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Abstract

We prove that the permutation computed by a reversible circuit with Õ(nk ·log(1/ε)) random
3-bit gates is ε-approximately k-wise independent. Our bound improves on currently known
bounds in the regime when the approximation error ε is not too small. We obtain our results
by analyzing the log-Sobolev constants of appropriate Markov chains rather than their spectral
gaps.
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1 Introduction
We consider the extent to which small random reversible circuits compute almost k-wise inde-
pendent permutations. The (almost) k-wise independence of permutations was first considered by
Gowers [Gow96] as a proxy for pseudorandomness properties of practical cryptosystems, such as
block ciphers.

Definition 1 (Approximate k-wise independent permutations). A distribution P on the symmetric
group S[N ] is said to be ε-approximate k-wise independent if for all distinct x1, . . . , xk ∈ [N ], the
distribution of (g(x1), . . . , g(xk)) for g ∼ P has total variation distance at most ε from the uniform
distribution on distinct k-tuples over [N ].

A commonly studied construction of approximate k-wise independent permutations is a re-
versible circuit on n wires in which each gate computes a randomly chosen width-2 (see Defini-
tion 4) permutation on a random subset of 3 wires. From here on, when referring to a random
reversible circuit, we mean a random circuit whose gates are drawn randomly from a set of 3-
bit gates. Gowers [Gow96] introduced this construction and proved that a random reversible
circuit with poly(n, k, log(1/ε)) gates computes an ε-approximate k-wise independent permuta-
tion of the cube {0, 1}n using the canonical paths technique from Markov chain mixing [Jer03].
Since then, follow-up works by Hoory et al. and Brodsky and Hoory [HMMR05, BH05] improved
on the analysis of Gowers and proved that if k ≤ 2n/50, then random reversible circuits with
O(n2k2 log(1/ε)) gates compute an ε-approximate k-wise independent permutation using the com-
parison method [DSC93b, DSC93a]. Finally, using quantum-inspired techniques for proving spectral
gaps, He and O’Donnell [HO24] improved the number of gates needed to Õ(nk) · (nk + log(1/ε)).

Random circuits have gained attention following the recent interest in random quantum circuits.
The natural quantum analog of a (approximate) k-wise independent permutation is that of a
(approximate) unitary k-design.1 Unitary designs are widely studied in quantum computation and
quantum physics as basic pseudorandom objects and models for equilibration in quantum many-
body systems [BCHJ+21]. A line of work on unitary k-designs [BHH16, HHJ21] shows that for
constant ε, a reversible circuit on n wires with Õ(n2 ·poly(k)) random 3-qubit quantum gates chosen
from some finite gate set (a random quantum circuit) gives a construction of an ε-approximate
unitary k-design.

Recent works [MPSY24, CBB+24] obtain k-designs with size linear in k from classical k-wise
independent permutations whose size is also linear in k. Even though we demonstrate that a linear-
in-k number of random width-2 gates suffices to ε-approximate k-wise independence, we remark
that our dependence on ε is not sufficiently tight for their k-design construction. In particular,
both works employ a theorem of Alon and Lovett [AL13] which requires an exponentially small ε
to translate from approximate to exact k-wise independent permutations. Plugging in such a small
ε in our theorem would increase our size bound by polynomial factors in n and k.

Another line of work, motivated by the design of practical cryptosystems (such as block ciphers),
studies the computational pseudorandomness properties of random reversible circuits. He and
O’Donnell [HO24] consider the computational hardness of inverting the permutation computed by
short reversible circuits with 3-bit gates. Another line of work by Canetti et al. [CCMR24] proposed
more advanced cryptographic primitives based on the cryptographic properties of random reversible
circuits. In particular, using the assumption that random reversible circuits achieve computational
pseudorandomness after a modest number of rounds (much less than the super-polynomial number

1A (approximate) unitary k-design is a distribution on the unitary group that (approximately) matches the Haar
distribution up to kth moments.
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of rounds required to reach statistical pseudorandomness), they suggest candidate obfuscation
schemes along with possible ways to prove their computational security. Their approach is inspired
by thermalizing processes of statistical mechanics.

In this paper, we revisit the problem of random circuits with reversible 3-bit gates and show that
a random reversible circuit with Õ(nk · log(1/ε)) gates gives an ε-approximate k-wise independent
permutation. The following is our main theorem, which we prove in Section 6.

Theorem 2. For any n and k ≤ 2n/50, a random reversible circuit with Õ(nk · log(1/ε)) width-2
gates (a subset of 3-bit gates) computes an ε-approximate k-wise independent permutation, where
the Õ hides polylog(n, k) factors.

We note here that for applications of approximate k-wise independent permutation distribu-
tions P in derandomization, one is generally concerned with the number of truly random “seed”
bits needed to generate a draw from P. See, for example [MOP20]. By using techniques such
as derandomized squaring (see [KNR09]), one can often reduce the seed length to O(nk) for any
construction. This is true for the results in our paper, and we don’t discuss the seed length any
further, as we are generally focused on the circuit complexity of our permutations.

1.1 Proof overview

We use the comparison method in a similar way as [BH05]. In particular, we bound the log-Sobolev
constant of the natural Markov chain associated with the computation of a random reversible circuit,
by comparing it to the log-Sobolev constant of the k-clique 2n-coloring Markov chain. By working
with the log-Sobolev constant rather than the spectral gap of this random walk as [BH05, HO24]
do, we obtain an improved mixing time since the log-Sobolev constant gives a mixing time bound
that depends doubly logarithmically on the smallest probability of the stationary distribution. In
contrast, the spectral gap gives bounds that depend logarithmically on this quantity.

While it is generally more difficult to bound the log-Sobolev constant of a Markov chain, recent
work of Salez [Sal20] has used the martingale method of Lee and Yau [LY98] to obtain sharp
estimates for the log-Sobolev constant of a natural random walk on the multislice. Using this
method, we estimate the log-Sobolev constant of a variant of k-clique 2n-coloring chain, which we
call the uniform k-clique 2n-coloring chain. The log-Sobolev constant for the standard k-clique
2n-coloring chain is then obtained via a simple application of the comparison method.

