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Abstract

The seminal work by Impagliazzo and Rudich (STOC’89) demonstrated the impossibility of
constructing classical public key encryption (PKE) from one-way functions (OWF) in a black-
box manner. Quantum information has the potential to bypass classical limitations, enabling
the realization of seemingly impossible tasks such as quantum money, copy protection for
software, and commitment without one-way functions. However, the question remains: can
quantum PKE (QPKE) be constructed from quantumly secure OWF?

A recent line of work has shown that it is indeed possible to build QPKE from OWF, but
with one caveat. These constructions necessitate public keys being quantum and unclonable,
diminishing the practicality of such “public” encryption schemes — public keys cannot be au-
thenticated and reused. In this work, we re-examine the possibility of perfect complete QPKE
in the quantum random oracle model (QROM), where OWF exists.

Our first main result: QPKE with classical public keys, secret keys and ciphertext, does
not exist in the QROM, if the key generation only makes classical queries.

Therefore, a necessary condition for constructing such QPKE from OWF is to have the key
generation classically “un-simulatable”. Previous results (Austrin et al. CRYPTO’22) on the
impossibility of QPKE from OWF rely on a seemingly strong conjecture. Our work makes a sig-
nificant step towards a complete and unconditional quantization of Impagliazzo and Rudich’s
results.

Our second main result extends to QPKE with quantum public keys.

The second main result: QPKE with quantum public keys, classical secret keys and ci-
phertext, does not exist in the QROM, if the key generation only makes classical queries
and the quantum public key is either pure or “efficiently clonable”.

The result is tight due to these existing QPKEs with quantum public keys, classical secret
keys, quantum/classical ciphertext and classical-query key generation require the public key
to be mixed instead of pure; or require quantum-query key generation, if the public key is pure.
Our result further gives evidence on why existing QPKEs lose reusability.

We also explore other sufficient/necessary conditions to build QPKE from OWF. Along the
way, we use a new argument based on conditional mutual information and Markov chain to
reprove the classical result; leveraging the analog of quantum conditional mutual information
and quantum Markov chain by Fawzi and Renner (Communications in Mathematical Physics),
we extend it to the quantum case and prove all our results. We believe the techniques used in
the work will find many other usefulness in separations in quantum cryptography/complexity.

*State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences. Email:
lilongcheng22s@ict.ac.cn

†Shenzhen International Center For Industrial And Applied Mathematics, Shenzhen Research Institute of Big Data.
Email: liqian.ict@gmail.com

‡Tsinghua University. Email: lxj22@mails.tsinghua.edu.cn
§University of California San Diego. Email: qipengliu0@gmail.com

1



1 Introduction

Quantum information and computation has the remarkable capability to transform classical im-
possibility into reality, ranging from breaking classically secure cryptosystems (Shor’a algorithm [Sho99]),
realizing classically impossible primitives (quantum money [Wie83], quantum copy-protection [Aar09,
ALL+21]) to weakening assumptions (quantum key distribution [BB14], oblivious transfer/multi-
party computation [BCKM21, GLSV21], commitment [AQY22, MY22b])1.

In the seminal work by Impagliazzo and Rudich [IR89], they proved that one-way functions
(OWFs) were insufficient to imply the existence of public-key encryption (PKE) in a black-box
manner. Coined by Impagliazzo [Imp95], the word “Minicrypt” was referred to a world where
only one-way functions exist; this word now broadly denotes all cryptographic primitives that are
constructible from one-way functions. Thus, their result is now often interpreted as “classical PKE
is not in Minicrypt”. Given the increasing instances of quantum making classical impossibility
feasible, we explore the following question in this work:

Does quantum PKE (with classical plaintext) exist in Minicrypt?

Upon posing the question, ambiguity arises. A general quantum public-key encryption (QPKE)
scheme allows everything to be quantum: its interaction with an OWF, both its public key and
secret key, as well as ciphertext. Indeed, many efforts have already been made towards under-
standing different cases.

Classical Keys, Classical Ciphertext. In the work by Austrin, Chung, Chung, Fu, Lin and Mah-
moody [ACC+22], they initialized the study on the impossibility of quantum key agreement (QKA)
in the quantum random oracle model. QKA is a protocol that Alice and Bob can exchange classical
messages in many rounds, quantumly query a random oracle, and eventually agree on a classi-
cal key. They show that, under a seemingly strong2 assumption called “polynomial compatibility
conjecture”, such QKA with perfect completeness does not exist. Since QPKE with both keys and
ciphertext being classical implies a two-round QKA, their conditional impossibility extends to this
type of QPKE as well.

The result provides evidence on the negative side: such QPKE does not exist under the poly-
nomial compatibility conjecture. However, not only proving or refuting the conjecture is quite
challenging, but also the conjecture (or some form of the conjecture) is necessary. To prove QKA
is impossible, one needs to design an eavesdropper that observes the whole transcript, interacts
with the random oracle, and guesses a classical key. In a general QKA, both Alice and Bob can
make quantum queries to the random oracle; the eavesdropper in the attack by Austrin et al. only
makes classical queries. It inherently requires a simulation of a quantum-query algorithm using
only classical queries (at least for the QKA functionality). Although not directly comparable, such
efficient simulation for decision problems [AA09] (Aaronson-Ambainis conjecture) is conjectured
to exist but the question still remains open until now. Moreover, [ACC+22] showed that if the
Aaronson-Ambainis conjecture is false, a classical-query eavesdropper is insufficient to break im-
perfect complete QKA protocols.

In light of these considerations, our focus in this work centers on the following question:

1Here, we only cite works that initialized each area.
2It seems strong because it implies that the eavesdropper can attack quantum Alice and Bob with only a polynomial

number of classical queries.
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Q1. Can we separate QPKE with classical keys, classical ciphertext from Minicrypt,
without any conjecture?

Quantum Public Key, Classical Secret Key and Quantum/Classical Ciphertext. The quantum
landscape introduces a paradigm shift. It was first realized by Morimae and Yamakawa [MY22a]
that some forms of QPKE with quantum public keys and quantum ciphertext might be constructed
from OWFs (or even presumably weaker primitives). Subsequent QPKE schemes were later pro-
posed by Coladangelo [Col23], Kitagawa et al. [KMNY23], Malavolta and Walter [MW23] and
Barooti et al. [BGH+23].

On the surface, it seems to give a good answer: QPKE with quantum public keys exists in
Minicrypt, showcasing a notable distinction between the quantum and classical world. However,
is this demarcation as unequivocal as it seems? Indeed, all the aforementioned constructions share
one limitation — they lose one of the most important properties inherent in all classical PKE —
reusability. A classical PKE scheme allows a user who possesses a public key to encrypt any poly-
nomial number of messages, by reusing the classical public key. In contrast, public keys in [MY22a,
Col23, KMNY23, MW23, BGH+23] are essentially unclonable3 and not reusable. Although some
may argue for the practicality of QPKE with an additional public interface for generating quan-
tum public keys, it introduces additional complexities such as the authentication of quantum keys,
leading to increased interactions and other potential challenges.

Thus, our second focus is the question:

Q2. Must reusability be sacrificed in constructing QPKE with quantum public keys from OWFs?

1.1 Our Main Results

We make progress towards these two questions. A table discussing and comparing all existing
results and our results is provided on the next page (Table 1). Our first main result establishes an
impossibility result on QPKE with classical keys and classical ciphertext in the QROM.

Theorem 1.1. QPKE with classical keys and classical ciphertext does not exist in the QROM, if

1. It has perfect completeness.
2. The key generation algorithm only makes classical queries to the random oracle.

Unlike the approaches used in [ACC+22], our result does not require any conjecture, as the
eavesdropper in our attack makes quantum queries. Perfect completeness is a natural property
shared by many PKE schemes4

Consequently, if QPKE could be constructed in the QROM, one must have the key genera-
tion procedure being classical-query “un-simulatable”; meaning the keys can not be computed
by an efficient classical-query algorithm. If we believe the Aaronson-Ambainis conjecture [AA09]
(all quantum-query-solvable decision problems can be simulated by classical-query), the theo-
rem suggests that the key generation must be a sampling procedure. Thus, to build QPKE in the
QROM, we need to find a search/sampling problem that is only tractable by quantum queries;
one such example is the Yamakawa-Zhandry problem [YZ22].

3Although unclonability does not necessarily imply no-reusability, it is an evidence of no-reusability.
4Very recently, Mazor [Maz23] proposed the first perfectly complete “Merkle Puzzle”, which was not known for

many years.
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[ACC+22] ruled out perfect complete QPKE with classical keys and classical ciphertext in the
QROM, if (i) the encryption only makes classical queries, or (ii) both the key generation and de-
cryption makes classical queries, without using the polynomial compatibility conjecture. Our
result immediately improves their result (ii). Additionally, both of their impossibility results ap-
ply to the case where the oracle access in encryption and decryption procedure is asymmetric.
Our result further completes the picture by making both encryption and decryption symmetric
(quantum queries).

Another difference in our work is that our eavesdropper makes quantum queries. The capa-
bility of leveraging quantum eavesdroppers and conditioning on quantum events in this work,
immediately gives us two strengthened versions (Theorem 1.2 and Theorem 1.3) of Theorem 1.1,
which works for quantum public keys and quantum ciphertext. These two extensions provide
many interesting discussions on the feasibility and impossibility of building QPKE in Minicrypt.
[BGVV23] also discussed the feasibility of QPKE with quantum ciphertext, with a weaker result
and based on the polynomial compatibility conjecture. Thus, we believe our framework is versa-
tile and has the potential to completely answer these questions. We elaborate on them now.

Our second main result extends the previous theorem to QPKE with quantum public keys
and ciphertexts. This scheme is tight to all existing QPKE with quantum public keys and perfect
completeness, see Table 2.

Theorem 1.2 (Subsuming Theorem 1.1). QPKE with quantum public key, classical secret key, and clas-
sical or quantum ciphertext does not exist in the QROM, if

1. It has perfect completeness.
2. The key generation algorithm only makes classical queries to the random oracle.
3. The quantum public key is either pure or “efficiently clonable”.

At first glance, the theorem may appear unexciting: how can a classical-query key generation
produce meaningful quantum public keys? Interestingly, the QPKE constructions in [KMNY23,
MW23] have only classical-query key generation procedures. Namely, their public keys are of the
form 1√

2
(|𝑠0⟩+ |𝑠1⟩) of two strings 𝑠0, 𝑠1, which can be computed using only classical queries.

