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Abstract. In a recent work, Hövelmanns, Hülsing and Majenz intro-
duced a new security proof for the Fujisaki-Okamoto transform in the
quantum-accessible random oracle model (QROM) used in post-quantum
key encapsulation mechanisms. While having a smaller security loss due
to decryption failures present in many constructions, it requires two
new security properties of the underlying public-key encryption scheme
(PKE).
In this work, we show that one of the properties, Find Failing Plaintexts -
Non Generic (FFP-NG) security, is achievable using a relatively efficient
LWE-based PKE that does not have perfect correctness. In particular,
we show that LWE reduces to breaking FFP-NG security of the PVW
scheme, when all LWE errors are discrete Gaussian distributed. The re-
duction has an arbitrarily small constant multiplicative loss in LWE er-
ror size. For the proof, we make use of techniques by Genise, Micciancio,
Peikert and Walter to analyze marginal and conditional distributions of
sums of discrete Gaussians.

1 Introduction

At least since the launch of the NIST standardization effort for post-quantum
(PQ) key encapsulation mechanisms (KEMs) and digital signature schemes (DSS’)
[21], there has been an increasing focus on post-quantum cryptography. The
Fujisaki-Okamoto (FO) transform has become the go-to technique to upgrade a
basic post-quantum public-key encryption scheme (PKE) to a chosen-ciphertext-
secure KEM. In fact, all candidate KEMs that have survived the first round of
scrutiny use a version of this transformation, including ML-KEM [25]. It was
therefore imperative to provide a proof of security for the used variants of the
FO transformation that is as tight as possible. The line of work striving to
provide such a proof in the quantum-accessible random oracle model (QROM)
started with [26,13] and has seen many improvements since [24,17,7,15,18,11,14].

Many of the most efficient post-quantum PKEs have a small probability
that decryption of an honestly generated ciphertext fails, i.e., they only enjoy
approximate and not perfect correctness. Examples include the PKE underlying
ML-KEM/Kyber [25,9], and the PKEs underlying BIKE [1] and HQC [19] which
are still under consideration in round four of the NIST process. It is therefore
important that security proofs for the FO transformation allow for approximately
correct PKEs. One of the most recent works on the FO transformation [14]



provides a blueprint for improving the way decryption failures are handled in
the security reduction for the FO transformation.1 To that end, [14] introduced
a family of security notions, the Find Failing Plaintext (FFP) notions. Security
for two members of this family, Find Failing Plaintexts - Non Generic (FFP-
NG)2 and Find Failing Plaintexts - No Key (FFP-NK), are prerequisites for the
results of [14] to be applicable, the alternative being to revert to a manifestly non-
tight analysis of decryption failures [16]. While FFP-NK is statistical in nature
and can be taken care of by characterizing mean and variance of a decryption-
error-related probability distribution [14], FFP-NG will rely on a computational
assumption for PKEs with approximate correctness. As a consequence, FFP-
NG security should be analyzed for any approximately correct post-quantum
PKE to ensure applicability of the tighter analysis of decryption failures from
[14], through cryptanalysis or a security reduction to a well-studied quantum-
hard problem. It is important to note that FFP-NG security is independent of
IND-CPA security (see Section 3).

In this work, we give the first result in this direction: we prove the FFP-
NG security of the learning-with-errors-based (LWE-based) PKE introduced by
Peikert, Vaikuntanathan and Waters (the PVW PKE) assuming the hardness
of the LWE problem, when all LWE errors are drawn from a discrete Gaussian
distribution. The PVW PKE is a generalization of Regev’s original LWE-based
PKE [23] with improved efficiency. We use discrete Gaussians instead of rounded
Gaussians since they have better algebraic properties. In particular, under some
assumptions on the smoothing parameters of the lattices the random variables
are supported on, convolutions and marginal probabilities can be easily analyzed
as they are approximately distributed according to discrete Gaussian distribu-
tions as well. We use the modular framework introduced by Genise, Micciancio,
Peikert and Walter in [12] to make efficient use of this fact.

Our Result. We go on to give an informal description of our main result. We
prove the following security reduction.

Theorem 1 (Decision LWE =⇒ FFP-NG, Informal). Let A be an FFP-
NG adversary against the PVW encryption scheme with discrete Gaussian LWE
errors with standard deviation σ, denoted by Π. If the FFP-NG advantage of A is
non-negligible in the number of LWE secrets n in the secret key of Π, there exists
an adversary B that solves the Decision LWE problem with discrete Gaussian
error distribution with standard deviation σ̂ = σ/φ for any constant φ > 1.

Technical Overview. We provide an informal technical overview. To that end,
we need to describe the FFP-NG security game. In the FFP-NG game for a PKE
1 The reduction presented in [14] only applies if the underlying PKE is genuinely

randomized, i.e. if the ciphertexts have min-entropy (“gamma-spreadness”).
2 In [14] the security game is called Find Failing Plaintext that are Non Generic (FFP-

NG). Since the "Non Generic" refers to the fact that these plaintexts fail only for
specific keys, we change the name of the game keeping the acronym equal to stress
belonging to the FFP family.
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Π two key pairs (sk0, pk0) and (sk1, pk1) for Π are generated. The adversary
receives a public key pk0 as input. The adversary can then submit a message
together with a random tape for the (randomized) encryption algorithm. Now
a bit b ← {0, 1} is drawn at random, and the message is encrypted by using
public key pkb and the random tape provided by the adversary. Subsequently,
the resulting ciphertext is decrypted with key skb. If decryption fails to return
the original message, the adversary receives answer 1, otherwise answer 0. Finally
the adversary has to submit a guess b′ of b and wins if it is correct.

For the PVW PKE, the decryption error probability for any fixed pair of
message and randomness and a freshly generated key pair like (pk1, sk1) is neg-
ligible. Therefore the only way to win the FFP-NG game is to force a decryption
failure for the key pair (pk0, sk0).

For the PVW PKE, the encryption randomness determines the coefficients d
of the linear combination of the LWE samples from the public key that is used
to hide the message. To force PVW decryption to fail, intuitively speaking, an
adversary has to choose these coefficients such that the LWE errors build up
and do not cancel. Geometrically, the encryption randomness vector needs to be
aligned with the error vector, i.e. they need to have a large inner product.

The basic idea of our reduction is as follows. The reduction, trying to deter-
mine whether the input s is an LWE sample or uniformly random, adds a small
additional error e′ to the input. In case the input is an LWE sample, the result
s′ is an LWE sample with a slightly larger LWE error. In case the input it uni-
formly random, the result is uniformly random and independent of e′. Now the
reduction uses s′ to construct a public key for PVW and simulates the FFP-NG
game for the assumed successful adversary A. The crucial observation is now as
follows.

– In case s is an LWE sample, s′ is an LWE sample with an error vector that is
correlated with e′. As we have observed above, to win FFP-NG, A needs to
align its encryption randomness vector d with the error vector. This implies
that d will be somewhat aligned with e′.

– In case s is uniform, s′ and thus d are independent of e′, and thus not very
aligned.

The reduction can therefore detect whether d and e′ are significantly more
aligned than expected for independent random ones, and use the result to de-
cide the LWE problem. The main technical work lies in finding an appropriate
threshold for this decision criterion, and analyzing the joint distribution of the
different LWE errors to prove that the resulting decision LWE algorithm has
non-negligible advantage.

Additional Related Work. The idea of adding an additional error to an LWE
sample is used in the context of noise flooding [6]. In noise flooding, a much larger
error is added to an existing LWE sample to hide the original LWE error. This
technique is used whenever fine-grained decryption privileges for LWE-based
PKE are needed, e.g. for threshold cryptography [6,4,8,10] or electronic voting
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[3,2]. Our technique adds an error to an LWE sample with the very different goal
of recognizing that error at a later stage, rather than hiding the original error.

2 Preliminaries

In this section we include some notation and introduce some results that will
be helpful throughout the rest of the paper. In the rest of the paper we use
lowercase bold letters to denote vectors, capital bold letters to denote matrices,
and calligraphic capital letters to denote probability distributions.