In more detail, our starting point is the work of Salez which bounds the log-Sobolev of the
multislice. The multislice corresponds to the random walk over the set of colorings of 2n items,
where each step of the walk swaps the colors of any two items chosen uniformly at random. The
colorings are comprised of k + 1 colors, where the first k colors appear once and the last color
appears in the remaining 2n− k items. The first observation is that this random walk captures the
k-wise independence of a random walk with transpositions. Unfortunately, the log-Sobolev constant
of this walk is too small: (n · 2n)−1. In contrast, we would expect a random set of transpositions
to mix to a k-wise independent permutation within a time that is dependent on k.

The reason that the log-Sobolev constant of the multislice chain is independent of k is because
it applies a random transposition from the entire set of

(
2n

2

)
transpositions. In the case when k is

much smaller than 2n, a random transposition will most likely exchange the colors of two of the
2n − k items that have color k + 1. Thus, with high probability, roughly 1 − k

2n , the multislice
chain will not move to a new state. To avoid this artificial slowdown, we study the uniform k-clique
2n-coloring chain, which requires that every step applies one transposition with an element that
doesn’t have color k + 1. Equivalently, one may think of the uniform k-clique 2n-coloring chain as
a random walk on the multislice that takes 2n

k steps per time step and thus would hope that the
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log-Sobolev constant scales down by a factor of k
2n . Indeed, we employ the martingale method and

prove that the log-Sobolev constant of the uniform k-clique 2n-coloring chain is Ω
(

1
nk

)
as expected.

One can compute the log-Sobolev constant of the uniform k-clique 2n-coloring chain by using
Salez’s result as a black box and viewing the multislice chain as a lazy version of the uniform
k-clique 2n-coloring chain. We instead present an alternative proof by adapting the martingale
method used by Salez.

The next step is to transfer our log-Sobolev bound from the uniform k-clique 2n-coloring chain to
the k-clique 2n-coloring chain, which has slightly different transition probabilities than its uniform
counterpart. We give a randomized paths construction with only a constant amount of congestion.
The comparison method implies that the log-Sobolev constant of the k-clique 2n-coloring chain is
also Ω

(
1
nk

)
.

Finally, we obtain an estimate for the log-Sobolev constant of the random reversible circuits
Markov chain by employing the comparison with the k-clique 2n-coloring chain from [BH05]. More
specifically, Brodsky and Hoory give a randomized paths construction with a comparison constant
of Θ(n2). This concludes our Ω

(
1

n3k

)
bound for the log-Sobolev constant of the reversible circuits

Markov chain.
To improve our bound on the mixing time of the reversible circuits Markov chain, we use

another argument from [BH05]. The observation is that after a short random walk of Õ(n) steps,
the state of the reversible circuits Markov chain is very likely to be in a generic state. Thus it
suffices to bound the mixing time of the Markov chain when restricted to generic states. We do this
by bounding its log-Sobolev constant, using the log-Sobolev inequality of the clique coloring chain,
which we proved earlier. This allows us to bring down the mixing time of the reversible circuits
Markov chain to O(nk · polylog(n, k)).

2 Preliminaries
Notation. In this paper we will use the symbols &,. to compare two quantities in the asymptotic
sense, in particular, these symbols hide constant factors. For example, f(n) . g(n) ⇐⇒ f(n) ≤
O(g(n)). When x = (x1, . . . , xk) is a tuple, we use the notation ` ∈ x whenever ` = xi for some
i ∈ [k] and otherwise, we write ` 6∈ x.
Definition 3 (Tuples with distinct elements). Let S be a set. We define the set of k-tuples with
distinct elements from S as follows:

Θk,S :=
{
(x1, . . . , xk) ∈ Sk : xi’s distinct

}
.

We frequently write Θk,N in the place of Θk,[N ].
We recall the definition of width-2 simple permutations from [BH05].

Definition 4 (Width-2 simple permutations). The set of width-2 simple permutations is the fol-
lowing set of permutations on {0, 1}n

Σ :=

{
fi,j1,j2,h :

i, j1, j2 ∈ [n], i 6= j1, j2
h Boolean function on {0, 1}2

}
.

The permutation fi,j1,j2,h maps (x1, . . . , xn) to (x1, . . . , xi−1, xi ⊕ h(xj1 , xj2), xi+1, . . . , xn).
In words, a width-2 permutation chooses 3 random indices from [n]: i and j1, j2. It further

samples a random Boolean function on 2 bits. Then it XORs the value of h(xj1 , xj2) on the ith bit
of the input.
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2.1 Log-Sobolev constant and mixing time

We recall some background on Markov chains from [SC97]. Let P be the transition matrix of
an ergodic Markov chain over finite state space V , and let π denote its stationary distribution.
We identify a Markov chain with its transition matrix, so we will often say that P is both the
transition matrix for a Markov chain and also the Markov chain itself. We let ptx denote the
probability distribution of P , starting at state x, at timestep t.

Definition 5 (Mixing time). The ε-mixing time of an ergodic Markov chain P is defined as:

τε(P ) := min

{
t ≥ 0 : max

x∈V

∥∥∥ptx − π
∥∥∥

TV

}
.

When the subscript is dropped, we mean τ(P ) = τ1/4(P ).

Throughout this paper, we deal only with reversible Markov chains.

Definition 6 (Reversible Markov chain). We say that a Markov chain P is reversible if for all
x, y ∈ V ,

π(x)P (x, y) = π(y)P (y, x).

One powerful way of bounding the mixing time of Markov chains is by functional inequalities
using the Dirichlet form.

Definition 7 (Dirichlet form). For function f : V → R≥0, the Dirichlet form of f with respect to
P is

EP (f, f) :=
1

2

∑
x,y∈Ω

(
f(x)− f(y)

)2
π(x)P (x, y).

