towa [42] instan-
tiate their construction using a randomized variant of KZG commitments where
the prover’s randomness consists of a constant number of field elements. The
latter construction is obtained from [56] and inherits its randomizable proofs. It
may be possible to combine the univariate-to-multilinear transformation of [42]
with our simulation-extractable univariate PCS of Section C in order to obtain
a more efficient multilinear SE-PCS with a constant number of pairing evalua-
tions at the verifier. This would require a simulation-extractable variant of the
batch-degre-check argument of [42] and we leave it for future work.

As of today, the results of [31,24,41] are not known to apply to linear-time-
prover multilinear PIOPs like [18]. Moreover, even if they were, they would incur
a significant overhead when transforming multilinear PCS into univariate ones.

In the relaxed notion of SE-PCS formalized by Faonio et al. [24], simulation-
extractability is defined with respect to a policy. They showed that KZG commit-
ments satisfy their relaxed security notion for random evaluation inputs, which
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suffices to build simulation-extractable SNARKs. Here, we show that a stronger
and simpler-to-state flavor of SE-PCS is achievable at a quite moderate cost in
the combined algebraic group and random oracle model. Compared to the un-
derlying malleable randomized commitment (of which we prove knowledge of an
evaluation proof), we just need to introduce one more scalar in the evaluation
proof and the number of pairings at the verifier remains exactly the same.

Unlike [24,41], our approach is not generic as we only apply it to HyperPlonk,
which is one of the most appealing candidates in terms of efficiency. However, we
believe that our multivariate SE-PCS can be applied to other PIOPs that pro-
ceed by proving sumcheck relations. A common feature of our construction and
[24] is that they both impose stronger (yet, efficiently achievable) requirements
on behalf of the underlying PCS instead of relying on PIOPs satisfying unique
response properties. At the same time, we depart from [24] in that our SE-PCS
candidates have a trapdoor-less simulator while [24] simulates evaluation proofs
using “programmable” trapdoors in randomized KZG commitments.

Campanelli et al. [16] recently described a SNARK featuring a linear-time
prover, O(1)-size proofs and a universal SRS whose size only grows with the
square root of the circuit size. Their approach consists in proving knowledge of
a Spartan proof [51] using Groth16 [37]. It is plausible that existing techniques
[14,6,3] allowing to make Groth16 simulation-extractable carry over to achieve
simulation-extractability in Testudo [16]. Compared to HyperPlonk, Testudo [16]
provides shorter proof/SRS sizes. On the other hand, its R1CS arithmetization
does not immediately support custom gates as HyperPlonk does.

In the context of polynomial commitments, Kohrita and Towa [42, Appendix
B.2.2] recently reported an error in the original security proof of Zhang et al.’s
randomized variant [56] of [47]. A new security proof in the algebraic group
model was given in [42, Appendix B] in the univariate case. Our security proof
differs from theirs (but relies on the same assumption in the algebraic group
model) and carries over to the multivariate case. Another difference with [42]
is that we provide a simulation-extractable variant of the multilinear PCS from
[56] whereas [42] does not consider simulation-extractability.

In a concurrent work, Fleischhacker et al. [27] consider simulation-extractable
aggregatable vector commitments as a building block for non-interactive aggre-
gatable lotteries. They require a strong form of simulation-extractability while
allowing to aggregate opening proofs for multiple commitments on the same
vector positions. They realized their primitive using randomized KZG commit-
ments and enforce simulation-extractability by requiring each KZG commitment
to come with an evaluation proof on a random input. Our constructions differ
from theirs in their design and goals since they intentionally preserve some ho-
momorphism on evaluation proofs (but require each KZG commitment to come
with a proof of “input awareness”) whereas we leave commitments unchanged
but disallow mix-and-matches on evaluation proofs.
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2 Background and Definitions

For any positive integer ℓ, we denote by [ℓ] the set {1, . . . , ℓ}. For a positive
integer x, we denote by ⟨x⟩ its binary representation. When x = x1 . . . xµ ∈
{0, 1}µ, we denote by [x] the integer [x] =

∑µ
i=1 2

i−1 · xi.
For a positive integer µ, we denote by Bµ = {0, 1}µ the Boolean hypercube of

dimension µ. For an integer d > 0, we defineWd,ℓ = {0, . . . , d}ℓ. For convenience,
we also define the set

Ud,ℓ =
{
(i1, . . . , iℓ) ∈ {0, . . . , d} × {0, 1}ℓ−3 × {0, 1, 2} × {0, 1, 2, 3}

}
.

2.1 Definitions for Polynomials

In the following, we denote by ℤ(≤d)
p [X] the set of polynomials of degree at most

d ∈ ℕ with coefficients in ℤp. In the case of ℓ-variate polynomials, we denote by

ℤ(≤d)
p [X1, . . . , Xℓ] the set of polynomials that have degree ≤ d in each variable.

Definition 1. For every function f : Bµ → ℤp, there exists a unique multi-

linear polynomial f̃ ∈ ℤ(≤1)
p [X1, . . . , Xµ] such that f̃(b) = f(b) for all b ∈ Bµ.

This polynomial f̃ is called the multilinear extension of the function f and it is
obtained as f̃ [X1, . . . , Xµ] =

∑
b∈Bµ

f(b) · eqb[X1, . . . , Xµ], for the multilinear

polynomial eqb[X1, . . . , Xµ] =
∏µ
i=1(bi ·Xi + (1− bi) · (1−Xi))

2.2 Hardness Assumptions

Let (𝔾, �̂�,𝔾T ) be cyclic groups of prime order p that are equipped with a bilinear

map e : 𝔾× �̂� → 𝔾T . We rely on the hardness of the following problem, which
has been widely used in pairing-based SNARKs.

Definition 2 ([28]). Let (𝔾, �̂�,𝔾T ) be asymmetric bilinear groups of prime
order p. For integers m,n, the (m,n)-Discrete Logarithm ((m,n)-DLOG)

problem is, given (g, gα, g(α
2), . . . , g(α

m), ĝ, ĝα, . . . , ĝ(α
n)) where α R← ℤp, g R← 𝔾,

ĝ R← �̂�, to compute α ∈ ℤp.

2.3 Succinct Non-interactive Arguments

An indexed relation is a set of triples (𝕚,𝕩,𝕨) where 𝕚 is the index, 𝕩 is the in-
stance and 𝕨 is the witness. Given an index 𝕚, R𝕚 denotes the restriction of R to
{(𝕩,𝕨) : (𝕚,𝕩,𝕨) ∈ R}. Typically, 𝕚 is an arithmetic circuit over a finite field, 𝕩
is the public input and 𝕨 is the private input.

A (preprocessing) succinct non-interactive zero-knowledge argument of knowl-
edge (SNARK) consists of algorithms (CRS-Gen,PreProcess,Prove,Verify) with
the following specifications. On input of a security parameter λ ∈ ℕ and (option-
ally) other parameters, CRS-Gen generates a universal common reference string
srs and a simulation trapdoor τ ; PreProcess is a deterministic algorithm that
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takes as input the universal common references string srs and an index 𝕚 describ-
ing a circuit C in order to generate a short circuit-dependent reference string vp
(which can be seen as a digest of 𝕚) and a longer one pp; Algorithm Prove takes
as input the common reference string pp, an index 𝕚, a statement 𝕩 and a witness
𝕨 and outputs a proof π; Verify takes as input vp, a statement 𝕩 and a proof π
and returns 0 or 1. Correctness requires that proofs honestly generated by the
prover are always (or with overwhelming probability) accepted by the verifier.

The PreProcess algorithm is run exactly once for each circuit (in contrast with
the CRS-Gen algorithm which generates a universal SRS that can be re-used for
any circuit of a priori bounded size). The verifier’s preprocessed reference string
vp is required to have at most poly-logarithmic length in the size of C. We as-
sume that pp and vp are uniquely determined by srs and C.

From a security point of view, NIZK argument systems should satisfy two
properties. The zero-knowledge property requires that proofs leak no information
about the witness. This is formalized by asking that the trapdoor τ (hidden in
pp) allows simulating proofs that are (statistically or computationally) indistin-
guishable from real proofs. The (non-black-box) knowledge-soundness property
requires that there exists an extractor that can compute a witness whenever the
adversary generates a valid proof. The extractor has access to the adversary’s
internal state, including its random coins. In a NIZK argument for a relation R,
these properties are defined below.

Completeness: For any λ ∈ ℕ, any index 𝕚, and any statement-witness pair
(𝕩,𝕨) ∈ R𝕚, we have

Pr
[
Verifyvp(𝕚,𝕩, π) = 1 | (srs, τ)← CRS-Gen(1λ),

π ← Provepp(𝕚,𝕩,𝕨)
]
= 1− negl(λ)

for some negligible function negl : ℕ→ ℕ.
Knowledge-Soundness: For any PPT adversary A, there is a PPT extractor
EA that has access to A’s internal state and random coins ρ such that

Pr
[
Verifyvp(𝕚,𝕩, π) = 1 ∧ (𝕚,𝕩,𝕨) ̸∈ R | (srs, τ)← CRS-Gen(1λ),

(𝕚,𝕩, π)← A(srs; ρ), w ← EA(srs, (𝕚,𝕩, π), ρ)
]
= negl(λ).

(Statistical) Zero-knowledge: There exists a PPT simulator Sim such that,
for any λ ∈ ℕ, and any pair (𝕚,𝕩,𝕨) ∈ R, the distributions D0 = {π ←
Provepp(𝕚,𝕩,𝕨) : (srs, τ) ← CRS-Gen(1λ)} and D1 = {π ← Sim(srs, τ, 𝕚,𝕩) :
(srs, τ)← CRS-Gen(1λ)} are statistically close.

Simulation-extractability strengthens knowledge-soundness by giving the adver-
sary access to an oracle that simulates proofs for possibly false statements.
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Simulation-Extractability: For any PPT adversary A, there is a PPT ex-
tractor EA that has access to A’s internal state/randomness ρ such that

Pr
[
Verifyvp(𝕚,𝕩, π) = 1 ∧ (𝕚,𝕩,𝕨) ̸∈ R ∧ (𝕚,𝕩, π) ̸∈ Q |

(srs, τ)← CRS-Gen(1λ), (𝕚,𝕩, π, lbl)← ASimProve(srs; ρ),

𝕨← EA(srs, (𝕚,𝕩, π), ρ,Q)
]
= negl(λ) ,

where SimProve(srs, τ, ·, ·) is an oracle that returns a simulated proof π ←
Sim(srs, τ, 𝕚,𝕩) for a given (𝕚,𝕩) and Q = {(𝕚j ,𝕩j , πj)}j denotes the set of
queried statements and the simulated proofs returned by SimProve.

2.4 Algebraic Group Model

The algebraic group model (AGM) [28] is an idealized model, where the ad-
versary is modeled as an algebraic algorithm. Algebraic algorithms generalize
generic algorithms in the sense that they only compute group elements as lin-
ear combinations of group elements observed so far. Therefore, whenever they
output a group element X ∈ 𝔾, they also provide a representation {αi}Ni=1 of

X =
∏N
i=1 g

αi
i as a function of previously seen elements (g1, . . . , gN ) ∈ 𝔾N of

the same group. Unlike generic algorithms, algebraic ones can freely exploit the
structure of the group. Due to its generality and because it provides a powerful
framework that simplifies the security analyzes of complex protocols, the AGM
has been widely used to prove the security of SNARKs.

2.5 Polynomial Commitments

We first recall the syntax of polynomial commitments [39]. We restrict our-
selves to polynomials over a field and where the evaluation protocol Eval is
non-interactive. We allow Eval and Verify to take as input a label consisting of
public data that should be bound to evaluation proofs in a non-malleable way.

Definition 3. A polynomial commitment scheme (PCS) Γ = (CRS-Gen,Com,
Eval,Verify) is a tuple of (possibly randomized) algorithms where:

• CRS-Gen inputs a security parameters and (optionally) the number ℓ of vari-
ables and an upper bound d on the degree of committed polynomials in each
variable. It outputs a common reference string srs that specifies the field 𝔽
for which committed polynomials live in 𝔽(≤d)[X1, . . . , Xℓ] and (optionally)
a simulator trapdoor τ . The reference string srs is implicitly taken as input
by all other algorithms hereunder.

• Comsrs is a (possibly randomized) algorithm that takes as input a polynomial
f ∈ 𝔽(≤d)[X1, . . . , Xℓ] and outputs a commitment C to f , together with the
state information aux allowing to open C. We assume that aux contains the
randomness allowing to compute the commitment C.
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• Evalsrs is a (possibly randomized) algorithm that inputs a commitment C to-
gether its the corresponding state information aux, an input z ∈ 𝔽ℓ, an
output y ∈ 𝔽 and (optionally) a label lbl. If y = f(z), it outputs a proof π
that y = f(z). If y ̸= f(z), it returns ⊥.

• Verifysrs is a (usually deterministic) algorithm that inputs a commitment C, an
input z ∈ 𝔽ℓ, a claimed output y ∈ 𝔽, a candidate proof π, and (optionally)
a label lbl. It outputs 0 or 1.

A PCS is called succinct if the size of commitments C and evaluation proofs
π grows at most logarithmically with the degree d of committed polynomials.

In terms of security, a PCS should satisfy the binding property of standard
commitment schemes, which is the infeasiliby of opening a given commitment
to distinct polynomials f, f ′. The construction of SNARKs requires a PCS sat-
isfying a notion of knowledge-soundness, which is formalized in the same way
as in Section 2.3 but we explicitly write it in order to clearly parse statements
and witnesses. Together with the binding property, knowledge soundness implies
evaluation-binding, which captures the adversary’s inability to prove two distinct
evaluations of a committed polynomial on a given input.

Definition 4. A PCS is knowledge-sound if, for any srs← CRS-Gen(1λ, 1ℓ, 1d),
Eval is a non-interactive argument of knowledge for the relation

REval(srs, 1
ℓ, 1d) :=

{(
(C, y, z)︸ ︷︷ ︸

≜ 𝕩

, (f, aux)︸ ︷︷ ︸
≜ 𝕨

)
: f ∈ 𝔽(≤d)[X1, . . . , Xℓ]

∧ f(z) = y ∧ C = Comsrs(f ; r)
}

where r is the randomness contained in aux.

For our purposes, we also consider a notion of extended knowledge-soundness
that stands between knowledge-soundness and simulation-extractability, which
will be defined shortly.

In order to build zero-knowledge SNARKs, it is useful to have PCS construc-
tions satisfying the hiding property.

Definition 5. A PCS is hiding if, for any PPT adversary A = (A0,A1),

∣∣Pr [b′ = b : srs← CRS-Gen(1λ, 1ℓ, 1d); (st, f0, f1)← A0(srs);

b R← {0, 1};C ← Comsrs(fb); b
′ ← A1(st, C)

]
− 1/2

∣∣ ≤ negl(λ)

A PCS is zero-knowledge if its evaluation protocol Eval is zero-knowledge. In
the case of a non-interactive Eval, there is a simulator that can use a trap-
door hidden in pp to simulate proofs without using witnesses. Our definition of
zero-knowledge is almost identical to the notion called hiding in [41] (the main
difference is that their definition also involves a simulated setup algorithm).
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Definition 6. A PCS for parameters d, ℓ ∈ poly(λ) is zero-knowledge if, for
any polynomial Q ∈ poly(λ), and any adversary A, there is a simulator S =
(SimCom,Sim) s.t. |Pr[RealA,Q(1

λ) ⇒ 1] − Pr[IdealA,Q(1
λ) ⇒ 1]| ≤ negl(λ)

for the following experiments.

RealA,Q(1
λ) :

1. (srs, τ)← CRS-Gen(1λ, 1ℓ, 1d)
2. ctr = 0; st = ε
3. (f, st)← A(srs, st)

If f ̸∈ 𝔽(≤d)[X1, . . . , Xℓ] return 0.
4. (C, aux)← Comsrs(f ; rf )
5. (k, st)← A(srs, C, st)
6. For i = 1 to k

a. (zi, lbli, st)
← A(srs, {f(zj), πj}i−1

j=1, st)
b. πi ← Evalpp(C, zi, f(zi), aux, lbli)

7. If ctr < Q, set ctr = ctr + 1
and go to step 3

8. d← A(C, f(zk), πk, st)
9. Return d.

IdealA,Q(1
λ) :

1. (srs, τ)← CRS-Gen(1λ, 1ℓ, 1d)
2. ctr = 0; st = ε
3. (f, st)← A(srs, st)

If f ̸∈ 𝔽(≤d)[X1, . . . , Xℓ] return 0.
4. (C, ãux)← SimComsrs(τ)
5. (k, st)← A(srs, C, st)
6. For i = 1 to k

a. (zi, lbli, st)
← A(srs, {f(zj), πj}i−1

j=1, st)
b. πi ← Simpp(τ,zi, f(zi), ãux, lbli)

7. If ctr < Q, set ctr = ctr + 1
and go to step 3

8. d← A(C, f(zk), πk, st)
9. Return d.

Remark. In the ideal experiment of Definition 6, we assume that the output of
SimCom contains the state information ãux allowing to re-compute C. If (C, ãux)
is a possible output of SimCom, we say that aux is consistent with C.

The notion of simulation-extractability is formalized for PCS in the same
way as in general succinct NIZK arguments.

Definition 7. A PCS is simulation-extractable if, for any PPT adversary
A, there is a PPT extractor EA that has access to A’s internal state/randomness
ρ such that

Pr
[
Verifysrs(C, z, y, π, lbl) = 1

∧
(
(C, y,z), (f, aux)

)
̸∈ REval(srs, 1

ℓ, 1d) ∧
(
(C, y, z), π, lbl

)
̸∈ Q |

(srs, τ)← CRS-Gen(1λ),
(
(C, y,z), π, lbl

)
← ASimsrs(τ,·,·,·)(ρ),

(f, aux)← EA(srs, ((C, y, z), π, lbl), ρ,Q)
]
= negl(λ) ,

where Simsrs(τ, ·, ·, ·) is a simulation oracle that takes as input a statement-
label pair (𝕩 = (C, z, y), lbl) and an auxiliary information ãux. If ãux is in-
consistent with C, it returns ⊥. Otherwise, it returns a simulated proof π ←
Simsrs(τ, (C, z, y), lbl, ãux) and Q = {(𝕩i = (Ci, zi, yi), πi, lbli)}i denotes the set
of queried statements and the simulated proofs returned by Simsrs.

Faonio et al. [24] considered relaxed notion of simulation-extractable PCS, which
is defined w.r.t. policies. In their definition, the forgery is required to be made
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on a random evaluation point z (derived from a random oracle) and simulation-
queries are made selectively, before the generation of the commitment key. Al-
though we could also use a relaxed notion of SE for our purposes, we chose to
work with Definition 7 since it can be achieved efficiently in the AGM+ROM.

Extended Knowledge-Soundness. The notion of extended knowledge-sound-
ness is weaker than simulation-extractability and only preserves extractability
when the adversary can see honestly generated proofs. It is thus similar to true
simulation-extractability [23], except that the adversary obtains real proofs (in-
stead of simulated ones) of true statements. The definition is identical to Defini-
tion 7 but, instead of having oracle access to a simulator, the adversary is given
a Prove(·) oracle taking as input a polynomial f and a set S ⊂ 𝔽ℓ of evaluation
inputs and returning a commitment C to f (obtained as (C, aux)← Comsrs(f))
together with real evaluation proofs {πi ← Evalsrs(C, zi, f(zi), aux)}zi∈S . In the
AGM, it is easy to see that extended knowledge-soundness is equivalent to stan-
dard knowledge-soundness when Com and Eval are algebraic algorithms that
compute linear combinations of group elements contained in the SRS.

3 Commitments to Multivariate Polynomials

We first prove the security of the multivariate PCS of Zhang et al. [56] in
the AGM under the (m,n)-DLOG assumption. In [56], a less simple variant
of the scheme was considered. In this variant (which was also used in [54]),
each commitment consists of a pair (gf(α1,...,αℓ)+r·αℓ+1 , hf(α1,...,αℓ)+r·αℓ+1), where
g, h are public generators, in order to extract the coefficients of the committed
f [X1, . . . , Xℓ] using a variant of the knowledge-of-exponent assumption [20]. In
the AGM, we give a security proof for the simpler scheme where each commit-
ment consists of only one group element. Our proof generalizes the one given
by Kohrita and Towa [42] to the multivariate case. In Section 4, we will mod-
ify the scheme to achieve simulation-extractability. We assume that committed
polynomials have bounded degree ≤ d in each variable.

3.1 The Multivariate PCS of Zhang et al.

When it comes to committing to polynomials in ℤ(≤d)
p [X1, . . . , Xℓ], the multi-

variate PCS of [56] can be described as follows.
In order to use the scheme in HyperPlonk, we need to allow the prover to

commit to (and generate proofs for) polynomials where the number of vari-
ables may be smaller than the maximal number ℓ of variables allowed by the
SRS. For this reason, when the actual number of variables µ is strictly smaller
than ℓ in the verification algorithm, the knowledge extractor does not extract
an opening of the commitment C to an µ-variate polynomial f [X1, . . . , Xµ]
such that f(z) = y in general. It only extracts an opening of C to an ℓ-

variate polynomial f ∈ ℤ(≤d)
p [X1, . . . , Xℓ] such that f(z, xµ+1, . . . , xℓ) = y for

all assignments of (xµ+1, . . . , xℓ) ∈ ℤℓ−µp (i.e., f [z, Xµ+1, . . . , Xℓ] − y is the
zero polynomial). However, it still ensures that the prover knows a polynomial
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f̄ [X1, . . . , Xµ] = f [X1, . . . , Xµ, 0, . . . , 0] such that f̄(z) = y. Moreover, when
z ∈ ℤµp is a random evaluation point (as is the case in sumcheck protocols), the
knowledge extractor does extract (with overwhelming probability) an opening of
C to an µ-variate polynomial f [X1, . . . , Xµ] such that f(z) = y.

The multivariate PCS of [56] is a probabilistic version of PST commitments
[47]. Its simplified version goes as follows.

