
Batching-Efficient RAM using Updatable Lookup Arguments

Moumita Dutta1, Chaya Ganesh1, Sikhar Patranabis2, Shubh Prakash1, and Nitin Singh2

1 Indian Institute of Science
{moumitadutta,chaya,shubhprakash}@iisc.ac.in

2 IBM Research, India
sikhar.patranabis@ibm.com,nitisin1@in.ibm.com

Abstract. RAM (random access memory) is an important primitive in verifiable computation.
In this paper, we focus on realizing RAM with efficient batching property, i.e, proving a batch
of m updates on a RAM of size N while incurring a cost that is sublinear in N . Classical
approaches based on Merkle-trees or address ordered transcripts to model RAM correctness are
either concretely inefficient, or incur linear overhead in the size of the RAM. Recent works explore
cryptographic accumulators based on unknown-order groups (RSA, class-groups) to model the
RAM state. While recent RSA accumulator based approaches offer significant improvement over
classical methods, they incur linear overhead in the size of the accumulated set to compute
witnesses, as well as prohibitive constant overheads.

We realize a batching-efficient RAM with superior asymptotic and concrete costs as compared
to existing approaches. Towards this: (i) we build on recent constructions of lookup arguments
to allow efficient lookups even in presence of table updates, and (ii) we realize a variant of sub-
vector relation addressed in prior works, which we call committed index lookup. We combine the
two building blocks to realize batching-efficient RAM with sublinear dependence on size of the
RAM. Our construction incurs an amortized proving cost of Õ(m logm+

√
mN) for a batch of

m updates on a RAM of size N . Our results also benefit the recent arguments for sub-vector
relation, by enabling them to be efficient in presence of updates to the table. We believe that
this is a contribution of independent interest.

We implement our solution to evaluate its concrete efficiency. Our experiments show that it
offers significant improvement over existing works on batching-efficient accumulators/RAMs,
with a substantially reduced resource barrier.

1 Introduction

General purpose Succinct Non-interactive Arguments of Knowledge (SNARKs) enable one to generate
succinct proofs of membership of a statement in an NP relation expressed as an arithmetic circuit.
These proofs are extremely cheap to verify, which makes them useful for Verifiable Computation (VC),
where a resource-constrained client (e.g., a mobile phone), can outsource an expensive computation to
an untrusted server, and later verify the correctness of the computation at a minimal cost.

Modeling RAM in Verifiable Computation. It turns out that arithmetic circuit-based representa-
tions are inefficient in expressing relations involving the result of a program execution on memory/state.
Such relations frequently arise in the context of verifiable computation, in scenarios that require prov-
ing the correctness of query execution against a database, inference from a decision tree, or updates
on a table of account balances (e.g., when a batch of transactions, such as account transfers, is applied
to the table).

In the aforementioned examples, objects such as database tables, decision trees, and accounts
tables can be naturally modelled as instances of addressable memory, or more generally, random access
memory (RAM), where one needs to prove that the RAM has been accessed/updated in accordance
with the correct execution of the computation. There exists a rich and expanding body of work on
efficiently modeling abstractions of RAM in verifiable computation. While a complete treatment of
this vast body of work is beyond the scope of this paper (a fairly recent survey in [36] is a good
starting point), we mention two additional properties that are often demanded of the RAM primitive:
persistence – the ability to persist the RAM state across several computations, and batching – where
verifiable update of the RAM state is required for small batches of updates. These properties are also
the focus of this work.

Application to Blockchain Rollups. Batching-efficient RAM is especially relevant in the context
of blockchain rollups [3], an umbrella term for recent efforts to scale blockchains by moving expensive

1

computation off the blockchain to the so-called layer two (or L2) chains. The blockchain only needs
to verify succinct proofs attesting to the correctness of the off-chain computation. This approach is
popularly called rollup as it allows verifying the result of several (rolled-up) transactions modifying the
L2 state, as part of one transaction verified on the main chain. This simultaneously improves scalability
and lowers the cost (e.g., gas fees) per transaction due to succinct verification. We consider improving
efficiency of rollups an important motivation for our work, but avoid precise details of a smart-contract
based instantiation of our solution.

1.1 Our Contribution

We present batching-efficient RAM construction, which advances the efforts towards achieving verifiable
outsourcing of state update such as in [12] and more recently in [31,16]. The most popular approaches to
succinctly represent state involve accumulators based on Merkle-trees [30], or ones based on groups of
unknown order (e.g. RSA, class-groups) [14,7,31,16]. The updates to the state are effected by insertions
or deletions in the accumulated set. In this work, we model the state as an addressable memory (RAM)
described by vector T, which stores value vi at address i. We denote this as T[i] = vi. The RAM
supports two operations, viz, loads expressed as vi := T[i], and stores expressed as T[i] = vi. We
think of addresses i ∈ [0, N] for some N ∈ Z while the values vi ∈ F for some finite field F. In our
construction, we represent both the RAM and operations on it as polynomials, and use appropriate
polynomial commitment schemes to obtain succinct commitments (digests) to them. In this paper, we
do not require commitments to be hiding, as our focus is on succinctness. We consider privacy as an
orthogonal goal, one we believe is easily achievable via small adaptations to our construction.

We summarize our contributions below.

– As our first contribution, we propose update friendly lookup arguments, which addresses the strict
dependence of recent constructions on table-specific pre-processing parameters. Our innovation
extends the utility of table-specific parameters to enable efficient lookups from tables, which are
within certain Hamming distance of the pre-processed table.

– We construct committed index lookup arguments via black-box reduction to sub-vector arguments
that use homomorphic commitments. A committed index lookup involves three committed vectors
t,a and v satisfying vi = tai for all i. Similar definition is also used in recent multi-variate lookup
arguments in [34], where a similar reduction to sub-vector arguments is obtained under a more
restrictive assumption about the elements of the table.

– We crucially employ the above two contributions to construct a batching-efficient RAM, which can
prove a batch of m updates with an amortized prover complexity of O(m logm +

√
mN), with N

being the size of the RAM. Our dependence on the RAM size is sublinear, in contrast to the linear
complexity inherent in recent works on batching-efficient RAM using RSA accumulators [31,16]
or using generic memory checking techniques [35,6,4,41]. All of our protocols are public-coin, and
can be made non-interactive using standard techniques [21].

– We implement our scheme in Rust3. Experimentally, we show that our scheme performs signifi-
cantly better than prior works, and is eminently deployable on a commodity hardware.

1.2 Techniques

We present a brief summary of our techniques below. A more detailed technical overview appears in
Section 4.

Update-friendly Lookup Arguments. Our starting point is the recent line of works on lookup
arguments which prove that a vector of size m appears as a sub-vector in a large fixed vector (ta-
ble) of size N with succinct proof sizes and verification, but most notably ensuring that prover runs
in time sublinear in the size of the table (N). The pioneering work [38] obtained prover complexity
of O(m2 + m logN), which was improved in subsequent works to O(m2) [33], O(m log2 m) [39], and
O(m logm) [19,15]. However, the sublinear prover complexity requires table-dependent O(N logN)
pre-processing and O(N) storage. This table-dependent pre-processing implies that while the afore-
mentioned lookup arguments can be used to obtain efficient ROM (read only memory) semantics they
cannot be used as is for RAM (which supports update operations). Moreover, an update involving

3 https://github.com/nitsatiisc/caulk/tree/updateable-ram

2

https://github.com/nitsatiisc/caulk/tree/updateable-ram

even a single index renders the entire O(N) pre-processing unusable for further lookups, thus neces-
sitating entire O(N logN) re-computation. This work is the first effort towards mitigating this rigid
dependence, thereby increasing the applicability of the recent lookup arguments. An important contri-
bution we make here is a new method for computing “encoded quotients” used in several recent lookup
constructions such as [38,33,19,15]. Our approach for computing these quotients from pre-computed
parameters remains efficient even when the table is updated, and it directly applies to all the afore-
mentioned constructions. For a table δ-hamming distance away from the pre-processed one, we incur
(m+δ) log2(m+δ) additional overhead for proving m lookups. To achieve such a quasi-linear overhead
in both m and δ, we rely on novel algebraic algorithms described in Section 7. We informally summarize
our contribution in this regard below, whereas Theorem 4 states the precise result.

Theorem 1 (Informal). There exists a deterministic O(N logN) time algorithm Preprocess(T) →
ppT which on input T ∈ FN , outputs parameters ppT of size O(N) such that: Given ppT , vectors
T′ ∈ FN , t ∈ Fm with t being a sub-vector of T′ an argument of knowledge for the same can be
computed in time O((m+ δ) log2(m+ δ)+f(m)) where δ = ∆(T,T′) is the Hamming distance between
T and T′ while f(m) depends on the specific lookup protocol.

For the constructions based on [38,33], we set f(m) = m2 in the above, while for [19,15], we have
f(m) = m logm.

Committed Index Lookup: We augment the sub-vector relation in prior lookup arguments which
considers whether each entry of a given vector appears in the target vector to one that also identifies
the precise positions where the given vector appears in the target vector. When this relation is checked
over commitments of the respective vectors; given vector, the target vector and the position vector, we
call it committed index lookup. The relation we consider is similar to the one considered in [34]. For
lookup arguments with homomorphic commitment schemes, we show that committed index lookup can
be obtained using a sub-vector lookup argument (Lemma 2, Section 6.1). Such a construction was also
considered in [34], but under a more restrictive assumption that the size of the elements in the table
have to be within a certain bound. Lemma 2 yields a construction of committed index lookup that
uses (a single instance of) the underlying sub-vector protocol in a black-box manner. This immediately
implies efficient constructions of arguments for committed index lookups from [38,33,39,19,15]. In
Appendix E, we also present an explicit (non-black-box) adaptation of [33] to obtain a committed
index lookup, which again incurs costs comparable to a single instance of the underlying sub-vector
protocol.

Batching-Efficient RAM from Lookup Arguments. Memory checking methods based on address
ordered transcripts [35,6,4,41], which are popularly used in efficient RAM abstractions, incur a cost
linear in the size of the RAM. This is prohibitive for efficient batching. As a key idea in this work,
we invoke committed index lookup on the large RAMs, to verifiably extract smaller sub-RAMs, which
correspond to indices actually involved in the batch update. Then, we use the linear time memory-
checking techniques to argue the consistency of these smaller sub-RAMs.

The idea needs to work through some more details, such as showing that the larger RAMs are
identical on positions not referenced by the batch of updates (considered in Section 6.2). The overall
idea is illustrated in Figure 1. We also note that the extracted sub-RAMs can have duplicate records,
corresponding to multiple updates referencing the same RAM index; however, memory checking meth-
ods can be easily adapted to handle such cases. Finally, we would still hit the “rigidity” of lookup
arguments in realizing this plan; once the table has changed, lookups are no longer efficient from it.
To circumvent this, we use our first contribution on extending the utility of table-specific parameters
to defer parameter re-computation optimally while still availing efficient lookups. More specifically, if
we choose to re-compute the full table-specific parameters after k batches (of m updates each), the
average cost per batch is O(N logN/k+mk log2(mk) + f(m)). Here, f(m) as earlier denotes complex-
ity of the non-updatable base protocol. Setting k ≈

√
N/m yields the average cost of m updates as

Õ(f(m) +
√
mN), which scales sublinearly with the size of the RAM. While the preceding analysis

considers the worst case, in specific applications (such as account transactions, where few accounts
contribute a large volume of transactions), it may be possible to further delay the computation of
table-specific parameters. Thus we have:

Theorem 2 (Informal). Given m,N ∈ N, there exists an argument for verifiable RAM which proves

updates of batch size m on RAM of size N with amortized prover complexity of Õ(f(m) +
√
mN).

3

Polynomial Protocol for RAM. There are several ways to implement the ordered transcript based
memory consistency check on the smaller O(m)-sized RAMs, for example by expressing the same
as an arithmetic circuit. However, for completeness, we also present an argument for RAM as an
interactive polynomial protocol [26], which is then compiled into an argument of knowledge using the
KZG [29] commitment scheme in the algebraic group model (AGM) [22]. This construction appears in
Appendix B.

2 Related Work

Efficient modeling of the RAM primitive is a widely studied problem in verifiable computation (VC),
due to its inherent usefulness in modeling several computations of interest. Encapsulating RAM seman-
tics in VC circuits is also challenging; since (i) arithmetic/boolean circuits do not adequately model
random access, and (ii) incorporating entire memory as gates in a circuit is prohibitive.

Several novel techniques have been proposed to work around the above limitations of circuit based
representation of RAM. Among them, Merkle tree-based accumulators to model the RAM state are
popular [12,11,5] as they can efficiently prove updates to the state, without modeling the entire memory
in the arithmetic circuit. Other approaches based on address ordered time-scripts avoid the concrete
costs of Merkle tree-based approaches by letting the prover provide inputs and outputs of RAM opera-
tions in a non-deterministic manner, which are then checked to satisfy consistency of loads and stores.
Several works such as [35,6,4,41] implement and improve variants of the aforementioned approach.
Most transcript-based realizations of RAM only consider it to be transient, i.e, its state is useful only
during the execution of a program, and do not consider persistence of the RAM state across several
executions.

Another feature, which has only been considered in recent works [31,16] is batching, where a verifi-
able update of RAM state is required for a batch of m updates, with m being much smaller than the
RAM size. Both the Merkle tree-based approaches and the transcript-based approaches are inefficient
with respect to batching. While constructions using Merkle tree-based accumulators (realized from
collision-resistant hash functions) suffer from high concrete costs and poor ability to batch proofs,
those based on checking consistency using transcripts incur a linear overhead in the RAM size.

Batching-Efficient RAM. There have been recent efforts [31,16] on batching-efficient realization
of the RAM primitive (see Table 1 for a summary of these schemes and the associated efficiency
parameters). This is a natural setting in applications of verifiable computation, most notably in the
context of blockchain rollups. Here, one is required to show that a batch of m transactions correctly
updates the state of a table of account balances, which is maintained off-chain by the rollup provider.
Here the batch-size m ranges from few hundreds to few thousands, whereas the table itself could
contain several million accounts. Similar to prior work on batching-efficient RAMs [31,16], our work is
also motivated by the problem of enabling more efficient rollup for tables, which are naturally modeled
as RAMs.

While the aforementioned works substantially mitigate disadvantages of both the Merkle-tree based
approaches and transcript-based approaches by using RSA accumulators to model the state, they still
incur large prover costs and memory requirements even for modest sized batches. The approaches
in [31,16] encode complex modular arithmetic over RSA groups and hash to prime functions as arith-
metic circuits, which results in a fixed overhead of around 10 million R1CS constraints at batch sizes of
m = 1000 (this overhead is significantly larger for [31]). This is already prohibitive on a modest hard-
ware. In addition, the witness computation for each update incurs cost linear in the size of accumulated
set. The prior works [31,16] seek to mitigate this through pre-computation and parallel/distributed
processing. However, the issue of maintaining pre-computed parameters in sync with dynamic accu-
mulator state has not been adequately addressed in [31,16]. For example, in RSA-based accumulators,
generating O(N) non-membership witnesses straightforwardly requires O(N2) time; however, these
witnesses become stale once the accumulator state changes, and hence cannot be used as-is for subse-
quent update proofs.

Our approach considers both the cost of online proof generation as well as the offline cost of
maintaining pre-computed parameters. In addition, our solution is almost “circuit-free”. Our entire
RAM operation is modeled as a polynomial protocol, which is readily transformed into an argument
of knowledge using a polynomial commitment scheme. In an application of our primitive to rollups,
the only part of the statement that would need to be expressed as a circuit is the verification of digital
signatures on transactions (which is around 500 constraints per verification for EDDSA signatures). By

4

Scheme Setup Proof Size Prover Work Verifier Work

Lookup Arguments for Static Tables

Plookup [24]

Updatable

5G1, 9F O(N)G1, O(N logN)F 2P
LogUp [28,32] O(1)G1, O(1)F O(N)G1, O(N logN)F O(1)P
Halo2 [9,10] 6G1, 5F O(N)G1, O(N logN)F 2P
Caulk [38] 14G1, 1G2, 4F 15mG1, O(m2 +m logN)F 4P
Caulk+ [33] 7G1, 1G2, 2F 8mG1, O(m2)F 3P
Flookup [23] 7G1, 1G2, 2F O(m)G1, O(m log2 m)F 3P
Baloo [39] 12G1, 1G2, 4F 14mG1, O(m log2 m)F 5P
CQ [19] 8G1, 3F 8mG1, O(m logm)F 5P
CQ+ [15] 7G1, 1F 8mG1, O(m logm)F 5P

Locq [40] Trusted 4G1, 1G2 6mG1, mG2, O(m logm)F 4P

Lasso [34] Transparent O(1)G, O(logm)F o(cm+ cN1/c)G1, O(cm)F O(logm)F, O(1)G
Lookup Arguments for Updatable Tables/Batching-Efficient RAM

OWWB20 [31]
text Trusted

O(1) G Õ(m)F,G, Õ(N)G′ 1P

B-INS-ARISA [16]
text

O(1) G Õ(m)F,G, Õ(N)G′ 1P,O(1) G′

Our work
(c.f. Table 2)

Updatable 65G1, 1G2, 43F Õ(
√
mN)F,G1 9P

Table 1: Comparison with state-of-the-art lookup arguments. Here, N denotes the size of the RAM and
m denotes the number of updates (typically m ≪ N). We use (F,G1,G2,GT , e, g1, g2, gt) to denote a
bilinear group (G denotes either G1 or G2, and is used in cases where the exact group is unspecified),
and G′ to denote an RSA group. P denotes a pairing evaluation. For Lasso, we report the overheads
considering the polynomial commitment scheme Sona and assuming structured tables (here, c denotes
an arbitrary positive integer). For our scheme, we report performance for the CQ-based instantiation.

suitably balancing the online and offline costs, we can prove a batch of 1000 updates on a RAM of size
1 million in an average of 90 seconds on a commodity laptop with a single-threaded implementation.
Our performance can be substantially improved using a parallel implementation. See Sections 4 and 8
for more detailed discussions on the efficiency of our scheme.

