
Hamming Weight Proofs of Proximity with One-Sided Error

Gal Arnon
gal.arnon@weizmann.ac.il

Weizmann Institute

Shany Ben-David
shany.ben-david@biu.ac.il

Bar-Ilan University

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

May 28, 2024

Abstract

We provide a wide systematic study of proximity proofs with one-sided error for the
Hamming weight problem Hamα (the language of bit vectors with Hamming weight at
least α), surpassing previously known results for this problem. We demonstrate the
usefulness of the one-sided error property in applications: no malicious party can frame
an honest prover as cheating by presenting verifier randomness that leads to a rejection.

We show proofs of proximity for Hamα with one-sided error and sublinear proof
length in three models (MA, PCP, IOP), where stronger models allow for smaller
query complexity. For n-bit input vectors, highlighting input query complexity, our
MA has O(logn) query complexity, the PCP makes O(loglogn) queries, and the IOP
makes a single input query. The prover in all of our applications runs in expected
quasi-linear time. Additionally, we show that any perfectly complete IP of proximity
for Hamα with input query complexity n1−ϵ has proof length Ω(logn).

Furthermore, we study PCPs of proximity where the verifier is restricted to making
a single input query (SIQ). We show that any SIQ-PCP for Hamα must have a linear
proof length, and complement this by presenting a SIQ-PCP with proof length n+o(n).

As an application, we provide new methods that transform PCPs (and IOPs)
for arbitrary languages with nonzero completeness error into PCPs (and IOPs) that
exhibit perfect completeness. These transformations achieve parameters previously
unattained.

Keywords: Hamming weight problem; interactive proofs of proximity; interactive oracle
proofs

1

Contents

1 Introduction 3
1.1 Main results . 6
1.2 Application: perfect completeness for PCPs and IOPs 8

2 Techniques 9
2.1 PCPP for Hamming weight with sublinear proof length 9
2.2 SIQ-PCPP for Hamming weight . 12
2.3 A SIQ-IOPP for Hamming weight with sublinear proof length 15
2.4 A lower bound for IPPs and semi-adaptive IOPPs 16
2.5 Application: perfect completeness for PCPs and IOPs 20

3 Preliminaries 22
3.1 Hamming weight problem and Hamming distance 22
3.2 Probabilistic proof systems . 23
3.3 Probabilistic inequalities . 25

4 Finding good shifts 26

5 Non-interactive proofs for Hamming weight with sublinear communica-
tion 30
5.1 MA proof of proximity . 31
5.2 PCP for list-Hamming to PCPP for Hamming 33
5.3 PCP of proximity . 35

6 SIQ-PCPP for Hamming weight 36
6.1 Lower bound . 37
6.2 Upper bound . 38

7 SIQ-IOPP for Hamming weight 44

8 Lower bound for IOPPs 47
8.1 A lower-bound for perfectly correct protocols for HitOneα 47
8.2 Perfectly complete IOPP for Hamming to perfectly correct protocol for HitOneα 48

9 Application: perfect completeness for PCPs and IOPs 54
9.1 Perfect completeness for PCPPs . 55
9.2 Perfect completeness for IOPPs . 57

Acknowledgments 60

References 60

A Proof of Theorem 5.8 65

B Hamming to exact Hamming 68

2

1 Introduction

A motivating example. On April 14, 2022, businessman Elon Musk made an unsolicited
and non-binding offer to purchase the social media company “Twitter, Inc.” for $43 billion
and take it private, which the board reluctantly accepted. In July, Musk announced his
intention to terminate the agreement in the wake of reports that, despite the board’s as-
surance, 5% of Twitter’s daily active users were spambot accounts. In order to collect data,
Musk posted a Twitter poll asking followers about the amount of spambots. In response,
Twitter pursued legal action against Musk, which eventually led to the completion of the
acquisition on October 27, 2022.

The acquisition was messy, involved extensive litigation, dropped the share price, af-
fected many individuals, and was expensive and time-consuming. The process could have
been more straightforward had the parties had the tools to build mutual trust. Specifically,
they lacked a method for Twitter to efficiently prove to Musk, beyond a reasonable doubt,
that the number of spambots is indeed lower than 5%. Musk could have hired experts to
examine whether a handful of specific users are spambots, but exploring all of the ∼ 350
million users is impractical. The appropriate tool to remedy the situation is a proof of
proximity.
Proofs of proximity. Proofs of proximity are probabilistic proofs with a sublinear time
verifier. Since the verifier runs in sublinear time, it cannot even read the entire input.
Following work on sublinear time algorithms and property testing [RS96; GGR98], the
verifier is given query access to the input: the input x is treated as an oracle and, on query
i, the verifier receives x[i]. The goal is to construct probabilistic proofs with sublinear query
complexity while minimizing parameters such as verifier running time and communication
complexity. Proofs of proximity were first introduced by Ergun, Kumar, and Rubinfeld
[EKR04] and further studied by Rothblum, Vadhan, and Wigderson [RVW13] and Gur and
Rothblum [GR18], motivated by applications to delegation of computation. Since then,
there has been considerable research on proofs of proximity across various models.
The Hamming weight problem. This work focuses on probabilistic proofs of proximity
for the Hamming weight problem. Here, the task is to decide whether a given string
x ∈ {0, 1}n has Hamming weight at least α(n) or is far from it: it has Hamming weight
less than α(n)− δ(n), for a proximity parameter δ.

A proof of proximity for this problem would have been useful in the context of the
Twitter acquisition. Twitter’s network can be represented as a binary vector x whose
length corresponds to the number of Twitter accounts with a value of 1 indicating the non-
spambot users. Twitter would submit a proof of the vector’s Hamming weight, and Musk,
or any other interested party, could efficiently verify the proof while performing only a few
queries. A query to the input vector is translated to the expensive task of determining
whether a given user is a spambot, which fuels the desire for small query complexity.

Beyond our motivating example, proofs of proximity for the Hamming weight prob-

3

lem have many applications, as the primary tool in other proximity tests. For example,
testing whether an n-vertex graph contains many k-cliques can be directly reduced to the
Hamming weight of a corresponding vector of size nk (where 1 indicates a k-clique). Fur-
thermore, proofs of proximity for Hamming weight (with one-sided error) can be used to
transform standard proof systems for arbitrary languages to achieve perfect completeness
(we demonstrate this in Section 1.2).
Framing-free security. There is a subtle but crucial property we need from our prob-
abilistic proof in the form of one-sided error. To motivate this property, we return to the
Twitter saga. Suppose that the proof of proximity has two-sided error. This means that
even if Twitter generates a proof honestly, a malicious party could find a choice of ran-
domness that makes the verifier reject this proof. Musk could leverage this by presenting
such choice of randomness to a (resource-limited) judge, claiming that Twitter is lying,
which might lead to the revocation of the acquisition. In order for Twitter to be willing to
post a proof of their claims, we must ensure the system is “framing-free”, which is obtained
when the proximity proof has a one-sided error (perfect completeness). In other words:
One-sided error guarantees framing-free security, where honest parties cannot be accused of
wrongdoing.

On top of the above, there are also concrete benefits in the parameters of protocols
with one-sided error. These protocols can be more efficiently amplified compared to their
two-sided error counterparts. Repeating a protocol k times maintains the one-sided error
property of a protocol and reduces the soundness error from ϵ to ϵk. For protocols with
two-sided error, the soundness error only reduces to ϵΩ(k), which means that to get the
same soundness error, one needs more repetitions (and thus higher query complexity).
A brief history of Hamming weight proximity testing. There are several different
proofs of proximity of the Hamming weight problem1 in various models. Without the aid of
a prover (i.e., property testing), known sampling lower bounds (see, e.g., [Gol11, Theorem
2.1], or [BKS01, Theorem 15]) tell us that the query complexity of any property tester for
the Hamming weight problem is Ω(min{n, δ−2}), where n is the vector length and δ is the
proximity parameter (with constant soundness error). A simple test achieves this bound
but does not have perfect completeness (i.e., it has two-sided error).

In striking contrast to the above bounds, we observe that the query complexity of any
property tester with perfect completeness (and without a prover) is significantly higher;
specifically, it must be Ω(n), effectively rendering the test trivial.2

1The Hamming weight problem in previous work usually refers to the problem of exact Hamming weight
α, whereas we define the constraint to be at least weight α. However, the two problems have (almost) tight
reductions between each other, as shown in Appendix B.

2Consider α = 2/3, and suppose towards contradiction that the query complexity is q = o(n). By
soundness with respect to the all-zeroes vector, we know that there exists verifier randomness ρ for which
the verifier rejects upon querying only zeros. Construct a vector with all ones except for these q places;
then the verifier rejects it with nonzero probability. On the other hand, the vector has weight 1−q/n which
is more than α since q = o(n), so by perfect completeness the verifier accepts the vector with probability 1.

4

In [RVW13], an IP of proximity was given (without perfect completeness), with query
and communication complexities O(δ−1 · polylog(n)), and O(log n) many rounds. Alterna-
tively, they construct a 2-message version of their protocol but with a much higher query
and communication complexity of O(n1/3 ·δ−2/3 ·polylog(n)). In [GGR18; RR20b], an IP of
proximity for a larger complexity classes was given (which include the Hamming problem)
with similar round and communication complexity, with constant query complexity.

A non-interactive proof of proximity (MAPs) for the Hamming weight problem was
given in [GR18]. They showed that for every constant α ∈ (0, 1) there is a MAP (with
two-sided error) for Hamming weight with proof length Õ(nα), and query complexity
Õ(
√
n1−α · δ−1). For example, for α = 2/3, the proof length is Õ(n2/3) and the query

complexity is Õ(n1/6 · δ−1). They also showed that their results can be transformed to have
perfect completeness while incurring a poly-logarithmic overhead to the query and proof
complexities [GR18, Lemma 4.5]. Applying this transformation to the simple tester (with-
out a prover) yields a one-sided error MAP with proof length O(δ−4 · log2 n · log(δ−1 · log n))
and query complexity O(δ−4 · log n · log(δ−1 · log n)).

The work of [AGRR23] studied distribution-free proofs of proximity for the Hamming
weight problem, where the verifier receives input samples from an unknown distribution.
They showed a distribution-free protocol with perfect completeness, O(δ−1 · log n) rounds,
O(δ−1 · log2 n) communication complexity and δ−1 samples. [KSY20] studied the Ham-
ming weight of social graphs, where instance samples are given via random walks in the
graph. Finally, departing from information-theoretic security, [KR15] introduced the notion
of interactive arguments of proximity. Roughly, they showed that all P has a 2-message ar-
gument with communication and query complexity o(n) (assuming sub-exponentially secure
FHE).
PCPs and IOPs of proximity. PCPs of proximity (PCPPs) were studied in [BGHSV06]
and [DR04]. They are non-interactive proof of proximity systems where the verifier has
oracle access to both the input and the given proof. In contrast to MAPs (where the verifier
reads the entire proof), the proof string in PCPPs is typically of super-linear length (but
the verifier reads only a few bits from it). Quoting [GR18], PCPPs may be thought of as the
PCP analog of property testing, whereas MAPs are the NP analog of property testing. We
are unaware of explicit works of PCPPs for the Hamming weight problem (beyond general
PCPPs that are applicable for all languages in P). Applying a general purpose theorem
for PCPPs (e.g., [Mie09]), one can obtain a PCPP for the Hamming weight problem with
constant query complexity (for constant distance δ) but with a super-linear proof length
and a relatively slow prover (however, still polynomial time).

IOPs of proximity (IOPP) are a combination of IPs and PCPs of proximity [BCS16;
RRR16]. Here, the prover and verifier interact in multiple rounds, but the verifier has only
oracle access to the prover’s messages in addition to its oracle access to the input. IOPs
leverage interaction to overcome barriers that arise with PCPs. For instance, known IOPs
achieve linear proof length as well as other desirable properties such as fast provers, zero

5

knowledge, and concrete efficiency [BCGV16; Ben+17; BCGRS17; BBHR18; BCGGHJ17;
XZZPS19; BCG20; BCL22; RR20a; ACY22b; ACY23; ACFY24; BN22; RR22]. We are
unaware of explicit IOPPs for the Hamming weight language.

One additional advantage of constructing PCPPs and IOPPs is that they serve as the un-
derlying building block for an interactive arguments with small communication complexity.
For example, one can use the Kilian construction [Kil92] while relying on collision-resistant
hash functions to commit to the prover message and only reveal the locations queries by the
verifier. This is how hash-based arguments and SNARKs are constructed (see also [Mic00;
BCS16; CY20; CY21a; CY21b]).

1.1 Main results

We provide a systematic study of the Hamming weight problem, presenting new protocols in
various models (MAP, PCPP, IOPP) with sublinear communication, surpassing all known
results for testing proximity to the Hamming weight. We also present new lower bounds,
pointing to the limits of this problem. Let Hamα be the language of all binary vectors of
Hamming weight at least α. Recall that without a prover, Ω(n) queries are required for
one-sided error.

In all our results, we distinguish between the proof query complexity (queries performed
to the prover messages) and the input query complexity (queries performed to the input).
The reason is that, depending on the application, each query might incur different costs.
This is exemplified in the Twitter example where a proof query is relatively cheap (a query
to a position in some file sitting on a server), while a query to the input is rather expensive
(verifying that a specific user is not a spambot). Thus, it is typically most desirable to
minimize the input query complexity.

Sublinear proofs of proximity. For each model (MAP, PCPP, IOPP), we give a pro-
tocol with one-sided error, sublinear communication, while also providing small query com-
plexity. Focusing on the input query complexity, our MAP has O(log n) query complexity,
the PCPP makes O(loglog n) queries, and the IOPP makes a single input query (where
n is the vector length). The following theorem is an informal summary of these results
presented for constant α, constant distance δ, and constant soundness error. For simplicity,
in the theorem we hide dependencies on α and δ.

Theorem 1 (Informal). For every constant α ∈ (0, 1] there are MAP, PCPP, and IOPP
protocols for Hamα with perfect completeness and parameters summarized below:

Model Queries to input Queries to proof Proof length Rounds
MAP O(log n) - O(log2 n) -
PCPP O(loglog n) O(log n · loglog n) O(n/ log2 n) -
IOPP 1 O(log n) O(log2 n) 2

6

The precise theorem statement and dependencies on all parameters can be found in The-
orem 5.4 for the MAP protocol, in Theorem 5.6 for the PCPP protocol, and in Theorem 7.1
for the IOPP protocol.

The MAP described in Theorem 1 improves upon the one described in [GR18] by re-
moving a loglog n factor; the input complexity is O(log n) and the proof length is O(log2 n),
compared to O(log n · loglog n) and O(log2 n · loglog n) respectively. Our PCPP improves
on this by reducing the input query complexity dramatically to O(loglog n), while also
allowing the verifier to read fewer bits from the prover message. We are unaware of any
other PCPP for the Hamming problem beyond the one described in Theorem 1. The IOPP,
when compared to the IPP derived from [GGR18] yields an improvement in the number of
rounds, which is reduced from O(log n) to 2, and the verifier only needs to query O(log n)
bits from the prover messages, rather than reading the entire messages of size polylog n.3

Lower bound. We continue our systematic study with a lower bound for the Hamming
weight problem. [GR18] shows a lower bound for MAPs for the Hamming weight problem:
roughly speaking, a protocol with proof complexity l = Ω(log n) and query complexity q
must satisfy l · q = Ω(min{n, δ−2}).

We give lower bounds for perfectly complete IPPs and IOPPs for the Hamming weight
problem regardless of the number of rounds. Our IOPP lower bound applies to protocols
in which the verifier is semi-adaptive, meaning that the verifier decides which queries to
perform to the i-th prover message based on the first i prover/verifier messages (i.e., in-
cluding the randomness sampled right after the i-th message). Note that PCPPs and IPPs
are special cases of semi-adaptive IOPPs.

Theorem 2 (informal). For every constant α ∈ (0, 1) the following hold:

1. Any perfectly complete IPP for Hamα with total proof length l and input query complexity
qx has l = Ω(log(n/qx)).

2. Any semi-adaptive perfectly complete IOPP for Hamα with total length l, input query
complexity qx and proof query complexity qπ has qπ · log l = Ω(log(n/qx)).

The above theorem has the following consequence: IPPs (regardless of the number of
rounds) with query complexity qx = n1−ϵ for any constant ϵ > 0, must have at least a log-
arithmic proof length. This lower bound implies that our MAP construction in Theorem 1
has proof length that is optimal up to a O(log n) factor. For (semi-adaptive) IOPPs, it
shows that any IOPP with length polylog(n) and constant input query complexity must
have proof query complexity Ω(log(n)/ loglog n). The challenge of proving a lower bound
for (fully) adaptive IOPPs remains as an open problem.

3The protocol from [GGR18] is described with constant query complexity but can be naturally modified
to have a single input query [Rot24].

7

Single input query (SIQ). Our IOPP, as described in Theorem 1, has the remarkable
property that, in addition to having a one-sided error, the verifier performs only a single
query to the input. We denote such protocols as SIQ protocols (single input query). How-
ever, the cost of our SIQ-IOPP relative to its PCP counterpart is having additional rounds.
Thus, we ask: can we achieve SIQ-PCPPs with sublinear proof length?

We give a negative answer to this question and show that no perfectly complete proof of
proximity (for the Hamming weight problem) can simultaneously have a single input query,
sublinear length, and be non-interactive.

Theorem 3. For any α ∈ (0.5, 0.77), any perfectly complete PCP (or MA) of proximity
for Hamα with input query complexity 1 has proof length Ω(n).

On the positive side, we show that with proof length n+o(n), we can construct perfectly
complete SIQ-PCPPs with small proof query complexity.

Theorem 4 (Informal). For every constant α ∈ (0, 1], there exists a perfectly complete SIQ-
PCPP of proximity for Hamα with proof length n + O(log2 n) and proof query complexity
O(log2 n). (The formal theorem with the precise dependency on all parameters appears in
Theorem 6.2.)

Prover running time. We further strengthen the protocols described in Theorems 1
and 4 by showing efficient algorithms for the honest prover strategies, making our protocols
doubly-efficient. In particular, the honest prover in both theorems runs in expected time
O(n log n), where perfect completeness always holds when the prover outputs a message.
This holds also for the first message of the IOPP in Theorem 1, and its second message
can be computed in deterministic time polylog(n). We further remark that, given a Nisan–
Wigderson type PRG [NW94], the prover in all of the protocols can be made to run in
deterministic time poly(n). All prior works on proofs of proximity for Hamming weight did
not explicitly analyze the honest prover running time.

1.2 Application: perfect completeness for PCPs and IOPs

The problem of transforming proof systems with imperfect completeness to ones with perfect
completeness was first studied in the context of interactive proofs by [FGMSZ89] and is
considered a cornerstone of research into IPs. Perfect completeness for PCPs and IOPs
began to be explored only recently, with the goals of improving hardness of approximation
results [BV19; ACY22a; ACY22b], and as a tool for proving barriers for proof systems
[ABCY22].

We observe that proofs of proximity for Hamming weight can be utilized in this ap-
plication. Using the techniques developed in the previous sections, we show new ways to
transform PCPs and IOPs with nonzero completeness error into ones with perfect complete-
ness. The following theorem is an informal summary of our results, presented for constant

8

completeness and soundness errors, both for the original proof system, and for the resultant
perfectly complete proof system.

Theorem 5 (informal). Every language L that has a PCP (resp. IOP) with constant com-
pleteness error has a perfectly complete PCP (resp. IOP) with parameters given in Table 1.
(The formal theorem with the precise dependencies on parameters is given in Section 9.)

