
INDIANA – Verifying (Random) Probing
Security through Indistinguishability Analysis

Christof Beierle1 , Jakob Feldtkeller1 , Anna Guinet1 , Tim Güneysu1,2 ,
Gregor Leander1 , Jan Richter-Brockmann1 , Pascal Sasdrich1 ,

1 Ruhr-University Bochum, Bochum, Germany
firstname.lastname@rub.de

2 DFKI GmbH, Bremen, Germany

Abstract. Despite masking being a prevalent protection against passive
side-channel attacks, implementing it securely in hardware remains a
manual, challenging, and error-prone process.

This paper introduces INDIANA, a comprehensive security verification
tool for hardware masking. It provides a hardware verification frame-
work, enabling a complete analysis of simulation-based security in the
glitch-extended probing model, with cycle-accurate estimations for leak-
age probabilities in the random probing model. Notably, INDIANA is the
first framework to analyze arbitrary masked circuits in both models, even
at the scale of full SPN cipher rounds (e.g., AES), while delivering ex-
act verification results. To attain precise and extensive verifiability, we
introduce a partitionable probing distinguisher that enables rapid ver-
ification of probe tuples, outperforming state-of-the-art methods based
on statistical independence. Most interestingly, our approach inherently
facilitates extensions to the random probing model by leveraging Fast
Fourier-Hadamard Transformations (FFTs).

Benchmark results show that INDIANA competes effectively with leading
probing model verification tools, such asmaskVerif and VERICA. Notably,
INDIANA is the first tool that is capable to provide cycle-accurate esti-
mations of random probing leakage probabilities for large-scale masked
circuits.

Keywords: Indistinguishability Analysis · Side-Channel Analysis · Prob-
ing Security · Random Probing Security · Security Verification · Discrete
Probability Distribution

1 Introduction

Ever since the discovery of Side-Channel Analysis (SCA) [34, 35], it has been
widely acknowledged that hardware implementations may inadvertently disclose
sensitive information while executing cryptographic algorithms.

While masking has been recognized as a sound and effective countermea-
sure, extensively applied in practice, its correct and secure implementation in
hardware circuits continues to pose a significant challenge. In particular, the

https://orcid.org/0000-0002-5558-0722
https://orcid.org/0000-0001-9797-1257
https://orcid.org/0000-0001-8753-1266
https://orcid.org/0000-0002-3293-4989
https://orcid.org/0000-0002-2579-8587
https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-5443-626X


2 Authors Suppressed Due to Excessive Length

abundance of proposed schemes [15, 27–31,33, 41, 43], along with a notable por-
tion proven to be vulnerable [38], bears witness to the fact that design and
implementation of hardware masking schemes still remains a complex, delicate,
and error-prone process.

To address this challenge in a systematic approach, formal definition of ad-
versary models [6, 19, 30, 42], security properties [4, 5, 16, 18], and architectural
conditions [6,20] is absolutely necessary. Instead, adhering to such formal crite-
ria is essential for streamlining, accelerating, and automating the evaluation of
implementation correctness and security.

Consequently, to assess the security of hardware circuits, particularly in the
context of masked implementations and passive implementation attacks, these
criteria are generally formalized and systematized in terms of leakage models.
In this context, a widely accepted model is the d-probing model, introduced
by Ishai, Sahai, and Wagner in 2003 [30], where the attacker’s view on leakage
is represented by the choice and exact knowledge of d intermediate variables.
This model was later complemented by Faust et al. [20] with consideration of
unintentional physical effects naturally occurring in modern CMOS technology,
e.g., glitches, transitions, and coupling effects.

Although probing-based leakage models have been shown to facilitate and ac-
celerate security reasoning, they occasionally fall short in accurately represent-
ing the intricacies of hardware circuits. Notably, these models neglect certain
aspects, such as horizontal attacks [8], which specifically exploit the repeated
manipulation of variables within iterative implementations. As a result, the re-
search community is increasingly leaning towards more realistic leakage models,
such as the random probing model [19, 30] where leakage is assumed to capture
the exact value carried by each wire of the circuit with a probability p which is
intricately linked to the security in the most realistic noisy leakage model [17],
where each variable leaks a noisy function of its value.

As leakage models continually advance and security proofs become more com-
plex, there is a growing interest within the community in automating formal
security verification. As a result, the development and implementation of auto-
mated security reasoning tools in the realm of hardware masking has emerged
as a recent and evolving area of research [2, 3, 10,11,15,25,32,44].

Being a pioneering work, rebecca [11] employs Fourier coefficient estimation to
verify standard and glitch-extended probing models. Its successor, COCO [25], ex-
tends this methodology to verify masked software running on processors. Shortly
after, maskVerif [3] was introduced as an efficient probing security tool; however,
its incomplete verification may result in false negatives. Additionally, scVerif [7]
extends maskVerif by incorporating customizable leakage models. SILVER [32], the
first tool to ensure comprehensive verification, however, is limited by constraints
in circuit size and security order. VERICA [44] is an extension of SILVER with Fault
Injection Analysis (FIA) support, which allows combined analysis for the first
time, but maintains similar complexity limitations. Most recently, PROLEAD [39]
applies logic simulation for probing-based leakage assessment.



INDIANA 3

Expanding the scope of security verification research to the random probing
model, VRAPS [9] specifically addresses random probing security, although it is
notably limited in terms of efficiency. Similarly, STRAPS [14] adopts the rules
from maskVerif to quantify the random probing security, but inheriting the con-
straints of the latter tool. The latest contribution in this domain, ironMask [10],
stands out as a high-performing and complete tool, but is strictly constrained
to small masking circuits with specific structure, i.e., only supports verification
for linear randomness and quadratic gadgets.

Concerning pertinent prior research, it becomes evident that these tools ei-
ther rely on estimates and heuristics, consequently delivering incomplete results,
or they exhibit significant restrictions in terms of the structure and size of masked
circuits they can handle. Further, all existing tools also have limited capabili-
ties in accommodating more realistic leakage models, such as those considering
glitch-extended d-probing or the random probing leakage model. As a result,
the open research challenge is to develop sound, accurate and efficient tools for
verifying the security of arbitrary and complex masked hardware circuits under
more realistic leakage models (e.g., considerations of glitches or random probing
leaks) to overcome the existing limitations.

Contributions. In this work, we introduce INDIANA, a comprehensive and pow-
erful automated verification tool designed for verifying security of masked hard-
ware. This tool facilitates effective security validation for large-scale digital cir-
cuits, accommodating both the glitch-extended and random probing security
models. To outline, our primary contributions can be succinctly described as
follows:

– We initially formalize the prevailing d-probing security concepts by express-
ing them in terms of the indistinguishability of secret-dependent probability
distributions observed by adversaries. This formalization is specifically tai-
lored for hardware-oriented masking verification, addressing and acknowledg-
ing the glitch-extended robust d-probing model. In essence, commencing with
secret-dependent input distributions and the gate-level netlist of a masked
circuit, these distributions continuously transition through the circuit. This
process makes it possible to partition the verification procedure into iterative
steps, generating discrete multi-variate probability distributions for adver-
sarial observations (i.e., probed intermediate wires). The circuit is verified
secure if an attacker cannot differentiate all secret-dependent distributions
for all observations.

– We extend our primary d-probing security distinguisher to accommodate the
more realistic random probing security model by employing Fast Fourier-
Hadamard Transformations (FFTs). This extension, in particular, enables
the conversion of differences in observed secret-dependent probability dis-
tributions into corresponding sets of probes responsible for the information
leakage. To elaborate, the utilization of the FFT yields a succinct repre-
sentation of all probe tuples contributing to the leak, facilitating the swift
calculation of leakage probabilities in the context of random probing security.



4 Authors Suppressed Due to Excessive Length

– We present INDIANA, a complete and versatile verification framework de-
signed for the rapid validation of large-scale masked hardware circuits within
the glitch-extended probing model. Furthermore, INDIANA facilitates cycle-
accurate estimation of leakage probabilities in the random probing model for
arbitrary large-scale circuits (and exact computation for small-scale designs).
We showcase the exceptional performance and capabilities of our novel veri-
fication tool through comparison to state-of-the-art competitors and various
case studies, including the instantiation of a full AES round (i.e., 16 masked
S-boxes in parallel) with shared data and key inputs. This results in the (sym-
bolic) simulation of 2256 distinct secrets (resulting in 2512 different shared
input combinations). Notably, INDIANA achieves exhaustive verification in
the glitch-extended probing model within less than 45 minutes for the full
round of AES, while the cycle-accurate estimation of leakage probabilities in
the random probing model terminates in less than 4 hours.

Outline. The remainder of this work is organized as follows. Section 2 intro-
duces fundamental concepts for side-channel security, including our considered
circuit model, the adversary model and the essential definitions of leakage and
security. In this context, for the first time, we present the definitions for thresh-
old d-probing security and random probing security based on indistinguishability
and discover an interesting link to d–resiliency, which we can apply for efficient
leakage detection using the FFT. In Section 3, we then discuss approaches and
optimizations for the practical implementation of security verification. In par-
ticular, we use novel techniques based on Binary Decision Diagrams (BDDs)
and Multi-Terminal Binary Decision Diagrams (MTBDDs) to practically verify
the indistinguishability-based definitions and perform leakage detection in the
random probing model. Eventually, Section 4 presents several experiments and
case studies to empirically demonstrate the capabilities and limitations of our
novel verification tool INDIANA, before the paper concludes in Section 5.

Notation. Our basic notation used throughout this work is summarized in
Table 1. In general, we write functions in sans serif font (e.g., F) and sets in
upper-case characters in a calligraphic font (e.g., S). For a set S, we denote by
2S its power set, i.e., the set of all subsets of S.

2 Side-Channel Security

In SCA an adversary exploits the correlation of physical characteristics, such
as timing behavior [34], instantaneous power consumption [35], or electromag-
netic emanations [24], with a secret-dependent internal state to gain knowledge
of a secret. The physical reality of such attacks is complex and often highly
stochastic. Therefore, the research community has focused on the development
and analysis of security models that abstract reality to its core component to en-
able formal reasoning about SCA security. In the following section, we describe



INDIANA 5

Table 1: Notations used throughout this work.

Notation Description
C
ir
c
u
it

ni Number of unshared inputs to a circuit
nr Number of randomness inputs to a (masked) circuit
no Number of unshared outputs of a circuit
C Digital logic circuit
W Set of wires

S
C
A

s Number of shares used by a masking scheme
d Security order of a masking scheme (countermeasure)
P Set of probes

Enc Encoding function for masking
AC Access function to circuit C
Ex Probe-extension function
L() Adversarial observation (leakage)

ProbeSelect() Random variable for probe selection

the formal context of this work. In particular, we formally define our model for
hardware circuits and describe masking as a popular countermeasure against
SCA. Then, we define the well-known threshold d-probing and random probing
model [30] based on indistinguishability of secret-dependent distributions, which
is equivalent to the standard simulation-based definitions found in literature.

