
On the parallelization of square-root Vélu’s formulas

Jorge Chávez-Saab1, Odalis Ortega2, and Amalia Pizarro-Madariaga2

1Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, P.O.1639.
United Arab Emirates, jorge.saab@tii.ae

2Instituto de Matemáticas, Universidad de Valparaíso, Valparaíso, Chile,
odalis.ortega@postgrado.uv.cl, amalia.pizarro@uv.cl

Abstract

A primary challenge in isogeny-based cryptography lies in the substantial computational cost associ-
ated to computing and evaluating prime-degree isogenies. This computation traditionally relied on Vélu’s
formulas, an approach with time complexity linear in the degree but which was further enhanced by Bern-
stein, De Feo, Leroux, and Smith to a square-root complexity. The improved square-root Vélu’s formulas
exhibit a degree of parallelizability that has not been exploited in major implementations. In this study, we
introduce a theoretical framework for parallelizing isogeny computations and provide a proof-of-concept
implementation in C with OpenMP. While the parallelization effectiveness exhibits diminishing returns
with the number of cores, we still obtain strong results when using a small number of cores. Concretely,
our implementation shows that for large degrees it is easy to achieve speedup factors of up to 1.74, 2.54,
and 3.44 for two, four, and eight cores, respectively.

Keywords— isogenies elliptic curves parallelism postquantum cryptography efficient implementation

1 Introduction
Since the foundational work of De Feo, Jao, and Plût [DFJ, DJP], which resulted in the SIKE proto-
col [SIK23], isogeny-based cryptography has received considerable interest in the development of post-
quantum cryptography. Today, the security of SIKE has been broken by a wave of attacks which started
with the work of Castryck and Decru [CD] and was followed up by the works of Maino, Martindale,
Panny, Pope, and Wesolowski [MMP+] and of Robert [Rob], ultimately demonstrating the existence of
a polynomial-time attack on SIKE with any starting curve. Nevertheless, there are still many isogeny-
based protocols that remain unbroken, including the CSIDH [CLM+] key exchange protocol and signature
schemes like SeaSign [DFG], CSI-Fish [BKV], and SQISign [DFKL+], the last of which is currently under
consideration in the NIST (National Institute of Standards and Technology) process for Standardization of
Additional Digital Signature Schemes [nis23].

While SIKE only required the computation of isogenies of degrees 2 and 3, there has been a tendency
in some of the newer isogeny-based protocols to move towards higher and higher prime degrees. This has
brought increasing attention to the task of optimizing the evaluation of large-degree isogenies. For instance,
Boris and Basso [BF] proposed countermeasures against the attack at the cost of utilizing isogenies of con-
siderably larger degrees. On the other hand, the original CSIDH proposal used isogenies of degrees up to
587, and Chávez, Chi, Jacques, and Rodríguez have suggested that a level 5 dummy-free implementation
would need degrees as high as 2239 [CCJR] after revising the security. The CSI-Fish [BKV] signature
scheme also worked with the same degrees as the original CSIDH scheme, but efforts to generalize it to
higher security levels like [FFK+] have led to the use of higher degrees as well. More recently, the level
5 version of SQISign that was submitted to the NIST standarization process [SQI23] brings the ceiling up
with a colossal 318,233-degree isogeny computation. Even the aforementioned attacks on SIKE require the
evaluation of large prime-degree isogenies, with the techniques from [MMP+] requiring the evaluation of
an isogeny of degree 321,193 over a large extension field for a direct key recovery attack. Therefore, opti-
mizing the computation of large prime-degree isogenies is of great interest for constructive purposes as well

1

as for cryptanalysis. Interestingly, a new generation has also risen of isogeny-based protocols which utilize
the techniques of the attack constructively, such as FESTA [BMP], QFESTA [NO], IS-CUBE [Mor] and
constructions for VDFs [DMS] and VRFs [Ler], of which the last two also involve large-degree isogenies.

Traditionally, the main method for computing isogenies of prime degree ℓ when there exists a point
of order ℓ in the curve has been Vélu’s formulas, initially introduced in [Vél] and expanded upon in (
Section 2.4, [Koh]) and (Theorem 12.16, [Was]). In view of the ubiquitousness of large-degree isogenies,
the more recent improvement from Bernstein, De Feo, Leroux, and Smith [BFLS20], which reduced the
time complexity from O(ℓ) to Õ(

√
ℓ), has been a keystone for the viability of many protocols. In addition

to the straightforward savings that it provides, this new algorithm also exhibits a substantial degree of
parallelizability that has remained largely unexplored.

Our Contributions. In this work we detail and showcase the parallelizability of the square-root Vélu
formulas, focusing on the problem of computing a single large-degree isogeny from a fixed kernel gener-
ator and pushing a number of points through said isogeny. We analyze and provide a parallelism-friendly
reformulation of the square-root Vélu formulas, and provide a proof-of-concept (PoC) implementation to
illustrate the implications of our work. More precisely,

• We propose a new indexing system for the points in the kernel of the isogeny that is similar to the one
presented in [BFLS20], but which can be naturally split into subsets that are assigned to each core in
a multi-core implementation.

• We provide a parallelized expected cost function based on our square-root Vélu variant, as well as a
revised expected cost of the sequential Vélu formulas that were presented in [ACR]. Assuming that
the assigned task is to perform an isogeny construction and to push two points through it, the idealized
speedup factors for large degrees is up to 1.79, 2.96, and 4.58 faster than the expected sequential cost
function using two, four and eight cores, respectively.

• We give a PoC implementation utilising C and OpenMP to compute our isogeny formulas with large
odd prime degrees. Our implementation assumes for concreteness that isogenies are evaluated over
a prime field such that there exist rational points of the desired degree in the curve, and achieves
speedup factors for large degrees of up to 1.74, 2.54, and 3.44 for two, four, and eight cores, respec-
tively, even for medium-sized isogenies.

Assumptions and generalizations. For the purposes of our implementation, we have searched for a 1792-
bit prime such that p + 1 contains evenly-spaced prime factors ranging from 19 to 321,193 (the degree
of the isogeny in the attack of [MMP+]). Isogenies are performed over the base prime field, and two
points are pushed through each isogeny. These choices were made for concreteness and closely mirror the
scenario in CSIDH. On the other hand, they do not adhere exactly to the case of SQISign (which works in a
quadratic field extension) nor that of the attack in [MMP+] (which performs isogenies in a much larger field
extension). Nevertheless, the techniques that we describe save on a fixed number of field multiplications,
which are the dominating part of the total cost. Therefore we expect that similar speedups in percentage
would be obtained in those other cases, with the caveat that the savings could even be slightly larger as the
parallelization overhead becomes more negligible with respect to the arithmetic cost. As for the theoretical
savings, our costs are expressed in terms of the total number of field multiplications and remain valid for
any choice of base field.

Related Work. Different forms of parallelism have been explored at various layers of isogeny-based pro-
tocols. For instance, the use of vectorization through Intel’s Advanced Vector Extensions (AVX-512) has
been exploited for the finite field arithmetic layer, both in the context of CSIDH [CFG+] and of the now
obsolete SIKE protocol [OLHA, CFGR], obtaining speedup factors in the order of 1.5. Additionally, it has
also been proposed to use AVX-512 to batch multiple evaluations of the protocols, leading to increases in
throughput of up to 3.6 for CSIDH [CFG+] and 4.6 in SIKE [CFGR]. When latency is the focus, vectoriza-
tion can also be used to push multiple points through an isogeny, leading to the concept of parallel-friendly
evaluation strategies which favour pushing points over point multiplications [PSRHH, PSH, CFGR]. These
parallel strategies can accelerate the evaluation of large composite-degree isogenies, but do not apply for
isogenies of a large prime degree.

This work focuses exclusively on the multi-core optimization for the isolated evaluation of a large
prime-degree isogeny, which has received much less attention. To the best of our knowledge, there are only

2

simple parallelization strategies that have been proposed [KS] for the linear-complexity Vélu formulas, not
exploiting the improved complexity methods from [BFLS20]. We also do not consider vectorization: if it
was to be used, we expect that the best way to exploit it would be at the field arithmetic layer. This would
lead to improvements similar to those from [OLHA, CFGR, CFG+], which are well-documented and are
largely parallel to our multi-core improvements.

Outline. The remainder of the manuscript is organized as follows. In Section 2 we give the basic back-
ground and description of the original square-root Vélu formulas with their three main building blocks,
KPS, xISOG, and xEVAL, and derive their expected cost function. In Section 3 we introduce our new
framework, explaining the need for a new indexing system in Section 3.1 and then detailing the new al-
gorithms in Section 3.2 and deriving their expected cost function in Section 3.3. Finally, in Section 4, we
present our experimental results, comparing the performance to the theoretical savings.

2 Background
We denote by Fq the finite field with q = pn elements, and p a prime number. We focus on supersingular
Montgomery curves, E, given by

E : y2 = x3 +Ax2 + x, A ∈ Fq \ {±2}.

Remark 2.1. In general, a Montgomery curve is defined by the equation EA,B : By2 = x3+Ax2+x such
that B ̸= 0 and A ̸= ±2, but all choices of B are equivalent up to isomorphism. For the sake of simplicity,
we write EA instead of EA,1 and omit the constant B.

Viewing the curve as a projective surface, the set E(Fq) of Fq-rational points in E forms a group where
the point at infinity∞ acts as the group identity. An order-d point P on E is a point on the curve such that
d is the smallest positive integer satisfying

[d]P :=

d∑
i=1

P =∞.