CRS-Gen(1λ, 1d, 1ℓ): On input of a security parameter λ, a number of variables
ℓ and a degree d such that (d+ 1)ℓ ∈ poly(λ), generate the SRS as follows:
1. Choose asymmetric bilinear groups (𝔾, �̂�,𝔾T ) of prime order p > 2l(λ),

for some function l : ℕ→ ℕ, and g R← 𝔾, ĝ R← �̂�.
2. Pick α1, . . . , αℓ, αr

R← ℤp and compute ĝ1, . . . , ĝℓ ∈ 𝔾, where ĝi = ĝαi

for each i ∈ [ℓ]. Compute gr = gαr and ĝr = ĝαr .

3. For each tuple I = (i1, . . . , iℓ) ∈ Wd,ℓ, compute gI = g
∏ℓ

j=1 α
ij
j .

The public parameters are defined to be

srs =
(
(𝔾, �̂�,𝔾T ), {gI}I∈Wd,ℓ

, gr, ĝr, ĝ, {ĝi}i∈[ℓ]

)
Comsrs(f): To commit to f [X1, . . . , Xµ] ∈ ℤ(≤d)

p [X1, . . . , Xµ], where µ ≤ ℓ,

choose a random r R← ℤp and compute C = gf(α1,...,αµ)+r·αr using {gI}I∈Wd,ℓ

and gr. Then, output C and (aux, f) = (r, f).

Evalsrs
(
C, z, y, aux

)
: given a commitment C, a witness aux = (r, f), an input

z = (z1, . . . , zµ) ∈ ℤµp of dimension µ ≤ ℓ, and an output y = f(z) ∈ ℤp,
return ⊥ if y ̸= f(z). Otherwise, do the following:

1. Using [47, Lemma 1], compute {Qi[X1, . . . , Xµ]}µi=1 such that

f [X1, . . . , Xµ]− y =

µ∑
i=1

Qi[X1, . . . , Xµ] · (Xi − zi)

2. Choose s1, . . . , sµ
R← ℤp and compute π1,i = gQi(α1,...,αµ)+si·αr for each

i ∈ [µ] together with π2 = gr−
∑µ

i=1 si·(αi−zi).

Return the proof π =
(
(π1,i)

µ
i=1, π2

)
∈ 𝔾µ+1.

Verifysrs
(
C, y, z,π

)
: Given C ∈ 𝔾, an input z = (z1, . . . , zµ) ∈ ℤµp , a claimed

evaluation y ∈ ℤp, and a purported proof π, return 0 if π does not parse
properly. Return 1 if the following equality holds and 0 otherwise:

e(C · g−y, ĝ) =
µ∏
i=1

e(πi,1, ĝi · ĝ−zi) · e(π2, ĝr) (2)

The scheme is correct since equation (2) uses the pairing to check the equality

f(α1, . . . , αµ) + r · αr − y =

µ∑
i=1

(αi − zi) · (Qi(α1, . . . , αµ) + si · αr)

+ αr ·
(
r −

µ∑
i=1

si · (αi − zi)
)
.
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We now prove knowledge-soundness under the (dℓ, dℓ)-DLOG assumption
in the AGM. The proof of Theorem 1 (which can be found in Supplementary
Material A.1) differs from the one given by [42] in the univariate case.

Theorem 1. In the AGM and under the (dℓ, dℓ)-DLOG assumption, the scheme
is an (extended) knowledge-sound argument of knowledge of a polynomial f ∈
ℤ(≤d)
p [X1, . . . , Xℓ] such that f(z1, . . . , zµ, Xµ+1, . . . , Xℓ) = y for any assignment

of (Xµ+1, . . . , Xℓ), where (y,z) ∈ ℤp × ℤµp . Moreover, if z = (z1, . . . , zµ) is

a random input, the knowledge extractor outputs f ∈ ℤ(≤d)
p [X1, . . . , Xµ] and

r ∈ ℤp such that C = gf(α1,...,αµ)+r·αr with overwhelming probability.

Using standard batching techniques, multiple evaluations of committed polyno-
mials can be proven at once on a common input. The scheme and the proof of
Theorem 1 easily extend, as explained in Supplementary Material A.2.

Zero-knowledge. We note that the trapdoor αr ∈ ℤ∗
p can be used to simulate

proofs for a given commitment C and a given pair (y,z). Indeed, the simulator
can choose θi,1

R← ℤp for each i ∈ [µ] in order to compute πi,1 = gθi,1 for all

i ∈ [µ] and π2 =
(
C · g−y ·

∏µ
i=1(gi · g−zi)−θi,1

)1/αr
. This yields a simulated(

(π1,i)
µ
i=1, π2

)
that is distributed as a real proof.

While the use of αr yields a zero-knowledge simulator, it is not trapdoor-less
and cannot be used to obtain simulation-extractability Moreover, the scheme is
clearly not simulation-extractable as it is since a proof for (C, y, z) is also a proof
for (C · g, y + 1, z). In Section 4, we show how to thwart such attacks.

3.2 Enforcing a Special Shape for Committed Polynomials

In order to achieve zero-knowledge at the PIOP level, HyperPlonk [18, Appendix
A] suggests to transform ℓ-variate multilinear polynomials into polynomials that
agree with the original polynomials everywhere on the hypercube Bℓ but evaluate
to random-looking values outside Bℓ. These “almost multilinear” polynomials
(where all variables have degree 1, except one) can be written as a sum

f [X1, . . . , Xℓ] = f ′[X1, . . . , Xℓ] +R[Xµ] ·Xµ · (Xµ − 1), (3)

for some µ ∈ [ℓ], where f ′ ∈ ℤ(≤1)
p [X1, . . . , Xℓ] is the original multilinear poly-

nomial and R[Xµ] is univariate of degree t for some t ≥ 0. In order to achieve
zero-knowledge in sumcheck-based protocols, polynomials of the form (3) have
the properties that: (i) f and f ′ agree everywhere on Bℓ; (ii) Any set of t + 1
evaluations of f outside Bℓ are random and independent (since R[Xµ] has degree
t) and can be easily simulated in zero-knowledge.

In the case of HyperPlonk, the verifier has to obtain evaluation proofs on
correlated inputs sharing the same value of Xµ, in which case the above mask-
ing technique does not quite suffice to ensure that evaluations look independent.
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Therefore we need to slightly modify the masking technique (3) and encode the

original f ′ ∈ ℤ(≤1)
p [X1, . . . , Xℓ] as

f [X1, . . . , Xℓ] = f ′[X1, . . . , Xℓ] +R[X1 +Xµ+1] ·Xµ · (Xµ − 1), (4)

where µ + 1 < ℓ (the reason why this modification works will become clear in
the proof of Theorem 5 in Section 5.1 and in the proof of Lemma 3).

In the following, we need to consider multivariate PCS schemes where the
SRS allows committing to polynomials of the form (4). For the soundness analy-
sis, the verifier should be convinced that a committed polynomial is really of this
form. This can be ensured by a careful choice of the group elements available in
the SRS. At the same time, we need to preserve the prover’s ability to commit
to both univariate and multivariate polynomials of larger degree d > 1. Our
solution is to have the prover commit to these polynomials in 𝔾 (instead of �̂�).

The Modified PCS. We now describe a variant of the scheme in Section 3.1
where we force each committed polynomial to be of the form (4), where the
number of evaluations t is set to t = 3. Although, the committer is meant to
commit to almost multilinear polynomials, the CRS-Gen algorithm still inputs
a parameter d̄ > 1 which is the maximal variable-degree of commitments to be
committed in the first source group 𝔾. We also assume that d̄ ≥ t + 2 in order
to allow the prover to compute evaluation proofs in 𝔾.

In the notations, the set Ud̄,ℓ ⊂ Wd̄,ℓ determines a set of monomials in the
exponent and is defined in Section 2 to retain a linear-size SRS in Section 5.

CRS-Gen(1λ, 1d, 1ℓ): On input of a security parameter λ, a number of variables
ℓ and a degree d̄ such that d̄ · 2ℓ ∈ poly(λ), generate the SRS as follows:

1. Choose asymmetric bilinear groups (𝔾, �̂�,𝔾T ) of prime order p > 2l(λ),

for some function l : ℕ→ ℕ, and g R← 𝔾, ĝ R← �̂�.
2. Pick α1, . . . , αℓ, αr

R← ℤp. Compute gr = gαr and ĝr = ĝαr .

3. For each I = (i1, . . . , iℓ) ∈ Ud̄,ℓ, compute gI = g
∏ℓ

j=1 α
ij
j .

4. For each I = (i1, . . . , iℓ) ∈ W1,ℓ, compute ĝI = ĝ
∏ℓ

j=1 α
ij
j . Compute{

ĝ(α1+αµ+1)
i·αµ·(αµ−1)

}3
i=0

, where µ = ℓ− 1.

The public parameters are defined to be

srs =
(
(𝔾, �̂�,𝔾T ), gr, ĝr, {gI}I∈Ud̄,ℓ

,

{ĝI}I∈W1,ℓ
,
{
ĝ(α1+αµ+1)

i·αµ·(αµ−1)
}3
i=0

)
.

Comsrs(f): To commit to a polynomial f [X1, . . . , Xµ′ ] ∈ ℤp[X1, . . . , Xµ′ ] of the

form (4), where µ′ ≤ ℓ, choose r R← ℤp and compute Ĉ = ĝf(α1,...,αµ′ )+r·αr .

Then, output Ĉ and (aux, f) = (r, f).
Evalsrs

(
Ĉ,z, y, aux

)
: given a commitment Ĉ, a witness aux = (r, f), an input

z = (z1, . . . , zµ′) ∈ ℤµ′

p of dimension µ′ ≤ ℓ, and an output y = f(z) ∈ ℤp,
return ⊥ if y ̸= f(z). Otherwise, do the following:

16



1. Using [47, Lemma 1], compute polynomials {Qi[X1, . . . , Xµ′ ]}µ
′

i=1 such

that f [X1, . . . , Xµ′ ]− y =
∑µ′

i=1Qi[X1, . . . , Xµ′ ] · (Xi − zi).
2. Choose s1, . . . , sµ′

R← ℤp and compute π1,i = gQi(α1,...,αµ′ )+si·αr for each

i ∈ [µ′] together with π2 = gr−
∑µ′

i=1 si·(αi−zi).

Return the proof π =
(
(π1,i)

µ′

i=1, π2
)
∈ 𝔾µ′+1.

Verifysrs
(
Ĉ, y, z,π

)
: Given Ĉ ∈ �̂�, an input z = (z1, . . . , zµ′) ∈ ℤµ′

p , a claimed
evaluation y ∈ ℤp, and a candidate proof π, return 0 if π does not parse
properly. Then, return 1 if the following equation holds and 0 otherwise:

e(g, Ĉ · ĝ−y) =
µ′∏
i=1

e(πi,1, ĝ
αi · ĝ−zi) · e(π2, ĝr) (5)

Although the commitment lives in a different group than evaluation proofs,
the proof of Theorem 1 easily extends to give the following result.

Theorem 2. In the AGM+ROM, under the (dℓ, dℓ)-DLOG assumption, the
scheme is a knowledge-sound argument of knowledge of an ℓ-variate polynomial
f ∈ ℤp[X1, . . . , Xℓ] of the form (4) such that f(z1, . . . , zµ′ , Xµ′+1, . . . , Xℓ) = y

for any assignment of (Xµ′+1, . . . , Xℓ), where (y,z) ∈ ℤp × ℤµ′

p . Moreover, if
the tuple z = (z1, . . . , zµ′) is a random evaluation input, the knowledge extractor

outputs an f of the form (4) and r ∈ ℤp such that Ĉ = ĝf(α1,...,αµ′ )+r·αr with
overwhelming probability. (The proof is given in Supplementary Material A.3.)

4 A Simulation-Extractable Variant of Zhang et al.’s
Polynomial Commitment

We now apply the Fiat-Shamir transform to build a simulation-extractable mul-
tivariate PCS. We apply the idea to the scheme of Section 3.2 because it is the
version that we need to compile the HyperPlonk PIOP in its zero-knowledge
version. However, the same technique applies to the PCS of Section 3.1 and the
batch version of Supplementary Material A.2.

4.1 Description

The construction is almost as efficient as the one of Section 3.1. Indeed, proofs
are only longer by one element of ℤp and the verifier computes the same number
of pairings and exponentiations.

CRS-Gen(1λ, 1d̄, 1ℓ): On input of a security parameter λ, a number of variables
ℓ and a degree d such that d̄ · 2ℓ ∈ poly(λ), generate the SRS as follows:

1. Choose asymmetric bilinear groups (𝔾, �̂�,𝔾T ) of prime order p > 2l(λ),

for some function l : ℕ→ ℕ, and g R← 𝔾, ĝ R← �̂�.
2. Pick α1, . . . , αℓ, αr

R← ℤp. Compute gr = gαr and ĝr = ĝαr .
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3. For each I = (i1, . . . , iℓ) ∈ Ud̄,ℓ, compute gI = g
∏ℓ

j=1 α
ij
j , where Ud̄,ℓ is

defined as in Section 2.

4. For each I = (i1, . . . , iℓ) ∈ W1,ℓ, compute ĝI = ĝ
∏ℓ

j=1 α
ij
j . Compute{

ĝ(α1+αµ+1)
i·αµ·(αµ−1)

}3
i=0

for an arbitrary index µ ∈ [2, ℓ− 1].
5. Choose a hash function HPCS : {0, 1}∗ → ℤp modeled as a random oracle.

The public parameters are defined to be

srs =
(
(𝔾, �̂�,𝔾T ), gr, ĝr, {gI}I∈Ud̄,ℓ

,

{ĝI}I∈W1,ℓ
,
{
ĝ(α1+αµ+1)

i·αµ·(αµ−1)
}3
i=0

, HPCS

)
Comsrs(f): To commit to a polynomial f [X1, . . . , Xµ′ ] ∈ ℤp[X1, . . . , Xµ′ ] of the

form (4), for some µ′ ≤ ℓ, choose r R← ℤp and compute Ĉ = ĝf(α1,...,αµ′ )+r·αr .

Then, output Ĉ and (aux, f) = (r, f).
Evalsrs

(
Ĉ,z, y, aux, lbl

)
: given a commitment Ĉ, a witness aux = (r, f), an input

z = (z1, . . . , zµ′) ∈ ℤµ′

p , an output y = f(z) ∈ ℤp, and a label lbl, return ⊥
if y ̸= f(z). Otherwise, do the following:

1. Compute
(
(π1,i)

µ′

i=1, π2
)
∈ 𝔾µ′+1 satisfying (5) by running the Eval algo-

rithm of Section 3.2.
2. Generate a NIZK proof of knowledge of π2 ∈ 𝔾 satisfying

e(g, Ĉ · ĝ−y)∏µ′

i=1 e(πi,1, ĝi · ĝ−zi)
= e(π2, ĝr) (6)

Namely,

a. Choose Rπ
R← 𝔾 and compute2 R = e(Rπ, ĝr).

b. Compute c = HPCS(lbl, C, y, z, (π1,i)
µ′

i=1, R) ∈ ℤp.
c. Compute the response Sπ = Rπ · πc2.

Return the proof π =
(
c, (π1,i)

µ′

i=1, Sπ
)
∈ ℤp × 𝔾µ

′+1.

Verifysrs
(
Ĉ, y, z,π, lbl

)
: Given Ĉ ∈ �̂�, an input z = (z1, . . . , zµ′) ∈ ℤµ′

p , a pur-
ported evaluation y ∈ ℤp, and a candidate proof π with a label lbl, return 0
if π does not parse correctly. Otherwise, compute

R = e(Sπ, ĝr) ·

(
e(g, Ĉ · ĝ−y)∏µ′

i=1 e(πi,1, ĝ
αi · ĝ−zi)

)−c

. (7)

If c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R), return 1. Otherwise, return 0.

We now prove that the above variant provides (straight-line) simulation-
extractability in the combined algebraic group and random oracle model.

2 The pairing evaluation can be avoided by computing Rπ = grπ and R = e(g, ĝr)
rπ .
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Theorem 3. In the AGM+ROM model and under the (dℓ, dℓ)-DLOG assump-
tion, the scheme is a simulation-extractable argument of knowledge of a poly-
nomial f ∈ ℤp[X1, . . . , Xℓ] of the form (4) such that Ĉ = ĝf(α1,...,αℓ)+αr·r and

f(z, xµ′+1, . . . , xℓ) = y for any (xµ′+1, . . . , xℓ) ∈ ℤℓ−µ
′

p , where (y,z) ∈ ℤp×ℤµ
′

p .

Proof. Given an algebraic adversary A in the experiment of Definition 7, we
build an algorithm B that either extracts a witness or, if the extraction fails,
solves a (d̄ℓ, d̄ℓ)-DLOG instance inst =

(
g, {g(αi)}d̄ℓi=1, ĝ, {ĝ(α

i)}d̄ℓi=1

)
w.h.p.

Algorithm B first chooses ρ = (ρ1, . . . , ρℓ, ρr)
R← ℤℓ+1

p , θ = (θ1, . . . , θℓ, θr)
R←

ℤℓ+1
p . It implicitly sets αi = ρi · α + θi for each i ∈ [ℓ] and αr = ρr · θ + θr. It

can simulate srs from inst and {(ρi, θi)}ℓi=1, (ρr, θr).

Queries: When A queries the random oracle, B returns the previously defined
output if it exists and a random element of ℤp otherwise.

At any time, A can choose a commitment Ĉ ∈ 𝔾 and a pair (y,z) ∈ ℤp×ℤµ
′

p

and ask for a simulated proof, for some label lbl, that Ĉ commits to some poly-
nomial f ∈ ℤp[X1, . . . , Xµ′ ] of the form (4) such that f [z, Xµ′+1, . . . , Xℓ]− y is
the zero-polynomial. Then, B simulates a proof by running the HVZK simulator
of the Σ-protocol. Namely, it samples c, t0, . . . , tµ′

R← ℤp, computes

Sπ = gt0 and π1,i = gti ∀i ∈ [µ′]

together with R = e(Sπ, ĝr) ·
(
e(g, Ĉ · ĝ−y)

/∏µ′

i=1 e(πi,1, ĝi · ĝ−zi)
)−c

before pro-

gramming c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R) ∈ ℤp. If HPCS was already defined for
this input, B aborts. Since R is uniformly distributed over 𝔾T , this only happens
with probability < (QH+QS)/p if QH (resp. QS) denotes the number of random
oracle (resp. simulation) queries. Unless a collision occurs on HPCS in a simulation

query, the simulation is perfect since the simulated
(
c, (π1,i)

µ′

i=1, Sπ
)
∈ ℤp×𝔾µ

′+1

has the same distribution as a real proof. The probability of a such a collision
during the entire game is at most QS(QS +QH)/p.

Since A is algebraic, at each hash query HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R), it must

provide a representation of Ĉ w.r.t. the �̂�-elements contained in srs as well as
an algebraic representation of each {π1,i}ℓi=1 w.r.t. the 𝔾-elements of srs and a
representation {ωI,Î}I∈G,Î∈Ĝ of R as

R =
∏

I∈G,Î∈Ĝ

e(gI , ĝÎ)
ωI,Î (8)

where G (resp. Ĝ) denotes the set of 𝔾-elements (resp. �̂�-elements) contained
in srs. While the representation given by A can also depend on elements of 𝔾
contained in simulated proofs, B can always find a representation of the form
(8) since it computes Sπ and {π1,i}µi=1 by sampling their logarithms w.r.t. g.

Output:When A halts, it outputs a commitment Ĉ and a pair (y,z) ∈ ℤp×ℤµ
′

p ,

for some µ′ ∈ [ℓ], together with a label lbl and a verifying proof π that Ĉ com-
mits to f [X1, . . . , Xℓ] such that y = f [z, Xµ′+1, . . . , Xℓ] for all assignments of
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(Xµ′+1, . . . , Xℓ). The winning conditions of the simulation-extractability game

impose that the tuple (lbl, Ĉ, y, z,π) be different from those defined by in-
puts/outputs of all simulation queries. Together with its output, A also provides

a representation of Ĉ w.r.t. the group elements in �̂� that are contained in srs.
From this representation, B can infer a polynomial

F [X1, . . . , Xℓ] = f [X1, . . . , Xℓ] + r ·Xr

such that Ĉ = ĝF (α1,...,αℓ) and where f is of the form (4). At this point, if
f [z, Xµ′+1, . . . , Xℓ] − y is the zero polynomial, then B is a successful extractor
(meaning that A did not succeed in the experiment) since (f [X1, . . . , Xℓ], r) is
a valid witness. We henceforth assume that f [z, Xµ′+1, . . . , Xℓ]− y is non-zero.

Along with its forgery π, A also outputs representations of {π1,i}µ
′

i=1 and Sπ,
which define polynomials {Ai[X1, . . . , Xℓ, Xr]}i∈[µ′], and S[X1, . . . , Xℓ, Xr] such

that Sπ = gS(α1,...,αℓ,αr) and π1,i = gAi(α1,...,αℓ,αr) for each i ∈ [µ′]. Let

R = e(Sπ, ĝr) ·

(
e(g, Ĉ · ĝ−y)∏µ′

i=1 e(πi,1, ĝi · ĝ−zi)

)−c

. (9)

If π verifies, c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R). If the latter hash query was not
made, B aborts. However, π can only be valid with probability 1/p in this case.

We now distinguish two cases: (i) The tuple (lbl, Ĉ, y, z, c, (π1,i)
µ′

i=1) was re-
cycled from simulation query involving a different Fiat-Shamir response S̄π; (ii)

(lbl, Ĉ, y, z, c, (π1,i)
µ′

i=1) is a fresh tuple. In case (i), we would have a collision

c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R) = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R̄)

where R̄ = e(S̄π, ĝr) ·
(
e(g, Ĉ · ĝ−y)

/∏µ′

i=1 e(πi,1, ĝi · ĝ−zi)
)−c

and

R = e(Sπ, ĝr) ·
(
e(g, Ĉ · ĝ−y)

/ µ′∏
i=1

e(πi,1, ĝi · ĝ−zi)
)−c

since, for a given (Ĉ, R, y, z, c, (π1,i)
µ′

i=1), there is a unique Sπ satisfying (9).
Since HPCS is a random oracle, case (i) happens with probability (QH +QS)

2/p.

In case (ii), c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R) must be fresh as well except
with probability (QH + QS)

2/p since, if it had been a hash value programmed
by the simulator, we would have a collision

c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R) = HPCS(lbl
(0), Ĉ(0), y(0), z(0), (π

(0)
1,i )

µ′

i=1, R
(0)).