2.1 Circuit Model

We model a circuit as a Direct Acyclic Graph (DAG) C = (G,W), where each
vertex (or node) g ∈ G represents a gate, an input, or an output of the circuit and
each edge w ∈ W = {w0, . . . , w|W|−1} a wire that carries a value from F2 and
connects two gates. Without loss of generality, we restrict the set of logical gates
to Gc = {xor, or, and, nand, xnor, nor, inv}, which each implement the respective
Boolean function. We further restrict the set of memory gates to Gm = {reg},
where reg represents a clocked register. Let Gall be Gc ∪ Gm. For convenience, we
sometimes assume W to be an index set, where each wire wi ∈ W is labeled by
its index i, i.e., we will use W = {w0, . . . , w|W|−1} and W = {0, . . . , |W| − 1}
interchangeably.

Definition 1 (Circuit). A circuit with ni inputs and no outputs is a DAG
C = (G,W), where each vertex takes a label from {x1, . . . , xni

, y1, . . . , yno
}∪Gall,

and which fulfills the following properties:

1. For each j ∈ {1, . . . , ni} there is exactly one vertex labeled xj and for each
k ∈ {1, . . . , no} there is exactly one vertex labeled yk.

2. Each vertex with a label xj has in-degree 0 and each vertex with label yk has
in-degree 1 and out-degree 0.

3. Each vertex with a label in {xor, or, and, nand, xnor, nor} has in-degree 2.



6 Authors Suppressed Due to Excessive Length

4. Each vertex with label inv or reg has in-degree 1.

A circuit is a representation of a function F : Fni
2 → Fno

2 , that is computed by
going iteratively through the gates and assign each wire with the result of the
respective logical gate given the values of the input wires. In this sense, each wire
w ∈ W computes a function Fw : Fni

2 → F2 that is computed by considering the
subgraph with the leave w. This motivates the definition of an access function,
where we consider each wire w ∈ W to be connected to an output node. Hence,
intuitively this function provides access to all internal values of C.

Definition 2 (Access to a Circuit). Given a circuit C = (G,W) that imple-

ments a function F : Fni
2 → Fno

2 . The access to C is a function AC : Fni
2 → F|W|

2

where the coordinates of AC correspond to all the edges in C, i.e., for x ∈ Fni
2 , we

have AC(x) = (w0, . . . , w|W|−1), where wi ∈ F2 takes the value of the i-th wire
in C when the input nodes of C are instantiated with x.

Note that the notion of the access to a circuit depends on the labeling of the
wires. Throughout this work, we assume lexicographic ordering. Further, for a
function F mapping to Fno

2 and a subset I ⊆ {0, . . . no − 1} of output indices,
we denote by F|I = (Fi)i∈I the subfunction of F that consists of the coordinates

of I, mapping to F|I|
2 . Again, we assume that the coordinates of F|I are ordered

by the lexicographic ordering of the indices in I.

2.2 Security Mechanism: Masking

One widely-studied countermeasure against SCA is Boolean masking [17], where
every secret xi ∈ F2 is replaced by a vector Sh(x) = ⟨xi,0, . . . xi,s−1⟩ ∈ Fs

2 such

that each subset X̂ of {xi,j | j ∈ [0, s − 1]} with |X̂ | < s is independent of

xi =
⊕s−1

j=0 xi,j . We call xi,j a share of xi with share index j.

Similarly, a circuit is transformed into a shared circuit by transforming each
gate into a set of gates that operate on shared values [30]. Specifically, every
circuit C̃, with ni inputs and no outputs, is split into three circuits with the
following properties:

Enc : Fni
2 × F(s−1)ni

2 → Fni·s
2 : A circuit implementing a function that takes as

input the ni inputs to the original circuit x1 . . . xni
and (s − 1)ni random

bits r ∈ F(s−1)ni

2 and outputs a valid sharing of the input, i.e., for all i ≤ ni

an element from Fs
2 with the above property3 towards the input xi.

C : Fni·s
2 × Fnr

2 → Fno·s
2 : A masked version of the original circuit, that takes as

input the shared values of the inputs and nr random bits and produces a
valid sharing of the output, i.e., for all j ≤ no an element of Fs

2 with the
above property towards the output yj .

3 Due to its practical relevance, we focus on Boolean masking here, but Enc can easily
be extended to any other masking scheme.



INDIANA 7

Dec : Fno·s
2 → Fno

2 : A circuit that implements a function that given a valid shar-
ing of no values produces the unshared values by summing up the shares,
i.e., for all i ≤ no computes yi =

⊕s−1
j=0 yi,j .

For the correctness of the masked circuit, we require that for all inputs x ∈ Fni
2 ,

r0 ∈ F(s−1)ni

2 , and r1 ∈ Fnr
2 it holds that C̃(x) = Dec(C(Enc(x, r0), r1)). Note,

if we compute the access AC of the masked circuit C, we consider only the
wires in C, not those in Enc or Dec. In addition, we define the composition

H := AC ◦Enc to be a function mapping from Fni
2 ×F(s−1)ni+nr

2 to F|W|
2 such that

H(x, r0∥r1) = AC(Enc(x, r0), r1) for all x ∈ Fni
2 , r0 ∈ F(s−1)ni

2 , and r1 ∈ Fnr
2 .

2.3 Probing Security

A well-established model to argue about side-channel security of masked circuits
is the d-probing model [30]. Here, an adversary Ap gets access to a circuit C
that can be invoked multiple times. Prior to each invocation, Ap can select a
set P ⊆ W of up to d wires to be probed. In the standard d-probing model,
the view of Ap on each invocation is defined by the exact values of the probed
wires. More specifically, we can express the view of Ap for a set of probes P by
a subfunction of the encoded access to the circuit C, i.e., by (AC ◦ Enc)|P .

However, in hardware physical defaults such as glitches, transitions, or cou-
plings can cause additional leakage and need to be considered in the security
model. For this, the robust d-probing model was introduced [20] that extends
the set of probes P by additional probes to capture worst-case assumptions of
physical defaults. For example, glitches are temporary and unintentional values
in a combinatorial circuit, caused by timing differences in the computation paths.
In the robust d-probing model, those are represented by giving Ap access to the
exact values of the stable inputs to the probes, i.e., registers or primary inputs
with no register on the path to the probed wires. To formally capture physical
defaults, we define a probe-extension function Ex(P) for a subset of wires P ⊆ W
that produces another subset of wires P ′ ⊆ W. This allows us to model any ad-
ditional leakage that is a function of the probed wires, which contains (but is
not restricted to) the probe extensions defined in the robust d-probing model.
With this, we can again capture the view of the adversary by a subfunction of
the access of the circuit C, namely (AC ◦Enc)|Ex(P). Note, when setting Ex to the
identity function id, we get the standard definition of the d-probing model.

In this context, a circuit C is d-probing secure if any set P of up to d probes
is statistically independent of the secret input [30, 32]. For this work, we refor-
mulate the definition based on indistinguishability. In short, two events X and
Y are indistinguishable if the two underlying distributions of X and Y are equal.
To formally capture the definition of probing security, we introduce a leakage
function based on indistinguishability.

Definition 3 (Leakage). Let Enc : Fni
2 × F(s−1)ni

2 → Fni·s
2 be an encoding and

AC : Fni·s
2 × Fnr

2 → F|W|
2 be the access to a masked circuit C implementing a



8 Authors Suppressed Due to Excessive Length

function F : Fni·s
2 × Fnr

2 → Fno·s
2 . Let H := AC ◦ Enc, which is a function from

Fni
2 × F(s−1)ni+nr

2 to F|W|
2 . We define

L(Enc,AC,Ex) : 2
W → {0, 1}

P 7→

{
0, if ∀x ∈ Fni

2 , y ∈ F|Ex(P)|
2 : Prr[H|Ex(P)(x, r) = y] = Prr[H|Ex(P)(0, r) = y]

1, else

to be the leakage of the probeset P in the masked circuit C, where the probabilities

are taken over uniformly random choices of r ∈ F(s−1)ni+nr

2 .

Then, for probing security, we require that there is no leakage regardless of the
probe position, for a probe cardinality at most d.

Definition 4 (Probing Security - Indistinguishability). Let Enc : Fni
2 ×

F(s−1)ni

2 → Fni·s
2 be an encoding and C = (G,W) be a circuit implementing a

function F : Fni·s
2 × Fnr

2 → Fno·s
2 . We say that C is d-probing secure with respect

to Enc and a probe extension Ex if the access AC to C fulfills L(Enc,AC,Ex)(P) = 0
for all sets P ⊆ W of up to d probes.

Intuitively, the definition for d-probing security fixes the view ofAp (by fixing the
set of probes P) and then requires that Ap cannot distinguish between different
input values x ∈ Fni

2 . It is easy to see that this is equivalent to a definition
requiring statistical independence between the set of probes P and the input
x [32].

2.4 Random Probing Security

Another established security model for SCA is the random probing model [30].
Here, instead of letting the adversary choose a bounded set of probes, an un-
bounded set of probes is randomly selected and given to the adversary, such
that each wire w ∈ W is in the set of probes with the same probability p. For
this, let ProbeSelect(C, p), cf. LeakingWires in [9], be a random variable that,
given a circuit C and a probability p, probabilistically chooses a set of probes
P, such that each wire w ∈ W is probed with probability p independent of all
other wires, i.e., Pr[w ∈ P] = p. Note, in contrast to the d-probing model, the
set P is not restricted in size. Then, for random probing security, we require the
probability that the adversary gets a useful set of probes to be small.

Definition 5 (Random Probing Security - Indistinguishability). Let

Enc : Fni
2 × F(s−1)ni

2 → Fni·s
2 be an encoding and C = (G,W) be a circuit im-

plementing a function F : Fni·s
2 × Fnr

2 → Fno·s
2 . We say that C is (p, ϵ)-random

probing secure with respect to Enc and probe extension Ex if the access AC to C
fulfills

Pr[L(Enc,AC,Ex)(ProbeSelect(C, p)) = 1] ≤ ϵ .



INDIANA 9

For the standard definition of the random probing model the probe extension
function Ex is selected to be the identity function id, i.e., there is no probe exten-
sion. Then, it is easy to see, that this definition is equivalent to the simulation-
based definition from Beläıd et al. [9], where the simulation of the probes fails
with probability ϵ.