We write E[d] to refer to the d-torsion subgroup {P ∈ E(Fq) | [d]P =∞} of E.

Isogenies. An isogeny ϕ : E → E′ is a surjective morphism between curves with a finite kernel such that
ϕ(∞E) = ∞E′ . Such a map is always also a group homomorphism. Two curves E and E′ are isogenous
over Fq if there exists such ϕ connecting them, or equivalently if #E(Fq) = #E′(Fq). The kernel of ϕ
is {P ∈ E(Fq) | ϕ(P) = ∞}, denoted by kerϕ. When restricting only to separable maps, the degree
of an isogeny is equal to the size of its kernel, and an isogeny is uniquely determined by its kernel up to
an isomorphism. An isogeny ϕ : E → E′ of degree ℓ is referred to as a ℓ-isogeny, and it has a unique
dual (up to isomorphism) ϕ̂ : E′ → E of the same degree such that ϕ ◦ ϕ̂ and ϕ̂ ◦ ϕ are equivalent to the
multiplication-by-ℓ map on E and E′, respectively.

2.1 Computation of ℓ-Isogenies
Let EA be a Montgomery curve defined over Fq and P ∈ EA(Fq) a point of order ℓ. If ϕ : EA → EA′ is
an isogeny with ker ϕ = ⟨P ⟩, then it is possible to find polynomials g(x), h(x) ∈ Fq[x] such that

ϕ(x, y) =

(
g(x)

h(x)
, y

(
g(x)

h(x)

)′
)
.

The polynomials g(x) and h(x) are related by a formula stated by Elkies [E+], so the main task for
computing an ℓ-isogeny is that of obtaining h(x) from P . In the particular case of Montgomery curves,
from the formulas of (Theorem 1, [CH]) the coefficient of the Montgomery curve EA′ can be obtained by

A′ =
2(1 + d)

1− d
, d =

(
A− 2

A+ 2

)ℓ(
hS(1)

hS(−1)

)8

, (1)

3

and the x-coordinate ϕx(x(Q)) of the point ϕ(Q), by

ϕx(x(Q)) =

(
x(Q)ℓhS(1/x(Q))

hS(x(Q))

)2

, (2)

where hS(X) =
∏
s∈S

(X − x([s]P)) and S = {1, 3, . . . , ℓ− 2}.

In 2020, Bernstein, De Feo, Leroux, and Smith [BFLS20] proposed an important improvement in the
computation of isogenies. Their key idea exploits the fact that for isogeny evaluations and constructions, it
is not required to compute the polynomial h itself, but only its evaluation at a given set of points. We briefly
describe their method for evaluating (1) and (2), starting by pointing out that, although the map Q 7→ x(Q)
is not holomorphic, an algebraic relation exists between the values. More precisely,

Lemma 2.2 (Lemma 4.3, [BFLS20]). Let E/Fq be an elliptic curve, where q is a prime power. There exist
biquadratic polynomials F0, F1, and F2 in Fq[X1, X2] such that

(X − x(P +Q)) (X − x(P −Q)) = X2 +
F1(x(P), x(Q))

F0(x(P), x(Q))
X +

F2(x(P), x(Q))

F0(x(P), x(Q))
,

for all P and Q in E such that 0 /∈ {P,Q, P +Q,P −Q}.

Remark 2.3. We focus on isogeny computations between Montgomery curves using x-only coordinates,
mainly because it is the case most used in practical applications. However, the results obtained can be
extended to other models. Formulas that are analogous to (1) and (2) are provided in [MS] for Edwards
and Huff models. These formulas require the evaluation of polynomials analogous to hS , which can be
evaluated in the same ways that we will describe after adjusting the polynomials F0, F1, F2. More generally,
the same procedure could be applied to the generalized Montgomery coordinate from [MOAT], of which all
models mentioned are special cases.

Using Lemma 2.2, we can rearrange hS(X) in a baby-step giant-step style:

h(X) =

∏
i∈I

∏
j∈J

(X − x([i+ j]P))(X − x([i− j]P))

(∏
k∈K

(X − x([k]P))

)
, (3)

where the index system {I, J} is chosen such that S = (I + J) ∪ (I − J) ∪ K, with
K = S \ (I + J) ∪ (I − J) and satisfying the following definition:

Definition 2.4. Let S, I and J be finite sets of integers. The (I, J) is an index system of S if:

1. the maps I × J → Z defined by (i, j) 7−→ i + j and (i, j) 7−→ i − j are both injective and have
disjoint images.

2. I + J and I − J are both contained in S.

From here, they show that the factor of h(X) that is related to I and J can be computed efficiently as
a resultant. More precisely, letting I ± J be the union of the sets I + J and I − J , the following result is
proven.

Lemma 2.5 (Lemma 4.9, [BFLS20]). Let E/Fq be an elliptic curve, where q is a prime power. Let P be
an order-n element of E(Fq). Let (I, J) be an index system such that I, J, I + J, and I − J do not contain
any elements of nZ. Then

hI±J(X) =
1

∆I,J
ResZ(hI(Z), EJ(X,Z))

where
EJ(X,Z) :=

∏
j∈J

(
F0(Z, x([j]P))X2 + F1(Z, x([j]P))X + F2(Z, x([j]P))

)
and ∆I,J := ResZ(hI(Z);DJ(Z)) where DJ(Z) :=

∏
j∈J

F0(Z, x([j]P)).

4

Remark 2.6. Note that ∆I,J in Lemma 2.5 does not depend on the variable X . The Formulas (2) and (1)
are for computing the codomain curve and point evaluation, respectively, include quotients of the polyno-
mial h, so in practice, ∆I,J in Lemma 2.5 does not need to be computed.

Notice that hI±J is precisely the first parenthesis that appears in (3), which can be computed quadrat-
ically faster as a resultant, while the second parenthesis (corresponding to hK(X)) is a leftover product
that is still computed in linear time. Based on this, Adj, Chi-Domínguez, and Rodríguez-Henríquez [ACR]
introduced three explicit algorithms for evaluating ℓ-isogenies: KPS (which computes the necessary multi-
ples of the kernel generator), xISOG (which obtains the coefficient of the image curve) and xEVAL (which
obtains the image of a point). These algorithms are reproduced here as Algorithms 1–3.

Algorithm 1 KPS.

Inputs: An elliptic curve EA/Fq; P ∈ EA(Fq) of order an odd prime ℓ
Output: I, J , K such that (I, J) is an index system for S

1: b← ⌊
√

(ℓ− 1)/2⌋
2: b′ ← ⌊(ℓ− 1)/4b⌋
3: J ← {2j + 1 : 0 ≤ j < b}
4: I ← {2b(2i+ 1) : 0 ≤ i < b′}
5: K ← S\(I ± J)
6: J ← {x([j]P) : j ∈ J}
7: I ← {x([i]P) : i ∈ I}
8: K ← {x([k]P) : k ∈ K}
9: return I, J and K

Algorithm 2 xISOG.

Inputs: An elliptic curve EA/Fq : y2 = x3 +Ax2 + x; P ∈ EA(Fq) of order an odd prime ℓ; and I,J ,K
the output from KPS(P)

Output: A′ ∈ Fq such that EA/Fq : y2 = x3 + A′x2 + x is the image curve of a separable isogeny with
kernel ⟨P ⟩

1: hI ←
∏

xi∈I(Z − xi) ∈ Fq[Z]
2: E0,J ←

∏
xj∈J (F0(Z, xj) + F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

3: E1,J ←
∏

xj∈J (F0(Z, xj)− F1(Z, xj) + F2(Z, xj)) ∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq

5: R1 ← ResZ(hI , E1,J) ∈ Fq

6: M0 ←
∏

xk∈K(1− xk) ∈ Fq

7: M1 ←
∏

xk∈K(−1− xk) ∈ Fq

8: d←
(

A−2
A+2

)ℓ (
M0R0

M1R1

)8
9: return 2(1+d)

1−d

5

Algorithm 3 xEVAL.

Inputs: An elliptic curve EA/Fq : y2 = x3+Ax2+x; P ∈ EA(Fq) of order an odd prime ℓ; α = x(Q) =
[Qx : Qz] ̸= 0 of a point Q ∈ EA(Fq) \ ⟨P ⟩ and I,J ,K the output from KPS(P)

Output: The image of x(ϕ(Q)) by w, where ϕ is a separable isogeny of kernel ⟨P ⟩.
1: hI ←

∏
xi∈I(Z − xi) ∈ Fq[Z]

2: E0,J ←
∏

xj∈J (F0(Z, xj)/α
2 + F1(Z, xj)/α+ F2(Z, xj)) ∈ Fq[Z]

3: E1,J ←
∏

xj∈J (F0(Z, xj)α
2 + F1(Z, xj)α+ F2(Z, xj)) ∈ Fq[Z]

4: R0 ← ResZ(hI , E0,J) ∈ Fq

5: R1 ← ResZ(hI , E1,J) ∈ Fq

6: M0 ←
∏

xk∈K(1/α− xk) ∈ Fq

7: M1 ←
∏

xk∈K(α− xk) ∈ Fq

8: return (M0R0Qx)
2/(M1R1Qz)

2

2.2 Computing the Resultants
The main computational task that is required for the square-root Vélu algorithm is the evaluation of the
resultants ResZ(hI , Ei,J), which can be achieved in constant-time via a residue tree approach as described
in [ACR]. This task accounts for approximately 85% of the total computation time, and depends on the size
of the sets I , J , and K. For the following discussion, we set #J = b, #I = b′ and #K = ℓ−1

2 − 2bb′.
As a reminder, if f(Z) ∈ Fq[Z] splits into linear factors as f(Z) = a

∏
0≤i<b(Z − xi) and g(Z) ∈ Fq[Z],

then the resultant is given by
ResZ(f(Z), g(Z)) = ab

∏
0≤i<b

g(xi). (4)

For our purposes, the polynomials f and g are provided as a product of b′ linear polynomials and
b quadratic polynomials, respectively. Since the xi values are readily available, one could compute (4)
directly by evaluating g multiple times, but this would lead to a complexity of O(bb′) = O(ℓ).