2.1 Lattices

An n-dimensional lattice Λ is a discrete subgroup of Rn. Given a full rank matrix
B ∈ Rn×k, we denote the lattice generate by B as L (B) = {Bv | v ∈ Zk}. We
define the rank of the lattice L (B) as the rank of the matrix B. We say that
the lattice is full-rank if n = k, or, equivalently if B is invertible. We call B a
basis of the lattice. We can easily see that the basis B is not unique. Indeed,
for every unitary matrix U ∈ Zk×k, B′ = BU is another basis of the same
lattice. For every lattice Λ we can define another lattice, called the dual lattice,
as Λ∗ = {v ∈ span (Λ) | ⟨v, Λ⟩ ∈ Z}. Furthermore, if B is a basis of Λ, we have
that B−T is a basis of Λ∗. Let Λ ⊂ Rn be a lattice, we define a coset of Λ as a
set of the form Λ+v for any v ∈ Rn. We define a Λ-subspace as the linear span
of some set of lattice points, equivalently we can say that L is Λ-subspace if it
is a subspace and L = span (Λ ∩ L).

2.2 Probability notations

We introduce notations similar to those used in [12]. For any probability distri-
bution X over a set X, a predicate P on X and a function f : X → Y we denote
with J f (x) | x ← X , P (x)K for the probability distribution over Y obtained
by sampling x according to X , conditioning on x satisfying P , and outputting
f (x) ∈ Y . We write [P (x) | x← X ] to denote the event that P (x) is satisfied
when x is selected according to X , and use Pr [z ← X ] as an abbreviation for
X (z) = Pr [x = z | x← X ]. We write f (X ) = J f (x) | x← X K for the result of
applying a function to a probability distribution. We let UX denote the uniform
distribution over a finite set X and we write only U if the set is clear from the
context. Let X and Y be two probability distributions. We define the statistical
distance between X and Y such as

∆ (X ,Y) = sup
A

∣∣Pr [x ∈ A |x← X ]− Pr [y ∈ A |y ← Y ]
∣∣,

where the supremum is computed over all the measurable sets A. We also define
the max-log distance such as

∆ML (X ,Y) = sup
A

∣∣ log (Pr [x ∈ A |x← X ])− log (Pr [y ∈ A |x← Y ])
∣∣,

4



where, again, the supremum is taken over all the measurable sets A.
Let X , Y be two probability distributions defined over the same set and let
ε ∈ (0, 1). We write X ε

≈ Y if, for every z, X (z) ∈ [1− ε, 1 + ε] · Y (z) and
Y (z) ∈ [1− ε, 1 + ε] · X (z). In this case, if x is distributed according to X , we
will say that x is ε-distributed according to Y .
Given a function f (n), we say that f is negligible in n if

lim
n→∞

nc · f (n) = 0

for all c > 0. In this case we write f ∈ negl (n).

2.3 Discrete Gaussian

For any positive definite matrix Σ ∈M (n,R) and any vector x ∈ Rn, we denote
by

ρ√Σ (x) = e−πx
T
√
Σ

T√
Σx,

the probability density function of an n-dimensional Gaussian distribution with
mean 0 and covariance matrix Σ. If the covariance matrix is the identity matrix
I, we simply write

ρ (x) = e−π∥x∥
2

.

We denote with DA,
√
Σ the Gaussian distribution over the set A with covariance

matrix Σ. In particular, if Σ = σ2I is a scalar matrix, we just write DA,σ. For
any lattice Λ and any lattice coset A ⊂ Λ, we write

ρ√Σ (A) =
∑
x∈A

ρ√Σ (x) .

We define the discrete Gaussian distribution over the coset A with covariance
matrix Σ as

DA,
√
Σ =

ρ√Σ (x)

ρ√Σ (A)
.

For every value z ∈ Rn and a lattice Λ, we can also define the z-centered discrete
Gaussian distribution as z+DΛ−z,

√
Σ . We have introduced a probability distri-

bution over lattices and the following result is a tail bound for this distribution.

Lemma 1 (Tail Bound, [5] Lemma 1.5). For any c > 1/
√
2π and an n-

dimensional lattice Λ, we have the following bound

ρ
(
Λ \ c

√
nBn (0, 1)

)
< Cnρ (Λ) , (1)

where C = c ·
√
2πe · e−πc2 < 1 and Bn (0, 1) is the n-dimensional ball centered

in 0 with radius 1.
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By using the definition of discrete Gaussian DΛ, we can rewrite the bound as

Pr
[
|Z| > c

√
n
]
< Cn,

where Λ is an n-dimensional lattice, Z ← DΛ, and C = c ·
√
2πe · e−πc2 .

Now we define an important tool to study discrete Gaussian distributions, the
smoothing parameter.

Definition 1. For a lattice Λ and any ε > 0, we define the smoothing pa-
rameter ηε (Λ) to be the smallest value σ such that ρ1/σ (Λ∗ \ {0}) ≤ ε.

In other words, ηε (Λ) is the smallest σ such that a Gaussian measure scaled by
1/σ on the dual lattice gives all but ε/ (1 + ε) of its weight to the origin. Ob-
serve that the smoothing parameter just defined is a scalar. We can extend
this definition to matrices. For any positive definite matrix Σ, we say that
ηε (Λ) ≤

√
Σ, if ηε

(√
Σ
−1 · Λ

)
≤ 1. Equivalently, we say that ηε (Λ) ≤

√
Σ

if ρ
(√

Σ
T · Λ∗ \ {0}

)
= ρ√Σ−1 (Λ

∗ \ {0}) ≤ ε. We describe a useful bound for
the smoothing parameter in the following lemma.

Lemma 2 ([20] Lemma 3.3). For any n-dimensional lattice Λ and any ε > 0,
we have

ηε (Λ) ≤
√

ln (2n (1 + 1/ε))

π
· λn (Λ) ,

where λn (Λ) is the minimum length of a set of n linearly independent vectors
from Λ, that is the length of the longest vector in the set.
In particular, for Λ = Zn, we have

ηε (Zn) ≤
√

ln (2n (1 + 1/ε))

π
. (2)

Following again [12], we describe the convolution of two random variables X and
Y , defined over X and Y respectively, by using the statistical experiment where

x← X , y ← x+ YY−x.

We denote the resulting probability distribution simply with x + YY−x, every
time the distribution of x is clear from the context. The next two theorems pro-
vide properties of the sum of Discrete Gaussians and the conditioned probability
distributions. In the Chapter 3 we are going to use them often.

Theorem 2 (Sum of Gaussians and marginal distribution, [12] Theo-
rem 4.5). Let ε ∈ (0, 1), define ε̄ = 2ε/ (1− ε) and ε′ = 4ε/ (1− ε)

2, let A1,
A2 be cosets of full-rank lattices Λ1, Λ2, let Σ1, Σ2 be positive definite matrices
where ηε (Λ2) ≤

√
Σ2, and let

χ =

s
(x1, x2)

∣∣∣∣x1 ← DA1,
√
Σ1

, x2 ← x1 +DA2−x1,
√
Σ2

{
.
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If ηε (Λ1) ≤
√
Σ3, where Σ−13 = Σ−11 + Σ−12 is a positive definite matrix, then

the marginal distribution χ2 of x2 in χ satisfies

χ2
ε′

≈ DA2,
√
Σ1+Σ2

.

In any case, the distribution χx2
1 of x1 conditioned on any x2 ∈ A2 satisfies

χx2
1

ε̄
≈ x′2 +DA2−x′

2,
√
Σ3

,

where x′2 = Σ3Σ
−1
2 x2.