Let us explain the third condition in our result. In QPKE, one needs to guarantee that hav-
ing multiple copies of a quantum public key, the IND-CPA security still holds. If the public key
generation procedure outputs a pure state, in other words the security holds against copies of the
same pure state, we call the public key pure. Otherwise, each copy of a quantum public key is a
mixed state (a distribution of pure states) and even holding multiple copies from the same distri-
bution does not mean having the same pure states5. In the latter case, we require that there exists a
query-efficient cloning procedure that can perfectly duplicate the pure state of the quantum public
key.

As the schemes in [KMNY23, MW23] have perfect completeness and classical-query key gener-
ation, our result essentially says that their public keys must be mixed and can not be cloned. While
the absence of perfect cloning does not imply non-reusability, our result provides crucial insights
into the feasibility of building QPKE with quantum public keys and reusability from OWFs. Many
intriguing open questions will be discussed further at the end of this section.

Our second theorem also is tight to the QPKE scheme by [Col23, BGH+23]. Their scheme has
perfect completeness, pure state quantum public keys. Our theorem suggests that their schemes

5For example, even if having two copies of the same mixed state 𝕀
2

, they can be two different states, like |0⟩ |1⟩.
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must make quantum queries; which is the case in their construction, as they need to query a
pseudorandom function (implied by OWFs in a black-box manner) on an equal superposition.

Our next result is on the type of QPKE with classical keys and quantum ciphertext, whose
decryption makes no queries to an oracle. The impossibility extends to any oracle model (even
quantum oracles), not just the random oracle model.

Theorem 1.3. (Imperfect/Perfect) QPKE with classical keys and quantum ciphertext does not exist in any
oracle model, if

1. The decryption algorithm makes no queries to the oracle.

Here, an oracle model means an oracle is sampled from a distribution, and the KA is executed
under this oracle; both the key generation algorithm, the encryption algorithm and the attacker
can have quantum access to the oracle. We remark that in our impossibility result, such QPKE does
not need to be perfectly complete. We also note that, our theorem holds in the classical setting;
PKE does not exist in any oracle model if the decryption algorithm makes no queries. This does
not contradict constructions in the generic group model, as the decryption algorithm is required
to make oracle queries.

A recent work by Bouaziz–Ermann, Grilo, Vergnaud and Vu [BGVV23] also discusses a sim-
ilar separation. They proved that, under the polynomial compatibility conjecture, perfect com-
plete QPKE with classical keys and quantum ciphertext does not exist in the QROM, if decryption
makes no queries. Our Theorem 1.3 improves their results in three aspects: we remove the con-
jecture and the requirement on perfect completeness, and the impossibility works in any oracle
model.

Other results. As we progress towards achieving our main results, our techniques also enable
us to establish additional impossibility results on QPKE and QKA as well. These results include

• Separation between pseudorandom quantum states and QKA (Remark 5.3);
• Impossibility of Merkle-like QKA (more generally, non-interactive QKA) in any oracle model

(Theorem 5.2); we emphasize that this result also holds for quantum oracles, e.g., when a
black-box unitary is chosen from Haar measure.

• Impossibility of QPKE with a short classical secret key in any oracle model (Appendix C).

We refer interested readers to these sections for more details.

1.2 Open Questions and Discussions

Before the overview of our techniques in the next section, we discuss some open questions and
directions. Some discussions may become clearer upon reviewing both the overview and the
entirety of the paper.

Remove perfect completeness. Our Theorem 1.1 and Theorem 1.2 both rely on the underlying
QPKE is perfectly complete. Can we remove this condition and make the impossibility result work
for any QPKE?
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[ACC+22] [ACC+22] [ACC+22] Thm 1.1 [BGVV23] Thm 1.3
perfect complete
ciphertext C C C C Q Q
𝖦𝖾𝗇 Q Q C C Q Q
𝖤𝗇𝖼 Q C Q Q Q Q
𝖣𝖾𝖼 Q Q C Q ⋆ ⋆

conjecture
oracle RO RO RO RO RO any oracle

Table 1: Comparing impossibility results on classical public keys. ‘Q’ denotes quantum, ‘C’ denotes clas-
sical, ‘checkmark’ denotes yes, and ‘⋆’ denotes no oracle queries. “RO” stands for “(quantum) random
oracle”.

Thm 1.2 (Impossibility) [KMNY23, MW23] [Col23, BGH+23]
perfect complete
ciphertext pure or “efficiently clonable” mixed and unclonable pure
𝖦𝖾𝗇 C C Q

Table 2: Comparing our Thm 1.2 with existing constructions. [KMNY23, MW23] overcame the impossi-
bility by allowing the ciphertext to be mixed; [Col23, BGH+23] overcame the impossibility by allowing the
Gen procedure to make quantum queries.

Extending clonable keys to reusable keys. When quantum public keys are reusable, that means
there exists an encryption procedure 𝖤𝗇𝖼′ that takes two messages 𝑚,𝑚′ and only one quantum
public key 𝗉𝗄, and outputs two valid ciphertexts. Since 𝖤𝗇𝖼′ is not necessarily honest, it seems
difficult to convert such assumptions into the setting of a QKA protocol. An intermediate goal
is to have 𝖤𝗇𝖼 “deterministic”, which means it takes 𝗉𝗄 and 𝑚, outputs the original 𝗉𝗄 together
with a valid 𝖼𝗍 — this is a weaker but promising step towards a full understanding of reusability.
Another direction is to relax the “clonable” condition to some form of “approximate clonable” in
our impossibility result.

Make key generation quantum. Our Theorem 1.1 and Theorem 1.2 assume key generation pro-
cedure only makes classical queries. The current techniques require addressing some sorts of
“heavy queries” made by an encryption procedure. For classical-query key generation, the num-
ber of such possible inputs is only polynomial. But it will be less clear how to handle this, when
the key generation is fully quantum. Upon resolving this, one can get a full separation between
QPKE and OWFs.

The basic idea of our approach is to keep the conditional mutual information (between Alice
and Bob, conditioned on quantum Eve) small during the execution of QKA protocols or QPKE
schemes. The characterization of quantum states with small CMI provided by Fawzi and Renner
[FR15] (see Theorem 3.11) plays a major role. To achieve a full separation between QPKE and
OWF, the argument has to critically utilize the condition that 𝐻 is a uniform random function
rather than drawn from a general oracle distribution. This is because our separation works in
both the quantum and classical setting, but in the full classical KA case, KA exists in the generic
group model. Thus, we really need to use the structures of a random oracle. In this work, we show
it is possible when key generation only makes classical queries but not clear for quantum-query
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key generation.
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2 Technical Overview

In this section, we shed light on several key ideas used in the work, especially those on how to at-
tack with quantum queries and how to deal with quantum public keys. Our method for handling
quantum ciphertext is similar to that in [BGVV23] by leveraging the Gentle Measurement Lemma.

Translating QPKE to QKA. Although we focus on the separation between QPKE and OWFs (or
the quantum random oracle model), we will mostly study two-round QKA protocols. Say, if we
have a QPKE scheme in the QROM (𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼), we can easily convert it to a two-round QKA:

Definition 2.1 (Informal, Two-round QKA). We define a two-round QKA as follows.

• Alice runs 𝖦𝖾𝗇 to produce 𝗉𝗄, 𝗌𝗄 and sends 𝗉𝗄 as the first message 𝑚1 to Bob. We call Alice’s algo-
rithm at this stage 𝒜1.

• Bob upon receiving 𝑚1 := 𝗉𝗄, it samples a uniformly random key 𝑘. It computes 𝖼𝗍 ← 𝖤𝗇𝖼(𝗉𝗄, 𝑘)
and sends 𝑚2 := 𝖼𝗍 to Alice. We call Bob’s algorithm at this stage ℬ.

• Alice will then run 𝖣𝖾𝖼(𝗌𝗄, 𝖼𝗍) to retrieve 𝑘. We call Alice’s algorithm at this stage 𝒜2.

If the QPKE has security against randomly chosen messages, then the underlying QKA is se-
cure. Quantum public keys will make 𝑚1 quantum in the corresponding QKA, quantum cipher-
text translates to a quantum 𝑚2 and classical-query 𝖦𝖾𝗇 makes 𝒜1 classical-query. Thus, we focus
on breaking various types of two-round QKA with perfect completeness.

2.1 Recasting the Classical Idea for Merkle-like KA

The classical proofs [IR89, BM09] shares one common idea: as long as an eavesdropper Eve learns
all the queries that are both used in Alice and Bob’s computation, Eve can learn the key6. Here we
re-interpret the idea for a special case: two-round Merkle-like KA. In this type of KA, 𝑚1,𝑚2 are

6[BKSY11] also gave a proof for the case of perfect completeness. Their proof works even if not all intersection
queries are learned.
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generated based on oracle queries and sent simultaneously to the other party (so that 𝑚2 has no
dependence on 𝑚1). Furthermore, to recover the shared key, Alice and Bob only need to do local
computation on their internal states and the communication, without making any oracle queries. This
is a strong form of KA, which is not implied by PKE using the aforementioned reduction. We refer
to it as Merkle-like because the famous Merkle Puzzles are of this form.

Let us assume for a specific execution of Alice and Bob, the queries made by Alice is the list𝑅𝐴,
her private coins are 𝑠𝐴 and similarly 𝑅𝐵, 𝑠𝐵 , 𝑅𝐸 is the query made by Eve; we define 𝖵𝗂𝖾𝗐𝐴 =
(𝑠𝐴, 𝑅𝐴) as the personal view of Alice, similarly 𝖵𝗂𝖾𝗐𝐵 for Bob. A tuple (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵,𝑚1,𝑚2, 𝐻)
is a possible execution of the KA right after Alice and Bob exchange their messages but have not
started working on computing the key. The tuple specifies Alice’s random coins and queries,
similarly for Bob, communication 𝑚1,𝑚2 and the oracle 𝐻 under which the protocol is executed.
We say (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵) is consistent with a transcript (𝑚1,𝑚2) if there exists an oracle 𝐻 , such
that (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵,𝑚1,𝑚2, 𝐻) has strictly positive probability of appearing in some real execu-
tion. Similarly, 𝖵𝗂𝖾𝗐𝐴 is consistent with (𝑚1,𝑚2) if (𝖵𝗂𝖾𝗐𝐴,𝑚1,𝑚2, 𝐻) has non-zero probability
for some oracle 𝐻 .