Instead, we begin by obtaining the polynomials f and g as a list of coefficients by multiplying together
all the terms following a product tree approach, as shown in Figure 1.

After the product tree for f has been built, we compute a corresponding reciprocal tree. Unlike the
product tree, the reciprocal tree is computed from the root down. If a node in the product tree contains a
polynomial F of degree m, then the corresponding node in the reciprocal tree contains (F, c), where F is a
polynomial of degree m and c is a constant such that revm(F) · F = c mod xm. Here, revm(·) denotes

the polynomial with the list of coefficients in reverse order: if F =

m∑
i=0

Fix
i, then revm(F) =

m∑
i=0

Fn−ix
i.

The reciprocal tree is depicted in Figure 2, and is used as an auxiliary tool to construct one last tree called
the residue tree.

. f1f2 · · · fb/2 × fb/22+1 · · · fb

f1 · · · fb/22 × fb/22+1 · · · fb/2

...

f1 × f2

f1 f2

...

...

fb/2+1 · · · f3b/22 × f3b/22+1 · · · fb

Figure 1: Diagram of the product tree for computing fi = (Z − xi).

6

. c1···brev(f1f2 · · · fb)−1 mod xb

c1···b/2rev(f1 · · · fb/2)−1 mod xb/2

...

c12rev(f1f2)−1 mod x2

c1rev(f1)−1 mod x c2rev(f2)−1 mod x

...

...

cb/2+1···brev(fb/2+1 · · · fb)−1 mod xb/2

Figure 2: Diagram of the reciprocal tree, where fi = (Z − xi), rev(.) and ci are as mentioned above.

The residue tree is also built from the root down, and as depicted in Figure 3, each of its nodes contains
cg mod F , where F is the polynomial in the corresponding node of the product tree of f and c the constant
from the reciprocal tree. The leaves of the residue tree contain a multiple of g(Z) mod (Z − xi) = g(xi),
so a multiple of the resultant is readily obtained by multiplying all the leaves together. The multiple cancels
out when taking the ratios at the last step of Algorithms 2 and 3. Remarkably, this method allows us
to compute (a multiple of) all of the g(xi) with a complexity of just Õ(b + b′) = Õ(

√
ℓ). A detailed

description for the cost of the product tree, reciprocal tree, and residue tree is presented in Appendix A.

. g mod f1f2 · · · fb

g mod f1f2 · · · fb/2

g mod f1f2 · · · fb/22

...

g mod f1 g mod f2

...

g mod fb/22+1 · · · fb/2

g mod fb/2+1 · · · fb

Figure 3: Diagram of the residue tree for computing ResZ(f(Z), g(Z)).

2.3 Cost Model for the Sequential Square-Root Vélu
An expected cost function for KPS, xISOG, and xEVAL has been presented in [ACR], but it takes into
account some redundant computations and also fails to consider the cost of the residue tree. We now
present a more accurate and optimal cost function.

As in [ACR], we begin by noting that a better performance is achieved when #K is as small as possible
and #I,#J are similar in size. Since we need to have 2(#I)(#J) + #K = (ℓ − 1)/2, we set the size
of #J to be b := ⌈

√
(ℓ− 1)/2⌉ and then perform division with remainder to obtain #I = ⌊(ℓ− 1)/(4b)⌋

and #K ∈ [0, 2b]. For simplicity, from now on we ignore rounding errors and assume the average value
for #K, so that #I ≈ #J ≈ #K ≈ b ≈

√
(ℓ− 1)/2.

Next, we provide explicit formulas for the number of field multiplications in each of the three procedures
as a function of b. This cost model neglects the cost of field additions and subtractions, as well as the savings
that a field squaring may have over a regular field multiplication. We consider this a fair compromise, since

7

the total number of squarings is small and the benefit of having a single metric far outweighs the importance
of the small error. The cost functions are expressed in terms of the cost of the various tree procedures, which
are detailed in Appendix A.

Cost function for KPS. Notice that the computation of hI is performed in both Algorithms 2 and 3, so
instead we delegate this product tree and the corresponding reciprocal tree to KPS and perform it only once.
The total cost of KPS is then reflected by obtaining b multiples of an elliptic curve point (at a cost of 6b
field multiplications each) for each of I, J , and K, and the cost of a product tree and reciprocal tree for b
linear polynomials. We obtain

CostKPS(b) = 18b+ ProductTree1(b) +ReciprocalTree(b) = 4blog2(3) + 2 log2(b) + 16b− 2.

Cost function for xISOG. The degree-2 factors in E0,J and E1,J can be obtained at the cost of 5b field
multiplications, and the complete polynomials are then obtained from two product trees of quadratic leaves.
We then perform 2 residue trees to compute the two resultants of Algorithm 2, and another 2 ∗ (b− 1) mul-
tiplications to compute M0 and M1. Algorithm 2 also requires an ℓ-th power exponentiation at an average
cost of 1.5 log ℓ ≈ 3(log2(b) + 1) multiplications, which must be performed separately on the numerator
and denominator when working in projective coordinates. Finally, there are another 10 multiplications for
the final two steps. We obtain

CostxISOG(b) =5b+ 2× ProductTree2(b) + 2×ResidueTree(b)

+ 2(b− 1) + 2× 3(log2(b) + 1) + 10,

CostxISOG(b) =18blog2(3) + 6 log2(b)− 5b+ 12.

Cost function for xEVAL. In this case, computing the factors for E0,J requires 10b field multiplications.
However, only one product tree is required since E1,J can be obtained by inverting the coefficient list of
E0,J , as noted in [ACR]. We then need two residue trees to compute the resultants in Algorithm 3, 2(2b−1)
multiplications to compute M0 and M1, and six more multiplications for the final step. The total is

CostxEVAL(b) =10b+ ProductTree2(b) + 2×ResidueTree(b) + 2(2b− 1) + 6

CostxEVAL(b) =15blog2(3) + 5b+ 2.

Total cost function. The total cost function, assuming that two points need to be pushed through the
isogeny as is the case in CSIDH and SQISign, is

CostVélu(b) =CostKPS(b) + CostxISOG(b) + 2× CostxEVAL(b)

=52blog2(3) + 8 log2(b) + 21b+ 14.
(5)

3 Parallelizing Square-Root Vélu Formulas
In this section, we present our main results, which focus on the problem of parallelizing Vélu’s formulas
for isogeny computations.

An immediate observation is that the two resultants that appear in each of Algorithms 2 and 3, which
represent the heaviest part of the computation, are completely independent of each other. Therefore, there is
a simple way to parallelize the two algorithms in a 2-core implementation by assigning one resultant to each
core. We show that these algorithms exhibit a good degree of parallelizability even beyond two cores, by
assigning more than one core per resultant. However, doing so requires a new indexing system that allows
for a clear separation of the computation between cores, which we introduce in the first subsection.

Additionally, other parts of the algorithms are also apt for parallelization, such as the computation of M0

and M1 where a partial product can be assigned to each core, or the computation of product trees where a
subtree can be assigned to each core after a small bit of sequential work. We show also that the computation
of point multiples in KPS can be parallelized with our new index system.

After detailing the new index system, we provide explicit new algorithms for the square-root Vélu
formulas, which can be computed by assuming the availability of n-cores, where n > 1 is a power of two.

8

3.1 Construction of a New Index System
The main observation that allows us to parallelize the computation of resultants beyond two cores is that
they exhibit a multiplicative property. More precisely, if I can be written as the disjoint union

I = I0 ∪ I1 ∪ . . . ∪ In/2−1,

then
ResZ(hI , Ei,J) = ResZ(hI0 , Ei,J)×ResZ(hI1 , Ei,J)× . . .×ResZ(hIn/2−1

, Ei,J),

so we can assign one subset It to each of the cores, have them compute one subresultant each, and then
multiply them all together. Doing so will require us to modify the sizes of I and J : since each resultant
computation should have balanced sizes, we now require #J ≈ #I/(n/2). Accordingly, we now need
#J ≈

√
(ℓ− 1)/2n and #I ≈

√
(ℓ− 1)n/4. We will design such an indexing system according to the

following lemma.

Lemma 3.1. Let n > 1 be a power of two, ℓ be an odd positive integer and consider the set S =
{1, 3, . . . , ℓ}. If b = ⌊

√
(ℓ− 1)/2n⌋ ≥ 1 and b′ = ⌊(ℓ − 1)/2nb⌋, then (I, J) is an index system for

S, where

J :={2j + 1 : 0 ≤ j < b},

I =

n/2−1⋃
t=0

It, and

It :={2b(2t+ 1) + 2bni : 0 ≤ i < b′} for 0 ≤ t < n/2.

Moreover, It ∩ It̃ = ∅ if and only if t ̸= t̃.