Theorem 3 (Linear combination of Gaussians, [12] Theorem 4.6). Let
ε ∈ (0, 1), let z ∈ Zm \ {0}, and for i = 1, . . . ,m let Λi be n-dimensional lattice
such that Λ∩ =

⋂m
i=1 Λi is full rank. Let further Ai = Λi + ai ⊂ Rn be a lattice

coset and Si ∈ Rn×n such that Ai ⊂ Spani (Si). If ηε
(
ker
(
zT ⊗ In

)
∩ Λ

)
≤ S,

where Λ = Λ1 × · · · × Λm and S = diag (S1, . . . , Sm) then

∆ML

(
m∑
i=1

ziDAi,Si
,DA′,S′

)
≤ log

1 + ε

1− ε
,

where A′ =
∑m

i=1 ziAi and S′ =
√∑m

i=1 z
2
i SiST

i .
In particular, let each Si = siIn for some si > 0, if((

zj
sj

)2

+max
i ̸=j

(
zi
si

)2
)−1/2

≥ ηε (Λ∩)

where j minimizes |zj/sj | ≠ 0. Then

∆ML

(
m∑
i=1

ziDAi,si ,DA′,s′

)
≤ log

1 + ε′

1− ε′
,

where s′ =
√∑m

i=1 (zisi)
2 and 1 + ε′ = (1 + ε)

m.

Observe that, in the theorem above we make use of the isomorphism between
(Rn)m and Rn ⊗ Rm, with Zm ⊂ Rm naturally embedded.

2.4 Learning With Errors (LWE)

The Learning With Errors problem was first introduced by Regev in [23] and it
is one of the most promising problems used to build post-quantum cryptographic
protocols. Let p and n be integers, X a probability distribution on Zp and s ∈ Zn

p

be a vector. We define a probability distribution As,X on Zn
p × Zp obtained

by choosing uniformly at random a vector a ∈ Zn
p , sampling an error e ∈ Zp

according to X and outputting the pair (a, b), where b = ⟨a, s⟩+ e.
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Definition 2. Let p be an integer and X a probability distribution on Zp. Given
a pair (a, b) ∈ Zn

p × Zp, we define the Decision LWE problem with modulus p
and error distribution X as the problem of determine if the given pair has been
sampled according to As,X or uniformly at random from Zn

p × Zp.

We define a public key encryption scheme based on the LWE problem. The
scheme was first introduced by Regev in [23] and then improved by Peikert,
Vaikuntanathan and Waters in [22].
We present the latter scheme with discrete Gaussian as error distribution, called
PVWD, in Algorithm 1. Our notation is based on the presentation of the PVW
scheme in [20].

Algorithm 1 PVW PKE [22,20] with Discrete Gaussian error distribution
– Parameters: Integers n,m, ℓ, t, r, p and a real number α > 0.
– Private Key: Choose S ∈ Zn×ℓ

p uniformly at random. The private key is S.
– Public Key: Choose A ∈ Zn×m

p uniformly at random and E ∈ Zℓ×m
p by choosing

each entry according to DZp,σ. Set B = STA + E. The public key is (A,B) ∈
Zn×m

p × Zℓ×m
p .

– Encryption: Given an element of the message space v ∈ Zℓ
t and a public key

(A,B), choose a vector d ∈ {−r, . . . , r}m uniformly at random. Set u = Ad and
c = Bd+ ⌊(p/t)v⌉. The ciphertext is (u, c) ∈ Zn

p × Zℓ
p.

– Decryption: Given a ciphertext (u, c) ∈ Zn
p × Zℓ

p and a private key S ∈ Zn×ℓ
p ,

output ⌊(t/p)
(
c− STu

)
⌉.

2.5 Find Failing Plaintext - Non Generic (FFP-NG)

In [14] the authors introduce a novel framework to analyze the impact of decryp-
tion failures on the security of Public Key Encryption schemes. They introduce
the family of security games Find Failing Plaintext (FFP). We are mainly
interested in one member of the family, Find Failing Plaintext - Non Generic
(FFP-NG). In this game an adversary A is provided with a public key and
should find a message-randomness pair that triggers a decryption failure more
likely with the respect to the key that A sees than with respect to an inde-
pendent key pair. In [13], Hofheinz et al. introduce a correctness game, called
COR, that aims to describe how to handle with decryption failure. This game
looks unnatural in most contexts, due to the fact that the game provides the
adversary a secret key. In contrast to the COR game, the FFP-NG game pro-
vides the adversary only a public key and one query to the Failure Checking
Oracle (FCO). This game allows to analyze the hardness of finding meaningful
decryption failures independently from the hardness of searching a random or-
acle for them. We define the FFP-NG game as shown in the Algorithm 2. In
this game, the adversary A gets a public key pk0 and it is allowed to query a
single message-randomness pair to the Failure Checking Oracle, that is given
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Algorithm 2 FFP-NG game against a PKE Π = (KeyGen,Enc,Dec)

1: (sk0, pk0)← KeyGen
2: (sk1, pk1)← KeyGen
3: b← {0, 1}
4: b′ ← AFCOb (pk0)
5: return Jb = b′K

6: FCOb (v; d) ▷ One query
7: c← Enc (pkb, v; d)
8: v′ := Dec (skb, c)
9: return Jv ̸= v′K

access to the key pair (skb, pkb). We want to highlight that the two key pairs are
independent from each other. By using this game we can define the advantage
of the adversary A against a PKE scheme Π = (KeyGen,Enc,Dec) as

AdvFFP-NG
A,Π =

∣∣∣∣Pr [FFP-NGA,Π = 1]− 1

2

∣∣∣∣.
3 Initial Characterization of FFP-NG

In this section we describe some more or less straightforward properties of FFP-
NG security. The results in this section are independent of the remainder of
the paper and are meant to record a more complete characterization picture for
FFP-NG, and motivate the result in Section 4.

We begin by observing that the notion is trivially achievable.

Proposition 1. Any PKE that has perfect correctness is FFP-NG secure.

While it is calming to note that the security definition is not vacuous, the above
proposition is also useless, as the entire motivation for the introduction of FFP-
NG security is dealing with PKE without perfect correctness.

Another important observation is that FFP-NG security is indeed indepen-
dent from the standard security notions for PKE, i.e. IND-CPA and OW-CPA.3
This is quite intuitive as well, as the FFP-NG crucially allows the adversary to
control the encryption randomness, which the adversary has no control over in
the IND-CPA or OW-CPA security games.

Proposition 2. 1. There exists a PKE Π that is OW-CPA-insecure but FFP-
NG-secure.

2. Assuming the existence of IND-CPA-secure PKE, there exists a PKE Π ′

that is IND-CPA-secure but FFP-NG-insecure.

Proof. The first part follows from the existence of OW-CPA-insecure perfectly
correct PKE and Proposition 1. To see the second part, let Π̃ = (Gen, Ẽnc,Dec)

3 In this short section we use standard definitions of IND-CPA and OW-CPA. As they
only appear in this section which stands independent from the main results of the
paper, we refrain from stating these definitions.
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be an IND-CPA-secure, perfectly correct PKE. Without loss of generality, as-
sume that Ẽnc uses a random tape r that is longer then Π̃’s public keys. Now
define

Encpk(m; r) =

{
Ẽncpk(m̄; r) if pk is a prefix of r
Ẽncpk(m; r) else,

and set Π ′ = (Gen,Enc,Dec). Here, m̄ = m ⊕ 1 . . . 1 is m with all bits flipped.
The IND-CPA security of Π̃ implies in particular that Π̃ is secure against key
recovery. Therefore the length of pk needs to be superlogarithmic in the security
parameter. It follows that Π ′ is still IND-CPA secure despite the “puncture”,
as the chance of the first case being active in any given IND-CPA game is
negligible. Π ′ is, on the other hand, not FFP-NG secure due to the following
simple adversary: On input pk, submit the all-zero message and pk padded with
zeroes as randomness to the failure checking oracle FCO. Then output the bit
received from the FCO.

⊓⊔

4 Reduction from LWE to FFP-NG

In this section we describe a security reduction from the LWE problem to winning
the FFP-NG game against the PVWD scheme described in Algorithm 1. We
recall that the error for all LWE samples is sampled from discrete Gaussians.
We begin by building some intuition. We show that an adversary needs to make
use of the input public key.