For a transcript (𝑚1,𝑚2), it is always easy to find a pair of Alice’s fake 𝖵𝗂𝖾𝗐′𝐴 = (𝑠′𝐴, 𝑇
′
𝐴) that

is consistent with 𝑚1,𝑚2. Since we do not care about the actual computation cost, and only the
number of queries matters, we can keep sampling oracles until we see a transcript (𝑚1,𝑚2). Upon
receiving 𝖵𝗂𝖾𝗐′𝐴, we hope that (𝖵𝗂𝖾𝗐′𝐴,𝖵𝗂𝖾𝗐𝐵) has the same distribution as (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵); if that
is true, based on perfect completeness, any non-zero support in (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵) should provide us
with the agreed key.

Unfortunately, this does not hold true. The overlap in inputs between 𝑅𝐴 and 𝑅𝐵 leads to a
correlation in the distribution (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵), making it impossible to sample independently. This
correlation is the resource for Alice and Bob to compute an agreed key, akin to Merkle Puzzles.

The key insight from [IR89, BM09] is to eliminate this correlation, often referred to as “inter-
section queries”. In their attacks, Eve queries the oracle in a manner such that 𝑅𝐸 encompasses
all the shared knowledge between Alice and Bob. More precisely, for any execution 𝑅𝐴, 𝑅𝐵 con-
sistent with (𝑚1,𝑚2), it holds that 𝑅𝐴 ∩ 𝑅𝐵 ⊆ 𝑅𝐸 . Consequently, conditioned on 𝑅𝐸 and the
transcript, the distribution (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵) becomes close to a product distribution. Eve can then
sample 𝖵𝗂𝖾𝗐′𝐴 conditioned on 𝑚1,𝑚2, 𝑅𝐸 , and this fake view will yield the correct key.

Finally, [IR89, BM09] demonstrate that as long as Eve queries Alice and Bob’s “heavy queries”
(those with a relatively noticeable probability of being queried), with high probability 𝑅𝐸 will
contain all intersection queries.

2.2 A Quantization Attempt by Austrin et al.

[ACC+22] focuses on the fully general QKA, but here we explain their ideas for the Merkle-like
protocols. The first challenge arises when attempting to formally describe an execution for both
quantum Alice and Bob. As they can make quantum queries, neither the random coins 𝑠𝐴 nor the
query list 𝑅𝐴 can be explicitly delineated. A quantum algorithm can possess randomness that is
impossible to be purified as random coins, and can make quantum superposition queries. An ex-
ecution right after Alice and Bob exchange messages, is represented by (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵,𝑚1,𝑚2, 𝐻)
where 𝖵𝗂𝖾𝗐𝐴 := 𝜌𝐴,𝖵𝗂𝖾𝗐𝐵 := 𝜌𝐵 are the internal quantum states of Alice and Bob.

To quantize the strategy of [IR89, BM09], one needs to define “heavy quantum queries” and
“quantum intersection queries”, and establish some form of independence between Alice and
Bob conditioned on transcripts and Eve’s knowledge. Austrin et al., leveraged the breakthrough
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technique (“compressed oracle”) by Zhandry [Zha19], defined “heavy quantum queries”. On a
very high level (without introducing Zhandry’s technique), “heavy quantum queries” are classical
inputs that have high weights on the oracle, when the oracle is examined under the Fourier basis.
Their proposed attack queries all “heavy quantum queries” classically. Under their polynomial
compatibility conjecture, they can argue the success of their attacks.

This approach is less ideal in the following aspects. First, even for Merkle-like protocols,
the polynomial compatibility conjecture seems necessary. Second, the classical-query Eve has to
somehow “simulate” the ability of quantum Alice or quantum Bob. Although such simulation
is believed to be true for decision problems [AA09], this kind of simulation in the QKA setting
is both unclear to hold and potentially unnecessary. Finally, establishing independence between
two quantum states (quantum Alice and Bob) is challenging to define and can be intricate.

2.3 Step Back — Classical and Quantum Proofs Using Markov Chain

Stepping back, let’s reconsider if there are other approaches that are more quantum-friendly: po-
tentially can take advantage of quantum-query Eve. The key insight in [IR89, BM09] is, when
conditioned on some query list 𝑅𝐸 and (𝑚1,𝑚2), the distribution (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵) is a product dis-
tribution, meaning Alice and Bob are independent. Based on this, Eve can therefore sample 𝖵𝗂𝖾𝗐′𝐴
and they together with the real 𝖵𝗂𝖾𝗐𝐵 have the same distribution as (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵).

Our first contribution is to give an alternative view of the classical proofs for Merkle-like KA.
We realize that, in the classical proof, when intersection queries 𝑅𝐴 ∩ 𝑅𝐵 always is in 𝑅𝐸 , the
conditional mutual information (CMI) between 𝑅𝐴, 𝑅𝐵 conditioned on 𝐸,𝑚1,𝑚2 is 0.

𝐼(𝖵𝗂𝖾𝗐𝐴 : 𝖵𝗂𝖾𝗐𝐵|(𝑚1,𝑚2, 𝑅𝐸)) = 0.

There are two seemingly classically equivalent consequences when CMI is 0.

• Perspective 1. From Pinsker’s inequality, a CMI of 0 immediately implies that 𝖵𝗂𝖾𝗐𝐴 and
𝖵𝗂𝖾𝗐𝐵 are independent conditioned on (𝑚1,𝑚2, 𝑅𝐸). This further implies that we can sam-
ple 𝖵𝗂𝖾𝗐′𝐴 accordingly.

• Perspective 2. Another perspective is that, 𝖵𝗂𝖾𝗐𝐵 → (𝑚1,𝑚2, 𝑅𝐸)→ 𝖵𝗂𝖾𝗐𝐴 forms a Markov
chain.
Three random variables 𝑋𝑌 𝑍 form a Markov chain if 𝑝𝑥𝑦𝑧 = 𝑝𝑥𝑦𝑝𝑧|𝑦. In our case, it says
there exists a way to take (𝑚1,𝑚2, 𝑅𝐸) as inputs and sample 𝖵𝗂𝖾𝗐′𝐴 such that (𝖵𝗂𝖾𝗐′𝐴,𝖵𝗂𝖾𝗐𝐵)
and (𝖵𝗂𝖾𝗐𝐴,𝖵𝗂𝖾𝗐𝐵) are identically distributed.

The above discussion explains the attacks for Merkle-like protocols, through the lens of CMI.

From this, we propose one candidate quantum attack for Merkle-like QKA:

Quantum Eve: A Framework

• Eve makes some quantum queries and let 𝖵𝗂𝖾𝗐𝐸 := 𝜌𝐸 be its internal quantum state. It
“somehow” makes sure that the CMI between Alice and Bob, conditioned on Eve and
the transcript is small enough.

𝐼(𝖵𝗂𝖾𝗐𝐴 : 𝖵𝗂𝖾𝗐𝐵 | 𝑚1,𝑚2,𝖵𝗂𝖾𝗐𝐸) < 𝜖.
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• Use “some quantum analogy” of 1 or 2 above to produce a quantum state 𝖵𝗂𝖾𝗐′𝐴 := 𝜌𝐴′

from 𝜌𝐸 such that,

𝖵𝗂𝖾𝗐′𝐴𝖵𝗂𝖾𝗐𝐵 ≈𝗉𝗈𝗅𝗒(𝜖) 𝖵𝗂𝖾𝗐𝐴𝖵𝗂𝖾𝗐𝐵.

There are two questions remain to be answered:

Does there exist a query-efficient Eve’s strategy that always makes CMI small?
Does there exist a quantum analogy of step 1 or 2?

We answer both of the questions affirmatively.

Decreasing CMI. Assume Alice and Bob each makes at most 𝑑 queries and 𝐻 : [2𝑛] → {0, 1} be
any oracle of domain [2𝑛] and binary range. We show that,

Lemma 2.2 (Informal). For any standard two-round QKA right after Alice receives 𝑚2, Eve can run the
same Bob 𝑡 times for some 𝑡 ∈ {0, 1, . . . , 2𝑑𝑛/𝜖} and store all 𝑡 copies of Bob’s internal states, such that the
CMI between Alice and Bob conditioned on Eve’s register and 𝑚1,𝑚2 is at most 𝜖.

A couple of things we clarify here. First, why don’t we set 𝑡 := 2𝑑𝑛/𝜖 (the largest value)? This
is due to the nature of quantum conditional mutual information. Classically, when we condition
on more classical queries, the CMI will never increase. However, quantum entropy and mutual
information behave unlike their classical counterparts. Still, we are able to show the existence of
such small 𝑡. The existence of such 𝑡 will not make our Eve non-uniform, as 𝑡 is (inefficiently)
computable without making any oracle query.7

Second, this strategy works for any oracles. Third, the lemma does not distinguish between
whether 𝑚1 is classical or quantum. Even if Bob takes a quantum input, as long as we have access
to 𝑡 copies of the same quantum state, we can run Bob with the same pure state 𝑡 times and thus
the lemma still holds. This fact will be useful for the case of quantum public keys.

Finally, the lemma works for any two-round QKA8. As Alice and Bob are asymmetric for
general protocols, we do not know how to only simulate Alice’s queries and make the CMI small
in the general two-round QKA case. We will mention it after finishing the discussion on Merkle-
like QKA.

Sampling Fake Alice. When the CMI is small, we need to sample a fake Alice. If the CMI is
0, Hayden et al. [HJPW04] showed an approach that can be viewed as a quantum analogy of
Perspective 1. However, their approach only works for the case of CMI being exactly 0 and is not
robust.

We realize the second interpretation works much better. The work by Fawzi and Renner
showed that

Lemma 2.3 (Approximate Quantum Markov Chain, [FR15]). Let 𝑋,𝑌, 𝑍 be three quantum registers,
and 𝜌𝑋𝑌 𝑍 be the state. If 𝐼(𝑋 : 𝑍|𝑌 ) < 𝜖, then there exists a channel 𝒯 : 𝑌 → 𝑌 ′𝑍 ′ such that

|𝜌𝑋𝑍 − 𝜎𝑋𝑍′ |𝖳𝗋 ≤ |𝜌𝑋𝑌 𝑍 − 𝜎𝑋𝑌 ′𝑍′ |𝖳𝗋 ≤ 𝑂(
√
𝜖),

7One can also guess a uniform 𝑡 if we do not require finding the key with probability close to 1.
8It is a general lemma that works for any two-classical-message quantum interactive protocol. We focus on its

application in QKA in this paper.
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where 𝜎𝑋𝑌 ′𝑍′ is the state from applying 𝒯 on the 𝑌 register of 𝜌𝑋𝑌 . Furthermore, 𝒯 is explicitly (and
inefficiently) constructible if knowing the state 𝜌𝑋𝑌 𝑍 .