2.5 Using FFT for Detecting Leakage

We show how to evaluate the leakage function by computing the Fourier-
Hadamard transforms of some associated functions. First, we recall that the
Fourier-Hadamard transform f̂ of a function f : Fm

2 → R is defined as

f̂ : Fm
2 → R, β 7→

∑
y∈Fm

2

(−1)⟨β,y⟩f(y),

where ⟨u, v⟩ denotes the canonical inner product of the vectors u, v ∈ Fm
2 . For a

subset I of {0, 1, . . . ,m−1}, we denote by prec(I) the |I|-dimensional subspace
{β ∈ Fm

2 | βj = 0 if j /∈ I} of Fm
2 .

Given a function F : Fni
2 × F(s−1)ni+nr

2 → Fno
2 and x ∈ Fni

2 , we denote by Fx

the function obtained from F by fixing x, i.e., Fx(z) = F(x, z). For y ∈ Fno
2 , we

denote by (F)−1
x (y) the preimages of y under Fx, i.e., the set of z ∈ F(s−1)ni+nr

2

such that Fx(z) = y. For a given H : Fni
2 × F(s−1)ni+nr

2 → F|W|
2 and y ∈ F|W|

2 ,
let us denote DH,x(y) := |(H)−1

x (y)| − |(H)−1
0 (y)| ∈ R. Then, DH,x : y 7→ DH,x(y)

is a function mapping from F|W|
2 to R. The main result of this subsection is the

following link between the leakage function and the Fourier-Hadamard transform
of the functions DH,x. Note that, in the following we identify the wires by their
indices, i.e., W = {0, 1, . . . , |W| − 1}.

Theorem 1. Let Enc : Fni
2 × F(s−1)ni

2 → Fni·s
2 be an encoding and AC : Fni·s

2 ×
Fnr
2 → F|W|

2 be the access to a masked circuit C implementing a function
F : Fni·s

2 × Fnr
2 → Fno·s

2 . Let H = AC ◦ Enc. Then, L(Enc,AC,Ex)(P) = 0 if and
only if, for all x ∈ Fni

2 , we have

∀β ∈ prec(Ex(P)) : D̂H,x(β) = 0.

The advantage of this characterization is the fact that the Fourier-Hadamard
transform of a function f : Fm

2 → R can be computed using O(m ·2m) elementary
arithmetic operations by using the Fast Fourier-Hadamard Transform (FFT),
see [13, pp.53–54].

For the proof, we use the following two lemmas.

Lemma 1. Let Enc : Fni
2 ×F(s−1)ni

2 →Fni·s
2 be an encoding and AC : Fni·s

2 ×Fnr
2 →

F|W|
2 be the access to a masked circuit C implementing a function F : Fni·s

2 ×Fnr
2 →

Fno·s
2 . Then, L(Enc,AC,Ex)(P) = 0 if and only if

∀x∈Fni
2 ,y ∈F|Ex(P)|

2 : |(H|Ex(P))
−1
x (y)|= |(H|Ex(P))

−1
0 (y)|.



10 Authors Suppressed Due to Excessive Length

In particular, C is d-probing secure with respect to Enc and Ex if and only if, for
the access AC to C, we have

∀P ∈ 2W with |P| ≤ d : ∀x∈ Fni
2 ,y ∈F|Ex(P)|

2 : |(H|Ex(P))
−1
x (y)|= |(H|Ex(P))

−1
0 (y)|.

Proof. This is an immediate consequence of the fact that

Prr[H|Ex(P)(x,r) = y] =
|{r ∈F(s−1)ni+nr

2 |H|Ex(P)(x,r) = y}|
2(s−1)ni+nr

=
|(H|Ex(P))

−1
x (y)|

2(s−1)ni+nr
.

⊓⊔

Lemma 2. Let f : Fm
2 →R. Then, f is constant and equal to zero if and only if

f̂ is constant and equal to zero.

Proof. This follows directly from the well-known inverse Fourier-Hadamard re-

lation
̂̂
f =2m ·f , see [13, Cor.4, p.59]. ⊓⊔

Proof (of Thm.1). Let us fix one input x∈ Fni
2 . For easier notation, we omit the

index H,x in DH,x and simply write D instead. Let us fix P ∈ 2W , which is a
subset of {0,1, . . . , |W|−1}.

For y ∈ F|W|
2 , we denote by πEx(P)(y) the projection of y to the coordinates

indexed by Ex(P). Then, πEx(P)(y) = y′ for y′ ∈F|Ex(P)|
2 . Let us define

DEx(P)(y
′) :=

∑
y∈F|W|

2 ,πEx(P)(y)=y′

D(y). (1)

We have |(H|Ex(P))
−1
x (y′)| − |(H|Ex(P))

−1
0 (y′)| = DEx(P)(y

′), hence, by Lemma 1,

we have L(Enc,AC,Ex)(P) = 0 if and only if DEx(P)(y
′) = 0 for all y′ ∈ F|Ex(P)|

2 (and
all such functions DEx(P) defined by all x ∈ Fni

2 ). Thus, we are going to show

that DEx(P)(y
′) = 0 for all y′ ∈ F|Ex(P)|

2 holds if and only if D̂(β) = 0 holds for all
β ∈ prec(Ex(P)).

Clearly, the mapping β 7→ πEx(P)(β) is a vector space isomorphism from

prec(Ex(P)) to F|Ex(P)|
2 . Let β ∈ prec(Ex(P)). Then,

D̂(β) =
∑

y∈F|W|
2

(−1)⟨β,y⟩D(y) =
∑

y′∈F|Ex(P)|
2

∑
y∈F|W|

2 ,πEx(P)(y)=y′

(−1)⟨β,y⟩D(y)

=
∑

y′∈F|Ex(P)|
2

(−1)⟨πEx(P)(β),y
′⟩

∑
y∈F|W|

2 ,πEx(P)(y)=y′

D(y)

=
∑

y′∈F|Ex(P)|
2

(−1)⟨πEx(P)(β),y
′⟩DEx(P)(y

′).

Now, if DEx(P)(y
′) = 0 holds for all y′ ∈F|Ex(P)|

2 , clearly, by the above equation we

have D̂(β) = 0 for all β ∈ prec(Ex(P)). For the converse, let us assume that D̂(β) =



INDIANA 11

0 for all β ∈ prec(Ex(P)). By the above equation, D̂(β) is equal to the Fourier-

Hadamard transform at point πEx(P)(β) of the function DEx(P) : F
|Ex(P)|
2 → R.

Hence, D̂Ex(P) =0 by assumption. By Lemma 2, it follows that DEx(P)(y
′) = 0 for

all y′ ∈F|Ex(P)|
2 , which concludes the proof. ⊓⊔

Theorem 1 gives us a way to compute the leakage as follows: For x∈ Fni
2 , let

gH,x : F|W|
2 → F2 be the Boolean function defined by gH,x(β) = 0 if and only if

D̂H,x(β) = 0 and gH,x(β) = 1 otherwise. Then,

L(Enc,AC,Ex)(P) =
∨

x∈Fni
2

∨
β∈prec(Ex(P))

gH,x(β). (2)

This formula is useful to assess the security of a circuit in the random probing
model, where we need to analyze Pr[L(Enc,AC,Ex)(ProbeSelect(C,p)) = 1].

The case of size-preserving probe-extension functions. In the special case where
Ex is bijective and preserves the size of its input set (for example when Ex= id),
Theorem 1 implies a link between d-probing security and d-resiliency of the
functions DH,x. A function f : Fm

2 → R is called d-resilient4 if f̂ is zero on all
inputs with Hamming weight less than or equal to d.

Corollary 1. Let Enc : Fni
2 × F(s−1)ni

2 → Fni·s
2 be an encoding and AC : Fni·s

2 ×
Fnr
2 →F|W|

2 be the access to a masked circuit C implementing a function F : Fni·s
2 ×

Fnr
2 →Fno·s

2 . Let Ex be a bijective probe-extension function that preserves the size
of its input set. Then, the following assertions are equivalent:

1. C is d-probing secure with respect to Enc and Ex.
2. The functions DH,x are d-resilient for all x∈Fni

2 .

Proof. By definition, C is d-probing secure with respect to Enc and Ex if and only
if L(Enc,AC,Ex)(P) = 0 for all P ⊆W with |P| ≤ d. If Ex is bijective and preserves
the size of its input set, this is equivalent to L(Enc,AC,id)(P) = 0 for all P ⊆ W
with |P| ≤ d. The result now follows from Theorem 1 and the fact that the set

{β ∈F|W|
2 |wt(β)≤ d} is equal to the union of all sets prec(P) with |P| ≤ d. ⊓⊔

In this case, the maximum d for which a circuit is d-probing secure can be
computed by Algorithm 1 given below. Note that in our application, the probe-
extension function is more complex, so we do not actually use Algorithm 1. Still,
we decided to list it for completeness.

3 Security Verification

This section explains the practical implementation of the formal models and
indistinguishability analysis enabling an automated verification of the security
definitions outlined in Section 2.
4 In the literature, d-resiliency is usually defined for a Boolean function g : Fm

2 → F2.
Then, the usual notion of d-resiliency corresponds to ours if f is the sign function of
g, i.e., f = (−1)g.



12 Authors Suppressed Due to Excessive Length

Algorithm 1: Finding the largest d such that C is d-probing secure
with respect to Enc and Ex, where Ex is bijective and preserves the size
of the input set

1 d←|W|
2 for x∈ Fni

2 do

3 Compute DH,x : F|W|
2 →R

4 Compute D̂H,x from DH,x using FFT ▷ Complexity |W| ·2|W|

5 if max{t | ∀β ∈ F|W|
2 ,wt(β)≤ t : D̂H,x(β) = 0}<d then

6 d←max{t | ∀β ∈ F|W|
2 ,wt(β)≤ t : D̂H,x(β) = 0}

7 return d

3.1 Preliminaries

To facilitate the efficient representation and manipulation of Boolean functions
and probability distributions, we revisit the fundamental concepts and principles
underlying BDDs and MTBDDs.

Binary Decision Diagrams. BDDs are a fundamental data structure in com-
puter science to represent Boolean functions [1,12]. In general, a BDD is a concise
and unique (i.e., canonical) graph-based representations of a Boolean function.

Definition 6. A Reduced Ordered Binary Decision Diagram (ROBDD)5 is
a pair (π,G), where π denotes a fixed ordering over an variable set X :=
{x1,x2, . . . ,xn} and G= (V,E) represents a rooted DAG with the following prop-
erties:

1. There is a single root and each vertex v ∈V is either a non-terminal node or a
terminal node. A terminal node is taking a value in the value set B := {0,1}.
There is only one terminal node labeled 0 and only one terminal node labeled
1 (no duplicate terminal nodes).

2. Each non-terminal node v is labeled with a variable in xi ∈ X , denoted as
var(v), and has exactly two child nodes in V which are denoted as then(v)
and else(v).

