
Constant-Round Arguments for Batch-Verification and

Bounded-Space Computations from One-Way Functions

Noga Amit∗

UC Berkeley
Guy N. Rothblum†

Apple

Abstract

What are the minimal cryptographic assumptions that suffice for constructing efficient ar-
gument systems, and for which tasks? Recently, Amit and Rothblum [STOC 2023] showed that
one-way functions suffice for constructing constant-round arguments for bounded-depth compu-
tations. In this work we ask: what other tasks have efficient argument systems based only on
one-way functions? We show two positive results:

First, we construct a new argument system for batch-verification of k UP statements (NP
statements with a unique witness) for witness relations that are verifiable in depth D. TakingM
to be the length of a single witness, the communication complexity is O(log k) · (M + k ·D ·nσ),
where σ > 0 is an arbitrarily small constant. In particular, the communication is quasi-linear
in the length of a single witness, so long as k < M/(D · nσ). The number of rounds is constant
and the honest prover runs in polynomial time given witnesses for all k inputs’ membership in
the language.

Our second result is a constant-round doubly-efficient argument system for languages in
P that are computable by bounded-space Turing machines. For this class of computations,
we obtain an exponential improvement in the trade-off between the number of rounds and
the (exponent of the) communication complexity, compared to known unconditionally sound
protocols [Reingold, Rothblum and Rothblum, STOC 2016].

∗Email: nogamit@berkeley.edu.
†Email: rothblum@alum.mit.edu.

nogamit@berkeley.edu
rothblum@alum.mit.edu

Contents

1 Introduction 1
1.1 Quasi-Linear Batch Verification for UP . 1
1.2 Constant-Round Arguments for Bounded Space . 2

2 Technical Overview 4
2.1 Targeted collision-resistant Hash with Local Opening 4
2.2 Batch Verification of UP Statements . 5
2.3 From UP Batching to IAs for Bounded-Space Computations 8

3 Preliminaries 11
3.1 Multivariate Polynomials and Low Degree Extensions 12
3.2 UOWHF and Merkle Tree . 17
3.3 Interactive Arguments . 20
3.4 HIAs and a constant-round HIA for bounded-depth computations 21
3.5 Code Switching for Tensor Codes . 23
3.6 Probabilistically Checkable Interactive Arguments (PCIAs) 24
3.7 PCIAs w.r.t. Encoded Provers and Low-Depth Honest Prover 27

4 Batch Verification for UP 30

5 Interactive Arguments for Bounded-Space Computations 37
5.1 Batch Verification of PCIAs . 38
5.2 Augmentation Protocol . 46
5.3 PCIA for Bounded-Space Computations . 49

A Code Switching for Tensor Codes: Definitions and Proofs 59
A.1 The Encoding . 59
A.2 Proof of the Code-Switching Lemma . 60

B Additional Proofs 63
B.1 Proof of Proposition 3.25. 63
B.2 Proof of Proposition 5.5. 64
B.3 Proof of Proposition 5.6. 65

1 Introduction

A proof-system allows an untrusted prover to convince a verifier that a complex claim is true.
The claim is usually framed as the membership of an input x in a language L, where verification
should be more efficient than deciding membership in L. In a computationally sound argument
system [BCC88], soundness is relaxed to hold only against polynomial-time cheating provers, under
cryptographic assumptions. If x /∈ L, then no polynomial-time cheating prover should be able
to get the verifier to accept (except with small probability). Understanding the cryptographic
assumptions needed to construct argument systems, and the power of these protocols — i.e., which
languages have argument systems, and how efficient can these protocols be — is a central question
in the foundations of cryptography.

We study this question, focusing on efficient argument systems that have a constant number of
rounds. Kilian’s [Kil92] celebrated work showed that, assuming the existence of collision-resistant
hash functions (CRHs), every language in NP (and, in particular, every language in P) has a 4-
message argument system with sublinear communication and almost-linear verification time. Kil-
ian’s result demonstrated that CRHs are sufficient for constructing powerful argument systems that
go well beyond what is known for unconditionally sound interactive proof systems (IPs) [GMR89]
(and, in some regimes, beyond what is plausible for IPs [GH98, GVW02a]). However, it was
not clear whether weaker cryptographic assumptions, such as the existence of one-way functions
(OWFs, often referred to as a “minimal” assumption for cryptography), suffice for constructing
powerful argument systems. This question is in line with a central theme in the theoretical study
of cryptography: understanding the minimal assumptions needed for implementing cryptographic
primitives.

Recently, Amit and Rothblum [AR23] showed that one-way functions suffice for constructing
efficient argument systems for the class of bounded-depth polynomial-size computations. Their
arguments have a constant number of rounds, and are doubly-efficient: the honest prover is efficient
(polynomial), and the verifier is super-efficient (almost-linear). This demonstrated that one-way
functions suffice for constructing argument systems whose efficiency is beyond what is known for
IPs. In this work we ask: do OWFs suffice for constructing such arguments for other tasks?

1.1 Quasi-Linear Batch Verification for UP

Our first result is an interactive argument system for verifying the correctness of k UP statements.
Recall that the complexity class UP (unambiguous non-deterministic polynomial-time) is the subset
of NP statements for which correct statements have a unique witness. For example, a prover who
wants to convince a verifier that k given integers are all RSA moduli (i.e., products of equal length
primes). Multiple other examples arise from cryptography, where problems related to discrete-log
or lattices all have unique solutions. We focus on UP problems where the witness verification circuit
is of bounded depth.

A line of work has tried to construct (unconditionally sound) interactive proofs of minimal
communication complexity for UP batch verification. Under complexity assumptions, it is known
that the communication cannot be less than the length of a single witness [GH98, GVW02b], and
thus the best one can aim for is linear or quasi-linear communication.1 Known interactive proofs
that achieve quasi-linear communication require polylogarithmically many rounds [RR20]. It is

1We refer the reader to [RRR16, Remark 2.2] for a through discussion.

1

natural to ask whether it is possible to achieve quasi-linear communication using only a constant
number of rounds. We answer this question in the affirmative, assuming only the existence of OWF:

Theorem 1.1 (Batch Verification for UP). Assume one-way functions exist, and let σ ∈ (0, 1)
be a constant. Let L be a language in UP with inputs of length n and witnesses of length M =
M(n) = poly(n), whose witness relation can be computed by Logspace-uniform circuits of fan-in
2, depth D = D(n) and polynomial size. Let k = k(n) be an ensemble of integers such that
1 ≤ k ≤ poly(n). Then, there is an interactive argument that, on input (x1, . . . , xk) ∈ ({0, 1}n)k,
verifies that ∀i ∈ [k], xi ∈ L.

The protocol is public-coins and has perfect completeness and constant soundness error. The
communication complexity is O (log k · (M + k · nσ ·D)). The number of rounds is O(1/σ3). The
running time of the verifier is O (log k · (M + k · nσ · (n+D))). The honest prover, given witnesses
(w1, . . . , wk) ∈ ({0, 1}M)k for the inputs’ membership in L, runs in time poly(n).

For simplicity, we take the security parameter to be a small polynomial in the input length
throughout, obtaining security against poly(n)-time adversaries. More generally, the communica-
tion, verifier runtime and prover runtime depend polynomially on the security parameter.

Theorem 1.1 is the first quasi-linear (in the witness length) constant-round batch-verification
protocol for a rich subclass of UP that does not assume CRHs. Prior works constructed uncon-
ditionally sound constant-round (or polylog(k)-round) batch-verification protocols for this class
[RRR16, RRR18, RR20], but they require communication at least (kσ ·M). On the other hand,
Theorem 1.1 assumes the existence of OWFs and also has an additive term that is (slightly) super-
linear in k, so the improvement is most significant when k is sub-linear in the witness length M ,
i.e. k ≤M/nσ. See the comparison with the best known results in Table 1.

rounds communication verifier time
class (in)

depth D, poly-size (this) (1/σ3) Õ (M + k · nσ ·D) Õ (M + k · nσ · (n+D))

NC [RR20] polylog(k) Õ(M) Õ (k · n+M)

space S, poly-time [RRR18] exp(Õ(1/σ)) O(kσ ·M1+σ) Õ(k · n+ kσ ·M1+σ)

Table 1: Comparison of batch verification protocols for UP, where σ ∈ (0, 1) is a desired constant
for bounding the communication. The first result is an argument, that assumes the existence of
OWF, and the rest are unconditionally sound proofs. The first two protocols require Logspace-
uniformity. In all protocols, the (honest) prover is efficient when given the k witnesses. The Õ(·)
hides polylog(k, n) factors.

1.2 Constant-Round Arguments for Bounded Space

Our second result is a new construction of doubly-efficient and constant-round interactive arguments
for languages computable by bounded-space Turing machines. We state the result for languages
computable in polynomial time and refer the reader to Theorem 5.1 for the more general statement.

Theorem 1.2 (Constant-Round Interactive Arguments for Polynomial Time and Bounded-Poly-
nomial Space). Assume one-way functions exist. Let L be a language that can be computed in time
poly(n) and space S = S(n). Then, for every constant σ ∈ (0, 1), the language L has an O(1/σ4)-
round public-coin interactive argument with perfect completeness and negligible soundness error.

2

The communication complexity is O
(
nσ · S2

)
. The prover runs in time poly(n) and the verifier

runs in time O
(
n1+σ + nσ · S2

)
.

We compare this result to the work of Reingold, Rothblum and Rothblum [RRR16], who ob-
tained constant-round unconditionally sound interactive proofs for the same class of computations.
Our work builds on their techniques. Compared with their result, the main distinction is that in
Theorem 1.2 we obtain an exponential improvement in tradeoff between rounds and communication:
to get communication complexity O (nσ · poly(S)), the [RRR16] protocol uses exp(Õ(1/σ)) many
rounds, whereas the number of rounds in our work is poly(1/σ). We also improve the dependence
on the space complexity and reduce the communication to O

(
nσ · S2

)
. However, we stress that our

protocol assumes the existence of one-way functions and is only computationally sound. In Table 2
we compare the power and complexity of the new result to an interactive proof for the same class of
computations, and to an interactive argument for a different class of computations. In all protocols,
the (honest) prover is efficient, which makes them doubly-efficient.

rounds communication verifier time soundness
class (in)

space S, poly-time (this) O(1/σ4) O
(
nσ · S2

)
O
(
nσ · S2 + n1+σ

)
argument

space S, poly-time [RRR16] exp(Õ(1/σ)) nσ · poly(S) nσ · poly(S) + Õ(n) proof

depth D, poly-size [AR23] O(1/σ3) O (nσ ·D) O
(
nσ ·D + n1+σ

)
argument

Table 2: Comparison with the [RRR16, AR23] protocols, where σ ∈ (0, 1) is a desired constant
for bounding the communication. The two arguments assume the existence of OWFs.

Comparison to known argument systems. As noted above, Kilian [Kil92] shows that as-
suming the existence of CRHs, there exist 4-message doubly-efficient arguments with sublinear
communication and almost-linear verification time for all of P (regardless of the space complexity
required for the computation). In fact, this celebrated protocol can be used for all of NP, i.e., a
much richer class of computations, and even for NP batching, since verifying the membership of k
instances in an NP language is itself an NP problem.

Under stronger assumptions, such arguments exist even beyond NP, and some require only 2
messages or even no interaction at all (starting with Micali’s CS proofs [Mic94], see also Kalai, Raz
and Rothblum [KRR22] and Choudhuri, Jain and Jin [CJJ21], as well as the recent expositions by
Thaler [Tha22] and Ishai [Ish20a, Ish20b], and the references therein). The vast majority of works
on argument systems use assumptions that (at the very least) imply CRHs, and this holds w.r.t. the
task of batch verification as well. One exception is works by Bitansky, Kalai and Paneth [BKP18]
and by Komargodski, Naor and Yogev [KNY18], who construct argument systems based on the
existence of the more relaxed primitive of multi-collision-resistant hash functions, though the recent
work of Rothblum and Vasudevan [RV22] indicates that the gap between collision-resistance and
multi-collision-resistance might not be wide.

The main distinction in our work is that we rely only on the existence of one-way functions, and
achieve results that are applicable for restricted classes of computations (in particular, subclasses
of P and NP). Whereas [AR23] use the model of Boolean circuits and focus on bounded-depth
computation, in this work we use Turing machines and focus on bounded-space computations (see
Remark 1.3), and on batch verification for UP. Comparing these results to Kilian’s 4-message

3

protocol, the round complexity, while constant, is larger than Kilian’s (let alone the subsequent
works that further reduce the interaction using stronger assumptions). However, OWFs are generally
considered to be a considerably more relaxed assumption than CRHs. Simon [Sim98] showed a black-
box separation between the two notions. A natural question for future work is whether one-way
functions suffice for constructing arguments that can be verified in almost-linear time for all of P,
or even for all of NP.

Remark 1.3 (Comparison to [AR23]). The [AR23] result can be used for bounded-space computa-
tions, using the simulation of a Turing machine by a low-depth circuit. Note, however, that for a
space-S machine, this simulation results in a circuit of depth S2 and size ≫ 2S. Plugging this into
the [AR23] result would not give an efficient honest prover when S = ω(log n), and in the context
of argument systems this means that the honest prover is more powerful than the adversary. For
Logspace computations, one can get an efficient honest prover, however the simulation by an NC2

circuit might still incur a large polynomial overhead in the honest prover’s running time.

Succinct Zero-Knowledge Arguments. We also note that, assuming the existence of one-
way functions, our protocols (which are public-coins) can be made zero-knowledge using standard
techniques [IY87, BGG+88]. In particular, we can use Theorem 1.2 to construct succinct constant-
round zero-knowledge arguments for NP statements from one-way functions, whenever the witness
relation can be computed in bounded space. Succinctness means that the communication is nearly-
linear in the witness length. The following corollary improves [RRR16, Theorem 2] in terms of the
round complexity, reduced from exp(Õ(1/σ)) to (1/σ4) (see the highlighted part in Table 2), but
soundness holds only against polynomially bounded provers.

Corollary 1.4. Assume one-way functions exist and let σ ∈ (0, 1) be a constant. Let L be an NP
language, whose witness relation can be computed in time poly(n) and space S = S(n) by a Turing
machine that operates on inputs of length n and witnesses of length M = poly(n). The language L
has a public-coin zero-knowledge interactive argument with perfect completeness, constant soundness
error and O(1/σ4) rounds. The communication complexity is nσ ·O

(
M + S2

)
and the verifier runs

in time nσ ·O
(
n+M + S2

)
. The (honest) prover, given a valid witness, runs in time poly(n).

2 Technical Overview

We outline the key ideas underlying our constant-round argument constructions (Theorems 1.1
and 1.2). We begin with a brief review on universal one-way hash functions (UOWHFs) and hash
trees, that play a central role in both constructions.

2.1 Targeted collision-resistant Hash with Local Opening

UOWHFs. A family H of universal one-way hash functions (UOWHFs), introduced by Naor and
Yung [NY89], is a family of shrinking functions with the following property: fixing an input x,
and drawing a random hash function h from the family H, it is hard to find a “second preimage”
x′ ̸= x s.t. h(x′) = h(x). This is sometimes referred to as second-preimage collision-resistance, or
targeted collision-resistance. Note that the order of events is important: the input x should be fixed
before the hash function h ∼ H is selected. This is a considerable relaxation to collision-resistant
families, where even after h is chosen, it should be hard to find any collision (in a UOWHF, after

4

h is revealed, it may well be possible to adaptively compute a pair x′, x′′ that collide, but they
will not collide with any input that was fixed before h was chosen). Indeed, Rompel [Rom90]
showed that UOWHFs can be constructed from any one-way function (Naor and Yung showed a
construction from one-way permutations). Our construction uses a family of UOWHFs that map
inputs in {0, 1}κ2

to outputs in {0, 1}κ, where the security parameter κ is generally taken to be nδ

for a small constant δ ∈ (0, 1), and the “shrinkage” factor is 1/κ = 1/nδ.

A UOWHF tree. As observed in the work of [AR23], UOWHFs suffice for implementing a targeted
collision-resistant hash with local opening. In particular, UOWHFs can be used in a hash tree to
hash an M -bit string x ∈ {0, 1}M to a short commitment (or hash root) y ∈ {0, 1}κ. The root y
can later be used to locally open any desired bit xi. Naor and Yung [NY89] observed that using
a single UOWHF in a straightforward hash tree [Mer89, Dam89] might not be secure. However,
the construction is secure if we use a separate hash function for each layer of the tree. The two
important properties of this construction are:

1. Local opening: given any i, the local opening for x[i] only requires sending O(κ · logM)
bits and can be verified in poly(logM,κ) time.

2. Targeted collision-resistance: for any string x fixed before choosing the hash functions,
taking root(x) to be the (correct) hash root according to x, it is hard to find an index i and
a valid opening for any value of the ith bit that is different from x[i].

We comment that this construction is not a “standard” commitment scheme in the sense that it
is not necessarily hiding, and, as described in the second item, only satisfies the relaxed “targeted”
binding property when comparing to the one implied by CRH.

2.2 Batch Verification of UP Statements

We begin with the protocol for batching the verification of UP statements (NP statements that
have at most one witness), which gives a taste of our new ideas and techniques. Consider a UP
language L with witnesses of length M = M(|x|). Our goal is to design an IA where, given k
inputs x1, . . . , xk, the verifier accepts only if ∀i ∈ [k], xi ∈ L (and otherwise rejects w.h.p.). We
also want the prover strategy to be efficient: the (honest) prover should run in polynomial time
given witnesses to the inputs’ membership in L.

A naive solution is sending the k witnesses in their entirety. An honest prover, who knows the
witnesses, runs in polynomial time, but the communication and verification grow with (k · M).
Our goal is to batch the verification of these k UP statements via an IA with communication that
is much smaller than (k ·M). In what follows, we show an IA with communication that depends
quasi-linearly on M , with an additive term that is slightly super-linear in k (but not in M). We
assume that the honest prover P is given as input k witnesses, where wi ∈ {0, 1}M is a witness for
the ith input xi.

Before stating the protocol, we highlight two of its main ideas. To start, suppose that all but
one xi are in L, so each has a unique witness wi. The protocol begins with the prover sending
commitments to these witnesses, using the scheme described above. Assume further that for each
xi ∈ L, the commitments (the “hash roots”) are correct. Targeted collision-resistance implies that
for each such i, the prover is now (computationally) committed to wi. Next, the prover sends the
XOR of the k witnesses: theM -bit vector ˜chksum =

⊕
i∈[k]wi. From now on, whenever the prover

5

is asked to locally open the rth bit of a witness, it will send openings for the rth bit of each of the k
witnesses (k openings in all), and the verifier checks that the XOR of these bits equals ˜chksum[r].

We assumed that for all k rows but one the commitment is binding. Let i∗ ∈ [k] be the row
where xi∗ /∈ L and the commitment is not binding. Once the prover sends ˜chksum, it is also
committed to how it opens each bit r in the alleged witness for the i∗th row, i.e., the cheating
prover has also “committed” to a fixed string for the i∗th alleged witness. We can now run an IA
for each row i to verify that xi ∈ L, where we use an IA that only makes a single query to (an
encoding of) the witness, and is sound so long as the alleged witness string is fixed in advance.
By the above, the cheating prover is committed to using a fixed (encoding of a) string for the i∗th

row’s “witness”, and the IA will reject. To obtain quasi-linear communication we need a high-rate
encoding, which can be achieved using the code-switching technique of Ron-Zewi and Rothblum
[RR19].

To make the above approach go through, we made two assumptions: that only one of the k
inputs is not in L, and that the prover is honest when committing to the witnesses of the rest of
the inputs. In order to reduce the general case to this restricted one, we add a single step, after
the prover sends the commitments: the verifier guesses a subset I of the inputs, such that w.h.p.
I contains exactly one input on which the prover cheats. We define cheating on an input as: (i) it
is not in L, or (ii) it is in L but the prover does not send the correct commitment to its witness.
The verifier sends the subset I to the prover, and they execute the rest of the protocol with respect
to the inputs in I (while ignoring the rest). Note that here we need an IA for catching the prover
if it cheats in the commitment it sent (even if the input xi∗ is in L), see Section 4 for further
details (we remark that this results in using different witness encodings in the checksum and in the
commitment).

To see how I is chosen, suppose that the verifier knew the number b of “bad” inputs on which
the prover is cheating (but does not know which rows are in the subset). If it chooses about (k/b)
rows uniformly at random, then with constant probability there will be exactly one cheating row
in the set. In fact, it suffices for the verifier to know b up to a multiplicative factor of 2. Thus,
in the general case, the verifier can (approximately) cover all possibilities for b (up to a factor of
2) by running (in parallel) log k instantiations of the protocol, and trying all possible powers of 2.
For each of these b’s, the verifier chooses about (k/b) rows uniformly at random. This increases
the verification and communication complexities by (only) a multiplicative log k factor.

The full protocol proceeds as follows:

1. V samples UOWHFs to instantiate the commitment scheme, and sends them to P.

2. P commits to the k witnesses: it sends hash roots y1, . . . , yk.

3. V samples a subset of indices I ⊆ [k] as above and sends it to P.

4. P constructs an |I| ×M matrix A whose rows are the witnesses for any i ∈ I:

A =

wi1

.

.

.
wi|I|

 .

6

P computes the parities of A’s columns, and sends these to the verifier. We view this vector
of parities (one per column of A) as a “checksum”, denoted chksum =

⊕
i∈I wi.

5. V receives a vector ˜chksum ∈ {0, 1}M .2 For i ∈ I, both parties run an IA that verifies the
validity of wi and its commitment yi. Each execution ends with V asking from P to open yi
at a single coordinate r (the same for all rows). Then, it runs two tests, and accepts only if
they both pass:

(a) Openings Check. All of the openings are valid w.r.t. the chosen UOWHFs;

(b) Checksum Consistency Check. The rth bit of ˜chksum indeed equals the parity of
the values claimed for the rth column of A. That is:

˜chksum[r] =
⊕
i∈I

wi[r].

Assuming that the IA performed in Step (5) is efficient, this batch verification protocol is also
efficient: excluding this step, the communication complexity is only M + k · poly(κ) bits — the
cost of sending a single row and sending openings3 for each entry of a single column — which is
a considerable saving over the naive sound protocol that required (k ·M) bits. The full protocol
is slightly more involved, since the prover actually commits to the encoding of the witnesses, and
uses the encoded witnesses when constructing A, in order to work with the IA.

Soundness of the UP batching protocol. The targeted collision-resistance binding property
of the commitment scheme implies that once the prover sends a correct commitment for a certain
witness, the verifier effectively gains oracle access to (the encoding of) this witness, because the
prover cannot (locally) open the commitment to anything but the true value. By sampling the
subset I in Step (3) as described above, we reduce soundness to the case where the prover only
cheats on a single input, where cheating on an input is defined as: either the input has no witness
(namely, xi /∈ L), or it has a witness but the prover chooses to send a false commitment to it.

Hence, we restrict our attention to the case where the prover cheats on a single instance i∗.
Note that for any i ̸= i∗, the unique witness wi is fixed in advance before the protocol begins,
and moreover, that all openings are valid according to Step (5a). Since P∗ sends the correct
commitment yi, targeted collision-resistance applies and P∗ must open yi according to wi in Step (5)
(i.e., when running the IA that verifies witnesses and commitments). We emphasize that P∗ can
send arbitrary and adaptive answers on the i∗th instance, after seeing the column r: the purpose
of the commitments is only forcing P∗ to answer according to wi for instances i ̸= i∗.

Observe that V has full access to xi∗ and yi∗ , thus P∗ can only be adaptive in its choice of the
witness when running the i∗th execution of the IA. We show that the checksum ties P∗’s hands by
ensuring that it uses a fixed string to determine its answers. Suppose that P∗ makes the verifier
accept with probability ε, conditioned on I containing a single index on which P∗ cheats. We use
P∗ to construct a fixed string w that makes the verifier accept the input to the i∗th execution of

2Here and throughout this work we use tildes to denote potentially-corrupted strings that the verifier receives
from an untrusted prover.

3Recall that each opening is of size polynomial in the security parameter κ, and that we set κ = nδ.

7

the IA with probability ε. We derive w from the checksum value ˜chksum:

w = ˜chksum⊕

⊕
i ̸=i∗

wi

 .

We claim that on input (xi∗ , w, yi∗), the verifier will accept with probability ε. To see this, recall
that P∗ answers (i.e., opens the commitments) to rows i ̸= i∗ according to wi. Whenever P∗ makes
V accept, it must pass the checksum consistency check in Step (5b), and thus it must answer to the
i∗th execution of the IA according to w. On the other hand, V should accept (xi∗ , w, yi∗) only if w is
valid w.r.t. xi∗ and yi∗ is valid w.r.t. w. By the definition of i∗, at least one of these condition is not
satisfied. We conclude that whenever P∗ makes V accept, it also breaks the soundness guarantee
of the IA, therefore ε is bounded by the IA’s soundness error.