On a high level, Lemma 2.3 states that if the CMI 𝐼(𝑋 : 𝑍|𝑌 ) for a tripartite state 𝜌𝑋𝑌 𝑍 is
small enough, then we can apply a local channel on 𝑌 to generate a state close to the original
state in 𝑋𝑌 . This directly provides us a way to sample a fake Alice. In our case, 𝑋 is the view of
Bob, 𝑍 is the view of Alice and 𝑌 is the view of Eve and the transcript. Thus, the whole density
matrix of 𝜌𝑋𝑌 𝑍 is known by Eve9. By applying the lemma, Eve can sample 𝑍 ′ := 𝖵𝗂𝖾𝗐′𝐴 such that
𝖵𝗂𝖾𝗐′𝐴𝖵𝗂𝖾𝗐𝐵 ≈𝑂(

√
𝜖) 𝖵𝗂𝖾𝗐𝐴𝖵𝗂𝖾𝗐𝐵 ; although 𝒯 in this case could be inefficient, it makes no queries.

This completes the second step of our Eve.

Combining the approach of making the CMI arbitrarily small with the quantum Markov chain
for sampling a fake Alice, our Eve can attack any Merkle-like QKA in any oracle model. We
remark that for a general two-round QKA, Lemma 2.2 and Lemma 2.3 only cover the part up to
receiving the last message 𝑚2. In the next subsection, we will discuss how to handle additional
queries made after the last message.

2.4 Ruling out QPKE with Classical-Query Key Generation

The exact same idea from the previous section also applies to the standard two-round QKA as
defined in Definition 2.1, particularly when 𝒜2 (or the decryption algorithm) makes no queries to
the oracle. In this scenario, we let 𝖵𝗂𝖾𝗐𝐴 and 𝖵𝗂𝖾𝗐𝐵 represent the views of Alice and Bob right
after 𝑚1 is received by Alice, and she has not yet begun working on producing the key. When
we sample 𝖵𝗂𝖾𝗐′𝐴𝖵𝗂𝖾𝗐𝐵 ≈ 𝖵𝗂𝖾𝗐𝐴𝖵𝗂𝖾𝗐𝐵 , since 𝒜2 only applies a local unitary that is independent
of the oracle, Eve can perform the same on the fake view and still successfully obtain the key.
However, what if 𝒜2 makes queries?

It is not immediately clear whether our CMI-based method works when 𝒜1, 𝒜2, and ℬ all
make classical queries only, as in the case of classical KA instead of QKA. There are two attempts,
that one might immediately come out.

• Attempt 1: run 𝒜2 on the fake 𝖵𝗂𝖾𝗐′𝐴 using any oracle that is compatible with 𝖵𝗂𝖾𝗐′𝐴;
• Attempt 2: run 𝒜2 on the fake 𝖵𝗂𝖾𝗐′𝐴 using the real oracle.

Unfortunately, both approaches fail. Consider the following two classical examples for KA.

• Example 1: 𝒜1 does not query and does not send messages, ℬ sends a random 𝑚2 = 𝑥 and
both Alice and Bob agree on 𝐻(𝑥).
It is easy to see that, even if Eve does not query, 𝐼(𝖵𝗂𝖾𝗐𝐴 : 𝖵𝗂𝖾𝗐𝐵|𝑚2) = 0 as 𝖵𝗂𝖾𝗐𝐴 is empty.
Thus, any oracle 𝐻 ′ is consistent with a fake 𝖵𝗂𝖾𝗐′𝐴 but with overwhelming probability,
𝐻 ′(𝑥) ̸= 𝐻(𝑥).

• Example 2: 𝒜1 queries 𝐻(0) and stores it as 𝑦, but does not send messages to ℬ; ℬ sends
a random 𝑚2 = 𝑥 that is not equal to 0; 𝒜2 queries 𝐻(0) again and aborts if 𝑦 ̸= 𝐻(0),
otherwise the key will be 𝐻(𝑥).
In an honest execution, Alice and Bob will always agree on a key 𝐻(𝑥) for some 𝑥 ̸= 0 as 𝑦
is always equal to 𝐻(0).

9𝜌𝑋𝑌 𝑍 in this case, is not the state under a particular oracle, but the mixed state averaged over the distribution of all
oracles. Only in this case, Eve knows 𝜌𝑋𝑌 𝑍 .
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We claim that 𝐼(𝖵𝗂𝖾𝗐𝐴 : 𝖵𝗂𝖾𝗐𝐵|𝑚2) = 0 as 𝖵𝗂𝖾𝗐𝐴 and 𝖵𝗂𝖾𝗐𝐵 have no intersection queries. Let
𝖵𝗂𝖾𝗐′𝐴 be the fake view that consists of some 𝑦′. A real oracle with overwhelming probability
has 𝐻(𝑥) ̸= 𝑦′, which fails the second attempt.

Our solution is to combine both Attempt 1 and Attempt 2.

Solution for Simulating 𝒜2 in the Classical Case. Our solution provides an alternative proof
for the classical impossibility "PKE is not in Minicrypt" using our CMI-based framework and our
solution for simulating 𝒜2 below.

When 𝒜1, 𝒜2, and ℬ are all classical-query algorithms, we propose the following method to
execute a fake 𝖵𝗂𝖾𝗐′𝐴 = (𝑠′𝐴, 𝑅

′
𝐴). Here, 𝑠′𝐴 represents Alice’s random coins, and 𝑅′𝐴 represents the

query list (a list of input-output pairs).

• Run 𝒜2 on the fake 𝖵𝗂𝖾𝗐′𝐴 using the real oracle, except for every 𝑥 ∈ 𝑅′𝐴, respond with the
corresponding image 𝑦 ∈ 𝑅′𝐴.

In other words, we adjust the real oracle such that it is consistent with 𝑅′𝐴; let’s denote this modi-
fied oracle as 𝐻 ′.

Why it works? Assume we sample 𝖵𝗂𝖾𝗐′𝐴 such that 𝖵𝗂𝖾𝗐′𝐴𝖵𝗂𝖾𝗐𝐵 has the same distribution
as the real views for Alice and Bob. The fake view 𝖵𝗂𝖾𝗐′𝐴 together with the real 𝖵𝗂𝖾𝗐𝐵 must be
reachable under some oracle (not necessarily the real oracle). Therefore, 𝑅′𝐴 and 𝑅𝐵 must be
consistent. We also know that, since 𝖵𝗂𝖾𝗐𝐵 is the real view of Bob under the real oracle 𝐻 , 𝑅𝐵 and
𝐻 must also be consistent.

Thus, changing the oracle to be consistent with𝑅′𝐴 will only alter its behavior on those 𝑥 /∈ 𝑅𝐵 .
That means, under oracle 𝐻 ′, this KA will still have a strictly positive probability to end up with
𝖵𝗂𝖾𝗐′𝐴,𝖵𝗂𝖾𝗐𝐵,𝑚1,𝑚2. By perfect completeness, when running 𝒜2 on 𝖵𝗂𝖾𝗐′𝐴 with oracle 𝐻 ′, we
must obtain the key held by Bob.

Extending to QPKE with Classical-Query Key Generation. For QKA with𝒜1 making only clas-
sical queries (or QPKE with the key generation making classical queries), we can still run our Eve
algorithm such that 𝐼(𝖵𝗂𝖾𝗐𝐴 : 𝖵𝗂𝖾𝗐𝐵|(𝑚0,𝑚1, 𝐸)) < 𝜖. However, since ℬ is now quantum, 𝖵𝗂𝖾𝗐𝐵

is some quantum state 𝜌𝐵 and its query list 𝑅𝐵 is no longer defined.
We repeat our strategy again: sample 𝖵𝗂𝖾𝗐′𝐴 and run 𝒜2 on 𝖵𝗂𝖾𝗐′𝐴 with oracle 𝐻 ′ as defined

above (mostly the real oracle, but made consistent with 𝑅′𝐴). If Bob has low query weights on
𝑅′𝐴, then our attack still works. If the total query weight of Bob on 𝑅′𝐴 is 0, changing the real
oracle to 𝐻 ′ will not change 𝖵𝗂𝖾𝗐𝐵 at all. Similarly, if the weight is small, changing the real or-
acle to 𝐻 ′ will only change 𝖵𝗂𝖾𝗐𝐵 by a small amount [BBBV97]. Thus, we can still argue that
𝖵𝗂𝖾𝗐′𝐴,𝖵𝗂𝖾𝗐𝐵,𝑚1,𝑚2 are reachable under 𝐻 ′ and with perfect completeness, we must recover the
key.

What if Bob has a large query weight on some 𝑥 ∈ 𝑅′𝐴? We imagine a hypothetical Bob,
who will first produce 𝖵𝗂𝖾𝗐𝐵 , but then keep running itself from the beginning multiple times and
randomly measure one of its queries. By doing so, the hypothetical Bob’s functionality does not
change; the advantage is now the hypothetical Bob has a classical list 𝐿𝐵 that consists of all its
queries with high weights, with a high probability.

If we run our Eve with this hypothetical Bob, 𝖵𝗂𝖾𝗐′𝐴 must have 𝑅′𝐴 consistent with 𝐿𝐵 . Thus,
changing the oracle to be consistent with 𝑅′𝐴 will only change its behavior on those 𝑥 ̸∈ 𝐿𝐵 , or in
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other words, those 𝑥 that do not have a large query weight! Then we can use the argument in the
previous paragraphs and claim that 𝖵𝗂𝖾𝗐′𝐴,𝖵𝗂𝖾𝗐𝐵 := (𝜌𝐵, 𝐿𝐵),𝑚1,𝑚2 are reachable under 𝐻 ′ and
with perfect completeness, we can get the key.

Handling Quantum Public Keys Quantum public keys (or quantum 𝑚1) are handled without
additional efforts using our CMI-based Eve. This further demonstrates the versatility and power
of our new framework; previous approaches based on classical-query Eve do not extend to this
case.