Proof of Lemma 3.1. Suppose that

(2b(2t+ 1) + 2bni1))− (2b(2t̃+ 1) + 2bni2)) = (2j1 + 1)− (2j2 + 1),

where 0 ≤ ji, j2 < b, 0 ≤ i1, i2 < b′ and j1 ̸= j2 and i1 ̸= i2 (t and t̃ can be equal). Then,

4b(t− t̃) + 2bn(i1 − i2) = 2(j1 − j2),

so
2b(t− t̃+ n(i1 − i2)/2) = j1 − j2

but this is impossible since 0 < |t − t̃| < n and thus 0 < |j1 − j2| < b < 2b|(t− t̃+ n(i1 − i2)/2)|.
Therefore, the map I × J → Z defined by (i, j) 7−→ i+ j is injective. Similarly, the map (i, j) 7−→ i− j
is injective and therefore, both have disjoint images.

On the other hand, the sets I+J and I−J are both contained in S. It is clear that the elements in these
sets are odd integers. Since for all 0 ≤ t < n/2, 0 ≤ j < b and 0 ≤ i < b′ we have the following:

(2b(2t+ 1) + 2bni) + (2j + 1) ≤ 2b(2(n/2− 1) + 1 + ni) + (2b+ 1) = 2nbi+ 2nb+ 1

(2b(2t+ 1) + 2bni) + (2j + 1) ≤ 2nb

(
(ℓ− 1)

2nb
− 1

)
+ 2nb+ 1 = ℓ.

Similarly, 1 ≤ (2b(2t + 1) + 2bni) − (2j + 1) for all 0 ≤ t < n/2, 0 ≤ j < b and 0 ≤ i < b′ since the
minimum of I is (2b(2t + 1) + 2bni) = 2b when t = i = 0 and the maximum of J is 2j + 1 = 2b − 1
when j = b− 1.

Note that we have chosen to partition I into only n/2 subsets because, when n cores are available, we
assign n/2 cores to each of the two resultants. However, when computing point multiples during KPS we
do have all n cores available for working on the n/2 subsets. Therefore, it will be convenient to further
divide each It into two subsets to obtain a total of n half-sized subsets. Note that some subsets will have
fewer elements than others because #I need not be a multiple of n. In practice, this is problematic because
it is crucial for each core to perform exactly analogous tasks to guarantee performance. In order to achieve
a balanced computation, we will add additional elements to the subsets that are lacking, ensuring that each
subset contains the same number of elements, while ignoring redundant multiples in future steps. This idea
is inspired by (Example 3.7, [BFLS20]) and the parallelization technique proposed by Costello in [Cos] to
compute the set [i]P 1≤i≤d. We provide an example to illustrate this approach.

9

Example 3.2. Let ℓ = 89 and n = 4. From the Lemma 3.1 we obtain

J := {2j + 1 : 0 ≤ j < 3}, I =

1⋃
t=0

It,

It := {2b((2t+ 1) + ni) : 0 ≤ i < 3}, for all 0 ≤ t < 2.

So I0 := {2b, 10b, 18b} and I1 := {6b, 14b, 22b}. Instead of this, we can consider the following sets:

IIt := {2b((2t+ 1) + 2ni) : 0 ≤ i < 2} for all 0 ≤ t < 4.

So II0 := {2b, 18b}, II1 := {6b, 22b}, II2 := {10b, 26b} and II3 := {14b, 30b}.

We will now demonstrate that the partitioning of the set I , without taking into account the additional
elements added to ensure equal-sized subsets, still forms an index system.

Proposition 3.3. Let us assume the same conditions of the Lemma 3.1. Let c = ⌈b′/2⌉ > 2. If

I ′ :=

n−1⋃
t=0

IIt \
n−1⋃

t=n/2

{wt} with wt := 2b(2t+ 1 + 2n(c− 1))(b′ mod 2),

and IIt := {2b(2t+ 1) + bn(2i) : 0 ≤ i < c}
for all 0 ≤ t < n,

IIt := {2b(2t+ 1) + bn(2i) : 0 ≤ i < c}, for all 0 ≤ t < n,

I ′ :=

n−1⋃
t=0

IIt \
n−1⋃

t=n/2

{wt}, with wt := 2b(2t+ 1 + 2n(c− 1))(b′ mod 2),

then I ′ = I. In particular, (I ′, J) is an index system for S.

Proof of Proposition 3.3. If b′ is an even integer, it is clear that IIt ⊂ I , for all 0 ≤ t < n and thus
n−1⋃

t=n/2

{wt} = {0}. Note that 0 ≤ 2i ≤ 2c = b′ and considering that
n−1⋃
t=0

IIt and I have the same

cardinality, we conclude that they are equal. If b′ is an odd integer, all 0 ≤ t < n/2 we have that IIt ⊂ I .
When n/2 ≤ t < n, dropping the last element wt := 2b(2t + 1 + 2n(c − 1)) in each IIn/2, . . . , IIn−1,

we have IIt ⊂ I . Note that the cardinality of
n−1⋃

t=n/2

{wt} is n/2 and the cardinality of
n−1⋃
t=0

IIt is nc =

n((b′ + 1)/2) = nb′ + n/2 = #I + n/2.

Similarly, we consider a partition of K = S \ (I ± J) = {2bb′n + 1, . . . , ℓ − 2, ℓ} into n sets
K0, . . . ,Kn−1 with d = ⌈#K/n⌉ elements,

Kt = {2bb′n+ 2(t+ 1) + 2nk : 0 ≤ k < d}, 0 ≤ t < n.

However, when #K is not divisible by n, we will add one additional element to each set Kd mod (n), . . . ,
Kn−1, ensuring that each subset contains the same number of elements.

The additional elements that were added to balance the size of the sets are not taken into account when
calculating the corresponding products for each set.

3.2 Parallelized Algorithms
We now describe the construction of parallelized versions of algorithms KPS, xISOG, and xEVAL assuming
that n-cores are available, algorithms which we refer to as KPS-Parallel, xISOG-Parallel, and
xEVAL-Parallel.

The KPS-Parallel algorithm, presented as Algorithm 4, is based on the new index system from
Proposition 3.3: instead of computing the sets I and K as in the original algorithm, KPS-Parallel

10

computes the sets IIt and Kt, as well as the polynomial product tree for hIIt , by assigning one core to
each value of 0 ≤ t < n. Note that the computation of the resultants requires a reciprocal tree for each
of the hIt , so the polynomials {hIIt , 0 ≤ t < n} are multiplied pair-wise to obtain the polynomials
{hIt , 0 ≤ t < n/2}. We then compute the residue trees, which are built from the root down: the root is
computed for each tree using n/2 cores, and then the two subtrees of each tree are computed in parallel,
using two cores per tree, for a total of n cores. Note that although the computations for the root of the
product and reciprocal trees, corresponding to lines 11 and 12 of Algorithm 4, should only be ran with n/2
cores, we instead have all cores running with half of them repeating the work over dummy arrays It for
t > n/2. These computations are of course redundant, but ensure that the workload is balanced.

For the algorithms xISOG-Parallel and xEVAL-Parallel, the set J is partitioned into n subsets
Jt, and each core computes the polynomial product tree corresponding to one subset. The roots of the n trees
are then multiplied together sequentially to obtain the full polynomial Ei,J . Next, each core computes one of
the subresultants ResZ(hIt , Ei,J) using the reciprocal trees from KPS-Parallel, and the subresultants
are multiplied sequentially at the end to obtain the two principal resultants. As for the computations related
to K, it is also split into subsets Kt so that each core can compute a subproduct of Mi, and the subproducts
are multiplied together at the end.

In the next subsection, we present a detailed analysis that estimates the cost of computing the image
curve of an isogeny and the evaluation of a point using the procedures KPS-Parallel+ xISOG-Parallel
+ xEVAL-Parallel.

Algorithm 4 KPS-Parallel.

Inputs: An elliptic curve EA/Fq; P ∈ EA(Fq) of order ℓ an odd prime and a number of cores n which is
a power of 2

Output: b, d integers, J , K arrays of field elements, hI0 , . . . , hIn/2−1
polynomials and

rtreehI0
, . . . , rtreehIn/2−1

reciprocal trees

1: b← ⌊
√
(ℓ− 1)/2n⌋; b′ ← ⌊(ℓ− 1)/2nb⌋; d← (ℓ− 1)/2− nbb′;

2: b′ ← ⌈b′/2⌉; d← ⌈d/n⌉ // ⌈d/n⌉ > 2 and ⌈b′/2⌉>1
3: J ← {x([m]P) : m ∈ {2j + 1 : 0 ≤ j < b}}
4: BI ← {x([m]P) : m ∈ {2b(2t+ 1) : 0 ≤ t < n}}
5: BK ← {x([m]P) : m ∈ {2(t+ 1) : 0 ≤ t < n}}
6: for t ∈ {0, 1, . . . , n− 1} in parallel do
7: IIt ← {BI [t] + x([m]P) : m ∈ {2b(2ni) : 0 ≤ i < b′}}
8: Kt ← {BK[t] + x([m]P) : m ∈ {2nk : 0 ≤ k < d}}
9: hIIt ←

∏
xi∈IIt

(Z − xi).
10: barrier // Synchronize cores
11: hIt ← hIIt · hII(t+n/2)

12: rtreehIt
← ReciprocalTreeRoot(hIt) // Fills in only the root node

13: if t < n/2 then
14: rtreehIt

← ReciprocalLeftSubtree(hIt) // Fills in only the left subtree
15: else
16: rtreehIt−n/2

← ReciprocalRightSubtree(hIt−n/2
) // Fills in only the right subtree

17: end if
18: end for
19: K ← K0 ∪ . . . ∪ Kn−1

20: return b, d, J , K, hI0 , . . . , hIn/2−1
and rtreehI0

, . . . , rtreehIn/2−1

3.3 Cost Analysis of the Parallel Square-Root Vélu
In this section, we will provide an estimation of the cost that is expected when performing the KPS-Parallel,
xISOG-Parallel, and xEVAL-Parallel procedures, which is analogous to the one presented in
Section 2.3 for the sequential algorithms. Recall that for our new index system from Section 3.1 we
have #J = ⌊

√
(ℓ− 1)/(2n)⌋, where ℓ is the degree of the isogeny and n represents the number of

cores available, while each of the It subsets has a size of b′ := ⌊(ℓ − 1)/(2n(#J))⌋ for a total size of

11

#I = (n/2)⌊(ℓ− 1)/(2n(#J))⌋. It follows that

#K :=
ℓ− 1

2
− 2(#I)(#J),

#K ≤ℓ− 1

2
− 2

(√
ℓ− 1

2n
− 1

)(
n

2

(√
ℓ− 1

2n
− 1

))
,

#K =
√

2n(ℓ− 1)− n.