Lastly, note that there are two qualitative differences from [RRR16]’s UP batching protocol.
The first is that they use PCPs as the matrix rows, instead of encoded witnesses, and a multiple-
row checksum. Consequently, their checksum is of size at least polylog(k) · poly(M), since it is
composed of polylog(k) rows, each containing a PCP of length poly(M). Alternatively, to achieve
constant round complexity, the multiplicative factor grows to a small polynomial in k (instead of
polylogarithmic). The second difference is that their construction is recursive. At each step of the
recursion, they reduce the number of batched instances, while making sure that the prover cheats
on a large enough fraction of the smaller subset. At the base of the recursion, the prover sends the
witnesses explicitly for the remaining subset. Eliminating the recursion results in a better round
complexity, or, a better trade-off between the number of rounds and the communication complexity.

To conclude, we remark that the IA performed in Step (5) is indeed efficient. We use [AR23]’s
IA for bounded-depth computations, and for witness relations computable in depth D(n), its com-
munication and verification time are D(n) · poly(κ) for a security parameter κ, set to nδ for a small
constant δ ∈ (0, 1). Its round complexity is O(1/δ3), and its soundness error is negligible.

2.3 From UP Batching to IAs for Bounded-Space Computations

Probabilistically Checkable Interactive Proofs/Arguments (PCIP/PCIAs). To prove our
main result, we use interactive protocols where the verifier only reads a few bits of the transcript in
checking the validity of the statement, thus can be thought of as an interactive analogue of PCPs.
We call these probabilistically checkable interactive proofs (PCIPs) in the statistically sound setting,
or probabilistically checkable interactive arguments (PCIAs) in the computationally sound setting,
and on this work focus on the latter. These were introduced in the work of Reingold et al. [RRR16],
and in an independent work of Ben Sasson et al. [BCS16] by the name of Interactive Oracle Proofs.

A PCIA for a language L is an IA that is divided into two phases. In the communication phase,
the prover and verifier interact for r rounds and generate a transcript, as in a standard interactive
argument. Restricting our attention to public-coin protocols, all that the verifier does in this phase
is send random strings β1, . . . , βr (one in each of the r rounds). In the checking phase, the verifier
queries q bits of the messages sent by the prover and accepts or rejects. The verifier’s running
time in a PCIA is just the time for the checking phase (generating queries and deciding whether
to accept). Thus, in a PCIA, the query complexity and the verifier’s runtime can be much smaller
than the transcript length.

8

Batch Verification of PCIAs. Our starting point for the proof of Theorem 1.2 is [RRR16]’s
template for constructing IPs for bounded-space computations from a batch verification protocol
for PCIPs. Assume we have a PCIA for verifying Turing machine computations of time T and
space S, that we want to extend to verifying computations of time (k · T) and space S for some
super-constant integer k. If the prover sends k − 1 intermediate states of the machine, we reduce
the verification of the (k · T)-time computation to that of verifying k computations running in
time T , namely, all we need is an efficient batch verification protocol for PCIAs.4 Applying it
repeatedly obtains PCIAs (and interactive arguments) for longer and longer computations. In what
follows, we introduce an improved batch verification theorem for PCIAs, while using the targeted
collision-resistant scheme defined in Section 2.1.

From UP batching to PCIA batching. First, we attempt to provide some intuition for the
construction. Recall that the UP batching protocol starts with the prover committing to each of
the k unique witnesses. Translating this idea to the PCIA setting, it is unclear what can the prover
commit to: if its messages in the “base PCIA” (for length-T computations) were unique, then
committing to them would work and bound its adaptivity in the rest of the protocol. However, the
prover’s messages in the base PCIA depend on the verifier’s messages, and, in particular, are not
fixed in advance. Instead, we view the tableau of the length-T computation as the analogue of the
UP witness.5 The protocol starts with the prover computing each of the k tableaux and committing
to them. Observe that, since the computations are deterministic, each tableau is unique.

We want to use the tableau-commitments to bind the prover’s messages in the “base PCIA”. To
achieve this, we require that the messages of the prover in the base PCIA can be computed efficiently
given the tableau. In particular, this implies that we can verify claims about the messages sent in
the base PCIA using an efficient consistency protocol that only makes a single query to (an encoding
of) the tableau, so if the prover sends a correct (and thus binding) tableau-commitment, it cannot
cheat about messages in the base PCIA without getting caught.

With this high-level idea in place, we can proceed analogously to the UP batching case. After
receiving the tableau-commitments, we run a protocol where the prover sends checksums that are
XORs of the messages of (a subset I of) the k base PCIAs. We then ask the prover to “open” the
checksums at the coordinates queried by the PCIA verifier. We run k executions of the aforemen-
tioned consistency protocol to verify that the claimed message-values in each execution i of the
base PCIAs are consistent with the ith committed tableau. As above, soundness will hold so long as
there is exactly one input where the prover is cheating, i.e., either the commitment is incorrect, or
the claim about the length-T computation is false (among many of the details we are glossing over,
we use additional machinery to make sure that we can catch cheating in the tableau-commitment).
We can get to this situation by “guessing” a subset I of the rows as we did in the UP batching.

The PCIA batching protocol. The protocol starts with the prover sending k − 1 intermediate
states of the machine, and k commitments to the k tableaux of these computations (each is a
sequence of T configurations). We view each pair of configurations at distance T from each other
as an input to the “base” PCIA (P,V), such that there are k inputs overall. The verifier guesses
a subset I ⊆ [k] of these pairs (see above), and from now on we assume that the prover cheats

4In fact, we will use a batch verification protocol for a restricted form of PCIAs; see Section 5 for the full details.
5Note the difference from a UP witness: a tableau for polynomial time computations is computable in P (or, more

generally, in poly(T) time), which does not necessary hold for a general UP witness.

9

only on one pair in I. Here, cheating means either that the machine does not move from the first
configuration in the pair to the second one in exactly T steps, or that the commitment to the
tableau of the computation is false.

Then, both parties proceed with r rounds that correspond to the r rounds of (P,V). In each
round j, for each i ∈ I, let αj

i ∈ {0, 1}a be the message that the (prescribed) “base” prover P would
send on input xi in round j given randomness β1, . . . , βj (that Vbatch already sent). The verifier
sends random coins βj as sent by V in the base protocol (the same random coins are used for all
|I| executions), and the prover Pbatch sends a checksum chksumj ∈ {0, 1}a, defined as the parity of
P’s messages: chksumj =

⊕
i∈I α

j
i .

After these r rounds, Vbatch chooses random coins for V’s checking phase (i.e., querying the input
and deciding whether to accept), sends the queries Q ⊂ [r] × [a] to Pbatch, and receives answers
(ϕi : Q→ {0, 1})i∈I to these queries. Vbatch accepts if and only if: (i) V would accept the answers
in all |I| protocols, and (ii) the answers are consistent with the checksums sent in rounds 1, . . . , r.

The last component of the batching protocol is running an IA for any i ∈ I that verifies the
validity of the prover’s answers in the ith PCIA—namely, that it answers according to the prescribed
strategy — and of the ith commitment.6 During these executions, Vbatch asks from Pbatch to open
the commitment at a single coordinate, and accepts only if all openings are valid. We stress that
this step is important only for i ∈ I for which the prover sends a correct commitment. In order for
the IA to be efficient, we assume that given the tableau of the length-T computation, it is possible
to compute P’s answers in the base protocol by a low-depth circuit. We call this class of honest
provers low-depth provers, and make sure that Pbatch (and the provers in the rest of the protocols
that we use or construct) satisfies this property.

The round complexity of the protocol is dominated by the IA’s round complexity, which is
O(1/δ3) where nδ is the security parameter. Since the number of iterative applications of the
batching protocol is eventually set to O(1/δ), we derive the O(1/δ4) round complexity stated in
Theorem 1.2 (where σ = O(δ)). We note that there is hope that this result can be achieved without
adding any cryptographic assumption.

Soundness of the PCIA batching protocol. The proof of soundness is similar to the analogous
proof of the UP batch verification. Taking i∗ to denote the single instance in I where the prover
cheats, we get that ∀i ̸= i∗ the commitment is correct. Due to the targeted binding property of the
scheme and the soundness guarantee of the IA, the prover answers to the queries of the ith protocol
according to the prescribed strategy ∀i ̸= i∗. Then, when it sends the checksum value ˜chksumj ,
it implicitly commits to messages sent for the i∗th protocol, since it must also pass the checksum
consistency check. This means that ϕi∗ is fixed before the i∗th execution begins, for any chosen
query set Q. Thus, if P∗

batch could get Vbatch to accept, we could derive a cheating prover for the
base protocol, breaking its soundness. We note that it is critically important for this argument
that P∗

batch sends ˜chksumj (and commits to the messages in round j), before it knows the random
coins βj+1 that will be chosen by the verifier for round j +1. Moreover, we stress that the binding

6After Vbatch guesses the subset, it must reject in the case that there is a single pair where P∗
batch cheats, even

if the cheating is due to sending a false commitment and the pair of configurations represents a correct length-T
computation of the machine. Notice that the verifier may not catch this if we follow the protocol as described above.
Thus, in the actual protocol, we run two IAs: the first only verifies the correctness of the commitments w.r.t. the
tableaux, and it is run before the PCIA executions, and the second is the one described here, excluding the check of
the commitments. See Section 5 for the full details.

10

property of the scheme, namely, targeted collision-resistance (see Item 2), applies in this setting as
well due to the uniqueness of the tableaux.

Comparison to RRR’s batching protocol. To conclude, let us spell out the two main differ-
ences between this protocol and the one constructed in [RRR16], for readers who are familiar with
it. The first is that the RRR protocol has a recursive structure. At each recursive step, the task of
(interactively) batching k protocols is reduced to that of batching k′ ≪ k protocols. At the base of
the recursion, when sufficiently few protocols are left, the prover and verifier simply execute them.
In order to verify that the prover’s answers in the k′ protocols are consistent with the prescribed
strategy, they design an interactive protocol where the prover interactively convinces the verifier
that it can “complete” the messages it sent until round j to a full transcript, when the verifier uses
fresh randomness in each execution, and run this protocol ∀j ∈ [r].

In our setting, we are able to avoid the recursion, by narrowing down to a subset with only
one instance i∗ on which the prover cheats and reducing the correctness of all instances in I to
the correctness of i∗. Moreover, we avoid the r executions (r per i ∈ I) of the interactive protocol
that verifies consistency between the prover’s answers to i∗ and the prescribed strategy, by a single
execution of the IA described above (one per i ∈ I) and while relying on the low-depth property.
Note that guessing a subset in the RRR setting would not work, since without the commitment
scheme, nothing promises that the prover uses the prescribed messages to answer the queries in the
rest of the PCIA executions i ̸= i∗. Eliminating the recursion and the r executions of the interactive
protocol results in a better round complexity. It also implies shorter prover messages, however, this
does not significantly improve the communication complexity.

The second is that the class of protocols to which RRR’s batching theorem applies is more
restricted. In their work, they introduce the notion of unambiguous interactive proof. These are
proofs where the prover has a unique strategy to convince a verifier (similarly to a unique witness).
They require from their protocols to satisfy unambiguity, and since the construction uses iterative
applications of the batching protocol, requiring the base protocol to be unambiguous implies that
the batching protocol should be unambiguous as well. Unlike the RRR protocol, we do not require
unambiguity, which significantly simplifies the proof. We are able to avoid this technical overhead
by the low-depth property that we require from the honest prover.

Organization. Preliminaries and technical definitions are in Section 3. In Section 4, we prove the
UP batching protocol. The full proof of Theorem 1.2, that is, interactive arguments for bounded-
space computations, is in Section 5 and Appendix B.

3 Preliminaries

For a string x ∈ Σn and an index i ∈ [n], we denote by x[i] the ith entry in x. For a set I ⊆ [n],
we use x|I to describe the sequence of entries in x corresponding to coordinates in I, and “◦” for
string concatenation.

For any pair of distributions, D1 ≡ D2 means that they are identical. We use x ∈R D to indicate
that the element x was drawn uniformly at random from the distribution D. For a multiset (i.e.,
a set where repetitions are allowed) of elements I, we use I ⊆R D to denote that for each x ∈ I, x
is sampled uniformly at random from D, and all of these samples are independent.

11

A Useful Probabilistic Claim. The following proposition argues that if we have a fixed set of
a known size, that has a subset T of an unknown size, then we have a logarithmic (in the set’s size)
success probability in guessing a correct 2-approximation of T ’s size. Further, this implies that,
with a logarithmic success probability, a random subset I will intersect T at a single point.

Proposition 3.1. Fix a subset T ⊆ [k] of size t ∈ [k] and assume that k ≥ 2. If we sample an
integer b ∈R {0, . . . , ⌈log k⌉} and then sample d =

⌈
k
2b

⌉
indices I ⊆R [k] independently (such that

|I| = d) that may repeat themselves (i.e., we allow duplicates), then,

Pr
b∈R{0,...,⌈log k⌉}

I⊆R[k]

[
|T ∩ I| = 1

]
≥ 1

30 log k
.

Proof. Our goal is to lower bound the probability that the random subset I has exactly one index
which is in the subset T , and that the rest of the (d− 1) indices in I are in [k] \ T . We view 2b as
a guess for t up to a factor of 2. First, notice that

Pr[t ≤ 2b < 2t] = Pr[b = ⌈log t⌉] ≥ 1

⌈log k⌉+ 1
≥ 1

log k + 2
≥ 1

3 log k
,

since ⌈log t⌉ ∈ {0, . . . , log k}, and b is sampled uniformly from a distribution of size (⌈log k⌉ + 1).
For the last inequality, we used the fact that k ≥ 2.

Next, we assume that t ≤ 2b < 2t and find the conditional probability that the size of the
intersection is 1. We split into two cases. If t ≥ k/2:

Pr
[
|T ∩ I| = 1

]
≥ Pr

[
|T ∩ I| = 1 | b = ⌈log k⌉

]
= Pr

[
|T ∩ I| = 1 | d = 1

]
=
t

k
≥ k/2

k
=

1

2
.

If t < k/2:

Pr
[
|T ∩ I| = 1

]
= Pr[∃i∗ ∈ I s.t. i ∈ T] · Pr[∀i ∈ I \ {i∗}, i /∈ T] = d · t

k
(1− t

k
)d−1.

To lower bound this term, we use the assumption that t ≤ 2b < 2t. Since k/2b ≤ d < k/2b + 1, it
holds that k/2t < d < k/t+ 1 and therefore

d · t
k
(1− t

k
)d−1 ≥ k

2t
· t
k
(1− t

k
)k/t+1−1 =

1

2
(1− t

k
)k/t >

1

10
,

where the last inequality follows from the fact that ∀x ∈ [0, 12] (1− x)
1
x > 0.2. This means that in

both cases, the probability is lower bounded by 1/10, and the proposition follows.

3.1 Multivariate Polynomials and Low Degree Extensions

We recall some important facts on multivariate polynomials (see [Sud95] for a far more detailed
introduction). A basic fact, captured by the Schwartz-Zippel lemma, is that low degree polynomials
cannot have too many roots.

Lemma 3.2 (Schwartz-Zippel Lemma). Let P : Fm → F be a non-zero polynomial of total degree
d. Then,

Pr
x∈Fm

[P (x) = 0] ≤ d

|F|
.

12

An immediate corollary of the Schwartz-Zippel Lemma is that two distinct polynomials P,Q :
Fm → F of total degree d may agree on at most a d

|F| -fraction of their domain Fm.
Throughout this work, we consider fields in which operations can be implemented efficiently

(i.e., in poly-logarithmic time in the field size). Formally we define such fields as follows.

Definition 3.3. We say that an ensemble of finite fields F = (Fn)n∈N is constructible if elements
in Fn can be represented by O(log(|Fn|)) bits and field operations (i.e., addition, subtraction, mul-
tiplication, inversion and sampling random elements) can all be performed in polylog(|Fn|) time
given this representation.

A well known fact is that for every S = S(n), there exists a constructible field ensemble of size
O(S) and its representation can be found in polylog(S) time using a randomized algorithm (see,
e.g., [Gol08, Appendix G.3] for details). Furthermore, if the ensemble extends GF[2], then the
representation can be found deterministically within this time.

In the following we consider polynomials over a constructible field. In this work we will use the
following well-known local testability and decodability properties of polynomials.

Lemma 3.4 (Self-Correction Procedure (cf. [GS92, Sud95]). Let F be a constructible field ensemble.
Let δ < 1/3, ε ∈ (0, 1], and d,m ≥ 1. There exists an algorithm that, given input x ∈ Fm and
oracle access to an m-variate function P : Fm → F that is δ-close to a polynomial P ′ of total degree
d, runs in time O(d ·m · log(|F|) · log(1/ε)) makes O(d · log(1/ε)) oracle queries and outputs P ′(x)
with probability 1− ε. Furthermore, if P itself has total degree d, then given x ∈ Fm, the algorithm
outputs P (x) with probability 1.

We will also need a variant of the low degree test that tests the individual degree of the poly-
nomial (rather than total degree). Such a test is implicit in [GS06, Section 5.4.2] (see also [GR15,
Theorem A.9]).

Lemma 3.5 (Individual Degree Test). Let F be a constructible field ensemble. Let δ ∈ (0, 1/2), ε ∈
(0, 1] and d,m ∈ N such that d ·m < |F|/10. There exists a randomized algorithm that, given oracle
access to an m-variate polynomial P : Fm → F, runs in time (d ·m · log(|F|) · poly(1/δ) · log(1/ε)),
makes (d ·m · poly(1/δ) · log(1/ε)) oracle queries and:

1. Accepts every function that is a polynomial of individual degree d with probability 1; and

2. Rejects functions that are δ-far from every polynomial of individual degree d with probability
at least 1− ε.

Low Degree Extension. Let H ⊆ F be (ensembles of) finite fields. Fix an integer m ∈ N. A
basic fact is that for every function ϕ : Hm → F, there exists a unique extension of ϕ into a function
ϕ̂ : Fm → F (which agrees with ϕ on Hm; i.e., ϕ̂|Hm ≡ ϕ), such that ϕ̂ is an m-variate polynomial of
individual degree at most (|H| − 1). Moreover, there exists a collection of |H|m functions {τ̂x}x∈Hm

such that each τ̂x : Fm → F is the m-variate polynomial of degree (|H| − 1) in each variable defined
as

τ̂x(z)
def
=
∏
i∈[m]

∏
h∈H\{xi}

zi − h

xi − h
,

13

and for every function ϕ : Hm → F it holds that

ϕ̂(z1, . . . , zm) =
∑
x∈Hm

τ̂x(z1, . . . , zm) · ϕ(x).

The function ϕ̂ is called the low degree extension of ϕ (with respect to F, H and m).
We also define the individual degree |H| − 1 polynomial τ̂ : Fm × Fm → F as:

τ̂(x, z)
def
=
∏
i∈[m]

∏
h∈H\{0}

zi − xi − h

h
. (1)

Observe that for every x ∈ Hm it holds that τ̂(x, ·) ≡ τ̂x(·).
One way to compute the low degree extension is a process known as Lagrange Interpolation.

The Lagrange interpolant polynomials can be computed for a given set of evaluation points H in
O(m · |H|2) time.

Proposition 3.6 ([AR23, Proposition 3.11]). Let H ⊆ F be constructible field ensembles. Let
ϕ : Hm → F and suppose that ϕ can be evaluated by a Turing machine in time t. Then, there exists
a Turing machine that, given as an input a point z ∈ Fm, runs in time |H|m · O(m · |H|2) + O(t)
and outputs the value ϕ̂(z).

The Low Degree Extension as an Error Correcting Code. The low degree extension can
be viewed as an error correcting code applied to bit strings. Formally, fix some canonical ordering
of the elements in H. For every integer n ∈ N, we identify the set [n] with the set Hlog|H|(n) by taking
the representation of i ∈ [n] in base |H|. Consider the function LDEF,H : {0, 1}n → F|F|m , where
m = log|H|(n),

7 that given a string ϕ ∈ {0, 1}n, views ϕ as a function ϕ : Hm → {0, 1}, by identifying

[n] with Hm as above, and outputs the truth table of the low degree extension ϕ̂ : Fm → F of ϕ,
represented as an |F|m dimensional vector.

We use the notation LDE(ϕ) = LDEF,H(ϕ) or ϕ̂ to denote the unique low degree extension (with
degree (|H| − 1) in each variable) for inputs of varying lengths. That is, m = m(n) is implicitly
taken to be the appropriate number of variables required for any input of length n and a field of
size |H|. Once |H| is set, m is well defined for every input length. Typically, m will be clear from
the context and otherwise we define it.

A Low Degree Extension for Multiple Strings. We will also need to extend the LDEF,H
encoding to encode multiple strings (of varying lengths). A natural way of doing so is by simply
concatenating the strings and applying LDEF,H to the concatenated string. However, we take a
slightly different approach, which will be useful both for composing encodings of individual strings
to a single joint encoding, and for decomposing such a joint encoding into individual encodings.
We remark that this approach leverages the fact that the low degree extension is a tensor code
[Wol65].

Given strings x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk , the encoding LDEF,H(x1, . . . , xk) is defined as
follows. Let mk = log|H|(k), m

(i) = log|H|(ni), mmax = maxi∈[k]m
(i) and m = mk + mmax. We

identify [k] with Hmk and identify [max(|xi|)] with Hmmax by viewing the respective integers in
base |H|. Let P : Hm → {0, 1} be a function such that for every z ∈ Hmk , and every (w, y) ∈

7We assume n is a power of |H|, otherwise we can pad the input with zeros.

14

Hm(z) ×Hm−mk−m(z)
, it holds that: P (z, w, y) is equal to the wth bit of xz if y = 0m−mk−m(z)

, and

P (z, w, y) = 0 otherwise (i.e., if y ̸= 0m−mk−m(z)
). We define LDEF,H(x1, . . . , xk) as the low degree

extension of P with respect to F, H and m.

Proposition 3.7 ([RRR16, Proposition 3.8]). Let H and F be constructible field ensembles such
that F is an extension field of H and |H| ≥ log(|F|). There exist procedures Compose and Decompose
as follows:

• Compose: Given oracle access to LDEF,H(x1), . . . , LDEF,H(xk) and a point z ∈ Fm, where m is
as above, the procedure Compose makes a single query to each LDEF,H(xi) (k queries in total),
runs in time k ·poly(|H|,

∑
i log|H|(ni), log(k)) and outputs the zth entry of LDEF,H(x1, . . . , xk).

• Decompose: Given oracle access to LDEF,H(x1, . . . , xk), some i ∈ [k] and a point w ∈ Fm(i)
,

where m(i) is as above, the procedure Decompose makes a single oracle query, runs in time
poly(|H|, log(k),

∑
i log|H|(ni)) and outputs the wth entry of LDEF,H(xi).

Remark 3.8. An immediate corollary from Proposition 3.7 is that, in the interactive setting, we can
split a claim about LDEF,H(x1, . . . , xk) into k claims about (LDEF,H(xi))i∈[k]. This is done by realiz-
ing the oracle access by interaction with the prover: it sends over the results of the k queries that the
verifier makes in the Compose procedure. The verifier runs in time k·poly(|H|,

∑
i log|H|(ni), log(k)),

the prover runs in time k · poly(|H|,
∑

i log|H|(ni) · ni, log(k)), the communication complexity is
k · log(|F|) and the number of rounds is 1/2 (i.e., a single message).

The following proposition allows us to check if an LDE codeword is zero except for a small set
of coordinates.

Proposition 3.9 ([RRR16, Proposition 3.10]). Let H and F be constructible field ensembles such
that F is an extension field of H, where |H| ≥ log(|F|) and let m = m(n). There exists a randomized
algorithm A that is given as explicit input a set S ⊆ Hm and as implicit input an individual degree
|H| − 1 polynomial P : Fm → F. The algorithm runs in time |S| · poly(|H|,m, log(|F|)) and makes

at most |S|+ 1 queries. If P |Hm\S ≡ 0, then A accepts and otherwise, with probability 1− |H|·m
|F| it

rejects.
Furthermore, the queries that A makes depend only on the set S and its random coins.

Next, the following proposition implements the standard interactive process of reducing the
task of proving many claims about the low degree extension of a string to the task of proving a
single claim about it. The high level idea is to consider a low degree curve passing through all the
points that the verifier wishes to read. The prover specifies the values for all the points on the curve
and the verifier outputs a random point on the curve and its alleged value. Soundness follows from
the fact that composing a low degree curve with a low degree polynomial results in a low degree
univariate polynomial.

Proposition 3.10. Fix some input w and a set of t claims, denoted (χi, θi)i∈[t] ∈ (Fm×F)t, about
ŵ = LDEF,H(w). Then, for every ε ∈ (0, 1], there is a δ-sound (r, a, b,Ptime,Vtime)-IP that outputs
a single claim (χ, θ) such that:

• Completeness. If ∀i ∈ [t], ŵ[χi] = θi, then ŵ[χ] = θ.

15

• Soundness. If ∃i ∈ [t] such that ŵ[χi] ̸= θi, then, for every prover strategy, with probability
1− δ over the verifier coin tosses, it holds that ŵ[χ] ̸= θ.

The protocol’s complexities are:

• δ = (m · |H| · tε)/(ε · |F|).

• r = 1/ε.

• a = (1/ε) ·m · |H| · t1+ε · log(|F|).