When 𝑚1 is quantum, the challenge arises in how Eve can effectively run multiple copies of
Bob on quantum input 𝑚1. In the context of QPKE, the attacker needs access to multiple copies
of the quantum 𝑚1. If 𝑚1 is a pure state, it becomes evident that running the same Bob on the
same pure state 𝑚1 is feasible, allowing us to minimize the CMI accordingly. Alternatively, if a
query-efficient perfect cloner for 𝑚1 exists, multiple runs of the same Bob become possible.

Given that the subsequent analysis relies solely on the capability to run Bob multiple times on
input 𝑚1, we can extend our conclusion to rule out perfect complete QPKE with quantum public
keys and classical-query key generation under the condition that the quantum public keys are
either pure or query-efficiently clonable.

3 Preliminaries

We refer reader to [NC10] for more details about quantum computing and quantum information.
Below, we mention some backgrounds that are heavily used in this work.

3.1 Distance measures

Let us recall the definition of total variation distance and trace distance.

Definition 3.1 (Total variation distance). For two probabilistic distributions 𝐷𝑋 , 𝐷𝑌 over the same
finite domain 𝒳 , we define its total variation distance as

𝑇𝑉 (𝐷𝑋 , 𝐷𝑌 ) =
1

2

∑︁
𝑥∈𝒳
|𝐷𝑋(𝑥)−𝐷𝑌 (𝑥)|.

Definition 3.2 (Trace distance). For two quantum states 𝜌, 𝜎, the trace distance between the two states is

𝑇𝐷(𝜌, 𝜎) =
1

2
Tr

[︂√︁
(𝜌− 𝜎)†(𝜌− 𝜎)

]︂
= sup

0≤Λ≤𝐼
Tr[Λ(𝜌− 𝜎)].

3.2 Quantum Oracle Model and Random Oracle

A quantum oracle algorithm equipped with access to 𝐻 : [2𝑛𝜆 ] → [2𝑚𝜆 ] is expressed as a series
of unitaries: 𝑈1, 𝑈𝐻 , 𝑈2, 𝑈𝐻 , · · · , 𝑈𝑇 , 𝑈𝐻 , 𝑈𝑇+1. Here, 𝑈𝑖 denotes a local unitary acting on the
algorithm’s internal register. Oracle access to 𝐻 is defined by a unitary transformation 𝑈𝐻 , where
|𝑥, 𝑦⟩ is transformed to |𝑥, 𝑦 +𝐻(𝑥)⟩. For an oracle algorithm 𝒜, we would use 𝒜𝐻 to denote the
algorithm 𝒜 has classical access to the oracle 𝐻 , and 𝒜|𝐻⟩ to denote 𝒜 has quantum access to the
oracle.
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We would also consider the case when the oracle 𝐻 : [2𝑛𝜆 ]→ {0, 1} is sampled from some dis-
tribution of oraclesℋ𝜆. We would call some primitive in the quantum random oracle model(QROM)
if the distributionℋ𝜆 is uniformly random over all possible oracles.

3.3 Entropy

Definition 3.3 (Von Neumann Entropy). Let 𝜌 ∈ ℂ2𝑛 be a quantum state describing a system 𝖠. Let
|𝜑1⟩ , |𝜑2⟩ , · · · , |𝜑2𝑛⟩ be the eigenbasis of 𝜌; 𝜌 is written in this eigenbasis as

∑︀
𝑖 𝜂𝑖 |𝜑𝑖⟩ ⟨𝜑𝑖|.

Then its Von Neumann Entropy is denoted by 𝑆(𝜌) (or 𝑆(𝖠)𝜌),

𝑆(𝖠)𝜌 = 𝑆(𝜌) = −
∑︁
𝑖

𝜂𝑖 log(𝜂𝑖).

Given a composite quantum system 𝖠𝖡 having joint state 𝜌𝖠𝖡, we define the conditional Von Neumann
Entropy as 𝑆(𝖠|𝖡)𝜌,

𝑆(𝖠|𝖡)𝜌 = 𝑆(𝖠𝖡)𝜌 − 𝑆(𝖡)𝜌.

Below, we often omit 𝜌 in the definition when the quantum state is clear in the context. For exam-
ple, 𝑆(𝖠) and 𝐼(𝖠 : 𝖡) instead of 𝑆(𝖠)𝜌 and 𝐼(𝖠 : 𝖡)𝜌.

Fact 3.4 ([NC10]). Suppose 𝑝𝑘 are probabilities, |𝑘⟩ are orthogonal basis of a system 𝖠 and 𝜌𝑘 are quantum
states for another system 𝖡. Then

𝑆

(︃∑︁
𝑘

𝑝𝑘 |𝑘⟩ ⟨𝑘| ⊗ 𝜌𝑘

)︃
= 𝐻(𝑝𝑘) +

∑︁
𝑘

𝑝𝑘𝑆(𝜌𝑘)

where 𝐻(𝑝𝑘) is the Shannon entropy of distribution 𝑝𝑘.

Fact 3.5 ([Wil11]). If 𝜌𝖠𝖡 is a separable state, then 𝑆(𝖠|𝖡) ≥ 0.

Definition 3.6 (Mutual Information). Let 𝜌 be a quantum state describing two joint systems 𝖠 and 𝖡.
Then the mutual information between the system 𝐴 and 𝐵 is denoted by 𝐼(𝖠 : 𝖡),

𝐼(𝖠 : 𝖡) = 𝑆(𝖠) + 𝑆(𝖡)− 𝑆(𝖠𝖡).

Definition 3.7 (Conditional Mutual Information). Let 𝜌 be a quantum state describing three joint sys-
tems 𝖠, 𝖡 and 𝖢. Then the conditional mutual information 𝐼(𝖠 : 𝖡|𝖢),

𝐼(𝖠 : 𝖡|𝖢) = 𝑆(𝖠𝖢) + 𝑆(𝖡𝖢)− 𝑆(𝖠𝖡𝖢)− 𝑆(𝖢).

Fact 3.8 (Chain rule). 𝐼(𝖠1,𝖠2, · · · ,𝖠𝑡 : 𝖡 | 𝖢) =
∑︀𝑡

𝑖=1 𝐼(𝖠𝑖 : 𝖡 | 𝖢,𝖠1, · · · ,𝖠𝑖−1).

Fact 3.9. Let 𝖠𝖡𝖢 be a composite quantum system. When a unitary is applied on 𝖠, it will not change
𝑆(𝖠). Similarly, the local unitary on 𝖠 will not change 𝐼(𝖠 : 𝖡) or 𝐼(𝖠 : 𝖡|𝖢).

Proof. This directly follows from the definition of 𝑆(𝖠) and applying any unitary will not change
the spectrum of a density matrix.

The strong subadditivity for (conditional) mutual information concludes that both mutual in-
formation and conditional mutual information are always non-negative.
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Lemma 3.10 (Strong Subadditivity, [AL70]). Given Hilbert spaces 𝖠,𝖡,𝖢,

𝑆(𝖠𝖢) + 𝑆(𝖠𝖡) ≥ 𝑆(𝖠𝖡𝖢) + 𝑆(𝖢).

(The conditional form) Given Hilbert spaces 𝖠,𝖡,𝖢,𝖣,

𝑆(𝖠𝖢|𝖣) + 𝑆(𝖠𝖡|𝖣) ≥ 𝑆(𝖠𝖡𝖢|𝖣) + 𝑆(𝖢|𝖣).

3.4 Operational Meaning of Conditional Mutual Information: Approximate Quan-
tum Markov Chain

Fawzi and Renner [FR15] provided a nice characterization of quantum states for which the condi-
tional mutual information is approximately zero. Intuitively, if 𝐼(𝖠 : 𝖡 | 𝖤) is small, then 𝖡 can be
approximately reconstructed from 𝖤.

Theorem 3.11 ([FR15], restate of Lemma 2.3). For any state 𝜌𝖠𝖤𝖡 over systems 𝖠𝖤𝖡, there exists a
channel 𝒯 : 𝖤→ 𝖤⊗𝖡′ such that the trace distance between the reconstructed state 𝜎𝖠′𝖤′𝖡′ = 𝒯 (𝜌𝖠𝖤) and
the original state 𝜌𝖠𝖤𝖡 is at most √︁

ln 2 · 𝐼(𝖠 : 𝖡|𝖤)𝜌.

3.5 Quantum Key Agreement and Quantum Public Key Encryption

In the following, we provide formal definitions of quantum key agreement (QKA) and quantum
public key encryption (QPKE) in the oracle model.

Definition 3.12 (Quantum Key Agreement in the Oracle Model). Let 𝜆 ∈ ℤ+ be the security param-
eter andℋ𝜆 be a distribution of oracles. Let 𝐻 ← ℋ𝜆 be a classical oracle, drawn according toℋ𝜆.

A key agreement protocol consists of two parties Alice and Bob, who start with all-zero states and have
the ability to apply any quantum operator, get quantum access to 𝐻 , and send classical messages to each
other.

Both Alice and Bob can make at most 𝗉𝗈𝗅𝗒(𝜆) number of quantum queries to 𝐻 . Finally, Alice and
Bob output classical strings 𝑘𝐴, 𝑘𝐵10. We would call the set of classical messages between Alice and Bob,
denoted by Π, the transcript of the key exchange protocol.

A key agreement protocol should satisfy both correctness and security.

Definition 3.13 (Correctness). Let 𝑘𝐴, 𝑘𝐵 be the keys outputted in the protocol. Then Pr[𝑘𝐴 = 𝑘𝐵] ≥
1/𝑞(𝜆) for some polynomial 𝑞(·), where the probability is taken over the randomness of Alice and Bob’s
channels, and the random choice of oracle 𝐻 .

Definition 3.14 (Security). For any eavesdropper Eve that makes at most 𝗉𝗈𝗅𝗒(𝜆) number of quantum
queries to 𝐻 ← ℋ𝜆, eavesdrops classical communication between Alice and Bob and outputs 𝑘𝐸 , the
probability that Pr[𝑘𝐴 = 𝑘𝐸 ] is negligible in 𝜆.

10𝑘𝐴, 𝑘𝐵 can be of any length (even exponential in 𝜆). Our impossibility results apply to protocols with any output
key length.
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We are interested in whether there exists a protocol that satisfies both correctness and secu-
rity in the QROM. It is worth noting that the ability of making quantum queries is essential in
our setting; when Alice and Bob can only make polynomially many classical queries, secure key
agreement does not exist; i.e., there always exists an eavesdropper making polynomially many
classical queries and breaking it [IR89, BM09].