If c is fresh (i.e, it is not a programmed random oracle value), B can solve its
(d̄ℓ, d̄ℓ)-DLOG instance by recalling the representation of R as {ωI,Î}I∈G,Î∈Ĝ
satisfying (8), which must have been supplied by A when it queried the hash

value HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R). From this representation, B can compute an
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(ℓ+ 1)-variate polynomial R[X1, . . . , Xℓ, Xr] such that R = e(g, ĝ)R(α1,...,αℓ,αr).
The verification equation (9) then implies

R(α1, . . . , αℓ, αr) = S(α1, . . . , αℓ, αr) · αr

− c ·
(
F (α1, . . . , αℓ, αr)− y −

µ′∑
i=1

Ai(α1, . . . , αℓ, αr) · (αi − zi)
)
, (10)

which means that the (ℓ+ 1)-variate polynomial

T [X1, . . . , Xℓ, Xr] ≜ R[X1, . . . , Xℓ, Xr]− S[X1, . . . , Xℓ, Xr] ·Xr

+ c ·
(
F [X1, . . . , Xℓ, Xr]− y −

µ′∑
i=1

Ai[X1, . . . , Xℓ, Xr] · (Xi − zi)
)
, (11)

vanishes on (α1, . . . , αℓ, αr) ∈ ℤℓ+1
p . We argue that this polynomial is non-zero

w.h.p. if f [z, Xµ′+1, . . . , Xℓ] − y is a non-zero polynomial. If T [X1, . . . , Xℓ, Xr]
is identically zero, so is T [z1, . . . , zµ′ , Xµ′+1, . . . , Xℓ, 0], in which case we have

R[z1, . . . , zµ′ , Xµ′+1, . . . , Xℓ, 0] = −c · (f [z, Xµ′+1, . . . , Xℓ]− y) (12)

since F [z, Xµ′+1, . . . , Xℓ, 0] = f [z, Xµ′+1, . . . , Xℓ]. We claim that, if the polyno-
mial f [z, Xµ′+1, . . . , Xℓ]− y is non-zero, the identity (12) holds with probability

at most QH/p. Indeed, c = HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R) is a non-programmed
random oracle output and is thus defined after R (whose algebraic represen-
tation uniquely determines the coefficients of R[X1, . . . , Xℓ, Xr]), the extracted
polynomial f [X1, . . . , Xℓ] (which is determined by the representation of Ĉ) and

the statement (z, y). So, for any non-programmed HPCS(lbl, Ĉ, y, z, (π1,i)
µ′

i=1, R)

where the polynomials (f [X1, . . . , Xℓ], R[X1, . . . , Xℓ, Xr]) defined by (Ĉ, R) are
such that f [z, Xµ′+1, . . . , Xℓ]− y ̸≡ 0, (12) holds for at most one scalar c ∈ ℤp.
The probability that the output of HPCS hits this bad c ∈ ℤp is thus 1/p.

We now assume that T [X1, . . . , Xℓ, Xr] is non-zero and define the univariate

L[X] ≜ T [ρ1X + θ1, . . . , ρℓX + θℓ, ρrX + θr]

Note that L(α) = T (α1, . . . , αℓ, αr) = 0, so that α ∈ ℤp is computable by
factoring L[X] if it is a non-zero polynomial. Let zeroL the event that the poly-
nomial L[X] is identically zero given that T [X1, . . . , Xℓ+1] is not. We show that
Pr[zeroL] is negligible.

If L[X] is identically zero, we have L(0) = T (θ1, . . . , θℓ, θr) = 0. However,
(θ1, . . . , θℓ, θr) was sampled uniformly in ℤℓ+1

p and remains independent of A’s
view during the entire experiment. Indeed, srs only depends on αr = ρr·α+θr and
{αi = ρi ·α+ θi}ri=1 and A never gets to see any information about {θi}i∈[ℓ] nor
θr. Since the total degree of T [X1, . . . , Xℓ, Xr] is ≤ dℓ+ 1, the Schwartz-Zippel
lemma implies Pr[zeroL] ≤ Pr(θ1,...,θℓ,θr)[T (θ1, . . . , θℓ, θr) = 0] ≤ (dℓ+ 1)/p. ⊓⊔
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4.2 Extensions

The scheme and the proof of Theorem 3 easily extend to the batch evaluation
setting when we prove evaluations of multiple committed polynomials on a com-
mon input. The details are given in Supplementary Material A.4.

In the univariate case, we can construct a simulation-extractable variant of
KZG commitments with a better efficiency than by setting ℓ = 1 in the above
construction. The details are given in Supplementary Material C.

5 A Simulation-Extractable Variant of HyperPlonk

Let C[G] : ℤn+mp → ℤp an arithmetic circuit of N gates, where each gate has
fan-in two and can be an addition gate, a multiplication gate, or a custom gate
G : ℤ2

p → ℤp. The public input of the circuit is denoted by 𝕩 ∈ ℤnp and we
assume as in [18] that n + N + 1 = 2µ is a power of 2. The Plonk arith-
metization [30] represents the trace of the computation by a set M̂ of triples
{(Li, Ri, Oi) ∈ ℤ3

p}n+Ni=0 , where (Li, Ri, Oi) contains the left input, the right in-
put and the output of the i-th gate. In HyperPlonk [18], the prover interpolates

M̂ by defining a multilinear polynomial M ∈ ℤ(≤1)
p [X1, . . . , Xµ+2] such that, for

each i ∈ {0, . . . , n+N},

M(⟨i⟩, 0, 0) = Li, M(⟨i⟩, 0, 1) = Ri, M(⟨i⟩, 1, 0) = Oi.

In a pre-processing phase, the PreProcess algorithm takes as input the circuit
and creates the verifier’s public parameters vp. These parameters consist of de-

terministic commitments to selector polynomials S1, S2, S3 ∈ ℤ(≤1)
p [X1, . . . , Xµ],

and a wiring polynomial σ ∈ ℤ(≤1)
p [X1, . . . , Xµ+2], which is actually encoded as

3 partial polynomials in (15). These polynomials only depend on the circuit and
are computed only once by the verifier.

Each verification requires to compute an input-dependent multilinear poly-
nomial I[X1, . . . , Xµ] such that I(⟨i⟩, 0, . . . , 0) = 𝕩i for each i ∈ [n] and I(x) = 0
for all x ∈ Bµ \ {(⟨i⟩, 0, . . . , 0)}i∈[n].

To generate a proof, the prover defines the virtual µ-variate polynomial

f [X] = S1[X] ·
(
M [X, 0, 0] +M1[X, 0, 1]

)
(13)

+ S2[X] ·
(
M [X, 0, 0] ·M1[X, 0, 1]

)
+ S3[X] ·G

(
M [X, 0, 0],M1[X, 0, 1]

)
−M [X, 1, 0] + I[X],

and convinces the verifier that f [X] vanishes everywhere on the hypercube Bµ.
The selector polynomials are defined such that, for extremal gates i < n and

i = n+N , we have S1(⟨i⟩) = S2(⟨i⟩) = S3(⟨i⟩) = 0 so that M(⟨i⟩, 1, 0) = I(⟨i⟩)
for each i ∈ [0, n − 1] while the constraint M(⟨n + N⟩) = 0 ensures that the
arithmetic circuit outputs 0. For internal gates i ∈ [n, n + N − 1], we have
S1(⟨i⟩) = 1 and S2(⟨i⟩) = S3(⟨i⟩) = 0 for each addition gate i; S2(⟨i⟩) = 1 and
S1(⟨i⟩) = S3(⟨i⟩) = 0 for each multiplication gate i; S3(⟨i⟩) = 1 and S1(⟨i⟩) =
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S2(⟨i⟩) = 0 for each custom gate i.
Then, the prover must also convince the verifier thatM [X1, . . . , Xℓ] correctly

encodes the circuit. This is done by defining the “extended hypercube” H ≜
Bµ × {⟨i⟩}2i=0 and proving that the wiring identity M(x) = M(σ̂(x)) holds for
all x ∈ H, where σ̂ : H → H is the circuit-dependent permutation.

The pre-processing algorithm thus commits to an additional multilinear poly-
nomial sσ[X1, . . . , Xµ+2] such that, for all (x, ⟨i⟩) ∈ H,

sσ(x, ⟨i⟩) = sid(σ̂(x, ⟨i⟩)) (14)

where sid[X1, . . . , Xµ+2] =
∑µ+2
i=1 2i−1 ·Xi.

In order to prove the wiring identity, HyperPlonk relies on a product argu-
ment over the Boolean hypercube which builds on the following lemma. Given
commitments C1 = gf1(α1,...,αµ)+r1·αr , C2 = gf2(α1,...,αµ)+r2·αr to polynomi-

als f1, f2 ∈ ℤ(≤d)
p [X1, . . . , Xµ], it allows a prover to convince the verifier that

fb[X1, . . . , Xµ] ∈ ℤ(≤d)
p [X1, . . . , Xµ] for each b ∈ {1, 2} and

∏
x∈Bµ

f ′(x) = s,

for a given s ∈ ℤp, where f ′(x) = f1(x)/f2(x).

Lemma 1 ([52, Lemma 5.1]). For a rational function f ′ : ℤµp → ℤp and a
scalar s ∈ ℤp, the equality s =

∏
x∈Bµ

f ′(x) holds if and only if there exists a

multilinear polynomial ṽ ∈ ℤ(≤1)
p [X1, . . . , Xµ+1] such that ṽ(1, 1, . . . , 1, 0) = s

and, for all x ∈ Bµ, ṽ(0,x) = f ′(x) and ṽ(1,x) = ṽ(x, 0) · ṽ(x, 1).

5.1 Description

The description below is almost identical to the original HyperPlonk [18]. The
main difference is that some multivariate PCS evaluation proofs have to be
generated with the simulation-extractable polynomial commitment of Section 4.

Also, in order to obtain straight-line simulation-extractability in the AGM
(and even knowledge-soundness), we need to carefully choose the groups where
the different commitments live. Specifically, the knowledge soundness analysis
sometimes requires committed polynomials to be of the form described in Section
3.2. For this reason, we chose to have those commitments live in the second
source group �̂� for which the available generators contained in srs ensure that
the AGM-extractor will be able to extract a polynomial of the form described
in Section 3.2. As for commitments to univariate polynomials and the group
elements contained in PCS evaluation proofs, they can live in 𝔾.

As in [18], the batched zero-check protocol applies the sumcheck protocol to

Fγ [X1, . . . , Xµ] = f [X1, . . . , Xµ] · eqγ [X1, . . . , Xµ],

using the multilinear eqγ [X1, . . . , Xµ] =
∏µ
i=1

(
γi ·Xi+(1−γi) · (1−Xi)

)
where

γ = (γ1, . . . , γµ) is a random vector obtained by hashing the transcript so far.

CRS-Gen(1λ, 1d, 1µ): On input of λ, a parameter µ = log(n+N +1) specifying
the circuit size, and a bound d on the degree of custom gates such that
d · 2µ ∈ poly(λ), set ℓ = µ+ 1 and d̄ = max(2d+ 1, 9). Then,
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1. Choose asymmetric bilinear groups (𝔾, �̂�,𝔾T ) of prime order p > 2l(λ),

for some function l : ℕ→ ℕ, and g R← 𝔾, ĝ R← �̂�.
2. Pick α1, . . . , αℓ, αr

R← ℤp. Compute gr = gαr and ĝr = ĝαr .

3. For each I = (i1, . . . , iℓ) ∈ Ud̄,ℓ, compute gI = g
∏ℓ

j=1 α
ij
j .

4. For each I = (i1, . . . , iℓ) ∈ W1,ℓ, compute ĝI = ĝ
∏ℓ

j=1 α
ij
j . Then, compute{

ĝ(α1+αµ+1)
i·αµ·(αµ−1)

}3
i=0

.
5. Choose hash functions H,HPCS, Hbatch, Hδ : {0, 1}∗ → ℤp, Hξ : {0, 1}∗ →

ℤ∗
p, Hβ , Hζ : {0, 1}∗ → ℤ2

p and Hγ : {0, 1}∗ → ℤµp .

Let H = {H,HPCS, Hbatch, Hβ , Hζ , Hξ, Hδ} and define the universal SRS

srs =
(
(𝔾, �̂�,𝔾T ), gr, ĝr, {gI}I∈Ud̄,ℓ

,

{ĝI}I∈W1,ℓ
,
{
ĝ(α1+αµ+1)

i·αµ·(αµ−1)
}3
i=0

,H
)
.

PreProcesssrs(𝕚): On input of the universal SRS srs and an arithmetic circuit
𝕚 = C[G] : ℤn+mp → ℤp of size N such that n+N + 1 = 2µ,

1. Let the selector polynomials S1, S2, S3 : {0, 1}µ → ℤp. Deterministically

compute a multilinear polynomial sσ ∈ ℤ(≤1)
p [X1, . . . , Xℓ] that encodes

the wiring of C. Define the multilinear sid[X1, . . . , Xℓ] =
∑ℓ
i=1 2

i−1 ·Xi.
Let the partial permutation polynomials

sσ[X1, . . . , Xµ, 0, 0], sσ[X1, . . . , Xµ, 0, 1], sσ[X1, . . . , Xµ, 1, 0] (15)

2. For each i ∈ {0, 1, 2}, compute Cσ,⟨i⟩ = gsσ(α1,...,αµ,⟨i⟩).

3. For each i ∈ {1, 2, 3}, compute Cs,i = gSi(α1,...,αµ).

Return pp = srs and

vp =
(
(𝔾, �̂�,𝔾T ), g, ĝ, ĝr, {ĝi = ĝαi}µi=1, {Cσ,⟨i⟩}

2
i=0, {Cs,i}3i=1,H

)
.

Provepp
(
𝕚,𝕩,𝕨

)
: Given an arithmetic circuit 𝕚 = C[G] : ℤnp → ℤp, a public input

𝕩 and a witness 𝕨 consisting of a wire assignment leading to the output 0,

1. Compute I[X], which encodes 𝕩, as well as the circuit-dependent poly-
nomials {Si[X]}3i=1, {sσ[X, ⟨i⟩]}2i=0.

2. Compute the polynomialM ∈ ℤ(≤1)
p [X1, . . . , Xℓ] satisfying the gate iden-

tity (13). For each i ∈ [0, 2], choose Ri
R← ℤp (viewed as a constant

univariate polynomial) and commit to

M̄i[X1, . . . , Xµ] ≜M [X1, . . . , Xµ, ⟨i⟩] +Ri ·Xµ · (Xµ − 1),

by choosing rM,i
R← ℤp and computing

ĈM,i = ĝM(α1,...,αµ,⟨i⟩)+Ri·αµ·(αµ−1)+rM,i·αr .
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3. Compute the challenge (β1, β2) = Hβ(𝕩, vp, (ĈM,i)
2
i=0) ∈ ℤ2

p. Compute a

multilinear ṽ ∈ ℤ(≤1)
p [X1, . . . , Xµ+1] satisfying the conditions of Lemma

1 and such that

ṽ(0,x) =

2∏
i=0

M̄i(x) + β2 · sid(x, ⟨i⟩) + β1
M̄i(x) + β2 · sσ(x, ⟨i⟩) + β1

∀x ∈ Bµ,

where ⟨i⟩ ∈ {0, 1}2 is the binary representation of i ∈ [0, 2].
4. Choose a random degree-3 polynomial Rv ∈ ℤp[X] and define

v̄[X1, . . . , Xµ+1] = ṽ[X1, . . . , Xµ+1] +Rv[X1 +Xµ+1] ·Xµ · (Xµ − 1)

Commit to v̄[X1, . . . , Xµ+1] by choosing rv
R← ℤp and computing

Ĉv = ĝṽ(α1,...,αµ+1)+Rv(α1+αµ+1)·αµ·(αµ−1)+rv·αr

5. Compute (ζ1, ζ2) = Hζ(𝕩, vp, (ĈM,i)
2
i=0, Ĉv) ∈ ℤ2

p. Define the following
virtual (i.e., not explicitly computed) polynomials in X = (X1, . . . , Xµ):

Q1[X] = v̄[1,X]− v̄[X, 0] · v̄[X, 1]

Q2[X] =

2∏
i=0

(
M̄i[X] + β2 · sid[X, ⟨i⟩] + β1

)
(16)

− v̄[0,X] ·
2∏
i=0

(
M̄i[X] + β2 · sσ[X, ⟨i⟩] + β1

)
f [X] = S1[X] ·

(
M̄0[X] + M̄1[X]

)
+ S2[X] ·

(
M̄0[X] · M̄1[X]

)
+ S3[X] ·G

(
M̄0[X], M̄1[X]

)
− M̄2[X] + I[X],

6. Prove that F [X] = f [X] + ζ1 · Q1[X] + ζ2 · Q2[X] vanishes over Bµ.

To this end, compute γ = Hγ(𝕩, vp, (ĈM,i)
2
i=0, Ĉv) ∈ ℤµp and prove the

statement
∑

x∈Bµ
F (x) ·eqγ(x) = 0 via a zero-knowledge sumcheck pro-

tocol. Namely, let d̄′ = min(d̄, 3) = 3 and do the following.

a. Choose a polynomial a[X1, . . . , Xµ] = a0 +
∑µ
i=1 ai[Xi] such that,

for each i ∈ [µ], ai[Xi] =
∑d̄′

j=1 ai,j · X
j
i , for random a0, {ai,j}i,j ,

and compute a commitment Ca = ga(α1,...,αµ)+ra·αr , where ra
R← ℤp,

using {gI}I∈Wd̄,ℓ
. Compute ya =

∑
x∈Bµ

a(x).

b. Compute ξ = Hξ(𝕩, vp, (ĈM,i)
2
i=0, Ĉv, Ca, ya, (ζ1, ζ2), (β1, β2),γ) ∈

ℤ∗
p. Let the virtual polynomial (of degree ≤ d̄ = max(2d+ 1, 9))

Fzk[X1, . . . , Xµ] ≜ F [X1, . . . , Xµ] · eqγ [X1, . . . , Xµ]

+ ξ · a[X1, . . . , Xµ]
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c. Prove that
∑

x∈Bµ
Fzk(x) = ξ · ya. Namely, for i = µ to 1,

1. Compute a commitment Cθ,i = gθi(α1) to the univariate

θi[X] =
∑

b∈Bi−1

(
f [b, X, ri+1, . . . , rµ] + ζ1 ·Q1[b, X, ri+1, . . . , rµ]

+ ζ2 ·Q2[b, X, ri+1, . . . , rµ]
)
· eqγ [b, X, ri+1, . . . , rµ]

(17)

+ ξ ·
∑

b∈Bi−1

a[b, X, ri+1, . . . , rµ]

2. Compute

ri = H
(
𝕩, vp, (ĈM,i)

2
i=0, Ĉv, Ca, ya,γ, (β1, β2), (ζ1, ζ2),

{Cθ,j , θj(0), θj(1)}j∈[i,µ], (rj)j∈[i+1,µ]

)
∈ ℤp.

d. Generate a batch proof πbatch that (Cθ,i)i∈[µ] commit to polynomials

(θi[X])i∈[µ] evaluating to {θi(0), θi(1), θi,r ≜ θi(ri)} for the inputs
Ωi = {0, 1, ri}.

e. Generate multivariate PCS evaluation proofs. Namely,

1. Using the PCS of Section 3.1, generate a batch proof πC,a for
the commitments

{
{Cs,i}3i=1, {Cσ,⟨i⟩}2i=0, Ca

}
showing that

- For each i ∈ [3], the selector polynomial Si[X] evaluates to
si,r = Si(r1, . . . , rµ)

- For each i ∈ {0, 1, 2}, the partial permutation polynomial
sσ[X, ⟨i⟩] evaluates to σi,r ≜ sσ(r1, . . . , rµ, ⟨i⟩).

- Ca commits to a polynomial that evaluates to ar ≜ a(r1, . . . , rµ).
2. Using the PCS of Section 4, generate a batch proof πM showing

that {ĈM,i}2i=0 commit to polynomials {M̄i[X]}2i=0 that evalu-

ate to mi,r ≜ M̄i(r1, . . . , rµ) for each i ∈ [0, 2]. This proof is
generated for a label lbl1 containing the entire transcript so far.

3. For the commitment Ĉv, compute simulation-extractable proofs
(πv,x,b,πv,b,x)

1
b=0 that

∀b ∈ {0, 1} : v̄(r1, . . . , rµ, b) = vr,b, ∧ v̄(b, r1, . . . , rµ) = vb,r,

for labels {lbl2,i}4i=1 containing the entire transcript so far.

4. For Ĉv, prove that v̄(1, . . . , 1, 0) = 1 via a simulation-extractable
proof πv,s for a label lbl3 containing the entire transcript so far.

Let
πr =

(
πC,a, (πM , (πv,x,b,πv,b,x)

1
b=0,πv,s

)
(18)

the vector of evaluation proofs and let the batched zero-check proof

πzero =
(
Ca, ar, ya, {mi,r, σi,r}2i=0, {si,r}3i=1, {vr,b, vb,r}1b=0,

{Cθ,i, θi(0), θi(1)}i∈[µ],πbatch,πr

)
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Return the proof π =
(
(ĈM,i)

2
i=0, Ĉv,πzero

)
.

Verifyvp
(
𝕚,𝕩,π

)
: Given a statement (𝕚,𝕩), a compressed version vp of 𝕚 = C[G],

and a candidate proof π, return 0 if π does not parse properly. Otherwise,

1. Compute γ = Hγ

(
𝕩, vp, (ĈM,i)

2
i=0, Ĉv

)
∈ ℤµp and

(β1, β2) = Hβ

(
𝕩, vp, (ĈM,i)

2
i=0

)
, (ζ1, ζ2) = Hζ

(
𝕩, vp, (ĈM,i

)2
i=0

, Ĉv
)

2. Compute the polynomial I[X1, . . . , Xµ] such that I(⟨i⟩, 0, . . . , 0) = 𝕩[i]
for each i ∈ [0, n− 1] and I(x) = 0 everywhere else.