Lookup Arguments. There are several recently proposed constructions of lookup arguments which
enable proving that a vector of size m is a sub-vector of a larger (predetermined) vector of size
N (see Table 1 for a summary of these schemes and the associated efficiency parameters). Of these,
the very initial schemes [9,24,10] incur proving costs linear in N . Starting with Caulk [38], many
lookup arguments were proposed with proving costs that are (largely) independent of N . Broadly, these
schemes can be divided into categories based on how they achieve proving costs independent of N . The
lookup arguments in the first category [38,33,23,19,39,15,40] use polynomial protocols in conjunction
with the KZG polynomial commitment scheme, where the lookup efficiency relies crucially on pre-
computed KZG opening proofs for the polynomial encoding the predetermined N -sized vector. We
point out that näıvely adapting these lookup arguments for updatable tables/RAM is challenging since
even small updates to the table require re-computing all of the opening proofs, which is prohibitively
expensive (requires Õ(N) computation). To overcome the “rigidity”, we propose a new method of
constructing lookup arguments which allows re-using the pre-computed opening proofs across several
batch updates, thus avoiding the need for re-computing after each batch (see Sections 4 and 7 for more
details).

Lasso. The second category of lookup arguments is exemplified by the recently proposed Lasso
scheme [34,2], which enables efficient lookups for tables with a decomposable structure. Informally,
a table T : {0, 1}n → {0, 1}k is said to have a decomposable structure if there exists a decomposition
of the table T into c sub-tables T1, . . . ,Tc : {0, 1}n/c → {0, 1}ℓ and a succinctly computable function
f such that for x = x1∥ . . . ∥xc where xi ∈ {0, 1}n/c, we have

T[x] = f(T1(x1), . . . ,Tc(xc))

A simple example of such a function is a bit-wise AND (we refer to [34,2] for a more detailed exposition).
Lasso crucially leverages this decomposability of the table to reduce a lookup into a table of size
N = 2n into c lookups, each into a table of size N1/c. While this strategy works elegantly for tables
with special structure, it is not compatible with arbitrary tables/updates, which is the focus of our

5

work (in particular, in applications such as rollups, we need the ability to handle updates to arbitrary
tables).

To summarize, existing lookup arguments achieve efficiency either by leveraging table-specific pre-
processing or exploiting special structure, both of which do not näıvely extend to arbitrary dynamic
tables. We focus on handling batch updates for arbitrary tables, and our techniques can be viewed as
enabling the utility of table-specific pre-processing even across batch updates.

3 Preliminaries

This section presents notations and preliminary background material used in the rest of the paper.

Notation. Throughout the paper, we assume a bilinear group generator BG which on input λ outputs
parameters for the protocols. Specifically BG(1λ) outputs (F,G1,G2,GT , e, g1, g2, gt) where:

- F = Fp is a prime field of super-polynomial size in λ, with p = λω(1).
- G1,G2 and GT are groups of order p, and e is an efficiently computable non-degenerate bilinear

pairing e : G1 ×G2 → GT .
- Generators g1, g2 are uniformly chosen from G1 and G2 respectively and gt = e(g1, g2).

We write groups G1 and G2 additively, and use the shorthand notation [x]1 and [x]2 to denote group
elements x · g1 and x · g2 respectively for x ∈ F. We implicitly assume that all the setup algorithms
for the protocols invoke BG to generate descriptions of groups and fields over which the protocol is
instantiated. We use [n] to denote the set of integers {1, . . . , n}.
Lagrange Polynomials. We denote the Nth root of unity by ξ and define the subgroup H as H =
{ξ, . . . , ξN}. Let {µi(X)}Ni=1 be the associated Lagrange basis polynomials over the set H; that is,

µi(X) =
∏

j ̸=i
X−ξj

ξi−ξj . We denote by ZH the vanishing polynomial of H; ZH(X) = XN − 1.

Formal Derivatives of Polynomials. For a polynomial f(X) =
∑d

i=0 aiX
i ∈ F[X], we define its

formal derivative to be the polynomial f ′(X) =
∑d

i=1 iaiX
i−1.

3.1 Succinct Arguments of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {x : ∃ w such that
(x,w) ∈ R}. A succinct argument of knowledge consists of a pair of PPT algorithms (P,V). Given a
public instance x, the prover P, convinces the verifier V, that x ∈ L, where the prover additionally has
as a witness w. We use the notation b← ⟨P(w),V⟩(x) to denote V’s output in the interactive protocol
involving P and V with w as P’s input and x as the common input. The knowledge-soundness property
says that if the verifier is convinced, then an efficient extractor algorithm given oracle access to the
prover outputs a witness w such that (x,w) ∈ R. An argument system is succinct if the communication
complexity and the complexity of V is polylogarithmic in the size of the witness. We provide formal
definitions in Appendix A.2.

Fiat-Shamir. An interactive protocol is public-coin if the verifier’s messages are uniformly random
strings. Public-coin protocols can be transformed into non-interactive arguments in the Random Oracle
Model (ROM) by using the Fiat-Shamir [21] heuristic to derive the verifier’s messages as the output
of a Random Oracle.

Modular Approach. A modular approach for designing efficient succinct arguments consists of two
steps; constructing an information theoretic protocol in an idealized model, and then compiling the
information-theoretic protocol via a cryptographic compiler to obtain an argument system. Informally,
the prover and the verifier interact where the prover provides oracle access to a set of polynomials, and
the verifier accepts or rejects by checking certain identities over the polynomials output by the prover
and possibly public polynomials known to the verifier. Such a protocol can be compiled into a succinct
argument of knowledge by realizing the polynomial oracles using a polynomial commitment scheme. A
polynomial commitment scheme allows a prover to commit to polynomials, and later verifiably open
evaluations at chosen points by giving evaluation proofs. This enables the verifier to probabilistically
check polynomial identities at random points of F. Many recent constructions of zkSNARKs [13,17,26]
follow this approach where the information theoretic object is a polynomial interactive oracle proof
(PIOP) (or a polynomial protocol), and the cryptoprimitive in the compiler is a polynomial commit-
ment scheme.

6

3.2 Security Model

We describe public-coin interactive protocols in the structured reference string (SRS) model where
both the parties have access to a SRS. The SRS in our protocols consists of encodings of monomials
of the form

{[
xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

for x chosen uniformly from F and a, b, c, d are bounded by

some polynomial in λ. It then follows from [8] that such an SRS can be generated using a universal
and updatable setup [27] requiring only one honest participant. In practice, this is a superior security
model compared to requiring a fully trusted setup. We use srs = (srs1, srs2) to denote the structured
reference string of the above form. We say that the srs has degree Q if all the elements of srsi, i = 1, 2
are of the form [f(x)]i for a polynomial f ∈ F<Q[X].

Algebraic Group Model. We analyze security of our protocols in the Algebraic Group Model (AGM)
introduced in [22]. An adversaryA is called algebraic if every group element output byA is accompanied
by a representation of that group element in terms of all the group elements that A has seen so far
(input and output). In the AGM, an adversary A is restricted to be algebraic, which in our SRS-
based protocol means a PPT algorithm satisfying the following: for i ∈ {1, 2}, whenever A outputs an
element A ∈ Gi, it is accompanied by its representation, A also outputs a vector v over F such that
A = ⟨v, srsi⟩.
Real and Ideal Pairing Checks: For an algebraic adversary A interacting in a protocol with a degree
Q SRS over a bilinear group, the verifier can use the pairing e : G1 × G2 → GT to perform “ideal
check” of the form (R1 ·T1) ·(R2 ·T2) ≡ 0, where R1, R2 are vectors of polynomials over F and T1, T2 are
public matrices over F. Under the Q-DLOG assumption stated below, the aforementioned ideal check
is equivalent (except with a negligible probability) to a real pairing check (a · T1) · (T2 · b) = 0 with
a and b denoting vectors in F encoding polynomials in R1 and R2 in groups G1 and G2 respectively
(see [26, Lemma 2.2]).

Definition 1 (Q-DLOG Assumption [22]). Fix an integer Q. The Q-DLOG assumption for (G1,G2)
states that given [1]1,[x]1,. . .,[
xQ
]
1
, [1]2 , [x]2 , . . . ,

[
xQ
]
2
for uniformly chosen x← F, the probability of an efficient A outputting x

is negl(λ).

3.3 KZG Commitment Scheme

A polynomial commitment scheme allows the prover to open evaluations of a committed polynomial
succinctly (Appendix A.1). We use the KZG commitment scheme introduced in [29] which satisfies
succinctness, completeness and knowledge-soundness (extractability) in the algebraic group model,
while additionally featuring a universal and updatable setup. We denote the KZG scheme by the tuple
of PPT algorithms (KZG.Setup,KZG.Commit, KZG.Prove, KZG.Verify) as defined below.

Definition 2 (KZG Polynomial Commitment Scheme). Let (F,G1,G2,GT , e, g1, g2, gt) be out-
put of bilinear group generator
BG(1λ) for security parameter λ. The KZG polynomial commitment scheme is defined as follows:

– KZG.Setup on input (1λ, d), where d is the degree bound, outputs srs = ({[τ]1, . . . , [τ
d]1} ,{[τ]2, . . . , [τ

d]2}).
– KZG.Commit on input (srs, p(X)), where p(X) ∈ F≤d[X], outputs C = [p(τ)]1
– KZG.Prove on input (srs, p(X), α), where p(X) ∈ F≤d[X] and α ∈ F, outputs (v, π) such that v = p(α)

and π = [q(τ)]1, for

q(X) =
p(X)− p(α)

X − α
– KZG.Verify on input (srs, C, v, α, π), outputs 1 if the following equation holds, and 0 otherwise.

e(C − v[1]1 + απ, [1]2) = e(π, [τ]2)

Note that both sides of the verification equation involve a fixed generator, and hence several proof
verifications can be batched together to reduce the number of pairing computations. We also assume
(w.l.o.g) analogues of KZG.Commit, KZG.Prove and
KZG.Verify defined over the group G2. We shall use the (non-standard) notation [p(X)]i to denote
[p(τ)]i for i ∈ {1, 2}. This allows us a convenient shorthand for referring to “commitment of the
polynomial p(X)” in group Gi. Our protocols also use batched KZG proofs to show that polynomial
p(X) satisfies p(αi) = vi for i ∈ [n]. Let α = (α1, . . . , αn) denote the vector of evaluation points and
v = (v1, . . . , vn) denote the vector of claimed evaluations. Then the batched version of KZG.Prove is
described as follows:

7

– KZG.Prove on input (srs, p(X), α), where p(X) ∈ F≤d[X] and α ∈ Fn, outputs (v, π) with v ∈ Fn

such that vi = p(αi) and π = [q(τ)]1 where

q(X) =
p(X)− r(X)

a(X)

In the above equation, a(X) = (X − α1) · · · (X − αn), while q(X) and r(X) are the quotient and
remainder polynomials when p(X) is divided by a(X).

– KZG.Verify on input (srs, C,v, α, π), outputs 1 if the following equation is satisfied, and 0 otherwise.

e(C − [r(τ)]1, [1]2) = e(π, [a(τ)]2)

Here, the verifier interpolates the polynomial r(X) ∈ F<n[X] such that r(αi) = vi.

KZG for Vectors. For f ∈ FN , let EncH(f) denote the polynomial encoding of f over H given by∑N
i=1 fiµi(X). We use KZG to commit to vectors by committing to its polynomial encoding. In general

a vector g of size m is encoded by a polynomial g(X) ∈ F<m[X] which interpolates g over a subgroup
V consisting of mth roots of unity in some canonical order. We will explicitly state the subgroups for
all sizes of vectors that we consider.

3.4 Lookup Arguments

Prior works on lookup arguments [38,33,39,19] consider proving sub-vector relation over committed
vectors, i.e, given commitments ct and cv to vectors t ∈ FN and v ∈ Fm, one proves that for all i ∈ [m],
there exists j ∈ [N] such that vi = tj . We will use v ⪯ t to denote that v is a sub-vector of t. The
definition below summarizes the sub-vector relation as defined in prior works.

Definition 3. We define the committed sub-vector relation Rsubvec
srs,N,m to consist of tuples ((ct, cv), (t,v))

where ct, cv ∈ G1, t ∈ FN , v ∈ Fm such that v ⪯ t and ct = KZG.Commit(srs,EncH(t)) and
cv = KZG.Commit(srs,EncV(v)).

A committed sub-vector argument is an argument of knowledge for the relation Rsubvec
srs,N,m. Next, we

consider a slightly modified relation that we call committed index lookup (called indexed lookup in [34])
where there is a commitment to the indices where v appears in t. Formally, we define it as below:

Definition 4. We define the committed index lookup relation Rlookup
srs,N,m to consist of tuples ((ct, ca, cv), (t,a,v))

where ct, ca, cv ∈ G1, t ∈ FN , a,v ∈ Fm such that vi = t[ai] = tai for all i ∈ [m] and ct =
KZG.Commit(srs,EncH(t)), ca = KZG.Commit(srs,EncV(a)) and cv = KZG.Commit(srs,EncV(v)).

A committed lookup argument is a succinct argument of knowledge for the relation Rlookup
srs,N,m.

4 Technical Overview

As we have alluded to earlier, existing memory-checking based techniques to model RAM computations
incur a cost that is linear in the size of the RAM. We are interested in the setting where the number
of operations whose execution is to be verified is much smaller than the size of the RAM. Thus, our
goal is to achieve prover complexity which is sublinear in the size of the RAM. Before we proceed,
we establish a working definition of RAM for the rest of the paper. Informally, a RAM maps indices
(addresses) to values, where we assume that values come from a finite field F, while indices come from
a subset I of F. For us, I will generally be the set {1, . . . , k} for some integer k (which may be different
from size of the RAM n). Finally, for an index, there should be at most one value in the RAM, i.e.,
the association is unambiguous. The formal definition of RAM is as follows:

Definition 5 (RAM). Given n ∈ N, finite field F and a set I ⊆ F, a RAM of size n over indices I
is a tuple T = (a,v) ∈ In × Fn such that ∀ i, j ∈ [n] vi = vj whenever ai = aj. We think of T as a
table with vectors a and v denoting its columns. The set of all such tables will be denoted by RAMI,n.

For a table T = (a,v) ∈ RAMI,n, we refer to tuples (ai, vi), i ∈ [n] as records of the table T. We use
the access notation v = T[a] to mean that (a, v) is a record of T (note there can be multiple such
records according to our definition). When we consider RAMs where the first column (of indices) is
of the form In = (1, 2, . . . , n), we simply denote such RAMs by T ∈ Fn. For a RAM T ∈ RAMI,n, a
RAM operation is a three tuple (op, a, v) with op ∈ {0, 1}, a ∈ I and v ∈ F. An operation with op = 0
is called a load operation which denotes reading a value v mapped to index a in the RAM. Similarly,
an operation with op = 1 is called a store operation, which denotes associating the value v with index
a in the RAM. We use OI to denote the set of all RAM operations with index set I.

8

Component Protocol Prover Work Verifier Work Communication

Committed Sub-vector Lookup CQ [19] O(m logm)F, O(m)G1 5P 8G1, 3F
Committed Index Lookup Figure 2 O(m logm)F, O(m)G1 5P 8G1, 3F
Localized Update in RAM Figure 3 O(m log2 m)F, O(m)G1 8P 19G1, 1G2, 10F
Table Specific Preprocessing Fast KZG [20] O(N logN)F,G - -

Lookup from Approximate Setup Section 7 O((m+ δ) log2(m+ δ))F, O(m+ δ)G1 - -

Polynomial Protocol for RAM Figure 11 O(m logm)F, O(m)G 7P 36G1, 30F
Batching-Efficient RAM Figure 4 Õ(

√
mN)F,G 9P 65G1, 1G2, 43F

Table 2: Asymptotic efficiency of the component protocols for our scheme. Here, N denotes the size of
the RAM, m denotes the number of operations, and δ denotes Hamming distance of table for which pre-
computed parameters are available from the current table. As before, we use (F,G1,G2,GT , e, g1, g2, gt)
to denote a bilinear group, and P to denote a pairing evaluation. The performance figures reported
here correspond to the CQ-based realization of our batching-efficient RAM scheme.

4.1 Batching-Efficient RAM: Blueprint

We will use a vectors in FN to denote the “large” RAMs, where index column is implicitly assumed to
be (1, . . . , N). Let T,T′ ∈ FN denote the initial and final RAM states, and let o be a sequence of m
operations (m < N) which updates T to T′. Let a ∈ Fm denote the vector of RAM indices referenced
by the operations in o, i.e, ai is the index referenced by the ith operation. To prove the transformation
of T to T′ via operation sequence o, we proceed as follows:

- We isolate sub-tables S = (a,v) and S′ = (a,v′) of T and T′ consisting of rows corresponding to
indices in a. This requires proving v = T[a] and v′ = T′[a], which we show using committed index
lookup argument discussed in Section 6.1.

- On the isolated sub-tables S and S′ of size m, we use the standard memory checking arguments (c.f.
argument presented in Appendix B) to prove that sequence o correctly updates S to S′ with prover

complexity of Õ(m).
- Finally, we show that the RAMs T and T′ are identical outside indices in a. We describe the protocol

for proving the same in Section subsec:proximity-ram.

Fig. 1: Illustrating different steps of sublinear lookup protocol between large RAMs T and T′.

The blueprint for the above approach is illustrated in Figure 1.