• b = (1/ε) · log(|F|).

• Ptime = poly(|F|m).

• Vtime = (1/ε) ·m · |H| · t1+ε · log(|F|).

Proof. We split the set (χi, θi)i∈[t] into t
1−ε “batches” of size at most tε each. We run the following

process on each of the batches, and repeat applying it on the results for 1/ε iterations:

1. Let (ρi)i∈[tε] ∈ Ftε be some canonical set of distinct fixed elements known to the prover and
to the verifier. For each batch (χi, θi)i∈[tε], let γ : F → Fm be the unique degree-(tε−1) curve
that passes through the batch of points (χi)i∈[tε], such that ∀i, γ(ρi) = χi. The prover sends
the function ŵ ◦ γ : F → F to the verifier.

2. Upon receiving a function f : F → F from the prover (supposedly, f = ŵ ◦ γ), the verifier
checks that f is a polynomial of degree m · (|H| − 1) · (tε− 1), and that ∀i, f(ρi) = θi. If these
tests pass, then the verifier chooses a random element ρ ∈ F and sends it to the prover.

3. The prover and the verifier continue to the next iteration, such that the batch (χi, θi)i∈[tε]
was reduced to the single claim (γ(ρ), f(ρ)).

Completeness is trivial. For soundness, imagine a tε-ary tree, where each internal node represents
a claim that is the result of the foregoing process when applied to its children. The leaves represent
the original claims (χi, θi)i∈[t]. Assume that the ith claim is false, i.e., that ŵ[χi] ̸= θi, and assume
that for some cheating prover strategy, the probability that the output claim is correct is s. That
is,

s = Pr[ŵ[χ] = θ].

Observe that the ith leaf represents a false claim but the root represents a correct claim, and
consider the unique path that connects the root and the ith leaf. There must exist some node in
this path that represents a correct claim, but at least one of its children represents a false claim.
We focus on the interactive process that is applied to these children. In this process, the only way
for the prover to pass the tests in Step (2) is by sending a function f such that f ̸= ŵ ◦ γ but
f(ρ) = (ŵ ◦ γ)(ρ). This implies that f and ŵ ◦ γ are two distinct polynomials of degree at most
m · (|H| − 1) · (tε − 1), and thus by the Schwartz-Zippel Lemma (see Lemma 3.2), we get that

Pr[f(ρ) = ŵ ◦ γ(ρ)] ≤ m · (|H| − 1) · (tε − 1)

|F|
≤ m · |H| · tε

|F|
.

16

By a union bound over all 1/ε nodes in the path, we get that

s ≤ m · |H| · tε

ε · |F|
.

Notice that sending or evaluating a polynomial over F with (total) degree at most m · (|H| − 1) ·
(tε−1) takes m · (|H|−1) · (tε−1) · log(|F|) < m · |H| · tε · log(|F|) bits or time. To conclude, observe
that there are at most t/(tε − 1) ≤ t/ε nodes in the tree and that there are 2/ε messages, and the
other complexity measures follow by construction.

3.2 UOWHF and Merkle Tree

Definition 3.11 (UOWHF [NY89]). Let κ be a security parameter, and let {n1i} and {n0i} be two
polynomially related increasing sequences that depend on κ, such that for all i, n0i ≤ n1i. Let Hk

be a collection of functions such that for all h ∈ Hk, h : {0, 1}n1k → {0, 1}n0k .
Let A be a probabilistic poly(κ)-time algorithm that on input 1k outputs x(1) ∈ {0, 1}n1k that

we call an initial value, then given a random h ∈ Hk attempts to find x(2) ∈ {0, 1}n1k such that
h(x(1)) = h(x(2)) but x(1) ̸= x(2). Such an H = Hk is called a family of universal one-way hash func-
tions (UOWHFs) if for all poly(κ)-time probabilistic algorithms A, the following holds for sufficiently
large k:

1. If x(1) ∈ {0, 1}n1k is A’s initial value, then Pr[A(h, x(1)) = x(2), h(x(1)) = h(x(2)), x(2) ̸=
x(1)] = negl(n0k) where the probability is taken over all h ∈ H and the random choices of A.

2. ∀h ∈ H there is a description of h of length polynomial in n1k , such that given h’s description
and x, h(x) is computable in polynomial time.

3. H is accessible: there exists an efficient algorithm G such that on input 1k, G generates
uniformly at random a description of h ∈ H.

We note that we treat H as a collection of descriptions of functions.

Note that we allow A to be non-uniform, namely, we assume that the UOWHFs are secure
against non-uniform adversaries. This means that the argument systems that we construct in this
work will be secure against non-uniform provers.

Furthermore, throughout this work we take κ = n0k . We comment that we could take κ to
be smaller, i.e., (n0k)

ε for ε ∈ (0, 1), however taking κ = n0k is sufficient. This means that the
UOWHF families that we will consider will be secure against polynomial time adversaries (i.e.,
poly(κ) = poly(n0k)).

As mentioned in the Overview (see Section 2), Rompel gave the first construction of UOWHFs
from arbitrary one-way functions, while Katz and Koo gave the first full proof for Rompel’s con-
struction.

Theorem 3.12 ([Rom90, KK05]). The existence of one-way functions implies the existence of
universal one-way hash functions.

17

In what follows, we define a Merkle tree and a valid path in the standard way. Definition 3.15
gives a relaxed security property (when comparing to CRHs) of a commitment scheme when based
on a Merkle tree, called a “2-PLOSC”. Proposition 3.16 shows that instantiating a Merkle tree with
a family of UOWHFs results in a 2-PLOSC, and thus the existence of one-way functions suffices
for constructing a 2-PLOSC. As mentioned in the overview, this construction can be thought
of a targeted-collision-resistant hash with local opening. Although we refer to it by the term
“commitment”, it is not a standard commitment scheme in the sense that it is not necessarily
hiding, and that its security property is only a targeted binding property.

Construction 3.13 (Merkle Tree). Fix N,nin, nout ∈ N and a finite alphabet Σ. Set8 L = N
nin

,

and let ℓ = ℓ(N,nin, nout) to be defined below. Given a string z ∈ ΣN and functions h1, . . . , hℓ :
Σnin → Σnout, the Merkle Tree T = T (z, h1, . . . , hℓ) is defined in the following manner:

• The tree has (ℓ+ 1) layers. The first layer is the root and the last layer is the leaves;

• There are L leaves. For j = 1, . . . , L, the jth leaf is denoted by c(ℓ+1,j) and contains

z[(j − 1)nin] . . . z[j · nin − 1];

• For i ∈ [ℓ], the ith layer is denoted by wi and is created by applying hi on the (i+ 1)st layer:

The jth block in the ith layer is denoted by c(i,j) and contains hi(c(i+1,j)) for j = 1, . . . , |wi+1|
nin

;

• The root is denoted by y = h1(c(2,1)), thus w1 = y.

We comment about the indexing of the tree nodes and blocks. As the tree is (nin/nout)-ary, it
is most convenient for us to index “chunks” of nin nodes, which we call a block: namely, for each
fixed tree layer i, the blocks in this layer are indexed as c(i,1), . . . , c(i,M) for M = |wi|/nin. In other
words, each tree node is coupled together with its (nin/nout − 1) siblings. We stress that we do
not give an explicit notation for each tree node, only to blocks of nodes. In particular, this means
that there is no explicit indexing for the image of each block, e.g., for hi(c(i+1,j)), but we will not
need one. In comparison to a binary tree, this indexing is equivalent to coupling each pair of nodes
(that are siblings, i.e., mapped together to the next layer by the hash function) to a block, and
only index the block.

Definition 3.14 (Valid Path). Let N,nin, nout,Σ, L, ℓ and h1, . . . , hℓ be as in Construction 3.13.
Given a string y ∈ Σnout and a leaf index q′ ∈ [L], a path p = (p1, . . . , pℓ+1) is called a valid path
from q′ to y if it satisfies the following properties:

• ∀i ∈ [ℓ+ 1] : pi ∈ Σnin;

• ∀i ∈ [ℓ] : pi = hi(pi+1);

• p1 = y.

Definition 3.15 (2-PLOSC). Let N,nin, nout,Σ, ℓ and h1, . . . , hℓ be as in Construction 3.13. As-
sume that nout ≪ N . A Second-Preimage Locally Openable Succinct9 Commitment using a Merkle
tree for strings in ΣN is defined via a pair of probabilistic polynomial-time algorithms (S,R) such
that:

8We assume that N , as well as any other layer length, is a multiple of nin. This is always possible by padding,
and does not hurt the security since the all-zero string is a fixed string, and therefore the UOWHF security condition
applies to it as well.

9We call this scheme succinct because the output of the commit phase is small.

18

• Commit Phase:

– S chooses a string z ∈ ΣN ;

– R sends hash functions h1, . . . , hℓ : Σ
nin → Σnout;

– S sends a commitment y ∈ Σnout: the (correct) hash root of the Merkle tree T =
T (z, h1, . . . , hℓ).

• Local-Opening Phase: S outputs an index q ∈ [N] and an opening of a leaf q′ =
⌈

q
nin

⌉
,

that is, a path p = (p1, . . . , pℓ+1).

• Security: For a sufficiently large nin and for all q′ =
⌈

q
nin

⌉
,

Pr
S coins
h1,...,hℓ

[p is a valid path from q′ to y and pℓ+1 ̸= z[(q′ − 1)nin] . . . z[q
′ · nin − 1]] = negl(nout).

The following proposition shows that a UOWHF tree is a 2-PLOSC. The full proof is given in
[AR23].

Proposition 3.16 ([AR23, Claim 3.6]). In the setting of Definition 3.15, if R samples h1, . . . , hℓ
uniformly at random from a UOWHFs family10 H : Σnin → Σnout, and nin and N are polynomially
related, then the commitment scheme is secure. In other words, given the functions, the leaves and
the correct root for them, it is impossible for S to find an index and a second valid opening for it.

Remark 3.17 (The alphabet of the UOWHF tree). As already mentioned in Footnote 10, in this
work we will only use Σ = GF[2]. However, the strings that we want to hash — that is, to use as
leaves for the UOWHF tree — are, in some cases, over a finite field F (that extends GF[2]). Thus,
given some z ∈ FN that we wish to hash, the leaves are actually going to be z′ ∈ {0, 1}N ·log(|F|)

where z′ is the binary representation of z,11 and this detail is going to be implicit in what follows.
In this setting, a valid opening may consist of sending log(|F|) paths, one per each bit in the

binary representation of the leaf index (the one to be opened). However, since these bits are con-
secutive in z′, and since a block size nin will be bigger than the binary representation of an index
(namely, nin > log(|F|)), an opening will only consist up to two paths. To facilitate the reading, we
also omit this detail, and only refer to a single path per opening, and to leaf indices in [N].

Throughout this work, the protocols we construct extensively use the commitment scheme
described above. We formally define the language Lhashroot, the language of valid commitments, and
then prove that it is computed by a sufficiently small and uniform family of Boolean circuits. Notice
that we always hash (i.e., use as leaves) the low degree extension of the string being committed to.
This will become useful in the interactive setting, when delegating the verification of a commitment
to the prover.

Definition 3.18. The language Lhashroot is parameterized by an ensemble (F,H)n, that defines the
low degree extension encoding LDE = LDEF,H, by the integers (nin, nout, nh,M)n, and by a family

10Definition 3.11 considers a UOWHF as a Boolean function. Here we allow the functions to be over some finite
alphabet Σ, and the definition is extended in the natural way. In our protocol, however, we take Σ = GF[2].

11Since F extends GF[2], we can take the natural binary representation: the vector of coefficients of x.

19

of functions H : {0, 1}nin → {0, 1}nout. Take ℓ + 1 to be the number of layers in the Merkle tree
(see Construction 3.13) whose leaves are LDE(w),12 with respect to H.

The explicit input to the language is h = h1 ◦ ...◦hℓ, the concatenation of the length-nh descrip-
tions of ℓ functions chosen from H, and a string y ∈ {0, 1}nout. The holographic input is a string
w ∈ {0, 1}M , where M ≤ poly(n).

YES instances of the language are all triplets
(
w, (y, h)

)
such that y is the correct hash root of

LDE(w) with respect to h.

The following proposition shows that Lhashroot is computable by an ℓ · poly(nin)-depth family of
circuits of polynomial size.

Proposition 3.19. The language Lhashroot as defined in Definition 3.18 is computable by Logspace-
uniform Boolean circuits with fan-in 2, of depth ℓ · poly(nin) and size poly(n).

Proof. First, since computing each of the UOWHFs can be done by a poly(nin)-time Turing machine,
it can also be done by a Logspace-uniform circuit with fan-in 2 of size poly(nin) (by considering
the circuit computing the tableau of the machine). This means that a hash root is computable
by a fan-in 2, depth ℓ · poly(nin) and size poly(n,M) = poly(n) circuit, by considering the circuit
computing the UOWHF tree. It follows that this circuit is also Logspace-uniform, since it merely
computes a Merkle tree w.r.t. the UOWHFs, which are computable by Logspace-uniform circuits
as described above.

3.3 Interactive Arguments

An interactive protocol consists of a pair (P,V) of interactive Turing machines that are run on a
common input x, whose length we denote by n = |x|. The first machine, which is deterministic, is
called the prover and is denoted by P, and the second machine, which is probabilistic, is called the
verifier and is denoted by V.

An (r, a, b,Ptime,Vtime,Σ)-interactive protocol, is an interactive protocol in which, for inputs of
length n, the parties interact for r = r(n) rounds and each message sent from P to V (resp., V to
P) is in Σa (resp., Σb), where Σ = Σ(n) is an alphabet (whose size may depend on n). The verifier
runs in time Vtime and the prover runs in time Ptime. We typically omit Σ from the notation and
refer to (r, a, b,Ptime,Vtime) interactive protocols when Σ is clear from the context.

In an (r, a, b,Ptime,Vtime,Σ)-interactive protocol, in each round i ∈ [ℓ], first P sends a message
α(i) ∈ Σa to V and then V sends a message β(i) ∈ Σb to P. At the end of the interaction
V runs a (deterministic) Turing machine on input

(
x, r,

(
α(1), . . . , α(ℓ)

))
, where r is its random

string and outputs the result. Abusing notation, we denote the result of the computation by
V
(
x, r,

(
α(1), . . . , α(ℓ)

))
. We also denote by P

(
x, i,

(
β(1), . . . , β(i−1)

))
the message sent by P in

round i given input x and receiving the messages β(1), . . . , β(i−1) from V in rounds 1, . . . , i − 1,
respectively. We emphasize that P’s messages depend only on the input x and on the messages
that it received from V in previous rounds.

The communication complexity of an (r, a, b,Ptime,Vtime,Σ)-interactive protocol is the total
number of bits transmitted. Namely, (ℓ · (b+ a) · log2(|Σ|)).

12We refer to LDE(w) as the leaves of the tree, although it is not a binary string. See Remark 3.17 for details.

20

Public-coin Protocols. In this work we focus on public-coin interactive protocols, which are
interactive protocols in which each message β(i) sent from the verifier to the prover is a uniformly
distributed random string in Σb. At the end of the protocol, V decides whether to accept or reject
as a function of x and the messages α(1), β(1), . . . , α(r), β(r).

Definition 3.20 (ε-sound (r, a, b,Ptime,Vtime)-IA). An (r, a, b,Ptime,Vtime)-interactive protocol
(P,V) (as above) is an ε-sound (r, a, b,Ptime,Vtime)-Interactive Argument (IA) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x, then V accepts
with probability 1.13

• ε-Soundness: For every x /∈ L and every computationally bounded cheating prover strategy
P∗, the verifier V accepts when interacting with P∗ with probability less than ε(|x|), where
ε = ε(n) is called the soundness error of the argument system.

We remark that our definition of interactive arguments emphasizes the parameters of the argu-
ment system (to a higher degree than is commonly done in the literature). This is mainly because
throughout this work we apply transformations to interactive arguments and we need to carefully
keep track of the effect of these transformations on each one of these parameters.

Parallel Repetition. The following theorem shows that, in case of public-coin arguments, the
soundness error can be reduced at an exponential rate using parallel repetition.

Theorem 3.21 ([BIN97, Hai09, CP15]). Let κ be a security parameter. Running γ parallel repeti-
tions of a public-coin argument with a soundness error s ∈ (0, 1) reduces the error at an exponential
rate to sγ + negl(κ). The perfect completeness still holds.

3.4 HIAs and a constant-round HIA for bounded-depth computations

In this work, we use an argument system of a special type, called a Holographic Interactive Argument
(HIA), a notion formally defined in the work of Gur and Rothblum [GR17]. A HIA is defined similarly
to a standard interactive argument, except that the verifier, rather than being given access to the
input, is given access to its encoding. As a matter of fact, for the low degree extension encoding
(see Section 3.1), reading just a single point r from the encoded input suffices for the verifier.
Alternatively, instead of having the verifier actually read the (encoded) input at the point r, the
verifier outputs a claim about the point, i.e., it outputs r together with a value v that it would
have expected to see, had it actually queried the (encoded) input at r.

We give the definition of a HIA for pair languages. On input (x,w), we interpret x as the explicit
input and w as the holographic input. The prover gets them while the verifier only gets (x, |w|).
The claim about the encoding of the input is only about the holographic input w. We comment
that the original definition was given in the information theoretic setting (namely, for an interactive
proof), but it extends naturally to interactive arguments by bounding the computational resources
of the cheating prover.

13One could allow an error also in the completeness condition. For simplicity, and since all our protocols do not
have such an error, we require perfect completeness.

21

Definition 3.22 (Holographic Interactive Proof/Argument (HIP/HIA)). Fix finite fields H ⊆ F
and a low degree extension encoding LDE = LDEF,H.

A Holographic Interactive Proof/Argument for a pair language L, with respect to the low
degree extension LDE, is an interactive protocol with two parties: a computationally unbounded
(reps., bounded) prover P and a computationally bounded verifier V. Both parties get as input
x ∈ {0, 1}nexp . The prover also gets w ∈ {0, 1}nhol whereas the verifier only gets |w| = nhol .

At the end of the interaction, either the verifier rejects or it outputs a coordinate r ∈ Fm(nhol),
and a value v ∈ F, such that:

• Completeness. If (x,w) ∈ L and the prover honestly follows the protocol, then LDE(w)[r] = v.

• Soundness. If (x,w) /∈ L, then for any unbounded (reps., bounded) cheating prover, with
probability at least 1/2 over the verifier’s coins, LDE(w)[r] ̸= v.

Next, we present the protocol of [AR23, Theorem 5.1], referred to as flat-GKR (since it takes
the [GKR08] interactive proof and “flattens” its rounds complexity). It is a constant-round HIA
for any language computable by bounded-depth circuits, either arithmetic (over some finite field
F that extends GF[2]) or Boolean. A few remarks regarding the theorem statement are in order.
First, in the original protocol, |F| is taken to be a sufficiently large polynomial, and the soundness
error is always smaller than 1/poly(n). Then, a tighter analysis is presented in Appendix A.2.1 of
that work, allowing to take a smaller field size |F| ≥ Θ(n2δ). This way, the soundness error is only
as small as 1/nδ. Nonetheless, we can reduce the error to be as small as 1/p(n) for any known
polynomial p(n): assume p(n) ≤ nν for some ν ∈ N and perform O(ν/δ) parallel repetitions. These
will not increase the complexity measures, however, using Theorem 3.21, will reduce the soundness
error to 1/p(n) as desired.

Secondly, in what follows we state the holographic version of the protocol, for pair languages,
since it is the one that will be in use throughout this work. Note that we let the soundness error
and the complexities depend on n, which is the length of the explicit input.

Lastly, notice that, in order to comply with Definition 3.20, we extend the result such that the
length of prover’s and verifier’s messages are visible. We do so by trivially bounding these with the
communication complexity.

Theorem 3.23 (flat-GKR [AR23]). Assume one-way functions exist, and let δ ∈ (0, 1) be a constant.
Let H ⊆ F be (ensembles of) extension fields of GF[2], where |H| = Θ(nδ) and |F| ≥ Θ(n2δ).

Let L be a pair language with inputs of the form (x,w) ∈ {0, 1}n × {0, 1}M . Assume that L is
computable by Logspace-uniform circuits with fan-in 2, of depth D = D(n,M) and size poly(n,M).
There is an ε-sound doubly-efficient (r, a, b,Ptime,Vtime)-HIA for L w.r.t. the low degree extension
LDEF,H, that is public-coin and has perfect completeness, with the following parameters:

• ε = 1/p(n), for any p(n) ≤ poly(n),

• r = O(1/δ3).

• a = D · nO(δ).

• b = D · nO(δ).

• Ptime = poly(n,M).

22

• Vtime = (D + n) · nO(δ).

Note that, as discussed after Definition 3.11, we assume that the one-way functions are secure
against non-uniform adversaries, and consequently get that the HIA is secure against non-uniform
provers.

Remark 3.24 (flat-GKR on multi-output circuits). The protocol also applies to cases where we
want to verify the output of a Boolean or arithmetic circuit that has multiple (say ℓ ≥ 1) output
wires. By convention, we will verify that the value of all output wires is 1 (where 1 is either a
Boolean value or a field element). The choice of 1ℓ is arbitrary; any vector that is known to the
verifier would work (however, it is crucial that the verifier knows this output vector in advance).

Proposition 3.25 (P’s messages in flat-GKR are computable in low-depth). Let F be an extension
field of GF[2] where |F| = Θ(n2δ), and let L be a pair language with inputs of the form (x,w) ∈
{0, 1}n × {0, 1}M . Assume that L is computable by Logspace-uniform circuits with fan-in 2, of
depth D = D(n,M) and size poly(n,M). Then, the prover’s messages in the flat-GKR protocol are
computable by Logspace-uniform arithmetic circuits over F with fan-in 2, of depth poly(D,nδ) and
size poly(n,M).

The proof of Proposition 3.25 is deferred to Appendix B.1.

3.5 Code Switching for Tensor Codes

In this section we present a “code-switching” technique, introduced in the work of Ron-Zewi and
Rothblum [RR19]. Loosely speaking, this technique allows to “switch” between different tensor
codes, using the Sumcheck protocol [LFKN92].

As already mentioned in Section 3.1, the low degree extension encoding is a tensor code (in fact,
it is the mth tensor of a the Reed-Solomon code, that we do not define here). In their work, [RR19]
define another family of tensor codes, of a higher rate, that supports a certain “code-switching”
property. This allows them to use a (low-rate) code (namely, the low degree extension) to check
the correctness of an NP statement, but then use a high-rate tensor code for actually encoding the
witness. We follow this approach, which allows us to save in communication complexity.

We denote this high-rate tensor code by R and index it by an integer n ∈ N. TakingM =M(n)
to denote its message length, the encoding satisfies a few properties that will come in hand in
Section 4: it is linear, locally-testable, computable in NC (see Proposition A.1), and satisfies the
“code-switching” property, which means that claims about a string encoded under the low degree
extension can be converted to claims about the encoding of the string under R. Most importantly,
the encoding of an M -bit string only requires O(M) bits. The existence of R as stated next was
proved in the work of [RR19]; see Appendix A.1 for more details about this encoding and its
construction.

Theorem 3.26 (The encoding R [RR19]). Let γ ∈ (0, 1) be a constant and let t be a positive
constant integer. There exists a locally-testable linear encoding R : {0, 1}M → {0, 1}M ′

with rate

at least 1− γ, such that M ′ =
(

1
1−γ ·M

)
. Its relative distance is

(γ
t

)O(t)
, and the encoding can be

computed in NC.

We note that R has many other useful properties, and Theorem 3.26 merely highlights a few.
The following lemma captures the local testability of the code. In what follows, we always take
t = O(1/δ) for a constant δ ∈ (0, 1).

23

Lemma 3.27 (Local testing for R [RR19, Lemma 7.2]). Let n ∈ N and M =M(n) = poly(n). Let
δ, γ ∈ (0, 1) be two constants and take R as defined in Theorem 3.26.

For any ε > 0, there exists a randomized algorithm A that gets oracle access to z ∈ {0, 1}M and
a proximity parameter α ∈ (0, 1). It makes O

(
n2δ · γ · δ · 1

α · log
(
1
ε

))
queries, such that:

• Completeness. If z is a codeword of R, then A accepts w.p. 1.

• Soundness. If z is α-far from the code R, then A rejects w.p. at least 1− ε.

HIPs with respect to R. We extend the definition of a holographic interactive proof (HIP, see
Definition 3.22) for the encoding R. As discussed in Section 3.4, the original definition leverages
the fact that multiple claims about the low degree extension of a string can be (soundly) reduced
to a single claim about it (see Proposition 3.10). Consequently, reading a single point in the low
degree extension of the holographic input suffices for the verifier. However, this does not hold in
general for other families of error-correcting codes. We generalize Definition 3.22 in the natural
way: a HIP w.r.t. the encoding R, denoted HIPR, outputs a sequence of claims (χj , θj)j∈[q] about
the encoding of its input under R. We account for q in the verification time.

The following lemma uses this generalized notion. We refer to it as the “code-switching HIPR”
since it reduces a claim about the encoding of a string under another code (in particular, the
LDE encoding) to multiple claims about the encoding of the string under R. It is essentially a
restatement of [RR19, Lemma 7.1]. The full details are deferred to Appendix A.2.