3. For each i = µ to 1, compute

ri = H
(
𝕩, vp, (ĈM,i)

2
i=0, Ĉv, Ca, ya,γ, (β1, β2), (ζ1, ζ2),

{Cθ,j , θj(0), θj(1)}j∈[i,µ], (rj)j∈[i+1,µ]

)
∈ ℤp. (19)

4. Compute ξ = Hξ

(
𝕩, vp, (ĈM,i)

2
i=0, Ĉv, Ca, ya, (ζ1, ζ2), (β1, β2),γ

)
∈ ℤ∗

p

and return 0 if θµ(0) + θµ(1) ̸= ξ · ya.
5. Let Ir = I(r1, . . . , rµ) and

θ1,r ≜
[(
s1,r · (m0,r +m1,r) + s2,r · (m0,r ·m1,r) + s3,r ·G(m0,r,m1,r)−m2,r + Ir

)
+ ζ1 ·

(
v1,r − vr,0 · vr,1

)
+ ζ2 ·

( 2∏
i=0

(mi,r + β2 · sid(r, ⟨i⟩) + β1)

− v0,r ·
2∏
i=0

(mi,r + β2 · σi,r + β1)
)]
· eqγ(r1, . . . , rµ) + ξ · ar

Then, for each i ∈ [2, µ], define θi,r ≜ θi−1(0) + θi−1(1). Return 0 if
πbatch is not a valid univariate batch proof for commitments (Cθ,i)i∈[µ],
evaluations (θi(0), θi(1), θi,r)

µ
i=1, and inputs {Ωi = {0, 1, ri}}µi=1.

6. Return 0 if the PCS evaluation proofs in πr do not verify for the com-
mitments ((ĈM,i)

2
i=0, {Cσ,⟨i⟩}2i=0, {Cs,i}3i=1, Ca), the label lbl1, and the

claimed evaluations in πzero for the inputs r, {(r, b), (b, r)}b∈{0,1}. Re-
turn 0 if (πv,x,b,πv,b,x)

1
b=0 do not verify for the labels {lbl2,i}4i=1 and the

inputs specified at step 6.e.2. Return 0 if πv,s does not verify for the
claimed evaluation ṽ(1, 1, . . . , 1, 0) = 1 and the label lbl3.

If none of the previous checks failed, return 1.

We note that, at step 6 of Prove, the virtual polynomial F [X] has maximal
degree max(2d + 1, 9) since Q2[X] has degree ≤ 9 in Xµ and f [X] has degree
≤ 2d+ 1 in Xµ, where d is the degree of G.

At step 6.c.1, the prover runs in linear time in 2µ by using the algorithm
of [18, Section 3] (see also [53] and [54, Section 3.2]). Since eqγ [X1, . . . , Xµ],
{M̄i[X1, . . . , Xµ]}2i=0, ṽ ∈ ℤp[X1, . . . , Xµ+1], {Si[X1, . . . , Xµ]}3i=1 and the par-
tial permutation polynomials (15) are multilinear polynomials in (X1, . . . , Xµ+1),
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the virtual F [X] of step 6 can be written3 as a composition F [X1, . . . , Xµ] =
g(h1, . . . , hc) of a c-variate function g of total degree d with multilinear poly-
nomials {hi[X1, . . . , Xµ]}ci=1. When c ≈ d, the round polynomials {θi[X]}µi=1 of
the sumcheck protocol are computable in time O(2µ · d · log2 d).

We note that the verifier can compute Ir = I(r1, . . . , rµ) itself at step 5 us-
ing O(n · µ) field operations since I[X] is multilinear and can be expressed as
I[X] =

∑n
i=1 𝕩i · eq(⟨i⟩,0,...,0)[X1, . . . , Xµ].

On the SRS and Proof Sizes. The above instantiation is not optimized in
terms of space. In order to enable custom gates of degree d, the common reference
string srs must contain O(d · 2µ) = O(d · |C|) group elements (since Ud̄,ℓ contains
O(d̄ · 2µ) elements, where d̄ = max(2d + 1, 9)). It is possible to optimize the
scheme and reduce the SRS size to O(d + |C|) group elements by committing
to all multivariate polynomials as multilinear polynomials.4 The linearization of
multivariate polynomials then allows using the batch evaluation protocol of [18,
Section 3.8] so as to reduce the proof size. We did not include these optimizations
in the description in order to keep it as simple as possible.

5.2 Security

We first give a proof of knowledge-soundness. In a second step, we will describe
a zero-knowledge simulator and argue that the knowledge extractor still works
(without rewinding) when the adversary can observe many simulated proofs.

Knowledge-Soundness. Knowledge-soundness was proven in [18] for the un-
derlying PIOP. Here, we adapt the proof to the instantiation from KZG/PST-
based commitments since we aim at a non-rewinding extractor (in the AGM)
that will also be used in the proof of Theorem 6. In particular, since our instanti-
ation uses both multivariate and univariate commitments sharing the same SRS,
we need to account for the fact that the algebraic representations of univariate
commitments can depend on SRS components related to multivariate ones. In
Supplementary Material B, we show that the batch evaluation protocol of [12]
still provides the suitable extractability properties when KZG commitments are
used on a larger SRS allowing commitments to multivariate polynomials.

Theorem 4. In the AGM+ROM model and under the (dℓ, dℓ)-DLOG assump-
tion, the above instantiation of HyperPlonk provides knowledge-soundness with
straight-line extractability. (The proof is given in Supplementary Material D.1.)

3 This remains true after having added Rv[X1 +Xµ+1] ·Xµ(Xµ − 1) to ṽ.
4 Following ideas from [13,42], one can commit to a univariate f [X] =

∑D−1
i=0 fi ·Xi of

degree D− 1 = 2d − 1 by considering the bits i1 . . . id ∈ {0, 1}d of each i ∈ [0, D− 1]
and committing to the multilinear F [X1, . . . , Xd] =

∑D−1
i=0 fi ·Xi1

1 . . . X
id
d . Univariate

evaluations f(z) = y are then proven as F (z, z2, z4, . . . , z2
d−1

) = y. The same idea
extends to linearize multivariate polynomials by increasing the number of variables.
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Zero-Knowledge. The proof of Theorem 5 provides a trapdoor-less ZK simu-
lator which will be used in the proof of simulation-extractability. The simulator
proceeds by sampling a “fake witness” consisting of a mutlilinear polynomial
M [X1, . . . , Xµ+2] that induces a polynomial F [X] = f [X]+ζ1·Q1[X]+ζ2·Q2[X]
for which F [x] = 0 for all x ∈ Bµ at step 6 of the prover. Since the wiring iden-
tity M(x, ⟨i⟩) = M(σ̂(x, ⟨i⟩)) is not satisfied for all x ∈ Bµ, the corresponding
polynomial ṽ[X1, . . . , Xµ+1] (defined at step 3) does not satisfy the condition
ṽ(1, . . . , 1, 0) = 1 when we apply Lemma 1. As a loophole, we can simulate a
fake PCS evaluation proof that ṽ(1, . . . , 1, 0) = 1. To make sure that no infor-
mation leaks about the internal wires of the circuit, the simulator also simulates
PCS proofs of random evaluations (instead of the real evaluations) for the partial
polynomials {M̄i[X1, . . . , Xµ]}2i=0 and {v̄[X1, . . . , Xµ, b], v̄[b,X1, . . . , Xµ]}1b=0 on
inputs outside the Boolean hypercube. For this reason, the PCS evaluation proofs
at steps 6.e.2-6.e.4 are generated using the PCS of Section 4. Thanks to the
masking technique of (4), these evaluations can be proven statistically indistin-
guishable from real evaluations. The proof relies on the fact that Rv[X1+Xµ+1]
is evaluated on four distinct inputs when v̄[X1, . . . , Xµ+1] is evaluated on the
inputs {(r1, . . . , rµ, b), (b, r1, . . . , rµ)}1b=0 at step 6.e.3.

Theorem 5. The above HyperPlonk protocol provides statistical zero-knowledge
in the ROM. (The proof is given in Supplementary Material D.2.)

Simulation-Extractability. The only obstacle that prevents from applying
the same analysis as in the proof of Theorem 4 is that the simulator S creates
simulated proofs of false statements by programming random oracles, which is
the only case where the outputs of random oracles are determined before their
inputs (and the algebraic representations thereof). However, the only random
oracle that is ever programmed is HPCS, which is used in the polynomial com-
mitment of Section 4.1 (or its batch version, where the security proof does not
program any other hash function than HPCS). In particular, evaluation proofs of
univariate commitments are faithfully generated by S. Therefore we only need
to worry about proofs for incorrect evaluations of multivariate polynomials.

In the treatment of multivariate evaluation proofs, we need to rely either
on the simulation-extractability of the PCS from Section 4 or the knowledge-
soundness of the one from Section 3.2.

Theorem 6. In the AGM+ROM, the above instantiation of HyperPlonk pro-
vides (straight-line) simulation-extractability under the (dℓ, dℓ)-DLOG assump-
tion. (The proof is given in Supplementary Material D.3.)
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A Deferred Material for the PCS of Sections 3 and 4

A.1 Proof of Theorem 1

Proof. We prove that, if an algebraic adversary A can break the (extended)
knowledge-soundness property, we can solve the (dℓ, dℓ)-DLOG problem by com-
puting α ∈ ℤp from a problem instance

inst =
(
g, {g(α

i)}dℓi=1, ĝ, {ĝ(α
i)}dℓi=1

)
The reduction B first chooses random vectors ρ = (ρ1, . . . , ρℓ, ρr)

R← ℤℓ+1
p , θ =

(θ1, . . . , θℓ, θr)
R← ℤℓ+1

p and implicitly sets αi = ρi · α + θi for each i ∈ [ℓ] and
αr = ρr · α + θr. Note that B can properly simulate the CRS srs from inst and
{(ρi, θi)}ℓi=1, (ρr, θr).

When A outputs a commitment C and a pair (y,z) ∈ ℤp × ℤµp , for some
µ ≤ ℓ, with a claim that C commits to an µ-variate polynomial f [X1, . . . , Xµ] ∈
ℤ(≤d)
p [X1, . . . , Xµ] such that y = f(z), it must also output a representation of

C as C =
∏

I∈Wd,ℓ
gfII · grr for known coefficients (r, {fI}I∈Wd,ℓ

) in ℤp. Let the
polynomials

f [X1, . . . , Xℓ] =
∑

I=(i1,...,iℓ)∈Wd,ℓ

fI ·
ℓ∏
j=1

X
ij
j .

F [X1, . . . , Xℓ, Xr] = f [X1, . . . , Xℓ] + r ·Xr

for which we have C = gF (α1,...,αℓ,αr) = gf(α1,...,αℓ) · grr .
If f [z1, . . . , zµ, Xµ+1, . . . , Xℓ] is constantly y for any assignment of the vari-

ables (Xµ+1, . . . , Xℓ), then B succeeds as a knowledge extractor since (f, r) is a
valid witness. Moreover, this implies that the difference

f [z1, . . . , zµ, Xµ+1, . . . , Xℓ]− f [z1, . . . , zµ, 0, . . . , 0] (20)
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is the zero polynomial. In turn, this implies that, for a random z′ ∈ ℤℓ−µp (and

even any arbitrary z′ ∈ ℤℓ−µp ), the extended input (z | z′) ∈ ℤℓp is a zero of

f [X1, . . . , Xℓ]− f [X1, . . . , Xµ,0
ℓ−µ].

So, if z ∈ ℤµp is a random evaluation input chosen independently of f , the

Schwartz-Zippel lemma implies f [X1, . . . , Xℓ] = f [X1, . . . , Xµ,0
ℓ−µ] with over-

whelming probability (in which case the extracted f [X1, . . . , Xℓ] does not depend
on the variables (Xµ+1, . . . , Xℓ)) since, otherwise, the difference (20) would can-
cel with probability dℓ/p.

We now assume that f [z1, . . . , zµ, Xµ+1, . . . , Xℓ] − y is a non-zero polyno-
mial. Together with its fake proof π = ({π1,i}µi=1, π2), A also outputs algebraic
representations of {π1,i}µi=1 and π2, which reveal polynomials

Ai[X1, . . . , Xℓ, Xr] = ai[X1, . . . , Xℓ] + āi ·Xr, ∀i ∈ [µ]

B[X1, . . . , Xℓ, Xr] = b[X1, . . . , Xℓ] + b̄ ·Xr

where ai[X1, . . . , Xℓ], bi[X1, . . . , Xℓ] ∈ ℤ(≤d)
p [X1, . . . , Xℓ], ā1, . . . , āµ, b̄ ∈ ℤp,

such that π2 = gB(α1,...,αℓ,αr) and π1,i = gAi(α1,...,αℓ,αr) for each i ∈ [µ]. The
verification equation (5) then implies

F (α1, . . . , αℓ, αr)− y =

µ∑
i=1

Ai(α1, . . . , αℓ, αr) · (αi − zi) +B(α1, . . . , αℓ, αr) ·αr.

This means that the (ℓ+ 1)-variate polynomial

T [X1, . . . , Xℓ, Xr] ≜ F [X1, . . . , Xℓ, Xr]− y (21)

−
µ∑
i=1

Ai[X1, . . . , Xℓ, Xr] · (Xi − zi)−B[X1, . . . , Xℓ, Xr] ·Xr

vanishes on (α1, . . . , αℓ, αr) ∈ ℤℓ+1
p . This polynomial is not identically zero since

T [z1, . . . , zµ, Xµ+1, . . . , Xℓ, 0] = f [z1, . . . , zµ, Xµ+1, . . . , Xℓ]− y

is non-zero by hypothesis.
Now, let the univariate polynomial

L[X] ≜ T [ρ1X + θ1, . . . , ρℓX + θℓ, ρrX + θr]

If it is not identically zero, then α ∈ ℤp is computable as a root of L[X] since
L(α) = T (α1, . . . , αℓ, αr) = 0.

We now consider the event zeroL that L[X] is identically zero although
T [X1, . . . , Xℓ+1] is not and argue that zeroL occurs with negligible probabil-
ity. If L[X] is identically zero, then (θ1, . . . , θℓ, θr) ∈ ℤℓ+1

p is also a vanish-
ing point of T [X1, . . . , Xℓ, Xr] since L(0) = T (θ1, . . . , θℓ, θr). However, condi-
tionally on the adversary’s view, θ = (θ1, . . . , θℓ, θr) is uniformly distributed
in ℤℓ+1

p since the CRS srs only depends on αi = ρi · α + θi for i ∈ [ℓ] and
αr = ρr ·α+θr.5 Although A implicitly generates a polynomial T [X1, . . . , Xℓ, Xr]

5 Note that {gI}I∈Wd,ℓ do not reveal any more information than {ĝi}ℓi=1 since they

are uniquely determined by {αi}ℓi=1.
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such that T (α1, . . . , αℓ, αr) = 0, this polynomial does not depend on θ and the
probability to have T (θ1, . . . , θℓ, θr) = 0 is the same as if we were first choosing
the secret exponents (α1, . . . , αℓ, αr)

R← ℤℓ+1
p before letting A choose the polyno-

mial T [X1, . . . , Xℓ, Xr], at which point we would sample (θ1, . . . , θℓ, θr)
R← ℤℓ+1

p

and define ρr = (αr − θr)/α and ρi = (αi − θi)/α for each i ∈ [ℓ]. Since
T [X1, . . . , Xℓ, Xr] has total degree ≤ dℓ+ 1, we have

Pr[zeroL] ≤ Pr
(θ1,...,θℓ,θr)

[T (θ1, . . . , θℓ, θr) = 0] ≤ (dℓ+ 1)/p

(by the Schwartz-Zippel lemma) which is negligible as claimed.
To conclude, we observe that the proof carries over when A obtains hon-

estly generated commitments and proofs from an oracle. While the algebraic
representation of A’s commitment and proof may depend on the group elements
obtained from the oracle, the extractor knows a representation of these w.r.t.
the generators contained in srs. It can thus always infer a representation of each
group element produced by A in terms of the components of srs. ⊓⊔

A.2 Batching Proofs for a Common Input in the PCS of Section 3.1

Using standard techniques, the scheme allows aggregating multiple proofs for k1
distinct commitments (Cj)j∈[k1] in 𝔾 and k1 outputs (fj(z))j∈[k1] on a common

input z ∈ ℤµ′

p . To this end, we need to include a random oracleHδ : {0, 1}∗ → ℤp
in the public parameters.

Evalsrs
(
(Cj)j∈[k1], z, (yj)j∈[k1], aux

)
: On input of commitments (Cj)j∈[k1], wit-

nesses aux =
(
(rj , fj)j∈[k1],

)
, an input z = (z1, . . . , zµ′) ∈ ℤµ′

p and outputs
{yj = fj(z)}j∈[k1], return ⊥ if yj ̸= fj(z) for some j ∈ [k1]. Otherwise, do
the following:

1. For each j ∈ [k1], generate a proof

πj =
(
(πj,1,i)

µ
i=1, πj,2

)
∈ 𝔾µ

′+1

that fj(z) = yj as in Section 3.1.

2. Compute

δ = Hδ

(
(Cj)j∈[k1], z, (yj)j∈[k1]

)
∈ ℤp. (22)

3. Compute π1,i =
∏k1
j=1 π

δj−1

j,1,i for each i ∈ [k] and π2 =
∏k1
j=1 π

δj−1

j,2 .

4. Re-randomize proofs by computing π̃1,i = π1,i · gs
′
i·αr for each i ∈ [µ′]

and π̃2 = π2 · g−
∑µ′

i=1 s
′
i·(αi−zi) where s′1, . . . , s

′
µ′

R← ℤp.

Return the proof

π =
(
(π̃1,i)

µ′

i=1, π̃2
)
∈ 𝔾µ

′+1. (23)
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Verifysrs
(
(Cj)j∈[k1], (yj)j∈[k1], z,π

)
: On input of (Cj)j∈[k1], claimed evaluations

{yj = fj(z)}j∈[k1], an input z ∈ ℤµ′

p , and a candidate proof π, return 0 if π
does not parse as in (23). Otherwise, compute δ as per (22) and return 1 if

e
(( k1∏

j=1

Cj · g−yj
)δj−1

, ĝ
)
=

µ′∏
i=1

e(πi,1, ĝi · ĝ−zi) · e(π2, ĝr) (24)

and 0 otherwise.

The zero-knowledge simulator of Section 3.1 immediately extends to the above
batch version. We now adapt its proof of knowledge-soundness.

Theorem 7. In the AGM+ROM under the (dℓ, dℓ)-DLOG assumption, the batch
evaluation protocol provides extended knowledge-soundness as an argument of

knowledge of f1, . . . , fk1 ∈ ℤ
(≤d)
p [X1, . . . , Xℓ] such that, for all (xµ′+1, . . . , xℓ) ∈

ℤℓ−µ′

p , we have fj(z1, . . . , zµ′ , xµ′+1, . . . , xℓ) = yj for all j ∈ [k1].

Proof. The proof proceeds identically to that of Theorem 1 and we only outline
the changes.

When the adversary A outputs a verifying proof π for commitments {Cj}k1j=1,

a common input z ∈ ℤµ′

p , and claimed evaluations {yj}k1j=1, B can compute α
as follows. Since A is algebraic, it must also output algebraic representations of

each Cj as Cj =
∏

I∈Wd,ℓ
g
fj,I
I · grjr for known coefficients (rj , {fj,I}I∈Wd,ℓ

) in

ℤp, which define polynomials fj [X1, . . . , Xℓ] ∈ ℤ(≤d)
p [X1, . . . , Xℓ] and

Fj [X1, . . . , Xℓ, Xr] = fj [X1, . . . , Xℓ] + rj ·Xr

such that Cj = gFj(α1,...,αℓ,αr) for each j ∈ [k1].
If fj [z, Xµ′+1, . . . , Xℓ] − yj is the zero polynomial for each j ∈ [k1], then

B obtained valid witnesses. In this case, if z ∈ ℤµ′

p is a random input, we can
apply the same argument as in the proof of Lemma 1 to argue that each fj
only depends on the variables (X1, . . . , Xµ′). We now show that, if one of the

polynomials {fj [z, Xµ′+1, . . . , Xℓ]−yj}k1j=1 is non-zero, then B can solve its given
(dℓ, dℓ)-DLOG instance.

Together with its proof π = ({π1,i}µ
′

i=1, π2), A also outputs representations

of {π1,i}µ
′

i=1 and π2, which define polynomials

{Ai[X1, . . . , Xℓ, Xr]}i∈[µ′], B[X1, . . . , Xℓ, Xr]

such that π1,i = gAi(α1,...,αℓ,αr) for each i ∈ [µ′] and π2 = gB(α1,...,αℓ,αr).
The verification equation (24) implies

k1∑
j=1

δj−1 · (Fj(α1, . . . , αℓ, αr)− yj)

=

µ′∑
i=1

Ai(α1, . . . , αℓ, αr) · (αi − zi) +B(α1, . . . , αℓ, αr) · αr,
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which means that the (ℓ+ 1)-variate polynomial

T [X1, . . . , Xℓ, Xr] ≜
k1∑
j=1

δj−1 ·
(
Fj [X1, . . . , Xℓ]− yj

)
−

µ′∑
i=1

Ai[X1, . . . , Xℓ, Xr] · (Xi − zi) +B[X1, . . . , Xℓ, Xr] ·Xr

has a zero in (α1, . . . , αℓ, αr) ∈ ℤℓ+1
p but it is not identically zero w.h.p. if there

exists j ∈ [k1] such that Fj [z1, . . . , zµ′ , Xµ′+1, . . . , Xℓ, 0]−yj is non-zero. Indeed,
if T [X1, . . . , Xℓ, Xr] was zero, so would be

T [z, Xµ′+1, . . . , Xℓ, 0] =

k1∑
j=1

δj−1 · (Fj [z1, . . . , zµ′ , Xµ′+1, . . . , Xℓ, 0] − yj).