Proposition 3. Let Π be the PVWD encryption scheme from Algorithm 1 and
let A be an FFP-NG adversary against Π. If A chooses the message-randomness
pair (v,d) independent of the given key pk0 then

AdvFFP-NG
A,Π = 0.

Proof. Let’s recall that by definition the advantage of A is

AdvFFP-NG
A,Π =

∣∣∣∣Pr [FFP-NGAΠ = 1
]
− 1

2

∣∣∣∣.
Thus, we can equivalently prove that Pr

[
FFP-NGAΠ = 1

]
= 1/2. If A chooses

(v,d) independent of the given public key pk0, the probability of decryption
failure is the same no matter A uses FCO0 or FCO1, that is

Pr [FCOb (v,d) = 1|b = 0] = Pr [FCOb (v,d) = 1] = Pr [FCOb (v,d) = 1|b = 1] ,

Pr [FCOb (v,d) = 0|b = 0] = Pr [FCOb (v,d) = 0] = Pr [FCOb (v,d) = 0|b = 1] .

Thanks to these equations we can say that each input A gets is independent of b.
Thus, also the output ofA is independent of b, that is Pr

[
FFP-NGAΠ = 1

]
= 1/2.

⊓⊔
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In words, the adversary has to use the public key it receives as input in order to
win the game. As part of the proof of the main theorem, we will show that the
only strategy the adversary can use is to find a message-randomness pair that
triggers a decryption failure with higher probability with respect to the input
key than with respect to an independent key pair.

At a high level, the security reduction works as follows. Let A be an attacker
that wins the FFP-NG game for PVWD for some error size σ with noticeable
probability. We construct an algorithm that solves the decision LWE problem for
a slightly smaller error size σ̂. The algorithm samples an additional error with
size σ′ =

√
σ2 − σ̂2 and adds it to its input s which is either an LWE sample

(“real”) or uniform (“random”). Let the result be s′. In the real case, s′ is almost
exactly an LWE sample with error size σ. In the random case, on the other hand,
adding an independently sampled error to a uniformly random value just yields
a uniformly random value. The purpose of adding additional noise is, in some
sense, opposite to the so-called noise flooding technique [6]: while noise flooding
has the goal of hiding the original error, the goal of adding an additional error
here is to obtain partial knowledge about the error. The algorithm now simulates
the adversary A, using s′ as public key. It will then correlate the encryption
randomness the adversary submits to the failure checking oracle with the added
noise. In the random case, the noise and encryption randomness are manifestly
independent and thus uncorrelated. In the real case, on the other hand, the
adversary will likely cause a decryption failure by the assumption that it wins
the FFP-NG game. This, however, is only possible if the encryption randomness
is aligned with the LWE error, which means it is correlated with the added noise.

The main result is given in Theorem 4. Unless stated differently, we assume
the conditions on parameters p,m, ℓ, r, t, α, σ of the LWE scheme and the con-
stant φ given in Table 1. To work with column vectors instead of row vectors,

Conditions on parameters
r ≥ 1
t ≥ 2
ℓ = 1
m = nc, with 1 < c < 2
p ≥ 2mtr ln (n), with p a prime number
1 < φ < min{

√
m/10,m1/4}

α =
√
π

4mrt

σ = pα

Table 1. Conditions assumed for the parameters of the PVWD scheme in our reduction.

we slightly modify the notation used in Algorithm 1 as described in Algorithm
3.

Theorem 4 (Decision LWE =⇒ FFP-NG). Let n, t, r, ℓ,m, p, α, σ as stated
in Table 1. Let A be an FFP-NG adversary against the PVWD encryption

11



Algorithm 3 LWE-based PKE scheme for ℓ = 1

– Parameters: Integers n,m, t, r, p and a real number α > 0.
– Private Key: Choose s ∈ Zn

p uniformly at random. The private key is s.
– Public Key: Choose A ∈ Zn×m

p uniformly at random and e ∈ Zm
p by choosing

each entry according to DZp,σ. Set b = AT s + e. The public key is (A,b) ∈
Zn×m

p × Zm
p .

– Encryption: Given an element of the message space v ∈ Zt and a public key
(A,b), choose a vector d ∈ {−r, . . . , r}m uniformly at random. Set u = Ad and
c = ⟨b,d⟩+ ⌊(p/t)v⌉. The ciphertext is (u, c) ∈ Zn

p × Zp.
– Decryption: Given a ciphertext (u, c) ∈ Zn

p ×Zp and a private key s ∈ Zn
p , output

⌊(t/p) (c− ⟨s,u⟩)⌉.

scheme, with error distribution DZp,σ, denoted by Π. If the FFP-NG advantage
AdvFFP−NG

Π (A) ≥ δ is non-negligible in n, there exists an adversary B that
solves the Decision LWE problem with error distribution DZp,σ̂, for σ̂ = σ/φ
such that

AdvFFP-NG
Π (A) ≤ AdvLWE

Π (B) + Γ (n, φ), (3)

where Γ (n, φ) ∈ negl(n).

We provide an explicit bound for Γ (n, φ) in Appendix A, illustrating the trade-
off between the loss in LWE modulus-to-noise ratio, φ, and the advantage loss,
of the reduction.

Before proving Theorem 4, we need three main ingredients. In Lemma 3 we
determine a sufficient condition to get a decryption failure. In Lemma 4 we show
that the reduction modulo p of a specific discrete Gaussian random variable does
not affect the discrete value with overwhelming probability. In Lemma 5, under
the assumption that the randomness d is independent of the error e, we bound
the tail of the distribution of

∣∣⟨e,d⟩∣∣.
The following lemma describes a sufficient condition and a necessary condi-

tion to get a decryption failure.

Lemma 3 (Decryption failure conditions). Let v ∈ Zt be a message, e ←
DZm,σ, d ← {−r, . . . , r}m and w be the integer that satisfies 1

2w+1 ≤ t
p < 1

2w .
The two following facts are true

1. If
∣∣⟨e,d⟩∣∣ > p

2t

(
1 + 1

2w

)
=⇒ a decryption failure occurs.

2. If a decryption occurs =⇒
∣∣⟨e,d⟩∣∣ > p

2t

(
1− 1

2w

)
.

then a decryption failure occurs.

Proof. Part 1. We use the assumption on w to prove that∣∣∣∣ tp
⌊
p

t
v

⌉
− v

∣∣∣∣ < 1

2w+1
.

12



Indeed, we have∣∣∣∣ tp
⌊
p

t
v

⌉
− v

∣∣∣∣ = t

p

∣∣∣∣⌊pt v
⌉
− p

t
v

∣∣∣∣ < 1

2w

∣∣∣∣⌊pt v
⌉
− p

t
v

∣∣∣∣ ≤ 1

2w+1
.

The first inequality follows from the definition of w and last inequality follows
directly from the definition of ⌊·⌉. Now we prove the statement. We have∣∣∣∣ tp ⟨e,d⟩+ t

p

⌊
p

t
v

⌉
− v

∣∣∣∣ ≥ ∣∣∣∣∣∣∣∣ tp ⟨e,d⟩
∣∣∣∣− ∣∣∣∣ tp

⌊
p

t
v

⌉
− v

∣∣∣∣∣∣∣∣ > ∣∣∣∣12 +
1

2w+1
− 1

2w+1

∣∣∣∣ = 1

2

where the first inequality is the reverse triangle inequality, while in the second
we use both the hypothesis and the inequality proved above. This means that a
decryption failure occurs.
Part 2. We assume that a decryption failure occurs. This means that, given a
message v ∈ Zt, we have ∣∣∣∣ tp ⟨e,d⟩+ t

p

⌊
p

t
v

⌉
− v

∣∣∣∣ ≥ 1

2
.

By using the triangle inequality and the definition of rounding we have∣∣∣∣ tp ⟨e,d⟩+ t

p

⌊
p

t
v

⌉
− v

∣∣∣∣ ≤ t

p

∣∣⟨e,d⟩∣∣+ t

p

∣∣∣∣⌊pt v
⌉
− p

t
v

∣∣∣∣ ≤ t

p

∣∣⟨e,d⟩∣∣+ t

2p
.