4.2 Batching-Efficient RAM: Components

We now elaborate on the key technical components in realizing the above blueprint.

Committed Index Lookup. To limit the size of the RAM on which we use memory-checking tech-
niques, our first step is to isolate sub-tables of RAMs T and T′ corresponding to addresses which are
involved in the operations. This is achieved by looking up RAMs T and T′ at indices in the committed
vector a. We could leverage the recent work on efficient lookup arguments to verifiably extract m in-
dices from a table of size N , in time dependent only on m. However, there are two technical challenges

9

here. First, the aforementioned lookup arguments only prove the sub-vector relation, without linking
the extracted vector to the indices in a. This is easily solved, as there is an efficient realization of
a committed index lookup from a committed sub-vector argument, where the commitment scheme is
homomorphic. The details appear in Section 6.1, with the complete protocol presented in Figure 2. The
second challenge is much more formidable: the efficiency of sub-vector arguments (and the committed
index lookup argument derived from them) depends on expensive table-specific pre-processing. This
is acceptable when the table in question is static, but is infeasible in our setting requiring updatable
tables. This motivates our next technical component.

Fast Lookup from Approximate Setup. We build upon the rich body of work on polynomial
protocols enabling efficient lookups from static tables [38,33,39,19], which rely on expensive table-
dependent pre-computation to optimise online proving performance. We make the first attempt towards
breaking this rigid dependence. Our key idea is to extend the utility of pre-computed parameters for
a table T, to proving lookups from tables T′ ̸= T. We show that for δ = ∆(T,T′), an argument
for m lookups from T′ incurs an additional prover overhead of (m + δ) log2(m + δ) over the lookup
argument for static tables. We note that the overhead is quasi-linear in both m and δ. Our competitive
overhead rests on several innovative applications of algebraic algorithms, which are summarised in
Appendix D.1. We then leverage this ability to use “approximate” setup into a base + cache strategy;
where at all times we maintain pre-computed parameters corresponding to a base table Tb, and use
this setup to prove lookups from the current table T. We achieve optimal prover effort on average
by using parameters for Tb till the current table is at a hamming distance at most

√
mN from Tb,

beyond which we recompute full parameters for the current table with O(N logN) prover effort. The
cycle then repeats with current table as the base table.

Naive Approaches are Inadequate. We notice that the aforementioned constructions of lookup
arguments require linear combination of encoded quotients of the form

[
(T (X)− T (ξi))/(X − ξi)

]
g

for upto m values of i during the proof generation. While constructions [38,33] consider quotients
encoded in the group G2, the protocol in [19] encodes them in G1. We use a generic [·]g to account for
protocol-specific choices. We also see that even a small change to the table requires one to update all
the quotients (the polynomial T (X) is common to all quotients). Updating all the quotients after each
batch is clearly infeasible. One could consider delaying the updation of the quotients, till the time they
are actually required in a proof, which happens when the corresponding index in the table is involved in
lookup. However, each of the m quotients is now potentially “lagging” by δ updates, so we would need
Ω(mδ) group operations to refresh all of them. This gives us multiplicative degradation with δ, and is
clearly unsustainable for reasonable values of δ. In Section 7, we present an efficient method to directly
compute linear combination of upto O(m) encoded quotients of the form

[
(T (X)− T (ξi))/(X − ξi)

]
g
.

Localizing changes in RAMs. While the above two components allow us to reliably extract sub-
RAMs corresponding to indices in vector a, we still need to prove that RAMs are identical outside
indices in a. Looking ahead, in terms of polynomials this requires proving that T (ξi) = T ∗(ξi) for
i ̸∈ {ai : i ∈ [m]}. Assuming ZI(X) to be the vanishing polynomial of the set {ξai : i ∈ [m]}, this is
equivalent to proving that ZI(X)(T (X) − T ∗(X)) = D(X)ZH(X) for some polynomial D. However,
naively this involves working with polynomials with degree O(N), which is expensive. In Section 6.2
we show a polynomial protocol for the above relation which requires only O(m log2 m) prover effort.
The protocol appears in Figure 3.

Polynomial Protocol for Memory Checking. To complete the verification, we need to show that
the smaller RAMs, S = (a,v) and S′ = (a,v′) extracted from larger RAMs T,T′ are consistent
with respect to the operations. This can be accomplished using standard memory checking techniques
based on address ordered transcripts, which we formalize in Section 5. Later in Appendix B and C,
we assemble known techniques to present a polynomial protocol for memory consistency based on
address ordered transcripts. This involves encoding several artefacts such as operations, transcripts
etc., as polynomials and relations among them such as concatenation, permutation and monotonicity
as polynomial identities. Our modelling is simple and implementation friendly, and helps in realizing
a “circuit-free” overall construction. Complete polynomial protocol for memory checking appears in
Figure 11, while constituent protocols appear in Figures 9, 8 and 10.

Efficiency. We conclude the overview with a discussion of efficiency achieved by our scheme, and
how different components discussed in this section contribute to the overall efficiency. The asymptotic
performance of our scheme using CQ [19] is summarized in Table 2, with efficiency of the overall
scheme highlighted in gray. The table also serves as a ready-reckoner for component protocols involved

10

in the overall scheme. A more detailed discussion and break-up of the polynomial protocol for RAM
appears in Table 6 in Appendix B. We note that the verification complexity of the overall solution is
substantially less than the aggregate of component protocols; this is due to the fact that several pairing
checks required for KZG verification proofs can be batched together. For concrete instantiation using
BLS12-381 curve, RAM size of 1 million, the online cost of proving an update of 1000 operations on a
table as a function of its Hamming distance from the “pre-processed” table is described in Figure 6.
Other performance metrics are summarised in Tables 5 and 3. We refer to Section 8 for a more
detailed performance evaluation and comparison with prior work. As is clear from the tables above,
the (offline) parameter re-computation is the most expensive operation. We reiterate that all of our
reported costs throughout the paper are for a single-threaded implementation on a consumer-grade
laptop. We believe that parallel implementations can substantially speed up parameter re-computation
as their cost is dominated by FFTs over group polynomials, which are highly parallelizable.

Continuity. To support applications such as rollups, we also consider it imperative to ensure that
online proof generation does not halt during offline parameter re-generation. In other words, offline
parameter re-generation should not hinder the operational continuity of the system. In our scheme,
we can ensure this by carefully overlapping the offline computation with online proof generation such
that the system can instantly switch to using the more recently generated parameters before the online
proving time becomes prohibitive. We present more concrete discussions around this scheduling at the
end of Section 8. We note that prior works [31,16] have not addressed this issue of continuity in detail.
To the best of our knowledge, we are the first to highlight the issue and present a discussion on a viable
approach.

5 Memory Consistency for RAM

In this section, we briefly review and formalize existing memory-checking techniques to ensure correct-
ness of RAM operations. The formal definitions for various relations involved in memory checking will
be used to describe polynomial protocol for RAM in Appendix B.

5.1 Correctness of RAM Update

The versatility of the RAM primitive stems from its updatability. While a load operation leaves the
RAM unchanged, the store operation updates the value in the RAM associated with the referenced
index. We model the update via the function UpdI which takes RAM T ∈ RAMI,n, operation o =
(op, a, v) ∈ OI as inputs and returns an updated RAM T′ ∈ RAMI,n. The updated RAM T′ =
UpdI(T, o) satisfies T′ = T if op = 0 while for op = 1 it satisfies T′[a] = v and T′[x] = T[x] for
x ̸= a. The central problem in verifiable RAM protocols is to establish that a sequence of operations
o = (o1, . . . , om) are correct with respect to the initial RAM state T and the final RAM state T′.
This involves ensuring that all load operations read the value which is consistent with updates to the
RAM as a result of preceding store operations, and that T′ is the final state. We say that an operation
o = (op, a, v) is load-consistent with respect to RAM T if v = T[a] whenever o is a load operation (store
operations are vacuously defined to be load-consistent). We formally define the notion of consistency
below:

Definition 6 (Consistent Operations). Let n ∈ N and T,T′ ∈ RAMI,n for some index set I. We
say that a sequence of operations o = (o1, . . . , ok) ∈ Ok

I
over I is consistent with RAM states T,T′ if

for all i ∈ [k], Ti = UpdI(Ti−1, oi) and operation oi is load-consistent with respect to Ti−1. Here we
assume T0 = T and Tk = T′.

For m,n ∈ N, let LRAMI,m,n denote the language consisting of tuples (T,o,T′) with T,T′ ∈
RAMI,n and o ∈ (OI)m such that o is consistent with T,T′. Next, we formalize the folklore technique
of checking correctness of RAM operations using address-ordered transcripts.

5.2 Consistency Check via Transcripts

A transcript is time-stamped sequence of operations executed on a RAM. More formally, given a RAM
T = (a,v) ∈ RAMI,n, operation sequence o = (o1, . . . , om) with oi = (ōpi, āi, v̄i) ∈ OI and RAM
T′ = (a′,v′) ∈ RAMI,n, the time ordered transcript for the tuple (T,o,T′) is given by the table tr

11

with k = 2n + m rows and four columns tr = (t,op,A,V) defined as follows: (i) t = Ik = (1, . . . , k),
(ii) op = 0n||(ōp1, . . . , ōpm)||0n, (iii) A = a||(ā1, . . . , ām)||a′ and (iv) V = v||(v̄1, . . . , v̄m)||v′. The ith

row of the table tr is (ti, opi, Ai, Vi) for i ∈ [k]. The first n records in tr correspond to the contents of
T, the next m records correspond to the operations in o and final n records correspond to contents of
T′. The timestamp column t is added to order operations with the same index. Notationally, we write
tr = TimeTr(T,o,T′).

We call a transcript tr = (t,op,A,V) to be address ordered if Ai ≤ Ai+1 for i ∈ [k − 1] and
ti < ti+1 whenever Ai = Ai+1. For a transcript tr = (t,op,A,V) with k records and a permutation
σ : [k] → [k], we use σ(tr) to denote the transcript (σ(t), σ(op), σ(A), σ(V)) obtained by permuting
the records of tr according to the permutation σ. An address ordered transcript for tuple (T,o,T′)
is defined as tr∗ = σ(tr) where tr = TimeTr(T,o,T′) and σ is a permutation such that tr∗ is address
ordered. We denote it by tr∗ = AddrTr(T,o,T′). We say that an address ordered transcript tr =
(t,op,A,V) satisfies load-store correctness if for all pairs of consecutive records (ti, opi, Ai, Vi) and
(ti+1, opi+1, Ai+1, Vi+1) we have Vi+1 = Vi whenever opi+1 = 0 (load operation) and Ai = Ai+1, i.e,
a load operation does not change the value at an index. We formally state the folklore technique for
enforcing memory consistency in our setting.

Lemma 1. Let F be a finite field, m,n ∈ N be positive integers and I ⊆ F. Then (T,o,T′) ∈
LRAMI,n,m if and only if the address ordered transcript tr∗ = AddrTr(T,o,T′) satisfies load-store
correctness.

The consistency check in Lemma 1 can be encoded as an arithmetic circuit of size Õ(m + n), thus
yielding an argument of knowledge for the language LRAMI,n,m with prover complexity quasi-linear in
m + n. For completeness, we present a self-contained argument of knowledge for LRAMI,m,m (m = n)
based on the “polynomial protocol” framework defined in [26].

6 Improved Batching-Efficient RAM

We now detail the steps required to realize batching efficient RAM outlined in the technical overview.

6.1 Committed Index Lookup

In this section, we “lift” any committed sub-vector argument to a committed index lookup argument,
where the latter makes a black-box use of the former. We use the trick of random linear combination of
vectors to infer indexed lookup relation among them from sub-vector relation over the aggregated vec-
tors. Similar use of random linear combinations has been made in the context of proving permutations
in literature (e.g. [18]).

Lemma 2. Let t ∈ Fn and let a,v ∈ Fm for some positive integers m,n. Let In denote the vector
(1, . . . , n). Then for γ ← F, (v + γa) ⪯ (t + γIn) implies v = t[a] except with probability mn/|F|.

Proof. We define vectors of linear polynomials p = (p1, . . . , pm) and q = (q1, . . . , qn) where pi(X) =
vi+aiX, i ∈ [m] and qi(X) = ti+iX, i ∈ [n]. Now, we see that v = t[a] if and only if p ⪯ q. For γ ∈ F ,
let pγ and qγ denote the vectors (p1(γ), . . . , pm(γ)) and (q1(γ), . . . , qn(γ)) respectively. It is obvious
that p ⪯ q implies pγ ⪯ qγ for all γ ∈ F. Using Schwartz-Zippel Lemma, it can also be seen that
Pr

γ←F [p ⪯̸ q |pγ ⪯ qγ] ≤ mn/|F|. The bound follows from the observation that the event occurs only
when γ is a common root of at least one pair of linear polynomials {(pi(X), qj(X)) : i ∈ [m], j ∈ [n]}.

In Figure 2, we invoke Lemma 2 to construct a committed index lookup argument using a committed
sub-vector argument (Psv,Vsv). We formally state the following lemma, whose proof essentially follows
from Lemma 2.

Lemma 3. Assuming that (Psv,Vsv) is an argument of knowledge for the relation Rsubvec
srs,N,m in the AGM,

the interactive protocol in Figure 2 is an argument of knowledge for the relation Rlookup
srs,N,m in the AGM.

12

Common Input: srs, ct, ca, cv, cI = [I(X)]1 where I(X) = EncH(I) encodes the vector I = (1, . . . , N) ∈
FN .
Prover’s Input: Vectors t ∈ FN , a,v ∈ Fm.

1. V sends γ ← F.
2. P and V compute: c̃t = γcI + ct, c̃v = γca + cv.
3. P computes: t̃ = γIN + t, ṽ = γa+ v.
4. P and V run sub-vector argument (Psv,Vsv) with (srs, c̃t, c̃v) as the common input and (t̃, ṽ) as Psv’s

input.
5. V outputs b← ⟨Psv(t̃, ṽ),Vsv⟩(srs, c̃t, c̃v).

Fig. 2: Committed Index Lookup Argument

6.2 Almost Identical RAM States

For a vector a ∈ [N]m, let uniq(a) = {ai : i ∈ [m]} denote the subset of unique values in a. We call two
RAM states T,T′ ∈ FN to be a-identical if T[i] = T′[i] for all i ̸∈ uniq(a). As before, let T (X), T ∗(X)
and a(X) be polynomials encoding the vectors T,T′ (over H) and a (over V). Let cT , c

′
T and ca be the

commitments to vectors T,T′ and a respectively in the group G1. The polynomial protocol to prove
that T,T′ ∈ FN and a ∈ Fm are a-identical requires proving the relation ZI(X)(T (X)− T ∗(X)) = 0
over the set ZH where I = uniq(a) and ZI(X) =

∏
i∈I(X − ξi) is the vanishing polynomial for the

set HI = {ξi : i ∈ I}. To proceed, the honest prover commits to polynomial ZI(X) and proves (i)
ZI(X) · (T (X) − T ∗(X)) = 0 mod ZH and (ii) the zeroes of ZI(X) form a subset of zeroes of HI(X)
as defined. Together, the two conditions imply that T (ξi) = T ∗(ξi) for i ̸∈ uniq(a). To prove the first
relation, the prover computes the polynomial D(X) as below:

D(X) =
(T (X)− T ∗(X)) · ZI(X)

ZH(X)

=
∑
i∈I

(T (ξi)− T ∗(ξi))µi(X)

ZH(X)
ZI(X)

Substituting ∆i = T (ξi)− T ∗(ξi), µi(X) = ZH(X)/(Z ′
H(ξi)(X − ξi)), we get

D(X) =
∑
i∈I

∆i

Z ′
H(ξi)

(
ZI(X)

X − ξi

)
=
∑
i∈I

∆iZ
′
I(ξi)

Z ′
H(ξi)

κi(X) (1)

In the above, the summation only runs over indices in I, as ∆i = 0 for i ̸∈ I. In the final equality, we use
κi(X) = ZI(X)/(Z ′

I(ξi)(X−ξi)) for i ∈ I which we recognize as the lagrange basis polynomials for the
set {ξi : i ∈ I}. Thus, Equation (1) implies that D(X) is at most degree |I|−1 polynomial, with D(ξi) =
∆iZ

′
I(ξi)/Z ′

H(ξi) for i ∈ I. The prover can therefore interpolate D(X) (in power basis) in O(|I| log2 |I|)
F-operations and compute [D(X)]1 in O(|I|) G1-operations. The prover sends the commitment [D(X)]1
to the verifier. Finally, the verifier can check the identity ZI(X) · (T (X)−T ∗(X)) = D(X) ·ZH(X) by
a pairing check. For this, since the tables are committed in G1, prover will need to send [ZI(X)]2.