By the Schwartz-Zippel lemma, this can only happen with probability < k/p
since δ = Hδ

(
(Cj)j∈[k1], z, (yj)j∈[k1]

)
is uniformly distributed in ℤp and chosen

after the (ℓ + 1)-variate polynomials {Fj [X1, . . . , Xℓ, Xr]}k1j=1 and the claimed

evaluations {yj}k1j=1.
The rest of the proof is identical to the proof of Theorem 1 and allows the

reduction to find α by factoring the univariate polynomial

L[X] ≜ T [ρ1X + θ1, . . . , ρℓX + θℓ, ρrX + θr]

which is non-zero with probability ≥ 1− (dℓ+ 1)/p. ⊓⊔

A.3 Proof of Theorem 2

Proof. The proof is identical to the proof of Theorem 1 with the difference that,
when A outputs a commitment Ĉ and a pair (y,z) ∈ ℤp×ℤµ

′

p (where µ′ may be

different from µ) with a statement that Ĉ commits to an µ′-variate polynomial
f [X1, . . . , Xµ′ ] such that y = f(z), it must also output a representation of Ĉ

with respect to the group elements
(
{ĝI}I∈W1,ℓ

,
{
ĝ(α1+αµ+1)

i)·αµ·(αµ−1)
}3
i=0

)
.

This representation defines a a polynomial

f [X1, . . . , Xℓ] = f ′[X1, . . . , Xℓ] +R[X1 +Xµ+1] ·Xµ · (Xµ − 1),

where f ′ ∈ ℤ(≤1)
p [X1, . . . , Xℓ] is multilinear and where R[X] is univariate of de-

gree≤ 3, such that Ĉ = ĝf(α1,...,αℓ)+r·αr . Then, if the extracted (r, f [X1, . . . , Xℓ])
does not form a valid witness (i.e., such that f [z1, . . . , zµ′ , Xµ′+1, . . . , Xℓ]− y is
the zero-polynomial), B can break the assumption in the same way as in the
proof of Theorem 1. ⊓⊔
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A.4 Batching Proofs for a Common Input for the
Simulation-Extractable PCS of Section 4

The construction of Section 4.1 readily extends to compress proofs when multiple
evaluations {yj}kj=1 of polynomials {fj [X1, . . . , Xℓ]}kj=1 have to be proven for a
common input z ∈ ℤµp . The idea is again to use Fiat-Shamir to prove knowledge

of a batched evaluation proof. Namely, the prover first computes ({π1,i}µ
′

i=1, π2)

as in Section A.2 but, instead of revealing it in the clear, it only reveals {π1,i}µ
′

i=1

and proves knowledge of π2 ∈ 𝔾 satisfying

e
(
g,
( k∏
j=1

Ĉj · ĝ−yj
)δj−1)

·
µ′∏
i=1

e(πi,1, ĝi · ĝ−zi)−1 = e(π2, ĝr)

where δ = Hδ

(
(Ĉj)j∈[k], z, (yj)j∈[k]

)
.

The proof of simulation-extractability is almost identical to that of Theorem
3. The only differences are that equation (10) becomes

R(α1, . . . , αℓ, αr) = S(α1, . . . , αℓ, αr) · αr

− c ·
( k∑
j=1

δj−1(Fj(α1, . . . , αℓ, αr)− yj)−
µ′∑
i=1

Ai(α1, . . . , αℓ, αr) · (αi − zi)
)
,

while (11) becomes

T [X1, . . . , Xℓ, Xr] ≜ R[X1, . . . , Xℓ, Xr]− S[X1, . . . , Xℓ, Xr] ·Xr

+ c ·
( k∑
j=1

δj−1 · (Fj [X1, . . . , Xℓ, Xr]−yj)−
µ′∑
i=1

Ai[X1, . . . , Xℓ, Xr] · (Xi− zi)
)
,

and which is is a non-zero polynomial with overwhelming probability > 1− k/p
if there exists j ∈ [k] such that fj [z, Xµ+1, . . . , Xℓ]− yj is non-zero.

B Knowledge-Soundness of KZG Commitments with an
Extended SRS

In the AGM, we prove the knowledge soundness of the original univariate KZG
commitment scheme when the SRS is extended to enable commitments to mul-
tivariate polynomials as in 3.2. We only do it for the deterministic version of
KZG since it suffices for its application to the sumcheck protocol, as considered
in HyperPlonk [18].

B.1 The Case of Individual Proofs

In this extended-SRS setting, the KZG commitment scheme can be spelled out
as follows.
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CRS-Gen(1λ, 1d̄, 1ℓ): On input of a security parameter λ, a number of variables
ℓ and a degree d̄ such that (d̄+ 1)ℓ ∈ poly(λ), generate the SRS as follows:

1. Choose asymmetric bilinear groups (𝔾, �̂�,𝔾T ) of prime order p > 2l(λ),

for some function l : ℕ→ ℕ, and g R← 𝔾, ĝ R← �̂�.
2. Pick α1, . . . , αℓ, αr

R← ℤp. Compute gr = gαr and ĝr = ĝαr .

3. For each I = (i1, . . . , iℓ) ∈ Ud̄,ℓ, compute gI = g
∏ℓ

j=1 α
ij
j .

4. For each I = (i1, . . . , iℓ) ∈ W1,ℓ, compute ĝI = ĝ
∏ℓ

j=1 α
ij
j . Compute{

ĝ(α1+αµ+1)
i·αµ·(αµ−1)

}3
i=0

for an arbitrary index µ ∈ [2, ℓ− 1].

The public parameters are

srs =
(
(𝔾, �̂�,𝔾T ), gr, ĝr, {gI}I∈Ud̄,ℓ

{ĝI}I∈W1,ℓ
,
{
ĝ(α1+αµ+1)

i·αµ·(αµ−1)
}3
i=0

)
.

Comsrs(f): To commit to f [X] ∈ ℤ(≤d̄)
p [X], compute C = gf(α1) using {g(αi

1)}i∈[0,d̄]

which are contained in {gI}I∈Wd̄,ℓ
. Then, output (aux, f) = (∅, f).

Evalsrs
(
C, z, y, aux

)
: given a commitment C, a witness aux = (∅, f), an input

z ∈ ℤp and an output y = f(z) ∈ ℤp, return ⊥ if y ̸= f(z). Otherwise,

compute q[X] = (f [X]− y)/(X − z) =
∑d̄−1
i=0 qi ·Xi and the proof

π = gq(α1)

Return π ∈ 𝔾.
Verifysrs

(
C, y, z, π

)
: Given C ∈ 𝔾, an input z ∈ ℤp, a claimed evaluation y ∈ ℤp,

and a candidate proof π ∈ 𝔾, return 1 if

e
(
C · g−y, ĝ

)
= e(π, ĝα1 · ĝ−z). (25)

and 0 otherwise.

Theorem 8. Under the (d̄ℓ, d̄ℓ)-DLOG assumption in the AGM, the scheme
provides extended knowledge soundness as an argument that C commits to a
polynomial F [X1, . . . , Xℓ, Xr] such that F [z,X2, . . . , Xℓ, Xr] = y for all assign-
ments of (X2, . . . , Xℓ, Xr). Moreover, for a random input z, the extractor outputs
F [X] such that F (z) = y and C = gF (α1) with overwhelming probability.

Proof. We show that, if an algebraic adversaryA can break knowledge-soundness,
we can build an algorithm solving the (d̄ℓ, d̄ℓ)-DLOG problem by computing
α ∈ ℤp from

inst =
(
g, {g(α

i)}d̄ℓi=1, {ĝ(α
i)}d̄ℓi=1, ĝ

α
)

The reduction B prepares the SRS as in the proof of Theorem 1. Namely, it
first chooses random vectors (ρ1, . . . , ρℓ, ρr)

R← ℤℓp, (θ1, . . . , θℓ, θr)
R← ℤℓp and

implicitly sets αi = ρi · α + θi for each i ∈ [ℓ] ∪ {r}. Note that B can properly
simulate the CRS pp from inst.
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When A outputs a commitment C and a pair (y, z) ∈ ℤ2
p with a claim that

C commits to F [X1, . . . , Xℓ, Xr] such that F [z,X2, . . . , Xℓ, Xr] − y is the zero

polynomial, it must also output a representation of C as C =
∏

I∈Ud̄,ℓ
gfII · grr

for known coefficients (r, {fI}I∈Wd̄,ℓ
) in ℤp. Let the polynomial

f [X1, . . . , Xℓ] =
∑

I=(i1,...,iℓ)∈Ud̄,ℓ

fI ·
ℓ∏
j=1

X
ij
j .

and let
F [X1, . . . , Xℓ+1] = f [X1, . . . , Xℓ] + r ·Xr

for which we have C = gF (α1,...,αℓ,αr). If F [z,X2, . . . , Xℓ, Xr] − y is the zero
polynomial, then B is done since (F, r) is a valid witness. We henceforth assume
that F [z,X2, . . . , Xℓ, Xr]− y is non-zero.

Together with its fake proof π, A also outputs an algebraic representation of
π, which defines a polynomial

A[X1, . . . , Xℓ, Xr] = a[X1, . . . , Xℓ] + ā ·Xr,

such that π = gA(α1,...,αℓ,αr), where a[X1, . . . , Xℓ] ∈ ℤ(≤d̄)
p [X1, . . . , Xℓ] and ā ∈

ℤp. The verification equation (25) implies

F (α1, . . . , αℓ, αr)− y = A(α1, . . . , αℓ, αr) · (α1 − z)

which means that (α1, . . . , αℓ, αr) ∈ ℤℓ+1
p is a zero of the (ℓ+1)-variate polyno-

mial

T [X1, . . . , Xℓ, Xr] ≜ F [X1, . . . , Xℓ, Xr]− y
−A[X1, . . . , Xℓ, Xr] · (X1 − z) (26)

However, T [X1, . . . , Xℓ, Xr] cannot identically zero since we have

T [z,X2, . . . , Xℓ, Xr] = F [z,X2, . . . , Xℓ, Xr]− y,

which is non-zero by hypothesis.
Now, let the univariate

t[X] ≜ T [ρ1 ·X + θ1, ρ2 ·X + θ2, . . . , ρℓX + θℓ, ρrX + θr]

of which α1 = α is a root. We note that t[X] is not identically zero w.h.p. as this
would imply t(0) = T (θ1, . . . , θℓ, θr) = 0 which is only possible with negligible
probability by the same argument as in the proof of Theorem 1. This allows
computing α by factoring t[X1].

To conclude the proof, we remark that, if F [z,X2, . . . , Xℓ, Xr] − y is the
zero polynomial, we have F [z, 0, . . . , 0, 0] = y. In particular, for a random tu-
ple (z2, . . . , zℓ, zr) ∈ ℤℓp, we have F [z, z2, . . . , zℓ, zr] − F [z, 0, . . . , 0, 0]. If z is
a random evaluation input, this is only possible with negligible probability if
F [X1, X2, . . . , Xℓ, Xr] ̸= F [X1, 0, . . . , 0, 0]. ⊓⊔
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B.2 Batch Evaluations of KZG with an Extended SRS

We now prove the knowledge-soundness of the batch evaluation protocol of
Boneh et al. [12, Section 4.1] when KZG commitments are used over an ex-
tended SRS for the multivariate PCS of Section 3.2.

The SRS of the scheme is the same as in Section B except that it includes
the description of an additional hash function Hbatch : {0, 1}∗ → ℤp modeled as
a random oracle.

Evalsrs
(
{Ci}ki=1, {Ωi, ti}ki=1, aux

)
: given commitments {Ci}ki=1 to polynomials

{fi[X1]}ki=1 with corresponding vectors of inputs {Ωi = (ωi,1, . . . , ωi,ki)}ki=1

and outputs {ti = (ti,1, . . . , ti,ki)}ki=1 and witnesses aux = (∅, {fi[X1]}ki=1),
return ⊥ if there exists i ∈ [k] such that Ωi ∈ ℤkip contains an element ωi,j
such that fi(ωi,j) ̸= ti,j . Otherwise,

1. For each i ∈ [k], let ti[X1] the unique polynomial of degree ki such that
ti(ωi,j) = ti,j and compute C̃i = Ci · g−ti(α1).

2. Let the sets {Ωi = {ωi,1, . . . , ωi,ki}}ki=1. Let Ω =
⋃k
i=1Ωi and Ω̄i =

Ω \Ωi for each i ∈ [k]. Compute the polynomials z[X1] =
∏
ω∈Ω(X1−ω)

and zi[X1] =
∏
ω∈Ω̄i

(X1 − ω) for each i ∈ [k].

3. Compute ϵ = Hbatch({Ci}ki=1, {Ωi, ti}ki=1) ∈ ℤp.
4. Compute q[X1] =

∑k
i=1 ϵ

i−1 ·zi[X1] ·fi[X1]/z[X1], which is a polynomial
of degree ≤ d̄ since zi[X1] divides z[X1]. Compute a commitment

Cq = gq(α1)

using {g(αi
1)}i∈[0,d] which are contained in {gI}I∈Wd,ℓ

.

5. Compute r = Hbatch({Ci}ki=1, {Ωi, ti}ki=1, Cq) ∈ ℤp.
6. Compute

g[X1] =

k∑
i=1

ϵi−1 · zi(r) · fi[X1]− z(r) · q[X1]

which is the committed polynomial that underlies

Cg = C−z(r)
q ·

k∏
i=1

C̃
ϵi−1·zi(r)
i . (27)

Generate a proof πg ∈ 𝔾 that Cg evaluates to 0 the input r.

Return π = (Cq, πg) ∈ 𝔾2.

Verifysrs
(
{Ci}ki=1, {Ωi, ti}ki=1,π

)
: Given commitments {Ci}ki=1, claimed evalu-

ation input/output vectors {Ωi, ti}ki=1, and a candidate π = (Cq, πg) ∈ 𝔾2,

1. For each i ∈ [k], compute C̃i = Ci · g−ti(α1) using {Ωi, ti}ki=1 as in step
1 of Eval.
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2. Let z[X1] =
∏
ω∈Ω(X1−ω) and zi[X1] =

∏
ω∈Ω̄i

(X1−ω) for each i ∈ [k]

with Ω =
⋃k
i=1Ωi and Ω̄i = Ω \Ωi for each i ∈ [k]. Compute

ϵ = Hbatch({Ci}ki=1, {Ωi, ti}ki=1) ∈ ℤp
r = Hbatch({Ci}ki=1, {Ωi, ti}ki=1, Cq) ∈ ℤp.

and then

Cg = C−z(r)
q ·

k∏
i=1

C̃
ϵi−1·zi(r)
i .

3. Return 1 if
e
(
Cg, ĝ

)
= e(πg, ĝ

α1 · ĝ−r). (28)

and 0 otherwise.

The proof of knowledge soundness proceeds analogously to the one of The-
orem 8 and adapts ideas from [12, Theorem 5]. The main difference is that, in
order to use it in HyperPlonk while preserving straight-line extraction in the
security proof, we need to make sure that the reduction prepares the SRS in the
same way as in the security proof of the multivariate PCS scheme.

Theorem 9. In the AGM+ROM and under the (d̄ℓ, d̄ℓ)-DLOG assumption, the
batch evaluation protocol is an extended knowledge-sound argument of knowledge

of polynomials {Fi ∈ ℤ(≤d̄)
p [X1, . . . , Xℓ, Xr]}ki=1 such that Ci = gFi(α1,...,αℓ,αr)

and Fi(ωi,j , 0, . . . , 0) = ti,j for all i ∈ [k] and j ∈ [ki].

Proof. Assuming that an algebraic adversary A can break knowledge-soundness,
we give a reduction B solving the (dℓ, dℓ)-DLOG problem by computing α ∈ ℤp
from inst =

(
g, {g(αi)}d̄ℓi=1, ĝ, {ĝ(α

i)}d̄ℓi=1

)
.

Algorithm B sets up the structured reference string by choosing vectors
(ρ1, . . . , ρℓ, ρr)

R← ℤℓ+1
p , (θ1, . . . , θℓ, θr)

R← ℤℓ+1
p and implicitly setting αi =

ρi · α+ θi for each i and αr = ρr · α+ θr before simulating pp from inst.
When A halts, it outputs commitment {C}ki=1 and vectors {Ωi, ti}ki=1 to-

gether with a claim that each Ci commits to some fi[X1] ∈ ℤ(≤d̄)
p [X1] such

that fi(ωi,j) = ti,j for each j ∈ [ki], where Ωi = (ωi,1, . . . , ωi,ki) and ti =
(ti,1, . . . , ti,ki). It also outputs a representation of each commitment Ci w.r.t.
generators ({gI}I∈Wd̄,ℓ

, gr). These representations define multivariate polyno-

mials fi[X1, . . . , Xℓ] ∈ ℤ(≤d̄)
p [X1, . . . , Xℓ] and

Fi[X1, . . . , Xℓ, Xr] = fi[X1, . . . , Xℓ] + ri ·Xr,

for some known ri ∈ ℤp, such that we have Ci = gFi(α1,...,αℓ,αr).
Together with its fake proof π = (Cq, πg) ∈ 𝔾2, A also outputs an algebraic

representation of πg, which defines a polynomial

A[X1, . . . , Xℓ, Xr] = a[X1, . . . , Xℓ] + ā ·Xr,
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such that πg = gA(α1,...,αℓ,αr), where a[X1, . . . , Xℓ] ∈ ℤ(≤d̄)
p [X1, . . . , Xℓ] and

ā ∈ ℤp. It similarly provides an algebraic representation of Cq, which defines a
polynomial

Q[X1, . . . , Xℓ, Xr] = q[X1, . . . , Xℓ] + q̄ ·Xr,

such that Cq = gQ(α1,...,αℓ,αr), where q[X1, . . . , Xℓ] ∈ ℤ(≤d̄)
p [X1, . . . , Xℓ] and

q̄ ∈ ℤp.
The verification equation (28) implies

− z(r) ·Q(α1, . . . , αℓ, αr) +

k∑
i=1

ϵi−1 · zi(r) · (Fi(α1, . . . , αℓ, αr)− ti(α1))

= A(α1, . . . , αℓ, αr) · (α1 − r).

This implies that (α1, . . . , αℓ, αr) ∈ ℤℓ+1
p is a zero of

T [X1, . . . , Xℓ, Xr] ≜ −z(r) ·Q[X1, . . . , Xℓ, Xr]

+

k∑
i=1

ϵi−1 · zi(r) · (Fi[X1, . . . , Xℓ, Xr]− ti[X1])

−A[X1, . . . , Xℓ, Xr] · (X1 − r) (29)

If T [X1, . . . , Xℓ, Xr] is a non-zero polynomial, the sought-after α ∈ ℤp is com-
putable as a root of the univariate polynomial

L[X] ≜ T [ρ1 ·X + θ1, . . . , ρℓ ·X + θℓ, ρr ·X + θr]

Indeed, by the same argument as in Theorem 1, if T [X1, . . . , Xℓ, Xr] is not
identically zero, neither is L[X] except with negligible probability.

We now assume that T [X1, . . . , Xr] is identically zero. In particular, we have
T (r, 0, . . . , 0) = 0 and thus

−z(r) ·Q[r, 0, . . . , 0, 0] +

k∑
i=1

ϵi−1 · zi(r) ·
(
Fi[r, 0, . . . , 0, 0]− ti(r)

)
= 0 (30)

Now, if

z[X1] ·Q[X1, 0, . . . , 0, 0] ̸=
k∑
i=1

ϵi−1 · zi[X1] · (Fi[X1, 0, . . . , 0]− ti[X1]),

the Schwartz-Zippel lemma implies that (30) can only hold with probability
d/p since r = Hbatch({Ci}ki=1, {Ωi, ti}ki=1, Cq) is defined after the sets {Ωi, ti}ki=1

(which define z[X], {zi[X], ti[X]}ki=1), the commitments {Ci}ki=1 (which deter-
mine {Fi[X1, . . . , Xℓ, Xr]}ki=1 via their algebraic representation) and Cq (which
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determines Q[X1, X1, . . . , Xℓ, Xr]).
6

We now assume

z[X1] ·Q[X1, 0, . . . , 0, 0] =

k∑
i=1

ϵi−1 · zi[X1] · (Fi[X1, 0, . . . , 0]− ti[X1]), (31)

which implies that the vanishing polynomial z[X1] =
∏
ω∈Ω(X1 − ω) divides

k∑
i=1

ϵi−1 · zi[X1] · (Fi[X1, 0, . . . , 0]− ti[X1]),

where zi[X1] =
∏
ω∈Ω\Ωi

(X1−ω) for each i ∈ [k]. However, if there exists i ∈ [k]

such that Fi[X1, 0, . . . , 0] − ti[X1] does not cancel on Ωi, it implies that z[X1]
does not divide zi[X1] · (Fi[X1, 0, . . . , 0]− ti[X1]). Then, by [30, Claim 4.6], the
equality (31) can only hold with negligible probability k/p over the choice of
ϵ = Hbatch({Ci}ki=1, {Ωi, ti}ki=1), which is chosen uniformly after {Ωi, ti}ki=1 and
the commitments {Ci}ki=1.

This shows that, if there exists an index i ∈ [k] such that the difference
Fi[X1, 0, . . . , 0]− ti[X1] does not cancel on the set Ωi, then T [X1, . . . , Xℓ, Xr] is
non-zero with overwhelming probability, thus allowing B to compute α w.h.p.
by factoring L[X].

Finally, if Fi[X1, 0, . . . , 0]− ti[X1] vanishes on Ωi for all i ∈ [k], then we have
Fi(ωi,j , 0, . . . , 0) = ti,j for each i ∈ [k] and j ∈ [ki], meaning that {Fi}ki=1 are
valid witnesses. ⊓⊔

C More Efficient Simulation-Extractable KZG
Commitments in the Univariate Case

When restricting the scheme of Section 4 to univariate polynomials, we immedi-
ately obtain a simulation-extractable PCS that can be used to build simulation-
extractable SNARKs from univariate PIOPs. In this section, we provide a more
efficient construction in the univariate case. In particular, it can be used to ob-
tain a new simulation-extractable instantiation of Plonk.

Our randomized version of KZG uses the same commitment algorithm as the
one obtained from the homomorphic-to-hiding transformation of Boneh et al.
[12, Appendix B.2]. However, its evaluation proofs are very different.

A commitment to a polynomial f [X] =
∑d
i=0 fi ·Xi is obtained by choosing

γ R← ℤp and computing

C = gγ ·
d+1∏
i=1

g
fi−1

i ,

6 We also assume that the hash value r = Hbatch({Ci}ki=1, {Ωi, ti}ki=1, Cq) is defined
after ϵ = Hbatch({Ci}ki=1, {Ωi, ti}ki=1) but this can be enforced by having the former
hash query trigger the latter.
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which we interpret (as also done in [12]) as a deterministic KZG commitment
C = gF (α) to F [X] = γ + X · f [X]. We use a different evaluation protocol in
order to prove that y = f(z) for a given input z ∈ ℤp. Instead of masking f [X]
with a random committed polynomial s[X], we prove knowledge of γ ∈ ℤp such

that C · g−γ is a commitment to a polynomial F0 ≜ F [X] − γ = X · f [X] for
which F0(z) = z · y.