As before, we will ignore rounding errors and assume that #K takes the middle value of this range (ne-
glecting the second term), so that #I ≈ nb/2, #J ≈ b, and #K ≈ nb for b =

√
(ℓ− 1)/(2n).

Proposition 3.4. The cost of computing the parallel Algorithm KPS-Parallel with n cores is

CostKPS-Parallel(b, n) =
8

3
blog2(3) + 4 log2(b) + 15b+ 12n− 18,

field multiplications.

Proof of Proposition 3.4. In order to find all the point multiples in K, we first compute the first n multi-
ples sequentially and then core t starting from the t-th multiple and taking steps of size n. This leads to
wall-clock time of n+#K/n−1 point operations, which involves six field multiplications each. A similar
approach is taken for computing all the multiples in the IIt sets, while the ones in J are computed sequen-
tially as this is the smallest of the sets. A product tree is constructed for each of the hIIt in parallel, and
line 11 involves multiplying two polynomials of degree b/2. As for the reciprocal trees, we incur the cost
of the root node and then just half of the remainder cost, since there is one core working on each subtree, so
its cost is (Reciprocal(b) +ReciprocalTree(b))/2, where Reciprocal(b) = blog2(3) + b+ 2 log2(b)− 2
is the cost of the root node alone. The total cost is then

CostKPS-Parallel(b, n) =6 (n+ b− 1) + 6 (n+ b/2− 1) + 6b

+ ProductTree1(b/2) + PolyMul(b/2)

+ (Reciprocal(b) +ReciprocalTree(b))/2,

and the proposition follows after considering the cost functions in the Appendix A.

We now focus on Algorithm 5: xISOG-Parallelwhich computes the coefficient of the image curve,
and on Algorithm 6: xEVAL-Parallel which computes the isogeny evaluation at a specific point.

12

Algorithm 5 xISOG-Parallel.

Inputs: An elliptic curve EA/Fq : y2 = x3 + Ax2 + x; P ∈ EA(Fq) of order an odd prime ℓ; b, d, J ,
K, hI0 , . . . , hIn/2−1

and rtreehI0
, . . . , rtreehIn/2−1

from KPS-Parallel; and a number of cores n
which is a power of 2.

Output: A′ ∈ Fq such that EA/Fq : y2 = x3 + A′x2 + x is the image curve of a separable isogeny with
kernel ⟨P ⟩

1: for t ∈ {0, 1, . . . , n− 1} in parallel do
2: Jt ← {x([j]P) ∈ J : t⌈b/n⌉ ≤ j < ⌈b/n⌉+ t⌈b/n⌉}
3: E0,Jt ←

∏
xj∈Jt

(F0(Z, xj) + F1(Z, xj) + F2(Z, xj))

4: E1,Jt ←
∏

xj∈Jt
(F0(Z, xj)− F1(Z, xj) + F2(Z, xj))

5: Kt ← {x([k]P) ∈ K : td ≤ k < d+ td}
6: M0,t ←

∏
xk∈Kt

(1− xk)
7: M1,t ←

∏
xk∈Kt

(−1− xk)

8: end for
9: E0,J ← E0,J0 × . . .× E0,Jn−1∈ Fq[Z]

10: E1,J ← E1,J0 × . . .× E1,Jn−1∈ Fq[Z]
11: M0 ←M0,0 × . . .×M0,n−1 ∈ Fq

12: M1 ←M1,0 × . . .×M1,n−1 ∈ Fq

13: for t ∈ {0, 1, . . . , n− 1} in parallel do
14: if t < n/2 then
15: R0,t ← ResZ(hIt , E0,J , rtreeIt)
16: else
17: R1,(t−n/2) ← ResZ(hIt−n/2

, E1,J , rtreeIt−n/2
)

18: end if
19: end for
20: R0 ← R0,0 × . . .×R0,n/2−1 ∈ Fq

21: R1 ← R1,0 × . . .×R1,n/2−1 ∈ Fq

22: d←
(

A−2
A+2

)ℓ (
M0R0
M1R1

)8

23: return 2(1 + d)/(1− d)

13

Algorithm 6 xEVAL-Parallel.

Inputs: An elliptic curve EA/Fq : y2 = x3+Ax2+x; P ∈ EA(Fq) of order an odd prime ℓ; α = x(Q) ̸=
0 for a point Q ∈ EA(Fq) \ ⟨P ⟩; b, d, J , K, hI0 , . . . , hIn/2−1

and rtreehI0
, . . . , rtreehIn/2−1

from
KPS-Parallel; and a number of cores n which is a power of 2.

Output: x(ϕ(Q)), where ϕ is a separable isogeny of kernel ⟨P ⟩
1: for t ∈ {0, 1, . . . , n− 1} in parallel do
2: Jt ← {x([j]P) ∈ J : t⌈b/n⌉ ≤ j < ⌈b/n⌉+ t⌈b/n⌉}
3: E0,Jt ←

∏
xj∈Jt

(F0(Z, xj)α
2 + F1(Z, xj)α+ F2(Z, xj))

4: E1,Jt ←
∏

xj∈Jt
(F0(Z, xj)α

−2 + F1(Z, xj)α
−1 + F2(Z, xj))

5: Kt ← {x([k]P) ∈ K : td ≤ k < d+ td}
6: M0,t ←

∏
xk∈Kt

(α− xk)

7: M1,t ←
∏

xk∈Kt
(α−1 − xk)

8: end for
9: E0,J ← E0,J0 × . . .× E0,Jn−1 ∈ Fq[Z]

10: E1,J ← E1,J0 × . . .× E1,Jn−1∈ Fq[Z]
11: M0 ←M0,0 × . . .×M0,n−1 ∈ Fq

12: M1 ←M1,0 × . . .×M1,n−1 ∈ Fq

13: for t ∈ {0, 1, . . . , n− 1} in parallel do
14: if 0 ≤ t < n/2 then
15: R0,t ← ResZ(hIt , E0,J , rtreeIt)
16: else
17: R1,(t−r) ← ResZ(hIt−n/2

, E1,J , rtreeIt−n/2
)

18: end if
19: end for
20: R0 ← R0,0 × . . .×R0,n/2−1 ∈ Fq

21: R1 ← R1,0 × . . .×R1,n/2−1 ∈ Fq

22: return (M0R0Qx)
2 / (M1R1Qz)

2

Proposition 3.5. The cost of computing the parallel Algorithm xISOG-Parallel with n cores is

CostxISOG-Parallel(b, n) =6blog2(3) + 3(n2 − n+ 2)

(
b

n

)log2(3)

+ 3 log2(b
√
n)− b− b

n
+

5

2
n+

11

2
,

field multiplications.

Proof of Proposition 3.5. We begin by considering the cost of computing the polynomials E0,J and E1,J

in Algorithm 5, where J comes from KPS-Parallel. We partition J into the subsets J0, . . . ,Jn−1 of
size (b/n) each, and compute one sub-product tree E0,Jt

per subset Jt concurrently. The cost of computing
the factors of each subset is given by 5(b/n) field multiplications, then a product tree is computed for
b/n quadratic polynomials on each core, and the tree roots are multiplied together sequentially to obtain the
complete polynomial E0,J . This last step involves multiplying together n polynomials of degree 2b/n each,
which we denote as LinearProduct2b/n(n). An identical procedure is used to compute E1,J as well.

Using the residue trees rtreehI0
, . . . , rtreehIn/2−1

from KPS-Parallel, each core then compute a
subresultant using a residue tree of size b/n, and the subresultants are multiplied sequentially at a cost of
n/2− 1 multiplications per resultant.

For each of the Mi, each core computes a subproduct of size b at a cost of b − 1 multiplications, and
then combining the subproducts takes another n− 1 multiplications.

Finally, we use two cores to compute the ℓ-th power exponentiation in Algorithm 5 for the numerator
and denominator concurrently at a cost of about 1.5 log ℓ ≈ 3/2 + 3 log2(b) + 3 log(n)/2, and the last few
products take 10 more multiplications.

14

The total cost is then

CostxISOG-Parallel(b, n) =5b/n+ 2× ProducTree2(b/n) + 2× LinearProductn(2b/n)

+ResidueTree(b) + n/2− 1

+ 2× (b+ n− 2)

+ 3/2 + 3 log2(b) + 3 log(n)/2 + 10,

and the proposition follows after considering the cost functions in the Appendix A.