Lemma 3.28 (Code-Switching HIPR). Let δ, γ ∈ (0, 1) be two constants. Take H ⊆ F to be
(ensembles of) extension fields of GF[2], such that H ⊆ F, and take m = log|H|(M). Let LDE =

LDEF,H : {0, 1}|H|m → F|F|m be the low degree extension encoding, and let R : {0, 1}M → {0, 1}M ′

be the encoding defined in Theorem 3.26, with rate parameter γ, such that M ′ =
(

1
1−γ ·M

)
.

Then, there exists a HIPR, with explicit input (r, v) ∈ Fm×F and holographic input w ∈ {0, 1}M .

It outputs q = q(δ, γ, n) = polylog(n) claims (χj , θj)j∈[q] ∈
(
{0, 1}log(M ′) × {0, 1}

)q
, such that:

• Completeness. If LDE(w)[r] = v and the prover honestly follows the protocol, then, for any
j ∈ [q], R(w)[χj] = θj.

• Soundness. If LDE(w)[r] ̸= v, then, for any unbounded cheating prover, with probability at
least 1/n over the verifier’s coins ∃j ∈ [q] such that R(w)[χj] ̸= θj.

The number of rounds is O(1/δ), the communication complexity is O (q · log |F| · |H|), the verifier
runs in time poly (q, log |F|, |H|,m) and the prover runs in time O(M) · q · polylog(|F|).

3.6 Probabilistically Checkable Interactive Arguments (PCIAs)

Loosely speaking, Probabilistically Checkable Interactive Proofs (PCIPs), also known as Interactive
Oracle Proofs, are public-coin interactive protocols in which the verifier only queries the input and
transcript at few locations. This notion was introduced by two independent works [RRR16, BCS16],
and is naturally extended to interactive arguments by bounding the computational resources of the
cheating prover. We view a PCIA as a two-step process: first, an interactive protocol is executed,
where the verifier sends messages (which are merely random strings) to the prover, and receives

24

in return messages from the prover. In the second step, the verifier queries just a few points in
the transcript and input (without any further interaction with the prover), and decides whether to
accept or reject. When referring to the verifier’s running time we will refer only to the running time
in the second step. In particular, the running time will typically be sub-linear in the transcript
length (which is obviously impossible if we counted also the first step).

Definition 3.29 (ε-sound (qT , qI , r, a, b,Ptime,Vtime)-PCIA). A public-coin (r, a, b,Ptime,Vtime)-
IA is an ε-sound (qI , qT , r, a, b,Ptime,Vtime) Probabilistically Checkable Interactive Argument (PCIA)
for L if the interaction consists of the following three phases:

1. Communication Phase: First, the two parties interact for r rounds, in which V only sends
random strings (of length b). No further interaction takes place after this phase.

2. Query Phase: V makes adaptive queries to its input and output. The number of queries to
the transcript (resp., input) is at most qT = qT (n) (resp., qI = qI(n)).

3. Decision Phase: Based on the answers to its queries and the random messages that it sent
in the communication phase, V decides whether to accept or reject.

In contrast to interactive protocols, here Vtime refers to V’s running time only in the query and
decision phases.

We stress that the query complexity is not multiplied by log2(|Σ|) because the transcript is over
the alphabet Σ.

Holographic Access to Input. In Definition 3.29 we bound the verifier’s queries both to the
transcript and to the input. It is natural for the verifier to read its entire input, making a linear
number of queries and achieving qI = n, whereas the number of queries to the transcript is typically
sublinear. For example, this is the case in classical PCP proofs for NP (which can be viewed as
single-message PCIPs).

If the input is encoded under an error-correcting code, it is often possible for the verifier to
read only a sub-linear portion of the input. Indeed, it is known in the PCP literature [BFLS91]
that query access to the low degree extension of the input suffices for sub-linear running time in
the PCP setting, and the same is true also for PCIPs. Following [BFLS91, GR17] and as discussed
in Section 3.4, we refer to this type of access to the input as holographic.

In the setting of a sub-linear verifier, which will be our focus in much of this work, the numbers
of queries to the transcript and input are both sublinear. Often, we do not need to distinguish
between the two bounds, using a single parameter q to bound both quantities. For convenience,
in what follows we use the notation (q, r, a, b,Ptime,Vtime)-PCIA to refer to a PCIA where the
numbers of verifier queries to the transcript and to the input are both bounded by q (i.e., a
(q, q, r, a, b,Ptime,Vtime)-PCIA as per Definition 3.29).

Definition 3.30 (Holographic PCIA). Let H and F be constructible finite ensembles such that
F is an extension field of H. A Holographic ε-sound (qI , qT , r, a, b, Ptime,Vtime) Probabilistically
Checkable Interactive Argument (PCIA) for L with (H,F)-encoded input, is defined similarly to a
(qI , qT , r, a, b,Ptime,Vtime)-PCIA (see Definition 3.29), except that the verifier has oracle access to
the low degree extension LDEF,H(x) of the input x. The parameter qI corresponds to the number of
queries made to LDEF,H(x).

25

Notice that in Section 3.4 we restrict the number of the queries to the encoded (holographic)
input to a single query. In many cases, this facilitates the composition of such protocols: the
HIA outputs a claim about the holographic input, and after the HIA execution ends, this claim is
verified in some manner by another protocol. Since we use the LDE encoding, a holographic PCIA
can satisfy this property as well (namely, we can always restrict it to qI = 1) without losing its
power.14 However, since we construct PCIAs (i.e., instead of using them as a black-box), it will be
more convenient for us to allow the verifier to query (the encoding of) the input multiple times,
and account on these queries with the parameter qI .

Input-Oblivious PCIAs. The PCIAs that we construct will have a restricted type of query access
to their transcript (and we will leverage this query access in our proof). Intuitively, we would like
the verifier’s queries to the transcript to depend only on its random string (and not on previous
queries to the input and transcript).

Definition 3.31. We say that a PCIP (P,V) makes input-oblivious queries if for every two inputs
x1, x2 ∈ {0, 1}n and every random string ρ, the queries that the verifier V makes to the transcript
on input x1, and x2, both with the random string ρ, are the same.

PCIA for Pair Languages. Following Ben-Sasson et al. [BGH+06] we consider pair languages
which are languages whose input is divided into two parts. We typically think of an input (w, x)
to a pair language L as being composed of an explicit input w (to which the verifier has ex-
plicit access) and an implicit input x (to which the verifier only has implicit access). An ε-sound
(qI , qT , r, a, b,Ptime,Vtime)-PCIA for a pair language L is defined similarly to Definition 3.29, ex-
cept that both the verifier and the prover have explicit access to the explicit part of the input (and
the completeness and soundness condition are modified to accommodate this).

We extend the notion of input-oblivious queries (see Definition 3.31) to PCIPs for pair languages
but allow the verifier to use the explicit input to generate its queries. More specifically, a PCIP for
a pair language L makes input-oblivious queries if for every two implicit input x1 and x2 and explicit
input w, for every random string ρ the verifier makes the same queries to the transcript on input
(w, x1) and on input (w, x2).

Holographic PCIA for Pair Languages. The definition of Holographic PCIAs (Definition 3.30)
is extended analogously for pair languages: in a holographic PCIA for a pair language, which is the
model we use in this work, both parties have full access to the explicit input, where the verifier only
has holographic access to the implicit input. In other words, it is a restricted notion of general PCIAs
for pair languages, where we add the assumption that the implicit input is encoded. Note that, in
this setting, we still refer to the implicit input — the one that the verifier have holographic access
to — as implicit, to be consistent with the definition of a pair language. Indeed, this is somewhat
inconsistent with the definition of a holographic PCIA (for languages with a single input), where
we call the input to which the verifier have holographic access to as holographic.

14A procedure like the one described in Proposition 3.10, that reduces multiple claims about the LDE of a string
into a single one, could have been used to reduce qI claims into a single one, that the PCIA would output.

26

3.7 PCIAs w.r.t. Encoded Provers and Low-Depth Honest Prover

Encoded Provers. Notice that in the PCIA setting, full soundness cannot be obtained with
small query complexity: If a cheating prover P∗ changes just one bit of the ith message, and the
verifier only makes a small number of queries to the message, this change will likely go unnoticed
and soundness is lost. To reconcile these two notions, we follow [RRR16] and restrict the family
of cheating provers such that every message sent by the cheating prover (as well as by the pre-
scribed prover) is a codeword in a high-distance error-correcting code (the low degree extension,
see Section 3.1). We refer to this notion as PCIA w.r.t. encoded provers.

Definition 3.32 (Encoded Prover). We say that a prover strategy P is encoded if every message
that P sends is a LDEF,H,m codeword, where m = log|F|(a), and a is the length of each prover
message.

We comment that RRR’s definition for encoded provers is a strict generalization of the aforemen-
tioned one.15

The following proposition shows that we can (trivially) transform a PCIA into an IA with a
slight loss in parameters. It follows directly from applying a low degree test on each of the prover’s
messages, and then using a self-correction procedure to encode its messages. The other direction
(i.e., transforming an IA into a PCIA) is approached in Remark 5.3. Before stating it, we recall that
the communication complexity of a (r, a, b,Ptime,Vtime′)-IA was defined as (ℓ · (b+ a) · log2(|Σ|)).

Proposition 3.33 (From PCIA w.r.t. encoded provers to interactive arguments). Let H and
F be constructible field ensembles such that F is an extension field of H. Let L be a language
with inputs of length n, and let ξ = ξ(n) ∈ (0, 1] be an error parameter. If L has an ε-sound
(q, r, a, b,Ptime,Vtime)-PCIA w.r.t. encoded provers, then L has an ε′-sound (r, a, b,Ptime,Vtime′)
interactive argument, where

ε′ = ε+ ξ,

and

Vtime′ = Vtime+ n · poly(|H|, log(|F|), log|H|(n))

+O(|H| ·m · log(|F|) · log(2r · q/ξ)) · (r + q) .

Proof. Let (P,V) be an an ε-unambiguous (q, r, a, b,Ptime,Vtime) PCIA for L w.r.t. encoded
provers. Consider a protocol (P ′,V ′) in which P ′ just emulates P and V ′ first computes the low
degree extension LDEF,H(x) of the main input x (or, to achieve a HIA (see Definition 3.22), uses
its oracle access to LDEF,H(x)) and emulates (P,V) w.r.t. that low degree extension. In order
to emulate V’s queries, the verifier V ′ first checks that each message α ∈ Fa that it receives is
an LDEF,H,m codeword by running an individual degree test Lemma 3.5, w.r.t. individual degree
|H| − 1, proximity parameter 1/100 and soundness parameter ξ/2r. By Lemma 3.5 this can be
done in time r ·O(|H| ·m · log(|F|) · log(2r · q/ξ)).

15In particular, each prover messages is composed of a sequence of g = g(n) strings, each of which is an LDE
codeword. Using g > 1 is necessary there since, in their construction of the batching PCIP, the checksum has multiple
rows, each of which is a codeword (as each checksum row is a linear combination of prover messages, which are all
codewords). Had the prover sent the checksum in a single message, this message should have been an encoding of
codewords, which incurs a polynomial blowup.

27

Then, it runs the self-correction procedure of Lemma 3.4 on q points, each w.r.t. total degree
(|H| − 1) ·m, the same proximity parameter used for the low degree test and soundness parameter
ξ/2q. This takes time q ·O(|H| ·m · log |F| · log(2r · q/ξ)).

Completeness is trivial. For ε-soundness, observe that if a cheating prover for the PCIP sends
any message that is far from an “encoded message” (i.e. a message that is not in the LDEF,H
code), then the verifier V ′ rejects with high probability when performing the low degree test on that
message. Otherwise (i.e., the messages are close to valid codewords), since V ′ uses the self-correction
procedure, we can essentially treat the messages as being valid encoded messages, which means that
the prover is behaving like an encoded prover. Soundness now follows from the soundness of the
underlying PCIA w.r.t. encoded provers, thus V ′ rejects with probability 1− ε.

All the parameters of (P ′,V ′) are the same as in (P,V) except for the soundness error and the
verifier’s running time. The former increases by an additive factor of r · (ξ/2r) + q · (ξ/2q) ≤ ξ by
a union bound over r rounds (for the low degree text) and the q queries (for the self-correction),
where the latter increases by an additive factor of

n · poly(|H|, log|H|(n)) +O(|H| ·m · log(|F|) · log(2r · q/ξ)) · (r + q) ,

due to computing the low degree extension of the input (see Proposition 3.6) and running the low
degree tests of Lemma 3.5 and the self-correction procedures of Lemma 3.4. We note again that the
first term is eliminated in case of a HIA (i.e., there is no need to compute the low degree extension
of the input).

Low-Depth Honest Prover. In fact, we will require an additional property from the PCIAs
that we build: that the honest prover P is low-depth. We stress that being encoded is a property of
both the cheating and the honest prover, whereas being low-depth is only a property of the honest
prover. This means that low-depth does not restrict the PCIAs’ soundness (i.e., to hold against a
restricted class of cheating provers, as in the case of encoded provers).

Loosely speaking, low-depth means that given the tableau of the computation (that checks
membership in the language that the PCIA computes) and the verifier’s randomness, the prover’s
answers to the protocol can be computed by a low-depth circuit. However, in the batching protocol
constructed in Section 5, the language to be batched includes verifying a claim about the tableau
of another computation, whereas we want the input to the low-depth circuit to be this tableau
(instead of the bigger tableau that includes verifying the claim). Therefore, we define the low-
depth property of the honest prover w.r.t. a PCIA for this language. First, we formally define the
aforementioned language.

Definition 3.34 (The language LM
t). Let n ∈ N , and let H ⊆ F be (ensembles of) finite fields.

For a space S = S(n) Turing machine M and a time bound t = t(n), the pair language LM
t gets a

claim (ω, θ) as explicit input and (x, u, v) as implicit input (see Section 3.6 for the precise technical
definition of a holographic PCIA for pair languages). It is defined with respect to the low degree
extension encoding LDE = LDEF,H as follows:

LM
t

def
=

((ω, θ), (x, u, v)) :

On input x ∈ {0, 1}n, M moves from configuration

u ∈ {0, 1}O(S) to configuration v ∈ {0, 1}O(S)

in exactly t steps and LDE(Tu,v)[ω] = θ

 ,

28

where Tu,v ∈ {0, 1}t·O(S) stands for the tableau of the computation from u to v, namely, the sequence
of configurations starting from u and ending with v.

Notice that the definition of Tu,v assumes that indeed the first condition is met. The low-depth
property w.r.t. LM

t is formally captured by the following definition. Note that, since we only
consider encoded provers, the circuit computing its messages is an arithmetic circuit. Moreover,
since we use the flat-GKR theorem w.r.t. this circuit, we also require that this circuit is of fan-in 2,
of polynomial size and sufficiently uniform.

Definition 3.35 (Low-Depth Prover in a PCIA for Lt). Let F be a finite field. Let L ∈ DTIME(T (n))
be a language with inputs of length n, and let T denote the tableau of the length-T (n) computation
of verifying membership in L w.r.t. a Turing machine M.

For µ = µ(n), we say that a prover strategy P of an r-round PCIA (P,V) for LM
t (see Defini-

tion 3.34) is µ-low-depth if the sequence of messages that P sends in the PCIA for LM
t is computable

by Logspace-uniform arithmetic circuits over F with fan-in 2, of depth poly(µ) and size poly(n),
whose input is the input to L, the tableau T and a full sequence of V’s random coins β1, . . . , βr,
and output is the sequence of message sent by P.

Throughout this work, we will always require that the provers in the PCIAs are low-depth, and
indeed, all of the PCIAs we construct are for LM

t (when plugging in different time bounds t).

Query reduction. An important ingredient in constructing our PCIA is a “query reduction”
transformation for PCIPs (w.r.t. encoded provers) that reduces the verifier’s query complexity and
running time. The following is essentially a restatement of [RRR16, Lemma 8.2] for PCIAs, when
omitting the unambiguity condition (which is unnecessary in this work) and taking g = 1 (see
Footnote 15). Moreover, the soundness error is refined from the original poly(|H|)/|F|, by a more
careful analysis (and without any changes in the protocol).16

Lemma 3.36 (Query-reduction for PCIPs w.r.t. encoded provers, [RRR16, Lemma 8.2]). Take H
and F to be constructible field ensembles where |F| = poly(|H|). Let σ = σ(n) ∈ (0, 1) be a reduction
parameter.

Let (P,V) be an ε-sound (q, r, a, b,Ptime,Vtime)-PCIP for a language L w.r.t. encoded provers
and with input-oblivious queries, where log(max(n, r, a, b,Ptime, Vtime)) ≤ |H| ≤ min(q,Vtime)σ.

There exists an εQ-sound (qQ, rQ, aQ, bQ,PtimeQ,VtimeQ)-PCIP protocol (PQreduce, VQreduce) for
the language L w.r.t. provers and with input-oblivious queries, where:

• εQ = ε+O
(
(|H| ·m)2

)
/|F|.

• qQ = poly(Vtime)σ +O(r · log |F|).

• rQ = r +O(1/σ).

• aQ = max (a, poly(r, b,Vtime, |H|)).

• bQ = max (b,O(|H| · log |F|)).
16Indeed, the soundness error in RRR’s query reduction originates in executions of the Sumcheck protocol

[LFKN92], in which the soundness error is dominated by the degree of the polynomial that is given as input. In all
cases, the polynomials are LDE codewords, thus their degree does not exceed (|H| ·m), and they are never composed
with more than one other polynomial. See [RRR16, Lemma 7.3] for further details.

29

• PtimeQ = Ptime+ poly(q, r, b,Vtime).

• VtimeQ = poly(Vtime)σ + (poly(b, r, |H|)).

Furthermore, for any µ = µ(n) ≥ polylog(n), if P is µ-low-depth, then PQreduce is also µ-low-depth.

Two remarks are in order. The first is that the furthermore clause of Lemma 3.36 follows by
the same arguments used in Proposition 3.25: All of the computations preformed by the prover
boil down to computing the encoding of polynomial-length strings (under the low degree extension
encoding) and to preforming arithmetic operations over F, and these can be preformed by an NC
circuit. The only exceptions are the first two steps of the query reduction protocol, where both
parties execute the original protocol (P,V), and then PQreduce sends the encoding of V’s view, that
is, the queries and the query answers. Since we assume that P is low-depth, the honest PQreduce

can preform these by a µ-depth circuit.
The second remark is about the queries made in the protocol, that are input-oblivious. RRR

settle for a relaxation of Definition 3.31, in which the verifier’s queries to the transcript depend
only on its random string when interacting with the prescribed prover (see [RRR16, Definition
4.7]). In this work, we consider the more natural definition, in which the condition holds also when
interacting with the cheating prover. To make the query reduction protocol satisfy the stronger
definition, we revisit the only step where the verifier’s queries may be adaptive, that is, Step (4) of
(PQreduce,VQreduce). There, we add an additional step where VQreduce checks that Q̃α is the correct
query set w.r.t. the randomness it has chosen for generating Q, and rejects otherwise. This promises
that the query addresses does not depend on the transcript or the input. This change is possible
without hurting the complexities as stated above.

4 Batch Verification for UP

In this section we construct a constant-round doubly-efficient interactive argument for batch ver-
ification of UP statements. Recall that such a theorem allows the verification of k UP witnesses
in a much more efficient way than k independent verifications, and while maintaining the sound-
ness error. As in the standard definition for doubly-efficient protocols for NP or UP, the honest
prover gets the witnesses for the inputs’ membership in L, whereas w.l.o.g. the cheating prover
does not get any, although there may be an input that has a witness (since the cheating prover is
non-uniform, it can get the existing witnesses as auxiliary input).

Theorem 4.1 (Batch Verification for UP). Assume one-way functions exist, and let δ ∈ (0, 1) be a
constant. Let L be a language in UP with inputs of length n and witnesses of length M =M(n) =
poly(n), whose witness relation can be computed by Logspace-uniform circuits of fan-in 2, depth
D(n) and polynomial size. Let k = k(n) be an ensemble of integers such that 1 ≤ k ≤ poly(n). There
is a constant-round doubly-efficient argument that, on input (x1, . . . , xk) ∈ ({0, 1}n)k, verifies that
∀i ∈ [k], xi ∈ L. The protocol is public-coins and has perfect completeness and constant soundness
error. The protocol’s complexities are:

• constant round complexity O(1/δ3),

• communication complexity log k ·O
(
M + k · nO(δ) ·D

)
,

• verifier runtime log k ·O
(
M + k · nO(δ) · (n+D)

)
.

30

• the honest prover, given witnesses (w1, . . . , wk) ∈ ({0, 1}M)k for the inputs’ membership in
L, runs in time poly(n),

• assuming the existence of one-way functions, the protocol is sound against malicious cheating
provers running in time poly(n).

Theorem 1.1 follows from taking δ to be a small enough constant multiple of the desired σ, so that
the nO(δ) term in the verification time and the communication complexity ends up being nσ.

Remark 4.2. Take κ to denote the security parameter (we always take κ = nδ). Since the protocol
is public-coins, we can use a parallel repetition theorem for public-coin interactive arguments (see
Theorem 3.21). Repeating the protocol for κ times in parallel will reduce the soundness error to be
negligible, while increasing the O(log k ·M) term in the communication complexity and verification
time by a multiplicative factor of κ.

Fix finite fields F,H (we formally set them below) and a low degree extension encoding LDE =
LDEF,H. For every i ∈ [k], we use the notation ŵi = LDE(wi), i.e., the low degree extension of each

witness. Its length is denoted by |ŵi| = M̂ .
We further fix the encoding R from Theorem 3.26 w.r.t. an arbitrary constant γ ∈ (0, 1) (e.g.,

γ = 1/10). Recall that R maps M -bit long strings to M ′-bit long strings, where M ′ def= M/(1− γ).
We define the matrix A is the following manner: the ith row of A is R(wi). Given any subset of
rows (R(wi1), . . . ,R(wid)), induced by a subset of indices I = {i1, . . . id} ⊆ [k], where |I| = d and
d ≤ k, we denote by AI the following (d×M ′)-dimensional matrix:

AI =

R(wi1)
.
.
.

R(wid)

 . (2)

For any matrix AI , we define CI = CI(AI) ∈ {0, 1}M ′
as the XOR of AI ’s rows, i.e.,

∀j ∈ [M ′], CI [j] =
⊕
i∈I

R(wi)[j].

We view this vector as a “checksum”, and therefore refer to CI with this terminology (in the
overview, it was denoted by chksum, but here we abbreviate to CI).

Assume that there exists a family of UOWHFs

H : {0, 1}nin → {0, 1}nout .

We denote by nh the length of the description of each function. For every i ∈ [k], we take (ℓ + 1)
to be the depth of the Merkle tree (see Construction 3.13) whose leaves are ŵi, w.r.t. H. Given a
sequence of ℓ functions sampled from H, we take h = h1 ◦ · · · ◦ hℓ to be the concatenation of their
descriptions.

We define the pair language L′ w.r.t. L and Definition 3.18:

((x, y, h), w) ∈ L′ ⇐⇒ (x,w) ∈ L ∧ ((y, h), w) ∈ Lhashroot,

31

where (x, y, h) ∈ {0, 1}n × {0, 1}nout × {0, 1}nh·ℓ is the explicit input and w ∈ {0, 1}M is the
holographic input. Namely, L′ is an “augmented” version of L: a pair ((x, y, h), w) is in L′ if w is
the unique NP-witness of x for proving its membership in L, and y is the correct hash root of ŵ.

Lastly, we define the pair language LR w.r.t. the encoding R (see Theorem 3.26):(
(χj , θj)j∈[q], w

)
∈ LR ⇐⇒ ∀j ∈ [q], R(w)[χj] = θj ,

where (χj , θj)j∈[q] ∈
(
{0, 1}log(M ′) × {0, 1}

)q
is the explicit input and w ∈ {0, 1}M is the holo-

graphic input. Notice that LR is computable in Logspace-uniform NC, due to Theorem 3.26 (see
Proposition A.1 for the proof).

We proceed with the full description of the UP batching protocol.

The UP Batching Protocol (P,V)
Prover’s Input: x1, . . . , xk ∈ ({0, 1}n)k and w1, . . . , wk ∈ ({0, 1}M)k.
Verifier’s Input: x1, . . . , xk ∈ ({0, 1}n)k.

1. Let H be a UOWHF family, as per Definition 3.11. V samples h1, . . . , hℓ ∈R H and
sends their description h to P.

2. P commits to the witnesses: it creates k Merkle trees as in Construction 3.13, using h
and (ŵi)i∈[k] (where ŵ = LDE(w)), and sends their roots (yi)i∈[k] to V.

3. V samples an integer b ∈R {0, . . . , ⌈log k⌉} and defines d =
⌈
k/2b

⌉
. Then, it samples

uniformly at random d independent indices I ⊆R [k], and sends I to P.