3. For each path from the root node to a terminal node, the variables in X are
encountered at most once and in the same order defined by the ordering π
that is a bijection π : {1,2, ...,n}→X .

4. There is no node v ∈ V such that then(v) = else(v) and, if v,v′ ∈ V with
(var(v), then(v),else(v)) = (var(v′), then(v′),else(v′)), we have v= v′.

Each BDD with single root v ∈ V recursively defines a Boolean function
fv : Fn

2 → F2 such that, if v is a terminal node b ∈ B, then fv = b. Otherwise,

5 For the sake of simplicity, we use the term BDD instead of ROBDD in the context
of this paper.



INDIANA 13

if v is a non-terminal node and var(v) = xi, then fv is defined by the Shannon
decomposition fv = xi · fthen(v)+xi · felse(v). Conversely, any Boolean function can
be described by a BDD in this way.

Boolean operations over BDDs. For any BDD, the restrict(f,x,b) operator
returns the Shannon co-factor f|x=b while the If-Then-Else operator ITE(f,g,h)
composes the functions f,g,h : Fn

2 →F2 such that

ITE(f,g,h) = f ·g+ f ·h.

The ITE operator can be extended to functions f,g,h with not neces-
sarily equal input domains Fn

2 , Fn′

2 , and Fn′′

2 , respectively, by expanding

the function f (resp., g,h) to a function f̃ : Fmax{n,n′,n′′}
2 → F2 defined by

f̃(x1, . . . ,xn, . . . ,xmax{n,n′,n′′}) = f(x1, . . . ,xn) (defining g̃, h̃ respectively) and

defining ITE(f,g,h) := ITE(̃f, g̃, h̃).
Further, any function f = fv1 ⋆ fv2

, where ⋆ is an arbitrary binary Boolean
operation, can be derived and composed recursively as:

f = xi · f|xi=1+xi · f|xi=0

= xi · (fv1 ⋆ fv2
)|xi=1+xi · (fv1 ⋆ fv2)|xi=0

= xi · (fv1|xi=1 ⋆ fv2|xi=1)+xi · (fv1|xi=0 ⋆ fv2|xi=0)

(3)

Moreover, existential quantification with respect to a variable x is a common
BDD operation that computes ∃xf := f|x=1+ f|x=0. If x1, . . . ,xk are k variables,
the existential quantification ∃x1,...,xk

f is recursively defined as ∃xk
∃x1,...,xk−1

f
(note that this is independent of the ordering of the variables).

Multi-Terminal Binary Decision Diagrams. MTBDDs are an extension
of BDDs to represent functions from a multi-dimensional Boolean domain to an
arbitrary value set D. Specifically, if D=B then MTBDDs reduce to BDDs while
otherwise they can represent arbitrary functions of type f :Fn

2 →D.

Remark. In the remainder of this work, we specifically assume D=Z and heavily
rely on the existential quantification operation over MTBDDs. Please note, that
in this case, the + operation is an arithmetic addition rather than the logic OR
operation.

3.2 Fundamental Implementation Assumptions

Before we explain the details of the security verification concept, we briefly
summarize essential initial assumptions.

Circuit Representation. Due to the limitation of the circuit model to repre-
sent circuits in terms of DAGs, as outlined in Definition 1, it is necessary that
any iterative or looped circuit is first transformed into a functionally equivalent
circuit by unrolling and pipelining the clocked stages, which can then be easily
represented by a DAG.



14 Authors Suppressed Due to Excessive Length

Input Distributions. For both considered information leakage models, we
assume independent and identically distributed (i.i.d.) secrets x ∈ Fni

2 . Further,

for both the initial sharing r0 ∈F(s−1)ni

2 of secrets and the refreshing r1 ∈ Fnr
2 of

intermediate computations, we assume the application of i.i.d. random bits.6

Extension Function. Glitches are generally known as a major source of in-
formation leakage [36, 37] for hardware implementations. Since our verification
is primarily focused on hardware-related verification of security properties, we
opted for a glitch-extension according to [20] as part of the probing model. In
particular, it is assumed that each probe has a worst case extension that ad-
ditionally leaks all (stable) inputs necessary for the generation of the probed
signal.

For the random probing model, however, hardware effects such as glitches
have not yet been considered in related literature. We adhere to common practice
and therefore only use the identity function id as an extension function within the
random probing model, although an extension is theoretically possible (see [10])
and generally not inhibited by our methodology.

3.3 Glitch-Extended Threshold Probing Model

Verifying probing security necessitates the exact knowledge of the leakage func-
tion in accordance with Definition 3. Accordingly, this requires the knowledge of
the encoding function Enc, the access function AC, and potentially the extension
function Ex.

Encoding function. The encoding function is used to achieve a valid and secure
sharing of the inputs that are subsequently processed by the masked version of
the circuit. In this regard, the type of encoding function is purely determined
by the specific masking scheme used to generate the masked circuit.

In our implementation, we have chosen to primarily support Boolean mask-
ing due to its prevalent adoption in symmetric cryptography. Nevertheless, it is
important to emphasize that our methodology and indistinguishability verifica-
tion framework are theoretically capable of supporting a wide range of encoding
functions, e.g., used for arithmetic or multiplicative masking schemes.

Glitch-extended access function. According to Section 2.1, the function

Fni
2 ×F(s−1)ni

2 ×Fnr
2 → Fm·s

2 of a masked circuit is computed by iteratively as-
signing each wire with the result of its driving logic gate. In particular, since

each wire w ∈ W computes a Boolean function Fni
2 ×F(s−1)ni

2 ×Fnr
2 7→ F2, this

can be generated and stored efficiently with the aid of BDDs. More specifically,

6 It should be noted that these assumptions are usually made in the literature and
simplify our methodology. However, they are not strictly necessary, so that arbitrary
probability distributions for inputs and randomness are also theoretically supported.



INDIANA 15

each input of the circuit is assigned with a new Boolean variable and the logic
gates of the circuit are evaluated iteratively given the BDDs of their inputs.
Then, given the set of all BDDs associated with a wire of the circuit, this di-
rectly provides the access function of the circuit that can be used to compute
the function H=AC ◦Enc.

For glitch-extended probing security verification, the limited view of an ad-
versary is further captured by a subfunction H|Ex(P), with Ex(P) being the worst-
case glitch-extension function as defined before. Hence, in selecting all subsets
of wires P ⊆ W with |P| ≤ d and generation of the associated extension sets
P ′ ⊆ W, we can select the corresponding BDDs of the probed wires, to easily
express all glitch-extended adversarial views H|Ex(P).

Please note, as indicated before, that we have decided not to use the FFT here
for two reasons: Firstly, the glitch-extension function is not bijective and size-
preserving, and secondly, in practice often only small d (compared to the total
number of possible probe locations) are considered, for which a naive generation
of all possible functions is still feasible so that the application of the FFT shows
hardly any advantages.

Leakage function. According to Lemma 1, knowledge of |(H|Ex(P))
−1
x (y)| (for

all x∈Fni
2 and all y ∈F|Ex(P)|

2 ) is sufficient to verify absence of information leak-
age for any adversarial observation H|Ex(P). For this, we introduce our generation
methodology, which particularly relies on BDDs and MTBDDs, in the following
paragraphs in more detail.

Definition 7 (Transition). Let Enc : Fni
2 × F(s−1)ni

2 → Fni·s
2 be an encoding

and AC : Fni·s
2 × Fnr

2 → F|W|
2 be the access to a masked circuit C implementing

a function F : Fni·s
2 ×Fnr

2 → Fno·s
2 . Let H := AC ◦ Enc, which is a function from

Fni
2 ×F(s−1)ni+nr

2 to F|W|
2 . We define

T(Enc,AC,Ex(P)) : F
s·ni+nr+|Ex(P)|
2 →{0,1}

(x,r,y) 7→

{
1 if H|Ex(P)(x,r) = y

0 else

to be the transition function for a tuple (x,r,y) in the masked circuit C.

Given this definition and knowledge of H|Ex(P), we can directly calculate the
transition as follows:

T(Enc,AC,Ex(P))(x,r,y) =

|Ex(P)|−1∏
i=0

(H|Ex(P)i(x,r)⊕yi)

where H|Ex(P)i and yi denote the i-th coordinate function of the adversarial
view and the i-th bit of y, respectively.



16 Authors Suppressed Due to Excessive Length

Based on this, the frequencies |(H|Ex(P))
−1
x (y)| = ∃rT(Enc,AC,Ex(P))(x,r,y) are

generated by using the existential quantification operator for MTBDDs with
respect to r. Note that this implicitly considers a uniform distribution for |x| and
|r| (according to our basic implementation assumptions). However, accounting
for non-uniform distributions requires additional scaling of the frequencies with
respect to the different occurrences of x and r.

Eventually, indistinguishability of the adversarial observations, according to
Definition 4, is implemented and checked with simple subtraction according to
DEx(P) (as defined in Eq.(1)) such that L(Enc,AC,Ex)(P) = 0 if DEx(P) = 0 (for all
such functions DEx(P) defined by all x∈ Fni

2 ) and L(Enc,AC,Ex)(P) = 1 otherwise.

3.4 Standard Random Probing Model

Since we assume the identity as an extension function, i.e., Ex= id and P =W for
verification in the standard random probing model, it is possible to efficiently use
the FFT to calculate the random probing leakage probabilities. In the following,
we therefore describe the efficient calculation of FFT for MTBDDs on the one
hand and the straightforward extraction of the leakage probabilities on the other.

The Fast Fourier-Hadamard Transformation. For the FFT, we assume
that the function H|W = AC ◦Enc, considering full access to the masked circuit
C, was generated according to the description in the previous section and is
provided as MTBDD. In this case, Algorithm 2 describes the exact procedure
for generation of the FFT using two fundamental BDD and MTBDD operators
restrict and ite.

Algorithm 2: Computing the Fast Fourier-Hadamard Transformation
using the restrict and ite MTBDD operations with linear complexity
in the number of variables.

1 D̂H,x←DH,x

2 for xi ∈ x do

3 D0← D̂H,x|xi=0 ▷ restrict

4 D1← D̂H,x|xi=1 ▷ restrict

5 D̂H,x← xi(D0+D1)+xi(D0−D1) ▷ ite

6 return D̂H,x

The leakage function. Given D̂H,x(β) in MTBDD representation, gH,x can be
retrieved rapidly in converting all non-zero terminal nodes to 1, i.e., gH,x(β) = 0

if and only if D̂H,x(β) = 0 and gH,x(β) = 1 otherwise. Then,
∨

β∈prec(Ex(P))gH,x(β)

is derived according to Algorithm 3 (using the restrict operator).