Model Queries Proof length Rounds
[BV19] PCP q+O(r) l+O(2r) -
[This work] PCP O(q · r + r2) l+O(r2) -
[This work] PCP O((q+ r) · log r) l+O(2r/r2) -
[This work] PCP q+O(r2) l+ 2r +O(r2) -
[ACY22a; ACY22b] IOP O(max{1, k/ log n}) poly(n, l, r) k

[ABCY22] IOP O(q · log r + r · log r) O(l · r · log r) k+ 1

[This work] IOP q+O(r) O(l · r) k+ 1

Table 1: A comparison of our PCP to perfectly complete PCP and IOP to perfectly complete
IOP transformations with prior work. Above, q, l, r, and k denote the query complexity,
proof length, randomness complexity, and number of rounds of the original PCP/IOP being
transformed, and n is the instance size. Each of our results is derived by taking one of our
upper bounds an using it to transform a PCP/IOP with imperfect completeness into one with
perfect completeness.

2 Techniques

In this section, we give an overview of our techniques. Throughout, we denote weight(x) :=
1
n

∑
i∈[n] x[i] to be the Hamming weight of x ∈ {0, 1}n and use the shorthand x[i + j] to

mean x[i + j mod n]. For simplicity, unless stated otherwise we consider all parameters
(e.g., α, etc.) apart from n to be constant.

2.1 PCPP for Hamming weight with sublinear proof length

In this section, we sketch the proof of the PCPP of Theorem 1 in which our focus is on
minimizing query complexity while maintaining sublinear proof length. We construct a
PCPP for Hamming weight α that for vectors of length n has: (1) length o(n) (2) input
query complexity O(loglog n), and (3) proof query complexity O(log n · loglog n). Moreover,
the honest prover runs in (expected) time O(n log n).

Our construction relies on the concept of “good shifts” and is achieved by combining
an “outer protocol” and an “inner protocol”. We start by defining good shifts, which will
be the cornerstone of the honest prover strategies throughout this paper. This technique

9

is inspired by the beautiful “reverse randomization” method, which can be traced back to
Lautemann’s proof that BPP is in the polynomial hierarchy [Lau83], and has been useful
for other applications as well (e.g., [FGMSZ89; Nao89; DNR04; HNY17; BV22]).

Good shifts. We say that the “shifts” z1, . . . , zt ∈ [n] are “good” for a vector x ∈ {0, 1}n
if for every ρ ∈ [n] it holds that the induced vector xρ := (x[ρ+ z1], . . . ,x[ρ+ zt]) ∈ {0, 1}t
has Hamming weight at least 0.95 ·α. We show that for t := Θ(1α · log n) the following hold:

1. Large Hamming weight. For every x with weight(x) ≥ α, there exist shifts z1, . . . , zt that
are good for x, i.e., where for every ρ, it holds that weight(xρ) ≥ 0.95 · α. Moreover,
these shifts can be found in expected time O(n · log n).

2. Small Hamming weight. For every x with weight(x) = α − δ where δ ∈ (0, α), and any
choice of z1, . . . , zt:

(a) Prρ[weight(xρ) ≥ 0.95 · α] ≤ 1.1 · α−δα , and
(b) Eρ[weight(xρ)] = α− δ.

Discussion. Following the definition of good shifts, a natural strategy emerges for verify-
ing the Hamming weight of a vector x: the prover sends good shifts z1, . . . , zt, and the veri-
fier needs to check that the shifts are indeed good (with perfect completeness). Recall that
in the honest case, the induced vector xρ has large Hamming weight for every ρ, whereas if x
has small Hamming weight, then xρ has small Hamming weight for most choices of ρ. Thus
it is natural to sample ρ← [n] and check that the vector xρ := (x[ρ+ z1], . . . ,x[ρ+ zt]) has
high Hamming weight by querying x at all t locations. While perfectly complete and sound,
this PCPP has bad parameters: it results in the verifier reading O(t · log n) = O(log2 n)
queries from the proof and making O(t) = O(log n) queries to the input.

In order to lower the query complexities, we would like to apply a PCPP for the claim
that all of the vectors in (xρ)ρ∈[n] ⊆ {0, 1}t have large Hamming weight. Naively, we could
solve this by having the prover supply a separate proof showing that xρ has large Hamming
weight for each ρ ∈ [n]. Alas, we cannot afford this since there would be O(n) such proofs;
even if each proof was one bit in length, we would miss our target of sublinear length. To
overcome this challenge the prover will provide a proof that applies multiple choices of ρ
simultaneously.

The protocol. For a = O(log3 n),4 let (Xs)s∈[n/a] be a partition of the induced vectors
(xρ)ρ∈[n] into n/a sets of size a. Our protocol, given x ∈ {0, 1}n, is as follows:

1. Prover: Send shifts z1, . . . , zt which are good for x. Then, for every s ∈ [n/a] write an
inner proof πs claiming that all vectors in Xs have high Hamming weight (i.e., Hamming
weight at least 0.95 · α).
4This value for a is chosen for convenience. In the full protocol, it is left as a parameter which allows

for tuning properties of the proof.

10

2. Verifier: Choose s ← [n/a] uniformly at random. Run the inner proof verifier for the
claim that all vectors in Xs have high Hamming weight, and accept if the inner proof
verifier accepts.

We analyze the PCPP we constructed and derive properties which, if they are held by the
inner protocol, are sufficient for our needs:

1. Perfect completeness: Following Item 1, it holds that if x has high Hamming weight,
then, for every s, all vectors in Xs have high Hamming weight. Consequently, if the
inner protocol has perfect completeness then this holds also for the final PCPP.

2. Soundness: Fix x ∈ {0, 1}n with Hamming weight α− δ, where δ ∈ (0, α), and a prover
message z1, . . . , zt, (πs)s∈[n/a]. Let βs := 1

a

∑a
i=1 weight(Xs[i]) be the average weight in

Xs. By construction:

Pr[V accepts] = Pr
s
[Vin accepts Xs given πs]

=
∑
β

Pr
s
[βs = β] · Pr

s
[Vin accepts Xs given πs | βs = β] .

In order to bound the error, it suffices that Prs [Vin accepts Xs given πs | βs = β] ≤ β ·ε
for ε that does not depend on s and β (and this is what we will later achieve):

Pr[V accepts] ≤
∑
β

Pr
s
[βs = β] · β · ε = E[βs] · ε = (α− δ) · ε .

The final equality follows from Item 2b, which posits that E [βs] =
1
a

∑a
i=1 Eρ[weight(xρ)] =

α − δ. In our construction of the inner protocol, ε ≈ 1
α , so that the soundness error is

approximately (α− δ)/α.

3. Complexity parameters: Let lin, qin
x
, and qin

π denote the proof length, input query com-
plexity, and proof query complexity of the inner proof, respectively. Then the PCPP
has proof length t · log n + n

a · l
in, and so to achieve sublinear proof length we require

lin = o(a) = o(log3 n). The input query complexity is qin
x

and the proof query complexity
is qin

π +O(qin
x
·log n): each query to Xs induces a query to xρ[i] = x[ρ+zi] for some i and ρ

which, in turn, induces an input query, and the reading of zi (which has length O(log n)).
Finally, the verifier must read qin

π bits from πs. Thus, to achieve the parameters of the
PCPP described in Theorem 1, we require qin

x
= O(loglog n) and qin

π = O(log n · loglog n).

The inner protocol. The inner protocol works on similar ideas to the outer protocol:
the prover sends good shifts, and the verifier needs to check that these shifts are, indeed,
good. This requires us to change the definition of good shifts to apply also to sets of vectors
Xs = (x1, . . . ,xa) ⊆ {0, 1}t. Indeed, we show that, provided that t′ := Θ(1α · log(a · t)) =
Θ(loglog n), the following hold:

11

1. Large Hamming weight. For every x1, . . . ,xa such that weight(xi) ≥ α for every i ∈ [t],
there exist shifts z1, . . . , zt′ ∈ [t] that are good for all the vectors in the set simultaneously.
Moreover, these shifts can be found in expected time O(t · a · log(t · a)) = polylog(n).

2. Small average Hamming weight. For every x1, . . . ,xa with 1
a

∑
i∈[a] weight(xi) = α − δ

where δ ∈ (0, α), and any choice of z1, . . . , zt′ ∈ [t]: Pri,ρ[weight(xi,ρ) ≥ 0.95 · α] ≤
1.1 · α−δα , where xi,ρ := (xi[ρ+ z1], . . . ,xi[ρ+ zt′]).

This extended definition allows us to construct our inner protocol. The protocol proceeds
as follows on input Xs = (x1, . . . ,xa) ⊆ {0, 1}t:
1. Prover: Send shifts z1, . . . , zt′ ∈ [t] which are good for Xs.

2. Verifier: Read all of z1, . . . , zt′ , choose i ← [a] and ρ ← [t] uniformly at random, and
check that weight(xi[ρ+ z1], . . . ,xi[ρ+ zt′]) ≥ 0.95 ·α by querying xi at the appropriate
locations.

The length of the proof is lin = t′ · log n = O(log n · loglog n) = o(a). The verifier reads this
proof in its entirety, so qin

π = lin = O(log n · loglog n) bits. The input query complexity is
qin
x
= t′ = O(loglog n).
Completeness follows from Item 1 of the adapted definition of good shifts. For sound-

ness, recall that we wanted:

Pr

 Vin accepts | 1
a

∑
i∈[a]

weight(xi) = β

 ≤ β · ε ,

for ε that does not depend on β. The verifier accepts only if weight(xi[ρ + z1], . . . ,xi[ρ +
zt′]) ≥ 0.95 · α. It follows from Item 2 of the adapted definition of good shifts that the
probability of this occurring when the average Hamming weight of the vectors in Xs is β is
1.1 · βα , which concludes the proof of soundness (here, ε = 1.1

α).
Finally, we observe that the inner protocol is useful in its own right. In fact, by choosing

a = 1 (and replacing t with n) we get the MAP for Hamming weight described in Theorem 1.

2.2 SIQ-PCPP for Hamming weight

In this section, we focus on perfectly complete PCPPs for the Hamming weight problem,
where the verifier makes a single input query (SIQ). In Section 2.2.1, we sketch the proof
of Theorem 3, showing a lower bound on the proof length for SIQ MAPs (which induces a
bound also for PCPPs). In Section 2.2, we give a construction of a SIQ PCPP with linear
proof size (Theorem 4).

2.2.1 Lower bound

In this section, we sketch the proof of Theorem 3, showing that any perfectly complete
MAP for Hamming weight with a single input query must have a large proof length. Let
α = 2/3 and δ = 1/3.

12

Consider a MAP with message length l, and input query complexity 1, where for inputs
of distance δ from Hamming weight has nontrivial soundness error. Let Exact-Hamα,n ⊆
Hamα be the set of all vectors of size n that have Hamming weight exactly α. For a
prover message π, let Sπ be the set of all vectors in Exact-Hamα,n for which π is the honest
prover message. By an averaging argument, since there are at most 2l different prover
messages, there must exist some proof π with |Sπ| ≥ |Exact-Hamα,n|/2l. Since each vector
in Exact-Hamα,n has exactly (1 − α) · n zeros, |Exact-Hamα,n| =

(
n

(1−α)·n
)
. However, the

number of vectors that the honest prover can prove with the same proof is small: Claim 1
shows that |Sπ| ≤

((1−α+δ)·n
(1−α)·n

)
. By rearranging the terms and taking a logarithm, we get

that l ≥ log
(

n
(1−α)·n

)
− log

((1−α+δ)·n
(1−α)·n

)
= Ω(n) (the final equality follows since α = 2/3 and

δ = 1/3).

Claim 1. |Sπ| ≤
((1−α+δ)·n

(1−α)·n
)
.

Proof sketch. Let x be the bitwise AND of all the vectors in Sπ and let I0 be the indices
where x is zero. By the definition of x, for every v ∈ Sπ and j ∈ [n] where v[j] = 0, it
must hold that j ∈ I0 (i.e., x[j] = 0). Thus, we can bound the size Sπ by the number
of vectors that have zeroes only within I0. Since Sπ ⊆ Exact-Hamα,n, every v ∈ Sπ has
exactly (1 − α) · n zeroes. The maximal number of vectors with exactly (1 − α) · n zeroes
that have zeroes only within I0 is

(|I0|
(1−α)·n

)
. It follows that |Sπ| ≤

(|I0|
(1−α)·n

)
. We now show

that |I0| < (1− α+ δ) · n, which completes the proof.
Assume towards contradiction that |I0| ≥ (1− α+ δ) · n, meaning that x is δ far from

Hamα. By the soundness property of the protocol, there exists some randomness ρ for which
the verifier rejects. Let j ∈ [n] be the index of the single bit of x queried by the verifier given
access to π and randomness ρ. Since x is the bitwise AND of the vectors in Sπ, there exists
some vector v ∈ Sπ with v[j] = x[j]. Fix such vector v. Since j is the only index queried
by the verifier when given the proof π and the randomness ρ, the verifier will reject v. This
contradicts the perfect completeness of the protocol as v ∈ Sπ ⊆ Exact-Hamα,n ⊆ Hamα,
and since π is the honest prover’s message for v (by definition of Sπ).

2.2.2 Upper bound

In this section, we describe our construction of a PCPP for Hamming weight where the
verifier makes a single input query, and the proof length is n + O(log2 n), as described in
Theorem 4.

The protocol. The basic idea underlying how our protocol achieves single input query
complexity is that the prover copies the vector x into the proof and writes a proof that this
copy has large Hamming weight. The verifier then checks that the copy has large Hamming
weight and that the copy is consistent with x. On input x ∈ {0, 1}n, the protocol proceeds
as follows:

13

1. Prover: Send x′ := x and additionally send shifts z1, . . . , zt ∈ [n] which are good for x.
2. Verifier: Read all of z1, . . . , zt and accept if the following checks pass:

(a) Choose ρ1, . . . , ρm ← [n] for m = O(log n) and check that for every ℓ, the induced
vector xρℓ := (x′[ρi+z1], . . . ,x

′[ρi+zt]) has Hamming weight ≥ 0.95 · α by querying
x
′ at the appropriate locations.

(b) Choose r1, . . . , rq ← [n] for q = O(log n) and query x′[ri]. If x′[ri] = 0 for every i,
then we consider the check to have passed. Otherwise, let ℓ be the minimal index
so that x′[rℓ] = 1. Check that x[rℓ] = 1 by querying x.

Analysis. We begin by assessing the complexity parameters. The proof length is n+ t ·
log n = n+O(log2 n), and the verifier makes at most one query to x, and O(log2 n) queries
to the proof string. Perfect completeness follows from Item 1 of the definition of good shifts
and from the fact that the honest vector sets x′ = x. All that remains is to show soundness.

Fix x ∈ {0, 1}n that is δ-far from Hamα and a prover message π = (x′, z1, . . . , zt).
Intuitively, if the Hamming weight of the copied vector is close to the Hamming weight of
the input vector, then the verifier’s check in Item 2a will fail with high probability. On the
other hand, if the Hamming weight of the copied vector is much larger than the Hamming
weight of the input vector, then there is a large disparity between x and x′ so the verifier’s
check in Item 2b will fail with high probability. We now formalize this intuition.

For every ρ ∈ [n], let x′ρ := (x′[ρi + z1], . . . ,x
′[ρi + zt]), and let H := {ρ | weight(x′ρ) ≥

0.95 · α} be the set of all ρ such that the vector x′ρ has Hamming weight ≥ 0.95 · α.
We split the analysis into two cases: |H| < n/2, and |H| ≥ n/2. If |H| < n/2 then
by the definition of H, the verifier’s check in Item 2a will pass with probability at most
(1/2)m = (1/n)O(1). If |H| ≥ n/2 then the verifier accepts with probability at most
1.1 · α−δα + 1

nO(1) , as exemplified in Lemma 1. Overall, we conclude that the verifier accepts
with probability at most 1.1 · α−δα + 1

nO(1) as described in Theorem 4.

Lemma 1. If |H| ≥ n/2 then the verifier accepts with probability at most 1.1 · α−δα + 1
nO(1) .

Proof sketch. Let β′ := weight(x′) be the Hamming weight of x′. To begin with, we show
that β′ ≥ 0.95 ·α/2 by observing that, by the definition of good shifts (specifically Item 2b),
weight(x′) = Eρ[x

′
ρ]. Since |H| ≥ n/2, at least half of the vectors x′ρ have weight at least

0.95 · α, and so Eρ[x
′
ρ] ≥ 0.95 · α/2.

Define the following events: Eweight is the event that the verifier’s check in Item 2a
passes, E0 is the event that the verifier’s check in Item 2b passes because the verifier read
only zeros from x

′, and E1 is the event that the verifier’s check in Item 2b passes and the
verifier has read a nonzero entry of x′. Using this notation,

Pr[Verifier accepts] = Pr[Eweight ∧ (E0 ∨ E1)]

Since the two checks of the verifier are independent, and by using the union-bound:

Pr[Eweight ∧ (E0 ∨ E1)] = Pr[Eweight] · Pr[E0 ∨ E1] ≤ Pr[Eweight] · (Pr[E0] + Pr[E1]) .

14

We bound the probabilities that E0 and E1 occur:

• Pr[E0]: Since β′ ≥ 0.95 · α/2, the probability that all of the samples ri are to locations
where x′ contains 0 is at most: (1− 0.95 · α/2)q = 1/nO(1).

• Pr[E1]: Conditioned on sampling a nonzero index in x′, the smallest such index is dis-
tributed uniformly over the nonzero entries of x′. The fraction of ones in x

′ is β′ and
the fraction of ones in x is α − δ, and so sampling a random nonzero entry in x

′ is
nonzero in x with probability at most (α − δ)/β′. Consequently: Pr[E1] ≤ Pr[E1 |
sampled nonzero location] ≤ (α− δ)/β′.

Therefore, Pr[Verifier accepts] ≤ Pr[Eweight] · (Pr[E0]+Pr[E1]) ≤ Pr[Eweight] · (α−δβ′ + 1
nO(1)).

We now split the argument into two cases. In both cases, we show that the verifier accepts
with probability at most 1.1 · (α− δ)/α+ 1/nO(1), which concludes this proof sketch.

1. If α < 1.1 · β′: then Pr[Verifier accepts] ≤ α−δ
β′ + 1

nO(1) < 1.1 · α−δα + 1
nO(1) .

2. If α ≥ 1.1 · β′: then Prρ[weight(x
′
ρ) ≥ 0.95 · α] ≤ 1.1 · β

′

α by Item 2a in the properties
of good shifts. Therefore, the probability that the verifier’s check in Item 2a passes is(
1.1 · β

′

α

)m
. Thus, the verifier accepts with probability at most:

Pr[Verifier accepts] ≤
(
1.1 · β

′

α

)m

·
(
α− δ

β′
+

1

nO(1)

)
≤ 1.1 · α− δ

α
+

1

nO(1)
.

2.3 A SIQ-IOPP for Hamming weight with sublinear proof length

In this section, we show that by utilizing interaction, perfect completeness, sublinear proof
length, and input query complexity 1 are all simultaneously achievable. This is in stark
contrast to the non-interactive (i.e., PCPP) case where, as shown in Section 2.2.1, achieving
all three properties together is impossible.

Recall that an IOP is a generalization of PCPs, where the prover and verifier interact
over multiple rounds. Similarly to a PCP, the verifier is given oracle access to the messages
supplied by the prover. We sketch the construction of the IOPP in Theorem 1, showing an
IOPP for the Hamming weight problem with perfect completeness, input query complexity
1, four messages, proof length polylog(n) and proof query complexity O(log n).