4. P creates AI and a checksum CI as described in Eq. (2) and sends CI to V.

5. V receives CI , tests that it is a codeword of R using Lemma 3.27 and rejects otherwise.

6. V and P run d parallel and independent invocations (one per each i ∈ I) of the following,
where V uses the same random tape for each of them:

(a) the flat-GKR HIA of Theorem 3.23 w.r.t. L′, with (xi, yi, h) as explicit input and
wi as holographic input. It outputs a claim about ŵi, denoted (r′, v′i).

(b) the Code-Switching HIPR of Lemma 3.28, with (r′, v′i) as explicit input and wi as
holographic input. It outputs q claims about R(wi), denoted (χj , θ

i
j)j∈[q].

(c) the flat-GKR HIA of Theorem 3.23 w.r.t. LR, with (χj , θ
i
j)j∈[q] as explicit input

and wi as holographic input. It outputs a claim about ŵi, denoted (r, vi).

7. P opens the commitments for (ŵi[r])i∈I : it sends the paths (pi)i∈I .

8. V receives (pi)i∈I . It runs three tests and accepts only if they all pass:

(a) Consistency Check: ∀i ∈ I, the claimed value for ŵi[r] is consistent with vi.

(b) Checksum Check: The claimed values (θij)i∈I,j∈[q] are consistent with CI .

(c) Paths Check: ∀i ∈ I, pi is a valid opening.

32

Remark 4.3. When using the same random tape in parallel runs, we do not harm the completeness
or soundness of the protocol, while promising that the coordinates r, r′ are the same in each run.
This is crucial for checking the consistency between the checksum and the prover’s answers while
maintaining low communication complexity.

Since the protocol is public-coins, we can use a parallel repetition theorem for public-coin
interactive arguments (see Theorem 3.21). The full protocol runs in parallel γ = O(log k) copies of
the protocol described above, and accepts only if all of the copies accept. Looking ahead, we prove
that the soundness error is s = 1 − 1/Θ(log k), hence taking γ repetitions will reduce the overall
soundness error to be as small as any constant.

Parameter Setting. Let n ∈ N and δ ∈ (0, 1). Take H ⊆ F to be (ensembles of) extension fields
of GF[2], such that |H| = Θ(nδ) and |F| = Θ(n2δ). We define

nin = n2δ, nout = nδ,

and a security parameter κ = nout (in Definition 3.11, we take k to be the smallest integer such
that n1k = nin and n0k = nout). The UOWHF family we use is secure against polynomial time
adversaries, and the time it takes to compute each function is poly(nin) = nO(δ). Note that if OWFs
exist, then there exist UOWHFs satisfying these properties.

Once the fields are set, the length of |LDEF,H(w)| = |ŵ| = M̂ for |w| = M is set: M̂ = M2.
GivenM , we can find ℓ (the depth of the UOWHF tree whose leaves are ŵ): it is the unique solution
to the equation (

nout
nin

)ℓ−1

· M̂ = nout,

which implies that (nδ)ℓ = M̂ , thus ℓ = lognδ(M̂). This implies that ℓ = O(1/δ) for allM = poly(n).
In fact, due to Remark 3.17, the length of the leaves is

(
log |F| ·M2

)
, but this is also poly(n), so

the above analysis still applies.

Proof of Theorem 4.1.

Completeness. Let (P,V) denote a single run of the protocol (before performing the repetitions).
Assume that there exist witnesses w1, . . . , wk such that ∀i ∈ [k], xi ∈ L.

First, notice that if (R(wi))i∈[k] are all legal codewords, then the checksum CI , which is the
XOR (which is a sum) of a subset of them, is also a legal codeword, thanks to the linearity of the
encoding R (see Theorem 3.26). This means that an honest P sends a checksum CI that passes
the test in Step (5). Moreover, it is evident that an honest prover passes the three final checks if
it follows the steps of the protocol, by the perfect completeness of the flat-GKR HIA (see Theorem
3.23) and the Code-Switching HIPR (see Lemma 3.28). Thus, the verifier accepts in all of the
parallel executions with probability 1.

Soundness. First, let us introduce some useful notation for the two lasts steps of the protocol:

• In Step (7), let q =
⌈

r
nin

⌉
be the leaf index (in the UOWHF tree) that P∗ computes in order

to open the commitments for the rth coordinate of (ŵi)i∈I .

33

• For every row i ∈ I, let pi =
(
pi1, . . . , p

i
ℓ+1

)
be the tree path that corresponds to q, namely,

the opening for ŵi[r].

• Let ξi = piℓ+1[q] (by the previous item, piℓ+1 is the last node in the path that the prover sends

for opening the rth coordinate of ŵi). If the prover is honest, ξi = ŵi[r].

Using these notation, we rephrase V’s tests in Step (8). It receives (pi)i∈I , and runs three tests:

1. Consistency Check: ∀i ∈ I, ξi = vi.

2. Checksum Check: ∀j ∈ [q], the χth
j coordinates of CI indeed equals the parity of the values

claimed for the χth
j column of AI , that is: CI [χj] =

⊕
i∈I θ

i
j .

3. Paths Check: ∀i ∈ I, pi is a valid path w.r.t. h, yi and q.

With these in mind, we turn to the proof. For the soundness condition of the full protocol, fix
x1, . . . , xk and assume ∃i ∈ [k] such that L(xi) = ∅, i.e., xi is not in the language and thus has no
NP-witness. Suppose that there exists a polynomial time strategy P∗ such that after interacting
with it, the probability that V accepts is s, and let A denote this event.

Take B to be the following event, where we use the terms “hash root”, “root” and “commitment”
interchangeably:

Pr[B] = Pr [∃!i∗ ∈ I s.t. (L(xi∗) = ∅) ∨ (yi∗ is not the correct hash root of ŵi∗)] .

We call such an index a bad index, which means that B is the event that there exists a single bad
index in I. We take I ′ = I \ {i∗} to be the set of indices that are not bad, assuming B. If B does
not happen, we trivially define I ′ to be an empty set.

Moreover, we define the following event E: the prover’s answers in the Code-Switching execu-
tions to inputs in I ′ are consistent with the true correct witnesses. That is, the event E implies
that ∀i ∈ I ′, j ∈ [q], θij = R(wi)[χj]. The following claim shows that E holds with high probability.
Recall that negl(nout) = negl(n).

Claim 4.4. Pr [A ∧B ∧ ¬E] ≤ negl(n) + 1/n.

Proof. First, recall that L is a UP language. This means that for each i ∈ I ′ there exists a unique
NP-witness wi for xi, and thus ŵi = LDE(wi) is also uniquely defined. Moreover, assuming B, for
any i ∈ I ′ it holds that yi is the correct root of ŵi. Getting back to Definition 3.15 and recalling
that P∗ passes the paths check of Step (8c), we get that if P∗ implicitly declares the string ŵi

(which is defined before the hash functions are chosen) and sends the correct hash root yi as the
commitment to ŵi, then, for the index q and the path pi:

Pr[pi is a valid path from q to yi and ξi ̸= ŵi[r]] ≤
Pr[pi is a valid path from q to yi and

piℓ+1 ̸= ŵi[(q − 1)nin] . . . ŵi[q · nin − 1]] = negl(n),

by the targeted-collision-resistance of the commitment scheme (see Proposition 3.16). The probabil-
ity is over the choice of the functions, since w.l.o.g. the prover is deterministic (as it is non-uniform).
We comment that in the current setting, P∗ receives which index to open (that is, q), although

34

Proposition 3.16 achieves something stronger: even if P∗ chooses the index by itself, it cannot find
a collision with probability better than negl(n).

Next, assume that ∀i ∈ I ′, ξi = ŵi[r]. Since P∗ passes the test of Step (8a), we get that
∀i ∈ I ′, vi = ŵi[r]. Namely, ∀i ∈ I ′, P∗ answers honestly to the flat-GKR executions preformed
in Step (6c), for any coordinate r chosen at random by the verifier during the execution. This
implies that, unless P∗ breaks the soundness guarantee of flat-GKR, it outputs (χj , θ

i
j)j∈[q] that are

all correct claims about R(wi), that is, ∀i ∈ I ′, j ∈ [q], θij = R(wi)[χj].
The proposition follows by recalling that k ≤ poly(n), and a union bound over all i ∈ I ′ while

taking p(n) = k · n in Theorem 3.23.

Next, assuming that B and E hold, we prove that the prover’s answers to the i∗th execution
of the Code-Switching HIPR are determined non-adaptively according to a fixed string before the
protocol begins. Namely, we show that for any random coordinate χ, the value θi

∗
of the output

claim (χ, θi
∗
) is fixed in advance.

Proposition 4.5. Take π = CI
⊕

i∈I′ R(wi), and assume that the event (A∧B ∧E) holds. Then,
with all but a 1/n probability, π = R(w′) for some string w′ ∈ {0, 1}M , and P∗ uses w′ as holo-
graphic input in the i∗th execution of the Code-Switching HIPR.

Proof. Recall that, assuming B, the set I ′ is the set of indices that are not bad: I ′ = I \ {i∗}. Since
P∗ passes the checksum check in Step (8b), as we assume that A happens (namely, that the verifier
does not reject), we get for any χ ∈ {0, 1}log(M ′):

CI [χ] =
⊕
i∈I

θi =

(⊕
i∈I′

θi

)
⊕ θi

∗
=

(⊕
i∈I′

R(wi)[χ]

)
⊕ θi

∗
,

from the assumption that E holds. Then:

θi
∗
=

(⊕
i∈I′

R(wi)[χ]

)
⊕ CI [χ].

We define

π =

(⊕
i∈I′

R(wi)

)
⊕ CI .

Since P∗ passes the test of Step (5), CI is a codeword of R with all but a 1/n probability (here,
we took ε = 1/n in Lemma 3.27). Since all of (R(wi))i∈I′ are codewords and the code is linear
(see Theorem 3.26), we get that π is also a codeword. Namely, there exists a string w′ ∈ {0, 1}M
such that π = R(w′). This means that P∗ uses a fixed string w′ as holographic input in the i∗th

execution of the Code-Switching HIPR.

Our next goal is to show that (r′, v′i∗) is a false claim w.r.t. w′, unless the prover breaks
the soundness property of flat-GKR in the i∗th execution preformed in Step (6a). We stress that
this step’s purpose is only to catch a cheating on i∗; these flat-GKR executions for i ∈ I ′ do not
affect the protocol’s soundness, and that is why we do not ask from the prover to open any of the
commitments on r′. Recall that B implies that either L(xi∗) = ∅, or that yi∗ is not the correct root
of ŵi∗ , and we split into cases.

35

• If L(xi∗) = ∅, it is clear that w′ is not a correct witness for xi∗ (because there is no such
witness). Then, (r, vi∗) is a false claim w.r.t. w′, unless P∗ breaks the soundness property of
flat-GKR in Step (6a).

• If L(xi∗) ̸= ∅, then, by the assumption, yi∗ is not the correct root of ŵi∗ . Since L(xi∗) ̸= ∅,
the string wi∗ is well-defined as the unique NP-witness for xi∗ .

– On the one hand, if w′ = wi∗ , then yi∗ is not the correct root for w′, which means that
((xi∗ , yi∗ , h), w

′) /∈ L′. Then, (r, vi∗) is a false claim w.r.t. w′, unless P∗ breaks the
soundness property of flat-GKR.

– On the other hand, if w′ ̸= wi∗ , then w
′ is not the unique correct witness for xi∗ , which

leads us back to the first case.

Altogether, we get that
Pr
[
LDE(w′)[r′] ̸= v′i∗

]
≥ 1− 1/n,

according to Theorem 3.23.
Proposition 4.5 allows us to use the soundness guarantee of the Code-Switching HIPR w.r.t. the

explicit input (r′, v′i) and the holographic input w′: if (r′, v′i) is a false claim about ŵ′, then at least
one of the claims (χj , θ

i∗
j)j∈[q] is false, unless P∗ breaks the soundness property of the HIPR.

Assuming this event does not hold, take j∗ to denote the false claim, namely, R(w′)[χj∗] ̸=
θi

∗
j∗ . Recalling that in Proposition 4.5 we showed that θi

∗
j∗ = π[χj∗] = R(w′)[χj∗], we reach a

contradiction. This implies that Pr(A ∧ B ∧ E) is bounded by the sum of soundness errors of the
flat-GKR HIA, of the Code-Switching HIPR, and of the local-testing procedure. Each of these is at
most 1/n.

Finally, using Proposition 3.1 for finding Pr[¬B] (where we take T to be the actual set of bad
indices in [k], determined by P∗’s strategy), we conclude that:

s = Pr[A] ≤ Pr[A ∧B ∧ E] + Pr[A ∧B ∧ ¬E] + Pr[¬B]

≤ 4/n+ negl(n) + 1− 1/30 log k.

Recalling that k ≤ poly(n), we get that s ≤ 1− 1/40 log k, since negl(n) and 1/n are smaller than
(1/1000 log k). Getting back to the full protocol, using Remark 3.21 with γ = O(log k) repetitions
implies that the overall soundness error is at most

(1− 1/40 log k)O(log k) + negl(n) ≤ 1/e+ negl(n) ≤ 1/2.

Complexity. Let δ ∈ (0, 1) and consider H,F as defined in Section 4. By Proposition 3.19,
Lhashroot is computable by a Logspace-uniform polynomial size circuit of depth O(1/δ) · poly(nin) =
nO(δ). Thus, the language L′ is computable in depth max(nO(δ), D(n)) and polynomial size, by
a circuit that outputs the conjunction of the circuit computing the hash root and the circuit
computing L.

Notice that LR is computable by an NC circuit, and that the length of the explicit input to
the executions in Step (6a) is longer than to the ones in Step (6c). Thus, we only consider the
executions of Step (6a).

The number of rounds, dominated by the round complexity of flat-GKR, is O(1/δ3). The commu-
nication complexity of the protocol is dominated by three steps: sending the checksum CI , running

36

the d ≤ k invocations of the flat-GKR protocol (in Step (6a)) and running the Code-Switching
protocol. Since the communication complexity of each of the latter is O

(
polylog(n) · nO(δ)

)
, and of

flat-GKR is max(nO(δ), D(n)) · nO(δ) = D(n) · nO(δ), this overall yields

cc = O(M) + k ·D(n) · nO(δ).

As for the verification time, first, notice that we invoked Lemma 3.27 with a constant proximity

parameter (in particular, the code’s relative distance is
(

γ
O(1/δ)

)O(1/δ)
, so any proximity parameter α

smaller than that would work). This means that the query complexity of the tester is O
(
n2δ · log n

)
,

since we took the code to have constant rate 1 − γ and set ε = 1/n. Moreover, the verification
time of the Code-Switching HIPR is nO(δ). Hence, the “heaviest” computation run by the verifier
is executing the d ≤ k invocations of flat-GKR, which takes k · (D(n) + n) · nO(δ) time. The prover
runs in time poly(M,n) = poly(n) given the witnesses (w1, . . . , wk), and the complexities of the full
protocol follow by recalling that we preform O(log k) parallel repetitions.

5 Interactive Arguments for Bounded-Space Computations

We denote by DTISP(T, S) the class of all languages accepted by a Turing machine in time T = T (n)
and space S = S(n). Our main result is a new construction of doubly-efficient and constant-round
interactive arguments for languages that are computable by bounded-space Turing machines:

Theorem 5.1 (Interactive Arguments for Bounded-Space). Assume one-way functions exist. Let
T = T (n) and S = S(n) such that n ≤ T ≤ exp(n) and log(T) ≤ S ≤ poly(n).

Let L ∈ DTISP(T, S) and let δ ∈ (0, 1). Then, L has a public-coin interactive argument with
perfect completeness and negligible soundness error. The number of rounds is O(1/δ4). The com-
munication complexity is O

(
TO(δ) · S2

)
. The prover runs in time poly(T, S) time, and the verifier

runs in time
O
(
n1+O(δ) + TO(δ) · S2

)
.

If the verifier is given query access to a low-degree extension of the input, then its running time
is reduced to O

(
TO(δ) · S2

)
.

Theorem 1.2 is derived by plugging in T = poly(n), and taking δ to be a small enough constant
multiple of the desired σ, so that the nO(δ) term in the verification time and the communication
complexity ends up being nσ.

We comment that our focus is on running time as the critical resource, as in past work (e.g.
the [RRR16] protocol). We do not attempt to bound the verifier’s space, and it might grow
quadratically. Bounding the verifier’s space usage is a fascinating question; linear space is a natural
goal, but one could also ask whether it is possible to obtain logarithmic space.

Organization of this section. In Section 5.1, we prove the main new technical tool of this work,
batch verification of PCIAs. This protocol takes a PCIA for the language LM

t (see Definition 3.34)
and generates an efficient PCIA for checking membership of multiple inputs in LM

t , albeit with a
high query complexity. We use it in Section 5.2 in order to achieve a batch verification protocol of
PCIAs for LM

t that also maintains low query complexity, called the augmentation protocol. Then,
in Section 5.3, we use the augmentation protocol to prove Theorem 5.11, which is a PCIA for any
bounded-space computation. Finally, we derive Theorem 5.1 by transforming the PCIA to an IA.
Appendix B contains technical proofs deferred from this section.

37

5.1 Batch Verification of PCIAs

In this section we show how to batch verify PCIAs for computations of length t = t(n), which is the
main component in our interactive arguments for bounded-space computations (see Section 2.3 for
an overview of the construction).

The goal of the batch verification protocol is to transform a PCIA for LM
t (see Definition 3.34),

denoted (Pt,Vt), into an efficient PCIA for LM
k·t. In fact, we will require two properties from the

PCIA for LM
t : that the prover is encoded (see Definition 3.32), and that the honest prover is µ-low-

depth (see Definition 3.35), where we set µ to be as small as the security parameter (that is, nδ, see
next). As mentioned in the technical overview, we could have constructed an abstracted version
of a more general batch verification protocol (in particular, for PCIAs with a low-depth prover).
However, since it leads to a large technical overhead that makes the protocol less clear, we decided
to present the restricted case of batch verification of a PCIA for the language LM

t .

Parameter Setting for Section 5. Let n ∈ N and δ ∈ (0, 1). Take H ⊆ F to be (ensembles of)
extension fields of GF[2], such that |H| = Θ(nδ) and |F| = Θ(n2δ · log n).

As done in the UP batching protocol (see Section 4), we use a UOWHF family H : {0, 1}nin →
{0, 1}nout , and set the security parameter to be κ = nout, where we define

nin = n2δ, nout = nδ.

Thus, the UOWHF family we use is secure against polynomial time adversaries, and the time it
takes to compute each function is poly(nin) = nO(δ). Moreover, as shown in Section 4, the depth of
the UOWHF tree in Construction 3.13 is ℓ = O(1/δ) whenever we hash (i.e., use as leaves) strings
of polynomial length, which is always the case. Note that if OWFs exist, then there exist UOWHFs
satisfying these properties.

Before stating the batch verification lemma, we briefly go over its parameters: k is the number
of protocols to be batched, δ is a parameter controlling the complexities of the protocol, and ε,
q, r, a, b, Ptime, Vtime are, respectively, the soundness error, the query complexity, the number
of rounds, the length of prover messages, the length of verifier messages, the running time of the
(honest) prover and the running time of the verifier.

Lemma 5.2 (Batch Verification for PCIAs w.r.t. encoded provers). Assume one-way functions
exist, and let δ ∈ (0, 1) be a constant. Let H ⊆ F be (ensembles of) extension fields of GF[2], where
|H| = Θ(nδ) and |F| = Θ(n2δ · log n).

Let M be a Turing machine that uses space at most S = S(n), and let t = t(n) be a time bound.
Suppose that LM

t has an ε-sound (q, r, a, b,Ptime,Vtime)-PCIA (Pt,Vt) w.r.t. encoded provers and
with input-oblivious queries. Let k = k(n) ≤ poly(n) and assume that

• q ≤ min
(
Vtime, k · nO(δ)

)
;

• a ≥ max
(
(k · S)2 · polylog(n), k2 · nO(δ), (k · q)2 · polylog(n)

)
;

• r · b ≤ k · nO(δ).

Then, there exists an εB-sound (qB, rB, aB, bB,PtimeB,VtimeB)-PCIA (Pbatch,Vbatch) for the language
Lk·t w.r.t. encoded provers and with input-oblivious queries, with the following parameters:

• εB = 1− (1− ε)/30 log k +O(1/ log n).

38

• qB = (2k + 1) · q + nO(δ).

• rB = r +O(1/δ3).

• aB = a.

• bB = k · nO(δ).

• PtimeB = poly(k, nδ, t, S) + k · Ptime.

• VtimeB = Vtime · poly(k, nδ).

Furthermore, if Pt is n
δ-low-depth, then Pbatch is nδ-low-depth as well.

Most importantly, note that the length of Pbatch’s messages does not grow, rather than the trivial
a · k (which can be obtained by simply running the k protocols), and that the round complexity
only grows additively by a constant factor.

As discussed in the overview, the high-level idea for designing the PCIA (Pbatch,Vbatch) is for
Pbatch to first specify k evenly-spaced intermediate configurations of the Turing machine. Given
these intermediate configurations, Vbatch wants to verify that k statements are in LM

t , where the
ith statement refers to a computation of length t between two Turing machine configurations.

Let M be a Turing machine that uses space at most S = S(n). For convenience, we use the

notation Lt
def
= LM

t and Lk·t
def
= LM

k·t. Assume that Lt has a (q, r, a, b,Ptime,Vtime)-PCIA (Pt,Vt)
w.r.t. encoded provers, where the honest Pt is nδ-low-depth, and with input-oblivious queries,
where the parameters satisfy the requirements in the lemma statement.

We define the pair language LPt with respect to the prescribed prover strategy Pt, where Q is
a query set of size q:(

(Q,ϕ, β1, ..., βr) , (x, T)
)
∈ LPt ⇐⇒ ϕ is consistent with the prescribed

strategy w.r.t. Q, β1, ..., βr,

where (Q,ϕ, β1, ..., βr) ∈ ({0, 1}log r+log a)q × Fq × {0, 1}r·b is the explicit input to the language LPt

and (x, T) ∈ {0, 1}n × {0, 1}t·O(S) is the implicit input. Notice that the representation of queries
Q is actually the binary representation of two indices: each query (j, t) ∈ [r] × [a], namely, the
tth entry in the prover’s messages in the jth round, is represented by a binary string of length
(log r + log a).

Remark 5.3. In what follows, we use the flat-GKR protocol of Theorem 3.23 in the context of the
PCIA (Pbatch,Vbatch), by having the PCIA prover and verifier run these as a sub-protocol. When this
is the case, we want to bound the verifier Vbatch’s query complexity in the flat-GKR execution. We
do so by simply having the PCIA verifier Vbatch explicitly query every bit of the messages sent by
the prover of the flat-GKR protocol. This gives query complexity that is at most the communication
complexity (that trivially bounds the overall length of the prover messages). Since the verifier reads
every bit of every message, we get that all queries are input-oblivious.

The same is applicable to the other sub-protocol that is used in (Pbatch,Vbatch), that is, the
interactive reduction of Proposition 3.10, preformed in Step (6b).

39

Remark 5.4 (Padding). We always assume that the prover’s messages in the protocol are padded
to length aB. Unlike in [RRR16], the verifier does not need to check the correctness of the padding
(i.e., that the prover indeed padded with zeros, and not with other field elements) because this kind
of deviation from the prescribed strategy will not hurt the soundness of the protocol.

We proceed with the full description of protocol. Notice that, as commented in Remark 4.3,
when running the flat-GKR protocol in Steps (6a) and (10a) the verifier uses the same random tape.
Thus, the coordinates in the claims that the protocol outputs (these are rroot and r′) are the same
in all parallel runs, because they only depend on the verifier’s randomness, and this does harm the
completeness or soundness of the protocol.

Lastly, we comment that we use the term “checksum” as in the overview (there it was denoted
chksum) and in Section 4, see Eq. (2). However, here, instead of parity, we use a sum where the
addition is over the field F.

PCIA (Pbatch,Vbatch) for Lk·t

Prover’s Input: x ∈ {0, 1}n, configurations u, v ∈ {0, 1}O(S) and a claim (ω, θ).
Verifier’s Input: explicit access to (ω, θ) and implicit access to LDE(x, u, v).

1. Pbatch runs M starting at u for k · t steps. Let wi be the configuration of M after i
steps, ∀i ∈ {0, t, 2t, . . . , k ·t}, and let Ti ∈ {0, 1}t·O(S) be the sequence of t configurations
from w(i−1)·t to wi·t, for every i ∈ [k]. Pbatch sends LDE(wt, w2t, . . . , w(k−1)·t) to Vbatch.

2. Pbatch and Vbatch decompose the claim (ω, θ) given as input into k claims (ωi, θi)i∈[k]
about (LDE(Ti))i∈[k], using the interactive process of Remark 3.8.

3. Vbatch receivesa LDE(w̃t, . . . , w̃(k−1)·t). Let w̃0
def
= u and w̃k·t

def
= v.

Let H be a UOWHF family, as per Definition 3.11. Vbatch samples h1, . . . , hℓ ∈R H and
sends their description h to Pbatch.

4. Pbatch creates k Merkle trees as in Construction 3.13, using h and T1, . . . , Tk, and sends
their roots y1, . . . , yk to Vbatch.