INDIANA 17

Algorithm 3: Expanding the FFT to the leakage function using re-
strict MTBDD operator.

1 gH,x← D̂H,x

2 for βi ∈ β do
3 g0← gH,x(β)|βi=0 ▷ restrict

4 gH,x← gH,x∨g0
5 return gH,x

Eventually, computation of the random probing leakage probability requires
a slightly modified SatCount operator, according to Algorithm 4.

Algorithm 4: Modified satcount BDD operator to compute the leak-
age probability for a leakage function f and a leakage probability p.

1 Function LeakageProbability(f,p):
2 if f =0 then
3 return 0

4 if f =1 then
5 return 1

6 Pick next xi ∈ x
7 p0←LeakageProbability(f|xi=0,p) ▷ restrict

8 p1←LeakageProbability(f|xi=1,p) ▷ restrict

9 return p0+p · (p1−p0)

3.5 Additional Implementation Optimizations

To enable practical verification, especially for the targeted large-scale circuits,
we discuss additional implementation optimizations in the following paragraphs
that simplify and accelerate execution of our verification tool.

Problem-space partitioning. A classic approach in computer science for han-
dling large problems and search spaces is to break the problem down into smaller
sub-problems that can be examined independently of each other before the par-
tial results are finally combined to form the overall result. In this context, we
would like to discuss in particular the partitioning of the circuit in width and
depth respectively spatial and temporal direction.

Space (circuit breadth). First, it can be observed that for independent modules
and components that process independent parts of the secret, the adversarial
observations are also independent and can only leak information about the pro-
cessed part of the secret. Accordingly, these parts can be verified independently



18 Authors Suppressed Due to Excessive Length

and only then the results can be combined. For this purpose, we have imple-
mented a initial information flow analysis for partitioning the circuit with respect
to the processed parts of the secret. The examination of smaller sub-components
in particular can considerably accelerate the overall verification process without
the results losing their significance and precision.

Time (circuit depth). Leveraging the fact that we only consider unrolled and
pipelined circuits, we can also partition the verification effort in the temporal
dimension of the circuit. Specifically, limiting the verification results to only
cycle-accuracy, i.e., only considering probes placed within a single cycle respec-
tively pipelining stage, we can partition the computational effort of generating
the adversarial view H|Ex(P).

In fact, this approach is based on a the implementation of a function that
allows generating the appropriate output distribution for a given input distri-
bution and a corresponding transition function. Given this, we can compute the
distribution of the adversarial view for each cycle individually in first generating
the input distributions of each cycle iteratively as the output distribution of the
previous cycle and then leveraging the same function to compute the adversar-
ial view. This approach particularly limits the complexity of the intermediate
transition functions in order to improve the evaluation performance. Note, that
this decision is also based on the assumption that common practical leakage
assessment methodologies (e.g. Test Vector Leakage Assessment (TVLA)) for
hardware platforms also mostly combine information from single clock cycle to
provide univariate test results.

Parallelism. In particular, the decomposition of the problem space into in-
dependent sub-problems favors the parallelization of processing, especially for
modern multi-core processor architectures. Accordingly, the different partitions
of the individual stages are processed in parallel on independent processor cores,
depending on availability, so that the execution time of our verification can con-
tinue to be significantly accelerated.

Approximation. Another option for optimizing the tool runtime concerns the
accuracy of the verification results. This is particularly interesting for the random
probing model, as the combinatorial complexity increases exponentially in the
circuit size due to the complete enumeration of all probe combinations, so that
even the benefits of partitioning quickly reach their limits.

In this case, we suggest that both the maximum number of probes and the
number of probe combinations taken into account can be limited by the user.
However, this means that not all combinations are enumerated and considered.
As a result, the tool no longer reports an exact leakage probability, but instead
determines a lower and an upper bound for the leakage probability. In particular,
it is conservatively assumed for the lower bound that all unconsidered combina-
tions are secure, whereas the exact opposite is assumed for the upper bound, i.e.



INDIANA 19

that all unconsidered combinations are insecure (for more details, we refer the
interested reader to [9]).

By varying the number and combination of samples, the runtime and mem-
ory requirements can be adjusted, but at the expense of the accuracy of the
verification results.

4 Evaluation

In this section, we evaluate and discuss the performance of INDIANA implement-
ing the verification strategies presented in Section 3. To this end, we verify and
benchmark several large-scale cryptographic designs taken from the literature.

We focus our evaluation in particular on the following three aspects. First,
we demonstrate that our new approach to verification in the glitch-extended
(standard) probing model can also be applied to large-scale cryptographic cir-
cuits that cannot be analyzed with previous state-of-the-art tools. In particular,
we analyze and verify different masking schemes applied to round-based SPN
implementations, e.g., PRESENT, SKINNY and AES. Next, we present verifi-
cation and performance results in the random probing model. To this end, we
first focus on an empirical investigation of the parameter choice (i.e. the num-
ber of probes and samples) on the accuracy of the leakage probability bounds
using an exemplary PRESENT implementation. Finally, we turn to a first-order
masked AES implementation, as a case study of greatest practical relevance, and
perform random probing checks. In particular, we compare the results with prac-
tical measurements that allow us to connect the theoretical models implemented
in INDIANA with real implementations.

Verification Setup. All reported numbers regarding verification results are de-
rived at a machine equipped with 128GB RAM and an Intel Xeon E5-1660
Central Processing Unit (CPU) running at 3.2GHz. The CPU has 16 cores that
we fully utilize in case the corresponding tool supports multithreading.

4.1 Glitch-Extended Threshold Probing Verification Results

In this section, we present verification results of single-round implementations of
common block ciphers and compare the performance of INDIANA to frameworks
from the literature. More precisely, we compare INDIANA to the frameworks
maskVerif [3] and VERICA [44]. Before presenting the results, we briefly discuss
the reasoning behind this selection and introduce both tools in more detail.

Related Work. Over the last years, many computer-aided verification frame-
works for analyzing protected hardware implementations have been presented.
However, only a few are able to analyze full rounds of protected block ciphers.
For example, we tried to execute our case studies with SILVER [32] which, how-
ever, is not able to process that many input variables. Other tools, e.g., ironMask,



20 Authors Suppressed Due to Excessive Length

are limited in the circuit structures that can be parsed and processed, and there-
fore they are not able to analyze entire rounds. To this end, we only managed
to perform our case studies with maskVerif and VERICA which we briefly discuss
in the following.

maskVerif. In 2019, Barthe et al. presented a novel tool to automatically verify
the security of masked implementations in the presence of physical defaults (e.g.,
glitches and transitions). For that, maskVerif [3] is designed to perform multivari-
ate security analysis, i.e., the tool can analyze probe combinations with probes
located at different points in time (e.g., across multiple clock cycles). However,
it has been shown that the tool may report false negatives [32]. Indeed, it may
falsely categorize a secure circuit as insecure, causing unnecessary design over-
head to mitigate such flaws.

VERICA. Richter-Brockmann et al. presented the first tool for security verifi-
cation in the presence of combined attacks, i.e., combining active information
tampering with passive information leakage. The tool emerged from the consol-
idation of SILVER [32] and FIVER [45], a state-of-the-art automated verification
tool for FIA. Therefore, VERICA employs BDDs as well for verification of
security properties (both for SCA and FIA) [23, 45]. Hence, VERICA can also
perform stand-alone security verification in the glitch-extended d-probing model.

Interestingly, VERICA has been implemented as a modular and extendable
security verification framework that easily adds additional analysis and verifica-
tion strategies to the existing tool structure. For this, we opted to integrate our
verification concept into this framework to implement INDIANA for verification
based on the indistinguishability of probability distributions.

Security Verification. Before we present the verification results in detail, we
reason about the selection of target designs and describe how we generate them.

Selection of case studies. Table 2 lists all designs that we consider for our case
study. The selected single-round designs cover a range of lightweight ciphers (i.e.,
PRESENT and SKINNY-64), slightly more complex ciphers (i.e., LED-64 and
SKINNY-128), and AES as a widely deployed block cipher. Despite for AES,
we consider three different protection schemes: designs protected by Threshold
Implementation (TI) [40], designs protected by HPC1 gadgets [15], and designs
protected by HPC2 gadgets [15]. For the gadget-based designs, we consider con-
figurations protected against first-order and second-order attacks, i.e., d=1 and
d=2, respectively.

For the PRESENT and LED implementations protected by TI, we use the
same S-box implementation as in [47]. We implemented the remaining (masked)
combinatorial logic manually. The TI designs of SKINNY have been designed
and implemented by us. The S-boxes for all the HPC1 and HPC2 are generated
by SAIREDA [21,22]. Again, we implemented the missing (masked) combinatorial



INDIANA 21

Table 2: Comparison between our indistinguishability strategy and tools from
the literature verifying single rounds of various cryptographic schemes. All exper-
iments highlighted in green pass the verification for the corresponding security
order. Experiments highlighted in red fail the verification and are reported as
insecure for all security orders by the corresponding tool. By ⊥, we denote ex-
periments where the verification did not finish under 8 h. By ×, we denote that
the computation of the corresponding tool runs out of memory during parsing
or evaluation.

Ord. Impl.

Design d comb. mem. maskVerifI [3] VERICAII [44] OURII

PRESENT (TI) 1 11760 192 † 76.5 s 40.8 s
PRESENT (HPC1) 1 1360 1152 0.5 s 3.5 s 3.8 s
PRESENT (HPC1) 2 2816 2064 3.2min ⊥ 55.9 s

PRESENT (HPC2) 1 1552 1536 0.5 sf 4.5 s 5.4 s

PRESENT (HPC2) 2 3328 3216 0.9 sf ⊥ 11.6min

LED-64 (TI) 1 12240 384 † × 69.3 s
LED-64 (HPC1) 1 1872 1152 0.3 s × 5.5 s
LED-64 (HPC1) 2 3584 2064 88.8 s × 93.9 s

LED-64 (HPC2) 1 2064 1536 0.6 sf × 8.4 s

LED-64 (HPC2) 2 4096 3216 1.1 sf × 25.1min

SKINNY-64 (TI) 1 1401 192 –* ⊥ 1.1 s
SKINNY-64 (HPC1) 1 1064 1024 –* 9.7 s 2.3 s
SKINNY-64 (HPC1) 2 2169 1728 –* ⊥ 9.1 s
SKINNY-64 (HPC2) 1 1256 1408 –* 8.8 s 3.5 s
SKINNY-64 (HPC2) 2 2873 2880 –* ⊥ 39.4 s

SKINNY-128 (TI) 1 1641 384 –* ⊥ 2.4 s
SKINNY-128 (HPC1) 1 2120 3072 –* ⊥ 14.0 s
SKINNY-128 (HPC1) 2 4329 4992 –* ⊥ 52.8 s
SKINNY-128 (HPC2) 1 2504 3840 –* ⊥ 21.5 s
SKINNY-128 (HPC2) 2 5737 7296 –* ⊥ 57.4min

AES-128 [28] 1 11312 3584 4.4min × 45.0min
AES-128 [28] 2 24184 6240 ⊥ × ×
AES-128 (HPC1) 1 11584 9088 97.7 s × ×
AES-128 (HPC2) 1 13312 12544 10.5 sf × ×

I Single-core analysis. II Multi-threading (16 cores). † Stack overflow. f False-negative.
∗ Round constants cannot be processed by maskVerif.

logic manually. The remaining two AES-128 designs were presented in [28] and
are based on the Domain-Oriented Masking (DOM) principle.