Next, the prover needs to show that zeroes of ZI are indeed in the set HI = {ξi : i ∈ I} =
{ξai : i ∈ [m]}. Clearly, it suffices to show that ZI(X) divides the polynomial

∏
i∈[m](X − ξai). To

obtain a polynomial protocol, the prover commits to an auxiliary polynomial h(X) =
∑m

i=1 ξ
aiτi(X)

which interpolates the vector h = (ξa1 , . . . , ξam). The correctness of h polynomial can be established
by showing that the interpolated vector h satisfies committed index lookup relation h = Texp[a]
where Texp = (ξ1, . . . , ξN). Moreover, we notice that the polynomial interpolating the table Texp is
particularly simple, i.e, Texp(X) = X, and thus the setup need not be augmented with table-specific
parameters for Texp. Finally, it remains to show that ZI(X) divides K(X) =

∏m
i=1(X − h(νi)). To

do so, the prover commits to K(X) and the quotient polynomial q(X) = K(X)/ZI(X). The verifier
checks the polynomial identities at α, i.e K(α) = q(α)ZI(α) and K(α) =

∏m
i=1(α−h(νi)). The former

is easily accomplished using evaluation proofs for K, q and ZI at α. For checking the latter, the prover
commits to another polynomial u(X) satisfying u(νi) =

∏i−1
j=1

(
(α− h(νj))/(1 + βτ1(νj))

)
for i ∈ [m]

13

where β = K(α)− 1. The verifier ensures the correctness of u(X) by checking:

τ1(X)(u(X)− 1) = 0 mod ZV

u(νX)(1 + βτ1(X))− u(X)(α− h(X)) = 0 mod ZV.
(2)

We prove that the above constraints imply that K(α) =
∏

i∈[m](α − h(νi)) in Lemma 4. Note that
in this protocol we require commitment to the polynomial ZI in both G1 and G2, and thus another
pairing check is required to show that the ZI(X) committed in G1 is the same as the ZI(X) committed
in G2 (used for the real pairing check). The complete protocol for checking that RAMs T and T′ are
identical outside indices in a is given in Figure 3.

Lemma 4. There exists a polynomial u(X) ∈ F[X] satisfying the identities in Equation (2) if and
only if K(α) = 1 + β =

∏
i∈[m](α− h(νi)).

Proof. Assume that the identitites hold for some polynomial u(X). The first identity implies u(ν) = 1.
From the second identity, we conclude that for all i ∈ [m], we have u(νi+1) = u(νi) · ((α− h(νi))/(1 +
βτ1(νi))), and thus:

1 = u(νm+1)/u(ν) =
∏

i∈[m]

(
α− h(νi)

1 + βτ1(νi)

)
.

We observe that the product of denominators in the above equation is simply 1 + β as τ1(νi) is 0 for
all i ̸= 1, and thus 1 + β =

∏m
i=1(α − h(νi)). In the other direction, it is easy to check that u(X) as

defined for an honest prover, satisfies the identities in Equation 2.

6.3 Batching-Efficient RAM: Combined Protocol

We put the entire protocol together now. Let I denote the set of indices {1, . . . , N}, and IN denote the
vector (1, . . . , N). We formally define the committed RAM relation for which we present an argument
of knowledge in this section.

Definition 7. We define the committed ram relation Rram
srs,N,m to consist of tuples ((cT , c

′
T , cop, ca, cw),

(T,T′,op,a,w)) such that:

– (T,o,T′) ∈ LRAMI,N,m for o = (o1, . . . , om) where we have oi = (opi, ai, wi) ∈ OI for all i ∈
[m] (here we implicitly view vectors T and T′ as RAMs with index column IN).

– cT = KZG.Commit(srs, T (X)), c′T = KZG.Commit(srs, T ∗(X)), cop = KZG.Commit(srs, op(X)), ca =
KZG.Commit(srs, a(X)), cw = KZG.Commit(srs, w(X)) where polynomials T (X), T ∗(X) encode vec-
tors T,T′ over H, while op(X), a(X) and w(X) encode vectors op = (op1, . . . , opm), a and w over
V.

As outlined in the blueprint, the prover first commits to “smaller” RAMs S = (a,v) and S′ = (a,v′)
where v = T[a] and v′ = T′[a]. The prover commits to S and S′ by sending commitments cv and c′v
to v and v′. Then the prover and verifier execute the committed index lookup protocol to prove:

(cT , ca, cv) ∈ Rlookup
srs,N,m ∧ (c′T , ca, c

′
v) ∈ Rlookup

srs,N,m (3)

The verifier uses a random challenge χ ← F to reduce two instances of Rlookup
srs,N,m to one instance

(cT + χc′T , ca, cv + χc′v) ∈ Rlookup
srs,N,m. Then, we show that RAMs T and T′ are a-identical using the

protocol in Figure 3, described in Section 6.2. All that remains is to prove is that the operation
sequence o is consistent with small RAMs S and S′. We check this using the argument in Appendix B,
which is obtained by compiling the polynomial protocol for RAM in Appendix C into an argument
of knowledge in the AGM. Specifically, the prover and the verifier set cS = (ca, cv), c′S = (ca, c

′
v)

and co = (cop, ca, cw), and execute the argument of knowledge for showing (cS , co, c
′
S) ∈ RLRAM

srs,m (see
Definition 14). We provide the complete protocol listing in Figure 4. The protocol in Figure 4 assumes
pre-computed parameters for the tables T and T′. The maintenance of these pre-computed parameters
in the presence of updates is detailed in Section 7.

Theorem 3. The protocol in Figure 4 is a succinct argument of knowledge for the relation Rram
srs,N,m

in the AGM, under the Q-DLOG assumption for the bilinear group (F,G1,G2,GT , e, g1, g2).

14

Common Input: srs, cT , c
′
T , ca.

Prover’s Input: Vectors T,T′ ∈ FN , a ∈ Fm. Polynomials T (X), T ∗(X) and a(X) encoding T,T′ and
a respectively.

Round 1: Prover commits to auxiliary polynomials

1. P computes:
- I = uniq(a), ZI(X) =

∏
i∈I(X − ξi).

- D(X) = ZI(X)(T (X)− T ∗(X))/ZH(X).
- h(X) such that h(νi) = ξai for i ∈ [m].
- K(X) =

∏m
i=1(X − h(νi)), q(X) = K(X)/ZI(X).

2. P sends cz = [ZI(X)]1, c
′
z = [ZI(X)]2, cd = [D(X)]1, ch = [h(X)]1, ck = [K(X)]1, cq = [q(X)]1.

3. V sends α← F.

Round 2: Prover commits to polynomial u(X).

1. P sets β = K(α)− 1 and interpolates u(X) on V such that u(νi) =
∏i−1

j=1

(
(α− h(νj))/(1 + βτ1(ν

j))
)

for i ∈ [m].
2. P sends cu = [u(X)]1.
3. V sends r ← F.

Round 3: Prover batches checks in Eq (2).

1. P computes Q(X) =
(
u(νX)(1 + βτ1(X))− u(X)(α− h(X)) + rτ1(X)(u(X)− 1)

)
/ZV(X)

2. P sends cQ = [Q(X)]1.
3. V sends s← F.

Round 4: Prover sends evaluations.

1. P sends ⟨z⟩α = ZI(α), ⟨q⟩α = q(α), ⟨K⟩α = K(α), ⟨Q⟩s = Q(s), ⟨u⟩s = u(s), ⟨u⟩νs = u(νs), ⟨h⟩s =
h(s).

2. V sends rα, rs ← F.

Round 5: Prover batches evaluation proofs.

1. P computes:
- pα(X) = ZI(X) + rαq(X) + r2αK(X).
- ps(X) = Q(X) + rsu(X) + r2sh(X).
- Πα = KZG.Prove(srs, pα, α).
- Πs = KZG.Prove(srs, ps, s), Πνs = KZG.Prove(srs, u, νs).

2. P sends Πα, Πs, Πνs.

Round 6: Verifier checks identities.

1. V computes [pα]1 = cz + rαcq + r2α, [pz]1 = cQ + rscu + r2sch.
2. V checks:

- ⟨z⟩α · ⟨q⟩α = ⟨K⟩α.
- ⟨u⟩νs(1 + βτ1(s))− ⟨u⟩s(α− ⟨h⟩s) + rτ1(s)(⟨u⟩s − 1) = ⟨Q⟩sZV(s).
- e(cT − c′T , c

′
z) = e(cd, [ZH(X)]2).

- e([1]1 , c
′
z) = e(cz, [1]2).

- KZG.Verify(srs , [pα]1, ⟨z⟩α + rα⟨q⟩α + r2α⟨K⟩α, α, Πα).
- KZG.Verify(srs, [pz]1, ⟨Q⟩s + rs⟨u⟩s + r2s⟨K⟩s, s, Πs).
- KZG.Verify(srs, cu, ⟨u⟩νs, νs,Πνs).

Round 7: Check correctness of polynomial h.

1. P and V execute committed index lookup argument (Fig 2) to check ([X]1 , ca, ch) ∈ R
lookup
srs,N,m.

2. V accepts if the above argument accepts and all the preceding checks succeed.

Fig. 3: Argument for showing RAMs are identical outside small set of indices.

15

Setup (1λ, N,m,T,T′):

– srs = ({
[
τ i
]
1
}Ni=0, {

[
τ i
]
2
}Ni=0) for τ ← F

– Both P and V precomputes [ZH(X)]1 , [ZH(X)]2
– P precomputes the following:
• W i

2 =
[
ZH(X)/(X − ξi)

]
2
, i ∈ [N]

– P precomutes the following (with respect to (T,T′)):
• W i

1 =
[
(T (X)− T (ξi))/(X − ξi)

]
2
, i ∈ [N],

• W i
1
′
=

[
(T ∗(X)− T ∗(ξi))/(X − ξi)

]
2
, i ∈ [N].

Common Input: srs, cT , c
′
T , cop, ca, cw ∈ G1.

Prover’s Input: Vectors T,T′,op,a,w and their encoding polynomials.

Round 1: Commit to sub RAMs.

1. P computes v = T[a], v′ = T′[a] and the encoding polynomials v(X) and v∗(X).
2. P sends cv = [v(X)]1, c

′
v = [v∗(X)]1.

3. V sends χ← F.

Round 2: Execute committed index lookup.

1. P and V compute ĉT = cT + χc′T , ĉv = cv + χc′v.
2. P computes T̂ = T+ χT′, v̂ = v + χv′.
3. P and V execute committed index lookup argument in Fig 2, with (ĉT , ca, ĉv) as the common input

and (T̂,a, v̂) as prover’s input.

Round 3: Prove RAMs are a-identical.

1. P and V execute argument in Fig 3 with common input (cT , c
′
T , ca) and prover’s input as (T,T′,a).

Round 4: Prove sub RAMs are memory-consistent with update.

1. P and V execute argument in Fig 11 to check (cS , co, c
′
S) ∈ RLRAM

srs,m with cS = (ca, cv), c
′
S = (ca, c

′
v) and

co = (cop, ca, cw).
2. V accepts if all sub-protocols accept.

Fig. 4: Our batching-efficient RAM protocol

7 Fast Lookups from Approximate Pre-Processing

In this section, we provide details of the algorithm to construct lookup argument for a table T, using
pre-computed parameters of a table which is a small hamming distance away. The dependence on
pre-computed parameters in several recent lookup arguments such as [38,33,39,19] stems from the
need to compute an encoded quotient of the form:

[Q]g =
∑
i∈I

ci

[
T (X)− T (ξi)

X − ξi

]
g

(4)

for some O(m) sized set I. The quotient in Equation (4) can be computed in O(m) cost when
the quotients

[
(T (X)− T (ξi))/(X − ξi)

]
g

are available for all i ∈ [N]. In this section we exhibit an

algorithm which computes the above with O((m+δ) log2(m+δ)) cost, given access to similar quotients
for a table at hamming distance δ from T. We now describe our approach.

7.1 Base + Cache approach

The key idea we employ is to express the current table T ∈ FN as Tb +Tch, where Tb is the table for
which we assume that the encoded quotients are available (via the O(N logN) computation), and Tch

captures the changes to the table since. We will periodically update (say after s batch updates) Tb to
current table state, and re-compute all the quotients (we call it the offline phase). We will revisit the
question on choosing s optimally later. Let I ⊆ [N] denote the set of indices in the current batch of

16

m lookups. The online phase of our proof generation involves computing the sum in Equation (4) for
the table T. The following Theorem determines the efficiency of the online phase of our prover.

Theorem 4. Let N, ξ be as defined previously. Given KZG proofs {Wi}Ni=1 with Wi =
[
Tb(X)− Tb(ξi)/(X − ξi)

]
g
,

where Tb(X) = EncH(Tb) encodes a vector Tb ∈ FN , for any I ⊆ [N], there exists an algorithm to
compute [Q]g as given in Equation (4) for polynomial T (X) = EncH(T) encoding the vector T ∈ FN

using O((δ + |I|) log2(δ + |I|)) F-operations and O(δ + |I|) G-operations. Here, δ denotes the hamming
distance between vectors Tb and T.

Proof. Let T = Tb +Tch and thus T (X) = Tb(X) + Tch(X). Define K = I ∪ {j ∈ [N] : Tch[j] ̸= 0} as
a set which captures the indices where the current table T differs from the base Tb, where we explicitly
also include the lookup indices I in K. For j ∈ K, let Tch[j] = ∆tj . Then Tch(X) =

∑
j∈K ∆tjµj(X).

We write the quotient Q(X) as:

Q(X) =
∑
i∈I

ci

(
Tb(X)− Tb(ξi)

X − ξi

)
+
∑
i∈I

ci

(
Tch(X)− Tch(ξi)

X − ξi

)

From above, we have [Q(x)]g = [Qb(x)]g + [Qch(x)]g where

Qb(X) =
∑
i∈I

ci(Tb(X)− Tb(ξi))/(X − ξi)

Qch(X) =
∑
i∈I

ci(Tch(X)− Tch(ξi))/(X − ξi)

We can compute [Qb(X)]g from the pre-computed KZG openings of Tb(X) at points ξi, i ∈ I us-

ing O(|I|) group operations and O(|I| log2 |I|) field operations. Therefore, it suffices to compute
[Qch(X)]g efficiently. Using Tch(X) =

∑
j∈K ∆tjµj(X) we write Qch(X) as linear combination of table-

independent polynomials:

Qch(X) =
∑
i∈I

ci
∑
j∈K

∆tj
µj(X)− µj(ξ

i)

X − ξi

=
∑
i∈I

ci∆ti
µi(X)− 1

X − ξi
+
∑
i∈I

∑
j∈K\{i}

ci∆tj
µj(X)

X − ξi

Now, we can write [Qch(X)]g = [Q
(1)
ch (X)]g + [Q

(2)
ch (X)]g where:

Q
(1)
ch (X) =

∑
i∈I

ci∆ti
µi(X)− 1

X − ξi
, Q

(2)
ch (X) =

∑
i∈I

∑
j∈K\{i}

ci∆tj
µj(X)

X − ξi

The term
[
Q

(1)
ch (X)

]
g

can be computed using O(|I|) group operations by augmenting the setup with

pre-computed KZG opening proofs of polynomials µi(X) at ξi for i ∈ [N]. This adds O(N) to the
setup parameters, while the computation can be done in O(N logN) time with methods similar to

existing pre-computed parameters. This eventually leaves us with [Q
(2)
ch (X)]g. Next, we synthesize the

17

polynomial Q
(2)
ch (X) in a form that reduces group operations required to compute its encoding.

Q
(2)
ch (X) =

∑
i∈I

ci
∑

j∈K\{i}

∆tjµj(X)/(X − ξi)

=
∑
i∈I

ci
∑

j∈K\{i}

∆tj
Z ′
H(ξj)

ZH(X)

(X − ξi)(X − ξj)

= N−1
∑
i∈I

ci
∑

j∈K\{i}

ξj∆tj
ξi − ξj

(
ZH(X)

X − ξi
− ZH(X)

X − ξj

)

= N−1
∑
i∈I

ci ·
∑

j∈K\{i}

ξj∆tj
ξi − ξj

 ZH(X)

X − ξi

+ N−1
∑
j∈K

ξj∆tj ·
∑

i∈I\{j}

ci
ξj − ξi

 ZH(X)

X − ξj
(5)

In the first step, we substituted µj(X), while in the final step we re-arranged the summation to
accumulate the scalar factor for each distinct polynomial of the form ZH(X)/(X − ξi). Define scalars
ai, i ∈ I and bj , j ∈ K as below:

ai =
∑

j∈K\{i}

ξj∆tj
ξi − ξj

, i ∈ I bj =
∑

i∈I\{j}

ci
ξj − ξi

, j ∈ K (6)

Now, define W j
3 :=

[
ZH(X)/(X − ξj)

]
g
. We see that W j

3 is just the KZG opening proof of the poly-

nomial ZH(X) evaluated at ξj for j ∈ [N]. These can be precomputed one time and it adds O(N) to
the setup parameters and the computation can be done in O(N logN) time.

Now, we see that [Q
(2)
ch (X)]g can be written as linear combination of O(|K|+ |I|) group elements.

[
Q

(2)
ch (X)

]
g

= N−1

∑
i∈I

(ciai) ·W i
3 +

∑
j∈K

(ξj∆tjbj) ·W j
3

 (7)

Now, ci are known constants depending on the specific lookup scheme. So, given {ai}i∈I , {bj}j∈K ,[
Q

(2)
ch (X)

]
g

can be computed in O(|I| + |K|) group operations. While we have diligently reduced the

group operations, we still seem to need O(|I||K|) = O(mδ) field operations. We clearly need better
than naive way of computing the scalars in (6) to obtain additive overhead in δ. This is what we
consider next. Let dj := ξj∆tj . Then we have from Eq (6):

ai =
∑

j∈K\{i}

dj
ξi − ξj

, i ∈ I bj =
∑

i∈I\{j}

ci
ξj − ξi

, j ∈ K (8)

So, to compute ai and bj , it suffices to compute reciprocal sums efficiently. Our next lemma claims
that such reciprocal sums can be computed efficiently. We defer the full proof of Lemma 5 to the
Appendix, but illustrate the key ideas in the proof.

Lemma 5. Let I ⊂ K ⊂ [N] and let ai for all i ∈ I and bj for all j ∈ K be as described above. Then,
ai for all i ∈ I and bj for all j ∈ K can be computed in O(|K| log2 |K|)F operations.

Proof (Proof-Sketch). We sketch the proof here for ai. First, we mention that the special case of the
lemma when dj = 1 for all j ∈ K admits an efficient computation due to the following identity proved
in Lemma 9.