5. Vbatch samples an integer b ∈R {0, ..., ⌈log k⌉} and defines d =
⌈
k/2b

⌉
. Then, it samples

d indices I ⊆R [k], and sends I to Pbatch.

6. Pbatch and Vbatch run in parallel ∀i ∈ I:

(a) the flat-GKR protocol of Theorem 3.23 w.r.t. Lhashroot (see Definition 3.18), with
(yi, h) as explicit input and Ti as holographic input. The protocol ends with a
claim (rroot, vrooti) about LDE(Ti).

(b) the interactive process of reducing the claims (rroot, vrooti) and (ωi, θi) to a single
one (Proposition 3.10), denoted (ωT

i , θ
T
i).

(c) the PCIA for Lt with inputs
(
(x, w̃(i−1)·t, w̃i·t), (ω

T
i , θ

T
i)
)
. For j = 1, . . . , r:

i. Vbatch sends randomness βj (the same random coins are used for all d inputs).

ii. Pbatch computes the messages (αj
i)i∈I that Pt would answer. It creates a

matrix Aj
I and sends its checksum Cj

I =
∑

i∈I α
j
i , as defined in Eq. (2).

40

7. Vbatch generates a query set Q ⊆ [r]× [a] for Vt’s query phase.

8. Pbatch sends answers (ϕi : Q→ F)i∈I such that ∀(j, t) ∈ Q, ϕi(j, t) = αj
i [t].

9. Vbatch checks that ∀(j, t) ∈ Q,
∑

i∈I ϕi(j, t) = Cj
I [t]. Then, it checks that the answers

(ϕi)i∈I make Vt accept. If any of these tests fail, Vbatch rejects.

10. Pbatch and Vbatch run in parallel ∀i ∈ I:

(a) The flat-GKR protocol of Theorem 3.23 w.r.t. LPt , with (Q,ϕi, β1, . . . , βr) as
explicit input and (x, Ti) as holographic input. It ends with a claim (r′, v′i) about
LDE(x, Ti). Then, the verifier queries LDE(x) using Proposition 3.7 at a single
coordinate, and finds (r, vi), the residual claim about LDE(Ti) w.r.t. (r′, v′i).b

(b) Pbatch opens the commitments at coordinate r.

(c) Vbatch checks that the opening is valid and consistent with vi, and rejects otherwise.

aRecall that we restrict our attention to encoded provers and so may assume that the received message is
a low degree extension encoding of some (possibly incorrect) configurations.

bGiven (r′, v′i), the verifier uses Remark 3.8 to compute τ1, τ2 and r for which v′i = τ1 · LDE(x)[r] + τ2 ·
LDE(Ti)[r]. Using LDE(x)[r] and v′i, it finds the residual value LDE(Ti)[r], and defines it as vi.

Proof of Lemma 5.2.

Completeness. Let x ∈ {0, 1}n, u, v ∈ {0, 1}O(S) and (ω, θ). First, note that the prescribed
prover sends LDE(w̃t, . . . , w̃(k−1)·t) such that w̃i·t = wi·t for every i ∈ [k− 1], where wi·t denotes the
configuration of the Turing machineM after i·t steps (on input x and when starting at configuration
u). We denote u = w0 = w̃0 and v = w̃k·t. By construction and the perfect completeness of
Remark 3.8, Theorem 3.23, and Proposition 3.10, it holds that ∀i ∈ [k],

(
x, w̃(i−1)·t, w̃i·t, (ω

T
i , θ

T
i)
)
∈

Lt. Thus, the verifier Vt accepts in all of its executions by the perfect completeness of (Pt,Vt).
To justify the usage of the flat-GKR protocol in Step (10a), we use the next claim, that shows that

the language LPt satisfies the required properties of Theorem 3.23 and, moreover, is computable
by nO(δ)-depth circuits. The proof is deferred to Appendix B.2.

Proposition 5.5. Let F be an extension field of GF[2]. Assume that the prescribed prover strategy
Pt of the base protocol (Pt,Vt) that Pbatch runs in Step (6c) is nδ-low-depth. Then, the language
LPt is computable by Logspace-uniform arithmetic circuits over F, with fan-in 2, of depth nO(δ) and
size poly(n).

By the perfect completeness of the flat-GKR protocol, the verifier outputs a correct claim in
Step (10a), and the prover opens the commitments consistently with it and passes all of the tests
preformed in Step (10).

Moreover, recall that the honest Pbatch should preserve the property of a low-depth prover
(see Definition 3.35). The following proposition captures this, and its proof is also deferred to
Appendix B.3.

Proposition 5.6 (Pbatch is low-depth). Assume that the prover strategy Pt of the base protocol
(Pt,Vt) that Pbatch runs in Step (6c) is nδ-low-depth. Then, Pbatch is also nδ-low-depth.

41

Lastly, notice that the queries in Q are input-oblivious (see Definition 3.31), since we assumed
that (Pt,Vt) is input-oblivious. The queries in Step (10c), checking consistency between the values
of the openings and vi (the value of the output claim of the flat-GKR execution performed in
Step (10a)), are also input-oblivious. By Remark 5.3, the queries induced by transforming the IAs
used as sub-protocols to PCIAa are all input-oblivious queries, and it follows that Vbatch only makes
input-oblivious queries.

Soundness. Let P∗
batch be an encoded cheating prover. Let x ∈ {0, 1}n, u, v ∈ {0, 1}O(S) and

(ω, θ) such that (x, u, v, (ω, θ)) ̸∈ Lk·t. This means that at the beginning of the protocol P∗
batch sends

a message17 LDE(w̃t, . . . , w̃(k−1)·t) such that there exists i∗ ∈ [k−1] for which w̃i∗·t ̸= wi∗·t (namely,
that w̃i∗·t is not the correct configuration of the (deterministic) Turing machine M after i∗ ·t steps),
or that u and v are consistent (namely, that M moves from configuration u to configuration v in
exactly t steps, and Tu,v denotes this computation), but LDE(Tu,v)[ω] ̸= θ. We denote the former

by w̃(i∗−1)·t ̸
t
⇝ w̃i∗·t. Recalling that w̃0

def
= u (and that w0 = u) and that w̃k·t

def
= v, notice that this

includes the case that the prover cheats only on the first or the last transitions.
We use the notation Ti ∈ {0, 1}t·O(S) for the sequence of t configurations starting at w̃(i−1)·t,

for every i ∈ [k]. We say that ỹi is not correct w.r.t. a tableau Ti if ỹi ̸= yi, where yi is the correct
commitment (i.e., the hash root of the UOWHF tree) to Ti.

Suppose that after interacting with P∗
batch, the probability that Vbatch does not reject is s, and

let A denote this event. Take B to be the following event:

∃!i∗ ∈ I s.t.
(
w̃(i∗−1)·t ̸

t
⇝ w̃i∗·t

)
∨
(
ỹi∗ is not correct w.r.t. Ti∗

)
∨ (LDE(Ti∗)[ωi∗] ̸= θi∗) .

We call such an index a bad index, which means that B is the event that there exists a single bad
index in I. We take I ′ = I \ {i∗} to be the set of indices that are not bad, assuming B. If B does
not happen, we trivially define I ′ to be an empty set.

We define the following event E: the prover’s answers in executions i ∈ I ′ of the PCIA for Lt

are according to the prescribed strategy Pt. Namely, E implies that

∀i ∈ I ′, ∀(j, t) ∈ Q : ϕi(j, t) = αj
i [t].

The following proposition shows that E holds w.h.p. First, we prove that, unless the prover breaks
the commitment scheme, then its openings to inputs in I ′ in Step (10c) are consistent with the
tableaux. Then, we show that, unless the prover breaks the soundness property of flat-GKR, then
consistency with the tableaux implies consistency with the prescribed strategy.

Proposition 5.7. Pr [A ∧B ∧ ¬E] ≤ k · negl(n) + 1/n.

Proof. We start with additional notations for Steps (10b) and (10c):

• In Step (10b), where P∗
batch opens the commitments at coordinate r, it computes the leaf

index q =
⌈

r
nin

⌉
, sends it and the path pi =

(
pi1, ..., p

i
ℓ+1

)
that corresponds to q.

• In Step (10c), Vbatch receives the answers and checks that the paths are valid openings (Defi-
nition 3.14) w.r.t. h, yi and q.

17Here we use the fact that P∗
batch is an encoded prover and so the message that it sends must be a low degree

extension encoding of some (possibly incorrect) configurations.

42

• Then, in order to check consistency with vi, the verifier checks that piℓ+1[r
′] = vi, where

r′ = r (mod nin), i.e., r
′ is the relative index of r in the qth leaf.

We proceed with the proof. Assuming B, for any i ∈ I ′ it holds that yi is the correct commitment of
LDE(Ti). We use the targeted-collision-resistance of the commitment scheme (see Proposition 3.16)
in order to show that for any i ∈ I ′,

Pr
[
piℓ+1[r

′] ̸= LDE(Ti)[r] and V accepts
]
= negl(n),

while recalling that negl(nout) = negl(n). Then, by a union bound, we get that

Pr
[
∃i ∈ I ′ s.t. piℓ+1[r

′] ̸= LDE(Ti)[r] and V accepts
]
≤ |I ′| · negl(n) ≤ k · negl(n).

First, recall that M is a deterministic Turing machine. Thus, for each i ∈ I ′, the tableau LDE(Ti)
is also uniquely defined (as the t consecutive configurations of M after w̃(i−1)·t). Getting back to
the targeted-collision-resistance property of the scheme (Definition 3.15) and recalling that P∗

batch

passes the paths check of Step (10c), we get that if P∗
batch implicitly declares the string LDE(Ti),

which is defined before the hash functions are chosen, and sends the correct hash root yi as the
commitment to LDE(Ti), then, for the index q and the path pi:

Pr[pi is a valid path from q to yi and p
i
ℓ+1[r

′] ̸= LDE(Ti)[r]] ≤
Pr[pi is a valid path from q to yi and

piℓ+1 ̸= LDE(Ti)[(q − 1)nin] . . . LDE(wi)[q · nin − 1]] = negl(n).

The probability is over the choice of the UOWHFs, since w.l.o.g. P∗
batch is deterministic (recall that

it is non-uniform, so its optimal random coins can always be fixed non-uniformly).
Assuming that P∗

batch does not break the security of the commitment, i.e., that for any i ∈ I ′,
it holds that piℓ+1[r

′] = LDE(Ti)[r], then, since it also passes the test of Step (10c), we get that
LDE(Ti)[r] = vi. In other words, (ri, vi) is a correct claim about LDE(Ti). Hence, (r, v′i) is a correct
claim about LDE(x, Ti), and this yields that ϕi is a sequence of correct answers about the prover’s
messages in the ith execution of the PCIA for Lt, w.r.t. the query set Q and the random coins
β1, . . . , βr. Namely, ϕi is consistent with the prescribed strategy α1

i , . . . , α
r
i , that is:

∀(j, t) ∈ Q : ϕi(j, t) = αj
i [t],

where recall that αj
i [t] is the tth entry in the prover’s messages in the jth round (according to

the prescribed strategy). The proposition follows by a union bound over all i ∈ I ′, and taking
p(n) = k · n in Theorem 3.23 (recall that k ≤ poly(n)).

Next, assuming that B and E hold, we prove that ϕi∗ (the prover’s answers to the queries of
the verifier in the i∗th execution of the PCIA) is determined non-adaptively according to a fixed
string before the protocol begins.

Proposition 5.8. Take αj = Cj
I −

∑
i∈I′ α

j
i for any j ∈ [r], and assume that (A ∧ B ∧ E) holds.

Then, P∗
batch uses (αj)j∈[r] as answers to the i∗th execution of (Pt,Vt) in Step (6c), and αj is an

LDE codeword for any j ∈ [r].

43

Proof. Recall that, assuming B, the set I ′ is the set of indices that are not bad: I ′ = I \ {i∗}. Since
P∗
batch passes the checksum check in Step (8b), as we assume that A happens (namely, that the

verifier does not reject), we get that:

∀(j, t) ∈ Q, Cj
I [t] =

∑
i∈I

ϕi(j, t) =
∑
i∈I′

ϕi(j, t) + ϕi∗(j, t) =
∑
i∈I′

αj
i [t] + ϕi∗(j, t),

where the last equality follows by assuming E. Thus,

∀(j, t) ∈ Q, ϕi∗(j, t) = Cj
I [t]−

∑
i∈I′

αj
i [t].

In other words, for any (j, t) ∈ [r] × [a] that Vbatch chooses at random, the value ϕi∗(j, t) that the
prover sends is determined before the execution begins: it is equal to α[(j, t)], where we define
α = α1 ◦ · · · ◦ αr.

To conclude, notice that any αj is a codeword of the LDE encoding, since the code (which
consists of low-degree polynomials) is closed under addition and scalar multiplication, and we know
that Cj

I , (α
j
i)i∈I′ are all codewords as they are sent by the encoded prover P∗

batch.

Having established the non-adaptivity of the prover in the i*th execution of (Pt,Vt), we turn to
prove that the input to the this execution is not in the language Lt. Take F to denote the event
that in Step (6b), the prover breaks the soundness of the interactive reduction of Proposition 3.10,
which happens with probability at most O(|H|)/|F| (we use the claim with ε = 1). We recall the
definition of the event B and split (B ∧ ¬F) into three cases.

• w̃(i∗−1)·t ̸
t
⇝ w̃i∗·t. In this case, it is clear that the input is not in Lt.

• ỹi∗ is not the correct hash root of Ti∗ . In this case, the flat-GKR execution in Step (6a) outputs
a false claim (rroot, vrooti). Then, the interactive reduction performed in Step (6b) outputs a
false claim (ωT

i , θ
T
i), since we assumed that ¬F holds, and the input is not in Lt.

• LDE(Ti∗)[ωi∗] ̸= θi∗ . Then, once again, ¬F implies that (ωT
i , θ

T
i) is a false claim about Ti∗

and the input is not in Lt.

Overall, the input to the i*th execution is not in the language. Next, we show that this implies that
P∗
batch breaks the soundness property of the PCIA.

Claim 5.9. Pr[A ∧B ∧ E ∧ ¬F] ≤ ε/30 log k.

Proof. Assume B holds. We reduce the cheating strategy P∗
batch for a cheating strategy P∗

t for the
PCIA. The prover P∗

t works as follows:

1. P∗
t interacts with P∗

batch until it reaches Step (6c).18 Upon receiving LDE(w̃t, . . . , w̃(k−1)·t),

the prover P∗
t finds the unique index i∗ ∈ I such that

(
x, w̃(i∗−1)·t, w̃i∗·t, (ω

T
i∗ , θ

T
i∗)
)
/∈ Lt.

Notice that i∗ is unique since B holds, and that P∗
t can find i∗ in polynomial time by checking

membership in Lt for all i ∈ I.

18Recall that P∗
t , as well as any other cheating prover strategy considered throughout this work, is non-uniform.

Thus, w.l.o.g., we may assume that it has access to randomness, by fixing non-uniformly the optimal random coins.

44

2. Then, P∗
t starts interacting with the verifier Vt. For every j ∈ [r]:

(a) Vt sends randomness βj .

(b) P∗
t sends βj to P∗

batch.

(c) P∗
batch answers to P∗

t with a checksum Cj
I .

(d) P∗
t defines αj = Cj

I −
∑

i∈I′ α
j
i , and sends αj as an answer to Vt.

Proposition 5.8 implies that when P∗
batch uses (αj)j∈[r], then Vbatch accepts, which in turn implies

that Vt also accepts. Moreover, it implies that (αj)j∈[r] are all codewords of the LDE encoding.
Hence, soundness against encoded provers applies.

We conclude that, assuming that B holds, the event (A ∧ E ∧ ¬F) implies that the prover Pt

breaks the soundness of the PCIP for Lt, thus

Pr [A ∧ E ∧ ¬F | B] = ε.

The claim follows using Proposition 3.1 (justified by the fact that indeed there must exists at least
one bad index).

All in all, recalling that |F| = Θ(n2δ · log n), |H| = Θ(nδ), k ≤ poly(n) and using Propositions
3.10 and 3.1, we get that

s = Pr[A] ≤ Pr[A ∧B ∧ E ∧ ¬F] + Pr[F] + Pr[A ∧B ∧ ¬E] + Pr[¬B]

≤ ε/30 log k +O(|H|)/|F|+ k · negl(n) + 1/n+ 1− 1/30 log k

≤ 1− (1− ε)/30 log k +O(1/ log n).

Complexity. Recall that |x| = n, where x is the original input to Lt, and that the base protocol
is a (q, r, a, b,Ptime,Vtime)-PCIA. Notice that the circuits on which we run the flat-GKR protocol
in Steps (6a) and (10a) are of depth O(1/δ) · poly(nin) = nO(δ), justified by Propositions 3.19 and
5.5, and that the length of the explicit input to each execution is at most nO(δ), by the assumptions
required in the theorem statement. The complexities of (Pbatch,Vbatch) are as follows:

• Soundness error: 1− (1− ε)/30 log k +O(1/ log n), as argued above.

• Query complexity: In Step (9), Vbatch makes q · (d + 1) queries, the first q for each of the
d ≤ k base PCIAs, and another one for the checksum. In Step (10c), it makes another query
(∀i ∈ I) for checking consistency between the value of the opening and vi. We use Remark 5.3
and get that transforming the flat-GKR protocol (Theorem 3.23) to a PCIA adds nO(δ) queries,
and the procedure of Step (6b) adds nO(δ) queries as well. Overall, qB ≤ (k+1)·q+k+nO(δ) ≤
(2k + 1) · q + nO(δ).

• Round complexity: rB = r +O(1/δ3), dominated by flat-GKR’s rounds.

• Prover’s message length: Since Pbatch is encoded, all of its messages are of length |F|m for
m = O(1/δ), thus for any message w, the length of its encoding is |LDE(w)| = |w|2 ·polylog(n).
Sending the hash roots and opening the commitments are dominated by flat-GKR’s message
length, which is nO(δ) by Theorem 3.23. The messages in Step (2) have length at most
k · log |F| ≤ k · nO(δ). The length of the checksums is a: we do not pay with a multiplicative

45

factor on the prover’s messages length in the base protocol, namely, we do not carry a k · a
term, because the prover only sends the checksum. Notice that these messages are already
encoded, as Pt is encoded. The length of the answers sent in Step (8) is at most k · q, and so
applying the second condition required in the theorem statement, we conclude that aB = a.

• Verifier’s message length: We stress that Vbatch uses the same random coins β1, . . . , βr for
all d ≤ k protocols. The maximal verifier’s message length in each of the flat-GKR executions
is nO(δ). The maximal verifier’s message length in Proposition 3.10 is k ·O(m · |H| · log |F|) ≤
k ·nO(δ). The queries are of length q · (log r+log a) ≤ q · log n. Recalling that O(q) ≤ k ·nO(δ)

and that we assume that r · b ≤ k · nO(δ), we conclude that bB = k · nO(δ).

• Prover’s running time: PtimeB is dominated by the flat-GKR executions in Step (10a) and
the base protocol executions in Step (6c). The former can be done in time poly(log |F|, nδ, t ·
S, q), and since q ≤ k ·nO(δ), this yields PtimeB = poly(k, nδ, t, S)+k ·Ptime. Note that Propo-
sition 3.6 implies that computing the LDE of the k configurations, where each configuration
is of size O(S), can be done in time (k · S)3+2δ · polylog(n) ≤ poly(k, nδ, t, S).

• Verifier’s running time: Similarly to the previous item, the verification time is dominated
by two steps: the flat-GKR executions in Step (10a) and the base protocol executions in
Step (6c). As for the former, the verifier runs for k ·

(
nO(δ) + (q · log |F|+ r · b) · nO(δ)

)
time.

Due to the assumptions that q ≤ Vtime and that r · b ≤ k · nO(δ), we get that the overall
running time of the verifier is bounded by VtimeB = Vtime · poly(k, nδ).

This completes the proof of Lemma 5.2.

5.2 Augmentation Protocol

As described in the technical overview (Section 2), our construction is based on iterative and
interleaved applications of the Batch Verification protocol (Lemma 5.2), our main technical tool,
and [RRR16]’s Query Reduction protocol (Lemma 3.36). Using these two, we show an efficient
transformation from a holographic PCIA for Lt (see Definition 3.34) to a holographic PCIA for
Lk·t. We call it the Augmentation protocol since it “augments” the length of computations, but we
stress that the conceptual step is the same as in the batch verification protocol: the only difference
between them is that the augmentation protocol achieves low query complexity.

Lemma 5.10 (Augmentation Lemma). Assume one-way functions exist, and let δ ∈ (0, 1) be a
constant. Let H ⊆ F be (ensembles of) extension fields of GF[2], where |H| = Θ(nδ) and |F| =
Θ(n2δ · log n). Let k = k(n) ≤ poly(n) be a parameter, and define σ = δ3.

Suppose that LM
t (Definition 3.34) has an ε-sound (q, r, a, b,Ptime,Vtime)-PCIA (Pt,Vt) w.r.t.

encoded provers and with input-oblivious queries. Assume that

• q ≤ min
(
Vtime, k · nO(δ)

)
;

• a ≥ max
(
(k · S)2 · polylog(n), k2 · nO(δ), (k · q)2 · polylog(n)

)
;

• r · b ≤ k · nO(δ);

• |H| ≤ (k · q)σ.19

19We comment that the assumption that Lemma 3.36 (the query reduction protocol) requires is |H| ≤ min(k · q, k ·
(nO(δ) + Vtime))σ, however, it follows from this assumption when combining it with the first one.

46

Then, there exists an εaug-sound (qaug, raug, aaug, baug,Ptimeaug,Vtimeaug)-PCIA (Pk·t,Vk·t) for the
language Lk·t w.r.t. encoded provers and with input-oblivious queries, with the following parameters:

• εaug = 1− (1− ε)/30 log k +O(1/ log n).

• qaug = (k · nδ · Vtime)σ +O ((r + 1/σ) · log n).

• raug = r +O(1/σ).

• aaug = max
(
a, poly

(
r, 1/σ, k, nδ,Vtime

))
.

• baug = k · nO(δ).

• Ptimeaug = poly(k, nδ, t, S) + k · Ptime+ poly
(
k, nδ, r, 1/σ,Vtime, b

)
.

• Vtimeaug = (k · nδ · Vtime)σ + poly
(
r, 1/σ, k, nδ

)
.

Furthermore, if Pt is n
δ-low-depth, then Pk·t is n

δ-low-depth as well.

Notice that there is only one free parameter, δ, that fixes σ once it is set. Still, we state the
complexities in terms of δ and σ, to ease the application of Lemma 3.36 and to simplify notation.

As discussed in the overview, we use our batch verification lemma for Lt to obtain an efficient
PCIA (PB,VB) for verifying all k statements (the B abbreviates Batched). The latter PCIA has
relatively many queries, so rather than running it directly, we first apply the query reduction
transformation on it to derive a query-efficient PCIA (PBQ,VBQ) (where BQ stands for Batched and
Query Reduced) and then have the verifier and prover emulate (PBQ,VBQ).

The PCIA for Lk·t, denoted by (Pk·t,Vk·t), is presented next.

PCIA (Pk·t,Vk·t) for Lk·t

Prover’s Input: x ∈ {0, 1}n, configurations u, v ∈ {0, 1}O(S) and a claim (ω, θ).
Verifier’s Input: explicit access to (ω, θ) and implicit access to LDE(x, u, v).

• Let (PB,VB) be the batched PCIA for the language Lk·t, obtained by applying
Lemma 5.2 to the language Lt (which has the PCIA (Pt,Vt)).

• Let (PBQ,VBQ) be the query reduced PCIA (also for the language Lk·t), obtained by
applying Lemma 3.36 to the PCIA (PB,VB), w.r.t. parameter σ′ = σ/c, where c ≥ 1 is
some sufficiently large constant.

• The prover Pk·t and verifier Vk·t run (PBQ,VBQ) on input (x, u, v, (ω, θ)), where Vk·t
uses the procedure in Proposition 3.7 to answer VBQ’s input queries. If VBQ accepts
then Vk·t accepts and otherwise it rejects.

Completeness. Completeness follows immediately from the prefect completeness of the protocols
of Lemmas 3.36 and 5.2, and the input-oblivious property follows from these lemmas as well. The
nδ-low-depth property of the honest prover (Definition 3.35) follows from Lemmas 3.36 and 5.2.

47

We stress that the depth of the circuit computing Pk·t’s messages only increases by a multiplicative
O(log n) factor, due to Proposition 5.6, thus a constant number of iterative applications of the
augmentation protocol (performed in the next section) still keep the prover nδ-low-depth.

Soundness. Let Pk·t be an encoded cheating prover. Let x ∈ {0, 1}n, u, v ∈ {0, 1}O(S) and (ω, θ)
such that ((x, u, v), (ω, θ)) ̸∈ Lk·t. Then, (PBQ,VBQ) is run on an input that does not belong to
Lk·t and so, using Lemmas 3.36 and 5.2, the probability that Vk·t accepts after interacting with
Pk·t is at most the sum of errors of the batching protocol and the query reduction protocol (and it
is computed next).