Proposition 3.6. The cost of computing the parallel Algorithm xEVAL-Parallel with n cores is

CostxEVAL-Parallel(b, n) = 6blog2(3) +
3

2
(n2 − n+ 2)

(
b

n

)log2(3)

+ b+
7b

n
+

5

2
n.

field multiplications.

Proof of Proposition 3.6. The proof of the current proposition follows a similar structure to the previous
proposition, with the main distinction lying in the polynomials E0,J E1,J M0,t and M1,t. As before, the
factors of E0,J can be computed with a cost of 10(b/n), and only one product tree is needed since E1,J is
obtained at no additional cost. For each of M0 and M1, each core is still working with a subset of size b, but
now there is a cost of b scalar multiplications for computing the factors in a subset, b− 1 for the subproduct
of each subset, and n − 1 for combining the subproducts. There is no exponentiation in this case, and the
final steps require only six additional multiplications. The total cost is then

CostxEVAL-Parallel(b, n) =10b/n+ ProducTree2(b/n) + LinearProductn(2b/n)

+ResidueTree(b) + n/2− 1

+ 2(2b+ n− 2)

+ 6,

and the proposition follows after considering the cost functions in the Appendix A.

The next theorem summarizes our cost analysis, and follows immediately from the previous proposi-
tions.

Theorem 3.7. The expected total cost of the algorithms KPS-Parallel, xISOG-Parallel and twice
xEVAL-Parallel expressed in field multiplications, assuming that two points need to be pushed through
the isogeny, is given by

CostVélu-Parallel(b, n) =CostKPS-Parallel(b, n) + CostxISOG-Parallel(b, n)

+ 2× CostxEVAL-Parallel(b, n)

=
62

3
blog2(3) + 6(n2 − n+ 2)

(
b

n

)log2(3)

+ 7 log2(b) (6)

+
13b

n
+ 16b+

3

2
log2(n) +

39

2
n− 25

2
.

Remark 3.8. While it may be tempting to compare (6) directly to (5), a direct comparison would be incor-
rect since the definitions of b (the size of the set J) are different in each case. The fair comparison would be
in terms of ℓ, where (5) has b =

√
(ℓ− 1)/2, whereas (6) has b =

√
(ℓ− 1)/(2n).

3.4 Asymptotic Speedup
Although working with large degrees should help to amortize the cost of the parallelization overhead, we
stress that combining the work from each core (for example, joining together the n product subtrees and
working up to the root) incurs a sequential cost that is not subdominant, and so perfect parallelization is not
possible even in a theoretical setting and in the ℓ→∞ limit. Concretely, we provide the following result:

15

Proposition 3.9. Using n cores, the speedup of KPS+ xISOG+ 2xEVAL for large degrees is

26
√
3n

3
2 log2 3

9n2 + 31nlog2 3 − 9n+ 18
.

Proof. The result follows by taking the ratio of (5) and (6) and taking the limit ℓ → ∞ with Remark 3.8
into account.

The above result demonstrates the decreasing returns to scale from each additional core, as plotted in
Figure 4, which suggests our algorithms would work best with a modest number of cores (2–8) and are not
apt for large-scale parallelization architectures like those of GPUs.

0 5 10 15 20 25 30 35

2

4

6

8

10

cores

Sp
ee

du
p

fa
ct

or

0 5 10 15 20 25 30 35

0.4

0.6

0.8

1

cores

U
til

iz
at

io
n

Figure 4: (top): The asymptotic speedup factor from Proposition 3.9 as a function of the number of cores.
(bottom): Average core utilization (speedup factor divided by the number of cores).

4 Experimental Results
We implemented our parallel version of the square-root Vélu algorithm in the C programming language,
leveraging OpenMP for parallelization. This implementation has been integrated into a fork of the SQALE’d
CSIDH library [CCJR], where we can measure the savings due to parallelism for isogenies of each prime
degree ℓ|p + 1. In order to visualize the progression of the performance with the isogeny degree, we have
incorporated a new 1792-bit prime

ptest := 0x4FA4E8C57C4EFF02D0650FE3AFC0413536E72253101645B1387DA2DD519C17FBEC . . .

69843C04DEAEA2DB59CDDDA7876B514C101A1DF0D96778BD72A3C51844BB0196 . . .

F73F1DDBFEC980A4BB3B200A4E618C54621ADB35B5E4B0545F5BE025D63 . . .

BC914AB11A882AD78B6203C57A31031B98B6C104DC99AC9A4532DEC0C293 . . .

0F8AE51B008E4BA6D26E56C736D3C067C8F2DFDF7F8206B444A42D39E0F4D82FF . . .

3FD0EB1DF44B31DDCDE876E658489E1CA359DAF5868A6C22E8455B4A4F7679F6 . . .

2B0C30D8883D2B79931C19E4737C3CC33056461E9C96A175D94B594B2A9EAB4B6B6303,

where ptest + 1 = 4
∏107

i=0 ℓi for odd primes ℓi that are roughly evenly spaced between ℓ0 = 19 and
ℓ107 = 321,193 (the degree of the isogeny in the attack of [MMP+]). This prime was chosen so that
isogenies of each degree ℓi can be evaluated using only Fptest arithmetic (for which we also provide an
assembly code implementation). As previously mentioned, this model most closely resembles the scenario
in CSIDH as opposed to applications where isogenies are performed over quadratic fields or larger exten-
sions. However, we make this choice for concreteness while still expecting our results to extrapolate well

16

to other scenarios, since the main savings come from reducing the number of field multiplications by a
factor that is agnostic to the field itself. Our library can be found at URL (accessed on 9 January 2024)
https://github.com/TheParallelSquarerootVeluTeam/Parallel-Squareroot-Velu. The benchmark results pre-
sented in this section are from experiments conducted using an Intel(R) Xeon(R) Gold 6230R processor
equipped with 26 physical cores, operating at 2.10 GHz. Turbo boost and Hyper-threading technologies
were disabled during these experiments.

Our experimental results are illustrated in Figure 5. We measured the total computational time for
executing KPS-Parallel, xISOG-Parallel, and two iterations of xEVAL-Parallel for each of
the prime degrees ℓi using two, four, and eight cores, and compared to the computational time of the
original sequential implementation of [CCJR]. In Figure 5, we compare the observed speedup factors
against the theoretical speedup using (5) and (6). The experimental speedup can be seen to achieve levels
close to its asymptotic value starting from ℓ ≈ 10,000, although we do observe a slight deviation from the
theoretical expectation which becomes important for the eight-core implementation. Since a large part of
the computation is spent computing different kinds of trees, with all cores writing simultaneously to some
array, a plausible explanation for the degrading performance is the competition for memory accesses. While
our implementation is only a proof of principle, it is possible that a more sophisticated implementation
could achieve significantly better results for eight cores (or more) by carefully managing the distribution
and alignment of the memory that each core accesses.

0 0.5 1 1.5 2 2.5 3 3.5

·105

2

4

6

Isogeny degree

Sp
ee

du
p

fa
ct

or

2-cores expected 4-cores expected 8-cores expected 2-cores experimental

4-cores experimental 8-cores experimental

Figure 5: Speedup factors of timings of the joint cost KPS-Parallel + xISOG-Parallel +
2xEVAL-Parallel over Fptest for each odd prime degree ℓ | (ptest + 1). Experimental timings cor-
respond to an average of 100 runs, whereas the expected savings are obtained from the estimated number
of field multiplications from (5) and (6).

To showcase our results in a more practical setting, we also implemented and benchmarked our paral-
lelized square-root Vélu algorithms in the context of SQALE’d CSIDH-9216. In its dummy-free variant,
SQALE’d CSIDH-9216 performs the operations corresponding to KPS + xISOG + 2xEVAL exactly once
for each of the 333 smallest odd primes (excluding 263), over a 9216-bit prime field. The experimental
timings for each of the three routines, summed over all the degrees, are shown in Table 1. Our two-core im-
plementation achieves speedup factors of 1.23, 1.70, and 1.92 for KPS-Parallel, xISOG-Parallel,
and xEVAL-Parallel, respectively, while for the four-core implementation we obtained acceleration
factors of 1.42, 2.27, and 3.02. While these accelerations span the entirety of the Vélu-related computations
in the protocol, it is important to stress that they cannot be translated easily into an acceleration for the
protocol as a whole, since the protocol includes other non-negligible computations (most notably elliptic
curve point scalar multiplications).

5 Discussion
Since KPS-Parallel performs some of its computational tasks sequentially, while others only benefit
from half of the total number of cores, it is not surprising that its speedup factor is the lowest out of the three
square-root Vélu routines. Nonetheless, as illustrated by Table 1, this is not too important as its total cost

17

https://github.com/TheParallelSquarerootVeluTeam/Parallel-Squareroot-Velu

Table 1: Aggregate computational time (in gigacycles1) measured for the single-core square-root Vélu
procedures KPS, xISOG, and xEVAL described in §2.1, and of the two-core and four-core implementations
of the parallel analogues described in §3.2. The costs are summed over each odd prime degree ℓ | (p9216 +
1), and the Total column corresponds to KPS + xISOG + 2xEVAL. Timings correspond with the average
of 100 runs. (Gcc) is the number of gigacycles and (SF) is the experimental speedup factor considering the
single core implementation as a baseline.