Discussion. The IOPP utilizes the ideas developed in Section 2.1. Specifically, recall the
initial construction proposed: The prover generates good shifts z1, . . . , zt for t = polylog(n),
the verifier chooses ρ, and needs to verify that xρ := (x[ρ+ z1], . . . ,x[ρ+ zt]) has at least
a 0.95 · α fraction of ones. In the non-interactive case, we ran into the problem that we
could not write a proof of this fact for every possible xρ, i.e., for every choice of ρ. Our
observation is that if the protocol is allowed to be interactive, it suffices for the prover to

15

give an “inner proof” that xρ has high Hamming weight only for the single ρ chosen by the
verifier.

Since this inner statement itself has size polylog(n), which is the communication com-
plexity that we are already willing to afford, a simple proof will suffice: the prover will send
xρ to the verifier, who will check that it has high Hamming weight. It then checks that xρ

matches the restriction of the real vector x. While we could do this by simply comparing
the two on a random location, since we are only really interested in the restriction of x
having many nonzero entries, we get better soundness error by choosing a random nonzero
location j of xρ and checking that x[ρ+ zj] = 1.

The protocol. Given x ∈ {0, 1}n, the protocol proceeds as follows:

1. Prover: Send good shifts z1, . . . , zt ∈ [n].
2. Verifier: Choose ρ← [n] uniformly at random.
3. Prover: Send xρ ∈ {0, 1}t, where in the honest case xρ := (x[ρ+ z1], . . . ,x[ρ+ zt]).
4. Verifier: Read xρ in its entirety, and (a) check that weight(xρ) ≥ 0.95 ·α, and (b) choose

a random j from the indices where xρ is nonzero, and check that x[ρ+ zj] = 1.

Completeness and soundness follow straightforwardly from the analysis done in Section 2.1
regarding good shifts, and a simple probabilistic argument showing that if the prover did
not send the correct xρ, then it will be caught by the verifier with high probability.

2.4 A lower bound for IPPs and semi-adaptive IOPPs

In this section, we discuss the proof of Theorem 2, showing a trade-off between the length,
input query complexity and proof query complexity of IPPs and semi-adaptive IOPPs.
IPPs are a special case of semi-adaptive IOPPs, and so in this overview we consider semi-
adaptive IOPPs unless stated otherwise. In the full proof a minor optimization is utilized
to give better bounds for IPPs.

We prove our lower-bound in two steps: (1) in Section 2.4.1 we introduce a communi-
cation complexity problem which we call HitOne, and prove a lower bound for it, and (2)
in Section 2.4.2 we show that any semi-adaptive IOPP for Hamming weight with one-sided
error can be used as a strategy to solve the HitOne problem. Together, these introduce
bounds on the parameters of the IOPP.

Semi-adaptive IOPPs. A k-round IOPP is semi-adaptive if the locations of the verifier’s
queries made to the prover’s i-th message πi (also known as the verifier’s view of this oracle)
depend only on ρ1, . . . , ρi and the verifier’s view of the prover’s messages π1 through πi.5

See Section 8 for a formal definition.
5Adaptivity with respect to πi is allowed: the verifier’s j-th query πi can depend on the previous j − 1

queries to made to πi.

16

2.4.1 The HitOne problem

In the HitOne problem, Alice, given a binary vector x ∈ {0, 1}n with at least α(n) fraction
of ones, must communicate to Bob the location of a single 1 (for this sketch we consider
constant α). In more detail, Alice is given x and outputs a message m. Bob then reads this
message and makes q queries to x. The goal is for Bob to query a nonzero location of x
(with probability 1) while minimizing the size of the message m and the number of queries
made to x (indeed, the task is trivial if |m| = log n or q > (1− α) · n).

We show that |m| = Ω(log(n/q)). To see why, suppose towards contradiction that
m = o(log(n/q)). We construct a vector of length n with Hamming weight α for which Bob
queries only zeroes, which contradicts the correctness of the protocol. For every one of the
2m = o(n/q) possible verifier messages, set the q locations queried by Bob to be 0. Set the
rest of the vector to be all ones. The vector contains at most 2m · q = o(n) zeroes, and so
has an α-fraction of ones (recall that in this sketch, we are assuming that α is constant).
On the other hand, by how we defined the vector, no matter what message Alice sends,
Bob will always query the vector at locations that all contain zeroes.

2.4.2 IOPP to HitOne.

We show how to transform any semi-adaptive IOPP (P,V) for Hamming weight α with
perfect completeness into a strategy for HitOne (as in the rest of this technical overview, we
consider constant α). Specifically, we show that given an IOPP for Hamming weight with
perfect completeness, it can be converted into a strategy for HitOne where Alice sends a
message of length O(qπ · log l) and Bob makes qx queries, where qπ, l and qx are the proof
query complexity, length and input query complexity of the IOPP respectively. When
put together with the lower-bound for HitOne described in Section 2.4.1, we conclude that
O(qπ · log l) > log(n/qx). For constant qx and polylogarithmic proof length, we conclude
that qπ = Ω(log n/ loglog n).

In this section, fix x ∈ {0, 1}n to be a vector with at least α · n ones for the HitOne
problem. We describe the transformation for 4-message IOPPs for Hamming weight of α ·n.
This can be readily generalized for any number of messages.

Warm up. We start with a transformation where Alice’s message length is linear in the
verifier’s randomness complexity. We define notions of useful random strings: (a) (ρ1, ρ2)
are useful if for π1 := P(x) and π2 := P(x, ρ1) it is the case that the IOPP verifier rejects
the all zeroes vector, i.e., V0⃗,π1,π2(ρ1, ρ2) = 0, and (b) ρ1 is useful if there exists ρ2 such that
(ρ1, ρ2) are useful. The definition of useful strings is exemplified by the following claim:

Claim 2. If V0⃗,π1,π2(ρ1, ρ2) = 0 where π1 := P(x) and π2 := P(x, ρ1), then Vx,π1,π2(ρ1, ρ2)
queries x at a nonzero location.

Proof sketch. By the perfect completeness of the IOPP, we have that Vx,π1,π2(ρ1, ρ2) = 1
since π1 and π2 were generated honestly with respect to x. On the other hand by the claim

17

statement, it holds that V0⃗,π1,π2(ρ1, ρ2) = 0. The only difference between the executions
is the existence of ones in the vector x, and these are only accessed via verifier queries.
Therefore, V must query x at a nonzero location.

Claim 2 yields a natural strategy for HitOne: Alice computes π1 := P(x), finds the
(lexicographically) smallest ρ1 that is useful, computes π2 := P(x, ρ1), and chooses the
smallest ρ2 so that (ρ1, ρ2) are useful (such a choice exists since ρ1 is useful). Finally she
outputs as her message m = (π1, ρ1, π2, ρ2). Bob runs Vx,π1,π2(ρ1, ρ2) making the same
queries to x as made by V.

Alice’s message has length O(r+ l) and Bob makes qx queries, where r, l and qx are the
randomness, length, and input query complexity of the IOPP respectively. As mentioned
in Section 2.4.1, the HitOne problem is trivial if Alice’s message is allowed to have length
log n. Both r and l are commonly at least logarithmic in n, and so we need to reduce the
dependency on r and l. We lower the dependency on l by observing that V reads π1 and π2
only at a few locations. It therefore suffices for Alice to send Bob the views w1 and w2 of
π1 and π2 respectively their stead (where each view contains both the query locations and
the values read from its respective proof), getting us to length O(r+ qπ · log l) where qπ is
the proof query complexity of the IOPP.

We are left with the goal of reducing the dependency on r. In fact, we will completely
eliminate it by removing ρ1 and ρ2 from Alice’s message, and having Bob infer them given
only w1 and w2.

Second attempt. We would like for Bob to mimic the way that Alice chooses ρ1 and ρ2.
In order to do so, naively Bob would have to compute π1 and π2, which requires knowledge
of x that Bob does not have. While Bob does not have access to π1 and π2, he knows that
the randomness chosen by Alice is consistent with w1 and w2, i.e., ρ1 and ρ2 never cause
V to query outside of w1 and w2. Thus we have the following strategy for Bob: choose
the smallest ρ1 that is consistent with w1 and w2 where there exists a consistent ρ2 such
that V0⃗,w1,w2(ρ1, ρ2) = 0, where, by oracle access to w1 and w2 we mean that Bob emulates
the verifier’s access to π1 and π2 using the information in w1 and w2. Since ρ1 and ρ2 are
consistent with w1,w2 the verifier only queries inside the views, and so this operation is
well-defined. This choice of ρ1 immediately also gives Bob a choice of a consistent ρ2.

Alas, this does guarantee that (ρ1, ρ2) are useful due to a circular dependency: Bob’s
choice of ρ1 depends on w2, whereas the honestly generated w2 depends on ρ1 (since π2 :=
P(x, ρ1)). In order to exemplify this we give a (contrived) example of this issue. Consider
an IOPP where the honest proof π2 := P(x, ρ1) contains at its first index the first bit of
ρ1. Following the interaction, the verifier queries π2[1] and checks that ρ1[1] = π2[1]. If this
does not hold, the verifier immediately rejects without querying x.

Alice chooses ρA

1 and ρA

2 as above and uses them to generate (w1,w2). For any ρB

1 and
ρB

2 that Bob may choose where ρB

1[1] ̸= ρA

1[1], it holds that V0⃗,w1,w2(ρB

1, ρ
B

2) = 0. Since ρB

1

18

is inconsistent with w2, the verifier does not query x and, consequently, Bob will also not
query x (let alone at a nonzero location).

To resolve this issue, we need to remove this circular dependency.

The transformation. To resolve the circular dependency, we choose ρ1 using a property
that is stronger than being useful: we choose ρ1 if, given π1 := P(x), for every π2 there
exists some ρ2 so that V0⃗,π1,π2(ρ1, ρ2) = 0. We show that this definition suffices, beginning
with the protocol:

• Alice, given x:

1. Compute π1 := P(x).
2. Let ρ1 be the (lexicographically) smallest string so that for every π′2 there exists ρ′2

such that V0⃗,π1,π′
2(ρ1, ρ

′
2) = 0.

3. Compute π2 := P(x, ρ1).
4. Let ρ2 be the smallest string so that V0⃗,π1,π2(ρ1, ρ2) = 0.
5. Send (w1,w2), which are V’s views of π1 and π2 (respectively) in the execution

Vx,π1,π2(ρ1, ρ2).

• Bob, given (w1,w2) and oracle access to x:

1. Let ρ1 be the smallest string that is consistent with w1 and for every π′2 there exists
ρ′2 such that V0⃗,w1,π′

2(ρ1, ρ
′
2) = 0.

2. Let ρ2 be the smallest string that is consistent with w2 so that V0⃗,w1,w2(ρ1, ρ2) = 0.
3. Run Vx,w1,w2(ρ1, ρ2) making the same queries that it makes to x.

Alice sends O(qπ · log l) bits to Bob, who makes qx queries.Theorem 2 follows by applying
this transformation to the bound derived in Section 2.4.1. If the IOPP is an IPP (i.e.,
qπ = l), then the verifier’s view contains the entire proof, so Alice does not need to send
indices in the proof and her message length can be decreased to l. This optimization yields
the improved bound for IPPs described in Theorem 2. We sketch the proof showing that
Bob must query a nonzero index of x.

Lemma 2. Bob queries a nonzero index of x.

Proof sketch. We show that Alice is able to find (ρ1, ρ2), and that Bob derives the same
(ρ1, ρ2). Since these strings are such that V0⃗,π1,π2(ρ1, ρ2) = V0⃗,w1,w2(ρ1, ρ2) = 0, it follows
by Claim 2 that Bob queries x at a nonzero location.

• Alice finds some (ρ1, ρ2). We first show that Alice will have a choice of ρ1: indeed, suppose
towards contradiction that for every ρ1 there exists π′2 such that for every ρ′2 it holds
that V0⃗,π1,π′

2(ρ1, ρ
′
2) = 1. If this is the case, then a malicious Prover could convince the

verifier to accept the all-zeroes vector with probability 1 by sending π1, getting challenge
ρ1, and then following the strategy to get a π′2 that is accepted by the verifier for every

19

ρ′2. This contradicts the soundness of the IOPP. Once ρ1 has been chosen, π2 := P(x, ρ1)
is defined. Then, since ρ1 was chosen, it must be the case that there exists ρ2 for Alice
to choose where V0⃗,π1,π2(ρ1, ρ2) = 0.

• Bob chooses the same (ρ1, ρ2). We show that Alice and Bob agree on ρ1. Agreement
on ρ2 follows by a similar argument. Bob goes over ρ∗1 in lexicographic order. We show
that Bob does not choose ρ∗1 < ρ1 (this is where we will use the fact that the IOPP is
semi-adaptive) and that when it reaches ρ∗1 = ρ1 it chooses this string.

– ρ∗1 < ρ1: Suppose towards contradiction that Bob chooses ρ∗1 < ρ1. Since Alice did
not choose ρ∗1, it holds that there exists π′2 such that for every ρ2, Vπ1,π′

2(ρ∗1, ρ2) = 1.
Furthermore, since Bob chose ρ∗1, it holds that ρ∗1 is consistent with w1. Since the IOPP
is semi-adaptive, the view of the verifier of π1 depends only on its first randomness
ρ∗1. Thus, ρ1 and ρ∗1 induce the same view w1 from π1, and they do so regardless
of π′2 and ρ′2. We conclude that there exists π′2 such that for every ρ′2 it holds that
Vw1,π′

2(ρ∗1, ρ
′
2) = Vπ1,π′

2(ρ∗1, ρ
′
2) = 1. This is a contradiction to the fact that, since Bob

has chosen ρ∗1, it holds that for every π′2 there exists ρ′2 so that Vw1,π′
2(ρ∗1, ρ

′
2) = 0.

– ρ∗1 = ρ1: Since Alice chose ρ1, it holds that for every π′2 there exists a ρ′2 so that
Vπ1,π′

2(ρ1, ρ
′
2) = 1. Moreover, by definition ρ1 is consistent with w1. It follows that for

every π′2 there exists ρ′2 so that Vw1,π′
2(ρ1, ρ

′
2) = 0. Therefore Bob will choose ρ∗1 = ρ1

when it is reached.

2.5 Application: perfect completeness for PCPs and IOPs

In this section, we show, as an application of our main results, how to transform PCPs and
IOPs for arbitrary languages with two-sided error into ones with perfect completeness.

Perfect completeness for PCPs. Consider a PCP system for a language L with com-
pleteness error c and soundness error s where the verifier uses r bits of randomness. We
reduce the completeness error to 0 using any of the PCPPs (or the MAP) for the Hamming
weight problem described in previous sections.

Given an instance x and the honest prover’s proof π, we can define a binary vector x
of length 2r where at index ρ ∈ {0, 1}r the vector x is equal to 1 if and only if the PCP
verifier accepts given x, randomness ρ and oracle access to π. If x ∈ L then x has at least
(1 − c) · 2r ones, and if x /∈ L then x has at most s · 2r ones. Given a perfectly complete
PCPP (or MAP) for asserting that x has at least a 1−c fraction of ones, we produce a PCP
for L with perfect completeness: The new PCP contains the original PCP proof and the
PCPP proof that x has many ones. The new PCP verifier runs the PCPP verifier, where
in order to query x at ρ, the verifier runs the original PCP verifier on randomness ρ, and

20

outputs the PCP verifier decision as the value in x[ρ]. Perfect completeness and soundness
follow from the completeness and soundness of the PCPP.

Perfect completeness for IOPs. One would hope that the above approach for PCPs
would also work to eliminate completeness error in IOPs. Unfortunately, this does not seem
to be the case: defining a static x relying on verifier randomness in all rounds combined
seems incompatible with the reliance of IOPs on interaction to achieve soundness. Due to
this difficulty, we do not give a generic transformation for achieving perfect completeness
in IOPs given an IOPP for the Hamming weight problem. Nonetheless, we show that the
IOPP described in Section 2.3 can be adapted to transform any IOP with two-side error
into one with perfect completeness.

21

3 Preliminaries

For a vector x ∈ {0, 1}n and an index i ∈ N, we let x[i] := x[i mod n]. For interactive
(oracle) algorithms A and B, we denote by ⟨A(a),B(b)⟩(c) the random variable describing
the output of B following the interaction between A and B, where A is given private input
a, B is given private input b and both parties are given joint input c. We define a function
f : N → (0, 1] to be computable in linear time if the time to compute f(x) is linear in the
size of the binary representation of x. Moreover, for any two functions f, f ′ : N → (0, 1],
we say that f < f ′ if for any x ∈ N, f(x) < f ′(x).

3.1 Hamming weight problem and Hamming distance

In this paper, we consider the relative hamming weight of bit vectors:

Definition 3.1 ((Relative) Hamming weight). The relative Hamming weight of a bit vector
x ∈ {0, 1}n, denoted weight(x), is the fraction of ones in x:

weight(x) =
1

n
· |{i ∈ [n] | x[i] = 1}| .

The main language that we consider in this paper is α-Hamming-weight, which consists
of all bit vectors of weight at least α:

Definition 3.2 (α-Hamming-weight language). For α : N→ (0, 1], the α-Hamming-weight
language, Hamα, is the set of all bit vectors with Hamming weight at least α(·), where α is
a function on the size of the vector:

Hamα :=
⋃
n∈N
{x | x ∈ {0, 1}n ∧ weight(x) ≥ α(n)} .

We define a language that k-Hamα contains all lists of k vectors that all have Hamming
weight α. The language is defined so that 1-Hamα ≡ Hamα.

Definition 3.3 ((k, α)-list-Hamming-weight language). For k ∈ N and α ∈ (0, 1], the
(k, α)-list-Hamming-weight language, k-Hamα, is the language of all lists of k vectors of
identical length, each of which has Hamming weight at least α:

k-Hamα :=
⋃
n∈N
{x1, . . . ,xk ∈ {0, 1}n | ∀i ∈ [k], weight(xi) ≥ α(n)} .

We use Hamming distance as our measure of distance from the α-Hamming-weight
language:

22

Definition 3.4 (Hamming distance). Let n, k be parameters in N. For any two bit vectors
x,x′ ∈ {0, 1}n, denote ∆(x,x′) as the Hamming distance between x and x′. Formally,

∆(x,x′) :=
1

n
·
∑
i∈[n]

∣∣x[i]− x′[i]∣∣ .

Moreover, for any x ∈ {0, 1}n and a language L ⊆ {0, 1}n, denote ∆(x, L) as the Hamming
distance between x and L. Formally,

∆(x, L) := min
x′∈L∩{0,1}n

∆(x,x′) .

3.2 Probabilistic proof systems

In this paper we consider a number of models of proof systems, such as IOPs, PCPs,
MA proofs, their “proximity” variants, and variants where the error function may depend
arbitrarily on the inputs. We choose to define them through the lens of a general object
which we call “generalized IOPs”, which includes explicit and implicit inputs, a witness, and
arbitrary errors.

A generalized k-round (public-coin) IOP [BCS16; RRR16], works as follows. The verifier
is given explicit input y and oracle access to implicit input x. The (honest) prover is
additionally given a witness w. In every round i ∈ [k], the verifier sends a uniformly
random message ρi to the prover; then the prover sends a proof string πi to the verifier.
After k rounds of interaction, the verifier reads explicit input y, makes some queries to the
implicit input x and to the proof strings π1, . . . , πk sent by the prover and then decides if to
accept or to reject. The following definition discusses the error parameters of a generalized
IOP:

Definition 3.5 (Generalized IOPP). Let (P,V) be a tuple where P is an interactive al-
gorithm, and V is an interactive oracle algorithm. We say that (P,V) is a public-coin
generalized IOP for a relation R := {((x,y),w)} with k rounds, completeness error c,
and soundness error s if the following holds.