Z ′′
K(ξi)

Z ′
K(ξi)

= 2
∑

j∈K\{i}

1

ξi − ξj

for ZK(X) =
∏

i∈K(X − ξi). The polynomial ZK can be computed in O(|K| log2 |K|) and subsequent
evaluations of its first two derivatives can also be evaluated on the set {ξi : i ∈ I} with the same

18

complexity. However, to deal with arbitrary values of dj we need more ingenuity. We will imagine dj
to be p(ξj) for some polynomial p(X). Moreover, we demand that p(ξj) = 0 for j ̸∈ K. We will not
compute such a polynomial p, as it has degree O(N), but view it as an “oracle” which we can hopefully
query at the points we need. Then it can be seen that ai = gi(ξ

i)− ri(ξ
i) for rational functions gi(X)

and ri(X) defined by:

gi(X) =
∑

j∈[N]\i

p(X)

X − ξj
, ri(X) =

∑
j∈[N]\i

p(X)− p(ξj)

X − ξj
(9)

Now, gi(ξ
i) for i ∈ I turns out to be (using the special case above):

p(ξi)
∑

j∈K\{i}

1/(ξi − ξj) = di(Z
′′
K(ξi)/Z ′

K(ξi))/2

Defining u(X,Y) = (p(X)− p(Y))/(X − Y), we can write ri(ξ
i) as:

ri(X) =
∑
j∈[N]

u(X, ξj)− u(X, ξi) (10)

Observe that u(X,X) = p′(X) and so u(X,X) gives the formal derivative of polynomial p(X). We
get ri(ξ

i) = r(ξi) − p′(ξi) for all i ∈ I, where r(X) =
∑

j∈[N] u(X, ξj). Fortunately, r(X) is simply

Nu(X, 0) = N(p(X) − p(0))/X, a fact that follows from uni-variate sum-check. The problem thus
reduces to being able to compute derivatives p′(ξi) for i ∈ I and the value p(0). Before concluding
the proof-sketch, we briefly highlight the structure of the polynomial p(X). Since p(X) vanishes for

p(ξi) for i ̸∈ K, it can we written as the product ẐK(X)q(X) where ẐK is the vanishing polynomial
of “complementary” roots of unity {ξi : i ̸∈ K} and q is a low-degree (< K) polynomial. Assuming we
can interpolate q(X), we can write:

p′(ξi) = ẐK(ξi)q′(ξi) + Ẑ ′
K(ξi)q(ξi)

In the above expression, we require evaluations of high-degree polynomials ẐK(X) and Ẑ ′
K(X) at ξi,

i ∈ I. This is discussed in Lemma 11 and other related lemmas in Appendix D.2, and motivates the
at times tedious algebra there. We conclude the proof-sketch, deferring the missing details to the full
proof in Appendix D.3.

From the Lemma 5, we conclude that the scalars ai, i ∈ I and bj , j ∈ K can be computed in time
O(|K| log2 |K|), which proves the bound in Theorem 4.

7.2 Amortized Sublinear Batching

We now return to the question of how frequently should we run the offline phase to compute full
parameters. For concrete analysis, let s be the period after which the rebasing takes place; i.e., after s
batches of m operations each, we set the base table Tb to the current table, setting Tch = 0. At this
point we also compute all encoded quotients for Tb using the O(N logN) algorithm of [20]. Consider
δ ≤ ms as the upper-bound on δ, and distributing the cost of re-basing, the amortized overhead for the
batch of m operations is: O(ms log2(ms) + N logN

s) F-operations and O(ms + N logN
s) G-operations.

Ignoring the logarithmic factors, the cost is minimized by setting s ≈
√
N/m, resulting in amortized

prover overhead of Õ(
√
mN). We note that the above analysis considers the worst case scenario, where

each update affects a distinct position in the table. In settings, where frequency of updates is non-
uniform accross positions in the table (e.g, in the blockchain example, if bulk of transactions come
from small number of clients), we may be able to defer the offline phase even longer. Same is also true
for settings where updates to the table are infrequent.

8 Experiments

In this section we present a concrete evaluation of our batching efficient RAM and compare it to
the prior works on batching efficient RAM [31,16]. We also separately benchmark the effectiveness of

19

CFHKKO22 [16] OWWB20 [31] MT-20

104

105

106

107

108

6.8

7.3 7.2

N
u
m
b
er

o
f
C
o
n
st
ra
in
ts

Batching Efficient RAMs

Fig. 5: Comparison of R1CS constraints incurred by existing approaches for batching efficient RAMs.
MT20 refers to Merkle-tree with depth 20, instantiated using Poseidon hash.

210 211 212 213 214 215 216 217 218 219

20

40

60

80

100

120

140

160

180

200

Hamming distance δ = ∆(Tb,T)

P
ro
v
er

T
im

e
(s
ec
)

CQ: m = 210

Caulk+: m = 27

Fig. 6: Online proving time of updates on table T given the pre-processing parameters for table Tb,
plotted against the Hamming distance δ between Tb and T. Here m denotes the batch size of updates,
while the RAM size is N = 220. The blue plot corresponds to our scheme instantiated with CQ as
the sub-vector argument (in a black-box manner). The red plot corresponds to the non-black-box
adaptation of Caulk+ described in Appendix E.

our approach of computing encoded quotients presented in Section 7 over the näıve approach. Our
implementation is built on top of existing implementation [1] of lookup argument Caulk [38]. We make
our implementation available at https://github.com/nitsatiisc/caulk/tree/updateable-ram.

Experimental Test-bed. All the benchmarks were run single-threaded on a commodity configuration
featuring a 2.1GHz Intel-I5 processor, 16 GB memory running Ubuntu Linux 22.04. The implementa-
tion was compiled using --release flag in Rust. Our protocol was instantiated for BLS12-381 curve,
using the scheme CQ [19] as the underlying sub-vector argument.

Online Proof Generation. In Figure 6, we benchmark the time to prove a batch of m = 210 updates
on a table of size N = 220. Here, the values on the x-axis denote the hamming distance between the
table on which the updates are being proved and the table whose pre-processed parameters are used
for the proof generation. Naturally, we expect the proving time to increase as the table becomes more
distant from the one used to generate pre-processed parameters. Our proof generation time stays under
a minute till the two table differ in almost 2× 105 positions. In conjunction with offline pre-processing
time from table 3, the graph in Figure 6 determines how the offline parameter generation should be
scheduled to achieve optimal performance on average.

20

https://github.com/nitsatiisc/caulk/tree/updateable-ram

Offline Pre-Processing. In Table 3 we provide the time to compute table-specific parameters as a
function of table size. This is the most computationally intensive step in our scheme involving FFTs
over group polynomials as the main bottle-neck. We believe offline pre-processing can be made an
order of magnitude more efficient by leveraging parallel implementation for the FFTs.

Table-Size (N) 210 212 214 216 218 220

Time (s) 7 29 135 620 2766 12000

Table 3: Pre-processing time for tables of different sizes.

Proof Size and Verification Costs. Our proof sizes and verification costs are independent of the size
of the table and the number of updates in a batch. For the instantiation of our scheme with BLS12-381
curve, we incur a proof size of 4.4KB while the verification takes around 15ms.

Fast Update Benchmarks. We also benchmark the efficiency of the algorithm to compute scalar
coefficients in Lemma 5, required to assemble the encoded quotients from pre-computed quotients.
This algorithm is implemented and tested in the fastupdate module of the referenced repository. In
Table 4, we compare it against the naive computation of the quotients. In the table, we vary the sizes
of set I in Lemma 5 in the set {2i : 7 ≤ i ≤ 10} and set K = 27|I|. We clearly see 5×−20× advantage
over the naive computation.

Continuity. To maintain continuity of the system (this is particularly important for applications
such as rollups), we must carefully align the online prover performance curve with the cost of offline
computation. As an example, suppose T0 is the initial pre-processed table at time t = 0. We generate
proofs using pre-computed parameters for T0 till the time t = t1, when the table state T1 is at
hamming distance 217 from T0. At this point, from Figure 6, online proof generation takes around
40s for batch of 1000 updates. At t = t1, we also start an offline parameter computation for the table
T1, while continuing to generate online proofs using parameters for T0. We can generate the next 27

batches of updates at an average of approximately 12000/128 ≈ 94s each, thus finishing with a table
state T2 at hamming distance at most 218 from T0 at t2 = t1 + 12000. At this point, we should have
the pre-computed parameters for T1, which is at update distance of 217 from T2, and thus online proof
generation can switch to parameters for the table T1. This alignment gives us a proving time of 94s
per batch of 1000, while ensuring system is live at all times. Clearly, a faster offline pre-computation
using parallel implementation would allow us to stay at the cheaper end of online proving performance.

|I| |K| Lemma 5 Naive

27 214 3.3s 12s
28 215 7.7s 48s
29 216 16.8s 198s
210 217 39.2s 839s

Table 4: Comparison of Lemma 5 and naive computation for calculating scalar coefficients for encoded
quotients.

Comparison with Prior Works. The proof generation in the prior batching efficient RAM con-
structions using RSA accumulators [31,16] involves two key steps (i) generation of a SNARK proof
showing knowledge of witness for a relation modeled as arithmetic circuit/R1CS and (ii) computing
the witness for the proof generation. A platform agnostic metric to express the cost of the first step is
the number of R1CS constraints needed to encode the relation, which is also the metric used in [16]
for comparison. Using the R1CS constraints reported in [31,16] (see Figure 5), we benchmark single-
threaded proof generation using the Groth16 protocol (used in prior works) for R1CS of equivalent size
on our test-bed. We use publicly available benchmarking suite in [37] for Groth16 benchmarks. Since
the the prior works only report performance of parallel implementation of the second step which is
common to both (with degree of parallelism not explicitly mentioned), we will use the reported parallel
performance to estimate the overall proving time with this caveat.

21

Even without the benefit of parallelization, our average proof generation time of ≈ 90s for batch
size of 210 and RAM size of 220 is 3−5× faster than the prior works for the same setting. The proof sizes
and verification complexity are constant for prior work and our work. Concrete proof sizes are smaller
in [31,16] owing to their usage of Groth16 proving backend, while our verification times are competitive
with [31] and substantially less than [16]. One way to reduce proof size in our scheme would be to use a
SNARK to prove memory-checking on smaller sub-RAMs, instead of explicit polynomial protocol that
we employ for the same. For completeness, we also include the batching efficient RAM using Merkle
tree (with Poseidon hash) in the performance comparison in Table 5 which was considered in prior
works. Note that the Merkle tree-based approach is faster than that of [31] for batch size of 210 (the
break-even point reported to be batch size of ≈ 1200).

Scheme P (s) V (ms) |π| (KB)

MT20 450 7 0.26
OWWB20 [31] 550 + 43 7 0.26
CFHKKO22 [16] 226 + 43 120 1.3
Our Work 94 15 4.4

Table 5: Comparing performance of our batching-efficient RAM with prior works. P denotes proof gen-
eration time, V denotes verification time while |π| denotes argument size. We mention proof generation
time as a+b for [31,16] where a denote proving time of Groth16 and b denotes witness generation time.
The latter is reported in respective works for a parallel implementation.

References

1. Caulk. https://github.com/caulk-crypto/caulk.
2. Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines via lookups. Cryptology

ePrint Archive, Paper 2023/1217, 2023. https://eprint.iacr.org/2023/1217.
3. barryWhiteHat. rollup. https://github.com/barryWhiteHat/roll up.
4. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C:

Verifying program executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay,
editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

5. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge via cycles
of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617
of LNCS, pages 276–294. Springer, Heidelberg, August 2014.

6. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowl-
edge for a von neumann architecture. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014,
pages 781–796. USENIX Association, August 2014.

7. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators with applications to
IOPs and stateless blockchains. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 561–586. Springer, Heidelberg, August 2019.

8. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for zk-SNARK parameters in
the random beacon model. Cryptology ePrint Archive, Report 2017/1050, 2017. https://eprint.iacr.

org/2017/1050.
9. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without a trusted setup.

Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.iacr.org/2019/1021.
10. Sean Bowe, Jack Grigg, and Daira Hopwood. Halo2, 2020. https://github.com/zcash/halo2.
11. Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael

Walfish. Verifying computations with state. SOSP ’13, New York, NY, USA, 2013.
12. Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, Andrew J. Blumberg, and Michael Wal-

fish. Verifying computations with state (extended version). Cryptology ePrint Archive, Report 2013/356,
2013. https://eprint.iacr.org/2013/356.

13. Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK compilers. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 677–706.
Springer, Heidelberg, May 2020.

14. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation
of anonymous credentials. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 61–76.
Springer, Heidelberg, August 2002.

22

https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2019/1021
https://github.com/zcash/halo2
https://eprint.iacr.org/2013/356

15. Matteo Campanelli, Antonio Faonio, Dario Fiore, Tianyu Li, and Helger Lipmaa. Lookup arguments:
Improvements, extensions and applications to zero-knowledge decision trees. In PKC 2024, volume 14602,
pages 337–369, 2024.

16. Matteo Campanelli, Dario Fiore, Semin Han, Jihye Kim, Dimitris Kolonelos, and Hyunok Oh. Succinct
zero-knowledge batch proofs for set accumulators. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 455–469. ACM Press, November 2022.

17. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas P. Ward. Marlin:
Preprocessing zkSNARKs with universal and updatable SRS. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768. Springer, Heidelberg, May 2020.

18. Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and Michiel Verbauwhede. Effi-
cient proof of RAM programs from any public-coin zero-knowledge system. In SCN 2022, pages 615–638,
2022.

19. Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast lookups. Cryptology ePrint
Archive, Report 2022/1763, 2022. https://eprint.iacr.org/2022/1763.

20. Dankrad Feist and Dmitry Khovratovich. Fast amortized KZG proofs. Cryptology ePrint Archive, Report
2023/033, 2023. https://eprint.iacr.org/2023/033.

21. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987.

22. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

23. Ariel Gabizon and Dmitry Khovratovich. flookup: Fractional decomposition-based lookups in quasi-linear
time independent of table size. Cryptology ePrint Archive, Report 2022/1447, 2022. https://eprint.

iacr.org/2022/1447.
24. Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for lookup tables.

Cryptology ePrint Archive, Report 2020/315, 2020. https://eprint.iacr.org/2020/315.
25. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over lagrange-bases

for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953.

26. Ariel Gabizon, Zachary J. Williamson, and Oana-Madalina Ciobotaru. Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch., 2019:953, 2019.

27. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal
common reference strings with applications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August
2018.

28. Ulrich Haböck. Multivariate lookups based on logarithmic derivatives. Cryptology ePrint Archive, Report
2022/1530, 2022. https://eprint.iacr.org/2022/1530.

29. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and
their applications. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194.
Springer, Heidelberg, December 2010.

30. Ralph C. Merkle. A digital signature based on a conventional encryption function. In Carl Pomerance,
editor, CRYPTO’87, volume 293 of LNCS, pages 369–378. Springer, Heidelberg, August 1988.

31. Alex Ozdemir, Riad S. Wahby, Barry Whitehat, and Dan Boneh. Scaling verifiable computation using
efficient set accumulators. In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020,
pages 2075–2092. USENIX Association, August 2020.

32. Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using GKR. IACR Cryptol.
ePrint Arch., page 1284, 2023.

33. Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup arguments. Cryptology ePrint
Archive, Report 2022/957, 2022. https://eprint.iacr.org/2022/957.

34. Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with lasso. Cryptology
ePrint Archive, Paper 2023/1216, 2023. https://eprint.iacr.org/2023/1216.

35. Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael Walfish. Efficient
RAM and control flow in verifiable outsourced computation. In NDSS 2015. The Internet Society, February
2015.

36. Michael Walfish and Andrew J. Blumberg. Verifying computations without reexecuting them. Commun.
ACM, page 74–84, 2015.

37. www.arkworks.com. ark-groth16.
38. Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu, and Mark Simkin.

Caulk: Lookup arguments in sublinear time. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 3121–3134. ACM Press, November 2022.

39. Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla Ràfols. Baloo: Nearly
optimal lookup arguments. Cryptology ePrint Archive, Report 2022/1565, 2022. https://eprint.iacr.

org/2022/1565.

23

https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2023/033
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2022/1447
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2023/1216
https://eprint.iacr.org/2022/1565
https://eprint.iacr.org/2022/1565

40. Yuncong Zhang, Shifeng Sun, and Dawu Gu. Efficient kzg-based univariate sum-check and lookup argu-
ment. In PKC 2024, volume 14602, pages 400–425, 2024.

41. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou.
vRAM: Faster verifiable RAM with program-independent preprocessing. In 2018 IEEE Symposium on
Security and Privacy, pages 908–925. IEEE Computer Society Press, May 2018.

A More Preliminaries

A.1 Polynomial Commitment Scheme

The notion of a polynomial commitment scheme (PCS) that allows the prover to open evaluations of
the committed polynomial succinctly was introduced in [29] who gave a construction under the trusted
setup assumption. A polynomial commitment scheme over F is a tuple PC = (Setup,Commit, open, eval)
where:

– pp ← Setup(1λ, D). On input security parameter λ, and an upper bound D ∈ N on the degree,
Setup generates public parameters pp.

– (C, c̃) ← Commit(pp, f(X), d). On input the public parameters pp, and a univariate polynomial
f(X) ∈ F[X] with degree at most d ≤ D, Commit outputs a commitment to the polynomial C,
and additionally an opening hint c̃.

– b← open(pp, f(X), d, C, c̃). On input the public parameters pp, the commitment C and the opening
hint c̃, a polynomial f(X) of degree d ≤ D, open outputs a bit indicating accept or reject.