Algorithm Single core Algorithm Two cores Four cores
Gcc Gcc SF Gcc SF

KPS 23.6 KPS-Parallel 19.2 1.23 16.6 1.42

xISOG 58.5 xISOG-Parallel 34.5 1.70 25.8 2.27

xEVAL 59.5 xEVAL-Parallel 31.0 1.92 19.7 3.02

Total 201.1 115.7 1.74 81.8 2.46
1One gigacycle is one billion clock cycles.

is comparatively small. Fortunately, the largest accelerations come from the xEVAL-Parallel, which
apart from being the most expensive of the three is often required to be evaluated multiple times for different
points.

Both our experimental and theoretical results show that parallelizing with at least two cores yields
strong improvements, which are important considering that they can be combined with other improvements
such as vectorized field arithmetic. On the downside, it is also noticeable that the speedup factors in our
implementations do not scale well when transitioning higher numbers of cores. From eight cores onward,
even the maximum speedup derived from the theoretic estimates suggests that the utilization that can be
achieved may not be attractive for practical applications. The intuition behind these diminishing returns on
the parallelization effectiveness is easy to explain, as the size of the resultants in Algorithms 5 and 6 only
decreases as 1/

√
n.

Acknowledgments. .This work started when J.C. and O.O. were doing an internship at the Technology
Innovation Institute (TII) under the guidance of Rodríguez-Henríquez F. We thank TII for sponsoring this
internship. We thank ANID for the study scholarship to O.O., grant number 21190301. We also thank
Chi-Domínguez J. and Zamarripa-Rivera L. for valuable discussion on an early version of this manuscript.
Additionally, this work has received partial funding to facilitate the use of a server in CINVESTAV-IPN in
Mexico which was used for our tests.

A Cost Functions for Polynomial Operations
In this section, we detail the costs in field multiplications associated with various operations in both the
sequential and parallel versions of square-root Vélu.

Polynomial Multiplication. The basic step is the multiplication of two polynomials of equal degree d,
which we denote as PolyMul(d). We use a Karatsuba strategy for polynomial multiplication, so the cost
in field multiplications can be expressed as in [KO]

PolyMul(d) = dlog2(3).

Multiplication of Multiple Polynomials. Suppose we want to multiply together m polynomials of degree
d each. If m is small, we opt for multiplying the polynomials one by one: in step 1 we are multiplying
together two polynomials of degree d, and in step t for 1 < t < m we are multiplying a polynomial of
degree td by another of degree d. By partitioning the larger polynomial, we can perform this multiplication

18

via t polynomial multiplications of degree d by d, so the total cost is

LinearProductm(d) =

m−1∑
t=1

t · PolyMul(d) =
m(m− 1)

2
PolyMul(d) =

m(m− 1)dlog2(3)

2
.

On the other hand, if m is large then we opt for a product tree strategy, where the input polynomials are
placed at the leaves of the tree and each node contains the product of its two child nodes. We assume for
simplicity that m is a power of 2. At level i (where i = 0 corresponds to the root), we need to compute 2i

nodes, each of which is a product of two polynomials of degree md/2i+1. The total cost is therefore

ProductTreed(m) =

log2(m)−1∑
i=0

2i × PolyMul(md/2i+1)

=

log2(m)−1∑
i=0

2i
(

md

2i+1

)log2(3)

= (md)log2(3) −mdlog2(3)

We only use product trees for computing hI and Ei,J which have leaves of degree d = 1 and d = 2,
respectively, so we are only interested in the special cases

ProductTree1(m) = mlog2(3) −m, ProductTree2(m) = 3mlog2(3) − 3m.

Reciprocal tree. Computing the resultants requires the aid of a reciprocal tree, which is built from the
root down using the product tree. If a node in the product tree contains a polynomial F of degree m, then
the corresponding node in the reciprocal tree contains (F, c), where F is a polynomial of degree m and c
is a constant such that revm(F) · F = c mod xm. Here, revm(·) denotes the polynomial with the list of

coefficients in reverse order: if F =

m∑
i=0

Fix
i, then revm(F) =

m∑
i=0

Fm−ix
i.

We only use the case for the product tree of a polynomial f that has b leaves of degree 1. For the root
of the tree, we need to know the cost of obtaining from scratch revb(f)

−1 mod xb, where f has degree b.
As pointed out in (Section 6.4, [ACR]), if we have already computed a reciprocal (f0, c0) of half the degree
(that is, revb(f) · f0 = c0 mod xb/2), then the inverse modulus xb can be obtained as (f, c) with

f =c0f0 − (revb(f) · f0 − c0)f0 mod xb,

c =c20.

These equations can be evaluated at the cost of b/2 + 1 field multiplications (for multiplying f0 by the
scalar c0), plus the cost of two polynomial multiplications modulus xb/2 (because the term in parenthesis is
known to have null coefficients for all powers less than b/2), plus one squaring. This leads to the recursive
formula for the cost of the reciprocal

Reciprocal(b) =Reciprocal(b/2) + b/2 + 1 + 2× PolyMul(b/2) + 1

=Reciprocal(b/2) + b/2 + 2(b/2)log2(3) + 2,

The base case (finding a multiple of the reciprocal of a constant) is trivial, so we obtain

Reciprocal(b) =

log2(b)∑
i=1

(
b

2i
+ 2

(
b

2i

)log2(3)

+ 2

)
=blog2(3) + b+ 2 log2(b)− 2.

The child nodes in the reciprocal tree can then be computed from the root. Let f1, f2 be polynomials of
degree d corresponding to sibling nodes of the product tree, and assume that we have already computed a
reciprocal for their parent node F = f1 · f2. That is, we already have (F, C) such that rev2d(F) · F = C

19

mod x2d. It follows that revd(f1) · (revd(f2) · F) = C mod xd, so we can compute a reciprocal for f1
via the modular multiplication revd(f2) · F mod xd. The total cost of the reciprocal tree is then

ReciprocalTree(b) =Reciprocal(b) +

log2(b)∑
i=1

2i × PolyMul(b/2i)

=blog2(3) + b+ 2 log2(b)− 2 +

log2(b)∑
i=1

2i
(

b

2i

)log2(3)

=3blog2(3) − b+ 2 log2(b)− 2.

Residue tree. Recall that we can compute the resultant ResZ(f, g) for monic f as

ResZ(f, g) =
∏
i

g(xi) =
∏
i

(g mod fi),

where xi are the roots of f and fi = Z − xi are its linear factors. In the context of
Algorithms 2 and 3, (resp. the parallel versions Algorithms 5 and 6), f is a polynomial of degree b corre-
sponding to hI (resp. hIt) for which we have already computed the product tree with leaves fi as well as
the reciprocal tree, and g is a polynomial of degree 2b corresponding to Ei,J for which we have computed
the product tree with leaves of degree 2. We obtain the values g mod fi by building a residue tree from the
root down. Each node of the residue tree contains R := cF mod G, where F and G are the polynomials in
the corresponding nodes of the product trees of f and g, respectively, and c is the constant of the reciprocal
tree.

As pointed out in (Section 17.4, [Ber]), the computation of F mod G for deg(G) = 2deg(F) = 2d
can be achieved with the aid of (F, c) from the reciprocal tree via

F mod G = G− revd(F · rev2d(G) mod xd) · F mod xd,

at the cost of an additional two polynomial multiplications modulus xd, so the total cost of the tree (includ-
ing the cost to multiply together all of the leaves) is

ResidueTree(b) =b− 1 + 2

log2(b)∑
i=0

2i × PolyMul(b/2i)

=b− 1 + 2

log2(b)∑
i=0

2i
(

b

2i

)log2(3)

=6blog2(3) − 3b− 1

Note that the product of all the leaves gives us a multiple of the resultant (the multiple being the product of
all the c constants at the leaves of the reciprocal tree), but these cancel out when taking ratios in the actual
algorithms.

References
[ACR] Gora Adj, Jesús-Javier Chi-Domínguez, and Francisco Rodríguez-Henríquez. Karatsuba-based

square-root Vélu’s formulas applied to two isogeny-based protocols. J. Cryptogr. Eng. 2022, 13,
89–106.

[Ber] Daniel J. Bernstein. Fast multiplication and its applications. In Algorithmic Number Theory;
Buhler, J., Stevenhagen, P., Eds.; Mathematical Sciences Research Institute Publications, Cam-
bridge University Press: Cambridge, UK, 2008; pp. 325–384.

[BF] Andrea Basso and Tako Boris Fouotsa. New sidh countermeasures for a more efficient key
exchange. In Proceedings of the Advances in Cryptology—ASIACRYPT 2023, Guangzhou,
China, 4–8 December 2023; Guo, J.; Steinfeld, R., Eds.; Springer: Singapore, 2023; pp.
208–233.

20

[BFLS20] Daniel J. Bernstein, Luca De Feo, Antonin Leroux, and Benjamin Smith. Faster computation of
isogenies of large prime degree. In: ANTS XIV. The Open Book Series, University of Auckland:
Auckland, New Zealand, 2020; Volume 4, pp. 39–55., 2020.

[BKV] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. Csi-fish: Efficient isogeny based
signatures through class group computations. In Proceedings of the Advances in Cryptol-
ogy—ASIACRYPT 2019, Kobe, Japan, 8–12 December 2019; Galbraith, S.D., Moriai, S., Eds.;
Springer: Cham, Switzerland, 2019; pp. 227–247.