Complexity. Let δ ∈ (0, 1) and recall that σ
def
= δ3. First, note that the parameters satisfy the

requirements of Lemmas 3.36 and 5.2 with parameters k and σ, by the assumptions made in this
theorem (i.e., Lemma 5.10), and by the fact that log(max(nB, rB, aB, bB,PtimeB,VtimeB)) ≤ |H|
always holds by the choice of |H|, where nB = n + O(k · S). Further, |H| ≤ min(k · q, k · (nO(δ) +
Vtime))σ

′
implies |H| ≤ min(qB,VtimeB)

σ′
.

We take σ′ such that poly(k, nδ, q,Vtime)σ
′
= (k, nδ, q,Vtime)σ. Notice that this is possible,

since the unspecified poly(·) comes from the query reduction procedure and is independent of n and
δ. Moreover, recall that log |F| = O(log n) and that k ≤ poly(n).

1.

εaug = εB +O
(
(|H| ·m)2

)
/|F|

= 1− (1− ε)/30 log k +O(1/ log n) +O(|H|2)/
(
|H|2 · log n

)
≤ 1− (1− ε)/30 log k +O(1/ log n).

2.

qaug = poly(VtimeB)
σ′
+O(rB · log |F|)

= poly(Vtime · poly(k, nδ))σ′
+O((r +O(1/δ3)) · log |F|)

= poly(k, nδ,Vtime)σ
′
+O ((r + 1/σ) · log n)

≤ (k · nδ · Vtime)σ +O ((r + 1/σ) · log n) .

3.

raug = rB +O(1/σ′) = r +O(1/δ3) +O(1/σ′) = r +O(1/σ).

4.

aaug = max
(
aB, poly(rB, bB,VtimeB, |H|)

)
= max

(
a, poly

(
(r +O(1/δ3)), k · nO(δ),Vtime · poly(k, nδ), |H|

))
≤ max

(
a, poly

(
r, 1/σ, k, nδ,Vtime

))
.

48

5.

baug = max (bB, O(|H| · log |F|))

= max
(
b, k · nO(δ), O(|H| · log |F|)

)
= k · nO(δ).

6.

Ptimeaug = PtimeB + poly(qB, rB, bB,VtimeB)

= poly(k, nδ, t, S) + k · Ptime+

poly
(
(2k + 1) · q + nO(δ), r +O(1/δ3), k · nO(δ),Vtime · poly(k, nδ)

)
≤ poly(k, nδ, t, S) + k · Ptime+ poly

(
k, nδ, r, 1/σ,Vtime, b

)
.

7.

Vtimeaug = poly(VtimeB)
σ′
+ poly(bB, rB, |H|)

= poly(Vtime · poly(k, nδ))σ′
+ poly

(
k · nO(δ), (r +O(1/δ3)), |H|

)
= (k · nδ · Vtime)σ + poly

(
r, 1/σ, k, nδ

)
.

5.3 PCIA for Bounded-Space Computations

In this section we construct an efficient PCIAs w.r.t. encoded provers for bounded-space computa-
tions (Theorem 5.11). Our main result, which is efficient interactive arguments for bounded-space
computations (Theorem 5.1) follows from Theorem 5.11 by using the transformation between PCIA
and interactive arguments (Proposition 3.33).

Theorem 5.11 (PCIA for Bounded-Space w.r.t. Encoded Provers). Assume one-way functions
exist and let T = T (n) and S = S(n) such that n ≤ T ≤ exp(n) and log(T) ≤ S ≤ poly(n).
Let δ ∈ (0, 1), and let H ⊆ F be (ensembles of) extension fields of GF[2], where |H| = Θ(nδ) and
|F| = Θ(n2δ · log n).

Then, for every L ∈ DTISP(T, S) there exists an (q, r, a, b,Ptime,Vtime)-PCIA w.r.t. encoded
provers, with input-oblivious queries and the following parameters:

• ε = 1− 1/polylog(T).

• q = O
(
TO(δ3)

)
.

• r = O(1/δ4).

• a = O
(
TO(δ) · S2

)
.

• b = TO(δ).

• Ptime = poly(T, S)

• Vtime = O
(
TO(δ)

)
.

49

Proof. Fix T and S as above and let M be a time T and space S Turing machine for L. We assume
that M is an oblivious Turing machine, while noting that any time-T and space-S Turing machine
can be simulated by a time T ′ = O(T · S) and space S′ = O(S) oblivious20 Turing machine (and
we shall account for this additional overhead at the end of the proof). Recall that a configuration
w ∈ {0, 1}O(S) of a Turing machine includes the contents of all work tapes, the current time step,
the positions of the work and input heads and the current internal state. Let wstart ∈ {0, 1}O(S)

be the machine M’s initial configuration. We assume w.l.o.g. that M has a unique accepting
configuration wend. Furthermore, we assume w.l.o.g. that the configurations wstart and wend are
(fixed) strings such that individual points in their respective low degree extensions LDEF,H(wstart)
and LDEF,H(wend) can be evaluated in poly(H) time.21

Let δ ∈ (0, 1), fix k
def
= T δ and recall Definition 3.34 for t ≤ T . We will show how to directly

construct a PCIA for L1 (i.e., t = 1). Then, using iterative applications of Lemma 5.10 we will
obtain holographic PCIAs for L(ki) for larger and larger values of i ≤ logk(T), until ultimately, when
i = logk(T), we obtain a PCIA for the language LT . A holographic PCIA for the language L, as in the
theorem’s statement, follows by running the PCIA for LT on implicit input LDEF,H(x,wstart, wend),
where input queries are emulated using queries to LDEF,H(x), LDEF,H(wstart) and LDEF,H(wend), as
shown in Proposition 3.7.

The “base” PCIA for L1. Let us recall the definition of the language L1:

L1 =

(x, u, v, (ω, θ)) :

On input x ∈ {0, 1}n, M moves from configuration

u ∈ {0, 1}O(S) to configuration v ∈ {0, 1}O(S)

and LDEF,H(u, v)[ω] = θ

 .

A PCIA for L1 essentially verifies single steps of the machine and a claim about their low degree
extension. Recall that prover has full access to the input, whereas the verifier has explicit access to
(ω, θ) and implicit access to LDEF,H(x, u, v), since this is a holographic PCIA for a pair language (see
Section 3.6). We remark that no interaction with a prover is necessary for this PCIA: the verifier
can check membership in L1 by itself, but for technical convenience (specifically, to facilitate the
application of Lemma 5.10) we will introduce some “dummy” interaction.

We state the following proposition in terms of |H| and |F| to ease its application in what
follows, although it holds with respect to the fields stated in Theorem 5.11: |H| = Θ(nδ) and
|F| = Θ(n2δ · log n)

Proposition 5.12. The language L1 has a (q0, r0, a0, b0,Ptime0,Vtime0)-PCIA w.r.t. encoded
provers, with nδ-low-depth honest prover and with input-oblivious queries, with the following pa-
rameters:

• ε0 = O(|H|)/|F|.
20An oblivious Turing machine is a machine whose input and work tape head positions are a fixed function of the

current time step (and in particular do not depend on the input). Furthermore, given a time step t ∈ [T], the head
positions in time t can be computed in polylog(T) time. We remark that more efficient simulation is known [PF79].

21We can assume w.l.o.g. that both the initial configuration wstart and (unique) accepting configuration wend are
zero on all but O(log(T)) bits (at fixed locations) and the values of the non-zero bits can be computed by a Turing
machine in O(log(T)) time. Each point in their respective low degree extension is therefore a linear combination
(over the field F) of these O(log(T)) bits. The coefficients of this linear combination (and therefore also its sum) can
be computed in time poly(|H|, log|H|(S)) = poly(H), see Section 3.1.

50

• q0 = poly(|H|).

• r0 = 1.

• a0 = S2 · poly(k, |H|).

• b0 = k · poly(|H|).

• Ptime0 = poly (k, |H|, S).

• Vtime0 = poly(|H|).

Proof. Let LDE = LDEF,H. The verifier first reads the time step tu that appears as part of the
configuration u. Since M is oblivious, given tu it can determine in time polylog(T) a set Ω ⊆ [O(S)],
of size |Ω| = O(log(T)), of coordinates on which u and v may differ (i.e., the time step, the position
of the heads, the current state and the O(1) locations in the work tapes on which the heads are
currently positioned). The verifier queries the coordinates in Ω and checks that they were updated
correctly (i.e., in accordance with the machine’s specification and with the input x). For all other
coordinates, it checks that they are equal in u and v. Since the low degree extension is a linear
code, LDE(u)− LDE(v) = LDE(u− v) and so it only needs to check that LDE(u− v) is zero on all
points outside Ω. The latter can be done by running the procedure in Proposition 3.9, in poly(|H|)
time, with an error probability of at most

O(|H|·log|H|(S))

|F| = O(|H|)
|F| , as we assumed that S ≤ poly(n).

In order to verify the claim (ω, θ) about LDE(u, v), the verifier makes three queries to its implicit
input (using Proposition 3.7) and finds LDE(u, v)[ω] in time poly(|H|). If the result is different from
θ, it rejects.

For technical convenience, since we want a PCIA that satisfies the requirements of Lemma 5.10
and the recurrence relations of Proposition 5.13, we also have the prover send a single “dummy”
message of length poly(k, |H|, S): the low degree extension of the all-zeros string, and the verifier a
message of length k ·poly(|H|): the all-zeros string. Observe that the honest prover is (trivially) nδ-
low-depth, as computing the low degree extension of the all-zeros string can be done by a depth-1
circuit that outputs a sequence of zeros.

We proceed to prove to the inductive step.

Proposition 5.13. Assume one-way functions exist and let δ ∈ (0, 1) be a constant. Take σ = δ3.
Then, for every k = k(n) ≤ poly(n) and 1 ≤ i ≤ O(1/σ), the language L(ki) has an εi-sound

(qi, ri, ai, bi,Ptimei,Vtimei)-PCIA (Pi,Vi) w.r.t. encoded provers, with nδ-low-depth honest prover
and with input-oblivious queries, with the following parameters:

1. εi = 1− (1/30 log k)i · (1− ε0) +O(i/ log n).

2. qi = (Vtime0)
σi · poly

(
i/σ, k, nδ

)i·σ
+O ((r0 + i/σ) · log n).

3. ri = r0 + i ·O(1/σ).

4. ai = max
(
a0, poly

(
1/σ, k, nδ, r0,Vtimeσ

i

0

))
.

5. bi = k · nO(δ).

51

6. Ptimei = ki ·
(
Ptime0 + i · poly

(
k, nδ, r0, 1/σ, (Vtime0)

σ
))

+ i · poly(nδ, ki, S).

7. Vtimei = (Vtime0)
σi · poly

(
i/σ, k, nδ

)1+i·σ
.

Proof. The proof is by induction. The base case i = 0 follows directly from Proposition 5.12.
For the induction step, let 1 ≤ i ≤ O(1/σ). Assume inductively that L(ki−1) has an εi−1-sound

(qi−1, ri−1, ai−1, bi−1,Ptimei−1,Vtimei−1)-PCIA (Pi−1,Vi−1) w.r.t. encoded provers, nδ-low-depth
honest prover and with input-oblivious queries, where the parameters are as in the proposition’s
statement.

We next show that the parameters of this PCIA satisfy the requirements of Lemma 5.10 with
parameters k and δ. Recall the choice of |H|, |F| as stated in Theorem 5.11. Indeed it holds that:

• qi−1 ≤ min
(
Vtimei−1, k · nO(δ)

)
:

1. qi−1 ≤ Vtimei−1: Follows from their definitions as long as poly
(
(i−1)/σ, k, nδ

)
≥ (r0+(i−

1)/σ)·log n, which is indeed the case since nδ ≥ log n and r0 = 1 due to Proposition 5.12.

2. qi−1 ≤ k · nO(δ): Recall that

qi−1 = (Vtime0)
σi−1 · poly

(
(i− 1)/σ, k, nδ

)(i−1)·σ
+O ((r0 + (i− 1)/σ) · log n) ,

and note that the polynomial that sets the term poly
(
(i−1)/σ, k, nδ

)(i−1)·σ
is independent

of σ and δ, since it originates in the query reduction procedure (see Lemma 3.36).

Thus, it is possible to define i ≤ O(1/σ) such that poly
(
(i − 1)/σ, k, nδ

)(i−1)·σ ≤ k ·
nO(δ). Observing that O((r0 + (i − 1)/σ) · log n) ≤ nO(δ), since i = O(1/σ), and that
(Vtime0)

σi−1 ≤ nO(δ), the inequality follows.

• ai−1 ≥ max
(
(k · S)2 · polylog(n), k2 · nO(δ), (k · qi−1)

2 · polylog(n)
)
:

1. ai−1 ≥ (k · S)2 · polylog(n): Notice that ai−1 ≥ a0 = S2 · poly(k, |H|), due to Proposi-
tion 5.12.

2. ai−1 ≥ k2 · nO(δ): Once again, it follows from the fact that ai−1 ≥ a0 = S2 · poly(k, |H|),
and that |H| = nδ.

3. ai−1 ≥ (k · qi−1)
2 · polylog(n): It holds that

ai−1 ≥ poly
(
1/σ, k, nδ, r0,Vtimeσ

i−1

0

)
≥(

k · (Vtime0)
σi−1 · poly

(
(i− 1)/σ, k, nδ

)(i−1)·σ

+O ((r0 + (i− 1)/σ) · log n)
)2

· polylog(n).

• ri−1 · bi−1 ≤ k ·nO(δ): Indeed, r0+(i− 1) ·O(1/σ) ·k ·nO(δ) ≤ k ·nO(δ), using Proposition 5.12
(note that the constant in the nO(δ) term grows, but only by a negligible additive factor).

• |H| ≤ (k · qi−1)
σ: Follows directly from taking a sufficiently small constant multiple of σ (i.e.,

resetting σ = Θ(δ3)).

52

By applying Lemma 5.10 with parameters as above and recalling that t = ki, we conclude that
the language L(ki) has an εi-sound (qi, ri, ai, bi,Ptimei,Vtimei)-PCIA w.r.t. encoded provers and
with input-oblivious queries, and the following parameters.

1.

εi = 1− (1− εi−1)/30 log k +O(1/ log n)

= 1− (1/30 log k)i · (1− ε0) +O(i/ log n).

2.

qi = (k · nδ · Vtimei−1)
σ +O ((ri−1 + 1/σ) · log n)

=
(
k · nδ · (Vtime0)

σi−1 · poly
(
(i− 1)/σ, k, nδ

)∑i−1
j=0 σ

j
)σ

+O ((r0 + (i− 1)/σ) · log n)

≤ (Vtime0)
σi · poly

(
i/σ, k, nδ

)i·σ
+O ((r0 + i/σ) · log n) .

3.

ri = ri−1 +O(1/σ) = r0 + (i− 1) ·O(1/σ) +O(1/σ) = r0 + i ·O(1/σ).

4.

ai = max
(
ai−1, poly

(
ri−1, 1/σ,max

(
bi−1, k · nO(δ)

)
, k, nδ,Vtimei−1

))
= max

(
a0, poly

(
1/σ, k, nδ, (Vtime0)

σi · poly
(
i/σ, k, nδ

)∑i
j=0 σ

j))
= max

(
a0, poly

(
1/σ, k, nδ, r0,Vtimeσ

i

0

))
.

5.

bi = k · nO(δ).

6.

Ptimei = poly(k, nδ, ki, S) + k · Ptimei−1 + poly
(
k, nδ, ri−1, 1/σ,Vtimei−1, bi−1

)
≤ poly(nδ, ki, S) + k · Ptimei−1 + poly

(
k, nδ, r0 + (i− 1) ·O(1/σ), 1/σ,

(Vtime0)
σ(i−1) · poly

(
(i− 1)/σ, k, nδ

)∑i−1
j=0 σ

j

, k · nO(δ)
)

≤ ki ·
(
Ptime0 + i · poly

(
k, nδ, r0, 1/σ, (Vtime0)

σ
))

+ i · poly(nδ, ki, S).

7.

Vtimei = (k · nδ · Vtimei−1)
σ + poly

(
ri−1, 1/σ, k · nO(δ)

)
≤ (k · nδ · Vtimei−1)

σ + poly
(
i/σ, k, nδ

)
≤ (Vtimei−1)

σ · poly
(
i/σ, k, nδ

)
≤ (Vtime0)

σi · poly
(
i/σ, k, nδ

)1+i·σ
.

53

The prover’s nδ-low-depth property follows from Lemma 5.10: as mentioned there, the depth of
the circuit computing the prover’s messages only increases by a multiplicative O(log n) factor, thus
the nδ-low-depth property is preserved as long as i = O(1), which indeed holds by the assumption.
This completes the proof of Proposition 5.13.

Let us get back to the proof of Theorem 5.11. Let δ ∈ (0, 1) and σ
def
= δ3, and recall that

|H| = Θ(nδ). Assume that (Vtime0)
σ1/δ

= (Vtime0)
δ3/δ ≤ |H|δ2 .22 We obtain from Proposition 5.13

(notice that we take i = 1/δ, so i = O(1/σ) as required) that the language L(k(1/δ)) = LT has
an ε(1/δ)-sound (q(1/δ), r(1/δ), a(1/δ), b(1/δ),Ptime(1/δ),Vtime(1/δ))-PCIA w.r.t. encoded provers, with

nδ-low-depth honest prover and with input-oblivious queries, with the following parameters:

1.

ε1/δ = 1− (1/30 log k)i · (1− ε0) +O(i/ log n)

= 1− (1/30 log k)1/δ · (1−O(|H|/|F|)) +O(1/(δ · log n))
≤ 1− 1/polylog(T).

2.

q1/δ = (Vtime0)
σ1/δ · poly

(
1/(δ · σ), k, nδ

)σ/δ
+O ((r0 + 1/(δ · σ)) · log n)

≤ |H|δ2 · poly
(
1/(δ · σ), k, nδ

)δ2
+O (log n/(δ · σ)) ≤ O

(
TO(δ3)

)
.

3.

r1/δ = r0 + 1/δ ·O(1/σ) = 1 +O (1/(δ · σ)) = O(1/δ4).

4.

a1/δ = max
(
a0, poly

(
1/σ, k, nδ, r0,Vtimeσ

1/δ

0

))
≤ max

(
S2 · poly(k, |H|), poly

(
1/σ, k, nδ, r0, |H|

))
≤ S2 · poly(k, nδ)

≤ O
(
TO(δ) · S2

)
.

5.

b1/δ = k · nO(δ) = TO(δ).

6.

Ptime1/δ = k1/δ ·
(
Ptime0 + 1/δ · poly

(
k, nδ, r0, 1/σ, (Vtime0)

σ
))

+ 1/δ · poly(nδ, k1/δ, S)

≤ T ·
(
poly

(
k, S, nδ

)
+ poly

(
k, nδ, 1/δ, |H|

))
+ 1/δ · poly(nδ, T , S)

≤ T · poly (k, S) + poly(T , S) ≤ T 1+O(δ) · poly(S) + poly(T , S)

= poly(T, S).
22Let ν such that Vtime0 = poly(|H|) ≤ |H|ν . If δ does not satisfy the inequality δ3/δ ≤ δ2/ν, we reset δ to be

sufficiently small. Notice that ν is independent of δ (see Proposition 3.9, where Vtime0 is set).

54

7.

Vtime1/δ = (Vtime0)
σ1/δ · poly

(
1/(δ · σ), k, nδ

)1+σ/δ
≤ |H|δ2 · poly

(
k, nδ

)1+δ2

≤ TO(δ).

Theorem 5.11 follows by transforming the foregoing PCIA for LT into a PCIA for L as explained
above (i.e., by emulating queries to the input LDEF,H (x,wstart, wend) using Proposition 3.7). This
transformation does not affect the nδ-low-depth property of the prover.

To complete the proof, recall that we assumed that M is an oblivious Turing machine. In case
it is not, we can trivially make it oblivious while increasing its time complexity to T ′ = O(T · S)
and its space complexity to S′ = O(S) and the theorem follows.

Applying Proposition 3.33 to the PCIA of Theorem 5.11 with error parameter ξ = 1/polylog(T),
and then applying parallel repetition as per Theorem 3.21 with s = 1 − 1/polylog(T) and γ =
polylog(T) to reduce the soundness error to be negligible, we obtain Theorem 5.1. The repetitions
increase the communication complexity, the verifier’s running time and the prover’s running time
by a polylog(T) factor. Notice that transforming the PCIA to an IA (Proposition 3.33) increases
the verification time by an additive factor of

O
(
nδ · log n · log

(
TO(δ)/polylog(T)

))
·O
(
TO(δ3)

)
= O(nδ) · TO(δ2) ≤ O

(
TO(δ)

)
,

and, in the non-holographic case, by another additive factor of n1+O(δ) for computing a single
coordinate in the low degree extension of the input x. Theorem 5.1 follows.

Acknowledgments

We are most grateful to Ron Rothblum for his brilliant suggestion to use a high-rate tensor code
in the Batch Verification for UP protocol (Section 4).

This project has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702), from
DARPA-TA1 under grant no. HR001119S0076, and from the Simons Foundation Collaboration on
the Theory of Algorithmic Fairness.

References

[AR23] Noga Amit and Guy N. Rothblum. Constant-round arguments from one-way func-
tions. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing,
STOC 2023, page 1537–1544, New York, NY, USA, 2023. Association for Computing
Machinery.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
Cryptology ePrint Archive, Report 2016/116, 2016. http://eprint.iacr.org/.

55

http://eprint.iacr.org/

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking compu-
tations in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31,
1991.

[BGG+88] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian, Silvio
Micali, and Phillip Rogaway. Everything provable is provable in zero-knowledge. In
Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 21-25, 1988, Proceedings, pages 37–56,
1988.

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J.
Comput., 36(4):889–974, 2006.

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols. In Proceedings 38th Annual Symposium on
Foundations of Computer Science, pages 374 – 383, 11 1997.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a
paradigm for keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on The-
ory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 671–
684. ACM, 2018.

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for P from LWE.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 68–79. IEEE, 2021.

[CP15] Kai-Min Chung and Rafael Pass. Tight parallel repetition theorems for public-coin
arguments using KL-divergence. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, War-
saw, Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of Lecture Notes
in Computer Science, pages 229–246. Springer, 2015.

[Dam89] Ivan Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor, Ad-
vances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lec-
ture Notes in Computer Science, pages 416–427. Springer, 1989.

[GH98] Oded Goldreich and Johan H̊astad. On the complexity of interactive proofs with
bounded communication. Inf. Process. Lett., 67(4):205–214, 1998.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

56

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge
University Press, 2008.

[GR15] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings
of the 2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, January 11-13, 2015, pages 133–142, 2015.

[GR17] Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of prox-
imity. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
January 9-11, 2017, Berkeley, CA, USA, pages 39:1–39:43, 2017.

[GR20] Oded Goldreich and Guy N. Rothblum. Constant-round interactive proof systems for
AC0[2] and NC1. In Oded Goldreich, editor, Computational Complexity and Property
Testing - On the Interplay Between Randomness and Computation, volume 12050 of
Lecture Notes in Computer Science, pages 326–351. Springer, 2020.

[GS92] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf.
Process. Lett., 43(4):169–174, 1992.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear
length. J. ACM, 53(4):558–655, 2006.

[GVW02a] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Comput. Complex., 11(1-2):1–53, 2002.

[GVW02b] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a
laconic prover. Computational Complexity, 11(1-2):1–53, 2002.

[Hai09] Iftach Haitner. A parallel repetition theorem for any interactive argument. In 2009
50th Annual IEEE Symposium on Foundations of Computer Science, pages 241–250,
2009.

[Ish20a] Yuval Ishai. Zero-knowledge proofs from information-theoretic proof
systems - part i. Available at https://zkproof.org/2020/08/12/

information-theoretic-proof-systems/, 2020.

[Ish20b] Yuval Ishai. Zero-knowledge proofs from information-theoretic proof
systems - part ii. Available at https://zkproof.org/2020/10/15/

information-theoretic-proof-systems-part-ii/, 2020.

[IY87] Russell Impagliazzo and Moti Yung. Direct minimum-knowledge computations. In
Carl Pomerance, editor, Advances in Cryptology - CRYPTO ’87, A Conference on the
Theory and Applications of Cryptographic Techniques, Santa Barbara, California, USA,
August 16-20, 1987, Proceedings, volume 293 of Lecture Notes in Computer Science,
pages 40–51. Springer, 1987.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Trans.
Inf. Theory, 18:652–656, 1972.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992.

57

https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/
https://zkproof.org/2020/10/15/information-theoretic-proof-systems-part-ii/
https://zkproof.org/2020/10/15/information-theoretic-proof-systems-part-ii/

[KK05] Jonathan Katz and Chiu-Yuen Koo. On constructing universal one-way hash functions
from arbitrary one-way functions, 2005. jkatz@cs.umd.edu 13051 received 16 Sep 2005,
last revised 24 Sep 2005.

[KNY18] Ilan Komargodski, Moni Naor, and Eylon Yogev. Collision resistant hashing for para-
noids: Dealing with multiple collisions. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Is-
rael, April 29 - May 3, 2018 Proceedings, Part II, volume 10821 of Lecture Notes in
Computer Science, pages 162–194. Springer, 2018.