By putting together the inequalities and by using the definition of w we have

t

p

∣∣⟨e,d⟩∣∣+ t

2p
>

1

2
⇐⇒

∣∣⟨e,d⟩∣∣ > p

2t

(
1− t

p

)
=⇒

∣∣⟨e,d⟩∣∣ > p

2t

(
1− 1

2w

)
.

⊓⊔

Now, we prove that we can ignore the reduction modulo p. Assume the reduction
modulo p returns elements in {−p−1

2 , . . . , p−1
2 }. In this case, if we can prove

that a random variable assumes values outside
[
−p−1

2 , . . . , p−1
2

]
with negligible

probability, we can ignore the effect of the reduction modulo p.

Lemma 4 (Ignoring reduction modulo p). Let X be a random variable. If
X ∼ DZ,σ, then

Pr

[
|X | > p− 1

2

]
≤ p− 1

2σ

√
2πe · e−π(

p−1
2σ )

2

, (4)

that is negligible in n.

Proof. We want to use the tail bound given in Equation 1, thus we must check
that (p− 1) /2σ > 1/

√
2π. By using the definition of σ and α

p− 1

2σ
>

1√
2π

⇐⇒ p− 1 >
2pα√
2π

⇐⇒ p− 1 >
p

2
√
2mrt

.

13



Since p > 2 and mrt ≥ 2nc, we get

p− 1 >
p

4
√
2nc
≥ p

2
√
2mrt

,

Now, we observe that for any positive number s > 0 and lattice Λ, we can define
the lattice Λ′ = Λ/s. Thus, for every x

Pr [DΛ,s = sx] =
ρs (sx)

ρs (Λ)
=

ρ (x)

ρ (Λ′)
= Pr [DΛ′ = x] .

Then, by taking X ′ ∼ DZ/σ, we get

Pr

[∣∣X ∣∣ > p− 1

2

]
= Pr

[∣∣X ′∣∣ > p− 1

2σ

]
.

We can apply Equation 1 and get

Pr

[
|X ′| > p− 1

2σ

]
< C ,where C =

p− 1

2σ

√
2πe · e−π(

p−1
2σ )

2

.

We only need to check that p−1
2σ ∈ ω (ln (n)) (throughout the paper, when we

check a limit of a function of n, we want the function to diverge faster than
ln (n). In this way we can guarantee that our bounds are negligible in n). This
is easily done by noticing that

lim
n→∞

p− 1

2σ ln (n)
= lim

n→∞

4 (p− 1)

2p
· mrt

ln (n)
√
π

≥ lim
n→∞

mrt

ln (n)
√
π
,

where for the inequality we have observed that p ≥ nc′ for some constant c′ and
thus p ≥ 2 for sufficiently large n. Since r, t and φ are constants and m = nc

with c > 1, it follows that

lim
n→∞

p− 1

2σ ln (n)
=∞.

Thanks to this, we get

p− 1

2σ

√
2πe · e−π(

p−1
2σ )

2

∈ negl (n) .

⊓⊔

The previous lemma guarantees that we can ignore the reduction modulo p.
Indeed, with overwhelming probability, it will not affect the result. Looking
ahead, we can use this to allow sampling from Zm and viewing the result as an
element of Zm

p in the proof of Theorem 4, bearing in mind that the difference is
negligible.
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We want to show the only strategy A can use to win the FFP-NG game is to
return a message-randomness pair (v,d) for which the probability of obtaining
a decryption failure is higher with respect to the public key A sees than with
respect to an independent public key. To do so, we first show that the probability
of getting a decryption failure for an independent public key is negligible in n.
Let w be the integer such that 1

2w+1 ≤ t
p < 1

2w . Recall the sufficient condition
for a decryption failure from Lemma 3.

Lemma 5 (Randomness independent of the error). Given an error e ←
DZm,σ, and a randomness d← {−r, . . . , r}m. If the randomness d is independent
of the error e, then

Pr
e←DZm,σ

d∼U

[
|⟨e,d⟩| ≥ p

2t

(
1− 1

2w

)]
∈ negl (n) .

Proof. During this proof we write Pr[·], implicitly saying that the probability
is taken over e ← DZm,σ and d ∼ U . Since e and d are independent, we want
to apply Theorem 3 to show that ⟨e,d⟩ is ε-distributed according to DZ,σ∥d∥,
for some ε negligible in n. By using the same notation of Theorem 3, we set
z = d, for i = 1, . . . ,m we define Ai = Λi = Z and si = σ. Since all random
variables are sampled from the same probability distribution, we know that
Λ∩ = Λ1 ∩ . . .∩Λm = Z is full rank. We define j to be the index that minimizes
|dj | ≠ 0. To apply the theorem we must show((

dj
σ

)2

+max
i ̸=j

(
di
σ

)2
)− 1

2

≥ ηε (Z) . (5)

Using Theorem 2, we show below that((
dj
σ

)2

+max
i ̸=j

(
di
σ

)2
)− 1

2

≥
√

ln (2 (1 + 1/ε))

π
.

Since d← {−r, . . . , r}m, we can write((
dj
σ

)2

+max
i̸=j

(
di
σ

)2
)− 1

2

=

(
(σ)
−2
(
d2j +max

i ̸=j
d2i

))− 1
2

= σ

(
d2j +max

i̸=j
d2i

)− 1
2

≥ pα√
2r

=
p

4mr2t

√
π

2

≥ ln (n)

2r

√
π

2
.
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In the first inequality we exploit that di, dj < r and the definition of σ. The
last inequality follows from the assumption that p ≥ 2mtr ln (n). We see if the
inequality is satisfied for value of ε that are negligible in n

ln (n)

2r

√
π

2
≥
√

ln (2 (1 + 1/ε))

π
⇐⇒ ε ≥ 2

e
π2

8r2
ln (n)2 − 2

that is negligible in n.

Now, we apply Theorem 3 to say that ⟨e,d⟩
ε′

≈ DZ,σ∥d∥. We have

Pr

[
|⟨e,d⟩| ≥ p

2t

(
1− 1

2w

)]
≤ (1 + ε′) · Pr

[
|Z| ≥ p

2tσ∥d∥

(
1− 1

2w

)]
where Z ← DZ/(σ∥d∥). To apply Lemma 1 we must show

p

2tσ∥d∥

(
1− 1

2w

)
≥ 1√

2π
.

To get a useful bound, we also have to check that

p

2tσ∥d∥

(
1− 1

2w

)
∈ ω (ln (n)) .

By using the definition of σ and α, we can write

lim
n→∞

p

2tσ∥d∥ ln (n)

(
1− 1

2w

)
= lim

n→∞

2mr

ln (n)∥d∥
√
π
·
(
1− 1

2w

)
. (6)

Since ∥d∥ ≤ r
√
m and m = nc for c > 1, the first factor goes to infinity, while

the term in brackets is in between 1/2 and 1. Finally, we apply Lemma 1 and
get

Pr

[
|⟨e,d⟩| ≥ p

2t

(
1− 1

2w

)]
< (1 + ε′)

p
√
2πe

2tσ∥d∥

(
1− 1

2w

)
· e−π(

p
2tσ∥d∥ (1−

1
2w ))

2

= (1 + ε′)
2
√
2emr

∥d∥

(
1− 1

2w

)
· e−π

(
2mr

∥d∥
√

π (1−
1

2w )
)2

< (1 + ε′)
2
√
2emr

∥d∥
· e−π

(
2mr

∥d∥
√

π (1−
1

2w )
)2

that is negligible in terms of n. Indeed

2
√
2emr

∥d∥
= 2
√
2er

nc

∥d∥
< 2
√
2ernc.

Finally,

e
−π

(
2mr

∥d∥
√

π (1−
1

2w )
)2

∈ e−ω((lnn)2)

thanks to Equation (6).
⊓⊔
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Now, we analyze the winning probability of an FFP-NG adversary A against the
LWE-based PKE Π. We describe an equivalent version of the FFP-NG game,
called FFP-NG′, where A = (A0,A1). We describe the details in Algorithm 4.
We make explicit the intermediate state st between the algorithms A0 and A1.