• Completeness. For every ((x,y),w) ∈ R,

Pr
ρ1,...,ρk

 Vx,π1,...,πk(|x|,y, ρ1, . . . , ρk) = 1

π1 ← P(x,y,w)
...

πk ← P(x,y,w, ρ1, . . . , ρk)

 ≥ 1− c(x,y) .

If c(x,y) = 0 for every (x,y) ∈ L(R), we say that the IOPP has perfect completeness.

• Soundness. For every (x,y) /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ1,...,ρk

 Vx,π1,...,πk(|x|,y, ρ1, . . . , ρk) = 1

π1 ← P̃
...

πk ← P̃(ρ1, . . . , ρk)

 ≤ s(x,y) .

23

Above, L(R) := {(x,y) | ∃w, ((x,y),w) ∈ R}.

In the rest of this paper, we sometimes omit explicitly writing the verifier’s input |x|,
but this is always assumed to be given to the verifier.
Efficiency measures. We study several efficiency measures. All of these complexity
measures are implicitly functions of the instance (x,y).
• Rounds k: The IOP has k rounds of interaction.
• Proof length l: the combined number of bits in the proofs πi.
• Queries to (implicit) input q

x
: the number of bits read by the verifier from x.

• Queries to proof qπ: the number of bits read by the verifier from π1, . . . , πk.
• Randomness r: the combined number of bits in the verifier messages ρi.
• Verifier time vt: V runs in time vt.
• Prover time pt: The prover runs in time pt. In some cases we will have expected prover

running time, in which case this will be stated explicitly.
We use generalized versions of PCPs and MA proofs:

Definition 3.6 (Generalized PCP and generalized MA). A generalized probabilistically
checkable proof (generalized PCP) is a generalized IOP with no interaction rounds (only a
single prover message, after which the verifier may choose random coins). A generalized
MA proof is a generalized PCP in which the verifier queries the entire (single) prover
message.

An IOP of proximity is a generalized IOP where the completeness error depends only
on the length of the inputs, and the soundness error can be described as a function of the
distance of the implicit instance x from an implicit input in the language. Formally:

Definition 3.7 (Proofs of proximity). An IOP of proximity (IOPP) with respect to
distance function ∆ is a generalized IOP where there exist functions c′ and s′ such that
c(x,y) = c′(|x|,y) and s(x,y) = s′(|x|,y, δ) where δ := ∆(x, Ly(R) ∩ {0, 1}|x|) for
Ly(R) := {x′ ∈ {0, 1}∗ | ∃w, ((x′,y),w) ∈ R}.

PCPs of proximity (PCPPs) and MA proofs of proximity (MAPs) are similarly defined
as variants of generalized PCPs and generalized MA proofs respectively.

Whenever the distance function ∆ is not explicitly specified, we implicitly refer to
Hamming distance. It is common for proofs of proximity to be defined for relations with
no explicit input y or witness w. Indeed, this is the case for the Hamming relation Hamα

which is the focus of this work. In this case we will omit y and w from all notation.
Finally, we define standard IOPs, PCPs and MA proofs:

Definition 3.8 (Standard IOP/PCP/MA proofs). A (standard) IOP (respectively standard
PCP or standard MA proof) is an IOPP (respectively PCPP or MAP proof) for a relation
R := {((⊥,y),w)} (i.e., there is no x in the relation).

24

For the standard variants of probabilistic proof systems, we will omit x from notation,
as it is always set to ⊥. Moreover, we will sometimes denote the input by x and witness by
w (instead of y and w) as is standard for IOPs.

Remark 3.9 (Computability of error functions). In this work we assume unless stated
otherwise that c and s are computable in polynomial time given the implicit input, x,
explicit input y, and the proximity δ (as defined in Definition 3.7).

3.3 Probabilistic inequalities

We use the multiplicative Chernoff bound.

Theorem 3.10 (Multiplicative Chernoff Bound). Let X =
∑

i∈[n]Xi, where X1, . . . , Xn

are independent random variables in {0, 1}, with E[X] = µ. Then for any ϵ ≥ 0,

Pr[X ≤ (1− ϵ)µ] ≤ e−(ϵ
2µ/2),

Pr[X ≥ (1 + ϵ)µ] ≤ e−(ϵ
2µ/3) .

25

4 Finding good shifts

In this section, we define the concept of “good” shifts and prove that such shifts can be found
efficiently in expected probabilistic time. These good shifts will be helpful for us throughout
the paper, generally for showing perfect completeness of protocols and for bounding the
(expected) running time of the honest prover.

We define good shifts for a set of vectors:

Definition 4.1 (Good shifts). For every n, k, t ∈ N, ϵ ∈ (0, 1], and for every list of bit
vectors x1, . . . ,xk ∈ {0, 1}n we define the set Goodt,ϵ(x1, . . . ,xk) to be the set of shifts
(z1, . . . , zt) ∈ {0, 1}t·n such that

∀ i ∈ [k], ρ ∈ [n]
∑
j∈[t]

xi[ρ+ zj] ≥ ϵ · t .

We give a probabilistic algorithm that, given a list of vectors, outputs a set of good
shifts in small (expected) time:

Construction 4.2 (Shift finding algorithm). The algorithm A is given as input α, η, and
(x1, . . . ,xk). It proceeds as follows:

• Repeat the following until shifts are output:

1. Sample z1, . . . , zt ← [n] uniformly at random.

2. For every i ∈ [k]:

(a) Set counteri := 0 and let bucketi be the all zeros array of size n.
(b) For every ρ ∈ [n]: if counteri < α · n and xi[ρ] = 1 then update: counteri :=

counteri + 1 and, for every j ∈ [t], update bucketi[ρ− zj] := bucketi[ρ− zj] + 1.
(c) Check that bucketi[ρ] ≥ (α− η) · t for every ρ ∈ [n].

3. Output z1, . . . , zt if the previous checks passed for every i ∈ [k].

The following lemma shows that A finds good shifts and gives a bound on its running:

Lemma 4.3. Fix parameters n ∈ N, α ∈ (0, 1] and η ∈ (0, α), and let t := 2 · log(k ·
n)/η2. For every set of bit vectors x1, . . . ,xk ∈ Hamα ∩ {0, 1}n, there exist (z1, . . . , zt) ∈
Goodt,α−η(x1, . . . ,xk) and the algorithm A(α, η,x1, . . . ,xk), described in Construction 4.2,
outputs a set of such shifts in expected time O

(
α

α−η · n · k · log(n · k)
)
.

Proof. Fix bit vectors x1, . . . ,xk ∈ Hamα, and for each i let x′i be xi where all but the first
α ·n ones are flipped to 0 (note that weight(x′i) = α ·n ≤ weight(xi)). In Claim 4.4 we show
that A outputs shifts if and only if they are good for (x′1, . . . ,x

′
k). Then, in Claim 4.5, we

show that the probability that a randomly sampled set of shifts is good for (x′1, . . . ,x
′
k) is

26

at least 0.2. Observe that Goodt,α−η(x
′
1, . . . ,x

′
t) ⊆ Goodt,α−η(x1, . . . ,xt) since for every i

and ρ: ∑
j∈[t]

x[ρ+ zj] ≥
∑
j∈[t]

x
′[ρ+ zj] .

Therefore, the expected number of times that z1, . . . , zt are sampled until A outputs
(z1, . . . , zt) ∈ Goodt,α−η(x1, . . . ,xt) is 5.

Each sample takes time O(t). The algorithm then iterates over all of the vectors and
their values and, for each vector xi, updates bucketi for every j for at most α · n times
due to the counter counteri. Each update takes time O(t). Thus, the computation for each
vectors takes time O(n+ α · n · t).

Overall, the expected running time of A is

O(t+ k · (n+ α · n · t)) = O

(
k · (n+ α · n · log(n · k)

α− η
)

)
= O

(
α

α− η
· n · k · log(n · k)

)
,

where the second equality holds since α/(α− η) ≥ O(1).
We now prove our first claim, showing that A outputs z1, . . . , zt if and only if they are

good.

Claim 4.4. A outputs the sampled shifts z1, . . . , zt if and only if (z1, . . . , zt) ∈ Goodt,α−η(x
′
1, . . . ,x

′
k).

Proof. Consider a set of shifts z1, . . . , zt. For a set index i ∈ [k], counteri begins at 0 and,
for every ρ with xi[ρ] = 1, counteri is increased by 1. Once counteri = (α− η) ·n (i.e., once
the first (α− η) ·n ones of xi are seen), counteri and bucketi do not change. Therefore, the
algorithm acts identically for x1, . . . ,xk and x′1, . . . ,x′k.

Now note that for every ρ with x′i[ρ] = 1, we add 1 to bucketi[ρ− zj] for every j ∈ [t].
Thus

bucketi[ρ] = |{j ∈ [t] : x′i[ρ+ zj] = 1}| =
∑
j

x
′
i[ρ+ zj] .

Thus, by the end of the iteration, bucketi[ρ] =
∑

j x
′
i[ρ + zj]. The algorithm outputs

z1, . . . , zt if and only if for every i ∈ [k], and every ρ ∈ [n]:∑
j

x
′
i[ρ+ zj] ≥ bucketi[ρ] ≥ (α− η) · k ,

which precisely means that z1, . . . , zt is output if and only if (z1, . . . , zt) ∈ Goodt,α−η(x
′
1, . . . ,x

′
k).

We now show that by uniformly sampling shifts, one hits a good set with constant
probability:

27

Claim 4.5. Prz1,...,zt [(z1, . . . , zt) ∈ Goodt,α−η(x
′
1, . . . ,x

′
k)] > 0.2 .

Proof. Recall that

Pr
z1,...,zt

[
(z1, . . . , zt) ∈ Goodt,α−η(x

′
1, . . . ,x

′
k)
]
= Pr

z1,...,zt

 ∀ i ∈ [k], ρ ∈ [n]
∑
j∈[t]

x
′
i[ρ+ zj] ≥ (α− η) · t

 .

Notice that for every i and ρ:

Pr
zj←[n]

[x′i[ρ+ zj] = 1] = Pr
zj←[n]

[x′i[zj] = 1] .

Thus, by applying the union bound, we have that:

Pr
z1,...,zt

 ∃ ρ ∈ [n].
∑
j∈[t]

x
′
i[ρ+ zj] < (α− η) · t

 ≤ ∑
ρ∈[n]

 Pr
z1,...,zt

 ∑
j∈[t]

x
′
i[ρ+ zj] < (α− η) · t

= n · Pr

z1,...,zt

 ∑
j∈[t]

x
′
i[zj] < (α− η) · t

 .

Notice that for every j:

Ezj [x
′
i[zj]] = Pr

zj
[x′i[zj] = 1] = (α− η) · t .

Thus, by applying the Chernoff bound with ϵ := α− η, we have that

Pr
z1,...,zt

 ∑
j∈[t]

x
′
i[zj] < (α− η) · t

 ≤ e−
η2

2α
·t ,

Therefore,

Pr
z1,...,zt

 ∃ ρ ∈ [n]
∑
j∈[t]

x
′
i[ρ+ zj] < (α− η) · t

 ≤ n · e−
η2

2α
·t .

By applying the union bound, we have that:

Pr
z1,...,zt

 ∃ i ∈ [k], ρ ∈ [n]
∑
j∈[t]

x
′
i[ρ+ zj] < (α− η) · t

 ≤ k · n · e−
η2

2α
·t

= 2log(k·n) · e−
log(k·n)

α

≤ (2/e)log(k·n)

< 0.8 ,

28

where the equality follows from the definition of t := 2 · log(k · n)/η2. Therefore,

Pr
z1,...,zt

 ∀ i ∈ [k], ρ ∈ [n]
∑
j∈[t]

x
′
i[ρ+ zj] ≥ (α− η) · t

 > 0.2 .

29

5 Non-interactive proofs for Hamming weight with sublinear
communication

In this section, we develop an MA proof and a PCPP with sublinear communication com-
plexity for the Hamming weight problem. We begin by describing the MAP:

Theorem 5.1. For every α, η : N → (0, 1] such that 0 < η < α (that are computable in
linear time), there exists a perfectly complete MAP for Hamα with the following parameters,

MAP for Hamα

Soundness error s(δ) = α−δ
α−η

Communication length 2 · log2 n/η2
Queries to input 2 · log n/η2
Randomness log n
Verifier running time O(log n/η2)
Prover expected running time O (α/(α− η) · n · log n)

where n ∈ N is the input size, α := α(n), and η := η(n).

The PCPP is as follows:

Theorem 5.2. For every α, η : N→ (0, 1] such that 0 < η < 2
3 · α (that are computable in

linear time), there exists a perfectly complete PCPP for Hamα with the following parameters,

PCPP for Hamα

Soundness error s(δ) = α−δ
α−1.5η

Proof length O
(

n
log2 n

· (− log2 η)/η2
)

Queries to input O
(
(loglog n− log η)/η2

)
Queries to proof O

(
log n · (loglog n− log2 η)/η2

)
Randomness log n+ loglog n− 2 log η + 1

Verifier running time O
(
log n · (loglog n− log2 η)/η2

)
Prover expected running time O

(
α

α−1.5η · n · log n · (loglog n− log η) /η2
)

where n ∈ N is the input size, α := α(n), and η := η(n).

This section is organized as follows:

• In Section 5.1 we construct a generalized MA for list-Hamming. Theorem 5.1 follows as
a corollary from this construction.

• In Section 5.2 we introduce a transformation from generalized PCP for list-Hamming with
specific error structure (which the generalized MA constructed in the previous section
has) to a PCPP for Hamming.

• In Section 5.3 we construct a PCPP for Hamming by plugging in the result from Sec-
tion 5.1, which provides a generalized MA for list-Hamming, into the transformation
described in Section 5.2. Note that MAs can be used in this transformation since MAs
are a specific case of PCPs. This step directly implies Theorem 5.2.

30

5.1 MA proof of proximity

We construct a generalized MA proof for k-Hamα with sublinear communication complexity.
The resultant generalized MA proof will directly imply an MAP for Hamα.

Theorem 5.3. For every k ∈ N, α, η : N → (0, 1] such that 0 < η < α (that are com-
putable in linear time), Construction 5.5 yields a perfectly complete generalized MA proof
for k-Hamα with the following parameters:

Generalized MA for k-Hamα

Soundness error 1
k·(α−η) ·

∑k
i=1 weight(xi)

Proof length 2 · log n · log(k · n)/η2
Queries to input 2 · log(k · n)/η2
Randomness log(k · n)
Verifier running time O(log(k · n)/η2)
Prover expected running time O (α/(α− η) · n · k · log(n · k))

where (x1, . . . ,xk) ∈ ({0, 1}n)k is the input, α := α(n), and η := η(n).

Note that for k = 1, we have that 1-Hamα ≡ Hamα. Moreover, the soundness error of
the protocol is a function of the distance from the language: 1

α−η · weight(x) =
1

α−η · (α −
∆(x,Hamα)). Therefore, Theorem 5.3, when fixing k = 1, directly implies the following
theorem.

Theorem 5.4. For every α, η : N → (0, 1] such that 0 < η < α (that are computable in
linear time), Construction 5.5 yields a perfectly complete oracle MAP for k-Hamα with the
following parameters:

MAP for Hamα

Soundness error s(δ) = α−δ
α−η

Proof length 2 · log2 n/η2
Queries to input 2 · log n/η2
Randomness log n
Verifier running time O(log n/η2)
Prover expected running time O (α/(α− η) · n · log n)

where n ∈ N is the input size, α := α(n), and η := η(n).

Theorem 5.3 follows from the construction below:

Construction 5.5. Let t := 2 · log(k · n)/η2. The prover P receives as input bit vector
x1, . . . ,xk ∈ {0, 1}n, while the verifier V has oracle access to the vector x1, . . . ,xk. They
interact as follows.

• P(x1, . . . ,xk): The prover sends z1, . . . , zt ∈ [n].

31

• Vx1,...,xk(n′, z1, . . . , zt):

1. Set n := n′/k.
2. Choose i← [k], ρ← [n] uniformly.
3. Query xi[ρ+ z1], . . . ,xi[ρ+ zt].
4. Accept if weight(xi[ρ+ z1], . . . ,xi[ρ+ zt]) ≥ (α− η) and reject otherwise.

Proof of Theorem 5.3. We analyze completeness and soundness and then describe the com-
plexity measures of the PCPP.
Completeness. Fix bit vectors (x1, . . . ,xk) ∈ k-Hamα, i.e., for every i ∈ [k], weight(xi) ≥
α. By Lemma 4.3, there exists a series of shifts z1, . . . , zt such that for every i, ρ there are
at least (α− η) · t indices j where xi[ρ+ zj] = 1.

Given these shifts, by definition, for every choice of i and ρ, the bit vector (xi[ρ +
z1], . . . ,xi[ρ+ zt]) contains at least (α− η) · t ones. Consequently, if it chooses i and ρ, the
verifier V will accept during Item 4. Thus, the honest prover strategy of sending the series
of shifts z1, . . . , zt promised by Lemma 4.3 causes the verifier to accept with probability 1.
Soundness. Fix bit vectors (x1, . . . ,xk) /∈ k-Hamα, and a prover message z1, . . . , zt, and
let β := 1

k ·
∑k

i=1 weight(xi). For every j ∈ [t], let Xj be the 0/1 random variable such that

Pr[Xj = 1] = Pr
i←[k],ρ←[n]

[xi[ρ+ zj] = 1] = Pr
i←[k],ρ←[n]

[xi[ρ] = 1] =
1

k
·

k∑
i=1

weight(xi) = β ,

and observe that Ei,ρ[Xj] = β. The verifier accepts when
∑

j∈[t]Xj ≥ (α − η) · t. Thus,
using Markov’s inequality and the linearity of expectation, we conclude:

Pr
i,ρ

[V accepts] = Pr
i,ρ

 ∑
j∈[t]

Xj ≥ (α− η) · t

≤

Ei,ρ[
∑

j Xj]

(α− η) · t
≤
∑

j Ei,ρ[Xj]

(α− η) · t
≤ β

α− η
=

1

k · (α− η)
·

k∑
i=1

weight(xi) .

Complexity measures. We analyze the complexity parameters of the MAP.

• Communication size: The prover sends t · log n = 2 · log n · log(k · n)/η2 bits.
• Queries to input: The verifier makes t = 2 · log(k · n)/η2 queries to x.
• Randomness: The verifier uses log(k · n) bits of randomness.
• Verifier running time: The verifier runs in time O (log k + t) = O(log(k · n)/η2).
• Prover expected running time: By Lemma 4.3, the expected running time of the prover

is
O (α/(α− η) · n · k · log(n · k)) .

32

5.2 PCP for list-Hamming to PCPP for Hamming

We construct a PCPP for Hamming from a (generalized) PCP for list-Hamming.