Intuitively, the Dirichlet form measures the “local variation” of f with respect to the (weighted)
graph underlying a Markov chain P .

Definition 8 (Entropy). For a function f : V → R≥0, we define its entropy

Entπ[f ] :=
∑
x∈V

π(x)f(x) log
f(x)

Eπ[f ]
,

where Eπ[f ] =
∑

x∈V π(x)f(x).

The ratio of these two quantities defines the log-Sobolev constant of the Markov chain.

Definition 9 (Log-Sobolev constant of Markov chain). The log-Sobolev constant of P is defined
by

α(P ) := inf
f≥0

f non-constant

EP (
√
f,

√
f)

Entπ[f ]
.

The log-Sobolev constant of a Markov chain bounds the mixing time of the chain according
to the following theorem. Note the doubly-logarithmic dependence on 1/πmin, which is the con-
ceptual advantage of using log-Sobolev inequalities over a spectral gap analysis, whenever ε is not
exponentially small.
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Theorem 10 ([DSC96], Theorem 3.7). Let P be the transition matrix of a reversible Markov chain
whose stationary distribution is π, and πmin to be the smallest stationary probability. For ε ≤ 1

e ,
the ε-mixing time is bounded by

τε(P ) .
1

α

(
log log

1

πmin
+ log

1

ε

)
.

In fact, the log-Sobolev constant bounds the `∞ mixing time, which gives pointwise distance
bounds.
Theorem 11 ([DSC96], Corollary 3.8). For reversible P , and for all x, y ∈ V∣∣∣ptx(y)− π(y)

∣∣∣ ≤ επ(y)

when t & 1
α

(
log log 1

πmin
+ log 1

ε

)
.

2.2 The comparison method

We bound the log-Sobolev constant of a reversible circuits Markov chain by repeated application of
the comparison method [DSC93b, WLP09] which we introduce below. The comparison method is
used to estimate the Dirichlet form of a target Markov chain with transition matrix P by relating
it to the Dirichlet form of a reference Markov chain with transition matrix P̃ , for which we have
previously-known estimates. This relation between Dirichlet forms can be trivially extended to an
inequality between log-Sobolev constants when P̃ and P are over the same state space V and have
the same stationary distribution π.

The comparison is achieved by “simulating” the transition probabilities of the P̃ Markov chain
using paths from P . Formally, for each (x, y) ∈ V 2 we assign a random path

∆(x, y) =
(
(x,u1), (u1,u2), (u2,u3), . . . , (u`, y)

)
,

where the ui’s are random elements of V that satisfy P (x,u1), P (u`, y) > 0 and P (ui,ui+1) > 0.
The quantity ` is a random non-negative integer equal to the length of the path |∆(x, y)|. The
congestion of these paths (which is captured by the comparison constant A(∆)) provides a lower
bound of E with respect to Ẽ as shown formally in Lemma 12.

Without loss of generality, we assume that the paths ∆(x, y) are simple, since one can remove
all loops without affecting the endpoints x, y of a path and without increasing the congestion.
Lemma 12 ([WLP09], Corollary 13.23). Let P̃ and P be transition matrices for two ergodic
Markov chains on the same state space V . Assume that for each (x, y) ∈ V 2 there exists a random
path

∆(x, y) =
(
(x,u1), (u1,u2), (u2,u3), . . . , (u`, y)

)
.

Then we have for any f : V → R that

Ẽ(f, f) ≤ A(∆) · E(f, f)

where the comparison constant of ∆ is defined to be

A(∆) := max
(a,b)∈V 2

P̃ (a,b)>0

 1

π(x)P (a, b)

∑
(x,y)∈V 2

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
· π̃(x) · P̃ (x, y)

.

Here π and π̃ are the (unique) stationary distributions for P and P̃ , respectively, and 1(a,b)∈Q is
the indicator variable which captures whether the edge (a, b) appears in the sequence Q.
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3 The Markov chains
We now set up the Markov chains we use in the proof of Theorem 2. Throughout this section (and
the rest of the paper) fix positive integers n, k, and N (which will typically be equal to 2n). Our
Markov chains all have domains isomorphic to Θk,U for some set U :

Definition 13 (Reversible circuit Markov chain). The chain {Xrev
t }t≥0 on the state space of k

distinct n-bit strings is given by the following distribution on Xrev
t+1|Xrev

t . Given the current state
x = (x1, . . . , xk), to draw the next state Xt+1 = (y1, . . . ,yk), draw a uniformly random width-2
permutation σ ∈ Σ and set

(y1, . . . ,yk) = (σx1, . . . ,σxk).

Let P rev
k,n be the transition matrix of this Markov chain.

This Markov chain exactly captures the evolution of k inputs to a random reversible circuit
whose gates are uniformly drawn from the set of width-2 permutations Σ. Thus the statement
of Theorem 2 that a random reversible circuit with s width-2 gates is an ε-approximate k-wise
independent permutation is implied by the statement that τε

(
P rev
k,n

)
≤ s. We typically write P rev

and omit the parameters k and n whenever they are clear from the context or not important.
Following [BH05], we prove that this Markov chain mixes fast by comparing it to the k-clique

2n-coloring Markov chain. In this paper we deal with two clique coloring chains, thus we will refer
to this chain as the standard clique coloring, or simply the clique coloring chain. (Note that this
chain is slightly different than the )

Definition 14 (Standard k-clique N -coloring Markov chain). Let N be the number of colors and
k be the number of clique vertices. The k-clique N -coloring chain {Xcc

t }t≥0 on the set of colorings
Θk,N is given by the following distribution on Xcc

t+1|Xcc
t . To sample Xcc

t+1 = (y1, . . . ,yk) given the
current state Xcc

t = x = (x1, . . . , xk), uniformly sample i ∈ [k] and ` ∈ {` ∈ [N ] : ` 6∈ x} ∪ {xi}
and set

yj =

{
` j = i

xj j 6= i
.