– b ← eval(pp, C, d, x, v; f(X)). A public coin interactive protocol ⟨Peval(f(X)), Veval⟩(pp, C, d, z, v)
between a PPT prover and a PPT verifier. The parties have as common input public parameters
pp, commitment C, degree d, evaluation point x, and claimed evaluation v. The prover has, in
addition, the opening f(X) of C, with deg(f) ≤ d. At the end of the protocol, the verifier outputs
1 indicating accepting the proof that f(x) = v, or outputs 0 indicating rejecting the proof.

A polynomial commitment scheme must satisfy completeness, binding and extractability.

Definition 8 (Completeness). For all polynomials f(X) ∈ F[X] of degree d ≤ D, for all x ∈ F,

Pr

b = 1 :

pp← Setup(1λ, D)
(C, c̃)← Commit(pp, f(X), d)

v ← f(x)
b← eval(pp, C, d, x, v; f(X))

 = 1.

Definition 9 (Binding). A polynomial commitment scheme PC is binding if for all PPT A, the
following probability is negligible in λ:

Pr

open(pp, f0, d, C, c̃0) = 1∧
open(pp, f1, d, C, c̃1) = 1∧

f0 ̸= f1

:
pp← Setup(1λ, D)

(C, f0, f1, c̃0, c̃1, d)← A(pp)

 .

Definition 10 (Knowledge Soundness). For any PPT adversary A = (A1,A2), there exists a PPT
algorithm E such that the following probability is negligible in λ:

Pr

 b = 1∧
Reval(pp, C, x, v; f̃ , c̃) = 0

:

pp← Setup(1λ, D)
(C, d, x, v, st)← A1(pp)

(f̃ , c̃)← EA2(pp)
b← ⟨A2(st), Veval⟩(pp, C, d, x, v)

 .

where the relation Reval is defined as follows:

Reval = {((pp, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)) :

(open(pp, f, d, C, c̃) = 1) ∧ v = f(x)}

We denote by Prove,Verify, the non-interactive prover and verifier algorithms obtained by applying
FS to the eval public-coin interactive protocol, giving a non-interactive PCS scheme (Setup,Commit,
Prove,Verify).

Definition 11 (Succinctness). We require the commitments and the evaluation proofs to be of size
independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is poly(λ), |π| is
poly(λ) where π is the transcript obtained by applying FS to eval. Additionally, the scheme is verifier
succinct if eval runs in time poly(λ) · log(d) for the verifier.

24

A.2 Succinct Argument of Knowledge

Let R be a NP-relation and L be the corresponding NP-language, where L = {x : ∃ w such that
(x,w) ∈ R}. Here, a prover P aims to convince a verifier V that x ∈ L by proving that it knows a
witness w for a public statement x such that (x,w) ∈ R. An interactive argument of knowledge for
a relation R consists of a PPT algorithm Setup, that takes an input the security parameter λ, and
outputs the public parameter pp, and a pair of interactive PPT algorithms ⟨P,V⟩, where P takes as
input (pp, x, w) and V takes as input (pp, x). An interactive argument of knowledge ⟨P,V⟩, must satisfy
completeness and knowledge soundness.

Definition 12 (Completeness). For all security parameter λ ∈ N and statement x and witness w
such that (x,w) ∈ R, we have

Pr

(
b = 1 :

pp← Setup(1λ)
b← ⟨P(w),V⟩(pp, x)

)
= 1.

Definition 13 (Knowledge Soundness). For any PPT malicious prover P∗ = (P∗
1 ,P2∗), there

exists a PPT algorithm E such that the following probability is negligible:

Pr

 b = 1∧
(x,w) ̸∈ R :

pp← Setup(1λ)
(x, st)← P∗

1 (1λ, pp)
b← ⟨P∗

2 (st),V⟩(pp, x)

w ← EP∗2 (pp, x)

 .

A succinct argument of knowledge ⟨P,V⟩ for a relationR, must satisfy completeness and knowledge
soundness and additionally ensure that the communication complexity between prover and verifier, as
well as the verification complexity is bounded by poly(λ, log |w|), where w is the witness for the relation.

B Argument for RAM From Polynomial Protocols

In this section, we give a self-contained argument of knowledge for membership in the language
LRAMI,m,m introduced in Section 5. We first consider the polynomial encoding of different RAM
artefacts.

B.1 Polynomial Encoding

Let k = 3m and let ω be a primitive kth root of unity in F. Let ν = ω3, and thus ν is a primitive
mth root of unity in F (We assume, these roots exist in F). We recall V as the subgroup consisting
of mth roots of unity with associated Lagrange basis polynomials {τi(X)}i∈[m], while we additionally

introduce the set K of kth roots of unity with {λi(X)}i∈[k] as the associated Lagrange polynomials.

K = {ω, . . . , ωk}, V = {ν, . . . , νm} (11)

As before, we define the encoding of vectors in f ∈ Fk as EncK(f) =
∑

i∈[k] fiλi(X). We canonically
extend the encoding of vectors to encode RAM, operations and transcripts by encoding their component
vectors. Thus, for a RAM T = (a,v) ∈ RAMI,m, we define its encoding T̃ = (a(X), v(X)) where
a(X), v(X) ∈ F<m[X] encode vectors a,v respectively. Given an operation sequence o = (o1, . . . , om)

with oi = (ōpi, āi, v̄i) we encode o as Õ = (ōp(X) ,ā(X) ,v̄(X)) where ōp(X) encodes the vector
op = (ōp1, . . . , ōpm), ā(X) encodes the vector (ā1, . . . , ām) and v̄(X)encodes the vector (v̄1, . . . , v̄m).
Finally, a transcript tr = (t,op,A,V) for tuples (T,o,T′) where T,T′ are RAMs of size m, and o is
an operation sequence of size m is encoded as t̃r = (t(X), op(X), A(X), V (X)) where the polynomials
t(X), op(X), V (X) and A(X) encode the respective vectors in Fk (See Section 5).

B.2 Relations over Polynomial Encodings

In this section, we describe polynomial checks for two important relations we need in subsequent
sections, viz, (i) checking concatenation of vectors and (ii) checking monotonicity and load-store con-
sistency of a transcript. The lemma below specifies the polynomial identities for verifying that vector
v ∈ Fk is concatenation of vectors a,b, c in Fm.

25

Lemma 6. Let a,b, c ∈ Fm and v ∈ Fk be vectors encoded by polynomials a(X), b(X), c(X) and v(X)
respectively. Then,

a(X3)− v(X) = 0 mod Z(X) (A1)

b(X3)− v(ωmX) = 0 mod Z(X) (A2)

c(X3)− v(ω2mX) = 0 mod Z(X) (A3)

for Z(X) =
∏m

i=1(X − ωi) if and only if v = a||b||c.

Proof. Assume that the polynomial identities hold. Substituting X = ωi for i ∈ [m] in above equations
implies for i ∈ [m]: ai = vi (Eq (A1)), bi = vm+i (Eq (A2)) and ci = v2m+i (Eq (A3)), which
together imply v = a||b||c. Converse follows by observing that v = a||b||c implies that v(X) = a(X3),
v(ωmX) = b(X3) and v(ω2mX) = c(X3) holds for all X = ωi, i ∈ [m]. Thus, the equalities hold
modulo the polynomial Z(X) as defined above.

Next, we specify polynomial checks on the encoding of a transcript to ensure it satisfies address-
ordering and load-store consistency. Let N be an upper bound on the values of A, i.e, the index set
I ⊆ [N]. Let tr = (t,op,A,V) be a transcript encoded as t̃r = (t(X), op(X), A(X), V (X)). Recall
that we need to check two conditions on tr, viz, (i) monotonicty: the transcript is sorted by address
and timestamp respectively, i.e, Ai ≤ Ai+1 for all i < k and ti < ti+1 whenever Ai = Ai+1, (ii)
load-store consistency: whenever opi+1 = 0 and Ai = Ai+1, we have Vi = Vi+1. To do so, we exhibit
disjoint sets I1, I2 with I1 ⊎ I2 = [k − 1] such that: (i) for all i ∈ I1, Ai < Ai+1, (ii) for all i ∈ I2,
(Ai = Ai+1)∧(ti < ti+1) and (iii) for all i ∈ I2, (opi = 1)∨(Vi = Vi+1). Note that the conditions on the
sets I1 and I2 ensures monotonicity. Moreover, it can be seen that load-store consistency requirements
are satisfied for all i ∈ I1 (as Ai ̸= Ai+1). Similarly,load-store consistency also holds for all i ∈ I2. It
remains to exhibit the sets and show that they satisfy the above invariants using polynomials, as in
the following lemma:

Lemma 7. Let t̃r be a polynomial encoding of transcript tr of size k, given by polynomials t(X), op(X),
A(X) and V (X), with index set [N]. Then assuming kN < |F|, tr is address ordered and satisfies load-
store consistency if and only if there exist polynomials Z1, Z2, δT , δA such that the following hold:

A(ωX)−A(X)− δA(X) = 0 mod Z1(X) (C1)

A(ωX)−A(X) = 0 mod Z2(X) (C2)

t(ωX)− t(X)− δT (X) = 0 mod Z2(X) (C3)

(op(X)− 1)(V (ωX)− V (X)) = 0 mod Z2(X) (C4)

Z1(X) · Z2(X) · (X − 1) = ZK(X) (C5)

1 ≤ A(ωi) ≤ N (C6)

1 ≤ t(ωi) ≤ N, 1 ≤ δA(ωi) ≤ N, 1 ≤ δT (ωi) ≤ N for i ∈ [k] (C7)

Proof. Suppose there exist polynomials Z1(X), Z2(X), δT (X) and δA(X) satisfying above identities.
From Equation (C5), we conclude that their exist sets I1, I2 with I1 ⊎ I2 = [k − 1] such that Zb(X),
b ∈ {1, 2} is the vanishing polynomial of the set {ωi : i ∈ Ib}. We now note that the following are true
for i ∈ I1:

– A(ωi+1)−A(ωi) = δA(ωi). Since 1 ≤ δA(ωi) ≤ N , this ensures Ai < Ai+1 for the vector A encoded
by A(X). We note that kN < |F| implies there is no overflow modulo the field characteristic.

Similarly, it can be seen that for i ∈ I2, we must have (i) Ai = Ai+1 ∧ ti < ti+1 and (ii) opi = 1 ∨ Vi =
Vi+1. Together these imply that the encoded transcript is address-ordered.

Protocols facilitating the checks mentioned in Lemma 6 and Lemma 7 are presented in Figure 7
and 8 respectively.

C Succinct Argument for Verifiable RAM

The polynomial encodings in the previous section can be used to polynomial protocol for checking the
membership in the language LRAMI,m,m for m ∈ N. The polynomial protocol can be subsequently be

26

Common Input: Commitments ca, cb, cc, cv, and [Z]1 (to the polynomial Z(X) =
∏m

i=1(X − ωi)).
Prover’s Input: Vectors a,b, c ∈ Fm and v ∈ Fk.

1. V sends γ ← F.
2. P computes the following:

- h(X) = a(X) + γb(X) + γ2c(X).
- Q(X) = (h(X3)− v(X)− γv(ωmX)− γ2v(ω2mX))/Z(X).

3. P sends commitment [Q]1 = [Q(X)]1.
4. V sends s← F.
5. P sends evaluations ⟨v⟩s = v(s), ⟨v⟩ωms = v(ωms), ⟨v⟩ω2ms = v(ω2ms), ⟨h⟩s3 = h(s3), ⟨Q⟩s = Q(s)

and ⟨Z⟩s = Z(s).
6. V sends r ← F.
7. P computes KZG proofs:

- Πv = KZG.Prove(srs, v, (s, ωms, ω2ms)).
- Πh = KZG.Prove(srs, h, s3).
- Πf = KZG.Prove(srs, f, s) where f(X) = Z(X) + rQ(X).

8. P sends Πv, Πh and Πf .
9. V computes commitments [h]1 and [f]1.

a

10. V checks:
- KZG.Verify(srs, [v]1 , ev,pv, Πv) where pv = (s, ωms, ω2ms) and ev = (⟨v⟩s, ⟨v⟩ωms, ⟨v⟩ω2ms).
- KZG.Verify(srs, [h]1 , ⟨h⟩s3 , s

3, Πh).
- KZG.Verify(srs, [f]1 , ⟨Z⟩s + r⟨Q⟩s, s,Πf).
- ⟨Q⟩s · ⟨Z⟩s = ⟨h⟩s3 − ⟨v⟩s − γ⟨v⟩ωms − γ2⟨v⟩ω2ms.

11. V outputs accept if all the above checks succeed, else it outputs reject.

a This can be done locally by leveraging the linearity of the operation

Fig. 7: Check concatenation over committed vectors.

compiled into a succinct argument using an extractable polynomial commitment scheme. In this section,
we use KZG polynomial commitment scheme to obtain a succinct argument for checking membership in
LRAMI,m,m in the Algebraic Group Model (AGM). At a high level, to prove (T,o,T′) ∈ LRAMI,m,m,
the prover constructs time ordered transcript tr and then permutes it to obtain the address sorted
transcript tr∗. It then sends the polynomial encodings of T,o,T′, tr and tr∗ to the verifier, who verifies
that:

1. The time ordered transcript is correctly constructed, i.e, tr = TimeTr(T,o,T′). This is achieved
using the protocol in Figure 9.

2. The transcript tr∗ is a permutation of the transcript tr, i.e, tr∗ = σ(tr) for some permutation σ of
[k]. The protocol for this check appears in Figure 10.

3. The transcript tr∗ is address ordered and satisfies load-store consistency. We describe the protocol
to check this property of transcripts in Figure 8.

We check above conditions over commitments. Let srs denote a KZG setup over a bi-linear group,
with prime order groups G1,G2 and GT . We canonically commit to RAM, operation sequences and
transcripts by committing to their polynomial encodings. Commitment of an encoding represented as
tuple of polynomials is simply the tuple consisting of commitments of the component polynomials. We
now define the relation RLRAM

srs,m below, and present a succinct argument for the same.

Definition 14. Let RLRAM
srs,m consist of tuples ((cT , co, c

′
T), (T,o,T′)) where cT = KZG.Commit(srs, T̃),

c′T = KZG.Commit(srs, T̃ ′), co = KZG.Commit(srs, Õ) commit to T, T′ and o with (T,o,T′) ∈ LRAMI,m,m.

In the above definition we have cT = (ca, cv) where ca and cv are KZG commitments to polynomials

a(X) and v(X) in the encoding T̃ = (a(X), v(X)). Similarly we parse c′T = (c′a, c
′
v) and co = (c̄op, c̄a, c̄v)

(see Appendix B.1 for polynomial encodings). For proving relation 14, prover’s input consists of initial
RAM state T = (a,v), final RAM state T′ = (a′,v′), operation sequence o = (o1, . . . , om) with
oi = (ōpi, āi, v̄i), time-ordered transcript tr = (t,op,A,V) and address-ordered transcript tr∗ =
(t∗,op∗,A∗,V∗) obtained from tr using a permutation σ : [k] → [k]. Verifier’s input consists of the
commitments cT , co and c′T as described above.

27

Common Input: Commitments ct, cop, cA and cV to t,op,A and V constituting the transcript tr.
Prover’s Input: tr = (t,op,A,V) and its polynomial encoding t̃r = (t(X), op(X), A(X), V (X)).

1 Prover determines sets I1, I2 as described in Appendix A.2.
2 Prover computes polynomials Z1(X), Z2(X), δT (X), δA(X).
3 P sends [Z1(X)]1, [Z2(X)]1, [δT (X)]1, [δA(X)]1.
4 V sends γ ← F.
5 P computes the following:

- Q1(X) = (A(ωX)−A(X)− δA(X))/Z1(X).
- Q2(X) = [(A(ωX)−A(X)) + γ(t(ωX)− t(X)− δT (X)) + γ2(op(X)− 1)(V (ωX)− V (X))]/Z2(X)

6 P sends commitments [Q1(X)]1, [Q2(X)]1.
7 V sends s← F.
8 P sends evaluations ⟨A⟩s = A(s), ⟨A⟩ωs = A(ωs), ⟨δA⟩s = δA(s), ⟨t⟩s = t(s), ⟨t⟩ωs = t(ωs), ⟨δT ⟩s =

δT (s), ⟨op⟩s = op(s), ⟨V ⟩s = V (s), ⟨V ⟩ωs = V (ωs), ⟨Q1⟩s = Q1(s), ⟨Q2⟩s = Q2(s), ⟨Z1⟩s = Z1(s),
⟨Z2⟩s = Z2(s).

9 V checks:
- ⟨Q1⟩s · ⟨Z1⟩s = (⟨A⟩ωs − ⟨A⟩s − ⟨δA⟩s).
- ⟨Q2⟩s · ⟨Z2⟩s = (⟨A⟩ωs − ⟨A⟩s) + γ(⟨t⟩ωs − ⟨t⟩s − ⟨δT ⟩s) + γ2(⟨op⟩s − 1)(⟨V ⟩ωs − ⟨V ⟩s).
- ⟨Z1⟩s · ⟨Z2⟩s = s3m − 1.

10 V sends r1, r2 ← F.
11 P computes the following:

- Φws(X) = A(X) + r1t(X) + r21V (X).
- Φs(X) = A(X)+r2δA(X)+r22t(X)+r32δT (X)+r42op(X)+r52V (X)+r62Q1(X)+r72Q2(x)+r82Z1(X)+
r92Z2(X).

- Πωs = KZG.Prove(srs, Φωs(X), ωs).
- Πs = KZG.Prove(srs, Φs(X), s).

12 P sends Πωs, Πs.
13 V computes:

- [Φωs(X)]1 = cA + r1ct + r21cV .
- [Φs(X)]1 = cA + r2[δA(X)]1 + r22ct + r32[δT (X)]1 + r42cop + r52cV + r62[Q1(X)]1 + r72[Q2(X)]1 +
r82[Z1(X)]1 + r92[Z2(X)]1.