[BMP] Andrea Basso, Luciano Maino, and Giacomo Pope. Festa: Fast encryption from supersin-
gular torsion attacks. In Proceedings of the Advances in Cryptology—ASIACRYPT 2023,
Guangzhou, China, 4–8 December 2023; Guo, J.; Steinfeld, R., Eds.; Springer: Singapore,
2023; pp. 98–126.

[CCJR] Jorge Chávez-Saab, Jesús-Javier Chi-Domínguez, Samuel Jaques, and Francisco Rodríguez-
Henríquez. The SQALE of CSIDH: sublinear vélu quantum-resistant isogeny action with low
exponents. J. Cryptogr. Eng. 2022, 12, 349–368.

[CD] Wouter Castryck and Thomas Decru. An Efficient key recovery attack on SIDH. In Proceedings
of the Advances in Cryptology—EUROCRYPT 2023, Lyon, France, 23–27 April 2023; Hazay,
C., Stam, M., Eds.; Springer: Cham, Switzerland, 2023; pp. 423–447.

[CFG+] Hao Cheng, Georgios Fotiadis, Johann Großschädl, Peter Y. A. Ryan, and Peter B. Rønne.
Batching csidh group actions using avx-512. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021,
2021, 618–649.

[CFGR] Hao Cheng, Georgios Fotiadis, Johann Großschädl, and Peter Y. A. Ryan. Highly vectorized
sike for avx-512. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022, 2022, 41–68.

[CH] Craig Costello and Hüseyin Hisil. A simple and compact algorithm for SIDH with arbitrary de-
gree isogenies. In Proceedings of the Advances in Cryptology—ASIACRYPT 2017—23rd In-
ternational Conference on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, 3–7 December 2017; Proceedings, Part II, Lecture Notes in Computer Sci-
ence; Takagi, T., Peyrin, T., Eds. Springer: Berlin/Heidelberg, Germany, 2017, Volume 10625,
pp. 303–329.

[CLM+] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. Csidh: An
efficient post-quantum commutative group action. In Proceedings of the Advances in Cryp-
tology—ASIACRYPT 2018: 24th International Conference on the Theory and Application of
Cryptology and Information Security, Brisbane, QLD, Australia, 2–6 December 2018; Proceed-
ings, Part III; Springer: Berlin/Heidelberg, Germany, 2018; pp. 395–427.

[Cos] Craig Costello. B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion. In Pro-
ceedings of the Advances in Cryptology—ASIACRYPT 2020—26th International Conference
on the Theory and Application of Cryptology and Information Security, Daejeon, Republic of
Korea, 7–11 December 2020; Proceedings, Part II, Lecture Notes in Computer Scienc; Moriai,
S., Wang, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12492, pp. 440–463.

[DFG] Luca De Feo and Steven D. Galbraith. Seasign: compact isogeny signatures from class group
actions. In Proceedings of the Advances in Cryptology—EUROCRYPT 2019, Darmstadt, Ger-
many, 19–23 May 2019; Ishai, Y., Rijmen, V., Eds.; Springer: Cham, Switzerland, 2019; pp.
759–789.

[DFJ] Luca De Feo and David Jao. Towards quantum-resistant cryptosystems from supersingular el-
liptic curve isogenies. In Proceedings of the Post-Quantum Cryptography, Taipei, Taiwan, 29
November–2 December 2011; Yang, B.Y., Ed.; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 19–34.

21

[DFKL+] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski.
Sqisign: Compact post-quantum signatures from quaternions and isogenies. In Proceedings of
the Advances in Cryptology—ASIACRYPT 2020, Daejeon, Republic of Korea, 7–11 December
2020; Moriai, S.,Wang, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 64–93.

[DJP] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. J. Math. Cryptol. 2014, 8, 209–247.

[DMS] Thomas Decru, Luciano Maino, and Antonio Sanso. Towards a Quantum-resistant Weak Verifi-
able Delay Function. In Proceedings of the Progress in Cryptology—LATINCRYPT 2023—8th
International Conference on Cryptology and Information Security in Latin America, Quito,
Ecuador, 3–6 October 2023; Aly, A., Tibouchi, M., Eds.; Springer: Berlin/Heidelberg, Germany,
2023; Volume 14168, pp. 149–168.

[E+] Noam D Elkies et al. Elliptic and modular curves over finite fields and related computational
issues. AMS IP Stud. Adv. Math. 1998, 7, 21–76.

[FFK+] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz
Panny, and Benjamin Wesolowski. Scallop: Scaling the csi-fish. In Proceedings of the Public-
Key Cryptography—PKC 2023, Atlanta, GA, USA, 7–10 May 2023; Boldyreva, A., Kolesnikov,
V., Eds.; Springer: Cham, Switzerland, 2023; pp. 345–375.

[KO] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit numbers on automata. Sov.
Phys. Dokl. 1962, 7, 595.

[Koh] David R. Kohel. Endomorphism rings of elliptic curves over finite fields. Ph.D. Thesis, Uni-
versity of California at Berkeley, Berkeley, CA, USA, 1996. Available online: http://iml.univ-
mrs.fr/ kohel/pub/thesis.pdf (accessed on 9 January 2023).

[KS] Ganma Kato and Koutarou Suzuki. Speeding up csidh using parallel computation of isogeny.
In Proceedings of the 2020 7th International Conference on Advance Informatics: Concepts,
Theory and Applications (ICAICTA), Tokoname, Japan, 8–9 September 2020; pp. 1–6.

[Ler] Antonin Leroux. Verifiable random function from the Deuring correspondence and higher di-
mensional isogenies. Cryptol. Eprint Arch. 2023.

[MMP+] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski.
A direct key recovery attack on SIDH. In Proceedings of the Advances in Cryptol-
ogy—EUROCRYPT 2023, Lyon, France, 23–27 April 2023; Hazay, C., Stam, M., Eds.;
Springer: Cham, Switzerland, 2023; pp. 448–471.

[MOAT] Tomoki Moriya, Hiroshi Onuki, Yusuke Aikawa, and Tsuyoshi Takagi. The generalized mont-
gomery coordinate: A new computational tool for isogeny-based cryptography. Math. Cryptol.
2022, 2, 36–59.

[Mor] Tomoki Moriya. IS-CUBE: An isogeny-based compact KEM using a boxed SIDH diagram.
Cryptol. Eprint Arch. 2023, preprint.

[MS] Dustin Moody and Daniel Shumow. Analogues of velu’s formulas for isogenies on
alternate models of elliptic curves. IACR Cryptol. Eprint Arch. 2011, 2011, 430.
https://doi.org/10.1090/mcom/3036.

[nis23] National institute of standards and technology NIST. Available online: https://csrc.nist.gov/
news/2023/additional-pqc-digital-signature-candidates, 2023. Accessed: 6-12-2023.

[NO] Kohei Nakagawa and Hiroshi Onuki. QFESTA: Efficient algorithms and parameters for FESTA
using quaternion algebras. Cryptol. Eprint Arch. 2023, preprint.

22

https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates
https://csrc.nist.gov/news/2023/additional-pqc-digital-signature-candidates

[OLHA] Gabriell Orisaka, Julio César López-Hernández, and Diego F. Aranha. Finite field arithmetic
using avx-512 for isogeny-based cryptography. In Proceedings of the 18th Brazilian Symposium
on Information and Computer Systems Security (SBSeg), Natal, Brazil, 22–25 October 2018;
pp. 49–56.

[PSH] Kittiphon Phalakarn, Vorapong Suppakitpaisarn, and M. Anwar Hasan. Speeding-up parallel
computation of large smooth-degree isogeny using precedence-constrained scheduling. In Pro-
ceedings of the Information Security and Privacy, Wollongong, NSW, Australia, 28–30 Novem-
ber 2022; Nguyen, K., Yang, G., Guo, F., Susilo, W., Eds.; Springer: Cham, Switzerland, 2022;
pp. 309–331.

[PSRHH] Kittiphon Phalakarn, Vorapong Suppakitpaisarn, Francisco Rodríguez-Henríquez, and M. An-
war Hasan. Vectorized and parallel computation of large smooth-degree isogenies using
precedence-constrained scheduling. CIACR Trans. Cryptogr. Hardw. Embed. Syst. 2023, 3,
246–269.

[Rob] Damien Robert. Breaking SIDH in polynomial time. In Proceedings of the Advances in Cryp-
tology—EUROCRYPT 2023, Lyon, France, 23–27 April 2023; Hazay, C., Stam, M., Eds.;
Springer: Cham, Switzerland, 2023; pp. 472–503.

[SIK23] SIKE - supersingular isogeny key encapsulation. Available online: https://sike.org/, 2023. Ac-
cessed: 6-12-2023.

[SQI23] SQIsign: Algorithm specifications and supporting documentation. Available online: https://csrc.
nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf,
2023. Accessed: 6-12-2023.

[Vél] Jacques. Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus l’Académie Sci. Série I
1971, 273, 238–241.

[Was] Lawrence Washington. Elliptic curves: number theory and cryptography. 2nd ed.; Chapman &
Hall/CRC: Boca Raton, FL, USA, 2008.

23

https://sike.org/
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/sqisign-spec-web.pdf

	Introduction
	Background
	Computation of -Isogenies
	Computing the Resultants
	Cost Model for the Sequential Square-Root Vélu

	Parallelizing Square-Root Vélu Formulas
	Construction of a New Index System
	Parallelized Algorithms
	Cost Analysis of the Parallel Square-Root Vélu
	Asymptotic Speedup

	Experimental Results
	Discussion
	Appendix A