Theorem 5.6. Suppose that for every α′, η′ : N → (0, 1] such that 0 < η′ < α′ (that
are computable in linear time), there is perfectly complete generalized PCP (PPCP,VPCP) for
k′-Hamα′ such that for input (x1, . . . ,xk′) ∈ ({0, 1}n′

)k
′ has soundness error of the form

ϵ(α′, η′) · 1k′ ·
∑k′

i=1 weight(xi). Then for every a ∈ N, α, η : N→ (0, 1] such that 0 < η′ < α′

(that are computable in linear time), Construction 5.7 yields a PCPP (PPCPP,V
′
PCPP) for

Hamα with the following parameters:

Generalized PCP (P,V) for k′-Hamα′

Soundness error ϵ(α, η) · 1
k′ ·
∑k′

i=1 weight(xi)
Proof length lP := lP(n

′, k′, η′)
Queries to input qx := qx(n

′, k′, η′)
Queries to proof qπ := qπ(n

′, k′, η′)
Randomness r := r(n′, k′, η′)
Verifier running time vt := vt(n′, k′, η′)
Prover expected running time pt := pt(n′, k′, α′, η′)

−→

PCPP (P′,V′) for Hamα

Soundness error s(δ, α, η) = ϵ(α′, η′) · (α− δ)
Proof length n′ · log n+ n

a · lP
Queries to input qx
Queries to proof log n · qx + qπ
Randomness log(n/a) + r
Verifier running time vt+O(qx)

Prover expected running time O
((

1
η2 + α

α− η
2

)
· n · log n+ n

a · pt
)

where n′ = 2 · log n/η2(n), k′ = a, η′ = η(n)/2, α′ = α(n)− η(n)/2.

Construction 5.7. Let t := 8·log n/η2, and for every s ∈ [n/a] let Is := ((s− 1) · a+ 1, . . . , s · a)
be a list of a indices. Let (PPCP,VPCP) be a perfectly complete PCP for k′-Hamα′ with vec-
tors of size n′ := t, and η′ := η/2. The prover PPCPP receives as input the bit vector x,
while the verifier VPCPP has oracle access to the bit vector x. They interact as follows.

• PPCPP(x):

1. Set bit vectors z1, . . . , zt ∈ [n].

2. For every ρ ∈ [n], set xρ := (x[ρ+ z1], . . . ,x[ρ+ zt]).

3. For every s ∈ [n/a], set Xs := (xρ)ρ∈Is , and compute πs := PPCP(Xs).

4. Output
(
(z1, . . . , zt), (π1, . . . , πn/a)

)
.

• Vx,π
PCPP(n):

33

0. Notation:
(a) For every ρ ∈ [n], let xρ := (x[ρ+ z1], . . . ,x[ρ+ zt]).
(b) For every s ∈ [n/a], let Xs := (xρ)ρ∈Is .
(Note that the verifier does not compute the above.)

1. Parse π := ((z1, . . . , zt), (π̃1, . . . , π̃n/a)).
2. Choose s← [n/a] uniformly.
3. Emulate VXs,π̃s

PCP (a · t), where for every input query xj [i], query zi, x [Is[j] + zi], and
answer accordingly.

4. Accept if and only if VXs,π̃s(a · t) accepts.

Completeness. Fix bit vector x ∈ Hamα. By Lemma 4.3 with η
2 , there exists a series

of shifts z1, . . . , zt such that for every ρ there are at least (α − η
2) · t indices j where

x[ρ + zj] = 1. The honest prover P′ uses these shifts. Therefore, for every ρ, the bit
vector xρ = (x[ρ + z1], . . . ,x[ρ + zt]) has Hamming weight weight(xρ) ≥ α − η

2 . By the
completeness of the generalized PCP protocol for a-Hamα′ where α′ = α− η

2 , all the proofs
πs will be accepted by the verifier V′ with probability 1.
Soundness. Fix bit vector x /∈ Hamα. For every j ∈ [t]:

Pr
ρ←[n]

[xρ[j] = 1] = Pr
ρ←[n]

[x[ρ+ zj] = 1] = Pr
ρ←[n]

[x[ρ] = 1] = weight(x) .

Observe that Eρ←[n][weight(xρ)] = weight(x). The following claim shows that the proba-
bility of sampling a list of vectors Xs with high average weight is small.
Let W = a · t be the maximal number of ones in XS , and let ϵ := ϵ(α′, η′). By the law of
total probability we have that:

Pr[⟨P̃(x),Vx⟩ = 1]

=
W∑
w=0

Pr
s

[
1

a
·

a∑
i=1

weight(Xs[i]) =
w

W

]
· Pr

[
⟨P̃(x),Vx⟩ = 1 1

a ·
∑a

i=1 weight(Xs[i]) =
w
W

]
=

W∑
w=0

Pr
s

[
1

a
·

a∑
i=1

weight(Xs[i]) =
w

W

]
· ϵ · w

W

= ϵ · Es

[
1

a
·

a∑
i=1

weight(Xs[i])

]

= ϵ · 1
a
·

a∑
i=1

Es [weight(Xs[i])]

= ϵ · Ei←[a],s←[n/a] [weight(Xs[i])]

= ϵ · Eρ←[n] [weight(xρ)]

= ϵ · weight(x) = ϵ · (α−∆(Hamα,x)) ,

34

where the second equality is by the soundness of the underlying PCP protocol for a-Hamα′ .
Complexity measures. We analyze the complexity parameters of the new PCPP.

• Proof length: The proof length is

t · log n+
n

a
· lP = n′ · log n+

n

a
· lP .

• Queries to input: The verifier makes qx queries to x.

• Queries to proof: The verifier makes log n · qx + qπ queries to the proof.

• Randomness: The verifier uses log(na) + r bits of randomness.

• Verifier running time: The verifier runs in time vt+O(qx).

• Prover expected running time: By Lemma 4.3 with the parameter η
2 , the expected time

takes to generate the shifts is O
(
α/(α− η

2) · n · log n
)
. Therefore, the overall expected

running time of the prover is

O

(
α

α− η
2

· n · log n+ k · n · t+ n

a
· pt
)

≤ O

(
α

α− η
2

· n · log n+
1

η2
· n · log n+

n

a
· pt
)

= O

((
α

α− η
2

+
1

η2

)
· n · log n+

n

a
· pt
)

.

5.3 PCP of proximity

The following theorem follows by plugging in Theorem 5.3 into Theorem 5.6.

Theorem 5.8. For every α, η : N → (0, 1] such that η ∈ (0, α) (that are computable in
linear time), there exists a perfectly complete PCPP (P,V) for Hamα with the following
parameters:

PCPP (P,V)

Completeness error 0
Soundness error s(δ, α, η) = α−δ

α−η

Proof length O
(

n
η2·log2 n

· (− log2 η)
)

Queries to input O
(
(loglog n− log η)/η2

)
Queries to proof O

(
log n · (loglog n− log2 η)/η2

)
Randomness log n+ loglog n− 2 log η + 1

Verifier running time O
(
log n · (loglog n− log2 η)/η2

)
Prover expected running time O

(
α

α−η · n · log n · (loglog n− log η) /η2
)

where n ∈ N is the input size, α := α(n), and η := η(n).

The proof of this theorem appears in Appendix A.

35

6 SIQ-PCPP for Hamming weight

In this section, we explore SIQ-PCPP: PCPPs where the verifier makes a single query to
its input.

In Section 6.1 we show that any SIQ-PCPP must have large proof length:

Corollary 6.1. For α ∈ (0.5, 0.77), any perfectly complete MA proof of proximity for Hamα

that, for inputs of length n and distance δ = 1 − α has soundness error smaller than 1,
message length l, and input query complexity 1 has:

l = Ω(n) .

Proof. We plug in constants α = 2/3 and δ = 1 − α to Theorem 6.3 and use the approxi-
mation log

(
n
γ·n
)
= n ·H(γ)− 1

2 · log(2π ·n ·γ · (1−γ))+O(1n) where H is the binary entropy
function. This gives us

l > log

(
n

(1− α) · n

)
− log

(
2 · (1− α) · n
(1− α) · n

)
= log

(
n

(1− α) · n

)
− log

(
2 · (1− α) · n

1/2 · 2 · (1− α) · n

)
> n ·H(1− α)− (1− α) · n ·H(1/2) +O(log n)

= Ω(n) ,

where the final equality holds for α ∈ (0.5, 0.77).

In Section 6.2 we construct a SIQ-PCPP, resulting in the following theorem:

Theorem 6.2. For every α, η : N → (0, 1] such that 0 < η < α (that are computable in
linear time), there exists a perfectly complete PCPP (P,V) for Hamα with the following
parameters:

PCPP (P,V)

Soundness error s(δ) = α−δ
α−η + 1

n2

Proof length n+ 2 · log2 n/η2
Queries to input 1
Queries to proof 2 · log n · (3 · log n/η2 + 2/(α− η))

Randomness 2 · log2 n · (1 + 2/(α− η))

Verifier running time O(log2 n/η2 + log n/(α− η))
Prover expected running time O (α/(α− η) · n · log n)

where n ∈ N is the input size, α := α(n), and η := η(n).

36

6.1 Lower bound

In this section we show that any one-round interactive proof of proximity for Hamα in
which the verifier makes a single query to its input must have large proof length. Observe
that, since a PCP is a restricted case of one-round IPs where the verifier does not read the
prover’s entire message, it follows that any PCP for this problem must have large proof
length.

Theorem 6.3. Any perfectly complete MA proof of proximity for Hamα that on inputs of
length n and Hamming distance δ has soundness error smaller than 1, message length l,
and input query complexity 1 has:

l > log

(
n

(1− α) · n

)
− log

(
(1− α+ δ) · n
(1− α) · n

)
.

Proof. Denote by (P,V) the MA proof of proximity. Let S be the set of vectors of Hamming
weight exactly α. Notice that |S| =

(
n

(1−α)·n
)
. For a prover message π let Sπ := {x ∈

S | π := P(x)} be the set of vectors for which π is the honest prover message. By an
averaging argument, since there are at most 2l different prover messages, there must exist
some proof π with |Sπ| ≥ |S|/2l. Henceforth fix π to be such a prover message.

Let the vector x be the bitwise-AND of all of the vectors in Sπ, and I := {i ∈ [n] | x[i] =
0} be the set of indices for which x[i] = 0. We show that x must be nonzero at many
locations:

Claim 6.4. |I| < (1− α+ δ) · n.

Proof. Suppose towards contradiction (of the perfect completeness of the protocol) that
|I| ≥ (1− α+ δ) · n, meaning the ∆(x,Hamα) ≥ δ. It follows from the soundness property
of the MA proof that

Pr
ρ
[Vx(π; ρ) = 1] < 1 .

This means that there exists some choice of verifier randomness ρ such that Vx(π; ρ) = 0.
Let j ∈ [n] be the single index of x queried by V when given oracle access to π and this
fixed randomness ρ. Since x is the bitwise-AND of vectors in Sπ, it follows that there exists
u ∈ Sπ with u[j] = x[j]. Fix such a vector u.

Then, since j is the only index queried by the verifier, Vu(π; ρ) = Vx(π; ρ) = 0. It
follows that

Pr
ρ
[Vu(π; ρ) = 1] < 1 .

Recall that, by the definition of Sπ, u has Hamming weight exactly α and π = P(u),
and so perfect completeness holds for u. We therefore have a contradiction to the perfect
completeness of the protocol.

37

Consider a vector u ∈ Sπ. By the definition of x, any index j with u[j] = 0 must belong
to the set I. Moreover, since u ∈ S, u has exactly (1−α) ·n zeroes. Thus the total number
of such vectors is

(|I|
(1−α)·n

)
(i.e., since we must choose (1 − α) · n locations out of the I

indices to be 0 for each vector).
Putting all of this together, we have(

n

(1− α) · n

)
/2l ≤ |Sπ| ≤

(
|I|

(1− α) · n

)
<

(
(1− α+ δ) · n
(1− α) · n

)
,

where the final inequality follows from Claim 6.4. The theorem follows by reordering the
expressions and taking a logarithm.

6.2 Upper bound

Construction 6.5. Define t := 2 · log n/η2, q := 4 · log n/(α− η), and m := 2 · log n. The
prover P receives as input bit vector x ∈ {0, 1}n, while the verifier V has oracle access to
the vector x. They interact as follows.

• P(x):

1. Generate z1, . . . , zt ∈ [n].
2. Set x′ := x.
3. Output π := (x′, z1, . . . , zt).

• Vx,π:

1. Parse π := (x′, z1, . . . , zt).
2. Query z1, . . . , zt ∈ [n].
3. Sample ρ1, . . . , ρm ← [n], and r1, . . . , rq ← [n].
4. If ∃ℓ ∈ [m] : weight(x′[ρℓ + z1], . . . ,x

′[ρℓ + zt]) < (α− η), then reject.
5. Query x′[ri] for every i ∈ [q]. If there exists index where x′[ri] = 1 then query x[r∗]

and reject if x[r∗] ̸= x
′[r∗], where r∗ := rℓ and ℓ is the minimal index with x′[rℓ] = 1

(if no such index exists, then skip this check).
6. Otherwise, accept.

Completeness. Fix a vector x ∈ Hamα, i.e., weight(x) ≥ α. By Lemma 4.3 with k = 1,
there exists a series of shifts z1, . . . , zt such that for every ρ there are at least (α − η) · t
indices j where x[ρ + zj] = 1. The honest prover P uses these shifts. For every ρ ∈ [n],
the bit vector (x′[ρ + z1], . . . ,x

′[ρ + zt]) generated by V contains at least (α − η) · t ones.
Consequently, V will not reject upon reading the vectors in Item 4. Moreover, we have that
x
′ = x, and therefore, V will accept during Item 5. Thus, the honest prover strategy of

sending this series of shifts z1, . . . , zt and then following the protocol as prescribed causes
the verifier to accept with probability 1.

38

Soundness. Fix a malicious prover P̃, bit vectors x /∈ Hamα, and a proof π̃ := (x′, z1, . . . , zt)
sent by P̃. Let δ := ∆(x,Hamα). Note that δ = α− weight(x).

For every ρ ∈ [n], let vρ := (x′[ρ + z1], . . . ,x
′[ρ + zt]). For the prover and verifier

interaction ⟨P̃(x),Vx⟩, we define the following events:

Eweight := [∀ℓ ∈ [m], weight(vρℓ) ≥ (α− η)] ,

E0 :=
[
∀ℓ ∈ [q], x′[rℓ] = 0

]
,

E1 :=
[
∃ℓ ∈ [q] s.t. x′[rℓ] = 1 ∧ x[r∗] = x

′[r∗] = 1
]

.

Note that,

Pr[⟨P̃(x),Vx⟩ = 1] = Pr[Eweight ∧ (E0 ∨ E1)]

= Pr[Eweight] · Pr[E0 ∨ E1] . (1)

where the second equality is since Eweight is independent of E0 and E1. We define a set of
randomness as follows:

H := {ρ | weight(vρ) ≥ (α− η)} .

We bound Equation 1 by splitting into two cases:

• By Claim 6.6: if |H| < n/2 then the verifier accepts with probability at most 1
n2 .

• By Claim 6.7: if |H| ≥ n/2 then the verifier accepts with probability at most α−δ
α−η + 1

n2 .

Together,

Pr[⟨P̃(x),Vx⟩ ≤ max

{
1

n2
,
α− δ

α− η
+

1

n2

}
=

α− δ

α− η
+

1

n2
.

We now show that if the set H is small, then the verifier rejects with high probability.

Claim 6.6. If |H| < n/2 then Pr[⟨P̃(x),Vx⟩ = 1] < 1
n2 .

Proof. If |H| < n/2 then:

Pr[Eweight] = Pr
ρ1,...,ρm

[∀ℓ ∈ [m], weight(vρℓ) ≥ (α− η)]

=
∏
ℓ∈[m]

Pr
ρℓ
[weight(vρℓ) ≥ (α− η)]

=
∏
ℓ∈[m]

|H|
n

<

(
1

2

)m

=
1

n2
.

Thus, plugging this back in to Equation 1, if |H| < n/2 then

Pr[⟨P̃(x),Vx⟩ = 1] ≤ Pr[Eweight] <
1

n2
.

39

The following claim bounds the probability that the verifier accepts when the set H is
large:

Claim 6.7. If |H| ≥ n/2 then Pr[⟨P̃(x),Vx⟩ = 1] < α−δ
α−η + 1

n2 .

Proof. We separately bound Pr[E0],Pr[E1], and Pr[Eweight], and then use them to bound
the probability that the verifier accepts by plugging them into Equation 1.

Denote by β and β′ the Hamming weights of x and x′ respectively. Observe that,

β := α− δ = weight(x) ,

β′ := weight(x′) .

• Pr[E0]: we first lower bound the probability of the verifier to sample x′[r] = 1,

Pr
r
[x′[r] = 1] = Pr

i,r
[x′[r + zi] = 1]

≥ Pr
r
[r ∈ H] · Pr

i,r
[x′[r + zi] = 1 | r ∈ H]

=
|H|
n
· Pr
i,r
[vr[i] = 1 | weight(vr) ≥ (α− η)]

≥ α− η

2
.

Therefore,

Pr[E0] = Pr
r1,...,rq

[∀ℓ ∈ [q], x′[rℓ] = 0]

=
∏
ℓ∈[q]

Pr
rℓ
[x′[rℓ] = 0]

=
∏
ℓ∈[q]

Pr
r
[x′[r] = 0]

≤
∏
ℓ∈[q]

(
1− α− η

2

)

=

(
1− α− η

2

)4·logn/(α−η)

≤
(
1

e

)2·logn
≤ 1

n2
. (2)

40

• Pr[E1]:

Pr[E1] = Pr
r1,...,rq

[
∃ℓ ∈ [q] s.t. x′[rℓ] = 1 ∧ x[r∗] = x

′[r∗] = 1
]

≤ Pr
r1,...,rq

[
x[r∗] = x

′[r∗] = 1 | ∃ℓ ∈ [q] s.t. x′[rℓ] = 1
]

= Pr
r

[
x[r] = x

′[r] = 1 | x′[r] = 1
]

=
|x|
|x′|

=
β

β′
. (3)

• Pr[Eweight]: For every j ∈ [t], let Xj be the 0/1 random variable such that

Pr[Xj = 1] = Pr
ρ←[n]

[x[ρ+ zj] = 1] .

Notice that Eρ[Xj] ≤ β′ for every j ∈ [t]. In what follows we show that the probability
that there are (α− η) · t shifts zj for which P̃ is able to convince V is small. By utilizing
Markov’s inequality and the linearity of expectation, we derive:

Pr[Eweight] = Pr
ρ1,...,ρm

[∀ℓ ∈ [m], weight(vρℓ) ≥ (α− η)]

=
∏
ℓ∈[m]

Pr
ρℓ
[weight(vρℓ) ≥ (α− η)]

=
∏
ℓ∈[m]

Pr
ρ
[weight(vρ) ≥ (α− η)]

=
∏
ℓ∈[m]

Pr
ρ

 ∑
j∈[t]

Xj ≥ (α− η) · t

≤
(E[

∑
j Xj]

(α− η) · t

)m

≤
(∑

j E[Xj]

(α− η) · t

)m

≤ min

{(
β′

α− η

)m

, 1

}
. (4)

By plugging Equations 2 to 4 into Equation 1 we get that if |H| ≥ n/2 then:

Pr[⟨P̃(x),Vx⟩ = 1] = Pr[Eweight] · Pr[E0 ∨ E1]

≤ Pr[Eweight] · (Pr[E0] + Pr[E1])

≤ min

{(
β′

α− η

)m

, 1

}
·
(

1

n2
+

β

β′

)
.

To bound the above expression, we split into the following two cases.

41

• β′ < α− η: In this case,
(

β′

α−η

)m
< 1. Therefore,

min

{(
β′

α− η

)m

, 1

}
·
(

1

n2
+

β

β′

)
≤
(

β′

α− η

)
·
(

1

n2
+

β

β′

)
≤ β

α− η
+

1

n2
.

• β′ ≥ α− η: In this case,

min

{(
β′

α− η

)m

, 1

}
·
(

1

n2
+

β

β′

)
=

β

β′
+

1

n2

≤ β

α− η
+

1

n2
.