Let P cc
k,N be the transition matrix for this Markov chain.

In other words, the clique coloring chain samples a uniformly random coloring of the k-clique
with N colors, by randomly choosing a vertex and randomly assigning it one of the (N − k + 1)
available colors (including its current color).

We directly bound the log-Sobolev constant of a related Markov chain, which we call the uniform
clique coloring chain.

Definition 15 (Uniform k-clique N -coloring Markov chain). Let N be the number of colors and
k be the number of clique vertices. The uniform k-clique N -coloring chain {Xucc

t }t≥0 on the set of
colorings Θk,N is given by the following distribution on Xucc

t+1|Xucc
t . To sample Xucc

t+1 = (y1, . . . ,yk)
given the current state Xucc

t = x = (x1, . . . , xk) uniformly sample i ∈ [k] and ` ∈ [N ] and set

yj =


` j = i

xi ` = xj

xj otherwise
.

Let P ucc
k,N be the transition matrix for this Markov chain.
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We call this the uniform clique coloring chain, since at every step a random vertex i is re-colored
with a uniformly random color from the entire set [N ]. If this color is already taken by another
vertex j, the two vertices swap colors. This additional symmetry allows us to obtain a bound on
the log-Sobolev constant of this chain by adapting the martingale method of Lee and Yau [LY98].
Moreover, it is not hard to relate the log-Sobolev constants of the uniform and standard clique
coloring chains using the comparison method.

With all of our Markov chains defined, we now state the sequence of inequalities that will allow
us to conclude Theorem 2, deferring the proofs of the auxiliary results to later sections.

Theorem 16. Let P rev
k,n be the transition matrix corresponding to the random walk from Defini-

tion 13. Then

α(P rev
k,n) ≥ Ω

(
1

n3k

)
.

Proof. We will show the following sequence of inequalities (recall that & hides constant factors):

α(P rev
k,n) &

Corollary 24

1

n2
· α(P cc

k,2n) &
Lemma 21

1

n2
· α(P ucc

k,2n) &
Lemma 18

1

n3k
.

Theorem 16 immediately gives a mixing time of Õ(n3k · log(1/ε)) for the reversible circuits chain
by Theorem 10; in Section 6 we improve the mixing time to Õ(nk · log(1/ε)) by applying ideas of
[BH05], thus proving Theorem 2.

It may then seem that Theorem 16 is strictly weaker than Theorem 2. However, the proof of
Theorem 2 does not yield a good log-Sobolev inequality for the reversible circuits Markov chain.
Thus we cannot use that proof to conclude results about pointwise convergence as we can from
log-Sobolev bounds using Theorem 11, such as the following result:

Corollary 17. Let ptx be the distribution over V after t & n3k
(
log nk + log 1

ε

)
steps of P rev

k,n. For
all x, y,∈ V

1− ε

2n(2n − 1) · · · (2n − k + 1)
≤ Pr[ptx = y] ≤ 1 + ε

2n(2n − 1) · · · (2n − k + 1)
.

4 The Log-Sobolev Constant of the Uniform Clique Coloring Chain
The goal of this section is to lower bound the log-Sobolev constant of the uniform clique coloring
Markov chain.

Recall that the uniform k-clique N -coloring Markov chain has state space Θk,N of size N(N −
1) . . . (N − k + 1). Given some x = (x1, . . . , xk) ∈ Θk,N , the action of choosing vertex i ∈ [k] and
coloring it with color ` ∈ [N ] (where this color can already exist in the clique, as per Definition 15)
will be denoted by xi,`. Namely

xi,` :=

{
(. . . , xi−1, `, xi+1, . . . ) if ` 6∈ x

(. . . , xj−1, xi, xj+1 . . . , xi−1, xj , xi+1, . . . ) if ` = xj .

Let f : Θk,N → R be a function on the state space of this chain. Since the stationary distribution
is the uniform, the expectation of f over its state space is

E
Θk,N

[f ] :=
1

|Θk,N |
∑

x∈Θk,N

f(x).
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Moreover, the Dirichlet form of this chain can be written as

EP ucc
k,N

(
√
f,

√
f) =

1

2
E

x∈Θk,N

 E
i∈[k]

 E
`∈[N ]

[(√
f(xi,`)−

√
f(x)

)2
]


=

1

2kN · |Θk,N |
∑

x∈Θk,N

∑
i∈[k]

∑
`∈[N ]

(√
f(xi,`)−

√
f(x)

)2

.

With this notation in mind, we now prove that this Markov chain has a large log-Sobolev
constant.

Lemma 18. The log-Sobolev constant of the uniform k-clique N -coloring Markov chain satisfies

α(P ucc
k,N ) ≥ 1

12k logN

when k ≤ N/2.

Proof. Our starting point is the recursive structure of the uniform clique coloring problem, which
allows us to apply the martingale method of [LY98]. In particular, let x be uniformly distributed
over the state space Θk,N . Then if we condition on the ith vertex having color `, the distribution of
the colors of the remaining k− 1 vertices is isomorphic to the uniform distribution over Θk−1,N−1,
the state space of the uniform (k − 1)-clique (N − 1)-coloring Markov chain.

For any vertex i ∈ [k] and color c ∈ [N ] define the conditional function

fi,c :
{
(x1, . . . , xk) ∈ Θk,N : xi = c

}
→ R

to be simply the restriction of f to this domain: fi,c(x) = f(x) for all x ∈ Θk,N with xi = c.
Since

{
(x1, . . . , xk) ∈ Θk,N : xi = c

}
is isomorphic to Θk−1,N−1, by a slight abuse of notation we

also regard fi,c : Θk−1,N−1 → R.
Moreover, for every vertex i ∈ [k], define the marginal function Fi : [N ] → R by defining for

every color c ∈ [N ]

Fi(c) := E
x∈Θk,N
xi=c

[f(x)].