We also need to prove that F0[X] has no degree-0 monomial (i.e., F0(0) = 0),
which is necessary to convince the verifier that C is really a deterministic KZG
commitment to a polynomial of the form F [X] = γ+X ·f [X]. To this end, we use
the batch evaluation protocol of [39, Section 3.4] and prove that F0[X]− y ·X is
divisible by X ·(X−z) (note that r[X] = y ·X is the unique degree-1 polynomial
such that r(z) = z · y and r(0) = 0). In the evaluation protocol, the prover thus
generates a proof of knowledge of (γ, π) ∈ ℤp × 𝔾 such that

e(C · g−γ · g−y1 , ĝ) = e(π, ĝ2 · ĝ−z1 )

which can be done using a standard Σ-protocol. The resulting NIZK proof con-
sists of one element of 𝔾 and two elements of ℤp. In comparison, the technique of
Boneh et al. [12, Appendix B] requires evaluation proofs consisting of 3 elements
of 𝔾 and 3 elements of ℤp.

C.1 Description

CRS-Gen(1λ, 1d): On input of a security parameter λ and the maximal degree
of committed polynomials d ∈ poly(λ), do the following:

1. Choose asymmetric bilinear groups (𝔾, �̂�,𝔾T ) of prime order p > 2l(λ),

for some function l : ℕ→ ℕ, and g R← 𝔾, ĝ R← �̂�.
2. Pick a random α R← ℤp and compute g1, . . . , gd+1 ∈ 𝔾, where gi = g(α

i)

for each i ∈ [d+ 1] and ĝ1 = ĝα, ĝ2 = ĝ(α
2).

3. Choose a hash function H : {0, 1}∗ → ℤp modeled as a random oracle.

The public parameters are defined to be

srs =
(
(𝔾, �̂�,𝔾T ), g, {gi}i∈[d+1], ĝ, ĝ1, ĝ2, H

)
Comsrs(f): To commit to a polynomial f [X] =

∑d
j=0 fj ·Xj ∈ ℤ(≤d)

p [X], choose

a random γ R← ℤp and compute

C = gγ ·
d+1∏
j=1

g
fj−1

j

Return C ∈ 𝔾 and the opening information aux = (γ, f) ∈ ℤp ×ℤ(≤d)
p [X].

Evalsrs
(
C, z, y, aux, lbl

)
: given a commitment C, a witness aux = (γ,f), an input

z ∈ ℤ∗
p and an output y = f(z) ∈ ℤp, return ⊥ if y ̸= f(z). Otherwise,
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1. Let the polynomials F [X] = X ·f [X]+γ and F0[X] = F [X]−γ. Compute
a batch proof π that F0(z) = z · y and F0(0) = 0, which is obtained by

computing q[X] =
∑d−1
i=0 qi ·Xi such that

F0[X]− y ·X
X · (X − z)

= q(X)

and then

π =

d−1∏
i=0

gqii = gq(α)

Note that π ∈ 𝔾 satisfies

e(C · g−y1 , ĝ) = e(g, ĝ)γ · e(π, ĝ2 · ĝ−z1 ) (32)

2. Generate a NIZK proof of knowledge of (γ, π) ∈ ℤp × 𝔾 satisfying (32).
Namely,

a. Choose rγ
R← ℤp, Rπ R← 𝔾 and compute

R = e(g, ĝ)rγ · e(Rπ, ĝ2 · ĝ−z1 )

b. Compute a challenge c = H(lbl, C, y, z, R) ∈ ℤp.
c. Compute the response

sγ = rγ + c · γ
Sπ = Rπ · πc

Return the proof
π = (c, sγ , Sπ) ∈ ℤ2

p × 𝔾. (33)

Verifysrs
(
C, y, z,π

)
: Given a commitment C ∈ 𝔾, an input z ∈ ℤ∗

p, a claimed
evaluation y ∈ ℤp, and a candidate proof π, return 0 if the latter does not
parse properly as in (33). Otherwise,

1. Compute

R = e(g, ĝ)sγ · e(Sπ, ĝ2 · ĝ−z1 ) · e(C · g−y1 , ĝ)−c. (34)

2. Return 1 if c = H(lbl, C, y, z, R) ∈ ℤp and 0 otherwise.

Correctness. The correctness of (34) follows from a standard application of
Schnorr-like proofs [50] of homomorphism pre-images. In details the verifier com-
putes

e(g, ĝ)sγ · e(Sπ, ĝ2 · ĝ−z1 ) · e(C · g−y1 , ĝ)−c

= e(g, ĝ)rγ+c·γ · e(Rπ · πc, ĝ2 · ĝ−z1 ) ·
(
e(g, ĝ)γ · e(π, ĝ2 · ĝ−z1 )

)−c
= e(g, ĝ)rγ · e(Rπ, ĝ2 · ĝ−z1 ) = R

where the first equality stems from (32).

45



Efficiency. We note that the prover does not have to compute any pairing as it
can implicitly define Rπ = gtπ , for a randomly chosen tπ

R← ℤp, and compute

R = e(g, ĝ)rγ · e(g, ĝ2)tπ · e(g, ĝ1)−z·tπ

at step 2.a (note that e(g, ĝ2) and e(g, ĝ1) can be pre-computed) and Sπ = gtπ ·πc
at step 2.c. The verifier only needs to compute 3 exponentiations (regardless of
the degree of the polynomial) and 2 pairings since e(g, ĝ) can be pre-computed.

Compared to the original randomized KZG commitment of [39, Section 3.3]
(which is recalled in Supplementary Material C.3), we can reduce the size of
the SRS and the number of exponentiations of the Com and Eval algorithms
by a factor 2. Although it does not change the asymptotic complexity, it is
significant since the SRS size of Plonk (which is roughly the degree of committed
polynomials) is linear in the maximal size of circuits, where the number of gates
can be as large as 225 in some applications.

C.2 Security Proofs

The zero-knowledge property holds in the random oracle model and can be
proven by relying on the HVZK property of the underlying Σ-protocol. We omit
the straightforward proof.

Theorem 10. The construction provides statistical zero-knowledge in the ROM.

We now prove that the evaluation protocol of our modified KZG scheme
provides simulation-extractability. By adapting ideas from [29], our proof can
exploit the features of the algebraic group model to perform straight-line ex-
traction (i.e., without rewinding) in the proof of knowledge. As done in [29] for
Schnorr signatures [50], we thus obtain a tighter security proof by avoiding the
use of the forking lemma [48].

Theorem 11. Under the (d + 1, 2)-DLOG assumption, the scheme provides
simulation-extractability in the algebraic group model and in the random ora-
cle model.

Proof. In the AGM+ROM model, we show that, unless the (d + 1, 2)-DLOG
assumption is false, there exists an extractor that can extract a witness from
any adversarially-generated proof π and statement (C, z, y). Specifically, we give

an algorithm B that can either extract a witness (γ,f) ∈ ℤp × ℤ(≤d)
p [X] with

y = f(z) or solve a (d+ 1, 2)-DLOG instance by computing α ∈ ℤ∗
p from(

g, {gi = g(α
i)}d+1

i=1 , ĝ, ĝ1 = ĝα, ĝ2 = ĝ(α
2)
)
.

The given problem instance {(g, g1, . . . , gd+1), ĝ, ĝ1, ĝ2} is used to define the CRS
pp. Our reduction/extractor B then interacts with A as follows.

Queries: When A makes a random oracle query, B returns the previously de-
fined value if it exists. Otherwise, it returns a random element in the appropriate
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range.
At any time, A can also choose a commitment C ∈ 𝔾, a label lbl, and a

pair (y, z) ∈ ℤ2
p and ask for a simulated proof that C commits to some poly-

nomial f ∈ ℤ(≤d)
p [X] such that f(z) = y. Then, B simulates a proof using the

standard simulation technique of Fiat-Shamir-like proofs.7 Namely, it runs the
HVZK simulator of the Σ-protocol, which samples c, sγ , t0, . . . , td+1

R← ℤp, and
computes

Sπ =

d+1∏
i=0

gti

R = e(g, ĝ)sγ · e(Sπ, ĝ2 · ĝ−z1 ) ·
(
e(C, ĝ)

e(g1, ĝ)y

)−c

before programming c = H(lbl, C, y, z, R). If H was already defined for the input
(lbl, C, y, z, R), then B aborts. However, since R is uniformly distributed over 𝔾T ,
this can only happen with probability (QH+QS)/p if QH (resp. QS) denotes the
number of random oracle (resp. simulation) queries. If the simulator does not
fail, the proof π = (c, sγ , Sπ) has the same distribution as a proof that would be
generated using the real witnesses (note that valid witnesses always exist since
𝔾 is cyclic and g is a generator). Consequently, the simulation is perfect, unless a
collision occurs on random oracles in one of the simulation queries. If QS (reps.
QH) denotes the number of queries made by A to the simulator (resp. to the
random oracle), this happens with probability at most (QS +QH) ·QH/p.

Importantly, when A queries a hash value H(lbl, C, y, z, R), it must provide

an algebraic representation {wi}d+1
i=0 of C as C =

∏d+1
i=0 g

wi
i as well as an algebraic

representation {(αj , βj , δj)}d+1
j=0 of R as

R =

d+1∏
j=0

e(gj , ĝ)
αj ·

d+1∏
j=0

e(gj , ĝ1)
βj ·

d+1∏
j=0

e(gj , ĝ2)
δj (35)

where we define g0 = g. We note that, although the representation provided by

A can also depend on factors {e(S(i)
π , ĝb)}b∈[0,2] for which S

(i)
π were part of earlier

simulated proofs, the simulator always computes S
(i)
π by sampling its algebraic

representation w.r.t. (g, g1, . . . , gd+1), thus allowing B to infer a representation
that only depends on {e(gi, ĝb)}i∈[0,d+1],b∈[0,2].

Output: When A halts, it outputs a statement (C, y, z) ∈ 𝔾 × ℤ2
p, a label lbl,

together with a proof π =
(
c, sγ , Sπ

)
∈ ℤ2

p × 𝔾 and representations {wi}d+1
i=0 ,

{ψi}d+1
i=0 such that C =

∏d+1
i=0 g

wi
i , Sπ =

∏d+1
i=0 g

ψi

i . If
∑d
i=0 wi+1 · zi = y, then

B is done since it can simply output a valid witness (f [X], γ), where f [X] =∑d
i=0 wi+1 ·Xi and γ = w0. From here on, we thus assume that y ̸=

∑d
i=0 wi ·zi.

7 In the AGM, A must also provide an algebraic representation of C w.r.t. previously
observed elements of 𝔾. However, we do not use it for the simulation.
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Since π is a valid proof, we must have c = H(lbl, C, y, z, R), where

R = e(g, ĝ)sγ · e(Sπ, ĝ2 · ĝ−z1 ) ·
(
e(C, ĝ)

e(g1, ĝ)y

)−c

(36)

If A did not query H on (lbl, C, y, z, R), then B fails. However, in this case,
verification would only succeed with probability 1/p. We henceforth assume that
A queried H on the input (C, y, z, R), where R is obtained as per (36).

We now distinguish two cases: (i) (lbl, C, y, z, c) was recycled from simulation
query for which the output was (c, s′γ , S

′
π); (ii) (lbl, C, y, z, c) is a fresh tuple.

In case (i), A’s winning conditions imply (s′γ , S
′
π) ̸= (sγ , Sπ). So, unless a

collision occurs on H (which occurs with negligible probability (QH +QS)
2/p),

we must have

R = e(g, ĝ)s
′
γ · e(S′

π, ĝ2 · ĝ−z1 ) ·
(
e(C, ĝ)

e(g1, ĝ)y

)−c

= e(g, ĝ)sγ · e(Sπ, ĝ2 · ĝ−z1 ) ·
(
e(C, ĝ)

e(g1, ĝ)y

)−c

so that

e(g, ĝ)sγ−s
′
γ · e

(
Sπ
/
S′
π, ĝ2 · ĝ−z1

)
= 1𝔾T

Since B knows a representation (t0, . . . , td+1) of S
′
π =

∏d+1
i=0 g

ti
i (which was chosen

in a simulation query) and the representation {ψi}d+1
i=0 of Sπ =

∏d+1
i=0 g

ψi

i (which
was revealed by A), it obtains a non-zero polynomial

Q[X] = (sγ − s′γ) +
(
X2 − z ·X

)
·
( d+1∑
i=0

(ψi − ti) ·Xi
)

of which α ∈ ℤp is a root.
In case (ii), B recalls the algebraic representation of R (35) that must have

been supplied by A when the hash query H(C, y, z, R) was made. From the
corresponding {(αj , βj , δj)}d+1

j=0 , B can compute a triple (c̄, s̄γ , S̄π) ∈ ℤ2
p×𝔾 such

that

R = e(g, ĝ)s̄γ · e(S̄π, ĝ2 · ĝ−z1 ) · e(C · g−y1 , ĝ)−c̄ (37)
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This triple can be obtained via a representation {θj}d+1
j=0 of S̄π =

∏d+1
j=0 g

θj
j w.r.t.

the generators (g, g1, . . . , gd+1). Such a representation must satisfy

R = e(g, ĝ)s̄γ · e
( d+1∏
j=0

g
θj
j , ĝ2 · ĝ

−z
1

)
· e(

d+1∏
j=0

g
wj

j · g
−y
1 , ĝ)−c̄

= e(g, ĝ)s̄γ · e
( d+1∏
j=0

g
θj
j , ĝ2

)
· e
( d+1∏
j=0

g
−z·θj
j , ĝ1

)
· e(

d+1∏
j=0

g
wj

j · g
−y
1 , ĝ)−c̄ (38)

= e(g, ĝ)s̄γ · e
(
g−zθ01 ·

d+1∏
j=2

g
−z·θj−1+θj−2

j , ĝ
)

· e(gd+1, ĝ1)
−z·θd+1+θd · e(gd+1, ĝ2)

θd+1 · e(
d+1∏
j=0

g
wj

j · g
−y
1 , ĝ)−c̄

= e(g, ĝ)s̄γ−c·w0 · e
(
g
−z·θ0−c̄·(w1−y)
1 ·

d+1∏
j=2

g
−z·θj−1+θj−2−c̄·wj

j , ĝ
)

· e(gd+1, ĝ1)
−z·θd+1+θd · e(gd+1, ĝ2)

θd+1

while (35) can be written

R = e
( d+1∏
i=0

gαi
i , ĝ

)
· e
( d+1∏
i=0

gβi

i , ĝ1
)
· e
( d+1∏
i=0

gδii , ĝ2
)

= e
(
gα0 · gα1+β0

1 ·
d+1∏
i=2

g
αi+βi−1+δi−2

i , ĝ) · e(gd+1, ĝ1)
βd+1+δd · e(gd+1, ĝ2)

δd+1

(39)

By identifying the representations of R in (38) and (39), we see that B can obtain
exactly one representation (θ0, . . . , θd+1) ∈ ℤd+2

p of Sπ and the corresponding
(sγ , c) ∈ ℤ2

p by solving the linear system



1 −w0

y − w1 −z
−w2 1 −z
−w3 1 −z
...

. . .
. . .

−wd+1 1 −z
1 −z

1


·



s̄γ
c̄
θ0
θ1
...
...
θd
θd+1


=



α0

α1 + β0
α2 + β1 + δ0

...

...
αd+1 + βd + δd−1

βd+1 + δd
δd+1


,
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which is possible since the determinant is y −
∑d
i=0 wi+1 · zi ̸= 0. This allows B

to compute (c̄, s̄γ , S̄π) ∈ ℤ2
p × 𝔾 such that

e(g, ĝ)s̄γ · e(S̄π, ĝ2 · ĝ−z1 ) ·
(
e(C, ĝ)

e(g1, ĝ)y

)−c̄

= e(g, ĝ)sγ · e(Sπ, ĝ2 · ĝ−z1 ) ·
(
e(C, ĝ)

e(g1, ĝ)y

)−c

. (40)

Moreover, with overwhelming probability 1 − 1/p, we have c̄ ̸= c since c =
H(lbl, C, y, z, R) is uniformly distributed over ℤp and chosen after R, which

uniquely determines c̄ if y ̸=
∑d
i=0 wi+1 ·zi. This implies that γ ≜ (sγ−s̄γ)/(c̄−c)

and π ≜ (Sπ · S̄−1
π )1/(c̄−c) are valid witnesses for the evaluation relation (32).

Now, we observe that B can compute a representation {ϕi}d+1
i=0 of the ex-

tracted π =
∏d+1
i=0 g

ϕi

i (recall that A revealed {ψi}d+1
i=0 such that Sπ =

∏d+1
i=0 g

ψi

i

and B previously computed {θi}d+1
i=1 such that S̄π =

∏d+1
i=0 g

θi
i ). Since A also

revealed {wi}d+1
i=0 such that C =

∏d+1
i=0 g

wi
i , we observe from (32) that α ∈ ℤp is

a root of

P [X] = −(
d+1∑
i=0

wi ·Xi) + y ·X + γ + (

d+1∑
i=0

ϕi ·Xi) · (X2 − z ·X)

= (γ − w0) + (−w1 − z · ϕ0 + y) ·X +

d+1∑
i=2

(−wi + ϕi−2 − z · ϕi−1) ·Xi

+ (ϕd − z · ϕd+1) ·Xd+2 + ϕd+1 ·Xd+3

so that B can compute α ∈ ℤp by factoring P [X] as long as it is a non-zero

polynomial. We claim that, if y ̸=
∑d
i=0 wi+1 · zi, then P [X] is indeed non-

zero. Indeed, if P [X] was identically zero, then we would have γ = w0 and
(ϕ0, ϕ1, . . . , ϕd+1) would satisfy the overdetermined linear system

−z
1 −z

1 −z
. . .

. . .

1 −z
1


︸ ︷︷ ︸

∈ ℤ(d+3)×(d+2)
p

·


ϕ0
ϕ1
...

ϕd+1

 =



w1 − y
w2

...
wd
wd+1

0
0


, (41)

which is impossible if y ̸=
∑d
i=0 wi+1 · zi since (1, z, z2, . . . , zd+1, zd+2) is in the

left-kernel of the matrix in (41). ⊓⊔

C.3 Comparison With Other Randomized KZG Commitments

As pointed out by Kohlweiss et al. [41], randomized versions of KZG com-
mitments are necessary to compile certain polynomial IOPs into simulation-
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extractable SNARKs. They suggested to use the perfectly hiding KZG commit-
ment of Kate et al. [39] in order to obtain a simulation-extractable variant of
Plonk using their framework.

The Original Randomized KZG. In the original randomized KZG commit-
ment [39, Section 3.3], the structured reference string contains group elements

({gi = g(α
i)}di=0, {ĝi = ĝ(α

i)}i=0,1) and ({hi = h(α
i)}di=0, {ĥi = ĥ(α

i)}i=0,1),

where g, h ∈ 𝔾 and ĝ, ĥ ∈ �̂� are generators. A perfectly hiding commitment to
a univariate f [X] =

∑d
i=0 fi · Xi is obtained by choosing a random degree-d

polynomial t[X] =
∑d
i=0 ti ·Xi and computing

C = gf(α) · ht(α) =
d∏
i=0

gfii ·
d∏
i=0

htii

In order to prove that the committed f [X] satisfies y = f(z) for a given input
z ∈ ℤp, the committer can compute the degree-(d − 1) polynomials qf [X] =
(f(X)−y)/(X−z), qt[X] = (t[X]−t(z))/(X−z), which can be used to compute

π = gqf (α) · hqt(α)

from the group elements {g(αi)}d+1
i=0 , {h(α

i)}d+1
i=0 contained in the CRS. The eval-

uation proof consists of a pair (π, t(z)) ∈ 𝔾 × ℤp and is verified by testing the
equality

e
(
C · g−y · h−t(z), ĝ

)
= e(π, ĝ1 · ĝ−z). (42)

This construction is perfectly hiding and still provides knowledge-soundness un-
der the (d, 1)-DLOG assumption in the algebraic group model. It can also be
adapted to prove degree bounds as described in [42]. Unfortunately, it remains
malleable. For example, an adversary can observe a commitment C to f [X] and,
without knowing anything about f , it can compute C ·gω for an arbitrary ω ∈ ℤp
of its choice. Then, a proof (π, t(z)) that y = f(z) is also a proof that f [X] + ω
evaluates to y + ω for the input z.

Despite its malleability, Kohlweiss et al. [41] showed that the above variant
of KZG commitments can still be used8 in order to compile Plonk [30] into a
simulation-extractable SNARK using their framework. However, this comes at
the cost of doubling the size of the common reference string (which is already
very large since the parameter d is the maximal size of proven arithmetic cir-
cuits in Plonk). Our construction of Section C.1 can achieve the same result
without increasing the SRS size nor the number of exponentiations at the com-
mitter/prover.

In [19], it was pointed out that the degree of t[X] only needs to be as large as
the number of polynomial evaluations obtained by the verifier, which is small for

8 The reason is that it provides “quasi-unique proofs”, which means that it is compu-
tationally hard to find two distinct proofs for the same evaluation y = f(x) and the
same commitment C.
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several SNARKs, including Marlin [19]. Still, the number of exponentiations and
the SRS size both depend on the maximal number of polynomial evaluations,
which is specific to the compiled PIOP. When the number of proven evaluations
of any given commitment is not known ahead of time, the batch evaluation pro-
tocol of [12, Section 4.1] can be used to prove multiple evaluations at once by
only revealing one evaluation of a linear combination of the individual polyno-
mials. However, this require to prove all these evaluations at once.

In contrast, our scheme does not require to increase the SRS size based on a
pre-determined maximal number of polynomial evaluations. The SRS can thus
be set up without knowing in advance which specific PIOP will be used while sup-
porting proofs for individual evaluations. Only the maximal circuit size should
be known ahead of time. As another advantage, its evaluation protocol is zero-
knowledge and immediately provides a simple trapdoor-less simulator.