- Vws = ⟨A⟩ωs + r1⟨t⟩ωs + r21⟨V ⟩ωs.
- Vs = ⟨A⟩s + r2⟨δA⟩s + r22⟨t⟩s + r32⟨δT ⟩s + r42⟨op⟩s + r52⟨V ⟩s + r62⟨Q1⟩s + r72⟨Q2⟩s + r82⟨Z1⟩s + r92⟨Z2⟩s.

14 V checks:
- KZG.Verify(srs, [Φws]1 , Vws, ωs,Πωs).
- KZG.Verify(srs, [Φs]1 , Vs, s,Πs).

15 P and V invoke sub-vector arguments (Psv,Vsv) (eg. [19]) to prove that (srs, cA, cI), (srs, ct, cI),
(srs, [δA(X)]1 , cI) and (srs, [δT (X)]1 , cI) are in Rsubvec

srs,N,m.
16 V outputs accept if all checks succeed and the sub-vector arguments outputs accept. Otherwise it

outputs reject.

Fig. 8: Check that transcript is address ordered and load-store consistent.

28

Component Protocol Prover Work Verifier Work Communication

Concatenation of transcripts Figure 9 O(m logm)F, O(m)G1 2P 4G1, 6F
Permutation of transcripts Figure 10 O(m logm)F, O(m)G1 2P 4G1, 5F
Memory consistency &
address ordering of transcript

Figure 8 O(m logm)F, O(m)G1 6P 20G1,19F

Polynomial Protocol for RAM Figure 11 O(m logm)F, O(m)G1 7P 36G1, 30F

Table 6: Efficiency parameters for components of polynomial protocol for RAM. Here m denotes both
the size of the RAM and number of operations (the special case we consider). P denotes a pairing
evaluation, while G1 G2 and F denote the groups and the scalar field of the bilinear group used for
instantiating the protocol.

The prover starts the protocol by sending commitments ctr and c∗tr to the transcripts tr and tr∗

respectively. To show that tr is correctly formed, the prover needs to prove the concatenations: (i)
op = 0m||(ōp1, . . . , ōpm)||0m, (ii) A = a||(ā1, . . . , ām)||a′ and (iii) V = v||(v̄1, . . . , v̄m)||v′. Note that
the time-stamp column t is implicitly assumed to be (1, . . . , k). The verifier checks the concatenations
using Lemma 6. It uses a random challenge β to reduce the three concatenations to one concatenation,
and uses another challenge γ to reduce the three polynomial checks in Lemma 6 to a single check. The
complete polynomial protocol is detailed in Figure 9.

Common Input: Commitments cT = (ca, cv), co = (c̄op, c̄a, c̄v), c
′
T = (c′a, c

′
v) and ctr = (ct, cop, cA, cV) to

T,o,T′ and tr (which is supposed to be the time ordered transcript) respectively. Commitment [Z(X)]1
to the polynomial Z(X) =

∏m
i=1(X − ωi).

Prover’s Input: tr,T,T′,o and their polynomial encodings, Z(X).

1. V sends β, γ ← F.
2. P computes the following:

- G1(X) = a(X) + βv(X), G2(X) = ā(X) + βv̄(X) + β2ōp(X)
- G3(X) = a∗(X) + βv∗(X), G(X) = A(X) + βV (X) + β2op(X)
- H(X) = G1(X) + γG2(X) + γ2G3(X)
- Q(X) = [(H(X3)−G(X)− γG(ωmX)− γ2G(ω2mX))]/Z(X)

3. P sends commitment [Q]1 to Q(X).
4. V sends s← F.
5. P sends evaluations ⟨G⟩s = G(s), ⟨G⟩ωms = G(ωms), ⟨G⟩ω2ms = G(ω2ms), ⟨H⟩s3 = H(s3), ⟨Q⟩s = Q(s)

and ⟨Z⟩s = Z(s).
6. V sends r ← F.
7. P sends the following KZG proofs:

– ΠG = KZG.Prove(srs, G(X), (s, ωms, ω2ms)).
– ΠH = KZG.Prove(srs, H(X), s3).
– ΠF = KZG.Prove(srs, F (X), s) where F (X) = Z(X) + rQ(X).

8. V computes [G(X)]1 , [H(X)]1 and [F (X)]1.
a

9. V checks:
– KZG.Verify(srs, [G]1 , (⟨G⟩s, ⟨G⟩ωms, ⟨G⟩ω2ms), (s, ω

ms, ω2ms), ΠG).
– KZG.Verify(srs, [H]1 , ⟨H⟩s3 , s

3, ΠH).
– KZG.Verify(srs, [F]1 , ⟨Z⟩s + r⟨Q⟩s, s,ΠF).
– ⟨Q⟩s · ⟨Z⟩s = ⟨H⟩s3 − ⟨G⟩s − γ⟨G⟩ωms − γ2⟨G⟩ω2ms.

10. V outputs accept if all the above checks succeeds, otherwise it outputs reject.

a This can be done locally by leveraging the linearlity of the operation

Fig. 9: Check the correctness of time-ordered transcript.

Next, we show a polynomial protocol for proving that the transcript tr∗ is a permutation of the
transcript tr. We first recall the permutation argument for vectors from [25].

Lemma 8 (Permutation Check [25]). Let f(X), g(X) be polynomials in F[X]. Then, the vectors
f ,g ∈ Fk encoded by the polynomials are permutations of each other if and only if with overwhelm-

29

ing probability over the choice of α ← F, there exists a polynomial z(X) satisfying the polynomial
constraints:

λ1(X)(z(X)− 1) = 0 mod ZK(X) (B1)

(α− g(X))z(ωX) = (α− f(X))z(X) mod ZK(X) (B2)

The polynomial protocol in Figure 10 essentially invokes the above argument on the random linear
combination of the columns of the respective transcripts.

Common Input: Commitments ctr = (ct, cop, cA, cV) and c∗tr = (c∗t , c
∗
op, c

∗
A, c

∗
V) of transcripts tr and tr∗

respectively.
Prover’s Input: Transcripts tr, tr∗ and their polynomial encodings, permutation σ such that tr∗ = σ(tr).

1 V sends α, β, χ← F.
2 P computes the following:

- f(X) = t(X) + βop(X) + β2A(X) + β3V (X).
- g(X) = t∗(X) + βop∗(X) + β2A∗(X) + β3V ∗(X).

3 P then computes polynomials z(X), q(X) as:
- Interpolate polynomial z(X) of degree k−1 such that z(ω) = 1 and z(ωi+1) =

∏i
j=1(α−f(ωj))/(α−

g(ωj)) for 1 ≤ i ≤ k − 1.
- q(X) = ((α− g(X))z(ωX)− (α− f(X))z(X) + χλ1(X)(z(X)− 1))/ZK(X).

4 P sends commitments [z(X)]1 and [q(X)]1 to polynomials z(X) and q(X) respectively.
5 V computes commitments [f]1, [g]1.

a

6 V checks that q(X)ZK(X) = (α − g(X))z(ωX) − (α − f(X))z(X) + χλ1(X)(z(X) − 1) by requesting
evaluations and KZG proofs of polynomials f, g, q, z at a random point, say s and evaluation and KZG
proof of z at ωs.

7 V outputs accept if all the checks succeed, else it outputs reject.

a This can be done locally by leveraging the linearlity of the operation

Fig. 10: Check that transcripts are permutations of each other.

Finally, we see that Lemma 7 implies a polynomial protocol to check that the transcript tr∗ is address
ordered and satisfies load-store consistency, which essentially involves the prover identifying sets I1, I2
as described in Appendix B.2 and sending auxiliary polynomials Z1(X), Z2(X), δ∗A(X) and δ∗T (X) to
the verifier. The verifier then checks the identities (C1)-(C6) in Lemma 7. The range checks in (C7)
can be checked using polynomial protocols in sub-vector lookup arguments such as [33,19,15,40]. The
protocol (compiled using KZG commitments in AGM) can be found in Figure 8. The overall protocol
for RLRAM

srs,m which combines invokes protocols in Figures 9,10 and 8 as sub-protocols is presented in
Figure 11.

Efficiency. We provide a break-up of costs incurred by different components involved in construction
of RAM based on memory-checking techniques in Table 6. To reduce pairing checks we use standard
technique of batching pairing checks involving common generators. In addition, to reduce communi-
cation, instead of naively invoking four instances of sub-vector argument in Step 15 of the protocol in
Figure 8, we concatenate the four vectors using a variant of protocol for concatenation of vectors in
Figure 7, and then use the sub-vector argument to show that the concatenated vector is a sub-vector
of the vector (1, . . . , N). For CQ [19] based instantiation, this reduces the total communication of this
check from 4 × (8G1 + 3F) to (4G1 + 6F) + (8G1 + 3F), a saving of ≈ 20G1. The reported overheads
in Table 6 take into account such optimizations.

D Proof of Lemma 5

Before starting the proof, we collect some preliminaries which will be useful in the proof.

30

Common Input: Commitments cT = (ca, cv), co = (c̄op, c̄a, c̄v), c
′
T = (c′a, c

′
v).

Prover’s Input: T,T′,o and their polynomial encodings.

1. P computes the following:
– tr (time ordered transcript corresponding to T,o,T′), its polynomial encoding, and its commitment

ctr = (ct, cop, cA, cV).
– Z(X) =

∏m
i=1(X − ωi) and its commitment [Z(X)]1.

2. P sends ctr = (ct, cop, cA, cV) and [Z(X)]1.
3. P and V run the protocol for checking correctness of time ordered transcript (Figure 9).
4. P computes the address ordered transcript tr∗ (along with its polynomial encoding) and the permutation

σ from the time ordered transcript tr, such that tr∗ = σ(tr).
5. P computes the commitment c∗tr = (c∗t , c

∗
op, c

∗
A, c

∗
V) of tr∗ and sends c∗tr.

6. P and V run the protocol for checking that the two transcripts are permutations of each other
(Figure 10).

7. P and V run the protocol for checking the constraints given in Lemma 7 (Figure 8.)
8. V outputs accept if all the three sub-protocols lead to accept, else it outputs reject.

Fig. 11: Overall protocol for the relation RLRAM
srs,m

D.1 Computational Algebra Preliminaries

Let F be a finite field of prime order p and G be a cyclic additive group of order p with generator g.
For s ∈ F, we use the notation [s] to denote the group element s · g. Assume that F contains nth root
of unity ξ satisfying ξn = 1 for large n (All polynomial degrees are assumed less than n).

Fact D1 (Fast Evaluation) Let f ∈ F[X] be a polynomial of degree < d and (ξ1, . . . , ξr) ∈ Fr be
distinct points in F. Then the vector (f(ξ1), . . . , f(ξr)) can be computed in O((d + r) log(d + r)) F
operations if ξ1, . . . , ξr form roots of unity, and in O((d + r) log2(d + r)) F operations otherwise.

Fact D2 (Fast Interpolation) Let ξ1, . . . , ξd be distinct points in F and (v1, . . . , vd) ∈ Fd. Then
(f0, . . . , fd−1) ∈ Fd can be computed in O(d log2 d) operations in F such that f(ξi) = vi for all i ∈ [d]

where f(X) =
∑d−1

i=0 fiX
i.

Fact D3 (Fast Multiplication) Let ξ1, . . . , ξr be distinct points in F. Then coefficients of f(X) =∏r
i=1(X − ξi) can be computed in O(r log2 r) operations in F.

Fact D4 (Multi KZG proofs [20]) Let {[xi]}di=1 be given for some x ∈ F. Then for set of r distinct
points ξ1, . . . , ξr, and a polynomial f(X) ∈ F[X] of degree < d,the vector ([h1(x)], . . . , [hr(x)]), where
hi(X) = (f(X)− f(ξi))/(X − ξi) can be computed in O((r + d) log(r + d)) group and field operations
when ξ1, . . . , ξr are roots of unity, and in O(rlog2r + d log d) group and field operations otherwise.

Fact D5 (Lagrange Polynomials) Let S = {ξ1, . . . , ξr} be a set of r distinct points and let τ1(X), . . . , τr(X)
be the corresponding lagrange polynomials of degree r− 1 each. Let ZS(X) =

∏r
i=1(X − ξr) denote the

vanishing polynomial for S. Then we have:

r∑
i=1

τi(X) = 1

τi(X) =
ZS(X)

Z ′
S(ξi)(X − ξi)

for all i ∈ [r]

Formal Derivative: For a polynomial p(X) ∈ F[X], we define the formal derivative of p(X) as the

polynomial u(X,X) where u(X,Y) = p(X)−p(Y)
X−Y . It can be seen that u(X,X) equals the polynomial

p′(X) obtained by differentiating p(X) according to regular rules of calculus. Thus, this definition
agrees with the one given earlier in the preliminaries.

D.2 Some Useful Results

We state and prove some facts which are used later throughout the proof.

31

Lemma 9. For K ⊂ [N], define HK to be {ξi : i ∈ K}. Let p(X) be the vanishing polynomial of
HK . Let p′(X) and p′′(X) denote the formal first derivative and second derivative of p(X) respectively.
Then, p′′(ξi)/p′(ξi) = 2 ·

∑
j∈K\{i} 1/(ξi − ξj) for all i ∈ K

Proof. Observe that p′(X) =
∑

i∈K

∏
j∈K\{i}(X − ξj) and

p′′(X) =
∑

i∈K

∑
j∈K\{i}

∏
k∈K\{i,j}(X − ξk). Thus for r ∈ K, we have:

p′(ξr) =
∏

j∈K\{r}

(ξr − ξj),

p′′(ξr) =
∑

j∈K\{r}

∏
k∈K\{r,j}

(ξr − ξk) +
∑

i∈K\{r}

∏
k∈K\{r,i}

(ξr − ξk)

Note that only non-zero products in the expansion of p′′(ξr) occur when i = r or j = r, resulting in
the two summands for the same in the above equation. Moreover, we notice that both summands are
the same, giving us p′′(ξr) = 2

∑
i∈K\{r}

∏
k∈\{r,i}(ξr − ξk). One may now verify that p′(ξr)/p′′(ξr)

gives the desired result claimed in the lemma.

Lemma 10 (Sumcheck). Let u(X,Y) be a bi-variate polynomial over a finite field F with degree less
than N in each of the variables and H be defined as the group of N th roots of unity (N << |F|) with
generator ξ ∈ F. Then

∑
i∈[N] u(X, ξi) = Nu(X, 0)

Proof. For some d < N , we write u(X,Y) = a0+a1Y +a2Y
2+· · ·+adY

d where each ai is a polynomial
in X of degree less than N . Now we write the sum:∑

i∈[N]

u(X, ξi) = Na0 + a1(ξ + ξ2 + · · ·+ ξN) + a2(ξ2 + ξ4 + · · ·+ ξ2N) + · · ·+ ad(ξd + · · ·+ ξNd)

But for any α = ξk for k < N , α + α2 + · · ·αN = 0. Thus, all terms vanish except the first term and
hence

∑
i∈[N] u(X, ξi) = Na0. The lemma follows by observing that a0 = u(X, 0).

We use the following standard observation for our next lemma:

Fact D6 If polynomials f, g of degree < N agree on N points, then they are equal as polynomials, that
is, f(X) = g(X)

Lemma 11. Let ZH(X) be the vanishing polynomial for H, let ẐK(X) and ZK(X) be the vanishing
polynomials for H[N]\K and HK respectively. Let µ1(X), . . . , µN (X) be Lagrange polynomials for the
set H = {ξ, . . . , ξN}. Then:

ẐK(X) =
∑
j∈K

Z ′
H(ξj)

Z ′
K(ξj)

µj(X), (12)

Ẑ ′
K(X) =

∑
j∈K

Z ′
H(ξj)

Z ′
K(ξj)

µ′
j(X) (13)

Proof. Note that the second equation follows from the first by linearity of derivatives, so it suffices to
prove the first equation. Both the sides of the identity are polynomials of degree < N , so it suffices to
show their evaluations are identical over N distinct points. In particular we show their evaluations are
identical over H. Consider evaluating LHS and RHS at ξi for i ∈ [N]\K. The left side is 0 by definition
of ẐK(X), while the right hand side is zero by the properties of Lagrange polynomials. Now consider

evaluations LHS and RHS at ξi for i ∈ K. The RHS is
Z′H(ξ

i)
Z′K(ξi) by properties of Lagrange polynomials,

while the LHS is
∏

j∈[N]\K(ξi − ξj)

Multiplying dividing by
∏

j∈K\{i}(ξi − ξj) gives:

LHS =

∏
j∈[N]\{i}(ξi − ξj)∏
j∈K\{i}(ξi − ξj)

Which is
Z′H(ξ

i)
Z′K(ξi) , the same as the right hand side. This proves the claim.