The chain rule of conditional entropy ([Sal20], Equation 13) implies that for any i ∈ [k],

Ent(f) = E
c
[Ent(fi,c)] + Ent(Fi). (1)

By summing over all vertices i ∈ [k], we get

k · Ent(f) =
∑
i∈[k]

E
ci
[Ent(fi,ci)] +

∑
i∈[k]

Ent (Fi) . (2)

We bound the two summations of the right-hand side separately in Claim 19 and Claim 20 and
conclude that

k · Ent(f) ≤ kN

N − 1
· α(P ucc

k−1,N−1)
−1 · EP ucc

k,N
(
√
f,

√
f) + 3k logN · EP ucc

k,N
(
√
f,

√
f).

=⇒ Ent(f) ≤
[

N

N − 1
· α(P ucc

k−1,N−1)
−1 + 3 logN

]
· EP ucc

k,N
(
√
f,

√
f).
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This gives us a recurrence relation for the log-Sobolev constant of the uniform clique coloring chain.
For every k and N , we have

α(P ucc
k,N )−1 ≤ N

N − 1
· α(P ucc

k−1,N−1)
−1 + 3 logN. (3)

We proceed to solve this recurrence via induction. For fixed integers kmax and Nmax, we will prove
that for all 1 ≤ k ≤ kmax,

α(P ucc
k,Nmax−kmax+k)

−1 ≤ 6 · Nmax − kmax + k

Nmax − kmax
· k logNmax.

For the base case of k = 1, we observe that uniform 1-clique (Nmax − kmax + 1)-coloring has
transition probabilities that correspond to the complete graph over Nmax − kmax + 1 vertices. We
use known results for the log-Sobolev constant of the complete graph ([DSC96], Corollary A.4) to
deduce that

α(P ucc
1,Nmax−kmax+1)

−1 ≤ 3 log(Nmax − kmax + 1) ≤ 6 logNmax.

Now let k ≥ 2 and assume that the claim holds for all k′ ≤ k. Then using Equation (3) we find

α(P ucc
k,Nmax−kmax+k)

−1 ≤ Nmax − kmax + k

Nmax − kmax + k − 1
· α(P ucc

k−1,Nmax−kmax+k−1)
−1 + 3 log(Nmax − kmax + k)

= 6 · Nmax − kmax + k

Nmax − kmax
· (k − 1) logNmax + 3 log(Nmax − kmax + k)

≤ 6 · Nmax − kmax + k

Nmax − kmax
· k logNmax.

In the above calculation, we used the fact that kmax ≤ Nmax/2, and that Nmax is at least some
fixed constant. This finishes the inductive proof, and by setting k = kmax we obtain the desired
bound.

It remains to prove the two claims used in the proof of Lemma 18.

Claim 19. For any f : Θk,N → R we have∑
i∈[k]

E
ci

[
Ent(fi,ci)

]
≤ kN

N − 1
· α(P ucc

k−1,N−1)
−1 · EP ucc

k,N
(
√

f,
√
f).

Proof. Recall that when we condition f on vertex i having color ci, its domain is isomorphic to the
state space of the uniform (k − 1)-clique (N − 1)-coloring chain. The log-Sobolev constant of this
smaller restricted chain implies that

Ent(fi,ci) ≤ α(P ucc
k−1,N−1)

−1 · EP ucc
k−1,N−1

(√
fi,ci ,

√
fi,ci

)
.

Our goal is to relate the Dirichlet form of P ucc
k−1,N−1 to the Dirichlet form of P ucc

k,N . We start by
expanding the right-hand side while keeping in mind that fi,ci has fixed the color of vertex i to ci.

Ent(fi,ci) ≤
α(P ucc

k−1,N−1)
−1

2(N − 1)(k − 1)|Θk−1,N−1|
∑

x∈Θk,N
xi=ci

∑
j∈[k]
j 6=i

∑
`∈[N ]
`6=ci

(√
f(xj,`)−

√
f(x)

)2

10



Let us take the expectation now over all N values of ci. We note that the log-Sobolev of P ucc
k−1,N−1

is not dependent on the value of ci due to symmetry, thus we factor it outside the summation.

E
ci

[
Ent(fi,ci)

]
≤

α(P ucc
k−1,N−1)

−1

2N(N − 1)(k − 1)|Θk−1,N−1|
∑

ci∈[N ]

∑
x∈Θk,N
xi=ci

∑
j∈[k]
j 6=i

∑
`∈[N ]
6̀=ci

(√
f(xj,`)−

√
f(x)

)2

.

Summing over all i ∈ [k] yields the following∑
i∈[k]

E
ci

[
Ent(fi,ci)

]
≤

α(P ucc
k−1,N−1)

−1

2N(N − 1)(k − 1)|Θk−1,N−1|
∑
i∈[k]

∑
ci∈[N ]

∑
x∈Θk,N
xi=ci

∑
j∈[k]
j 6=i

∑
`∈[N ]
` 6=ci

(√
f(xj,`)−

√
f(x)

)2

.

Notice that each tuple x is counted k times in the summation of the right-hand side, one time for
each (i, ci) that satisfies ci = xi. Then each

(√
f(xj′,`)−

√
f(x)

)2
term appears at most (k − 1)

times, since out of the k times that x appears, one of them satisfies j′ = i, and thus it does not
contribute to the sum.

This implies that the sum above is at most (k − 1) times the summation that corresponds to
the Dirichlet form of EP ucc

k,N
.

∑
i∈[k]

E
ci

[
Ent(fi,ci)

]
≤

α(P ucc
k−1,N−1)

−1

2N(N − 1)(k − 1)|Θk−1,N−1|
· (k − 1) · 2kN · |Θk,N | · EP ucc

k,N
(
√
f,

√
f)

=
kN

N − 1
· α(P ucc

k−1,N−1)
−1 · EP ucc

k,N
(
√
f,

√
f).