Algorithm 4 Game FFP-NG′ equivalent to FFP-NG game against a PKE Π

1: (sk0, pk0)← KeyGen
2: (sk1, pk1)← KeyGen
3: (v,d, st)← A0 (pk0)
4: b← {0, 1}
5: F0 = FCO0 (v,d)
6: F1 = FCO1 (v,d)
7: b′ ← A1 (st, Fb)
8: return Jb = b′K

By using this game we write

Pr [FFP-NGA,Π = 1] =Pr [FFP-NG′A,Π = 1] =

1

2

∑
Pr [FFP-NG′A,Π = 1| (b, F0, F1)] Pr [(F0, F1) |b]

where the summation is over (b, F0, F1) ∈ {0, 1}3. If F0 = F1 we have

Pr [0← A1 (st, Fb) | (b, F0, F1)] = Pr [0← A1 (st, Fb) | (F0, F1)] ,

Pr [1← A1 (st, Fb) | (b, F0, F1)] = Pr [1← A1 (st, Fb) | (F0, F1)] .

In this case we have

Pr [FFP-NG′A,Π = 1| (F0, F1)]

=
1

2

(
Pr [0← A1 (st, Fb) | (b = 0, F0, F1)] + Pr [1← A1 (st, Fb) | (b = 1, F0, F1)]

)
=

1

2

(
Pr [0← A1 (st, Fb) | (b = 0, F0, F1)] + 1− Pr [0← A1 (st, Fb) | (b = 1, F0, F1)]

)
=

1

2
.

Thus, if F0 = F1 the adversary can only guess. Furthermore, thanks to Lemma
5 we know that Pr [F1 = 1] is negligible in n. This implies that

Pr [FFP-NG′A,Π = 1| (F0, F1)] Pr [F0 = 0, F1 = 1] ≤ Pr [F1 = 1]

is negligible in n. We have just shown that the only possible strategy the adver-
sary A can carry out to have a non-negligible advantage is to try to output a
message-randomness pair that triggers a decryption failure with respect to the
public key A sees. From now on, we can assume this without loss of generality.
We are ready to define the adversary B against the Decision LWE and prove
Theorem 4.
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Proof (of Theorem 4). By using the decryption failure condition described in
Lemma 3, we define the adversary B as described in Algorithm 5.

Algorithm 5 Adversary against the Decision LWE problem
Input: the public key pk = (A,b), where A ∈ Zn×m

p and b ∈ Zm
p .

Output: b← {0, 1}.
1: Let φ > 1

2: e′ ← DZm
p ,σ′ , where σ′ = σ

√
1− 1

φ2

3: pk′ ← (A,b+ e′)
4: (v,d)← A (pk′)

5: k = p∥d∥
4rt

√
5

6m

6: if |⟨e′,d⟩| ≥ p
2t

(
1− 1

2w

)
− k then

7: return 1 ▷ LWE Distribution
8: else
9: return 0 ▷ Uniform Distribution

10: end if

To proving that B solves the decision LWE problem we need to show that∣∣∣∣ Pr
(A,b)←As,DZmp ,σ̂

[B (A,b) = 1]− Pr
(A,b)←U

[B (A,b) = 1]

∣∣∣∣
is non-negligible in n. By the definition of B, this is equivalent to prove that∣∣∣∣ Pr

(A,b)←As,DZmp ,σ̂

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
− Pr

(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

] ∣∣∣∣ (7)

is non-negligible in n. We analyze the two terms separately. In Lemma 6 we
show that the second term of Equation (7) is negligible in n, while in Lemma
7 we show that the first term of Equation (7) is non-negligible in n. Putting
together the two results, we prove that the absolute difference in Equation (7) is
non-negligible in n. In Appendix A we also provide the analysis of the negligible
function Γ (n, φ) and how to get the inequality described in Equation 3.

⊓⊔
We first study the second term of Equation (7) and show the following result.

Lemma 6. Let e′ ∼ DZm,σ be an error, and d← {−r, . . . , r}m be a randomness.
If (A,b) is sampled uniformly at random, then

Pr
(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
∈ negl (n) . (8)
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Proof. The proof of Lemma 6 is the same as the proof of Lemma 5. Indeed,
being (A,b) chosen uniformly at random, we get that e′ and d are independent.
The only other two differences are that we use a slightly different probability
distribution and now our tail is shorter. Instead of sampling from DZm

p ,σ, we
sample e′ from DZm

p ,σ′ and, instead of considering values ≥ p
2t

(
1− 1

2w

)
, we

consider values ≥ p
2t

(
1− 1

2w

)
− k.

Now we analyze the first term of Equation (7) and prove the following result.

Lemma 7. Let e′ ∼ DZm,σ be an error, and d← {−r, . . . , r}m be a randomness.
If (A,b) is sampled according to As,DZmp ,σ̂

, then

Pr
(A,b)←As,DZmp ,σ̂

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
̸∈ negl (n) . (9)

Proof. From now on, unless explicitly written, we will denote Pr
(A,b)←As,DZmp ,σ̂

[·]

by Pr [·]. Let b̃ be the bit in the FFP-NG′ game. Thus, the adversary A gets the
public key pkb̃ in the FFP-NGAΠ game. We have

Pr

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
=

Pr

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
+

Pr

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 1

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 1

]
+

Pr

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 0

]
Pr
[
FFP-NGAΠ = 0

]
≥

Pr

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
.

We define the error e = e′ + ê, this is the error in the public key the adversary
A receives as input. Note that, by the assumption that A wants to obtain a
decryption failure for the key it sees and since we are conditioning on A winning
the game, we have that

FFP-NGAΠ = 1 ∧ b̃ = 0 =⇒
∣∣⟨e,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
.

We can use this observation and the fact that e = e′ + ê to say

Pr

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
≥

Pr

[∣∣⟨ê,d⟩∣∣ ≤ k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
.
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Instead of proving Equation (9), we can prove that the latter probability is
non-negligible in n or, equivalently, we can show that

Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
∈ negl (n) .

By assumption, the FFP-NG advantage of A is greater then a non-negligible
value, namely δ. We can show that Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
≥ δ as well.

Indeed, we have

1

2
+ δ ≤ 1

2
+ AdvFFP-NG

A,Π

= Pr
[
FFP-NGAΠ = 1

]
= Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 1

]
+ Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
=

1

2
Pr
[
FFP-NGAΠ = 1

∣∣b̃ = 1
]
+ Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
=

1

2

(
1− Pr

[
FFP-NGAΠ = 0

∣∣b̃ = 1
])

+ Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
≤ 1

2
+ Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
. (10)

For the first inequality we use the assumption on AdvFFP-NG
A,Π . For the third

equality we use

Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 1

]
= Pr

[
FFP-NGAΠ = 1

∣∣b̃ = 1
]
Pr
[
b̃ = 1

]
and Pr

[
b̃ = 1

]
= 1/2. The last inequality is simply due to(

1− Pr
[
FFP-NGAΠ = 0

∣∣b̃ = 1
])
≤ 1.