The implementation costs for the selected case studies are reported in Table 2.
We divide the costs into the number of combinatorial gates and the number of
memory gates, i.e., registers. Again, these numbers perfectly show the different
complexities of the selected designs.

Verification Results. We start our evaluation with the protected implementations
of PRESENT. As shown in Table 2, INDIANA is able to verify the security of all
five protection schemes. While almost all verifications can be performed in under
one minute, the verification of the second-order HPC2 design takes 11.6min.
VERICA is able to analyze the first-order implementations in a similar time range
but fails to finish the verification of the second-order designs in under 8 h. For



22 Authors Suppressed Due to Excessive Length

the HPC1 designs, maskVerif is slightly slower for the second-order protected
design than INDIANA. However, maskVerif performs a bivariate analysis while
INDIANA is limited to cycle-accurate verifications. We were not able to perform
the verification of the TI design due to a stack overflow. As already mentioned
in the introduction of this section, maskVerif may report false negatives. This
also happens when verifying the HPC2 designs. We assume that this occurs due
to the computation a0 · r+ ā0 · [b1+ r] that is performed inside a HPC2 gadget
which is also referred as the masked shares multiplication trick.

Similar results can be observed when analyzing the LED designs. However,
VERICA is not able to verify any of these designs because it runs out of memory
on our machine.

Next, we verify a number of SKINNY implementations. INDIANA is capable of
analyzing all designs while the verification of the SKINNY-128 implementation
protected by HPC2 gadgets is the slowest one taking 57.4min. VERICA only
reports results for the first-order HPC designs of SKINNY-64 while performing
slightly worse than INDIANA. Eventually, maskVerif is not able to process the
SKINNY designs since the tool cannot process round constants.

In our last case study, we perform verifications on AES designs. While VERICA
runs out of memory for all designs, INDIANA reports results for the first-order
protected implementation from [28]. The verification takes 45min. Additionally
to the first-order design from [28], maskVerif is also capable of analyzing the first-
order HPC implementations. As above, it reports false negative results for the
HPC2 design.

4.2 Standard Random Probing Verification Results

In this section, we will now focus on the verification and evaluation of different
case studies in the standard random probing model in computing cycle-accurate
random probing leakage probabilities. For the sake of clarity, we will focus on
two case studies as examples. However, we would like to note that INDIANA is
also able to analyze and verify all designs listed in Table 2 cycle-accurately in
the standard random probing model.

The Leakage Probability. For all our case studies and experiments, we consider a
hypothetical leakage probability p= 10−2. However, we would like to note that
this choice is not based on practical considerations, but is merely for illustrative
purposes, i.e., to provide ranges for the upper and lower limits bounds are visible
and displayable. In particular, we would like to emphasize that the actual choice
of p has no influence on the evaluation and verification performance, as this is
determined solely by the generation of the leakage function, while the evaluation
for different p has the same computational effort.

Case Study I - PRESENT Round Function. Our first case study is
therefore dedicated to a first-order HPC2-masked round implementation for the
PRESENT cipher, where 16 masked S-boxes are instantiated in parallel (fol-
lowed by a share-wise bit permutation layer). Moreover, each S-box is composed



INDIANA 23

of PINI-secure HPC2 multiplication gadgets and is evaluated within four clock
cycles. Notably, since each of the S-boxes processes an individual part of the
secret (i.e., the unshared round input), the verification effort can be divided in
space (16 parallel instances) and time (four clock cycles).

Table 3: This table presents verification results for a parameter sweep for a
first-order protected implementation of PRESENT (single round) in the ran-
dom probing model. The table reports the verification results cycle accurate for
different numbers of probes and samples that are randomly selected by INDI-

ANA. The number of positions corresponds to the total number of wires that is
available for probing. By ⊥, we identify experiments that did not finish in under
8 h.

Samples
Cycle Positions Probes 16× 10 16× 20 16× 30 16× 40 16× 50

1 16× 15

∞ 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 10 0.012/0.026 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 20 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 30 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 40 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 50 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 60 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 70 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013
16× 80 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013 0.013/0.013

2 16× 58

∞ 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019
16× 10 0.005/0.908 0.009/0.757 0.011/0.632 0.014/0.565 0.015/0.491
16× 20 0.014/0.559 0.017/0.274 0.019/0.158 0.019/0.111 0.019/0.086
16× 30 0.018/0.168 0.019/0.050 0.019/0.030 0.019/0.024 0.019/0.022
16× 40 0.019/0.031 0.019/0.020 0.019/0.019 0.019/0.019 0.019/0.019
16× 50 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019 ⊥
16× 60 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019
16× 70 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019
16× 80 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019 0.019/0.019

3 16× 82

∞ 0.079/0.079 0.079/0.079 0.079/0.079 0.079/0.079 0.079/0.079
16× 10 0.012/0.995 0.016/0.965 0.027/0.932 0.033/0.904 0.039/0.880
16× 20 0.034/0.918 0.055/0.775 0.064/0.654 0.069/0.556 0.073/0.480
16× 30 0.059/0.717 0.071/0.447 0.076/0.296 0.078/0.231 0.078/0.191
16× 40 0.073/0.400 0.078/0.182 0.078/0.126 0.078/0.103 0.078/0.093
16× 50 0.078/0.171 0.078/0.092 0.079/0.082 0.079/0.080 ⊥
16× 60 0.078/0.091 0.079/0.079 0.079/0.079 ⊥ ⊥
16× 70 0.079/0.079 0.079/0.079 ⊥ ⊥ ⊥
16× 80 0.079/0.079 0.079/0.079 0.079/0.079 0.079/0.079 0.079/0.079

4 16× 52

∞ 0.063/0.063 0.063/0.063 0.063/0.063 0.063/0.063 0.063/0.063
16× 10 0.020/0.834 0.032/0.625 0.042/0.515 0.048/0.434 0.052/0.372
16× 20 0.048/0.377 0.060/0.188 0.062/0.122 0.063/0.099 0.063/0.087
16× 30 0.061/0.120 0.063/0.069 0.063/0.065 0.063/0.064 0.063/0.063
16× 40 0.063/0.064 0.063/0.063 0.063/0.063 0.063/0.063 0.063/0.063
16× 50 0.063/0.063 0.063/0.063 0.063/0.063 0.063/0.063 ⊥
16× 60 0.063/0.063 0.063/0.063 0.063/0.063 ⊥ ⊥
16× 70 0.063/0.063 0.063/0.063 ⊥ ⊥ ⊥
16× 80 0.063/0.063 0.063/0.063 0.063/0.063 0.063/0.063 0.063/0.063

Verification Results. In particular, we opted for this case study as we were
able to compute exact leakage probabilities for all partitions and cycles of the



24 Authors Suppressed Due to Excessive Length

Table 4: This table reports the performance numbers of INDIANA for the verifi-
cation results presented in Table 3. The performance numbers correspond to the
verification time that is required to analyze all four cycles of the target design.
By ⊥, we identify experiments that did not finish in under 8 h.

Samples
Probes 16× 10 16× 20 16× 30 16× 40 16× 50

∞ 23.0min 23.0min 23.1min 23.0min 23.1min
10 6.8 s 6.9 s 7.1 s 7.2 s 7.3 s
20 7.7 s 10.7 s 25.9 s 31.5 s 26.0 s
30 20.4 s 34.6 s 52.4 s 1.1min 1.4min
40 51.6 s 1.7min 2.8min 5.9min 11.2min
50 3.3min 8.2min 19.2min 34.9min ⊥
60 18.3min 35.5min 1.3 h ⊥ ⊥
70 49.6min 2.2 h ⊥ ⊥ ⊥
80 1.7 h 1.2 h 1.5 h 2.3 h 1.6 h

design, as indicated by all lines in Table 3 marked with ∞ for the number of
probes. Based on this, we further opted to investigate various parameters for the
maximum number of probes and combinations (denoted as samples) with regard
to the accuracy of the leakage probability bounds as part of this experiment.
In particular, we carried out various experiments that increased the maximum
number of probes and samples in steps of ten and tested all their combinations
(with a maximum of 80 probes and 50 samples allowed).

In this context, we would like to highlight and discuss some interesting obser-
vations in relation to the results provided in Table 3 and Table 4. However, due
to the empirical and incomplete nature of this experiment, we must interpret
the results with caution and refrain from making general statements.

Increasing the number of probes. As expected, increasing the number of
probes ensures that larger parts of the search space can be covered, which
provides more accurate results, especially with regard to the upper bound.
It is noteworthy that the lower bound is already quite accurate for most
experiments, indicating that the most influential key leakage occurs mainly
for smaller combinations of probes.

Increasing the number of samples. Similarly, a larger number of randomly
selected samples provides more accurate bounds, although the maximum
number of 50 samples was hardly sufficient for any experiment to generate
accurate results.

Verification timeouts. Although we were able to generate the exact leak prob-
abilities for all cycles within 23 minutes, we observed timeouts after 8 hours
in some experiments. This may seem surprising at first, but can be explained
by the way the CUDD7 BDD library works. In fact, the library heavily re-
lies on caching BDDs calculations. This significantly improves performance,
especially when calculations are performed repeatedly, i.e., when large parts
of the sample combinations overlap. However, if the randomly selected sam-
ples are mostly disjoint, this leads to the eviction of cached intermediate

7 https://github.com/ivmai/cudd

https://github.com/ivmai/cudd


INDIANA 25

Table 5: This table presents verification results for a first-order protected imple-
mentation of AES (single round) in the random probing model. The table reports
the verification results cycle accurate for combinations of at most 2 probes that
are exhaustively generated by INDIANA. The number of positions corresponds to
the total number of wires that is available for probing.