Claim 20. Let f : Θk,N → R be a function, and for all i ∈ [k], Fi : [N ] → R is the ith marginal
function of f that maps color c to Fi(c) := Ex∈Θk,N ,xi=c[f(x)]. Then it holds that

k∑
i=1

Ent(Fi) ≤ k logN · EP ucc
k,N

(
√
f,

√
f).

Proof. Consider the random walk on the set [N ] of colors where at every step we move to a uniformly
random color (including the color we are currently in). The transition matrix of this walk is the
complete graph over N vertices and we denote it by P compl

N . Let us apply the log-Sobolev inequality
of P compl

N to the function Fi:

Ent (Fi) ≤ α(P compl
N )−1 · E

P compl
N

(√
Fi,

√
Fi

)
=

α(P compl
N )−1

2N2
·
∑
`∈[N ]

∑
`′∈[N ]

(√
Fi(`′)−

√
Fi(`)

)2
. (4)

We would like to rewrite the Dirichlet form of P compl
N in terms of P ucc

k,N . We start by expanding the
definition of Fi

(√
Fi(`′)−

√
Fi(`)

)2
=

√
E

x∈Θk,N

xi=`′

[
f(x)

]
−
√

E
x∈Θk,N

xi=`

[
f(x)

]
2

.

11



Observe that sampling a random x ∈ Θk,N such that xi = `′, is equivalent to sampling a random
x with xi = `, and then outputting xi,`′ :

(√
Fi(`′)−

√
Fi(`)

)2
=

√
E

x∈Θk,N

xi=`

[
f(xi,`′)

]
−

√
E

x∈Θk,N

xi=`

[
f(x)

]
2

.

Since the function on the right-hand side is convex, Jensen’s inequality implies that

(√
Fi(`′)−

√
Fi(`)

)2
≤ E

x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]
.

Plugging in the above inequality to Equation (4) we get

Ent(Fi) ≤
α(P compl

N )−1

2N2

∑
`∈[N ]

∑
`′∈[N ]

E
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]
.

We sum over all i ∈ [k] to get

k∑
i=1

Ent(Fi) ≤
α(P compl

N )−1

2N2

∑
`∈[N ]

∑
`′∈[N ]

∑
i∈[k]

E
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]

=
α(P compl

N )−1

2N |Θk,N |
∑
`∈[N ]

∑
`′∈[N ]

∑
i∈[k]

∑
x∈Θk,N

xi=`

[(√
f(xi,`′)−

√
f(x)

)2
]
.

The right-hand side now contains all
(√

f(xi,`′)−
√
f(x)

)2
terms that appear in EP ucc

k,N
exactly

once. Thus we can substitute this Dirichlet form (and adjust its scaling). Moreover, the log-Sobolev
constant of the complete graph over N vertices is well-studied and satisfies α(P compl

N )−1 ≤ 3 · logN
([DSC96], Corollary A.4). We conclude that

k∑
i=1

Ent(Fi) ≤ 3k logN · EP ucc
k,N

(
√
f,

√
f).

5 The Log-Sobolev Constant of the Standard Clique Coloring Chain
The goal of this section is to translate the log-Sobolev bound from the uniform clique coloring
chain Lemma 18 to the standard clique coloring chain. Since the two chains are very similar,
applying the comparison method is a natural approach.

Lemma 21. The log-Sobolev constant of the k-clique N -coloring Markov chain satisfies

α(P cc
k,N ) ≥ 1

19
· α(P ucc

k,N ).

Proof. Define the following (randomized) map ∆ that maps edges of P ucc
k,N to paths in P cc

k,N . Each
edge of P ucc

k,N that connects x and xi,` is determined by a vertex x ∈ Θk,N and the pair (i, `) ∈

12



[k]× [N ]. We assign to this edge a path in P cc
k,N drawn according to the following distribution:

∆(x, xi,`) =


(x, xi,`) ` 6∈ x \ {xi},
(x, xi,`

′︸︷︷︸
y

) || (y, yj,xi︸︷︷︸
z

) || (z, zi,xj ) ` = xj for j 6= i, `′ ∼ [N ] \ x.

Here the symbol “||” denotes the concatenation of edges to make a path. Intuitively, the path
assigned to edge (x, xi,`) is either itself (whenever (x, xi,` is also an edge of P cc

k,N ), or a sequence of
three edges that swap the colors xi and xj by using a random unused color `′.

Now we bound the comparison constant A(∆).

A(∆) = max
(a,b)∈Ecc

 1

πcc(x)P cc(a, b)

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
· πucc(x) · P ucc(x, y)


The stationary distributions of both chains are the uniform over Θk,N , and thus the stationary
probabilities cancel.

A(∆) = max
(a,b)∈Ecc

k(N − k + 1)
∑

(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
· 1

kN


= max

(a,b)∈Ecc

N − k + 1

N

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

].

Our goal will be to bound the sum of expectations. First, let us partition the paths into the
ones with length 1 and length 3. To do that, we observe that the length of each path ∆(x, y) is
deterministic and only depends on x and y.∑

(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
=

∑
(x,y)∈Eucc

|∆(x,y)|=1

E
∆

[
1(a,b)∈∆(x,y)

]
+ 3

∑
(x,y)∈Eucc

|∆(x,y)|=3

E
∆

[
1(a,b)∈∆(x,y)

]
.

We can now easily bound the first term. For a path with a single edge to include (a, b), it must hold
that (x, y) = (a, b). Thus the first term is at most 1. To bound the second term, we consider the
location t ∈ {1, 2, 3} where (a, b) appears in ∆(x, y). We write (a, b) = ∆(x, y)t if (a, b) appears as
the tth edge of the path. Formally,∑

(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
≤ 1 + 3

∑
t∈{1,2,3}

∑
(x,y)∈Eucc

|∆(x,y)|=3

E
∆

[
1(a,b)=∆(x,y)t

]
.