By comparing the left hand side and the last right hand side of the chain of
inequality above, we get exactly what we want. Now, if we show that

Pr
[∣∣⟨ê,d⟩∣∣ > k

]
∈ negl (n)

we get that

Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]

=
Pr
[∣∣⟨ê,d⟩∣∣ > k ∧ FFP-NGAΠ = 1 ∧ b̃ = 0

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
≤1

δ
Pr
[∣∣⟨ê,d⟩∣∣ > k ∧ FFP-NGAΠ = 1 ∧ b̃ = 0

]
≤1

δ
Pr
[∣∣⟨ê,d⟩∣∣ > k

]
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is negligible in n as well. For the first inequality we have used Equation (10).
We go on to show that

Pr
[∣∣⟨ê,d⟩∣∣ > k

]
∈ negl (n) . (11)

Recall that e = ê + e′, where ê ← DZm,σ̂ and e′ ← DZm,σ′ . We want to prove
that e is ε-distributed according to DZm,

√
(σ̂)2+(σ′)2

, for some ε negligible in
n. We thus analyze the probability distribution of ê conditioned on e, since
we know that ê − e − d is a Markov chain. Theorem 2 gives us both answers.
Each coordinate of e′ and ê are independent, thus we can set Σ1 = (σ̂)

2 · Im,
Σ2 = (σ′)

2 · Im, A1 = A2 = Λ1 = Λ2 = Zm. This implies Λ∩ = Zm. We denote

A = A1 + A2 = Zm and Σ = σ2 · Im, with σ =

√
(σ̂)

2
+ (σ′)

2. To apply the
theorem we must prove that

σ̄ ≥ ηε (Zm) and σ′ ≥ ηε (Zm)

where σ̄ = σ

√
φ2−1
φ2 and Σ3 = (σ̄)

2 · Im.
By using again Theorem 2, we can show that

σ̄ ≥
√

ln (2m (1 + 1/ε))

π
and σ′ ≥

√
ln (2m (1 + 1/ε))

π
.

We are going to show computations only for one of the two, the other is the
same. By using the definition of σ′ and the condition on p in Table 1 we show

σ′ =
p

4φmrt

√
π (φ2 − 1) ≥ ln (n)

2φ

√
π (φ2 − 1).

We verify the inequality

ln (n)

2φ

√
π (φ2 − 1) ≥

√
ln (2m (1 + 1/ε))

π
⇐⇒

ln (n)
2

4φ2
π
(
φ2 − 1

)
≥ ln (2m (1 + 1/ε))

π
⇐⇒

ε ≥ 2m

e
π2(φ2−1)

4φ2 ln(n)2 − 2m

.

In the first step, we just take the square of both sides of the inequality. In the
second step, we exponentiate both sides of the inequality and isolate ε. The right
hand side of the last inequality is negligible in n. The same is true for σ̄. Thus,
we can apply Theorem 2. By using the first part of the theorem we get

χ2
ε′

≈ DZm,
√

(σ′)2+(σ̂)2
= DZm,σ,

and we just need to notice that e← χ2. Thus, we can say that e is ε′-distributed
as DZm,σ.
By using the second part of the theorem we get

χe
1

ε̄
≈ ē

φ2
+DZm− ē

φ2 ,σ̄,
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and notice that χe
1 is the probability distribution of ê conditioned on e.

Now we want to set a threshold, θ, such that:

1. If ∥ē∥ < θ =⇒
∣∣⟨ê,d⟩∣∣ > k with negligible in n probability;

2. If ∥e∥ ≥ θ =⇒ e = ē with negligible in n probability.

We set

θ =
p

2rt

√
1

6m
.

Now we are ready to prove Equation (11). We can write

Pr
[∣∣⟨ê,d⟩∣∣ > k

]
=Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ ≥ θ

]
· Pr [∥e∥ ≥ θ]

+ Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ < θ

]
· Pr [∥e∥ < θ]

≤Pr [∥e∥ ≥ θ] + Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ < θ

]
.

We now analyze both terms separately and show they are both negligible in n.
We start with Pr [∥e∥ ≥ θ]. We can write

Pr [∥e∥ ≥ θ] ≤ (1 + ε′) Pr

[
∥Z∥ ≥ θ

σ

]
= (1 + ε′) Pr

[
∥Z∥ ≥

√
mθ√
mσ

]
with Z ← DZm/σ. We want to use again Equation 1, to do so, we need to check
that θ/ (

√
mσ) ≥ 1/

√
2π. By using the definitions of θ and σ, we get

θ

σ
√
m

=
4pmrt

2
√
6πpmrt

=

√
2

3π

≥ 1√
2π

.

So, Pr [∥e∥ ≥ θ] ∈ negl (n). Now we analyze the term

Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ < θ

]
We denote with Bm (0, θ) the open m-dimensional ball centered in 0 and with
radius θ. With this notation we can write

Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ < θ

]
=

∑
ē∈Bm(0,θ)

Pr

[∣∣⟨ê,d⟩∣∣ > k|
∣∣∣∣e = ē

]
Pr [e = ē] .
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We want to find a bound on Pr
[∣∣⟨ê,d⟩∣∣ ≥ k

∣∣e = ē
]

that does not depend on ē.
We have

Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣e = ē

]
= Pr

[∣∣⟨ê,d⟩ − 1

φ2
⟨ē,d⟩+ 1

φ2
⟨ē,d⟩

∣∣ > k

∣∣∣∣e = ē

]
≤ Pr

[∣∣∣∣〈ê− ē

φ2
,d

〉∣∣∣∣ > k − 1

φ2

∣∣⟨ē,d⟩∣∣∣∣∣∣e = ē

]
,

where the inequality is the triangle inequality. Since we are conditioning on e,
we know that d is independent from ê. We want to show that〈

ê− ē

φ2
,d

〉
is ε′-distributed according to

〈
ē

φ2
,d

〉
+DZ−⟨ē,d⟩/φ2,σ̄∥d∥

To do so, we want to use Theorem 3, so we have to check that((
dj
σ̄

)2

+max
i ̸=j

(
di
σ̄

)2
)− 1

2

≥
√

ln (2 (1 + 1/ε))

π
.

Computations are similar to what we have done to prove Equation (5). We can
now conclude by using for the last time the tail bound given in Equation (1)

Pr

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣e = ē

]
≤ (1 + ε′) Pr

[
1

σ̄∥d∥

∣∣∣∣〈ê− ē

φ2
,d

〉∣∣∣∣ > 1

σ̄∥d∥

(
k − 1

φ2

∣∣⟨ē,d⟩∣∣) ∣∣∣∣e = ē

]
≤ (1 + ε′)

1

σ̄∥d∥

(
k − 1

φ2

∣∣⟨ē,d⟩∣∣) · √2πe · e−π( 1
σ̄∥d∥

(
k− 1

φ2

∣∣⟨ē,d⟩∣∣))2

.

To apply the last inequality and to prove that it is negligible in n we have to
check that

1

σ̄∥d∥

(
k − 1

φ2

∣∣⟨ē,d⟩∣∣) ≥ 1√
2π

and
1

σ̄∥d∥

(
k − 1

φ2

∣∣⟨ē,d⟩∣∣) ∈ ω (ln (n)) .

We can prove it both only rearranging the term. First of all, by using the defi-
nitions of k, θ and σ̄, we get

1

σ̄∥d∥

(
k − 1

φ2

∣∣⟨ē,d⟩∣∣) ≥ 1

σ̄∥d∥

(
k − θ

φ2
∥d∥

)
=

1√
2π

[
2φ2

√
m

3 (φ2 − 1)

(√
5

2
− 1

φ2

)]
that belongs to ω (ln (n)), since m = nc, with c > 1. It is also easy to check that
the value is greater than 1/

√
2π. Indeed, we have[

2φ2

√
m

3 (φ2 − 1)

(√
5

2
− 1

φ2

)]
> 1
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since each factor is > 1. This shows that Equation (11) holds and consequently
proves the lemma.

⊓⊔

The proof can be generalized easily to the case 1 ̸= ℓ ∈ O (n). We switch again
to the notation used in Algorithm 1.

Theorem 5. Let n, t, r,m, p, α, σ as stated in Table 1 and ℓ ∈ O (n). Let A
be an FFP-NG adversary against the PVWD encryption scheme, with error
distribution DZp,σ, denoted by Π. If the FFP-NG advantage AdvFFP−NG

Π (A) ≥
δ is non-negligible in n, there exists an adversary B that solves the Decision
LWE problem with error distribution DZp,σ̂, for σ̂ = σ/φ such that

AdvFFP-NG
Π (A) ≤ AdvLWE

Π (B) + Γ̄ (n, φ),

where Γ̄ (n, φ) ∈ negl(n).