We also focus on breaking quantum public key encryption schemes in the oracle model.

Definition 3.15 (Quantum Public Key Encryption in the Oracle Model). Let 𝜆 ∈ ℤ+ be the security
parameter and ℋ𝜆 be a distribution over oracles 𝐻 : [2𝑛𝜆 ] → {0, 1}. Let 𝐻 ← ℋ𝜆 be a classical oracle, a
QPKE scheme in the oracle model consists of three algorithms (𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼), each of which is allowed to
make at most 𝑑(𝜆) = 𝗉𝗈𝗅𝗒(𝜆) quantum queries to 𝐻 :

• 𝖦𝖾𝗇|𝐻⟩(1𝜆) → (𝗉𝗄, 𝗌𝗄): The quantum key generation algorithm that generates a pair of classical
public key 𝗉𝗄 and secret key 𝗌𝗄.

• 𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚) → 𝖼𝗍: the quantum encryption algorithm that takes a public key 𝗉𝗄, the plaintext 𝑚,
produces the ciphertext 𝖼𝗍.

• 𝖣𝖾𝖼|𝐻⟩(𝗌𝗄, 𝖼𝗍) → 𝑚′: the quantum decryption algorithm that takes secret key 𝗌𝗄 and ciphertext 𝖼𝗍
and outputs the plaintext 𝑚′.

The algorithms should satisfy the following requirements:

Completeness Pr
[︁
𝖣𝖾𝖼|𝐻⟩

(︁
𝗌𝗄,𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚)

)︁
= 𝑚 : 𝖦𝖾𝗇|𝐻⟩(1𝜆)→ (𝗉𝗄, 𝗌𝗄)

]︁
≥ 1− 𝗇𝖾𝗀𝗅(𝜆).

IND-CPA Security For any adversary ℰ |𝐻⟩ that makes 𝗉𝗈𝗅𝗒(𝜆) queries, for every two plaintexts 𝑚0 ̸=
𝑚1 chosen by ℰ |𝐻⟩(𝗉𝗄), we have

Pr
[︁
ℰ |𝐻⟩

(︁
𝗉𝗄,𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚𝑏)

)︁
= 𝑏
]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

Especially in Section 6, we will focus on when the key generation algorithm 𝖦𝖾𝗇𝐻 is an algo-
rithm with classical access to the oracle 𝐻 .

It is a folklore result that we can construct a two-round key agreement protocol from a public
key encryption scheme as follows:

1. Alice runs 𝖦𝖾𝗇|𝐻⟩ to produce a public key 𝗉𝗄 and a secret 𝗌𝗄, and sends the public key 𝗉𝗄 as
the first message 𝑚1 to Bob. We call Alice’s algorithm at this stage 𝒜1.

2. Bob upon receiving 𝗉𝗄, it samples a uniformly random classical string 𝑘 as the key. It com-
putes the ciphertext 𝖼𝗍← 𝖤𝗇𝖼|𝐻⟩(𝗉𝗄, 𝑘) and sends 𝑚2 := 𝖼𝗍 to Alice. We call Bob’s algorithm
at this stage ℬ.

3. Alice will then run 𝖣𝖾𝖼|𝐻⟩(𝗌𝗄, 𝖼𝗍) to output 𝑘′, which is her guess of 𝑘. We call Alice’s algo-
rithm at this stage 𝒜2.

We further notice that the only information required by 𝒜2 from 𝒜1 is the secret key 𝗌𝗄. Thus if 𝗌𝗄
is classical, we can assume without loss of generality that the internal state of𝒜1 at its termination
is a mixed state in the computational basis.

We would also consider the recently proposed QPKE with quantum public key [BGH+23,
KMNY23, Col23] in Section 6. We would only focus on the variant where the protocol is perfect
complete, and key generation algorithms can only make classical queries.
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Definition 3.16 (QPKE with quantum public key). Let 𝜆 ∈ ℤ+ be the security parameter and ℋ𝜆 be
a distribution over oracles 𝐻 : [2𝑛𝜆 ] → {0, 1}. Let 𝐻 ← ℋ𝜆 be a classical oracle, a QPKE scheme in the
oracle model consists of four algorithms (𝖲𝖪𝖦𝖾𝗇,𝖯𝖪𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼), each of which is allowed to make at
most 𝑑(𝜆) = 𝗉𝗈𝗅𝗒(𝜆) queries to 𝐻 :

• 𝖲𝖪𝖦𝖾𝗇𝐻(1𝜆)→ 𝗌𝗄: The secret key generation algorithm that generates a classical secret key 𝗌𝗄.
• 𝖯𝖪𝖦𝖾𝗇𝐻(𝗌𝗄) → 𝜌𝗉𝗄: The public key generation algorithm that takes the secret key 𝗌𝗄 and generates

a quantum public key 𝜌𝗉𝗄.
• 𝖤𝗇𝖼|𝐻⟩(𝜌𝗉𝗄,𝑚)→ 𝖼𝗍: the quantum encryption algorithm that takes a public key 𝗉𝗄, the plaintext 𝑚,

produces the (possibly quantum) ciphertext 𝜌𝖼𝗍.
• 𝖣𝖾𝖼|𝐻⟩(𝗌𝗄, 𝜌𝖼𝗍) → 𝑚′: the quantum decryption algorithm that takes secret key 𝗌𝗄 and ciphertext 𝖼𝗍

and outputs the plaintext 𝑚′.

The algorithms should satisfy the following requirements:

Perfect Completeness

Pr
[︁
𝖣𝖾𝖼|𝐻⟩

(︁
𝗌𝗄,𝖤𝗇𝖼|𝐻⟩(𝜌𝗉𝗄,𝑚)

)︁
= 𝑚 : 𝖲𝖪𝖦𝖾𝗇𝐻(1𝜆)→ 𝗌𝗄,𝖯𝖪𝖦𝖾𝗇𝐻(𝗌𝗄)→ 𝜌𝗉𝗄

]︁
= 1.

IND-CPA Security For any adversary ℰ |𝐻⟩ that makes 𝗉𝗈𝗅𝗒(𝜆) queries, given any polynomial copies of
public key 𝜌⊗𝑡(𝜆)𝗉𝗄 , for every two plaintexts 𝑚0 ̸= 𝑚1 chosen by ℰ(𝜌⊗𝑡(𝜆)𝗉𝗄 ), we have

Pr
[︁
ℰ |𝐻⟩

(︁
𝜌
⊗𝑡(𝜆)
𝗉𝗄 ,𝖤𝗇𝖼|𝐻⟩(𝜌𝗉𝗄,𝑚𝑏)

)︁
= 𝑏
]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

We call the public key pure if given 𝗌𝗄, 𝜌𝗉𝗄 ← 𝖯𝖪𝖦𝖾𝗇(𝗌𝗄) is a pure state, and call the public
key clonable if there is some polynomial query algorithm 𝒟|𝐻⟩ that takes 𝜌𝗉𝗄 =

∑︀
𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖| in its

eigenvector decomposition, and generates the state 𝜌′ =
∑︀
𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖|⊗𝑡(𝜆) for some polynomial

𝑡(·).

Remark 3.17. The definition of clonable here might seem odd at first glance, we would give some examples
here for further explanations. The public key generation algorithm from [KMNY23, MW23] 𝖯𝖪𝖦𝖾𝗇(𝗌𝗄)
generates a 𝜌𝗉𝗄 = (𝗉𝗄𝑟, |𝜓𝑟⟩) according to some private coin 𝑟 of 𝖯𝖪𝖦𝖾𝗇(𝗌𝗄), where 𝗉𝗄𝑟 is a classical string,
|𝜓𝑟⟩ is a pure quantum state. Thus our cloning algorithm 𝒟 can be seen as given a sample (𝗉𝗄𝑟, |𝜓𝑟⟩), it
can generate multiple copies of state |𝜓𝑟⟩.

4 Helper Lemmas

In this section, we introduce three helper lemmas. Lemma 4.2 tells how to decrease CMI. Lemma 4.3
and Lemma 4.4 claim that classical communication does not increase CMI. Lemma 4.6 will be used
in Section 6.

4.1 Repetition Decreases CMI

Definition 4.1 (Permutation Invariance). Let 𝖠1,𝖠2,𝖠3, . . . ,𝖠𝑡,𝖡 be (𝑡+ 1)-partite quantum system.
Given the joint state 𝜌𝖡𝖠1𝖠2···𝖠𝑡 , we say 𝐴1, . . . , 𝐴𝑡 are permutation invariant, if for any permutation 𝜋 on
[𝑡], we have

𝜌𝖡𝖠1𝖠2···𝖠𝑡 = 𝜌𝖡𝖠𝜋(1)𝖠𝜋(2)···𝖠𝜋(𝑡)
.
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Lemma 4.2. Let 𝖠1,𝖠2,𝖠3, . . . ,𝖠𝑡,𝖡,𝖢 be (𝑡 + 2)-partite quantum system. Suppose the state of the
composite system 𝜌𝖡𝖢𝖠1𝖠2···𝖠𝑡 is fully separable. If 𝖠1,𝖠2,𝖠3, . . . ,𝖠𝑡 are permutation invariant, then there
is a 0 ≤ 𝑖 ≤ 𝑡− 1 such that

𝐼(𝖠𝑡 : 𝖡 | 𝖢,𝖠1, . . . ,𝖠𝑖)𝜌 ≤ 𝑆(𝖡)/𝑡.

Proof. By the chain rule of conditional mutual information (see Fact 3.8), we have

𝑡∑︁
𝑖=1

𝐼(𝖠𝑖 : 𝖡 | 𝖢,𝖠1, . . . ,𝖠𝑖−1) = 𝐼(𝖠1, . . . ,𝖠𝑡 : 𝖡 | 𝖢) (1)

Besides,
𝐼(𝖠1, . . . ,𝖠𝑡 : 𝖡 | 𝖢) = 𝑆(𝖡 | 𝖢)− 𝑆(𝖡 | 𝖢,𝖠1, . . . ,𝖠𝑡) ≤ 𝑆(𝖡 | 𝖢) ≤ 𝑆(𝖡), (2)

where the inequalities are by Fact 3.5 and that 𝐼(𝖡 : 𝖢) = 𝑆(𝖡)− 𝑆(𝖡 | 𝖢) is always non-negative.
By (1) and (2), there must exist 𝑖 ∈ [𝑡] such that 𝐼(𝖠𝑖 : 𝖡 | 𝖢,𝖠1, . . . ,𝖠𝑖−1) ≤ 𝑆(𝖡)/𝑡. Finally, by the
permutation invariance, we have 𝐼(𝖠𝑖 : 𝖡 | 𝖢,𝖠1, . . . ,𝖠𝑖−1) = 𝐼(𝖠𝑡 : 𝖡 | 𝖢,𝖠1, . . . ,𝖠𝑖−1). Now we
finish the proof.