[KRR22] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
The power of no-signaling proofs. J. ACM, 69(1):1:1–1:82, 2022.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992.

[Mei13] Or Meir. Ip = pspace using error-correcting codes. SIAM Journal on Computing,
42(1):380–403, 2013.

[Mer89] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard, editor, Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture
Notes in Computer Science, pages 428–446. Springer, 1989.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453, 1994.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In David S. Johnson, editor, Proceedings of the 21st Annual ACM Sym-
posium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA, pages
33–43. ACM, 1989.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, 1979.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Harriet Ortiz, editor, Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 387–394. ACM, 1990.

[RR19] Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length.
Electronic Colloquium on Computational Complexity (ECCC), 26:127, 2019.

[RR20] Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity
with polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryp-
tography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science,
pages 108–138. Springer, 2020.

58

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016, pages 49–62, 2016.

[RRR18] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Efficient batch verification
for UP. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018,
San Diego, CA, USA, pages 22:1–22:23, 2018.

[RV22] Ron D. Rothblum and Prashant Nalini Vasudevan. Collision-resistance from multi-
collision-resistance. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances
in Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference,
CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III,
volume 13509 of Lecture Notes in Computer Science, pages 503–529. Springer, 2022.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In STOC, pages 793–802, 2013.

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash functions
be based on general assumptions? In Kaisa Nyberg, editor, Advances in Cryptology -
EUROCRYPT ’98, International Conference on the Theory and Application of Cryp-
tographic Techniques, Espoo, Finland, May 31 - June 4, 1998, Proceeding, volume 1403
of Lecture Notes in Computer Science, pages 334–345. Springer, 1998.

[Sud95] Madhu Sudan. Efficient Checking of Polynomials and Proofs and the Hardness of
Approximation Problems, volume 1001 of Lecture Notes in Computer Science. Springer,
1995.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Available at https://people.
cs.georgetown.edu/jthaler/ProofsArgsAndZK.html, 2022.

[Wol65] Jack K. Wolf. On codes derivable from the tensor product of check matrices. IEEE
Trans. Information Theory, 11(2):281–284, 1965.

A Code Switching for Tensor Codes: Definitions and Proofs

In this appendix, for the sake of completeness, we provide the details of the encoding R and the
Code-Switching Lemma from Section 3.5, which are taken almost verbatim from [RR19]. We always
consider a constructible field ensemble F = (Fn)n that extends GF[2], and let γ ∈ (0, 1) be a rate
parameter, which we think of as an arbitrary constant.

A.1 The Encoding

We describe the structure and properties of the encoding defined in Theorem 3.26, that we denote
by R. Whereas we do not prove its existence, since it is already proved in RR’s work, we briefly
discuss its structure and show that it satisfies one additional property.

Theorem 2.3 in RR’s work proves the existence of a systematic binary linear code, that they
denote as R (not to be confused with our R), with messages of length M1/2t and rate 1− γ

2t . Then,

59

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

they consider its second-tensor, denoted R⊗2 : {0, 1}M1/t → {0, 1}γ·M1/t
where γ = (1 − γ

2t)
−1.

They take R⊗2 to be the code C used in the Sumcheck for tensor codes, Lemma 7.1 there and
Lemma 3.28 here (see Section A.2). Hence, the code on which the Sumcheck for tensor code applies
is the t-wise tensor product of R⊗2, which is also the (2t)-wise tensor product of R, is R⊗2t. This

is the encoding that we use throughout this work, i.e., R def
= R⊗2t. Its relative distance is

(γ
t

)O(t)
.

From the properties of R, it follows that R is a binary linear code, with message length M , that
is also locally-testable. The last property stated in Theorem 3.26 is that, for a constant t, R is
encodable in NC. Since RR do not prove this, we do so in the following proposition. We assume
familiarity only with the Reed-Solomon encoding.

Proposition A.1 (R encodable in NC). Let M = M(n) and t ∈ N be a constant. The encoding

R def
= R⊗2t as defined above w.r.t. to message length M is encodable in Logspace-uniform NC.

Proof. The construction of R is a high-rate variant of Justesen’s code [Jus72], and its full construc-
tion can be found in [RR19, Appendix A]. To prove that it is also encodable in Logspace-uniform
NC, we first define the code R mentioned above.

The encoding R is obtained by encoding the symbols of a Reed-Solomon code with the Wozen-
craft Ensemble. Assume R operates on messages of length k (eventually, we take k = M1/2t).
Given a string x ∈ {0, 1}k, we view any consecutive log |F| coordinates of x as a field element in the
natural way, and apply a Reed-Solomon code with message length k/ log |F| and codeword length
n′ = (k/ log |F|) · (1 + γ/3). Let y denote this encoded string, so y ∈ Fn′

. For any i ∈ [n′], the
ith coordinate of y, denoted yi, is encoded by the Wozencraft Ensemble in the following manner:
yi 7→ (yi, σ(αi · yi)), where αi is the i

th element of F, and σ : F → {0, 1}s is the first s = ⌊log k · γ
3 ⌋

bits in the binary representation of its input.
Observe that σ is computable in depth O(log |F|), and that computing the Reed-Solomon w.r.t.

message length k/ log |F| can be done in depth polylog(k, |F|) by exponentiation via repeated squar-
ing. Since k and |F| are always polynomial in n, the circuit computing R is an NC circuit. Logspace-
uniformity follows by construction.

Since any application of a tensor product raises the depth of the circuit by a multiplicative
factor of at most 2, the 2t-tensor of R, namely, R, is encodable by a 22t · polylog(n)-depth circuit.
Recalling that t is a constant, the proposition follows.

A.2 Proof of the Code-Switching Lemma

Proof. We show how to derive Lemma 3.28, to which we refer as the “Code-Switching HIPR”, from
Lemma 7.1 of [RR19], called a “Sumcheck for tensor codes”.

Let us first briefly recall the setup and the goal of the Code-Switching HIPR. The holographic
input is a string w ∈ {0, 1}M , and the explicit input is a claim (r, v) about LDE(w) that LDE(w)[r] =
v. The output is a set of claims (χj , θj)j∈[q] about a different encoding, defined in Theorem 3.26
(see also Section A.1) and denoted as R. The claims are that ∀j ∈ [q],R(w)[χj] = θj . The HIPR
reduces the input claim to the output claims, such that if it is correct, then all claims will be
correct, whereas if it is false then at least one of the output claims will also be false.

The Sumcheck for tensor codes is a generalization of the Code-Switching HIPR in two aspects.
First, the input can be any linear claim (as long as its coefficients satisfy a “rank 1 tensor” property,
see Definition A.2 below), and not necessarily a claim about the low degree extension of the input.
The second aspect is analogous: the encoding used for the output claims can be more general than

60

the specific choice of R. In their work, [RR19] state the protocol for families of codes that satisfy
some requirements, and then prove that R satisfies these.

We comment that the Sumcheck for tensor codes approach is inspired by Meir’s [Mei13] combi-
natorial proof of the IP = PSPACE theorem. However, we do not focus on this protocol, and refer
the reader to the work of Ron-Zewi and Rothblum [RR19] for the full details.

For the proof of the Code-Switching HIPR, we start with defining the property that is required
from the input claim. Then, we show that the low degree extension satisfies it. Next, we set the
parameters of the Sumcheck for tensor codes such they work with the Code-Switching HIPR setting.
Lastly, we mention a single change needed for our alternative statement.

To define a “rank 1 tensor”, we introduce some notation. For an integer t and a sequence of t
vectors λ1, . . . , λt ∈ FM1/t

, we let λ1 ⊗ . . .⊗ λt ∈ FM denote the vector that satisfies

∀i1, i2, . . . , it ∈ [M1/t], (λ1 ⊗ . . .⊗ λt)i1,i2,...,it = (λ1)i1 · (λ2)i2 · . . . · (λt)it .

Notice that, here and in what follows, we take λi = λ[i], i.e., the ith coordinate of the vector λ.

Definition A.2 (Rank 1 tensors of dimension t). Let F = (Fn)n be a constructible field ensemble
that extends GF[2]. A vector λ ∈ FM is a Rank 1 Tensor of Dimension t if there exist t vectors

λ1, . . . , λt ∈ FM1/t
such that λ = λ1 ⊗ . . .⊗ λt.

For example, for t = 2, consider an
√
M ×

√
M matrix of rank 1. Taking λ to be the vector in

FM that represents the matrix (in the natural way), we get that λ satisfies the definition.

Proposition A.3. Let H ⊆ F be (ensembles of) extension fields of GF[2], such that H ⊆ F. Let
LDE = LDEF,H be the low degree extension encoding. Let w ∈ {0, 1}M be an input and define
m = log|H|(M). Then, for any integer t that divides m, and any claim (r, v) ∈ Fm ×F, there exists

a sequence λ1, . . . , λt ∈ FM1/t
, such that

LDE(w)[r] = v ⇐⇒ ⟨λ1 ⊗ . . .⊗ λt, w⟩ = v.

Furthermore, each λi for i ∈ [t] is computable in time poly (|H|,m, log |F|).

Proof. First, we define λ ∈ FM such that LDE(w)[r] = v ⇐⇒ ⟨λ,w⟩ = v. Then, we show that λ is
a rank 1 tensor of dimension t (i.e., satisfies Definition A.2). Recall the individual degree |H| − 1
polynomial τ̂ : Fm × Fm → F defined in Eq. (1):

τ̂(x, r)
def
=
∏
i∈[m]

∏
h∈H\{0}

ri − xi − h

h
,

and the definition of the low degree extension of w at coordinate r:

LDE(w)[r] =
∑
x∈Hm

τ̂(x, r) · w[x],

where w[x] is the xth coordinate of w ∈ Hm. We define λ ∈ |F|M as the vector of these coefficients:

∀x ∈ |H|m, λ[x] def= τ̂(x, r),

where recall that we identify |H|m with M .

61

The fact that λ has a rank 1 tensor of dimension m structure follows from the fact that the low
degree extension is itself a tensor code. In particular, define the binomial Î : F× F → F as

Î(x, x′)
def
=

∏
h∈H\{0}

x′ − x− h

h
.

For every i ∈ [m], we fix ri and define λi ∈ F|H| such that

∀x ∈ |H|m, λi[x]
def
= Î(x, ri).

Notice that ∀i1, i2, . . . , im ∈ [|H|]:

(λ1 ⊗ . . .⊗ λm)i1,i2,...,im

= Î(i1, r1) · Î(i2, r2) · . . . · Î(im, rm)

=
∏

h∈H\{0}

r1 − i1 − h

h
·
∏

h∈H\{0}

r2 − i2 − h

h
· . . . ·

∏
h∈H\{0}

rm − im − h

h

=
∏
j∈[m]

∏
h∈H\{0}

rj − ij − h

h

= τ̂
(
(i1, i2, . . . , im), (r1, r2, . . . , rm)

)
= (λ)i1,i2,...,im .

Hence, λ = λ1⊗ . . .⊗λm as required. To conclude, note that λ1, . . . , λm are all computable in time
poly (|H|,m, log |F|) by Proposition 3.6. For any t that divides m, finding the sequence λ1, . . . , λt
is possible (within this time bound) by [RR19, Fact 6.5].

Our next goal is setting the parameters for the Sumcheck for tensor codes.

• We take C⊗t to be R as defined in Theorem 3.26. In Section 7.1 of their work, they prove
that R satisfies the requirements of the Sumcheck lemma. Recall that the relative distance

of R is
(γ
t

)O(t)
= O (γ · δ)O(1/δ).

• We set t = m, where we recall that m = log|H|(M) = O(1/δ). This means that the round

complexity is O(1/δ), and that M1/m = |H|.

• Taking ε = 1/n, we get that

d = O

(
log(t/ε)

(γ · δ)O(1/δ)

)
= O(log n),

where the constant depends on γ and δ. To simplify notation, we define q
def
= dt = dO(1/δ).

Indeed, it holds that q = polylog(n), although the constant is of order exp(1/δ) (notice that
q does not affect the round complexity).

• By Proposition A.3, the validity of the input claim (r, v) is reduced to the validity of the
claim that ⟨λ1 ⊗ . . .⊗ λt, w⟩ = v.

Finally, the (minor) change that we make in the Sumcheck for tensor codes is restating it as
a HIPR instead of an IP. We do so by making the verifier output query locations and values that
would make it accept had it actually queried the encoded input at these locations. It does make
queries to the transcript, and its decision predicate ϕ, given at the form of q claims, only contains
queries to the input. Lemma 3.28 follows.

62

B Additional Proofs

B.1 Proof of Proposition 3.25.

Let n ∈ N and M = M(n). Let F be an extension field of GF[2] where |F| = Θ(n2δ) for δ ∈ (0, 1),
and let L be a pair language with inputs of the form (x,w) ∈ {0, 1}n × {0, 1}M . Assume that L is
computable by Logspace-uniform circuits with fan-in 2, of depth D = D(n,M) and size poly(n,M).

We take (P,V) to denote the flat-GKR protocol (see Theorem 3.23), ρ to denote its number
of rounds, and β1, . . . , βρ to denote V’s messages. In this section, we prove that P’s messages are
computable in low-depth: namely, that there exists a Logspace-uniform arithmetic circuits over
F with fan-in 2, of depth poly(D,nδ) and size poly(n,M), whose input is ((x,w), β1, . . . , βρ) and
output is a sequence of P’s messages.

Proof. We assume familiarity with the flat-GKR protocol from [AR23, Theorem 5.1] and follow the
prover’s steps. Note that the encoding in use is always the low degree extension encoding (see
Section 3.1), and that by the choice of F and H, encoding a string incurs a quadratic blowup in its
length. From now on, when we use the term polynomial we mean poly(n,M).

• Computing the circuit C(x,w). This step (trivially) takes depth D and polynomial size.

• Computing the hash tree of each of the circuit’s layers. Each of these computations can
be preformed “in parallel”. The depth of a hash tree (computed on any polynomial-length
string) is poly(κ) for a security parameter κ = nδ (recall that the tree has a constant number
of layers, namely, O(1/δ)). Its size is at most twice the number of leaves, which is at most
polynomial, multiplied by the size of the circuit computing the hash functions, which is
poly(κ) ≥ polylog(n).

• Computing answers to the protocol preformed in Step 4(a). Roughly speaking, the protocol
executed in this step, referred to as the “HHR” protocol, is a HIP that reduces the validity of
a hash root to a claim about the encoding of the string being committed to. First, notice that
computing the complete hash tree, as we already mentioned, can be done by a poly(κ)-depth
circuit of polynomial size. The HHR protocol operates sequentially, by reducing claims about
the encoding of a tree layer to a claim about the encoding of the layer below it, until it is
left with a claim about the leaves, which are the string that the prover commits to. Since the
tree is of constant depth, we focus on computing the answers to this sub-protocol (for its full
details, see [AR23, Lemma 4.6]). There, the prover’s computations23 boil down to:

– Computing the encoding of strings of length at most polynomial (in particular, the low
degree extension encoding, see Section 3.1), which can be done by an NC circuit. We
comment that in one of the sub-protocols used there, they view the low degree extension
encoding as the mth-tensor of a Reed-Solomon code (more details about these can be
found above in Appendix A). Still, since AR’s work always uses a constant m, the
prover’s answers are computable in Logspace-uniform NC.

– Computing arithmetic operations over F, all are computable in Logspace-uniform NC.

All of the above computations can be preformed in parallel.

23In particular, these are dominated by computing the answers to the protocols of Theorems 3.25 and 3.26 of that
work, which are variant of the [GR20] and [RVW13] protocols, respectively.

63

• Computing answers to the protocol preformed in Step 4(b). The protocol executed in this step
is [AR23, Lemma 5.2], that preforms a “single step” of the [GKR08] protocol. In high-level,
the GKR protocol uses a sub-protocol that checks the consistency of two consecutive circuit-
layers. It reduces a claim about the encoding of one layer to claim about the encoding of the
layer that feeds it. In flat-GKR, they extract this reduction, albeit with a different parameter
setting such that it runs in a constant number of rounds. Once again, the computations of
the prover boil down to computing the low degree extension of strings of polynomial length,
and preforming arithmetic operations over F. All of these can be done in parallel, thus in
Logspace-uniform NC and the proposition follows.

B.2 Proof of Proposition 5.5.

Recall that |Q| = q. We construct an arithmetic circuit C over F, whose input is a string x, a tableau
T , a sequence of claims about the prover’s messages ϕ, a query set Q, and a full sequence of Vt’s
random coins β1, . . . βr. Its output is a vector v ∈ Fq, such that v = 1q if and only if ϕ is correct
with respect to the prescribed strategy Pt. We show that C satisfies all the desired properties stated
above, while recalling that the flat-GKR protocol extends for vector-valued arithmetic circuits as
well (see Remark 3.24).

Take CPt to be the nO(δ)-depth (arithmetic) circuit promised by the fact that the prescribed
prover is nδ-low-depth (see Definition 3.35). The circuit C works as follows: First, it feeds CPt with
(x, T , β1, . . . βr). Denote CPt ’s output, that is, the prescribed prover’s messages, by (α1, . . . , αr).
In order to compare the values in (α1, . . . , αr) at locations Q with the values in ϕ, the circuit C
has |Q| = q addition gates located in parallel (i.e., in the same layer), such that the (j, t)th gate,
for (j, t) ∈ Q, is wired to ϕ(j, t) and αj [t] using multiple copies of the circuit Cselect described next.
Notice that since addition and subtraction are the same over extension fields of GF[2], each of these
addition gates outputs 0 if and only if the two values are equal.

In order to find αj [t], we construct the arithmetic circuit Cselect, that gets a sequence of strings
and an index (represented in binary), and outputs the appropriate string. Then, we will use it
twice: once, with the index j, to output αj , and then, with the index t, to output αj [t]. Recall that
each query (j, t) ∈ [r]× [a] is represented by a binary string of length (log r + log a).

We define the following circuit Cselect that “selects” zi, given z1, ..., zk and an index i. The
circuit is arithmetic, and we identify 0F, 1F with GF[2] = {0, 1} (and refer to them as “bits”). As
a first step we allow its fan-in to be > 2.

• Its input is i ∈ {0, 1}log k and z1, ..., zk ∈ F|z1|·k.

• Its first layer compares between i and all of the elements in [k] (namely, the k binary strings
of length log k that represent 1, . . . , k), using the following identity for two bits b, b′: (b =
b′) ≡ ((1− b) + b′) · (b+ (1− b′)).

• The second layer shrinks each of the k results to a single bit, by k multiplication gates of
fan-in log k. This bit equals 1 if and only if the two strings are equal. This implies that, at
this point, only the ith bit is 1, and the rest are 0.

• The third layer uses k · |z1| multiplication gates of fan-in 2, that operate on the results of the
third layer (each one has fan-out |z1|) and the inputs z1, ..., zk. If we interpret this layer as

64

k sequences of length |z1|, we get that only the ith sequence is the string zi, and the rest of
them are 0|z1|.

• The forth (output) layer is the sum of these k results, i.e., |z1| addition gates of fan-in k.
Since a sum of a field element and a zero returns the bit, we get that the circuit’s output is
exactly the string zi.

By the construction, it is evident that the circuit Cselect is an #AC0
F,fin circuit of depth 4, where

fin ≤ k. Since we want to reduce its fan-in to 2, we use the standard transformation that replaces
any gate with fan-in k with k gates, wired in the form of a tree. This increases the depth of the
circuit by a log k factor, while increasing the size by at most a O(k) factor.

We use Cselect as described above. First, the circuit C locates “in parallel” q copies of Cselect,
such that for i ∈ [q], the ith copy gets as input the sequence of messages (α1, . . . , αr) and the first
index of the ith query in S. Taking (ji, ti) to denote this query, the output of the ith copy is αji .
Next, we locate another sequence of q parallel copies of Cselect, where the ith copy gets as input αji

(here we consider |z1| = 1) and the second index of the ith query in S. We get that the output of
the ith copy is αji [ti]. Notice that the depth of these layers is log r + log a = O(log n).

The output of C is the sequence of these q results, when we add the constant 1 to each of them.
This means that C outputs 1q iff ψ is correct. The fact that the circuit is Logspace-uniform, fan-in
2 and of polynomial size follows directly from its description. Notice that the depth of the circuit
is bounded by the sum of CPt ’s depth, the log k factor and O(log n), and the proposition follows.

B.3 Proof of Proposition 5.6.

Let t = t(n) be a time bound and x ∈ {0, 1}n be an input. Let u, v ∈ {0, 1}O(S) be two configurations
of the machine M, and let T denote the tableau of the computation starting at u and running for
t steps. Let (ω, θ) be a claim about LDE(T).

We prove that there exists a Logspace-uniform fan-in 2, depth nO(δ) and polynomial size arith-
metic circuit C whose input is x, T and a full sequence of Vbatch’s random coins βB1 , . . . , β

B
rB
, and

output is the sequence of message sent by Pbatch. We carefully go over each step preformed by
Pbatch during the batching protocol, and prove that it can be preformed by a low-depth circuit.

• Step (1): Since C gets the tableau as input, finding LDE(wt, w2t, . . . , w(k−1)·t) boils down to
computing the low-degree extension, that can be performed by a Logspace-uniform arithmetic
AC0 circuit (see, e.g., [AR23, Section 4.4.1]), and in particular by a Logspace-uniform NC1

arithmetic circuit.

• Step (2): When decomposing the claim (ω, θ) into k claims, the circuit C computes “in paral-
lel” k values in the low-degree extensions of the tableaux (Ti)i∈[k] for the k sub-computations.

Following the previous item, this can be done by a Logspace-uniform NC1 arithmetic circuit
as well.

• Step (4): Computing the hash roots (yi)i∈[k] can be done by a Logspace-uniform Boolean

circuit with fan-in 2, of depth ℓ · poly(nin) = nO(δ) and size poly(n), using Proposition 3.19.
We can convert it to an arithmetic circuit over F while increasing its size and depth of the
circuit by at most a constant factor.

65

• Step (6a): Applying Proposition 3.25 on the circuit mentioned in the previous item yields
that C can compute Pbatch messages in the flat-GKR execution by a circuit that satisfies all
the desired properties.

• Step (6c): Computing Pt’s messages (the prover of the base protocol) can be done by a
Logspace-uniform fan-in 2, depth nO(δ) and polynomial size arithmetic circuit using the as-
sumption that Pt is a nδ-low-depth prover. Computing the checksum can be done by a
Logspace-uniform arithmetic AC0 circuit by locating in parallel d addition gates, thus by a
Logspace-uniform NC1 arithmetic circuit as well.

• Step (8): Here, C computes the locations to outputs from the computed answers to the base
protocols, according to the query set Q (notice that the verifier’s messages βB1 , . . . , β

B
rB

include
the query set Q, not to be confused with the sequence of verifier messages in the base protocol
β1, . . . , βr). All of these can be preformed in parallel. Proposition 5.5 shows that this task is
computable by a circuit of depth log k that satisfies the desired properties.

• Step (10a): Recall we assumed that the prover Pt of the base protocol (Pt,Vt) is nδ-low-
depth. This means that Proposition 5.5 applies, and the circuit on which we run the flat-GKR
protocol in this step is Logspace-uniform arithmetic circuit with fan-in 2, of depth nO(δ) and
size poly(n). Thus, once again we can use Proposition 3.25 and get that C can compute Pbatch

messages in the flat-GKR execution by a circuit that satisfies all the desired properties.

• Step (10b): Since the openings are a sub-circuit of the full circuit computing the Merkle
tree, this step is included in Step (4), where Pbatch computes the hash root.

With the exception of Step (8), that requires the output of Step (6c), all of these computations
can be performed in parallel: in computing its answers to one step, the prover does not use its
answers from a previous step. This means that, compared to the circuit computing Pt’s messages,
the depth of the circuit computing Pbatch’s messages is only bigger by a multiplicative factor of
log k = O(log n), and thus remains in nO(δ)-depth. The proposition follows by taking C to be the
composition of all of the sub-circuits described above.

66

	Introduction
	Quasi-Linear Batch Verification for UP
	Constant-Round Arguments for Bounded Space

	Technical Overview
	Targeted collision-resistant Hash with Local Opening
	Batch Verification of UP Statements
	From UP Batching to IAs for Bounded-Space Computations

	Preliminaries
	Multivariate Polynomials and Low Degree Extensions
	UOWHF and Merkle Tree
	Interactive Arguments
	HIAs and a constant-round HIA for bounded-depth computations
	Code Switching for Tensor Codes
	Probabilistically Checkable Interactive Arguments (PCIAs)
	PCIAs w.r.t. Encoded Provers and Low-Depth Honest Prover

	Batch Verification for UP
	Interactive Arguments for Bounded-Space Computations
	Batch Verification of PCIAs
	Augmentation Protocol
	PCIA for Bounded-Space Computations

	Code Switching for Tensor Codes: Definitions and Proofs
	The Encoding
	Proof of the Code-Switching Lemma

	Additional Proofs
	Proof of prop: the prover in flat is computable in low-depth.
	Proof of prop: the circuit on which flat-GKR runs satisfies properties.
	Proof of prop: circuit for prover messages is low-depth.