Cycle Positions Probes Samples Leakage Total Elapsed Time

1 16× 72 16× 2 16× 2556 0.056/0.458 1.20min

2 16× 138 16× 2 16× 9453 0.785/0.966 6.25min

3 16× 72 16× 2 16× 2556 0.099/0.472 39.33min

4 16× 52 16× 2 16× 1326 0.145/0.296 39.43min

5 16× 52 16× 2 16× 1326 0.034/0.236 39.53min

6 16× 92 16× 2 16× 4186 0.406/0.738 39.79min

7 16× 304 16× 2 16× 46056 0.992/0.999 3.33 h

8 16× 102 16× 2 16× 5151 0.149/0.767 3.58 h

9 4× 324 16× 2 4× 52326 0.051/0.981 3.76 h

results, which ultimately results in slower performance when more samples
are considered.

Case Study II - AES Round Function. Our second case study is dedicated
to the standardized and widely used AES cipher to demonstrate both the power
and practical relevance of our approach. In particular, we focus on a first-order
DOM-based AES round implementation (i.e., including key addition, 16 parallel
S-box instances, and four parallel MixColumn operations) and provide cycle-
accurate ranges for the leakage probabilities in the standard random probing
model.

Verification Results. Table 5 lists the probes, samples, lower and upper bounds,
and total elapsed verification time for the individual clock cycles of the AES
round (assuming a leakage probability p=10−2). In particular, due to the com-
plexity of the design (especially for the non-linear stages), we performed our
verification with a maximum number of two probes but instead considered all
possible combinations (samples). Noting that the design under test is only first-
order protected, we assume that the key leakage (i.e., the main contributing
failing probe combinations) will be observable with only two probes. However,
this still should provide good estimates for the lower bounds while the upper
bounds may lack in accuracy due to the large number of unconsidered combi-
nations (as confirmed by the results in Table 5). Most importantly, the overall
verification takes less than 4 hours which is mostly spend in the non-linear layers
of cycle 3 and 7.

Case Study III - AES S-Box. For our last case study, we extracted a single
S-box instance from the first-order DOM-based AES round function to per-



26 Authors Suppressed Due to Excessive Length

form an isolated verification in the standard random probing model alongside
empirical TVLA. In particular, the verification results expectedly match with
the previous case study. Still, mainly due to the limited capacity of our target
Field-Programmable Gate Arrays (FPGAs) platform and in order to reduce the
measurement noise for the practical evaluations, we provide this third case study
considering an isolated AES S-box instance.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

Cycle

L
ea
ka
g
e
P
ro
b
a
b
il
it
y

Upper bound

Lower bound

Fig. 1: Verification results of a first-order protected AES implementation (single
S-box) in the standard random probing model. The number of probes has been
fixed to two while the probe positions have been considered exhaustively.

Verification Results. Similar to the previous case study, we limited the maximum
number of samples to two, but took full account of all probe combinations. The
results for both the upper bound (red) and the lower bound (blue) are shown in
Figure 1.

Practical Evaluation. Additionally to the computer-aided verification results, we
perform practical measurements for the same protected AES S-box. Therefore,
we synthesize the S-box for the Sakura-G side-channel evaluation board that is
equipped with a Xilinx Spartan 6 FPGA. The required fresh randomness for
the AES S-box is provided by a KECCAK core instantiated as Pseudo-Random
Number Generator (PRNG). In order to collect clean power traces, we set the
clock frequency to 4MHz and measure the power consumption indirectly via a
1Ω shunt resistor placed in the supply path of the FPGA. The voltage signal
is amplified by a ZFL-2000GH+ Low-Noise Amplifier (LNA) configured with a
19 dB gain and digitalized by a Spectrum M4 oscilloscope (8 bit resolution) with
a sampling rate of 2.5GS/s.

The security analysis is performed based on the TVLA methodology orig-
inally presented in [26]. Based on Welsh’s t-test, we analyze the first two sta-
tistical moments with the fixed vs. random strategy as described in [46]. Here,



INDIANA 27

Time [µs]

sc
o
p
e
c
o
u
n
t

0 0.67 1.33 2.0
−100

0

100

(a) Sample trace.

Time [µs]

t-
v
a
lu
e

0 0.67 1.33 2.0

−4.5

0

4.5

(b) First-order t-test results.

Time [µs]

t-
v
a
lu
e

0 0.67 1.33 2.0
−4.50
4.5

(c) Second-order t-test results.

Fig. 2: Measurement results for a first-order protected AES S-box (200 Million
traces).

the absolute value of the t-test is commonly compared to a threshold of 4.5 cor-
responding to a confidence of 0.99999 rejecting the null hypothesis. Informally
speaking, if we do not identify any point in time that exceeds this threshold, we
consider the implementation to be secure. In contrast, if we identify peaks in the
test results of the analyzed statistical moments, the power consumption is not
independent of the processed input data such that we cannot conclude that the
implementation is secure.

Figure 2 shows the measurement results of the protected AES S-box. More
precisely, Figure 2a exemplary shows a power trace acquired with the described
setup. The eight clock cycles of the S-box can clearly be seen. In total, we collect
200 million power traces (roughly 100 million traces with random input data and
100 million traces with fixed input data). Based on these data, we compute the
first-order t-test which is shown in Figure 2b. As expected, we cannot identify
any leakage. However, when performing a second-order t-test shown in Figure 2c,
we clearly see some peaks indicating the existence of leakage. Particularly, we
identify a huge peak in the seventh clock cycle and two smaller peaks in the
second and third clock cycle.

Coherency between Theory and Practice. An interesting observation is that the
verification and evaluation results seem to coincide. In both experiments, we
have increased probabilities of detecting leakage in clock cycles 2 and 7, with



28 Authors Suppressed Due to Excessive Length

the latter being the most signification position for leakage. Additionally, we have
limited the experiments to second-order analyses in both cases.

Nevertheless, the results should be considered with caution, as no generally
valid conclusions can be drawn from a single experiment. Instead, these observa-
tions provide further directions for interesting future work in order to determine
and examine the coherency between the theoretical security models and the
practical implementations in an in-depth and systematic analysis.

5 Conclusion

In this work, we present INDIANA as a comprehensive verification tool for hard-
ware masking offering comprehensive verification in the well-established glitch-
extended probing model. Additionally, INDIANA provides cycle-accurate estima-
tions for the leakage probabilities in the standard random probing model even for
large-scale circuits, e.g., full Substitution-Permutation Network (SPN) ciphers
including PRESENT and AES. All this is only possible thanks to our novel and
partitionable probing distinguisher and FFT application that enables rapid ver-
ification in both models and significantly outperforms state-of-the-art methods
based on statistical independence. This is practically demonstrated in providing
a comprehensive set of benchmarks and comparisons to state-of-the-art probing
security tools.

Acknowledgements

The work described in this paper has been supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972, and 510964147 (CAVE).
Moreover, this work has been funded in parts by the ERC project 101097056
(SYMTRUST), by the European Commission under the grant agreement number
101070374 (CONVOLVE), and by the German Federal Ministry of Education
and Research (BMBF) through the projects VE-HEP (16KIS1345) and 6GEM
(16KISK038).

References

1. Akers, S.B.: Binary Decision Diagrams. IEEE Trans. Computers 27(6), 509–
516 (1978). https://doi.org/10.1109/TC.1978.1675141, https://doi.org/10.
1109/TC.1978.1675141

2. Arribas, V., Nikova, S., Rijmen, V.: VerMI: Verification Tool for Masked Imple-
mentations. In: ICECS. pp. 381–384. IEEE (2018)

3. Barthe, G., Beläıd, S., Cassiers, G., Fouque, P.A., Grégoire, B., Standaert, F.X.:
maskVerif: Automated verification of higher-order masking in presence of physical
defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019: 24th
European Symposium on Research in Computer Security, Part I. Lecture Notes
in Computer Science, vol. 11735, pp. 300–318. Springer, Heidelberg, Germany,

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141


INDIANA 29

Luxembourg (Sep 23–27, 2019). https://doi.org/10.1007/978-3-030-29959-0_
15

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.: Ver-
ified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology – EUROCRYPT 2015, Part I. Lecture Notes in Computer Science,
vol. 9056, pp. 457–485. Springer, Heidelberg, Germany, Sofia, Bulgaria (Apr 26–30,
2015). https://doi.org/10.1007/978-3-662-46800-5_18

5. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016: 23rd Conference on Computer and Communications Security. pp. 116–
129. ACM Press, Vienna, Austria (Oct 24–28, 2016). https://doi.org/10.1145/
2976749.2978427

6. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.X., Strub, P.Y.:
Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology – EU-
ROCRYPT 2017, Part I. Lecture Notes in Computer Science, vol. 10210, pp.
535–566. Springer, Heidelberg, Germany, Paris, France (Apr 30 – May 4, 2017).
https://doi.org/10.1007/978-3-319-56620-7_19

7. Barthe, G., Gourjon, M., Grégoire, B., Orlt, M., Paglialonga, C., Porth, L.: Mask-
ing in fine-grained leakage models: Construction, implementation and verifica-
tion. IACR Transactions on Cryptographic Hardware and Embedded Systems
2021(2), 189–228 (2021). https://doi.org/10.46586/tches.v2021.i2.189-228,
https://tches.iacr.org/index.php/TCHES/article/view/8792

8. Battistello, A., Coron, J.S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2016. Lec-
ture Notes in Computer Science, vol. 9813, pp. 23–39. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–19, 2016). https://doi.org/10.1007/
978-3-662-53140-2_2

9. Beläıd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R.: Random probing secu-
rity: Verification, composition, expansion and new constructions. In: Micciancio,
D., Ristenpart, T. (eds.) Advances in Cryptology – CRYPTO 2020, Part I. Lecture
Notes in Computer Science, vol. 12170, pp. 339–368. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–21, 2020). https://doi.org/10.1007/
978-3-030-56784-2_12

10. Beläıd, S., Mercadier, D., Rivain, M., Taleb, A.R.: IronMask: Versatile verification
of masking security. In: 2022 IEEE Symposium on Security and Privacy. pp. 142–
160. IEEE Computer Society Press, San Francisco, CA, USA (May 22–26, 2022).
https://doi.org/10.1109/SP46214.2022.9833600

11. Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2018,
Part II. Lecture Notes in Computer Science, vol. 10821, pp. 321–353. Springer,
Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018). https://doi.org/
10.1007/978-3-319-78375-8_11

12. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.

1676819, https://doi.org/10.1109/TC.1986.1676819

https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.46586/tches.v2021.i2.189-228
https://doi.org/10.46586/tches.v2021.i2.189-228
https://tches.iacr.org/index.php/TCHES/article/view/8792
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1007/978-3-030-56784-2_12
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1109/SP46214.2022.9833600
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819


30 Authors Suppressed Due to Excessive Length

13. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, Cambridge (2021)

14. Cassiers, G., Faust, S., Orlt, M., Standaert, F.X.: Towards tight random probing se-
curity. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology – CRYPTO 2021,
Part III. Lecture Notes in Computer Science, vol. 12827, pp. 185–214. Springer,
Heidelberg, Germany, Virtual Event (Aug 16–20, 2021). https://doi.org/10.