4.2 Classical Communication does not Increase CMI

Lemma 4.3 (Local quantum operation does not increase CMI). Let 𝖠𝖡𝖢 be a composite quantum
system. After performing a quantum operation 𝑀 on 𝖠, the state of the system becomes 𝖠′𝖡′𝖢′. Then
𝐼(𝖠′ : 𝖡′|𝖢′) ≤ 𝐼(𝖠 : 𝖡|𝖢).

Proof. We introduce another quantum system 𝖣, initialized as zero. The quantum operation 𝑀
can be treated as first performing a unitary transformation 𝑈 on 𝖠𝖣 and then discarding 𝖣.

𝐼(𝖠 : 𝖡|𝖢) = 𝐼(𝖠𝖣 : 𝖡|𝖢)
= 𝐼(𝑈(𝖠𝖣)𝑈 † : 𝖡|𝖢)
= 𝐼(𝖠′𝖣′ : 𝖡′|𝖢′)
= 𝑆(𝖠′𝖣′|𝖢′)− 𝑆(𝖠′𝖣′𝖡′|𝖢′) + 𝑆(𝖡′|𝖢′).

By the conditional form of strong sub-additivity (see the condition form of Lemma 3.10),
𝑆(𝖠′𝖣′|𝖢′)− 𝑆(𝖠′𝖣′𝖡′|𝖢′) ≥ 𝑆(𝖠′|𝖢′)− 𝑆(𝖠′𝖡′|𝖢′). Then

𝐼(𝖠 : 𝖡|𝖢) ≥ 𝑆(𝖠′|𝖢′)− 𝑆(𝖠′𝖡′|𝖢′) + 𝑆(𝖡′|𝖢′)
= 𝐼(𝖠′ : 𝖡′|𝖢′).

Lemma 4.4 (Sending classical message does not increase CMI). Let 𝖠𝖡𝖢 be a composite quantum
system and 𝖠 = (𝖶𝖠,𝖬𝖠) where 𝖶𝖠 is the working register and 𝖬𝖠 is the message register containing a
classical state. After 𝖡 and 𝖢 both obtain a copy of 𝖬𝖠, the system becomes 𝖠′𝖡′𝖢′. Then 𝐼(𝖠′ : 𝖡′|𝖢′) ≤
𝐼(𝖠 : 𝖡|𝖢).

The following claim will be used.

Claim 4.5 (Copying classical state does not change entropy). Given a system 𝖯𝖰𝖱 where 𝖰 and 𝖱
contain identical classical states. Then 𝑆(𝖯𝖰𝖱) = 𝖲(𝖯𝖱) = 𝖲(𝖯𝖰).

18



Proof. The joint state of 𝖯𝖰𝖱 can be written as∑︁
𝑘

𝑝𝑘𝜌
(𝑘)
𝖯 ⊗ |𝑘⟩ ⟨𝑘|𝖰 ⊗ |𝑘⟩ ⟨𝑘|𝖱

where 𝑝𝑘 are probabilities, 𝜌(𝑘)𝖯 are quantum states in 𝖯, and |𝑘⟩ are computational basis of 𝖰 (also
𝖱). Then by Fact 3.4,

𝑆(𝖯𝖰𝖱) = 𝑆

(︃∑︁
𝑘

𝑝𝑘𝜌
(𝑘)
𝖯 ⊗ |𝑘⟩ ⟨𝑘|𝖰 ⊗ |𝑘⟩ ⟨𝑘|𝖱

)︃

= 𝐻(𝑝𝑘) +
∑︁
𝑘

𝑝𝑘𝑆
(︁
𝜌
(𝑘)
𝖯

)︁
= 𝑆

(︃∑︁
𝑘

𝑝𝑘𝜌
(𝑘)
𝖯 ⊗ |𝑘⟩ ⟨𝑘|𝖰

)︃
= 𝑆(𝖯𝖰).

By symmetry, 𝑆(𝖯𝖰𝖱) = 𝖲(𝖯𝖱) = 𝖲(𝖯𝖰).

Proof of Lemma 4.4. Let 𝖡′ = (𝖡,𝖬𝖡),𝖢
′ = (𝖢,𝖬𝖢) where 𝖬𝖡,𝖬𝖢 are the message registers which

contain a copy of 𝖬𝖠. Then

𝐼(𝖠′ : 𝖡′|𝖢′) = 𝐼(𝖶𝖠,𝖬𝖠 : 𝖡,𝖬𝖡|𝖢,𝖬𝖢)

= 𝑆(𝖶𝖠,𝖢,𝖬𝖠,𝖬𝖢) + 𝑆(𝖡,𝖢,𝖬𝖡,𝖬𝖢)− 𝑆(𝖶𝖠,𝖡,𝖢,𝖬𝖠,𝖬𝖡,𝖬𝖢)− 𝑆(𝖢,𝖬𝖢).

Since 𝖬𝖠,𝖬𝖡,𝖬𝖢 contain identical classical states, by Claim 4.5, we can remove 𝖬𝖠,𝖬𝖡 from
above equation while keeping each term unchanged. Then

𝐼(𝖠′ : 𝖡′|𝖢′) = 𝑆(𝖶𝖠,𝖢,𝖬𝖢) + 𝑆(𝖡,𝖢,𝖬𝖢)− 𝑆(𝖶𝖠,𝖡,𝖢,𝖬𝖢)− 𝑆(𝖢,𝖬𝖢)

= 𝐼(𝖶𝖠 : 𝖡|𝖢,𝖬𝖢)

= 𝐼(𝖶𝖠,𝖬𝖢 : 𝖡|𝖢)− 𝐼(𝖬𝖢 : 𝖡|𝖢).

By the non-negativity of 𝐼(𝖬𝖢 : 𝖡|𝖢),

𝐼(𝖠′ : 𝖡′|𝖢′) ≤ 𝐼(𝖶𝖠,𝖬𝖢 : 𝖡|𝖢)
= 𝑆(𝖶𝖠,𝖢,𝖬𝖢) + 𝑆(𝖡,𝖢)− 𝑆(𝖶𝖠,𝖡,𝖢,𝖬𝖢)− 𝑆(𝖢).

Since 𝖬𝖠 and 𝖬𝖢 are identical classical states, 𝖬𝖢 can be replaced with 𝖬𝖠 by Claim 4.5. Then

𝐼(𝖠′ : 𝖡′|𝖢′) ≤ 𝑆(𝖶𝖠,𝖢,𝖬𝖠) + 𝑆(𝖡,𝖢)− 𝑆(𝖶𝖠,𝖡,𝖢,𝖬𝖠)− 𝑆(𝖢)
= 𝐼(𝖶𝖠,𝖬𝖠 : 𝖡|𝖢) = 𝐼(𝖠 : 𝖡|𝖢).

4.3 Other Useful Lemmas

We would also need the following lemma.

Lemma 4.6. For two classical probabilistic distributions 𝐷𝑋 and 𝐷𝑌 over the same domain, if
𝑇𝑉 (𝐷𝑋 , 𝐷𝑌 ) ≤ 𝜖, we have that

Pr
𝑥←𝐷𝑋

[𝑥 /∈ 𝖲𝖴𝖯𝖯(𝐷𝑌 )] ≤ 2𝜖.

Proof. We use 𝑝𝑋𝑥 , 𝑝𝑌𝑥 to denote the probability of 𝑥 drawn from 𝐷𝑋 , 𝐷𝑌 respectively.∑︁
𝑥/∈𝖲𝖴𝖯𝖯(𝐷𝑌 )

𝑝𝑋𝑥 ≤
∑︁
𝑥

|𝑝𝑋𝑥 − 𝑝𝑌𝑥 | = 2𝑇𝑉 (𝐷𝑋 , 𝐷𝑌 ) ≤ 2𝜖.

19



5 Non-Interactive Quantum Key Agreement

We say a QKA is non-interactive if all queries are made before communication. Formally,

Definition 5.1 (Non-interactive Quantum Key Agreement). A non-interactive key agreement protocol
between Alice and Bob consists of the following steps:

1. Let 𝜆 > 0 be a security parameter and 𝐻 ← ℋ𝜆.
2. Alice and Bob each makes 𝑑𝜆 = 𝗉𝗈𝗅𝗒(𝜆) queries to 𝐻 .
3. Alice and Bob continue an arbitrary number of rounds of classical communication and local quantum

operations, but will never make queries to 𝐻 .
4. Eventually, Alice and Bob will output 𝑘𝐴, 𝑘𝐵 .

Theorem 5.2. Non-interactive QKA does not exist in any oracle model.

Proof. Let 𝑒𝜆 denote the number of qubits on which the quantum query unitary 𝑈𝐻 acts, i.e., the
total length of the input register and the output register. For example, if 𝐻 : [2𝑛𝜆 ] → {0, 1} is a
random function, then 𝑒𝜆 = 𝑛𝜆 + 1. Let 𝜌0𝖠 and 𝜌0𝖡 denote the states of Alice and Bob respectively
right after the query algorithm but before any communication.

First, Eve repeatedly runs the same Alice’s query algorithm 𝑡 = 𝐶𝑑𝜆𝑒𝜆 times (𝐶 is some poly-
nomial determined afterwards) and prepares the state 𝜌0𝖤, which consists of 𝑡 registers 𝖠0

1, . . . ,𝖠
0
𝑡

of 𝜌0𝖠’s copies. Observing that 𝖠0,𝖠0
1, . . . ,𝖠

0
𝑡 are permutation invariant, by Lemma 4.2, we have

𝐼(𝖠0 : 𝖡0 | 𝖤0) ≤ 𝑆(𝖡0)

𝑡+ 1
≤ 2𝑑𝜆𝑒𝜆

𝑡+ 1
≤ 1

2𝐶
.

The second inequality is because we can implement the query unitary 𝑈𝐻 by a quantum commu-
nication process: suppose there are two parties, namely Bob and Oracle; if Bob wants to apply the
unitary 𝑈𝐻 , then

1. Bob sends its input register and output register, 𝑒𝜆 qubits in total, to Oracle;
2. Oracle applies 𝑈𝐻 on these 𝑒𝜆 qubits and then sends them back to Bob.