The BDFG Variant. Boneh, Drake, Fisch and Gabizon [12, Appendix B] de-
scribed a generic compiler that turns any (not necessarily hiding) homomorphic
PCS scheme into a hiding PCS with a zero-knowledge evaluation protocol. Their
compiler proceeds in two steps. In a first step, it builds a hiding PCS (where the
evaluation protocol is not zero-knowledge) from an additively homomorphic one.
In a second step, it turns a hiding PCS into a PCS scheme where the evaluation
protocol is zero-knowledge.

The BDFG compiler is designed to work for any additively homomorphic
PCS. When it is applied to deterministic KZG commitments, it intuitively pro-
ceeds as follows.

The prover commits to f [X] =
∑d+1
i=0 fi ·Xi by choosing a random r R← ℤp

and computing

C = gr ·
d+1∏
j=1

g
fj−1

j

as a deterministic commitment to F [X] = r +X · f [X].
In the evaluation protocol, the prover first computes a commitment

Cα = gαr ·
d+1∏
j=1

g
αj−1

j

to a random polynomial α[X] with the randomness αr
R← ℤp and sends both

yα = α(z) and Cα to the verifier. The verifier then homomorphically computes
Cs = Cα ·Cc, which is a randomized KZG commitment to s[X] = α[X]+c ·f [X].
Next, the prover and the verifier run a basic (non-zero-knowledge) evaluation
protocol showing that s[X] evaluates to s(z) = yα + c · y.9 The basic evalua-
tion protocol for s[X] proceeds by having the prover send a non-hiding KZG

commitment C̄s =
∏d
j=0 g

sj
j to s[X] and prove that the committed polynomial

9 This basic evaluation protocol does not have to be ZK since it is applied to s[X],
where a one-time masking polynomial α[X] hides f [X].
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evaluates to yα + c · y. However, the prover has to convince the verifier that C̄s
is consistent with the homomorphically evaluated Cs = gsr ·

∏d
j=1 g

sj−1

j . To this

end, it sends sr = αr + c · r of Cs = gsr and proves that C̄s and C ′
s ≜ Cs · g−sr

are deterministic KZG commitments to s[X] and X ·s[X], respectively. This last
step is achieved by showing that they evaluate to s(ρ) and ρ · s(ρ) for a random
ρ ∈ ℤp. The Schwartz-Zippel lemma ensures that this happens with negligible
probability if C̄s is not consistent with C ′

s.
It is possible to optimize the protocol use the batched evaluation protocol

of [12, Appendix C.2] which allows proving multiple evaluations for multiple
polynomials using a single group element. This batched evaluation protocol can
be used to simultaneously prove 3 evaluations for the polynomials s̄[X] and
s[X] − sr and the evaluation points (z, ρ). Still, even in this space-optimized
variant, each proof consists of 3 elements of 𝔾 and 4 elements of ℤp.

The Kohrita-Towa/Zhang et al. Variant. In [42, Section 3.5.3], Kohrita and
Towa considered a randomized variant of KZG which is obtained by restricting
the scheme of Zhang et al. [56] to univariate polynomials. As in our scheme, the
committer’s randomness consists of a constant number of field elements. Their
construction has randomizable proofs and is thus not simulation-extractable.
Their scheme has slightly shorter proofs (made of 2 elements of 𝔾) than our
univariate PCS, but requires 3 pairing evaluations to verify. In the scheme of
Section C.1, evaluation proofs only cost 2 pairings to verify and consist of one
element of 𝔾 and 2 scalars in ℤp.

D Deferred Proofs for the Instantiation of HyperPlonk

D.1 Proof of Theorem 4

Proof. We describe an algorithm B that interacts with a possibly cheating prover
A and either extracts a witness (using the standard extractor enabled by the
AGM) or breaks the knowledge-soundness of the underlying (univariate or mul-
tivariate) polynomial commitment schemes in case knowledge extraction fails.

At the outset of the game, B prepares the SRS as in the PCS scheme of
Section 4.

When the adversary A halts, it outputs a proof π =
(
ĈM , Ĉv,πzero

)
, where

πzero =
(
Ca, ar, ya, {mi,r, σi,r}2i=0, {si,r}3i=1, {vr,b, vb,r}b∈{0,1},

{Cθ,i, θ̄i,0, θ̄i,1}i∈[µ],πbatch,πr

)
for a statement (𝕚,𝕩) of its choice, where 𝕚 = C uniquely determines circuit-
dependent verifier parameters vp.10 Since A is algebraic, it also outputs repre-

10 We note that vp is generated by B since, in the knowledge-soundness experiment, it
is computed by the verifier in the pre-processing phase. So, we may assume that B
knows an opening of all commitments contained in vp.

53



sentations of {ĈM,i}2i=0 and Ĉv w.r.t. the group elements(
ĝr, {ĝI}I∈W1,ℓ+1

,
{
ĝ(α1+αµ+1)

i·αµ·(αµ−1)
}3
i=0

)
as well as a representation of Ca w.r.t. {gI}I∈Wd̄,ℓ

. From these algebraic represen-
tations, the knowledge extractor B can compute the (ℓ+ 1)-variate polynomials

FM,i[X1, . . . , Xℓ, Xr] =Mi[X1, . . . , Xℓ] +RM,i[X1 +Xµ+1] ·Xµ · (Xµ − 1)︸ ︷︷ ︸
≜ M̄i[X1,...,Xℓ]

+rM,i ·Xr

(43)

Fv[X1, . . . , Xℓ, Xr] = V [X1, . . . , Xℓ] +Rv[X1 +Xµ+1] ·Xµ · (Xµ − 1)︸ ︷︷ ︸
≜ V̄ [X1,...,Xℓ]

+rv ·Xr

such that

ĈM,i = ĝFM,i(α1,...,αℓ,αr) ∀i ∈ [0, 2],

Ĉv = ĝFv(α1,...,αℓ,αr),

for ℓ-variate M0,M1,M2, V ∈ ℤ(≤1)
p [X1, . . . , Xℓ] and univariate RM,0, RM,1,

RM,2, Rv ∈ ℤ(≤3)
p [X] (note that the degree bounds are enforced by the high-

est powers of each αi that are available in the exponent in srs). Let also

A[X1, . . . , Xℓ, Xr] = a[X1, . . . , Xℓ] + ra ·Xr

such that Ca = ga(α1,...,αℓ,αr) and a[X1, . . . , Xℓ] ∈ ℤ(≤d̄)
p [X1, . . . , Xℓ]. Let also

the polynomials {Θi[X1, . . . , Xℓ, Xr]}µi=1 that A also reveals via the algebraic
representation of Cθ,i which satisfy Cθ,i = gΘi(α1,...,αℓ,αr).

Unless A was able to break the knowledge-soundness of the batch evaluation
proofs of the univariate PCS, the following equalities hold

Θi(0, 0, . . . , 0, 0) = θ̄i,0 Θi(1, 0, . . . , 0, 0) = θ̄i,1 ∀i ∈ [µ],

Θi(ri, 0, . . . , 0, 0) = θ̄i−1,0 + θ̄i−1,1 ∀i ∈ [2, µ],

where ri is computed as in (19). Moreover, unless A was able to break the
knowledge-soundness of the multivariate PCS,11 we have

M̄i(r1, . . . , rµ, xℓ) = mi,r ∀i ∈ [0, 2], ∀xℓ ∈ ℤp.

and

sσ(r1, . . . , rµ, ⟨i⟩) = σi,r Si(r1, . . . , rµ) = si,r.

11 The reduction from the security of univariate and multivariate PCS is straightfor-
ward since they use the same SRS structure and their security proof simulates them
in the same way.
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Since (r1, . . . , rµ) was a random input, the polynomials {M̄i}2i=0 must be µ-
variate (i.e., independent of the variable Xℓ) with overwhelming probability by
the same argument as in the proof of Theorem 1.

Under the assumption that the multivariate PCS is knowledge-sound, we also
have

V̄ (r1, . . . , rµ, b) = vr,b ∀b ∈ {0, 1}
V̄ (b, r1, . . . , rµ) = vb,r ∀b ∈ {0, 1} (44)

V̄ (1, . . . , 1, 0) = 1,

and
a[r1, . . . , rµ,x] = ar ∀x ∈ ℤp. (45)

Note that (45) implies a[r1, . . . , rµ, Xµ+1] − a[r1, . . . , rµ, 0] for a random input
r = (r1, . . . , rµ). By Schwartz-Zippel, this only happens with negligible prob-
ability if a[X1, . . . , Xµ, Xµ+1] − a[X1, . . . , Xµ, 0] is not identically zero. Then,
(45) implies that a[X1, . . . , Xℓ] only depends on (X1, . . . , Xµ) with overwhelm-
ing probability.

Let the polynomial ṽ[X1, . . . , Xµ+1] = V [X1, . . . , Xµ+1] defined in (43), which
is multilinear and agrees with V̄ [X1, . . . , Xµ+1] on Bµ × ℤp. For the variables
X = (X1, . . . , Xµ), if we now define the µ-variate polynomials

Q1[X] = v̄[1,X]− v̄[X, 0] · v̄[X, 1]

Q2[X] =

2∏
i=0

(
M̄i[X] + β2 · sid[X, ⟨i⟩] + β1

)
(46)

− v̄[0,X] ·
2∏
i=0

(
M̄i[X] + β2 · sσ[X, ⟨i⟩] + β1

)
f [X] = S1[X] ·

(
M̄0[X] + M̄1[X]

)
(47)

+ S2[X] ·
(
M̄0[X] · M̄1[X]

)
+ S3[X] ·G

(
M̄0[X], M̄1[X]

)
− M̄2[X] + I[X],

and

F [X] = f [X] + ζ1 ·Q1[X] + ζ2 ·Q2[X]

the last verification check ensures that

Θ1(r1, 0, . . . , 0) = F (r1, . . . , rµ) · eq(γ1,...,γµ)(r1, . . . , rµ) + ξ · a(r1, . . . , rµ) (48)

Since r1 is chosen uniformly after (rj)
µ
j=2, (48) implies

Θ1[X, 0, . . . , 0] = F [X, r2, . . . , rµ] · eq(γ1,...,γµ)[X, r2, . . . , rµ] + ξ · a[X, r2, . . . , rµ]

with overwhelming probability. By inductively applying the Schwartz-Zippel
lemma, the soundness analysis of the sumcheck protocol then yields∑

x∈Bµ

(
F (x) · eqγ(x) + ξ · a(x)

)
= ξ · ya (49)
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with overwhelming probability ≥ 1− µ · d/p over the random choice of (ri)i∈[µ].
In details, since r2 was chosen uniformly after (ri)i≥3, the condition

Θ2(r2, 0, . . . , 0) = θ2 ≜ θ̄1,0 + θ̄1,1 = Θ1(0, 0, . . . , 0) +Θ1(1, 0, . . . , 0)

= F [0, r2, . . . , rµ] · eqγ(0, r2, . . . , rµ) + ξ · a(0, r2, . . . , rµ)
+ F [1, r2, . . . , rµ] · eqγ(1, r2, . . . , rµ) + ξ · a(1, r2, . . . , rµ)

implies

Θ2[X, 0, . . . , 0] = F [0, X, r3, . . . , rµ] ·eqγ [0, X, r3, . . . , rµ]+ξ ·a[0, X, r3, . . . , rµ]
+ F [1, X, r3, . . . , rµ] · eqγ [1, X, r3, . . . , rµ] + ξ · a[1, X, r3, . . . , rµ]

except with probability d/p over the choice of r2. By induction, since each ri is
chosen uniformly after (rj)j>i, the equality

Θi(ri, 0, . . . , 0) = θi ≜ θ̄i−1,0 + θ̄i−1,1 = θi−1(0, 0, . . . , 0) + θi−1(1, 0, . . . , 0)

=
∑

b∈Bi−2

(
F (b, 0, ri, . . . , rµ) · eqγ(b, 0, ri, . . . , rµ) + ξ · a(b, 0, ri, . . . , rµ)

)
+

∑
b∈Bi−2

(
F (b, 1, ri, . . . , rµ) · eqγ(b, 1, ri, . . . , rµ) + ξ · a(b, 1, ri, . . . , rµ)

=
∑

b∈Bi−1

(
F (b, ri, . . . , rµ) · eqγ(b, ri, . . . , rµ) + ξ · a(b, ri, . . . , rµ)

)
(50)

implies w.h.p. the polynomial identity

Θi[X, 0, . . . , 0]

=
∑

b∈Bi−1

(
F [b, X, ri+1, . . . , rµ]·eqγ [b, X, ri+1, . . . , rµ]+ξ ·a[b, X, ri+1, . . . , rµ]

)
(51)

Indeed, if we call Ei the event that (50) holds when (51) does not, we have
Pr[Ei] ≤ d/p. Together with the condition

ξ · ya = θ̄µ,0 + θ̄µ,1 = θµ(0, 0, . . . , 0) + θµ(1, 0, . . . , 0)

(which is enforced by step 4 of Verify) and since (51) implies in particular
Θµ[X, 0, . . . , 0] =

∑
b∈Bµ−1

(
f [b, X] · eqγ [b, X] + ξ · a[b, X]

)
, this eventually im-

plies the equality (49) with soundness error ≤ µ · d/p. More precisely, let Fi the
event that the i-th polynomial identity (51) does not hold but the first i−1 ones

do (i.e., Fi = Ei∧
∧i−1
j=1(¬Ej)). The probability Pr[F ] over the random choice of

(r1, . . . , rµ) that (49) is not satisfied although the sumcheck verifications succeed
can be bounded as Pr[F ] ≤

∑µ
i=1 Pr[Fi] ≤ µ · d/p.

Given that the random oracle output

ξ = Hξ(𝕩, vp, {ĈM,i}2i=0, Ĉv, Ca, ya, (ζ1, ζ2), (β1, β2),γ) ∈ ℤ∗
p
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was defined after ya and the polynomials F [X], eqγ [X] and a[X], it comes that
(49) implies

∑
x∈Bµ

F (x) · eqγ(x) = 0 and ya =
∑

x∈Bµ
a(x) unless

ξ =
( ∑
x∈Bµ

F (x) · eqγ(x)
)/(

ya −
∑
x∈Bµ

a(x)
)
,

which is only possible with probability 1/(p− 1).
Then, by applying Schwartz-Zippel again as in the proof [18, Theorem 3.2],

the equality
∑

x∈Bµ
F (x) · eqγ(x) = 0 in turn implies that F (x) = 0 for all

x ∈ Bµ with all but negligible probability.

Since (ζ1, ζ2) = Hζ(𝕩, vp, {ĈM,i}2i=0, Ĉv) ∈ ℤ2
p was chosen after {FM,i}2i=0

and FV (which are defined via the algebraic representations of ({ĈM,i}2i=0, Ĉv)
and uniquely determine Q1[X], Q2[X] and f [x] in (46)), the condition

F (x) = 0 ∀x ∈ Bµ

implies (with overwhelming probability over the choice of (ζ1, ζ2)) that the fol-
lowing equalities hold for all x ∈ Bµ:

ṽ[1, X1, . . . , Xµ] = ṽ[X1, . . . , Xµ, 0] · ṽ[X1, . . . , Xµ, 1]

ṽ[0, X1, . . . , Xµ] =

∏2
i=0

(
M̄i[X1, . . . , Xµ] + β2 · sid[X1, . . . , Xµ, ⟨i⟩] + β1

)∏2
i=0

(
M̄i[X1, . . . , Xµ] + β2 · sσ[X1, . . . , Xµ, ⟨i⟩] + β1

)
f [X1, . . . , Xµ] = 0

Since ṽ[X1, . . . , Xµ+1] is a multilinear polynomial and thanks to the additional
condition ṽ(1, . . . , 1, 0) = 1, Lemma 1 then implies that

∏
x∈Bµ

∏2
i=0

(
M̄i(x) + β2 · sid(x, ⟨i⟩) + β1

)∏2
i=0

(
M̄i(x) + β2 · sσ(x, ⟨i⟩) + β1

) = 1.

Let the multilinearM [X1, . . . , Xµ+2] such thatM [x, ⟨i⟩] = M̄i(x) for all x ∈ Bµ
and i ∈ [0, 2]. Since sσ(x, ⟨i⟩) = sid(σ̂(x, ⟨i⟩)) by the definition of the permu-
tation polynomial (14), this implies M(x, ⟨i⟩) = M(σ̂(x, ⟨i⟩)) for all x ∈ Bµ
with overwhelming probability over the random choice of (β1, β2) by [30, Claim
A.1]. Together with the condition f(x) = 0 for all x ∈ Bµ, this implies that the
multilinear polynomial M [X1, . . . , Xµ+2] is a valid witness satisfying both the
gate identity and the wiring identity. ⊓⊔

D.2 Proof of Theorem 5

Proof. We first describe a simulator, which is slightly different from the one of
[18, Appendix A]. Then, we prove that its output distribution is statistically
indistinguishable from that of a real prover.

On input of a statement (consisting of an input 𝕩 and the description of a
circuit C[G]) and a witness polynomialMW [X1, . . . , Xµ+2], the adversary’s oracle
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in the zero-knowledge experiment returns ⊥ if MW [X1, . . . , Xµ+2] is not a valid
witness. Otherwise, the runs the zero-knowledge simulator S, which proceeds as
follows to simulate a proof without using the witness polynomial MW .

The simulator S: Given 𝕩 and 𝕚 = C[G], compute the input polynomial I,
the selector polynomials S1, S2, S3 and the wiring polynomials sσ(·, ⟨i⟩) for each
i ∈ [0, 2]. Then, do the following:

0. Choose a randommultilinearM [X1, . . . , Xµ+2] that satisfies the gate identity
(13) (but not the wiring identity). Namely, choose M [X1, . . . , Xµ+2] such
that the virtual polynomial f [X] of (13) vanishes over Bµ. To this end,

choose M̂(x, 0, 0), M̂(x, 0, 1) R← ℤp uniformly for each x ∈ Bµ before setting

M̂(x, 1, 0) = S1(x) ·
(
M̂(x, 0, 0) + M̂(x, 0, 1)

)
+ S2(x) ·

(
M̂(x, 0, 0) · M̂(x, 0, 1)

)
+ S3(x) ·G

(
M̂(x, 0, 0), M̂(x, 0, 1)

)
+ I(x)

and M̂(x, 1, 1) = 0 for each x ∈ Bµ. Then, computeM [X1, . . . , Xµ+2] as the

multilinear extension of M̂ [X1, . . . , Xµ+2]. By construction,M [X1, . . . , Xµ+2]
induces a virtual polynomial f [X1, . . . , Xµ] (as defined in (13)) such that∑

x∈Bµ
f(x) = 0. However, it does not satisfy M(x, ⟨i⟩) = M(σ̂(x, ⟨i⟩)) for

all x ∈ Bµ w.h.p.
1. For each i ∈ [0, 2], let M̄i[X] =M [X, ⟨i⟩]. Compute the multilinear polyno-

mial ṽ ∈ ℤ(≤1)
p [X1, . . . , Xµ+1] such that

ṽ(0,x) =

2∏
i=0

M̄i(x) + β2 · sid(x, ⟨i⟩) + β1
M̄i(x) + β2 · sσ(x, ⟨i⟩) + β1

for all x ∈ Bµ, as in step 3 of Prove. Note that we have∏
x∈Bµ

ṽ(0,x) = ṽ(1, . . . , 1, 0)

by Lemma 1 (but ṽ(1, . . . , 1, 0) ̸= 1 w.h.p.). Compute {ĈM,i}2i=0 and Ĉv as in

the real Prove algorithm and then hash values γ = Hγ(𝕩, vp, {ĈM,i}2i=0, Ĉv) ∈
ℤµp and (ζ1, ζ2) = Hζ(𝕩, vp, {ĈM,i}2i=0, Ĉv) ∈ ℤ2

p. Let the polynomials

Q1[X] = v̄[1,X]− v̄[X, 0] · v̄[X, 1]

Q2[X] =

2∏
i=0

(
M̄i[X] + β2 · sid[X, ⟨i⟩] + β1

)
(52)

− v̄[0,X] ·
2∏
i=0

(
M̄i[X] + β2 · sσ[X, ⟨i⟩] + β1

)
f [X] = S1[X] ·

(
M̄0[X] + M̄1[X]

)
+ S2[X] ·

(
M̄0[X] · M̄1[X]

)
+ S3[X] ·G

(
M̄0[X], M̄1[X]

)
− M̄2[X] + I[X],
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where each M̄i[X1, . . . , Xµ] is obtained from M [X1, . . . , Xℓ] by adding a
multiple of Xµ · (Xµ − 1) as in the real Prove algorithm. Note that, by
design,

F [X] ≜ f [X] + ζ1 ·Q1[X] + ζ2 ·Q2[X]. (53)

vanishes over Bµ and we thus have
∑

x∈Bµ
F (x) · eqγ(x) = 0.

2. Run step 1 of the real prover, by computing Ca as a commitment to a

polynomial a[X1, . . . , Xµ] = a0+
∑µ
i=0 ai[Xi], where ai[Xi] =

∑d̄′

j=1 ai,j ·Xj

is a random univariate polynomial.
3. Compute ξ = Hξ(𝕩, vp, {ĈM,i}2i=0, Ĉv, Ĉa, ya, (ζ1, ζ2), (β1, β2),γ) ∈ ℤ∗

p. De-
fine

Fzk[X1, . . . , Xµ] ≜ F [X1, . . . , Xµ] · eqγ [X1, . . . , Xµ] + ξ · a[X1, . . . , Xµ]

and prove that
∑

x∈Bµ
Fzk(x) = ya by faithfully running step 6.c-6.d of the

real prover where

θi[X] =
∑

x∈Bi−1

Fzk[b, X, ri+1, . . . , rµ]

at step i ∈ [µ] of the sumcheck protocol of step 6.c.
4. At step 6.e.1, generate a real proof πC,a for the polynomials committed in
{Cs,i}3i=1, {Cσ,⟨i⟩}2i=0, and Ca. At step 6.e.2, generate a simulated PCS proof
πM for random evaluations instead of the real evaluations of {M̄i[X]}2i=0.
At step 6.e.3, simulate (πv,x,b,πv,b,x)

1
b=0 for random evaluations instead of

the real evaluations of {v̄[X, b], v̄[b,X]}1b=0.
5. Simulate a PCS evaluation proof πv,s (for a label lbl3 containing the entire

transcript so far) that Ĉv opens to 1 for the input (1, . . . , 1, 0) ∈ ℤµ+1
p using

the trapdoor-less simulator of the PCS from the proof of Theorem 3.