1007/978-3-030-84252-9_7

15. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware Private Circuits: From
Trivial Composition to Full Verification. IEEE Trans. Computers 70(10), 1677–
1690 (2021). https://doi.org/10.1109/TC.2020.3022979, https://doi.org/10.
1109/TC.2020.3022979

16. Cassiers, G., Standaert, F.: Trivially and Efficiently Composing Masked Gadgets
With Probe Isolating Non-Interference. IEEE Trans. Inf. Forensics Secur. 15, 2542–
2555 (2020). https://doi.org/10.1109/TIFS.2020.2971153, https://doi.org/
10.1109/TIFS.2020.2971153

17. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener [48], pp. 398–412. https://doi.org/10.
1007/3-540-48405-1_26

18. De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating security notions in hardware
masking. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(3), 119–147 (2019). https://doi.org/10.13154/tches.v2019.i3.119-147,
https://tches.iacr.org/index.php/TCHES/article/view/8291

19. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: From probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology
– EUROCRYPT 2014. Lecture Notes in Computer Science, vol. 8441, pp. 423–
440. Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014).
https://doi.org/10.1007/978-3-642-55220-5_24

20. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.: Compos-
able masking schemes in the presence of physical defaults & the robust probing
model. IACR Transactions on Cryptographic Hardware and Embedded Systems
2018(3), 89–120 (2018). https://doi.org/10.13154/tches.v2018.i3.89-120,
https://tches.iacr.org/index.php/TCHES/article/view/7270

21. Feldtkeller, J.: Saireda (2022), https://github.com/

Chair-for-Security-Engineering/SAIREDA

22. Feldtkeller, J., Knichel, D., Sasdrich, P., Moradi, A., Güneysu, T.: Randomness
optimization for gadget compositions in higher-order masking. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2022(4), 188–227 (2022).
https://doi.org/10.46586/tches.v2022.i4.188-227

23. Feldtkeller, J., Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: CINI MINIS: Do-
main isolation for fault and combined security. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022: 29th Conference on Computer and Communi-
cations Security. pp. 1023–1036. ACM Press, Los Angeles, CA, USA (Nov 7–11,
2022). https://doi.org/10.1145/3548606.3560614

24. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Koç, Çetin Kaya., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2001. Lecture Notes in Computer Science, vol. 2162,
pp. 251–261. Springer, Heidelberg, Germany, Paris, France (May 14–16, 2001).
https://doi.org/10.1007/3-540-44709-1_21

25. Gigerl, B., Hadzic, V., Primas, R., Mangard, S., Bloem, R.: Coco: Co-design and
co-verification of masked software implementations on CPUs. In: Bailey, M., Green-

https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1007/978-3-030-84252-9_7
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TC.2020.3022979
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1109/TIFS.2020.2971153
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.13154/tches.v2019.i3.119-147
https://doi.org/10.13154/tches.v2019.i3.119-147
https://tches.iacr.org/index.php/TCHES/article/view/8291
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.13154/tches.v2018.i3.89-120
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://github.com/Chair-for-Security-Engineering/SAIREDA
https://github.com/Chair-for-Security-Engineering/SAIREDA
https://doi.org/10.46586/tches.v2022.i4.188-227
https://doi.org/10.46586/tches.v2022.i4.188-227
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1145/3548606.3560614
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21


INDIANA 31

stadt, R. (eds.) USENIX Security 2021: 30th USENIX Security Symposium. pp.
1469–1468. USENIX Association (Aug 11–13, 2021)

26. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for
side-channel resistance validation. In: NIST non-invasive attack testing workshop.
vol. 7, pp. 115–136 (2011)

27. Groß, H., Mangard, S.: A unified masking approach. Journal of Crypto-
graphic Engineering 8(2), 109–124 (Jun 2018). https://doi.org/10.1007/

s13389-018-0184-y

28. Groß, H., Mangard, S., Korak, T.: Domain-Oriented Masking: Compact Masked
Hardware Implementations with Arbitrary Protection Order. In: Proceedings of
the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016. p. 3.
ACM (2016). https://doi.org/10.1145/2996366.2996426

29. Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) Topics in Cryp-
tology – CT-RSA 2017. Lecture Notes in Computer Science, vol. 10159, pp. 95–
112. Springer, Heidelberg, Germany, San Francisco, CA, USA (Feb 14–17, 2017).
https://doi.org/10.1007/978-3-319-52153-4_6

30. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology – CRYPTO 2003. Lecture
Notes in Computer Science, vol. 2729, pp. 463–481. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 17–21, 2003). https://doi.org/10.1007/
978-3-540-45146-4_27

31. Knichel, D., Moradi, A.: Composable gadgets with reused fresh masks first-order
probing-secure hardware circuits with only 6 fresh masks. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2022(3), 114–140 (2022). https:
//doi.org/10.46586/tches.v2022.i3.114-140

32. Knichel, D., Sasdrich, P., Moradi, A.: SILVER - statistical independence and
leakage verification. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology –
ASIACRYPT 2020, Part I. Lecture Notes in Computer Science, vol. 12491, pp.
787–816. Springer, Heidelberg, Germany, Daejeon, South Korea (Dec 7–11, 2020).
https://doi.org/10.1007/978-3-030-64837-4_26

33. Knichel, D., Sasdrich, P., Moradi, A.: Generic hardware private circuits towards
automated generation of composable secure gadgets. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2022(1), 323–344 (2022). https:

//doi.org/10.46586/tches.v2022.i1.323-344

34. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology – CRYPTO’96.
Lecture Notes in Computer Science, vol. 1109, pp. 104–113. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 1996). https://doi.org/10.

1007/3-540-68697-5_9

35. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [48], pp.
388–397. https://doi.org/10.1007/3-540-48405-1_25

36. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) Topics in Cryptology – CT-RSA 2005. Lecture
Notes in Computer Science, vol. 3376, pp. 351–365. Springer, Heidelberg, Ger-
many, San Francisco, CA, USA (Feb 14–18, 2005). https://doi.org/10.1007/
978-3-540-30574-3_24

37. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) Cryptographic Hard-
ware and Embedded Systems – CHES 2006. Lecture Notes in Computer Science,

https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1007/s13389-018-0184-y
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.46586/tches.v2022.i3.114-140
https://doi.org/10.46586/tches.v2022.i3.114-140
https://doi.org/10.46586/tches.v2022.i3.114-140
https://doi.org/10.46586/tches.v2022.i3.114-140
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.46586/tches.v2022.i1.323-344
https://doi.org/10.46586/tches.v2022.i1.323-344
https://doi.org/10.46586/tches.v2022.i1.323-344
https://doi.org/10.46586/tches.v2022.i1.323-344
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/978-3-540-30574-3_24


32 Authors Suppressed Due to Excessive Length

vol. 4249, pp. 76–90. Springer, Heidelberg, Germany, Yokohama, Japan (Oct 10–13,
2006). https://doi.org/10.1007/11894063_7

38. Moos, T., Moradi, A., Schneider, T., Standaert, F.X.: Glitch-resistant masking
revisited. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(2), 256–292 (2019). https://doi.org/10.13154/tches.v2019.i2.256-292,
https://tches.iacr.org/index.php/TCHES/article/view/7392

39. Müller, N., Moradi, A.: PROLEAD A probing-based hardware leakage detection
tool. IACR Transactions on Cryptographic Hardware and Embedded Systems
2022(4), 311–348 (2022). https://doi.org/10.46586/tches.v2022.i4.311-348

40. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information
and Communications Security, 8th International Conference, ICICS 2006, Raleigh,
NC, USA, December 4-7, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4307, pp. 529–545. Springer (2006). https://doi.org/10.1007/11935308_38,
https://doi.org/10.1007/11935308_38

41. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. Journal of Cryptology 24(2), 292–321 (Apr
2011). https://doi.org/10.1007/s00145-010-9085-7

42. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology –
EUROCRYPT 2013. Lecture Notes in Computer Science, vol. 7881, pp. 142–
159. Springer, Heidelberg, Germany, Athens, Greece (May 26–30, 2013). https:
//doi.org/10.1007/978-3-642-38348-9_9

43. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) Advances in Cryptology
– CRYPTO 2015, Part I. Lecture Notes in Computer Science, vol. 9215, pp. 764–
783. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 16–20, 2015).
https://doi.org/10.1007/978-3-662-47989-6_37

44. Richter-Brockmann, J., Feldtkeller, J., Sasdrich, P., Güneysu, T.: VERICA - ver-
ification of combined attacks automated formal verification of security against
simultaneous information leakage and tampering. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2022(4), 255–284 (2022). https:

//doi.org/10.46586/tches.v2022.i4.255-284
45. Richter-Brockmann, J., Shahmirzadi, A.R., Sasdrich, P., Moradi, A., Güneysu,

T.: FIVER - robust verification of countermeasures against fault injections.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2021(4),
447–473 (2021). https://doi.org/10.46586/tches.v2021.i4.447-473, https:

//tches.iacr.org/index.php/TCHES/article/view/9072
46. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version.

Journal of Cryptographic Engineering 6(2), 85–99 (Jun 2016). https://doi.org/
10.1007/s13389-016-0120-y

47. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw,
M., Katz, J. (eds.) Advances in Cryptology – CRYPTO 2016, Part II. Lecture
Notes in Computer Science, vol. 9815, pp. 302–332. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 14–18, 2016). https://doi.org/10.1007/
978-3-662-53008-5_11

48. Wiener, M.J. (ed.): Advances in Cryptology – CRYPTO’99, Lecture Notes in Com-
puter Science, vol. 1666. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 15–19, 1999)

https://doi.org/10.1007/11894063_7
https://doi.org/10.1007/11894063_7
https://doi.org/10.13154/tches.v2019.i2.256-292
https://doi.org/10.13154/tches.v2019.i2.256-292
https://tches.iacr.org/index.php/TCHES/article/view/7392
https://doi.org/10.46586/tches.v2022.i4.311-348
https://doi.org/10.46586/tches.v2022.i4.311-348
https://doi.org/10.1007/11935308\_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.46586/tches.v2022.i4.255-284
https://doi.org/10.46586/tches.v2021.i4.447-473
https://doi.org/10.46586/tches.v2021.i4.447-473
https://tches.iacr.org/index.php/TCHES/article/view/9072
https://tches.iacr.org/index.php/TCHES/article/view/9072
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/s13389-016-0120-y
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-662-53008-5_11
https://doi.org/10.1007/978-3-662-53008-5_11

	INDIANA – Verifying (Random) Probing Security through Indistinguishability Analysis