Overall, we get that if |H| ≥ n/2 then,

Pr[⟨P̃(x),Vx⟩ = 1] ≤ min

{(
β′

α− η

)m

, 1

}
·
(

1

n2
+

β

β′

)
≤ β

α− η
+

1

n2

=
α− δ

α− η
+

1

n2
.

Complexity measures. We analyze the complexity parameters of the SIQ-PCPP.

• Proof length: The proof length is n+ log n · t = n+ 2 · log2 n/η2.

• Queries to input: The verifier makes at most 1 query to x.

• Queries to proof: The queries to proof in each step is as follows,

– In Item 2 , log n · t queries.

– In Item 4, m · t queries.

– In Item 5, q queries.

42

Overall, the verifier makes the following number of queries to the proof,

log n · t+ q +m · t = (log n+m) · t+ q

= (log n+ 2 · log n) · 2 · log n · 1
η2

+ 4 · log n

(α− η)

= 6 · log2 n · 1
η2

+ 4 · log n

(α− η)

= 2 · log n ·
(
3 · log n · 1

η2
+

2

(α− η)

)
.

• Randomness: The overall randomness that the verifier uses is

m · log n+ q · log n = (m+ q) · log n

=

(
2 · log n+ 4 · log n

α− η

)
· log n

= 2 · log2 n ·
(
1 +

2

α− η

)
.

• Verifier running time: The verifier time in each step is as follows,

– In Item 2, O(t) time.

– In Item 3, O(m+ q) time.

– In Item 4, O(m · t) time.

– In Item 5, O(q) time.

Overall, the verifier runs in time O(m · t+ q) = O(log2 n/η2 + log n/(α− η)).

• Prover expected running time: By Lemma 4.3, we get that the prover runs in
expected time
O (α/(α− η) · n · log n).

43

7 SIQ-IOPP for Hamming weight

In this section, we show an IOP of proximity for the Hamα problem.

Theorem 7.1. For every α, η : N → (0, 1] such that 0 < η < α (that are computable in
linear time), Construction 7.2 yields a perfectly complete public-coin IOPP for Hamα with
the following parameters:

IOPP (P,V)

Soundness error s(δ) = α−δ
α−η

Rounds 2
Proof length O(log2 n/η2)
Queries to input 1
Queries to proof O(log n/η2)
Randomness O(log n+ log 1/η)
Verifier running time O(log n/η2)
Prover expected running time O

((
n · α/(α− η) + 1/η2

)
· log n

)
where n ∈ N is the input size, α := α(n), and η := η(n).

The protocol is described below:

Construction 7.2. Let t := 2 · log n/η2. The prover P receives as input a of bit vector
x ∈ {0, 1}n, while the verifier V has oracle access to the vector x. They interact as follows.

• P: Send z1, . . . , zt ∈ [n] to the verifier.

• V: Choose ρ← [n] uniformly and send it to the prover.

• P: Send b1, . . . , bt ∈ {0, 1} as a non-oracle message where bj := x[ρ+ zj].

• V: Receive b1, . . . , bt ∈ {0, 1} as a non-oracle message. Let S := {j ∈ [t] | bj = 1} be
the indices where bj equals 1. Sample j ← S uniformly at random. Accept if and only if
both of the following checks pass:

1. Check that |S| > (α− η) · t.
2. Query zj and check that x[ρ+ zj] = 1 by querying x at the appropriate location.

Proof of Theorem 7.1. We analyze completeness and soundness and then describe the com-
plexity measures of the IOPP.
Completeness. Fix a vector x ∈ Hamα, i.e., weight(x) ≥ α. By Lemma 4.3 with k = 1,
there exists a series of shifts z1, . . . , zt such that for every ρ there are at least (α−η)·t indices
j where x[ρ + zj] = 1. The honest prover P uses these shifts. For every ρ ∈ [n], the bit
vector (b1, . . . , bt) = (x[ρ+z1], . . . ,x[ρ+zt]) generated by V contains at least (α−η)·t ones.
Consequently, V will not reject upon checking in Item 1 that there are at least (α − η) · t
indices j in which bj = 1. Moreover, we have that (b1, . . . , bt) = (x[ρ + z1], . . . ,x[ρ + zt]),

44

and therefore, V will accept during Item 2. Thus, the honest prover strategy of sending this
series of shifts z1, . . . , zt and then following the protocol as prescribed causes the verifier to
accept with probability 1.
Soundness. Fix a malicious prover P̃ and a vector x /∈ Hamα, and denote δ := ∆(x,Hamα).
Let z1, . . . , zt be the first message output by P̃. For every j ∈ [t], let Xj be the 0/1 random
variable that is equal to 1 if and only if x[ρ + zj] = 1. Let X ≡

∑t
j=1Xj be the random

variable representing the number of Xj-s set to 1.
We begin by showing that if exactly w of the Xj random variables are set to 1 then the

prover manages to convince the verifier with probability w
t·(α−η) :

Claim 7.3. For every w ∈ {0, . . . , t}:

Pr
[
⟨P̃,Vx⟩ = 1 X = w

]
=

w

t · (α− η)
.

Proof. Since X =
∑

j∈[t]Xj = w, we have that the verifier V is able to be convinced by
P̃ for at w of the indices j ∈ [t]. In order for P̃ to cause V to accept, the weight of the
vector (b1, . . . , bt) sent by P̃ must be at least α− η. Consequently, the verifier accepts with
probability at most w

t·(α−η) : the probability of sampling one of the w indices for which the
prover can cause the verifier to accept out of the (α− η) · t bits that must be set to 1.

Notice now that E[Xj] = α − δ for every j, and so E[X] = (α − δ) · t. Furthermore,
notice that E[X] =

∑t
w=0w · Pr[X = w]. By applying Claim 7.3 we have:

Pr[⟨P̃,Vx⟩ = 1] =
t∑

w=0

Pr[X = w] · Pr
[
⟨P̃,Vx⟩ = 1 X = w

]
=

t∑
w=0

Pr[X = w] · w

t · (α− η)

=
1

t · (α− η)
·

t∑
w=0

w · Pr[X = w]

=
α− δ

α− η
.

Complexity measures.

• Proof length: The proof length is t · log n+ t = O(log2 n/η2).

• Queries to input: The verifier makes 1 query to x.

• Queries to proof: The verifier makes t+ log n = O(log n/η2) queries to the proof.

45

• Randomness: The verifier uses log n+O(log |S|) = logn+O(log t) = log n+O(loglog n+
log 1/η) bits of randomness.

• Verifier running time: The verifier runs in time O(t) = O(log n/η2).

• Prover expected running time: By Lemma 4.3, we get that computing z1, . . . , zt can be
done in expected time O (α/(α− η) · n · log n). Therefore, the prover runs in expected
time,

O

(
α

α− η
· n · log n+ t

)
= O

(
α

α− η
· n · log n+

1

η2
· log n

)
= O

((
α

α− η
· n+

1

η2

)
· log n

)
.

46

8 Lower bound for IOPPs

In this section, we bound the number of proof queries made by the verifier in an IOPP for
Hamα.

Theorem 8.1. Let (P,V) be a perfectly complete semi-adaptive IOPP (see Definition 8.8)
for Hamα where α ∈ (0, 1− qx/n) that on inputs of length n and Hamming distance δ has
soundness error smaller than 1, total length l, qx input queries and qπ queries to the prover
messages. Then qπ · (1 + log l) > log

(
(1−α)·n

qx

)
.

Moreover, if the IOPP is an IPP, then l > log
(
(1−α)·n

qx

)
.6

Plugging in a constant α, we get the following bound:

Corollary 8.2. For every constant α ∈ (0, 1), every perfectly complete semi-adaptive IOPP
for Hamα with total length l = polylog(n) where the verifier makes qx = O(1) input queries
and qπ queries to the prover messages has qπ = Ω(log(n)/ loglog n).

Theorem 8.1 is proved by reducing a perfectly complete IOPP for Hamα to a perfectly
correct protocol for HitOneα problem defined below (Lemma 8.5), and a communication-
complexity lower bound for HitOneα (Lemma 8.4).

Definition 8.3. A protocol for the HitOneα problem is pair (A,B) where A is a determin-
istic algorithm and B is a deterministic oracle algorithm. The aim of the protocol is for A
to give B information that allows it to query a bit vector x at a nonzero location. A and
B interact in the following way:

1. A(x): outputs a message m ∈ {0, 1}l.
2. Bx(m): makes q queries to x.

We say that the protocol is perfectly correct if for every vector x ∈ {0, 1}n with weight(x) ≥
α: Bx(A(x)) queries x at an index i ∈ [n] with x[i] = 1.

8.1 A lower-bound for perfectly correct protocols for HitOneα

In this section we show a lower-bound on the length of perfectly correct protocols for
HitOneα.

Lemma 8.4. Let (A,B) be a perfectly correct protocol for HitOneα for α ∈ (0, 1 − q/n]
where, for vectors x ∈ {0, 1}n with weight(x) ≥ α, A(x) sends a message m of length l and
Bx(m) makes at most q queries to x. Then l > log

(
(1−α)·n

q

)
.

6Observe that any IPP is semi-adaptive since the verifier always reads the prover’s messages in their
entirety.

47

Proof. Suppose towards contradiction that l ≤ log
(
(1−α)·n

q

)
. For any message m, let Qm

be the indices of x queried by Bx(m) and set Q :=
⋃

m∈{0,1}l Qm. Observe that |Q| ≥ q · 2l

since each of the 2l messages m can cause B to query a different set of q locations. Define
a vector x ∈ {0, 1}n as follows:

x[i] :=

{
0 i ∈ Q

1 o.w.

By definition, and by the assumption that l ≤ log
(
(1−α)·n

q

)
we have

weight(x) = 1− |Q|
n
≥ 1− q · 2l

n
≥ α .

Moreover, by construction, no matter what message m it receives, B queries only zeroes.
This contradicts the perfect correctness of the protocol (A,B).

8.2 Perfectly complete IOPP for Hamming to perfectly correct protocol
for HitOneα

In this section we show how to transform a perfectly complete IOPP for the Hamming
problem into a perfectly correct protocol for HitOne.

Lemma 8.5. Let (P,V) be a perfectly complete public-coin semi-adaptive IOPP for Hamα.
Then Construction 8.10 yields a perfectly correct protocol (A,B) for HitOne with the fol-
lowing parameters:

Perfectly complete IOPP for Hamα

Completeness error 0
Soundness error < 1
Total proof length l
Queries to proofs qπ
Queries to vector qx

−→
Perfectly correct protocol for HitOneα
Message length qπ · (1 + log l)
Queries qx

Moreover, if the IOPP is an IPP then the message length is reduced to l.

We define the view of an oracle algorithm to be the set of bits that the algorithm reads
from the oracle at each round, where each bit is represented as a pair of index location
and bit value. In the general case, where the algorithm interacts with multiple oracles, the
algorithm’s view is defined as a vector of sets. Each set within the vector corresponds to
the bits read from a distinct oracle.

Definition 8.6 (View of oracle algorithm). Let A be a k-oracle algorithm, o1, . . . , ok be
oracles, and let x be an input value. The view of Ao1,...,ok(x) is defined as follows:

View (Ao1,...,ok(x)) := (Qℓ,aℓ)ℓ∈[k] ,

48

where Qℓ is the set of queries that Ao1,...,ok(x) makes to oℓ, and aℓ[j] := oℓ(j) for each query
j ∈ Qℓ.

Given the view w := (Q,a) of an oracle, we let ⟨w⟩ be the function that, on input j
outputs a[j] if j ∈ Q and ⊥ otherwise.

The following fact shows that an oracle algorithm has the same view when given an
oracle o as when rerun with the restricted view of o.

Fact 8.7. Let A be an oracle algorithm, o be an oracle, x be an input value and w :=
View(Ao(x)). Then w = View(A⟨w⟩(x)) and for every y with w = View(A⟨w⟩(y)) it holds
that:

View(A⟨w⟩(y)) = View(Ao(y)) .

An IOP verifier is semi-adaptive if the locations it queries its ℓ-th oracle are independent
of the (ℓ+ 1)-th prover message onwards. This can be described formally as follows:

Definition 8.8 (Semi-adaptive IOP verifier). Let (P,V) be an IOPP for Hamα. We say
that V is semi-adaptive if there exist algorithms V1, . . . ,Vk,Dec such that for every
vector x and full transcript tr := (π1, ρ1, . . . , πk, ρk) the verifier’s decision phase can be
rewritten as follows:

1. For every ℓ ∈ [k], compute wℓ := View
(
Vπℓ

ℓ (w⃗1, . . . , w⃗ℓ−1, ρ1, . . . , ρℓ)
)
.

2. Output Decx(w⃗1, . . . , w⃗k, ρ1, . . . , ρk).

We define a set of “useful” randomness, which will be used extensively in our transfor-
mation.

Definition 8.9 (Useful randomness). Let V = (V1, . . . ,Vk,Dec) be a semi-adaptive veri-
fier and w1, . . . ,wi be views. We define a set Useful(w1, . . . ,wi) to be all sets of randomness
(ρ1, . . . , ρi) such that

∀πi+1,∃ρi+1 . . . ,∀πk, ∃ρk Dec0⃗ (w⃗1, . . . , w⃗k, ρ1, . . . , ρk) = 0 ,

where ∀ℓ ∈ {i+ 1, . . . , k} wℓ := View(Vπℓ
ℓ (w⃗1, . . . , w⃗ℓ−1, ρ1, . . . , ρℓ)).

We now construct a protocol (A,B) for HitOneα.

Construction 8.10. Let (P,V) be a perfectly complete public-coin IOPP for Hamα for
α ∈ (0, 1) with semi-adaptive verifier V := (V1, . . . ,Vk,Dec). The protocol (A,B) for
HitOneα is as follows:

• A(x):

1. For ℓ = 1 to k:

49

(a) Compute πℓ := P(x, ρA

1, . . . , ρ
A

ℓ−1).
(b) Find the lexicographically first ρA

ℓ ∈ {0, 1}r such that for wℓ := View(Vπℓ
ℓ (w⃗1, . . . , w⃗ℓ−1, ρ

A

1, . . . , ρ
A

ℓ)),
we have that (ρA

1, . . . , ρ
A

ℓ) ∈ Useful(w1, . . . ,wℓ). (If no such ρA

ℓ exists then abort.)
(c) Set wℓ := View(Vπℓ

ℓ (w⃗1, . . . , w⃗ℓ−1, ρ
A

1, . . . , ρ
A

ℓ)).

2. Output m := (w1, . . . ,wk).

• Bx(m):

1. Parse m := (w1, . . . ,wk).

2. For ℓ = 1 to k,

(a) Find the lexicographically first ρB

ℓ ∈ {0, 1}r such that the following two conditions
hold,

i. wℓ = View(V
⟨wℓ⟩
ℓ (w⃗1, . . . , w⃗ℓ−1, ρ

B

1, . . . , ρ
B

ℓ)).
ii. (ρB

1, . . . , ρ
B

ℓ) ∈ Useful(w1, . . . ,wℓ).
(If no such ρB

ℓ exists then abort.)

3. Run Decx(w1, . . . ,wk, ρ
B

1, . . . , ρ
B

k) making any queries it makes to x.

Proof. We first show that the protocol (A,B) is perfectly correct. Following this, we analyze
the complexity parameters of the protocol.
Perfect correctness. Fix x with weight(x) ≥ α. We start by proving that A never aborts
(Claim 8.11), meaning that it manages to fix randomness (ρA

1, . . . , ρ
A

k) during its execution,
and outputs m := (w1, . . . ,wk). Then, we prove that B chooses the same randomness as
A, i.e., B never aborts and chooses random strings (ρB

1, . . . , ρ
B

k) = (ρA

1, . . . , ρ
A

k) (Claim 8.12).
Finally, we prove that Decx(w1, . . . , w⃗k, ρ

A

1, . . . , ρ
A

k) must query x at location i with x[i] = 1
(Claim 8.13). Putting all of this together, we have that B always queries x at some nonzero
location, as required.

Claim 8.11. A never aborts.

Proof. We prove that A never aborts by showing (by induction) that for every i ∈ {0, . . . , k−
1}, if (ρA

1, . . . , ρ
A

i−1) ∈ Useful(w1, . . . ,wi−1), then for all πi (and specifically for πi = πA

i),
there exists ρA

i such that (ρA

1, . . . , ρ
A

i) ∈ Useful(w1, . . . ,wi), where wi := View(Vπi
i (w1, . . . ,wi−1, ρ

A

1, . . . , ρ
A

ℓ)).
It follows that in every iteration, A will have a choice of ρA

i, and so it will not abort.
Base case. For i = 0, using λ to denote the empty string, we need to show that λ ∈
Useful(λ). Assume towards contradiction that λ /∈ Useful(λ). By definition this means that

∃π̃1,∀ρ1 . . . ,∃π̃k,∀ρk Dec0⃗ (w1, . . . ,wk, ρ1, . . . , ρk) = 1 ,

50

where ∀ℓ ∈ [k] wℓ := View(Vπ̃ℓ
ℓ (w1, . . . ,wℓ−1, ρ1, . . . , ρℓ)). Therefore, there exists an un-

bounded malicious prover P̃ such that,

Pr
ρ1,...,ρk

 Dec0⃗ (w1, . . . ,wk, ρ1, . . . , ρk) = 1

π̃1 ← P̃
...

π̃k ← P̃(ρ1, . . . , ρk−1)

∀ℓ ∈ [k] wℓ := View(Vπ̃ℓ
ℓ (w1, . . . ,wℓ−1, ρ1, . . . , ρℓ−1))

 = 1 .

Or equivalently,

Pr
ρ1,...,ρk

 V0⃗,π̃1,...,π̃k(ρ1, . . . , ρk) = 1

π̃1 ← P̃
...

π̃k ← P̃(ρ1, . . . , ρk−1)

 = 1 ,

which contradicts the fact that the IOPP has soundness error smaller than 1.
Induction step. Fix i > 0, and suppose that (ρA

1, . . . , ρ
A

i−1) ∈ Useful(w1, . . . ,wi−1). By
definition:

∀πi, ∃ρi . . . ,∀πk, ∃ρk Dec0⃗
(
w1, . . . ,wk, ρ

A

1, . . . , ρ
A

i−1, ρi, . . . , ρk
)
= 1 ,

where ∀ℓ ∈ {i, . . . , k}, wℓ := View(Vπℓ
ℓ (w1, . . . ,wℓ−1, ρ

A

1, . . . , ρ
A

i−1, ρi, . . . , ρℓ)). Fix πi :=
πA

i := P(x, ρA

1, . . . , ρ
A

i−1), as done by A. By unraveling the above expression, we get that,

∃ρi,∀πi+1, ∃ρi+1 . . . ,∀πk, ∃ρk Dec0⃗
(
w1, . . . ,wk, ρ

A

1, . . . , ρ
A

i−1, ρi, . . . , ρk
)
= 1 ,

where ∀ℓ ∈ {i, . . . , k}, wℓ := View(Vπℓ
ℓ (w1, . . . ,wℓ−1, ρ

A

1, . . . , ρ
A

i−1, ρi, . . . , ρℓ)).
Fixing ρA

i such that the above holds, it immediately follows that (ρA

1, . . . , ρ
A

ℓ) ∈ Useful(w1, . . . ,wi)

where wi := View(V
πA
i

ℓ (w1, . . . ,wi−1, ρ
A

1, . . . , ρ
A

ℓ)), as required.

Claim 8.12. B never aborts and (ρA

1, . . . , ρ
A

k) = (ρB

1, . . . , ρ
B

k).