The simulator does not use the zero-knowledge sumcheck simulator of [54, The-
orem 3] since it knows a “witness” F [X] satisfying

∑
x∈Bµ

F (x) · eqγ(x) = 0.
Instead, it relies on the perfect ZK simulation of the underlying PCS in order to
generate a fake proof that v̄(1, 1, . . . , 1, 0) = 1 and fake proofs that {M̄i[X]}2i=0

and ṽ[X1, . . . , Xµ+1] evaluate to random outputs. We also note that the sim-
ulator is algebraic since the underlying PCS evaluation protocol has itself an
algebraic simulator in the proof of Theorem 3.

We now prove that the simulator is indistinguishable from a real prover
for any true statement (𝕚,𝕩) (i.e., such that there exists a witness polynomial
MW [X1, . . . , Xµ+2] satisfies both the gate identity and the wiring identity). To
this end, we consider a sequence of hybrid experiments.

Exp0: In this experiment, the distinguisher interacts with an oracle that runs
the above zero-knowledge simulator S at each query.

Exp1: This experiment is identical to Exp0 except that: (i) At step 2 of the
simulator, Ca is computed as a commitment to the zero polynomial instead
of the real polynomial a[X] used at step 3; (ii) At step 4, the batch evaluation
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proof πC,a is simulated using the ZK simulator of the PCS in Section 3.1
(and using the trapdoor αr). Since the latter has perfectly zero-knowledge
evaluations, Exp1 is perfectly indistinguishable from Exp0.

Exp2: This experiment is like Exp1 with the difference that the simulator re-
places M [X1, . . . , Xµ+2] (and its partial polynomials {M̄i[X]}2i=0) by the
real witness polynomialMW [X1, . . . , Xµ+2] at step 1. By relying on the zero-
knowledge property of the sumcheck protocol from [54, Theorem 3], Lemma
2 shows that Exp2 is statistically indistinguishable from Exp1.

Exp3: This experiment is identical to Exp2 but: (i) At step 2 of the simulator,
Ca is computed as in a real proof; (ii) At step 4, πC,a is now generated as
a real proof instead of a simulated one. Since the PCS of Section 3.1 has
perfectly ZK evaluations, Exp3 is perfectly indistinguishable from Exp2.

Exp4: This experiment is like Exp3 with the difference that, at steps 6.e.2-
6.e.3, the simulated PCS proofs are generated for the real evaluations of
{M̄i[X]}2i=0 and ṽ[X1, . . . , Xµ+1]. Lemma 3 shows that Exp4 is statistically
indistinguishable from Exp3.

Exp5: In this experiment, at step 6.e.2, we now generate πM as a real proof for
the polynomials {M̄i[X]}2i=0, {Cs,i}3i=1, {Cσ,⟨i⟩}2i=0, and Ca. Also, at step
6.e.3, (πv,x,b,πv,b,x)

1
b=0 are now generated as real evaluation proofs. By the

perfect zero-knowledge property of the PCS, this modification does not alter
the distribution of proofs and Exp5 is indistinguishable from Exp4.

Exp6: This is the same as Exp5 except that step 5 of the modified simulator
(which corresponds to step 6.e.4 of Prove) generates πv,s as a real PCS
proof that ṽ(1, 1, . . . , 1, 0) = 1 (which is possible since MW [X1, . . . , Xµ+2]
is a valid witness). By the zero-knowledge property of the PCS evaluation
protocol, Exp6 is indistinguishable from Exp5.

In Exp6, the distinguisher is interacting with the real prover at each query. By
combining the above, we find that the output distribution of the simulator S is
statistically indistinguishable from that of the real prover, as claimed. ⊓⊔

Lemma 2. Exp2 and Exp1 are statistically indistinguishable.

Proof. The proof follows from the same arguments as in [54, Theorem 3]. We note
that replacing the fake polynomial M [X1, . . . , Xµ+2] (which satisfies the gate
identity but not the wiring identity) used by S by the real witness polynomial
MW [X1, . . . , Xµ+2] has the effect of trading the sumcheck witness polynomial
F [X1, . . . , Xµ]·eqγ [X1, . . . , Xµ] by another witness polynomial whose evaluations
over Bµ also sum to 0. We now argue that the proof distributions are identical
by exploiting the ZK property of the sumcheck protocol of [54].

In both experiments, evaluation proofs of secret polynomials {M̄i[X]}2i=0

and {ṽ[X, b], ṽ[b,X]}b∈{0,1} outside the Boolean hypercube are simulated for
random evaluations. At step 5 of Verify, the simulated random evaluations define
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θ1(r1) = θ1,r = F̃ + ξ · a(r1, . . . , rµ) for a random

F̃ =
[(
s1,r ·(m0,r+m1,r)+s2,r ·(m0,r ·m1,r)+s3,r ·G(m0,r,m1,r)−m2,r+Ir

)
+ ζ1 ·

(
v1,r − vr,0 · vr,1

)
+ ζ2 ·

( 2∏
i=0

(mi,r + β2 · sid(r, ⟨i⟩) + β1)

− v0,r ·
2∏
i=0

(mi,r + β2 · σi,r + β1)
)]
· eq(γ1,...,γµ)(r1, . . . , rµ)

whose distribution does not depend on M [X1, . . . , Xµ+2] or MW [X1, . . . , Xµ+2].
We now considerA’s global view in Exp1 and Exp2 and, in particular, the revealed
evaluations of the round polynomials {θi[X]}µi=1.

For a given transcript, the verifier obtains∑
x∈Bµ

Fzk(x) = ξ · ya = θµ(0) + θµ(1) (54)

where Fzk[X] is the virtual polynomial defined at step 6.b of the prover. Let an
arbitrary polynomial F [X] such that F (x) = 0 for all x ∈ Bµ and satisfying the

condition F (r1, . . . , rµ)·eqγ(r1, . . . , rµ) = F̃ . We claim that there is a compatible

masking polynomial a[X] = a0 +
∑µ
i=1

∑d̄′

j=1 ai,j ·X
j
i such that

Fzk[X] = F [X] · eqγ [X] + ξ · a[X].

Indeed, the non-redundant information that A obtains about the polynomials
{θi[X]}µi=1 consists of (θ1(0), θ1(1), θ1(α1), θ1(r1)) and {(θi(0), θi(1), θi(α1))}µi=2

since θi(ri) = θi−1(0) + θi−1(1) for each i ∈ [2, µ] (revealing ya =
∑

x∈Bµ
a(x)

does not impose any additional constraint on the coefficients of a[X] due to
the second equality in (54)). So, even if d̄ > 3, it suffices to choose d̄′ = 3 and
set a[X] = a0 +

∑µ
i=1 ai(Xi) for univariate degree-3 polynomials of the form

ai[Xi] =
∑3
j=1 ai,j · X

j
i for i ∈ [µ]: Since a[X] has 3µ + 1 coefficients, there

exists an admissible a[X] explaining A’s view. For each candidate F [X], the
corresponding masking polynomial a[X] is determined by the equalities

θ1(x) = F (x, r2, . . . , rµ) · eqγ(x, r2, . . . , rµ)
+ ξ · a(x, r2, . . . , rµ) ∀x ∈ [0, d̄′ − 1] ∪ {r1}

and

θi(x) =
∑

b∈Bi−1

(
F (b, x, ri+1, . . . , rµ) · eqγ(b, x, ri+1, . . . , rµ)

+ ξ · a(b, x, ri+1, . . . , rµ)
)

∀x ∈ [0, d̄′ − 1], i ∈ [2, µ]

which yield a linear system that can be solved for (a0, {ai,j}i∈[µ],j∈[d̄′]) when-

ever r1 ̸∈ {0, . . . , d̄′− 1} (which occurs with overwhelming probability 1− d̄′/p).
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Finally, we note that the batch evaluation proof πC,a do not impose any
constraint on the coefficients of a[X] in Exp2 nor Exp1 since they are generated
by the ZK simulator of the PCS in Section 3.2 in both experiments. Conse-
quently, the two sumcheck witnesses F [X1, . . . , Xµ] · eqγ [X1, . . . , Xµ] induced
by MW [X1, . . . , Xµ+2] and M [X1, . . . , Xµ+2] produce the same output distribu-
tions. ⊓⊔

Lemma 3. Exp4 and Exp3 are statistically indistinguishable.

Proof. The difference between Exp4 and Exp3 is that, in the latter, PCS evalua-
tions outside the hypercube Bµ are simulated for random outputs whereas Exp4
simulates them for the real outputs. In the case of the witness polynomials, the
two distributions are identical (except with negligible probability) since evaluat-
ing the masked partial polynomials {M̄i[X1, . . . , Xµ]}2i=0 outside Bµ results in

random and independent outputs (due the the masking randomness Ri of ĈM,i

in Exp4) and only one evaluation of each M̄i is given out.
Similarly, the evaluations of the polynomial ṽ[X1, . . . , Xµ+1] are masked by

a polynomial R[X1 +Xµ+1] ·Xµ · (Xµ − 1), where R[X] has degree 3. Since the
only revealed evaluations outside Bµ are for the inputs {(r1, . . . , rµ, b)}1b=0 and
{(b, r1, . . . , rµ)}1b=0, the mask

R[X1 +Xµ+1] ·Xµ · (Xµ − 1)

takes on 4 independent values since rµ−1, rµ ∈ ℤp \ {0, 1} with overwhelming
probability 1− 4/p and the sum X1 +Xµ+1 takes on 4 distinct values (namely,
{r1, r1 +1, rµ, rµ+1}) for the evaluation inputs, thus allowing R[X1 +Xµ+1] to
act as a 4-wise independent function.

It follows that the output distributions of the simulators of Exp4 and Exp3
are indistinguishable as long as rµ−1 ̸∈ {0, 1} and rµ ̸∈ {0, 1} at each query
(which is the case with overwhelming probability ≥ 1− 4Q/p if Q is the number
of queries to the simulator). ⊓⊔

D.3 Proof of Theorem 6

Proof. We give a reduction B that turns any PPT adversary A with non-
negligible advantage in the simulation-extractability experiment into an adver-
sary that breaks either the simulation-extractable PCS of Section 4 or the ex-
tended knowledge-soundness of the PCS in Section 3.2. Algorithm B sets up the
CRS by re-using the SRS of the PCS scheme it obtains from its PCS challenger.
Note that the schemes of sections 3.2 and 4 make use of almost identically dis-
tributed reference strings (the only difference is that the latter uses an additional
random oracle).

Queries: At any time, A can also choose a statement that includes an input
𝕩 and the description of a circuit C[G] and request B to simulate a proof. To
simulate a proof, B runs the simulator S from the proof of Theorem 5. We
note that this simulator works even for false statements (where no valid witness
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polynomial satisfies the gate identity and the wiring identity) since one can
always sample a multilinear polynomial that only satisfies the gate identity. We
also recall that the simulator is algebraic since the underlying PCS evaluation
protocol has itself an algebraic simulator in the proof of Theorem 3.

Output: When A outputs a proof of its own π =
(
{ĈM,i}2i=0, Ĉv,πzero

)
for a

statement (𝕚,𝕩) = (C,𝕩) of its choice, B parses

πzero =
(
Ca, ar, ya, {mi,r, σi,r}2i=0, {si,r}3i=1, {vr,b, vb,r}b∈{0,1},

{Cθ,i, θ̄i,0, θ̄i,1}i∈[µ],πbatch,πr

)
and

πr =
(
πC,a, (πM , (πv,x,b,πv,b,x)

1
b=0,πv,s

)
.

Since A is algebraic, it outputs a representation of each commitment with re-
spect to the group elements that have been observed during the experiment.
Since the simulator S is algebraic, B can use its internal representation of sim-
ulated proof elements to infer a representation of all commitments w.r.t. the
group elements contained in srs. From these representations, it can compute the
(ℓ + 1)-variate polynomials (43) such that {ĈM,i = ĝFM,i(α1,...,αℓ,αr)}2i=0 and

Ĉv = ĝFv(α1,...,αℓ,αr). From these polynomials, it obtains {M̄i[X1, . . . , Xµ]}2i=0,
ṽ[X1, . . . , Xµ+1] as in the proof of Theorem 4.

If all claimed evaluations of extracted polynomials are correct, then B can
obtain a valid witness polynomial M [X1, . . . , Xµ+2] exactly as in the proof of
Theorem 4 since the same arguments carry over (in particular, the outputs of
Hξ, Hζ , Hβ , and Hγ are always determined after their inputs). We now assume
that at least one of the claimed polynomial evaluations is incorrect. In the case
of univariate polynomials, the analysis in the proof of Theorem 9 carries over as
well due to the algebraic nature of S and the fact that S never programs Hbatch.
Then, if πbatch convincingly proves an incorrect univariate PCS evaluation, we can
immediately rely on the extended knowledge soundness of the batch evaluation
protocol of Section B.2 and the result of Theorem 9.

We are left with the treatment of incorrect evaluations of multivariate poly-
nomials and now distinguish several cases.

• If (𝕩, C, (ĈM,i)
2
i=0) is a fresh tuple that was never involved in a proof generated

by S, the same holds for (𝕩, vp, (ĈM,i)
2
i=0) unless we have a collision with two

circuits C, C(τ) leading to the same digest vp (which would break the (dℓ, dℓ)-
DLOG assumption by defeating the security of the deterministic commitment).
Then, we know that none of the hash values involved in π was programmed
by S since (𝕩, vp, (ĈM,i)

2
i=0) are included in the inputs of all random oracles.

This implies that all random oracle outputs are chosen after the algebraic rep-
resentations of group elements contained in the inputs. This allows B to apply
exactly the same analysis as in the proof of Theorem 4 since it can extract a
representation of all proof components w.r.t. the group elements contained in pp
(thanks to the algebraic nature of S). In this case, we just need to rely on the
extended knowledge-soundness of underlying polynomial commitments.
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• If (𝕩, C, (ĈM,i)
2
i=0) was involved in some simulation query τ ∈ [QS ] resulting

in a proof π(τ) = ({ĈM,i}2i=0, Ĉ
(τ)
v ,π(τ)

zero ), it must have been for different pair

(Ĉ
(τ)
v ,π(τ)

zero ) ̸= (Ĉv,πzero). Moreover, with overwhelming probability ≥ 1−Q2
S/p

(where QS is the number of queries to S), there was only one simulation query
involving (𝕩, C, (ĈM,i)

2
i=0) due to the randomness of commitments (ĈM,i)

2
i=0

generated by S. We then distinguish two cases:

- If Ĉ
(τ)
v = Ĉv, we must have π(τ)

zero ̸= πzero. Then, we further distinguish two
sub-cases
a. If r = (r1, . . . , rµ) ̸= (r

(τ)
1 , . . . , r

(τ)
µ ) = r(τ), we have lbl1 ̸= lbl

(τ)
1 , lbl

(τ)
2,j ̸=

lbl2,j for each j ∈ [4], and lbl3 ̸= lbl
(τ)
3 since (r1, . . . , rµ) is included in all

labels at step 6.e of the prover. Hence, if one of the claimed polynomial
evaluations

(ar, {mi,r, σi,r}2i=0, {si,r}3i=1, {vr,b, vb,r}b∈{0,1}, 1)

is not the correct evaluations of multivariate polynomials at step 6 of the
verifier, then B can use A to break either the simulation-extractability
of the batched multivariate PCS (if one of the evaluations {mi,r}2i=0 is
not consistent with M̄i[X] or one of {vr,b, vb,r}b∈{0,1} is not consistent
with ṽ[X1, . . . , Xµ+1] or ṽ(1, 1, . . . , 1, 0) ̸= 1) or the extended knowledge
soundness of the PCS in Section 3.2 (in the event that (ar, {si,r}3i=1) is
not a correct evaluation of a[X] or {Si[X]}3i=1, respectively).

b. If r = (r1, . . . , rµ) = (r
(τ)
1 , . . . , r

(τ)
µ ) = r(τ), then we must have γ = γ(τ),

(Ca, ya) = (C
(τ)
a , y

(τ)
a ), and

(Cθ,j , θj(0), θj(1)) = (C
(τ)
θ,j , θj(0)

(τ), θj(1)
(τ)) ∀j ∈ [µ]

unless a collision on H occurs (which happens with probability ≤ Q2
H/p

in the ROM). Since π(τ)
zero ̸= πzero, we have either (πbatch,πr) ̸= (π

(τ)
batch,π

(τ)
r )

or at least one of the following inequalities

∃i ∈ [0, 2] : mi,r ̸= m
(τ)
i,r (55)

∃i ∈ [0, 2] : σi,r ̸= σ
(τ)
i,r (56)

∃i ∈ [3] : si,r ̸= s
(τ)
i,r (57)

∃b ∈ {0, 1} : vr,b ̸= v
(τ)
r,b (58)

∃b ∈ {0, 1} : vb,r ̸= v
(τ)
b,r (59)

We then have two more cases to distinguish.

• One of the inequalities (55)-(59) holds: Since

(𝕩, vp, (CM,i)
2
i=0, Ĉv) = (𝕩(τ), vp(τ), (C(τ)

M,i)
2
i=0, Ĉ

(τ)
v )
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and r = r(τ), any of the inequalities (55)-(59) implies that A was
able to produce a batch PCS proof for a distinct polynomial eval-
uation than the one of the τ -th simulation query (𝕩(τ), vp(τ)) and
for the same commitment (note that the polynomials {Si[X]}3i=1,
{sσ[X, ⟨i⟩]}2i=0 of the forgery must be identical to those of the τ -th
query since they are uniquely determined by (𝕩(τ), vp(τ))). In the
cases of inequalities (56), (57), B can break the standard knowledge-

soundness of the PCS in Section 3.2 since {s(τ)i,r }3i=1, {σ
(τ)
i,r }2i=0 were

real polynomial evaluations at the τ -th query. In the cases (55), (58)
and (59), B can break the simulation-extractability of the scheme in
Section 4 by proving a different fake polynomial evaluation.

• If none of the inequalities (55)-(59) holds, it must be that (πbatch,πr) ̸=
(π

(τ)
batch,π

(τ)
r ). If πbatch ̸= π

(τ)
batch, then A was able to prove a fake poly-

nomial evaluation mi,r (recall that S simulates evaluation proofs
for random evaluations, so that we must have M̄i[r, ⟨i⟩] ̸= mi,r

with overwhelming probability) for a different label lbl1 than the

label lbl
(τ)
1 of the τ -th query (recall that πbatch is included in lbl1). If

πr ̸= π
(τ)
r , A managed to produce a different PCS evaluation proof

for the same inputs and outputs. If πC,a ̸= π
(τ)
C,a, it means that πM

proves fake evaluations {mi,r}2i=0 of {M̄i,r}2i=0 for a different label

lbl1 than the label lbl
(τ)
1 of the τ -th query since πC,a is included

in lbl1. If one of (πM , (πv,x,b,πv,b,x)
1
b=0,πv,s) differs from the cor-

responding proof element of the τ -th query, A obtained a different
proof for a simulated fake polynomial evaluation among {mi,r}2i=0,
{vr,b, vb,r}b∈{0,1} and ṽ(1, 1, . . . , 1, 0) = 1. Again, this contradicts
the simulation-extractability of the PCS in Section 4.

- If Ĉ
(τ)
v ̸= Ĉv, we must have lbl1 ̸= lbl

(τ)
1 since Ĉv is included in lbl1 at step

6.e.2 of the prover (and step 4 of S).
a. If mi,r = m

(τ)
i,r for each i ∈ [0, 2], then πM proves fake evaluations

{mi,r}2i=0 of {M̄i,r}2i=0 for a different label lbl1 than the label lbl
(τ)
1 of

the τ -th query.

b. If there exists i ∈ [0, 2] such that mi,r ̸= m
(τ)
i,r , with overwhelming prob-

ability 1− 1/p, the proven mi,r must also be an incorrect evaluation of
the corresponding M̄i[X] since S outputs random evaluations of each
{M̄i[X]}2i=0, which reveal no information on the actual masking ran-

domness {Ri}2i=0 (recall that {ĈM,i}2i=0 are involved in only one query
w.h.p.).

In both cases, the reduction B can break the simulation-extractability of the
PCS in Section 4.

E Proof Randomization in PST Commitments

The polynomial commitment scheme of Zhang et al. [56] has publicly randomiz-
able evaluation proofs. One of source of this randomizability is the probabilistic
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generation of evaluation proofs and the fact that the underlying randomness
{si}µi=1 can be publicly modified. It is tempting to believe that unique proofs
can be obtained by de-randomizing the prover. Unfortunately, it is not sufficient.

In order to obtain randomized PST commitments to multivariate polynomi-
als with a deterministic prover, an alternative approach is to adapt the technique
of randomized univariate KZG commitment [39, Section 3.3]. The idea is to have
the prover choose a masking polynomial with the same degree and number of
variables as the committed polynomial. A randomized commitment is a group
element of the form

C = gf(α1,...,αℓ)+γ·h(α1,...,αℓ),

where h R← U(ℤ(≤d)
p [X1, . . . , Xℓ]) is a random masking polynomial and where

the SRS contains(
g, {(g

∏ℓ
j=1 α

ij
j , gγ·

∏ℓ
j=1 α

ij
j )}(i1,...,iℓ)∈Wd,ℓ

, ĝ, {ĝα
i

}ℓi=1

)
for a random γ ∈ ℤp. The verification equation remains the same as in the
deterministic PST construction and is of the form

e(C · g−y, ĝ) =
ℓ∏
i=1

e(πi, ĝ
αi

· ĝ−zi)

Unfortunately, this construction does not provide the weak uniqueness property
defined in [41]. A proof (π1, . . . , πℓ) ∈ 𝔾ℓ can be turned into a modified proof
(π′

1, π
′
2, π3, . . . , πℓ) of the same evaluation (z = (z1, . . . , zℓ), y) by setting, e.g.,

π′
1 = π1 · (gα

2 · g−z2) and π′
2 = π2 · (g−α · gz1). In the original deterministic

PST commitments, proofs can be randomized in the same way. For this reason,
these constructions cannot be used in (a multivariate PIOP extension of) the
framework of Kohlweiss et al. [41], which requires a weak uniqueness property
on behalf of the underlying PCS evaluation proofs.
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