Observe now that once we fix the tth edge to be (a, b), there are only k − 1 possible 3-edge paths.
This is because our map ∆ performs three transpositions between the elements xi, xj , `

′. The edge
(a, b) specifies two of the elements, and the third element is one of the remaining k − 1 elements
of the tuples at the endpoints of (a, b). Once this third element is specified, the edge (x, y) and its
respective path ∆(x, y) is fully determined.

Each 3-edge path has a probability of 1
N−k to appear, since it depends on the random choice of

`′ from the set [N ] \ x. Thus we bound the expectation above to be at most∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
≤ 1 +

9(k − 1)

N − k
.

13



We conclude that the comparison constant of ∆ is

A(∆) = max
(a,b)∈Ecc

N − k + 1

N

∑
(x,y)∈Eucc

E
∆

[
1(a,b)∈∆(x,y) · |∆(x, y)|

]
≤ N − k + 1

N

(
1 +

9(k − 1)

N − k

)
=

N − k + 1

N
+

9(k − 1)

N
· N − k + 1

N − k

≤ 1 + 9 · 2 = 19.

Our log-Sobolev bound for the standard clique-coloring chain now follows directly from Lemma 18
and Lemma 21.

Corollary 22. The log-Sobolev constant of the k-clique N -coloring Markov chain satisfies

α(P cc
k,N ) ≥ Ω

(
1

k logN

)
.

5.1 Clique-Coloring Walk to Random Circuits Walk

We would like to transfer our log-Sobolev constant bound of the k-clique N -coloring Markov chain
from Corollary 22, to the random circuits Markov chain. This is done via the randomized paths
construction of Brodsky and Hoory to compare this walk to clique coloring.

Lemma 23 ([BH05]). When k ≤ 2n/3 there exists a randomized map Φ that takes as input an
edge (x, y) of P cc

k,2n and outputs a sequence of edges in P rev
k,n connecting x and y such that the

comparison constant satisfies

A(Φ) = O(n2).

Corollary 24. If k ≤ 2n/3 then

α(Prev) &
1

n2
· α(Pcc).

Proof. This follows immediately from Lemma 23 and Lemma 12.

6 Even Faster Mixing of the Random Circuits Walk via Generic
States

We can improve the dependence on n of the mixing time of the random reversible circuits Markov
chain P rev

k,n from cubic to linear using an idea of [BH05]. The main observation is that after n ·
polylog (n, k) steps of P rev

k,n, the chain is very likely to be in a generic state, that is a state where
no two of the bit-strings agree on many bits. Generic states happen with good probability and are
nicer to work with, thus when we restrict our Markov chain P rev

k,n to generic states we apply the
comparison theorem with a better (logarithmic) comparison constant.

Definition 25 (Generic states, [BH05]). Let w =
⌈
10 · (log k + log n)

⌉
, p =

⌈
n
2w

⌉
. Let C1, · · ·Cp, C

be a partition of [n] such that |Ct| = w for t ∈ [p], and |C| = n−pw. A state (x1, · · · , xk) is generic
if for i 6= i′, xi and xi′ are distinct when restricted to a part Ct (but not C). Let Generick,n denote
the set of generic states.

14



In other words, we divide the n bits of the input into two subsets
⋃

t∈[p]Ct and C of roughly
equal size. Then we further divide the first subset into p equal-length blocks that hold a logarithmic
number of bits. A state is generic if no two distinct elements xi, xi′ are equal in any of the Ct parts.
Since we now deal with n-bit strings, we will extend our notation and write xi,j to denote the jth

bit of the ith element of the state x.
We define below the generic state reversible circuit Markov chain P grev

k,n to be the restriction of
P rev
k,n to generic states.

Definition 26 (Generic state reversible circuit Markov chain). The matrix P grev is the transition
matrix of the Markov chain on Generick,n such that for any x, y ∈ Generick,n,

P grev(x, y) =
P rev(x, y)∑

z∈Generick,n P
rev(x, z)

.

Lemma 27 ([BH05], Equation (3)). There exists a constant ε > 0 such that if τε(P grev) ≤ O(n3k3),
and k ≤ 2n/50, then

τ(P rev) ≤ τε(P
grev) +O(n · polylog(n, k)).

We bound the mixing time of the P grev Markov chain by bounding its log-Sobolev constant.
We use the comparison of [BH05] as stated in Lemma 32 to relate its log-Sobolev constant to the
log-Sobolev constant of a related product chain on generic states, P̃ grev. We get our final estimate
by bounding the log-Sobolev constant of the P̃ grev Markov chain in Lemma 31 using results for
product chains from [DSC96].

Below we introduce the P̃ grev Markov chain.
Definition 28 (Product chain on generic states). Let P̃ grev be the Markov chain on state space
Generick,n, where to sample the next state y = (y1, . . . ,yk) given the current state x = (x1, . . . , xk) ∈
Generick,n we do the following:

• With probability 1
2 , toss a fair coin.

– If the coin has landed heads, set y = x.
– Else, sample uniformly at random c ∼ C, r ∼ [k] and set for all i ∈ [k] and j ∈ [n]

yi,j =

{
xi,j if i 6= r or j 6= c

1− xi,j if i = r and j = c.

• With probability 1
2 , sample uniformly at random ` ∼ [p], r ∼ [k] and a random string u ∈

{0, 1}w such that u 6= xi,C`
for any i 6= r. Set

yi,j =

{
xi,C`

if i 6= r or ` 6= `

u if i = r and ` = `.

Informally, given the current state x, one step of this Markov chain performs a change in exactly
one of the two subsets of bits (C or

⋃
i∈[p]Ci) with equal probability. In the first case, it either

flips the cth bit from the subset C of a random element r with probability 1
2 , or it does nothing.

In the second case, it samples a uniformly random subset of bits C` and replaces that subset with
a new bit string u for a random element r. All of the operations above are performed such that
the resulting state remains generic.