Proof. We show by induction that for every i ∈ {0, . . . , k} we have that (ρA

1, . . . ρ
A

i) =
(ρB

1, . . . , ρ
B

i) (which also implies that B did not abort in the i-th iteration). For i = 0, this
is trivially true. For the inductive step, we assume that the claim is true for every index
smaller than i > 0, and we prove for i.

To prove that ρB

i = ρA

i we need to show that (1) for every ρi < ρA

i, at least one of the
conditions in Item 2a does not hold, and (2) for ρi = ρA

i, both of the conditions in Item 2a
hold.

• ρi < ρA

i: Assume towards contradiction that there exists ρi < ρA

i such that both of the
conditions in Item 2a hold, i.e.,

1. wi = View(V
⟨wi⟩
i (w1, . . . ,wi−1, ρ

B

1, . . . , ρ
B

i−1, ρi)), and

51

2. (ρB

1, . . . , ρ
B

i−1, ρi) ∈ Useful(w1, . . . ,wi).

It follows that

wi = View(V
⟨wi⟩
i (w1, . . . ,wi−1, ρ

B

1, . . . , ρ
B

i−1, ρi))

= View(V
⟨wi⟩
i (w1, . . . ,wi−1, ρ

A

1, . . . , ρ
A

i−1, ρi)) (5)

= View(V
πA
i

i (w1, . . . ,wi−1, ρ
A

1, . . . , ρ
A

i−1, ρi)) , (6)

where Equation 5 follows from the inductive assumption, and Equation 6 follows from
Fact 8.7.

However, since (ρB

1, . . . , ρ
B

i−1, ρi) ∈ Useful(w1, . . . ,wi), this contradicts the fact that A
chooses the minimal ρA

i for which the derived random string is useful for the derived list
of views.

• ρi = ρA

i: We need to show that,

1. wi = View(V
⟨wi⟩
i (w1, . . . ,wi−1, ρ

B

1, . . . , ρ
B

i−1, ρ
A

i)).
2. (ρB

1, . . . , ρ
B

i−1, ρ
A

i) ∈ Useful(w1, . . . ,wi).

Or equivalently, by the inductive assumption, since (ρB

1, . . . , ρ
B

i−1) = (ρA

1, . . . , ρ
A

i−1),

1. wi = View(V
⟨wi⟩
i ((w1, . . . ,wi−1, ρ

A

1, . . . , ρ
A

i−1, ρ
A

i)).
2. (ρA

1, . . . , ρ
A

i−1, ρ
A

i) ∈ Useful(w1, . . . ,wi).

By the construction of A and by Fact 8.7:

wi = View(V
πA
i

i (w1, . . . ,wi−1, ρ
A

1, . . . , ρ
A

i−1, ρ
A

i)) = View(V
⟨wi⟩
i (w1, . . . ,wi−1, ρ

A

1, . . . , ρ
A

i−1, ρ
A

i)) ,

and so Item 1 holds. The correctness of Item 2 is implied by the construction of A.

Claim 8.13. Decx(w1, . . . ,wk, ρ
A

1, . . . , ρ
A

k) queries x at a nonzero location.

Proof. Since (ρA

1, . . . , ρ
A

k) ∈ Useful(w1, . . . ,wk), it follows that Dec0⃗(w1, . . . ,wk, ρ
A

1, . . . , ρ
A

k) =
0. On the other hand, by perfect completeness of the IOPP we have that:

Pr
ρ1,...,ρk

 Decx (w1, . . . ,wk, ρ1, . . . , ρk) = 1

π1 ← P(x)
...

πk ← P(x, ρ1, . . . , ρk−1)
∀ℓ ∈ [k] wℓ := View(Vπℓ

ℓ (w1, . . . ,wℓ−1, ρ1, . . . , ρℓ−1))

 = 1 .

52

Observe that A computes wℓ exactly as computed in the above process. It follows that

Decx(w1, . . . ,wk, ρ
A

1, . . . , ρ
A

k) = 1 .

Since the only difference between Decx(w1, . . . ,wk, ρ
A

1, . . . , ρ
A

k) and Dec0⃗(w1, . . . ,wk, ρ
A

1, . . . , ρ
A

k)
are the locations of x in which x is nonzero and yet their outputs are different, it must hold
that Decx(w1, . . . ,wk, ρ

A

1, . . . , ρ
A

k) queries x at a nonzero location.

Complexity measures. We analyze the complexity measures of the resulting protocol
(A,B).

• Message length. Alice sends Bob a message m containing a list of index-bit pairs matching
the query complexity of the IOPP (P,V) to the prover messages. Thus, the message
length of the protocol is qπ · (1 + log l). Observe that if the IOPP is, in fact, an IPP, i.e.,
qπ = l, then the verifier’s view is the entire proof, and so we do not need the indices,
meaning that we get message length l.

• Query complexity. Bob makes at most qx queries to its oracle x.

53

9 Application: perfect completeness for PCPs and IOPs

In this section, we show how to apply our techniques to transform probabilistic proof systems
with nonzero completeness error into ones with perfect completeness. While following
theorems are described for PCPPs and IOPPs, recall that (standard) PCPs and IOPs are
a subset of their proximity variants.

• In Section 9.1 we show Theorem 9.3 which uses a perfectly complete PCPP for Ham to
correct completeness errors in PCPs of proximity. By plugging in the PCPPs developed
in Sections 5 and 6 into Theorem 9.3 we have the following corollary:

Corollary 9.1. For every relation R that has a PCPP with the following parameters and
completeness error c, and for every η ∈ (0, 1−c), R has a perfectly complete PCPP with
the following parameters:

PCPP for R

Completeness error c
Soundness error s
Proof length l
Queries to input qx
Queries to proof qπ
Randomness r
Verifier running time vty

Perfectly complete
PCPP for R

Theorem 5.4 Theorem 5.8 Theorem 6.2

Soundness error s
1−c−η

s
1−c−1.5η

s
1−c−η + 1

n2

Proof length l+ 2 · r2/η2 l+O(2r/r2 · (− log2 η)/η2) l+ 2r + 2 · r2/η2

Queries to input 2 · qx · r/η2 O
(
qx · (log r − log η)/η2

)
qx

Queries to proof O(qπ · r/η2 + r2/η2) O(qπ · (log r − log η)/η2

+ r · (log r − log2 η)/η2)

qπ +O(r2/η2 + r/(1− c− η))

Randomness r r + log r −O(log η) O(r2/(1− c− η))

• In Section 9.2 we prove Theorem 9.3, which uses the techniques developed in previous
sections to transform any IOPP into an IOPP with perfect completeness:

Theorem 9.2. Let R be a relation with a IOPP with nonzero completeness error c. Then
for every η ∈ (0, 1− c), R has a perfectly complete IOPP with the following parameters:

54

IOPP for R

Completeness error c
Soundness error s
Rounds k
Proof length l
Queries to input qx
Queries to proof qπ
Randomness r
Verifier running time vt

−→

Perfectly complete IOPP for R

Completeness error 0
Soundness error s

1−c−η

Rounds k+ 1
Proof length O(l · r/η2)
Queries to input qx
Queries to proof qπ +O(r/η2)
Randomness r +O(log(r/η))
Verifier running time vt+O(r/η2)

9.1 Perfect completeness for PCPPs

In this section we show that any PCP of proximity for the gap-Hamming problem can be
used to transform imperfectly complete PCPs to PCPs with perfect completeness.

Theorem 9.3. Let R be a relation with a PCPP with nonzero completeness error c and
randomness complexity r. Then, given a perfectly complete PCPP for Ham1−c for instances
of size 2r, Construction 9.4 yields a perfectly complete PCPP for R with the following
parameters:

PCPP for R

Completeness error c
Soundness error s
Proof length l
Queries to input qx
Queries to proof qπ
Randomness r
Verifier running time vt

+

Perfectly complete PCPP for Ham1−c

Completeness error 0
Soundness error sHam(δ)
Proof length lHam
Queries to input q

x,Ham

Queries to proof qπ,Ham

Randomness rHam
Verifier running time vtHam

−→

Perfectly complete PCPP for R

Completeness error 0
Soundness error sHam(1− c− s)
Proof length l+ lHam
Queries to input q

x,Ham · qx
Queries to proof q

x,Ham · qπ + qπ,Ham

Randomness rHam
Verifier running time q

x,Ham · vt+ vtHam

Construction 9.4. Let (P,V) be a PCPP for R with completeness error c, and (PHam,VHam)
be a perfectly complete PCPP for Ham1−c. On explicit input x and implicit input w the
protocol executes as follows:

1. P′:

(a) Compute π := P(x,w).

55

(b) Let x ∈ {0, 1}2r be the vector such that x[ρ] = 1 if and only if Vw,π(x; ρ) = 1 for
ρ ∈ {0, 1}r.

(c) Compute πHam := PHam(x).
(d) Output π′ := (π, πHam).

2. V′:

(a) Choose ρHam ← {0, 1}r.
(b) Run Vx,πHam

Ham (ρHam) where every query ρ to x is answered by executing Vw,π(x; ρ)
(by making the appropriate queries to w and π) and handing VHam the output of
V.

(c) Accept if and only if VHam accepts.

Proof of Theorem 9.3. We prove completeness, then soundness, and finally analyze com-
plexity measures.
Completeness. Fix (x,w) ∈ R. We show that the honest prover P′ makes V′ accept
given x and oracle access to w with probability 1. Let (π, πHam) := P′(x,w) be the proof
output by P′ and let x be the vector defined by the prover in Item 1b. By definition, since
the PCPP (P,V) has completeness error c:

Pr [x[ρ] = 1 | ρ← {0, 1}r] = Pr [Vw,π(x; ρ) = 1 | ρ← {0, 1}r] ≥ 1− c .

Therefore x ∈ Ham1−c. Thus, since (PHam,VHam) is a perfectly complete PCPP for Ham1−c,
and since V′ emulates the vector x for VHam, we conclude that

Pr
[
V′w,π′

(x) = 1
]
= Pr

ρHam
[Vx,πHam

Ham (ρHam) = 1] = 1 .

Soundness. Fix (x,w) /∈ R and let π′ := (π, πHam) be a proof string. We show that

Pr
[
V′w,π′

(x) = 1
]
≤ sHam .

Let x ∈ {0, 1}2r be the vector such that x[ρ] = 1 if and only if Vw,π(x; ρ) = 1 for ρ ∈ {0, 1}r.
Since (P,V) has soundness error s:

Pr [x[ρ] = 1 | ρ← {0, 1}r] = Pr [Vw,π(x; ρ) = 1 | ρ← {0, 1}r] ≤ s .

Therefore x is a vector with a fraction of at most s ones. Thus, since (PHam,VHam) is a
PCPP for Ham1−c with soundness error sHam(δ), and since V′ emulates the vector x for
VHam, we conclude that

Pr
[
V′w,π′

(x) = 1
]
= Pr

ρHam
[Vx,πHam

Ham (ρHam) = 1] ≤ sHam(∆(x,Ham1−c)) ≤ sHam(1− c− s) .

Complexity measures. We analyze the complexity parameters of the new PCPP.

56

• Proof length. The proof length is l+ lHam.

• Queries to input. The verifier makes qx queries to w for every one of the q
x,Ham queries

that VHam makes to x, for a total of q
x,Ham · qx.

• Queries to proof. The verifier makes qπ,Ham queries to πHam, and qπ queries to π for
every one of the q

x,Ham queries that VHam makes to x, for a total of q
x,Ham · qπ + qπ,Ham to

π′ := (π, πHam).

• Randomness. The verifier uses rHam bits of randomness in order to execute VHam.

• Verifier running time. The verifier makes a single invocation of VHam, taking time vtHam,
in which every one of the q

x,Ham queries made to x translates to computing V in time vt,
for a total of q

x,Ham · vt+ vtHam.

9.2 Perfect completeness for IOPPs

In this section we prove Theorem 9.2, showing how to achieve perfect completeness for
IOPPs using the techniques developed in Section 7. We detail the construction:

Construction 9.5. Let (P,V) be an IOPP for R where, for convenience, we assume that
the protocol (P,V) begins with a verifier message and let t := 2 · r/η2. Below, ⊕ denotes
the bitwise binary XOR function. The prover P′ receives as input (x,w) for R, while the
verifier V′ receives x explicitly and has oracle access to w. They interact as follows.

• P′: Send z1, . . . , zt ∈ {0, 1}r where zi := (zi,1, . . . , zi,k) for zi,j ∈ {0, 1}rj to the verifier.
(where rj is the number of random bits chosen by V in round j)

• For j = 1 to k:

1. V′: Choose ρj ← {0, 1}rj .
2. P′: For every i ∈ [t] send πi,j . In the honest case πi,j := P(x,w, ρ1⊕zi,1, . . . , ρj⊕zi,j).

• P′: Send b1, . . . , bt ∈ {0, 1} as a non-oracle message where bi = 1 if and only if Vw(x; ρ1⊕
zi,1, . . . , ρk ⊕ zi,k) = 1.

• V′: Receive b1, . . . , bt ∈ {0, 1} as a non-oracle message. Let S := {i ∈ [t] | bi = 1} be
the indices where bi equals 1. Sample i← S uniformly at random. Accept if and only if
both of the following checks pass:

1. Check that |S| > (1− c− η) · t.
2. Query zi and check that Vw,πi,1,...,πi,k(x; ρ1 ⊕ zi,1, . . . , ρk ⊕ zi,k) = 1 by running V.

57

Proof of Theorem 9.2. We prove completeness, then soundness, and finally analyze com-
plexity measures. Completeness and soundness are an almost identical as in the proof of
Theorem 7.1, edited where appropriate.
Completeness. Fix (x,w) ∈ R. We show that the protocol has perfect completeness when
interacting on input (x,w). Consider the vector x ∈ {0, 1}2r where x[(ρ1, . . . , ρk)] = 1 if
and only if Vw,π1,...,πk(x; ρ1, . . . , ρk) = 1 where πj := P(x,w, ρ1, . . . , ρj). Since the IOPP
(P,V) has completeness error c, weight(x) ≥ 1 − c. We augment the definition of good
shifts to, rather than being defined with respect to “+ mod n”, to a definition with bitwise
XOR “⊕”. We observe that Lemma 4.3 holds also for this definition by an identical proof.
By applying Lemma 4.3, with k = 1, there exist shifts (z1, . . . , zt) that are good for x, i.e.,
where:

∀(ρ1, . . . , ρk) ∈ {0, 1}r,
∑
i∈[t]

(ρ1, . . . , ρk)⊕ (zi,1, . . . , zi,k)] ≥ (1− c− η) · t ,

where, above zi,j ∈ {0, 1}rj . By definition of the bitwise-XOR, we can rewrite this as:

∀(ρ1, . . . , ρk) ∈ {0, 1}r,
∑
i∈[t]

(ρ1 ⊕ zi,1, . . . , ρk ⊕ zi,k)] ≥ (1− c− η) · t .

In other words, there exist shifts z1, . . . , zt such that for every ρ1, . . . , ρk there are at least
(1 − c − η) · t indices i for which Vw,π1,...,πk(x; ρ1 ⊕ zi,1, . . . , ρk ⊕ zi,j) = 1 where πi :=
P(x,w, ρ1 ⊕ zi,1, . . . , ρj ⊕ zi,j).

Supposing the honest prover P′ uses these shifts as its first message, the bit vector
b1, . . . , bt generated by P′ contains at least (1 − c − η) · t ones. Consequently, V′ will not
reject upon reading the vector in Item 1. Moreover, since P′ generates its proof messages
honestly with respect to the shifted random strings, for every i sampled by V′, we have
Vw,πi,1,...,πi,k(x; ρ1 ⊕ zi,1, . . . , ρk ⊕ zi,j) = 1, and so V′ will not reject at Item 2. Thus,
the honest prover strategy of sending this series of shifts z1, . . . , zt and then following the
protocol as prescribed causes V′ to accept with probability 1.
Soundness. Fix a malicious prover P̃′ and an input (x,w) /∈ R. Let z1, . . . , zt be the first
message output by P̃′. For every j ∈ [t], let Xj be the 0/1 random variable that is equal
to 1 if and only if Vw,π1,...,πk(x; ρ1⊕ zi,1, . . . , ρk⊕ zi,j) = 1 where πi := P̃(ρ1⊕ zi,1, . . . , ρj ⊕
zi,j). Let X ≡

∑t
j=1Xj be the random variable representing the number of Xj-s set to 1.

Observe that since ρ1, . . . , ρk are uniform and independent, then for every fixed j so are
ρ1⊕zi,1, . . . , ρk⊕zi,k. It therefore follows by soundness of the IOPP (P,V) that E[Xj] ≤ s,
and so E[X] = s · t.

We begin by showing that if exactly w of the Xj random variables are set to 1 then the
prover manages to convince the verifier with probability w

t·(α−η) :

Claim 9.6. For every w ∈ {0, . . . , t}:

Pr
[
V′ accepts X = w

]
=

w

t · (1− c− η)
.

58

Proof. Since X =
∑

j∈[t]Xj = w, we have that the verifier V′ is able to be convinced by P̃′

for at w of the indices i ∈ [t]. In order for P̃′ to cause V to accept, the weight of the vector
(b1, . . . , bt) sent by P̃ must be at least 1 − c − η. Consequently, the verifier accepts with
probability at most w

t·(1−c−η) : the probability of sampling one of the w indices for which
the prover can cause the verifier to accept out of the (1− c− η) · t bits that must be set to
1.

Observe that E[X] =
∑t

w=0w · Pr[X = w]. By applying Claim 9.6 we have:

Pr[V′ accepts] =

t∑
w=0

Pr[X = w] · Pr
[
V′ accepts X = w

]
=

t∑
w=0

Pr[X = w] · w

t · (1− c− η)

=
1

t · (1− c− η)
·

t∑
w=0

w · Pr[X = w]

≤ s

1− c− η
.

Complexity measures. We analyze the complexity parameters of the new PCPP.

• Proof length. The proof length is t · l+ t = O(l · r/η2).

• Queries to input. The verifier makes qx to w during the single invocation of V.

• Queries to proof. The verifier makes qπ queries to the messages of P′ during the execution
of V, and additionally reads the bit vector b1, . . . , bt and zi ∈ {0, 1}r. Thus the verifier
makes at most qπ + t+ r = qπ +O(r/η2) queries to the proof.

• Randomness. The verifier uses r + log t = r +O(log(r/η)) bits of randomness.

• Verifier running time. The verifier makes a single invocation V and otherwise runs in
time O(t) for a total running time of vt+O(r/η2).

59

Acknowledgments

We are grateful to Ron Rothblum for valuable discussions and for directing us to related
work.

Gal Arnon is supported in part by a grant from the Israel Science Foundation (no.
2686/20) and by the Simons Foundation Collaboration on the Theory of Algorithmic Fair-
ness. Shany Ben-David is supported by the Israel Science Foundation (Grant no. 2302/22).
Eylon Yogev is supported by an Alon Young Faculty Fellowship, by the Israel Science
Foundation (Grant no. 2302/22).

References

[ABCY22] Gal Arnon, Amey Bhangale, Alessandro Chiesa, and Eylon Yogev. “A Toolbox
for Barriers on Interactive Oracle Proofs”. In: Proceedings of the 20th Theory of
Cryptography Conference. TCC ’22. 2022, pp. 447–466.

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed–Solomon
Proximity Testing with Fewer Queries. Cryptology ePrint Archive, Paper 2024/390.
2024.

[ACY22a] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “A PCP Theorem for Interactive
Proofs”. In: Proceedings of the 41st Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’22. 2022, pp. 64–94.