The structure of the proof of this theorem is essentially the same of Theorem 4.
We only highlight the main changes needed to prove this result. Since we work
with ℓ dimensional messages, we must change the condition to get a decryption
failure. We observe that both encryption and decryption are computed compo-
nent wise. Hence, if there is an index j such that |⟨ej ,d⟩| ≥ p

2t

(
1− 1

2w

)
, we get

a decryption failure on the j-th coordinate of the message. Thus, we can easily
describe a sufficient condition for decryption failure. Given an error E ∈ Zℓ×m

p

and randomness d ∈ {−r, . . . , r}m we have

1. if ∥Ed∥∞ ≥ p
2t

(
1 + 1

2w

)
=⇒ decryption failure occurs.

2. If a decryption failure occurs =⇒ ∥Ed∥∞ ≥ p
2t

(
1− 1

2w

)
.

To prove the equivalent of Lemma 6 and Lemma 7, we use the union bound and
the symmetry between the rows of the error matrix as follows

Pr

[
∥E′d∥∞ ≥

p

2t

(
1− 1

2w

)
− k

]
≤

ℓ∑
i=1

Pr

[∣∣⟨e′i,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
≤ ℓ · Pr

[∣∣⟨e′1,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
Observe that we reduce the problem to the ℓ = 1 case analyzed in Theorem 4.
Hence, the same argument can be used. The other change we need to do is the
definition of the threshold θ used in Lemma 7. To do so, we need to introduce
a matrix norm. For any matrix H we denote by ∥H∥ = maxi ∥Hi∥2, where Hi

is the i-th column of H. By using this norm, we can define the threshold θ that
satisfies the following two conditions

1. If ∥ĒT ∥ < θ =⇒
∥∥Êd

∥∥
∞ ≥ k with negligible in n probability;

2. If ∥ĒT ∥ ≥ θ =⇒ E = Ē with negligible in n probability.

Thanks to these modifications and the union bound, we can repeat the proof of
Theorem 4 to also prove Theorem 5. The analysis of Γ̄ (n, φ) is similar the one
in Appendix A.
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A Advantages in Theorem 4

In this section we provide all details needed to compute the advantage intro-
duced in Theorem 4. To lighten the notation we write Pr

(A,b)←LWE
[·] instead of

Pr
(A,b)←As,DZmp ,σ̂

[·]. We collect all computations that are involved in the analysis

of the advantage of the LWE adversary B and highlight the relation with the
advantage of the FFP-NG adversary A. Since in our reduction we are ignoring
the reduction modulo p the first loss comes from this choice. As stated in Lemma
4 the probability that we need the rounding, in this case negligible in n, can be
bounded as follows

Pr

[
|X | > p− 1

2

]
≤ p− 1

2σ

√
2πe · e−π(

p−1
2σ )

2

≤ 5mrt · e−π(
p−1
2σ )

2

≤ 5mrt · e−(mrt)2 .

where X ∼ DZ,σ. For the inequalities we have used the definition of σ, p > 2,
and 2

√
2e < 5. Since we deal with random variable over Zm, we can use the

union bound to get the loss of ignoring the rounding as

≤ 5m2rt · e−(mrt)2 ,

that is negligible in n. Ignoring the reduction modulo p, we can focus on the
advantage of the adversary B. By definition of advantage we have

AdvLWE
Π (B) =

∣∣∣∣ Pr
(A,b)←LWE

[B (A,b) = 1]− Pr
(A,b)←U

[B (A,b) = 1]

∣∣∣∣. (12)

By using the definition of B we can rewrite the advantage as∣∣∣∣ Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
− Pr

(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]∣∣∣∣.
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By following some computations in Lemma 7, we write

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
=

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
+

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 1

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 1

]
+

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 0

]
Pr
[
FFP-NGAΠ = 0

]
≥

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
.

We now use that e = e′ + ê and that we are conditioning on A winning the
FFP-NG game, we can write

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
≥

Pr
(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ ≤ k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
.

Recall that, by assumption, the advantage of A is non-negligible in n. Thanks
to this we have
1

2
+ AdvFFP-NG

Π (A) = Pr
[
FFP-NGAΠ = 1

]
= Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 1

]
+ Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
=

1

2
Pr
[
FFP-NGAΠ = 1

∣∣b̃ = 1
]
+ Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
=

1

2

(
1− Pr

[
FFP-NGAΠ = 0

∣∣b̃ = 1
])

+ Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
≤ 1

2
+ Pr

[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
.

In turn, we have shown that

Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
≥ AdvFFP-NG

Π (A) ,

that is non-negligible by assumption. Thanks to this equation we can write

Pr
(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ ≤ k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
Pr
[
FFP-NGAΠ = 1 ∧ b̃ = 0

]
≥

Pr
(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ ≤ k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
AdvFFP-NG

Π (A) =(
1− Pr

(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

])
AdvFFP-NG

Π (A) .
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Now, we collect all we have done so far

AdvLWE
Π (B) =

Pr
(A,b)←LWE

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
− Pr

(A,b)←U

[
⟨e′,d⟩

∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
≥

AdvFFP-NG
Π (A)− Pr

(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣FFP-NGAΠ = 1 ∧ b̃ = 0

]
AdvFFP-NG

Π (A)−

Pr
(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
≥

AdvFFP-NG
Π (A)− Pr

(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k
]
− Pr

(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
.

We can write

AdvFFP-NG
Π (A) ≤

AdvLWE
Π (B) + Pr

(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k
]
+ Pr

(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
.

In Lemma 6 we have shown that

Pr
(A,b)←U

[∣∣⟨e′,d⟩∣∣ ≥ p

2t

(
1− 1

2w

)
− k

]
≤ (1 + ε′)

√
2πe

σ′∥d∥

(
p

2t

(
1− 1

2w

)
− k

)
· e−π

(
1

σ′∥d∥ (
p
2t (1−

1
2w )−k)

)2

≤

√
φ2

φ2 − 1

10mr

∥d∥
· e−π

(
1

σ′∥d∥ (
p
2t (1−

1
2w )−k)

)2

≤

√
φ2

φ2 − 1

10mr

∥d∥
e
− φ2m

φ2−1

that is negligible in n. For the second and third inequality we have used the
definition of σ′ and k, w > 1, and 4 < 2

√
2e < 5. Here and in the following we

have, and repeatedly will, use ε′ ≤ 1. While, in Lemma 7 we have shown that

Pr
(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k
]
≤ Pr

(A,b)←LWE
[∥e∥ ≥ θ]+ Pr

(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ < θ

]
,

Analyzing the first term, we have

Pr
(A,b)←LWE

[∥e∥ ≥ θ] ≤ (1 + ε′)

(
θ
√
2πe√
mσ

· e−π
(

θ√
mσ

)2
)m

=(1 + ε′)

(
2√
3
· e− 1

6

)m

≤2
(

2√
3
· e− 1

6

)m
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that is negligible in n, since 2√
3
· e− 1

6 < 1. For the second one, we have

Pr
(A,b)←LWE

[∣∣⟨ê,d⟩∣∣ > k

∣∣∣∣∥e∥ < θ

]
≤ (1 + ε′)

1

σ̄∥d∥

(
k − 1

φ2

∣∣⟨ē,d⟩∣∣) · √2πe · e−π( 1
σ̄∥d∥

(
k− 1

φ2

∣∣⟨ē,d⟩∣∣))2

≤ (1 + ε′) 9φ2

√
m

φ2 − 1
· e−π

(
1

σ̄∥d∥

(
k− 1

φ2

∣∣⟨ē,d⟩∣∣))2

≤ (1 + ε′) 9φ2

√
m

φ2 − 1
· e
− φ4m

400(φ2−1)

≤18φ2

√
m

φ2 − 1
· e
− φ4m

400(φ2−1)

that is negligible in n. For the second and third inequality we have used the
definition of σ̄, θ and k, ε′ < 1, 4

√
(5e)/3 < 9, and

√
5/6 −

√
2/3 > 1/20. By

collecting the different bound we can define the function Γ as follows

Γ (n, φ) := 5m2rt · e−(mrt)2+√
φ2

φ2 − 1

10mr

∥d∥
e
− φ2m

φ2−1 + 2

(
2e−1/6√

3

)m

+ 18φ2

√
m

φ2 − 1
· e
− φ4m

400(φ2−1)
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