It is not hard to observe that P̃ grev is a product chain, that is it acts “independently” on different
parts of its state space. This means that we can compute its log-Sobolev constant by breaking it
down into smaller chains.
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Definition 29 (Product Markov chain). Consider t Markov chains {Pi}i∈[t] with state spaces
{Vi}i∈[t] respectively. We define the product Markov chain

∏(
{Pi}i∈[t]

)
over the state space∏

i∈[t] Vi to be the Markov chain with transition matrix

1

t

∑
i∈[t]

I ⊗ · · · ⊗ Pi ⊗ · · · ⊗ I.

We will refer to the Pi’s as the factors of
∏(

{Pi}i∈[t]
)

.

Lemma 30 (Log-Sobolev constant of product chain, Lemma 3.2 of [DSC96]). The log-Sobolev
constant of the product chain

∏(
{Pi}i∈[t]

)
is related to the log-Sobolev constant of its factors as

follows:

α

(∏(
{Pi}i∈[t]

))
=

1

t
min
i∈[t]

α(Pi).

Using Lemma 30 we obtain the following bound by decomposing P̃ grev into factor chains whose
log-Sobolev constants are known.

Lemma 31. The following bound on the log-Sobolev constant of P̃ grev holds:

α
(
P̃ grev

)
≥ Ω

(
1

nk

)
.

Proof. We first write the state space Generick,n in the form of a product

Generick,n =

∏
i∈[p]

Θk,{0,1}w

×
(
{0, 1}k(n−wp)

)
.2

Then decompose P̃ grev as the product of two Markov chains
∏({

P̃1, P̃2

})
. The first chain P̃1

corresponds to performing a change in the
⋃

i∈[p]Ci subset of the bits, and the second chain P̃2

corresponds to operating in the C subset of the bits.

The chain P̃1. The state space of this chain is
∏

i∈[p]Θk,{0,1}w . We further decompose3 this chain

as P̃1 =
∏({

P̃1,`

}
`∈[p]

)
, where P̃1,` corresponds to performing an operation on the C` subset of

the bits. Thus the chain P̃1,` has state space Θk,{0,1}w , since it corresponds to the size-w subset
C`. To sample the next state y = (y1, . . . ,yk) from the current state x = (x1, . . . , xk), we choose
a random i ∈ [k] and a random z ∈ {z ∈ {0, 1}w | z /∈ x} ∪ {xi} and set for each j ∈ [k]

yj =

{
xj if j 6= i.
z if j = i.

2Recall from Definition 3 that Θk,{0,1}w denotes the set of k-tuples of distinct elements of {0, 1}w.
3We don’t directly decompose P̃ grev into all of its t + 1 factors because to use Lemma 30 we need each factor of

the product chain to have equal weight.
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Notice that the transition matrix of this chain is equal to the transition matrix P cc
k,{0,1}w of the

standard k-clique 2w-coloring chain. Therefore, by Corollary 22, we have for all ` ∈ [p] that

α
(
P̃1,`

)
&

1

k log |{0, 1}w|
=

1

kw
.

Applying Lemma 30, we have

α
(
P̃1

)
=

1

p
min
`∈[p]

α
(
P̃1,`

)
&

1

p
· 1

kw
&

1

nk
. (5)

The chain P̃2. We will “flatten” the bits from the subset C of the k elements into a sequence
of k(n − wp) bits. Then the P̃2 Markov chain corresponds to the random walk on the hypercube
{0, 1}k(n−wp) where to sample the next state y from the current state x we sample i ∈ [k(n−wp)]
uniformly at random and flip the ith bit with probability 1

2 . This chain is the product chain of
k(n − wp) chains on the space {0, 1} with transition probabilities 1

2 to each state. We can write
the transition matrix of P̃2 as the product∏({

P̃2,`

}
`∈[k(n−wp)]

)
,

where each P̃2,` is the 2×2 matrix with 1
2 ’s. Equivalently, it corresponds to the transition matrix of

the complete graph on two states. It is easy to see (e.g. [DSC96], Corollary A.4) that α(P̃2,`) ≥ 1
3

for all `. Therefore, by Lemma 30 we have

α
(
P̃2

)
=

1

k(n− wp)
min

`∈[k(n−wp)]
α
(
P̃2,`

)
&

1

k(n− wp)
&

1

nk
. (6)

Applying Lemma 30 with Equation (5) and Equation (6) yields

α
(
P̃ grev

)
=
1

2
min

{
α
(
P̃1

)
, α

(
P̃2

)}
= Ω

(
1

nk

)
.

Armed with the log-Sobolev constant of P̃ grev, we employ the comparison method of [BH05] to
bound the log-Sobolev constant of P̃ rev.

Lemma 32 ([BH05], Lemma 16). There exists a randomized map Ψ that takes as input an edge
(x, y) of P̃ grev and outputs a sequence of edges in P grev connecting x and y with congestion A(Ψ) =
polylog(n, k). Consequently,

α(P grev) ≥
α
(
P̃ grev

)
polylog(n, k)

.

Corollary 33. It holds that

α(Pgrev) &
1

nk · polylog(n, k)

Using now the well-known relation between the log-Sobolev constant and the mixing time of a
Markov chain in total variation distance, we conclude:
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Theorem 2. For any n and k ≤ 2n/50, a random reversible circuit with Õ(nk · log(1/ε)) width-2
gates (a subset of 3-bit gates) computes an ε-approximate k-wise independent permutation, where
the Õ hides polylog(n, k) factors.

Proof. Combining Lemma 31 and Lemma 32 we find that α(P grev) ≥ Ω
(

1
nk

)
. This implies that

for the constant ε′ > 0 referenced in Lemma 27, we have τε′(P
grev) ≤ O(nk · polylog(n, k)). Then

applying Lemma 27 we have

τ(P rev) ≤τε′(P
grev) +O(nk · polylog(n, k)) ≤ O(nk · polylog(n, k)).

Finally, we can decrease the total variation distance down to an arbitrary ε > 0 by increasing the
length of the walk by a multiplicative factor of O(log(1/ε)), and the statement follows.
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