32

Lemma 12. Let µ1, . . . , µN be the lagrange polynomials for the set H = {ξi : i ∈ [N]} of the N th roots
of unity. Then we have:

µ′
i(ξ

j) =

{
(N−1)
2ξi if j = i

ξi

ξj(ξj−ξi) otherwise

Proof. Let us first consider the case where i ̸= j. We know that µi(X) = ZH(X)
Z′H(ξi)(X−ξi) . Thus, by

applying quotient rule (note that µi is defined at ξj as j ̸= i):

µ′
i(X) · Z ′

H(ξi) =
(X − ξi)(N ·XN−1)− (XN − 1)

(X − ξi)2

Substituting X by ξj , we get:

µ′
i(ξ

j) · N
ξi

=
N(ξj − ξi)

ξj(ξj − ξi)2

Thus, we get:

µ′
i(ξ

j) =
ξi

ξj(ξj − ξi)

Now, for the second case where i = j, we have:

µi(X) =

∏
j∈[N]\{i}(X − ξj)

Z ′
H(ξi)

or, µi(X) · Z ′
H(ξi) =

∏
j∈[N]\{i}

(X − ξj)

Differentiating the above equation on both sides, we get:

µ′
i(X) · N

ξi
=

∑
j∈[N]\{i}

∏
k∈[N]\{i,j}

(X − ξk)

Substituting X = ξi in the above equation yields:

µ′
i(ξ

i) · N
ξi

=
∑

j∈[N]\{i}

∏
k∈[N]\{i,j}

(ξi − ξk)

=
∑

j∈[N]\{i}

∏
k∈[N]\{i}(ξi − ξk)

ξi − ξj

=
∏

k∈[N]\{i}

(ξi − ξk)
∑

j∈[N]\{i}

1

ξi − ξj

= Z ′
H(ξi)

∑
j∈[N]\{i}

1

ξi − ξj

= N/ξi
∑

j∈[N]\{i}

1

ξi − ξj

We divide on both sides by N/ξi in the above, and use Lemma 9 to obtain:

µ′
i(ξ

i) =
∑

j∈[N]\{i}

1

ξi − ξj
=

Z ′′
H(ξi)

2Z ′
H(ξi)

=
N − 1

2ξi

Lemma 13. Let K ⊆ N be a set of cardinality k and X = {xj : j ∈ K} be a set where xj for j ∈ K
are distinct elements of F. Let ZX (X) = zkX

k + · · · + z0 denote the vanishing polynomial of X and
{τj(X)}j∈K denote the Lagrange polynomials such that τi(xj) = δij for i, j ∈ K. Then for all j ∈ K,
we have τ ′j(xj) = FK(xj)/Z

′
X (xj) where the polynomial FK(X) is defined as

FK(X) =

(
k

2

)
zkX

k−2 + · · ·+
(

2

2

)
z2 =

k∑
j=2

zj

(
j

2

)
Xj−2

33

Proof. For j ∈ K we have:

τj(X) =
ZX (X)

(X − xj)Z ′
X (xj)

=
1

Z ′
X (xj)

ZX (X)

X − xj

by definition of Lagrange polynomials. By long division of ZX (X) by (X − xj), we have:

τj(X) =
1

Z ′
X (xj)

(
zkX

k−1 + (xjzk + zk−1)Xk−2 + · · ·+ (xk−1
j zk + · · ·+ z1)

)
=

1

Z ′
X (xj)

k−1∑
p=0

(
k∑

q=p+1

zqx
q−p−1
j

)
Xp

Differentiating both sides, we have:

τ ′j(X) =
1

Z ′
X (xj)

k−1∑
p=0

(
k∑

q=p+1

zqx
q−p−1
j

)
pXp−1

=
1

Z ′
X (xj)

k−1∑
p=1

p

k∑
q=p+1

zqx
q−p−1
j Xp−1

Substituting X = xj , we get:

τ ′j(xj) =
1

Z ′
X (xj)

k−1∑
p=1

p
k∑

q=p+1

zqx
q−2
j

=
1

Z ′
X (xj)

k∑
q=2

zqx
q−2
j

q−1∑
p=1

p

=
1

Z ′
X (xj)

k∑
q=2

zq

(
q

2

)
xq−2
j

=
FK(xj)

Z ′
X (xj)

This completes the proof.

D.3 Proof of lemma 5

Proof. We only present the detailed proof for the computation of ai for all i ∈ I. We then briefly
mention the modifications needed to compute bj for all j ∈ K.

Computing ai. Recall that for each i ∈ I, we have:

ai =
∑

j∈K\{i}

dj
ξi − ξj

(14)

Also recall that I ⊂ K in this case. To compute ai, we first define a polynomial p(X) of degree at most
N − 1 such that p(ξj) = dj for j ∈ K and p(ξj) = 0 for j ∈ [N] \K. Then, the vanishing polynomial
of H[N]\K divides p(X) and there exists a polynomial q(X) of degree at most |K| − 1 such that:

p(X) = ẐK(X) · q(X) (15)

where ẐK(X) =
∏

i∈[N]\K(X − ξi) is the vanishing polynomial of H[N]\K . Now, we introduce the
rational functions:

fi(X) =
∑

j∈[N]\{i}

p(ξj)

X − ξj
, i ∈ I (16)

gi(X) =
∑

j∈[N]\{i}

p(X)

X − ξj
, i ∈ I (17)

ri(X) =
∑

j∈[N]\{i}

p(X)− p(ξj)

X − ξj
, i ∈ I (18)

34

Note that, by the definition of p(X), fi(ξ
i) = ai ∀i. Thus, it suffices to compute fi(ξ

i) for all i ∈ I.
Since fi(X) = gi(X) − ri(X) for i ∈ I, we have that ai = gi(ξ

i) − ri(ξ
i). Thus, we need to compute

gi(ξ
i) and ri(ξ

i) for all i ∈ I ⊂ K.

gi(ξ
i) = p(ξi)

∑
j∈[N]\{i}

1

ξi − ξj

=
p(ξi)Z ′′

H(ξi)

2Z ′
H(ξi)

(from Lemma 9)

=
(N − 1)di

2ξi

In the above, we used ZH(X) = XN − 1 and that p(ξi) = di. In other words, gi(ξ
i) for all i can be

obtained in O(|I|) operations. Therefore, it suffices to compute ri(ξ
i) for all i ∈ I efficiently. To this

end, we write ri(X) as:

ri(X) =
∑
j∈[N]

p(X)− p(ξj)

X − ξj
− p(X)− p(ξi)

X − ξi

By defining the bi-variate polynomial

u(X,Y) = (p(X)− p(Y))/(X − Y)

we get

ri(X) =
∑
j∈[N]

u(X, ξj)− u(X, ξi)

Defining r(X) =
∑

j∈[N] u(X, ξj), we have:

ri(X) = r(X)− u(X, ξi)

Substituting X = ξi in the above, we have:

ri(ξ
i) = r(ξi)− u(ξi, ξi) = r(ξi)− p′(ξi)

where p′(ξi) = u(ξi, ξi) by the definition of formal derivative. Now, using r(X) = Nu(X, 0) (Lemma 10),
we have:

r(X) = N
(p(X)− p(0))

X

Finally, substituting X = ξi above, we have:

r(ξi) = N
(di − p(0))

ξi

Thus, it remains to compute p(0) and p′(ξi) efficiently for each i ∈ I.

Computing the polynomial q(X). Recall from Equation (15) that

q(ξj) =
p(ξj)

ẐK(ξj)

for all j ∈ K. Furthermore, by Lemma 11, we have:

ẐK(ξj) =
Z ′
H(ξj)

Z ′
K(ξj)

=
N/ξj

Z ′
K(ξj)

for each j ∈ K. Observe that, given the set K, we can compute the polynomial ZK(X) in O(|K| log2 |K|)
operations using the fast multiplication, and we can then obtain Z ′

K(X) in additional O(|K|) opera-
tions. Finally, Z ′

K(ξj) can be evaluated for j ∈ K in additional O(|K| log2 |K|) operations. Thus we can
efficiently compute q(ξj) for all j ∈ K O(|K| log2 |K|) operations. Since degree of q(X) is strictly less
than |K|, we can further interpolate to obtain the polynomial q(X) in O(|K| log2 |K|) field operations.

35

Computing p(0). From Equation (15), we have

p(0) = ẐK(0) · q(0)

Additionally, since we have

ẐK(0) =
ZH(0)

ZK(0)
=
−1

ZK(0)

this enables us to compute p(0) since q(0) and ZK(0) are just the constant terms of the known
polynomials q(X) and ZK(X).

Computing p′(ξi). We now show how to compute p′(ξi) for each i ∈ I. Using the product rule for
derivatives, we have:

p′(X) = q(X)Ẑ ′
K(X) + q′(X)ẐK(X)

We have shown how to compute q(ξi) and ẐK(ξi) in O(|K| log2 |K|) field operations. By differentiating
the polynomial q(X) from earlier, we obtain q′(X). Then, by fast evaluation, we get evaluations of
q′(X) at ξi for all i ∈ I, again in O(|K| log2 |K|) field operations. So it only remains to evaluate Ẑ ′

K(ξi)
for each i ∈ I, which we show next. From the second equation of Lemma 11, we have:

Ẑ ′
K(ξi) =

∑
j∈K\{i}

Z ′
H(ξj)

Z ′
K(ξj)

µ′
j(ξ

i) +
Z ′
H(ξi)

Z ′
K(ξi)

µ′
i(ξ

i)

Using Lemma 12, this becomes:

Ẑ ′
K(ξi) = Nξ−i

∑
j∈K\{i}

1

Z ′
K(ξj)(ξi − ξj)

+
N(N − 1)

2ξ2iZ ′
K(ξi)

In other words, it suffices to efficiently compute φi for all i ∈ I, where

φi =
∑

j∈K\{i}

1

Z ′
K(ξj)(ξi − ξj)

. To this end, we define the following polynomial:

Φi(X) =
∑

j∈K\{i}

1

Z ′
K(ξj)(X − ξj)

Let {ηi(X)}i∈K be the set of Lagrange polynomials for the set HK = {ξi : i ∈ K}. Then, since
ηj(X)
ZK(X) = 1

Z′K(ξj)(X−ξj) , Φi(X) can be rewritten as:

Φi(X) =
∑

j∈K\{i}

ηj(X)

ZK(X)

=
∑

j∈K\{i}

ηj(X)/(X − ξi)

ZK(X)/(X − ξi)

Substituting X = ξi in the above, we have:

φi = Φi(ξ
i) =

 ∑
j∈K\{i}

ηj(X)/(X − ξi)∏
k∈K\{i}(X − ξk)

 (ξi)

=
∑

j∈K\{i}

(
ηj(X)/(X − ξi)∏
k∈K\{i}(X − ξk)

)
(ξi)

=
∑

j∈K\{i}

(
ηj(X)/(X − ξi)

)
(ξi)(∏

k∈K\{i}(X − ξk)
)

(ξi)

=
1

Z ′
K(ξi)

∑
j∈K\{i}

(
ηj(X)/(X − ξi)

)
(ξi)

36

Now, note that for all j ̸= i,
(
ηj(X)/(X − ξi)

)
(ξi) is just the evaluation of the polynomial

ηj(X)−ηj(ξ
i)

X−ξi

at the point ξi. This is just η′j(ξ
i) by definition of formal derivative of the polynomial ηj(X). Thus, we

get:

φi = Φi(ξ
i) =

1

Z ′
K(ξi)

∑
j∈K\{i}

η′j(ξ
i)

Using that fact that
∑

j∈K ηj(X) = 1 (and hence,
∑

j∈K η′j(X) = 0), we have

∑
j∈K\{i}

η′j(ξ
i) =

∑
j∈K

η′j(ξ
i)− η′i(ξ

i) = −η′i(ξi)

Thus, we get:

φi =
−η′i(ξi)
Z ′
K(ξi)

At this point, it suffices to efficiently compute η′i(ξ
i) for i ∈ I. For this, we can use Lemma 13, with

X = HK = {ξj : j ∈ K} and ZX (X) = ZK(X) as the vanishing polynomial of X , to obtain:

η′i(ξ
i) =

FK(ξi)

Z ′
K(ξi)

where FK(X) =
∑k

j=2 zj
(
j
2

)
Xj−2 as defined in Lemma 13. Hence, it suffices to compute FK(ξi) for all

i ∈ I, where z0, . . . , zk are the coefficients of the polynomial ZK(X) computed earlier. This concludes
the proof of computation of ai for i ∈ I.

Modifications for Computing bj for j ∈ K. For computing bj , we proceed as in the case of ai, with
the roles of sets I and K swapped (all of the corresponding lemmas can be modified accordingly). The
only additional technical subtlety arises when we need to compute φj = Φj(ξ

j) for all j ∈ K, where
the polynomial Φj(X) is defined as:

Φj(X) =
∑

i∈I\{j}

ηi(X)

ZI(X)

Now, we consider two cases: j ∈ I and j ∈ K \ I. We handle the second case first. For each j ∈ K \ I,
we can very easily compute φj = Φj(ξ

j) as

Φj(ξ
j) =

∑
i∈I\{j}

ηi(ξ
j)

ZI(ξj)

=
1

ZI(ξj)

∑
i∈I

ηi(ξ
j)

=
1

ZI(ξj)

This is efficiently computed by evaluating ZI(ξj) for each j ∈ K in O(|K| log2 |K|) operations. Next,
we consider the case where j ∈ I. For this, we can again proceed as in the analysis for computing
ai (with the roles of sets I and K swapped) till we need to compute

φj = Φj(ξ
j) =

−η′j(ξj)
Z ′
I(ξj)

for all j ∈ I. First of all, note that during the prior computation to reach this stage, we would have
already computed Z ′

I(ξj) for all j ∈ K, and thus, for all j ∈ I ⊂ K. Next, observe that we also
computed η′i(ξ

i) for i ∈ I during the computation of ai. This completes the computation of bj for all
j ∈ K, and finishes the proof of lemma 5.

37

E Committed Index Lookup from Caulk+

In this section, we present an explicit (non-black-box) adaptation of [33] to obtain a committed index
lookup, which again incurs costs comparable to a single instance of the underlying sub-vector protocol.
Let m,N ∈ N be fixed parameters with m < N and let srs denote a KZG setup of degree d ≥ N over
bi-linear group (F, G1, G2, GT , e, [1]1, [1]2, [1]t). Recall that the committed index lookup relation
in Definition 4 involves the prover showing knowledge of vectors T ∈ FN , a ∈ Fm and v ∈ Fm

corresponding to public commitments cT , ca and cv such that they satisfy vi = T[ai] = Tai
. We

present a polynomial protocol for the same, which is an adaptation of the lookup protocol from Caulk+
[33]. However, here we do not aim for zero-knowledge. Let T (X) = EncH(t), a(X) = EncV(a) and
v(X) = EncV(v) denote the polynomials encoding the vectors t,a and v respectively. The verifier
knows commitments to these polynomials at the start of the protocol. Now vi = t[ai] for i ∈ [m] is

equivalent to v(νi) = T (ξa(ν
i)) for i ∈ [m]. To obtain a polynomial protocol, the prover interpolates a

polynomial h(X) =
∑m

i=1 ξ
aiτi(X), which satisfies h(νi) = ξa(ν

i). To show that polynomial h correctly

“exponentiates” evaluations of a(X), we consider the inverting polynomial ℓ(X) =
∑N

i=1 iµi(X) which
behaves like “log” over H by evaluating to i on ξi. Now, we see that all constraints are encoded as
polynomial identities below:

ℓ(h(X)) = a(X) mod ZV

T (h(X)) = v(X) mod ZV

ZH(h(X)) = 0 mod ZV

(19)

The last polynomial identity ensures that evaluations of h on V lie in H (the set of roots of ZH).
Since the polynomial ℓ is one-one over H, the first equation implies h(νi) = ξai for all i ∈ [m].
The desired relation vi = Tai

now follows from the second identity. The above formulation involves
composition with polynomials ℓ, T and ZH of degree O(N), which is inefficient. We use the trick from
[33], where we work with low-degree restrictions of O(N)-degree polynomials such as T, ℓ over the set
HI = {h(νi) : i ∈ [m]} = {ξai : i ∈ I} ⊆ H, where I = {ai : i ∈ [m]}. The prover commits to the
polynomials ZI(X) =

∏
i∈I(X − ξi), h(X) and low degree (< m) restrictions TI , ℓI of T and ℓ on the

HI respectively. The polynomial protocol then checks the following:

T (X)− TI(X) = 0 mod ZI , TI(h(X))= v(X) mod ZV

ℓ(X)− ℓI(X) = 0 mod ZI , ℓI(h(X)) = a(X) mod ZV

ZH(X) = 0 mod ZI , ZI(h(X)) = 0 mod ZV

(20)

It must be noted that the above identities imply the earlier polynomial identities in (19). This is so
because evaluations of h on V are roots of ZI , which implies TI(h(νi)) = T (h(νi)), ℓI(h(νi)) = ℓ(h(νi))
and ZH(h(νi)) = 0 over V. While the identities on the left still involve a degree N polynomial, we can
use the srs to check the polynomial identity at the point τ encoded in the srs. For example, we can

evaluate the encoded quotient [Q(X)]2 =
[
(T (X)−TI(X)

ZI(X)

]
2

using the relation:[
T (X)− TI(X)

ZI(X)

]
2

=
∑
i∈I

1

Z ′
I(ξi)

[
T (X)− ti
X − ξi

]
2

By pre-computing the KZG proofs W i
1 =

[
T (X)−ti
X−ξi

]
2

for all i ∈ [N], the encoded quotient can be

evaluated using O(m) G2-operations and O(m log2 m) F-operations. The identity is then checked using
a real pairing check

e([T (X)]1 − [TI(X)]1 , [1]2) = e([ZI(X)]1 , [Q(X)]2).

Similarly, we also pre-compute the encoded quotients W i
2 =

[
ℓ(X)−i
X−ξi

]
2

and W i
3 =

[
ZH(X)
X−ξi

]
2

for all

i ∈ [N]. The quotients can be computed in time O(N logN) using the techniques in [20]. Using KZG
commitment scheme the polynomial relations over ZV can be checked in a standard manner by having
the prover send evaluation proofs for the committed polynomials at a random point chosen by the
verifier. The total prover effort incurred is O(m2) group and field operations. Thus, we have:

Lemma 14. Assuming KZG is extractable polynomial commitment scheme, there exists a succinct
argument of knowledge for the relation Rlookup

srs,N,m with prover complexity of O(m2), given access to
pre-computed parameters of size O(N).

38

	Batching-Efficient RAM using Updatable Lookup Arguments