[ACY22b] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “Hardness of Approximation for
Stochastic Problems via Interactive Oracle Proofs”. In: Proceedings of the 37th An-
nual IEEE Conference on Computational Complexity. CCC ’22. 2022, 24:1–24:16.

[ACY23] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “IOPs with Inverse Polynomial
Soundness Error”. In: 64th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023. IEEE, 2023,
pp. 752–761.

[AGRR23] Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron Rothblum. “Distribution-Free
Proofs of Proximity”. In: Electron. Colloquium Comput. Complex. TR23-118 (2023).

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–
Solomon Interactive Oracle Proofs of Proximity”. In: Proceedings of the 45th Inter-
national Colloquium on Automata, Languages and Programming. ICALP ’18. 2018,
14:1–14:17.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments
with Sublinear Verification from Tensor Codes”. In: Proceedings of the 18th Theory
of Cryptography Conference. TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Haji-
abadi, and Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic
Circuit Satisfiability”. In: Proceedings of the 23rd International Conference on the
Theory and Applications of Cryptology and Information Security. ASIACRYPT ’17.
2017, pp. 336–365.

60

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. “Interactive Oracle Proofs with Constant Rate and Query Complexity”.
In: Proceedings of the 44th International Colloquium on Automata, Languages and
Programming. ICALP ’17. 2017, 40:1–40:15.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-
Size Zero Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th The-
ory of Cryptography Conference. TCC ’16-A. 2016, pp. 33–64.

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. “Zero-Knowledge IOPs with
Linear-Time Prover and Polylogarithmic-Time Verifier”. In: Proceedings of the 41st
Annual International Conference on Theory and Application of Cryptographic Tech-
niques. EUROCRYPT ’22. 2022, pp. 275–304.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”.
In: Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016,
pp. 31–60.

[BGHSV06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. “Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding”. In:
SIAM Journal on Computing 36.4 (2006), pp. 889–974.

[BKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. “Sampling algorithms: lower bounds
and applications”. In: Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece. Ed. by Jeffrey Scott Vitter,
Paul G. Spirakis, and Mihalis Yannakakis. ACM, 2001, pp. 266–275.

[BN22] Sarah Bordage and Jade Nardi. “Interactive Oracle Proofs of Proximity to Alge-
braic Geometry Codes”. In: Proceedings of the 37th Annual IEEE Conference on
Computational Complexity. CCC ’22. 2022, 30:1–30:45.

[BV19] Mitali Bafna and Nikhil Vyas. “Imperfect Gaps in Gap-ETH and PCPs”. In: 34th
Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,
NJ, USA. Ed. by Amir Shpilka. Vol. 137. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019, 32:1–32:19.

[BV22] Nir Bitansky and Vinod Vaikuntanathan. “A Note on Perfect Correctness by De-
randomization”. In: J. Cryptol. 35.3 (2022), p. 18.

[Ben+17] Eli Ben-Sasson et al. “Computational integrity with a public random string from
quasi-linear PCPs”. In: Proceedings of the 36th Annual International Conference
on Theory and Application of Cryptographic Techniques. EUROCRYPT ’17. 2017,
pp. 551–579.

[CY20] Alessandro Chiesa and Eylon Yogev. “Barriers for Succinct Arguments in the Ran-
dom Oracle Model”. In: Proceedings of the 18th Theory of Cryptography Conference.
TCC ’20. 2020, pp. 47–76.

[CY21a] Alessandro Chiesa and Eylon Yogev. “Subquadratic SNARGs in the Random Oracle
Model”. In: Proceedings of the 41st Annual International Cryptology Conference.
CRYPTO ’21. 2021, pp. 711–741.

61

[CY21b] Alessandro Chiesa and Eylon Yogev. “Tight Security Bounds for Micali’s SNARGs”.
In: Proceedings of the 19th Theory of Cryptography Conference. TCC ’21. 2021,
pp. 401–434.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. “Immunizing Encryption Schemes
from Decryption Errors”. In: Advances in Cryptology - EUROCRYPT 2004, Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings. Ed. by Christian Cachin and
Jan Camenisch. Vol. 3027. Lecture Notes in Computer Science. Springer, 2004,
pp. 342–360.

[DR04] Irit Dinur and Omer Reingold. “Assignment Testers: Towards a Combinatorial Proof
of the PCP Theorem”. In: Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science. FOCS ’04. 2004, pp. 155–164.

[EKR04] Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. “Fast approximate probabilis-
tically checkable proofs”. In: Information and Computation 189.2 (2004), pp. 135–
159.

[FGMSZ89] Martin Fürer, Oded Goldreich, Yishay Mansour, Michael Sipser, and Stathis Zachos.
“On Completeness and Soundness in Interactive Proof Systems”. In: Advances in
Computing Research 5 (1989), pp. 429–442.

[GGR18] Oded Goldreich, Tom Gur, and Ron D. Rothblum. “Proofs of proximity for context-
free languages and read-once branching programs”. In: Inf. Comput. 261 (2018),
pp. 175–201.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. “Property Testing and its Con-
nection to Learning and Approximation”. In: J. ACM 45.4 (1998), pp. 653–750.

[GR18] Tom Gur and Ron D. Rothblum. “Non-interactive proofs of proximity”. In: Comput.
Complex. 27.1 (2018), pp. 99–207.

[Gol11] Oded Goldreich. “A Sample of Samplers: A Computational Perspective on Sam-
pling”. In: Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation - In Collaboration with Lidor Avigad, Mi-
hir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid
Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi
Wigderson, David Zuckerman. Ed. by Oded Goldreich. Vol. 6650. Lecture Notes in
Computer Science. Springer, 2011, pp. 302–332.

[HNY17] Pavel Hubácek, Moni Naor, and Eylon Yogev. “The Journey from NP to TFNP
Hardness”. In: 8th Innovations in Theoretical Computer Science Conference, ITCS
2017, January 9-11, 2017, Berkeley, CA, USA. Ed. by Christos H. Papadimitriou.
Vol. 67. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 60:1–
60:21.

[KR15] Yael Tauman Kalai and Ron D. Rothblum. “Arguments of Proximity - [Extended
Abstract]”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part
II. Ed. by Rosario Gennaro and Matthew Robshaw. Vol. 9216. Lecture Notes in
Computer Science. Springer, 2015, pp. 422–442.

62

[KSY20] Liran Katzir, Clara Shikhelman, and Eylon Yogev. “Interactive Proofs for Social
Graphs”. In: Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21,
2020, Proceedings, Part III. Ed. by Daniele Micciancio and Thomas Ristenpart.
Vol. 12172. Lecture Notes in Computer Science. Springer, 2020, pp. 574–601.

[Kil92] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing. STOC ’92.
1992, pp. 723–732.

[Lau83] Clemens Lautemann. “BPP and the Polynomial Hierarchy”. In: Inf. Process. Lett.
17.4 (1983), pp. 215–217.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing
30.4 (2000). Preliminary version appeared in FOCS ’94., pp. 1253–1298.

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In:
Annals of Mathematics and Artificial Intelligence 56 (3 2009), pp. 313–338.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs Randomness”. In: Journal of Com-
puter and System Sciences 49.2 (1994), pp. 149–167.

[Nao89] Moni Naor. “Bit Commitment Using Pseudo-Randomness”. In: Advances in Cryptol-
ogy - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 20-24, 1989, Proceedings. Ed. by Gilles Brassard.
Vol. 435. Lecture Notes in Computer Science. Springer, 1989, pp. 128–136.

[RR20a] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”.
In: Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer
Science. FOCS ’20. 2020, pp. 846–857.

[RR20b] Guy N. Rothblum and Ron D. Rothblum. “Batch Verification and Proofs of Proxim-
ity with Polylog Overhead”. In: Theory of Cryptography - 18th International Confer-
ence, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part II.
Ed. by Rafael Pass and Krzysztof Pietrzak. Vol. 12551. Lecture Notes in Computer
Science. Springer, 2020, pp. 108–138.

[RR22] Noga Ron-Zewi and Ron D. Rothblum. “Proving as Fast as Computing: Succinct
Arguments with Constant Prover Overhead”. In: Proceedings of the 54th ACM Sym-
posium on the Theory of Computing. STOC ’22. 2022, pp. 1353–1363.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive
Proofs for Delegating Computation”. In: Proceedings of the 48th ACM Symposium
on the Theory of Computing. STOC ’16. 2016, pp. 49–62.

[RS96] Ronitt Rubinfeld and Madhu Sudan. “Robust Characterizations of Polynomials with
Applications to Program Testing”. In: SIAM Journal on Computing 25.2 (1996),
pp. 252–271.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. “Interactive proofs of prox-
imity: delegating computation in sublinear time”. In: Proceedings of the 45th ACM
Symposium on the Theory of Computing. STOC ’13. 2013, pp. 793–802.

[Rot24] Ron Rothblum. Private communication. 2024.

63

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. “Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Com-
putation”. In: Proceedings of the 39th Annual International Cryptology Conference.
CRYPTO ’19. 2019, pp. 733–764.

64

A Proof of Theorem 5.8

Proof. Let (P,V) be the PCPP obtained by Theorem 5.3 with efficiency parameters which
we denote by (lP, qx, qπ, r, vt) and soundness error of the form (α − δ) · ϵ(α, η). Applying
Theorem 5.6 to (P,V) with parameters a := log3 n, we get a new PCPP (P′,V′) with
efficiency parameters (l′P, q

′
x
, q′π, r

′, vt′) and soundness error ε′, which we compute below.

• Soundness error:

s(δ, α, η) = ϵ
(
α− η

2
,
η

2

)
· (α− δ)

=
α− δ

(α− η
2)−

η
2

=
α− δ

α− η
.

• Proof length:

l′P(n, η) = 2 · log2 n · 1
η2

+
n

log3 n
· l
(
2 · log n · 1

η2
, log3 n,

η

2

)
.

Note that,

l

(
2 · log n · 1

η2
, log3 n,

η

2

)
= 2 · log

(
2 · log n · 1

η2

)
· log

(
log3 n · (2 · log n · 1

η2
)

)
·
(
2

η

)2

= O

(
log

(
log n · 1

η

)
· log

(
log n · 1

η

)
· 1
η2

)
= O

((
(loglog n)2 − log2 η

)
· 1
η2

)
.

Therefore,

l′(n, η) = 2 · log2 n · 1
η2

+
n

log3 n
·O
((

(loglog n)2 − log2 η
)
· 1
η2

)
= O

(
1

η2
· log2

(
1

η

)
· n

log2 n

)
.

65

• Queries to input:

q′
x
(n, η) = qx

(
2 · log n · 1

η2
, log3 n,

η

2

)
= 2 · log

(
log3 n ·

(
4 · log n · 1

η2

))
·
(
2

η

)2

= O

(
log

(
log n · 1

η

)
· 1
η2

)
= O

(
(loglog n− log η) · 1

η2

)
.

Note that,

qx

(
2 · log n · 1

η2
, log3 n,

η

2

)
= O

(
(loglog n− log η) · 1

η2

)
. (7)

• Queries to proof:

q′π(n, η) = logn · qx
(
2 · log n · 1

η2
, log3 n,

η

2

)
+ qπ

(
2 · log n · 1

η2
, log3 n,

η

2

)
Note that,

qπ

(
2 · log n · 1

η2
, log3 n,

η

2

)
= log

(
2 · log n · 1

η2

)
· 2 · log

(
log3 n ·

(
2 · log n · 1

η2

))
·
(
2

η

)2

= O

(
log

(
log n · 1

η

)
· log

(
log n · 1

η

)
· 1
η2

)
= O

((
(loglog n)2 − log2 η

)
· 1
η2

)
.

Therefore, by combining the above equations with Equation 7,

q′π(n, η) = logn ·O
(
(loglog n− log η) · 1

η2

)
+O

((
(loglog n)2 − log2 η

)
· 1
η2

)
≤ O

(
log n ·

(
loglog n− log2 η

)
· 1
η2

)
.

• Randomness:

r′(n, η) = log

(
n

log3 n

)
+ r

(
2 · log n · 1

η2
, log3 n,

η

2

)
= log n− log

(
log3 n

)
+ log

(
log3 n ·

(
2 · log n · 1

η2

))
= log n+ loglog n− 2 log η + 1 .

66

• Verifier running time:

vt′(n, η) = vt

(
2 · log n · 1

η2
, log3 n,

η

2

)
+O

(
log n · qx

(
2 · log n · 1

η2
, log3 n,

η

2

))
.

Note that,

vt

(
2 · log n · 1

η2
, log3 n,

η

2

)
= O

(
log(2 · log n · 1

η2
) · log(log3 n · (2 · log n · 1

η2
)) ·
(
2

η

)2
)

= O

(
log(log n · 1

η
) · log(log n · 1

η
) · 1

η2

)
= O

((
(loglog n)2 − log2 η

)
· 1
η2

)
.

Therefore, by combining the above equations with Equation 7,

vt′(n, η) = O

(
log n · (loglog n− log η) · 1

η2

)
+O

((
(loglog n)2 − log2 η

)
· 1
η2

)
≤ O

(
log n ·

(
loglog n− log2 η

)
· 1
η2

)
.

• Prover expected running time:

pt′(n, α, η) = O

((
1

η2
+

α

α− η
2

)
· n · log n+

n

log3 n
· pt
(
2 · log n · 1

η2
, log3 n, α− η

2
,
η

2

))
.

Note that,

pt

(
2 · log n · 1

η2
, log3 n, α− η

2
,
η

2

)
= O

(
α− η

2

α− η
· 2 · log n · 1

η2
· log3 n · log

(
2 · log n · 1

η2
· log3 n

))
= O

(
α− η

2

α− η
· log4 n · 1

η2
· log

(
2 · log4 n · 1

η2

))
= O

(
α− η

2

α− η
· log4 n · 1

η2
· (loglog n− log η)

)
.

Therefore, by combining the above equations,

pt′(n, α, η) = O

((
1

η2
+

α

α− η
2

)
· n · log n+

α− η
2

α− η
· n

log3 n
· log4 n · 1

η2
· (loglog n− log η)

)
≤ O

(
1

η2
· α

α− η
· n · log n · (loglog n− log η)

)
.

where the inequality is since α
α−η ≥ max

{
α− η

2
α−η ,

α
α− η

2

}
.

67

B Hamming to exact Hamming

Our results are defined for the Hamming weight problem where vectors in the language are
those with Hamming weight at least α. Some of the results in the literature refer to the
exact Hamming problem, where vectors in the language have Hamming weight exactly α.
We show that our results solve both problems with (roughly) the same parameters. This is
done by a general reduction from the exact Hamming weight problem to our notion.

We begin with a formal definition of the exact Hamming weight problem.

Definition B.1 (Exact α-Hamming-weight language). For α ∈ [0, 1], the exact α-Hamming-
weight language, Exact-Hamα, is the set of all bit vectors with Hamming weight exactly α:

Exact-Hamα := {x ∈ {0, 1}∗ | weight(x) = α} .

The following lemma shows that IOPPs for Hamα and Ham1−α can be combined to
generate an IOPP for Exact-Hamα.

Lemma B.2. Suppose there are a perfectly complete IOPP for Hamα and a public-coin
perfectly complete IOPP for Ham1−α. Then is a public-coin perfectly complete IOPP for
Exact-Hamα with the following parameters:

IOPP for Hamα

Soundness error s
Rounds k
Proof length l
Queries to vector qx
Queries to proof qπ
Randomness r
Verifier running time vt
Prover expected running time pt

+

IOPP for Ham1−α

Soundness error s′

Rounds k′

Proof length l′

Queries to vector q′
x

Queries to proof q′π
Randomness r′

Verifier running time vt′

Prover expected running time pt′

−→

IOPP for Exact-Hamα

Soundness error 1
2 + max{s(δ),s′(δ)}

2
Rounds max{k, k′}
Proof length l+ l′

Queries to vector max{qx, q′x}
Queries to proof max{qπ, q′π}
Randomness r + r′ + 1
Verifier running time vt+ vt′ +O(1)
Prover expected running time pt+ pt′ +O(1)

Moreover, if the IOPPs for Hamα and Ham1−α are PCPPs, then so is the IOPP for
Exact-Hamα.

Proof sketch. We assume without loss of generality that the IOPP verifier for Hamα and
the IOPP verifier for Ham1−α makes all queries after the last prover message (this can be
assumed since the protocol is public coin).

68

The new IOPP protocol runs the IOPP for Hamα on vector x and the IOPP for Ham1−α
on vector x̄ (i.e., x with all its bits flipped) up to the last prover message, where each
execution is done independently and in parallel. For the last step, the new verifier samples
bit b← {0, 1} uniformly at random. If b = 1, then the new verifier continues the execution
of the verifier for Hamα (by querying the proof and input vector at the appropriate locations)
and answer accordingly. If b = 0, then the new verifier continues the execution of the verifier
for Ham1−α and answer accordingly. The complexity parameters follow immediately from
the construction. We turn to completeness and soundness.

For completeness, if x ∈ Exact-Hamα then by definition weight(x) = α. It follows that
weight(x) = α and weight(x̄) = 1−α. Therefore the honest prover can convince the verifier
in both IOPPs with probability 1.

For proximity soundness, suppose that δ := ∆(x,Exact-Hamα) > 0. We have two cases.

• weight(x) = α − δ: In this case, the prover will convince the verifier if (1) the new
verifier sampled b = 0, or (2) the new verifier sampled b = 1 and then the Hamα verifier
accepted the proof. Since b is sampled uniformly at random and independently of the
Hamα verifier, we get that the new verifier accepts the proof with probability ≤ 1

2+
1
2 ·s(δ).

• weight(x) = α+δ: In this case, weight(x̄) = 1−α−δ. Therefore, the prover will convince
the verifier if (1) the new verifier sampled b = 1, or (2) the new verifier sampled b = 0
and then the Ham1−α verifier accepted the proof. Since b is sampled uniformly at random
and independently of the Hamα verifier, we get that the new verifier accepts the proof
with probability ≤ 1

2 + 1
2 · s

′(δ).

Overall, the prover will convince the verifier with probability at most

max

{
1

2
+

1

2
· s(δ), 1

2
+

1

2
· s′(δ)

}
=

1

2
+

max{s(δ), s′(δ)}
2

.

69

	Abstract
	Contents
	1 Introduction
	1.1 Main results
	1.2 Application: perfect completeness for PCPs and IOPs

	2 Techniques
	2.1 PCPP for Hamming weight with sublinear proof length
	2.2 SIQ-PCPP for Hamming weight
	2.3 A SIQ-IOPP for Hamming weight with sublinear proof length
	2.4 A lower bound for IPPs and semi-adaptive IOPPs
	2.5 Application: perfect completeness for PCPs and IOPs

	3 Preliminaries
	3.1 Hamming weight problem and Hamming distance
	3.2 Probabilistic proof systems
	3.3 Probabilistic inequalities

	4 Finding good shifts
	5 Non-interactive proofs for Hamming weight with sublinear communication
	5.1 MA proof of proximity
	5.2 PCP for list-Hamming to PCPP for Hamming
	5.3 PCP of proximity

	6 SIQ-PCPP for Hamming weight
	6.1 Lower bound
	6.2 Upper bound

	7 SIQ-IOPP for Hamming weight
	8 Lower bound for IOPPs
	8.1 A lower-bound for perfectly correct protocols for HitOne
	8.2 Perfectly complete IOPP for Hamming to perfectly correct protocol for HitOne

	9 Application: perfect completeness for PCPs and IOPs
	9.1 Perfect completeness for PCPPs
	9.2 Perfect completeness for IOPPs

	Acknowledgments
	References
	A Proof of Theorem 5.8
	B Hamming to exact Hamming