By subadditivity of entropy, the entropy of Bob can increase by at most 2𝑒𝜆 bits through the above
quantum communication process. Since 𝖡0 is prepared from a pure state by making 𝑑 quantum
queries, we have that 𝑆(𝖡0) ≤ 2𝑑𝜆𝑒𝜆.

Let 𝜌𝑓𝐴 and 𝜌𝑓𝐵 denote the states of Alice and Bob respectively right after finishing the commu-
nication but before outputting the key. Since classical communication does not increase CMI (see
Lemma 4.4), we have

𝐼(𝖠 : 𝖡 | 𝖤,Π)
𝜌𝑓𝐴𝐵𝐸

≤ 𝐼(𝖠 : 𝖡 | 𝖤)𝜌0𝐴𝐵𝐸
≤ 1

2𝐶
.

Finally, Eve applies the channel in Lemma 2.3 and obtains a fake view �̂�𝑓 of 𝖠𝑓 such that the
joint state of 𝜌𝑓

𝐴𝐵
is 𝑂(1/

√
𝐶)-close to 𝜌𝑓𝐴𝐵 . By letting 𝐶 = 𝑂(1/𝜖2) , Eve can use �̂�𝑓 to generate 𝑘𝐸

such that Pr[𝑘𝐵 = 𝑘𝐸 ] is 𝜖-close to Pr[𝑘𝐴 = 𝑘𝐸 ].

Remark 5.3. (a). Theorem 5.2 directly implies the separation of pseudorandom quantum states (PRS) and
QKA. This is because PRS can be prepared by random queries, and without loss of generality, we can assume
all random queries are made at the very beginning before any communication.
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(b). In the proof of Theorem 5.2, Eve makes 𝑂(𝑑2𝜆𝑒𝜆) quantum queries. This bound can be improved tõ︀𝑂(𝑑2𝜆) if Alice and Bob are restricted to making non-adaptive queries (i.e., queries can depend on neither
any previous queries nor classical communication) to a random function. The famous Merkle Puzzles and
PRS-based protocols are both examples of this non-adaptive case. We refer interested readers to Appendix B
for details.

(c). By almost the same proof, Theorem 5.2 can be extended to include quantum oracles, e.g., Haar
random oracles, where the query unitary operator is chosen from some Haar measure.

We can further notice that the non-interactive requirement can be relaxed to one-sided if we
are considering two-round key agreement protocols. That is, Bob can make queries after receiving
the first message from Alice, while Alice can only make queries before communication. Viewing
the protocol in the model of QPKE, we have the following theorem:

Theorem 5.4 (Restate of Theorem 1.3). For any QPKE scheme with a classical public key and a classi-
cal/quantum ciphertext in any oracle model, if it satisfies the following conditions:

1. The key generation algorithm makes at most 𝑑 quantum queries;
2. The encryption algorithm makes at most 𝑑 quantum queries;
3. The decryption algorithm makes no queries.

There exists an adversary Eve that could break the public key encryption scheme with probability 1−𝑂(𝜖)
by making 𝑂(𝑑2𝑒/𝜖2) number of oracle queries.

Proof. In this case, if Eve generates 𝑂(𝑑𝑒/𝜖2) copies of message 𝑚1 and runs Bob ℬ(𝑚1) according
to the first message 𝑚1, we can see that the permutation invariant condition still holds. Consider
the stage before Bob sends the second message, similar to Theorem 5.2, we have that

𝐼(𝖠 : 𝖡 | 𝖤) ≤ 1

2𝐶
≤ 𝑂(𝜖2).

Thus by applying the channel in Theorem 3.11 to 𝖤, we can obtain a state 𝜌𝐴′𝐵 that is 𝑂(𝜖) close to
the state 𝜌𝐴𝐵 . Now Eve receives the message register from Bob and runs the decryption algorithm
on 𝖠′, by the completeness of the protocol we can obtain that

Pr[𝑘𝐵 = 𝑘𝐸 ] ≥ Pr[𝑘𝐴 = 𝑘𝐵]−𝑂(𝜖) ≥ 1−𝑂(𝜖)− 𝗇𝖾𝗀𝗅(𝜆).

Note that our impossibility result can be extended to the Classical Communication One Quan-
tum Message Key Agreement (CC1QM-KA) model from [BGVV23]. In their security definition,
the quantum message channel is unauthenticated, thus it can be modified by the adversary ℰ . As
long as the completeness of the original key agreement protocol is 1 − 𝗇𝖾𝗀𝗅(𝜆), we can apply the
gentle measurement lemma to ensure that Pr[𝑘𝐴 = 𝑘𝐵 = 𝑘𝐸 ] ≥ 1−𝑂(

√
𝜖).

6 Public Key Encryption with a Classical Key Generation

In this section, we devote ourselves to proving black-box separation results for public key encryp-
tion schemes with a classical key generation process and one-way functions.

Recall the definitions of QPKE schemes from Section 3.5. We will focus on the specific public
encryption schemes defined as follows:
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Definition 6.1. A public key encryption scheme with a classical key generation process, relative to a random
oracle 𝐻 ← ℋ𝜆 consists of the following three bounded-query quantum algorithms:

• 𝖦𝖾𝗇𝐻(1𝜆)→ (𝗉𝗄, 𝗌𝗄): The key generation algorithm that generates a pair of public key 𝗉𝗄 and secret
key 𝗌𝗄.

• 𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚) → 𝖼𝗍: the encryption algorithm that takes a public key 𝗉𝗄, the plaintext 𝑚, and the
randomness 𝑟, produces the ciphertext 𝖼𝗍.

• 𝖣𝖾𝖼|𝐻⟩(𝗌𝗄, 𝖼𝗍)→ 𝑚′: the decryption algorithm that takes secret key 𝗌𝗄 and ciphertext 𝖼𝗍 and outputs
the plaintext 𝑚′.

Here we use 𝐻 to denote the algorithm has classical access to the oracle, and |𝐻⟩ to denote quantum
access to the oracle.

The algorithms should satisfy the following requirements:

Perfect Completeness Pr
[︁
𝖣𝖾𝖼|𝐻⟩

(︁
𝗌𝗄,𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚)

)︁
= 𝑚 : 𝖦𝖾𝗇𝐻(1𝜆)→ (𝗉𝗄, 𝗌𝗄)

]︁
= 1.

IND-CPA Security For any QPT adversary ℰ |𝐻⟩, for every two plaintexts 𝑚0 ̸= 𝑚1 chosen by ℰ |𝐻⟩(𝗉𝗄)
we have

Pr
[︁
ℰ |𝐻⟩

(︁
𝗉𝗄,𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚𝑏)

)︁
= 𝑏
]︁
≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆).

To prove a black box separation, we would view the public key encryption scheme as a two-
round key agreement protocol as described before, and utilize the previous tools from information
theory. From the perspective of a key agreement protocol, it could be viewed as a two-stage Alice:
before sending the first message, Alice would first make classical queries to the oracle 𝐻 ; And
after receiving the message from Bob, it would make quantum queries to the oracle, and output
the key they agree on. We denote the first stage as 𝒜1 and the second stage as 𝒜2.

We would use the following lemma from [BBBV97].

Lemma 6.2. Consider a quantum algorithm ℬ that makes 𝑑 queries to an oracle 𝐻 . Denote the quantum
state immediately after 𝑡 queries to the oracle as

|𝜓𝑡⟩ =
∑︁
𝑥,𝑤

𝛼𝑥,𝑤,𝑡 |𝑥,𝑤⟩ ,

where 𝑤 is the content of the workspace register. Denote the query weight 𝑞𝑥 of input 𝑥 as

𝑞𝑥 =
𝑑∑︁

𝑡=1

∑︁
𝑤

|𝛼𝑥,𝑤,𝑡|2.

For any oracle �̃� , denote |𝜑𝑑⟩ as the final state before measurement obtained by running ℬ with oracle �̃� ,
we have that

‖|𝜓𝑑⟩ − |𝜑𝑑⟩‖ ≤ 2
√
𝑑
√︃ ∑︁

𝑥 : �̃�(𝑥)̸=𝐻(𝑥)

𝑞𝑥.

To define Eve’s algorithm, we would first introduce the following algorithm ℬ′ as the modified
algorithm of ℬ:
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1. On receiving message 𝑚1, first run ℬ(𝑚1), and stop before the final output measurement.
2. Repeat the following process 3𝑑2(log 𝑑+ log(1/𝜖)) times: randomly choose 𝑖← [𝑑], simulate
ℬ(𝑚1) to its 𝑖th query to the oracle, and measure the input register, obtaining output 𝑥 ∈ [2𝑛],
and classically query the oracle to obtain 𝐻(𝑥).

3. Measure the output register of the first ℬ(𝑚1), and obtain key 𝑘𝐵 and the second message
𝑚2.

The first part of the the adversary algorithm ℰ would be generating 𝑂(𝑑𝑛/𝜖2) copies of 𝑚1, and
repeating the ℬ′ algorithm on each of these copies without performing step 3. It records all the
query input-output pairs 𝑅𝐸 = {(𝑥𝐸 , 𝐻(𝑥𝐸))} obtained from step 2 of ℬ.

We denote the heavy weight set 𝑊𝐵 of ℬ|𝐻⟩(𝑚1) as 𝑊𝐵 = {𝑥 : 𝑞𝑥 ≥ 𝜖2/𝑑2}. We have the
following lemma:

Lemma 6.3. Let 𝐼𝑛𝐸 be the set of input that is recorded in 𝑅𝐸 , we have that

Pr[𝑊𝐵 ̸⊆ 𝐼𝑛𝐸 ] ≤ 𝜖.

Proof. For each 𝑥 ∈ 𝑊𝐵 , it would be measured w.p. at least 𝜖2/𝑑3 at each step 2 ℬ′ performed by
ℰ . Thus the probability it is not measured is bounded by

Pr[𝑥 /∈ 𝐼𝑛𝐸 ] ≤
(︂
1− 𝜖2

𝑑3

)︂3𝑑3𝑛(log 𝑑+log(1/𝜖))/𝜖2

≤ 𝜖3/𝑑3.

Since
∑︀

𝑥 𝑞𝑥 = 𝑑, we have |𝑊𝐵| ≤ 𝑑3/𝜖2, thus by a union bound we obtain the desired result.

Since step 2 of ℬ′ would not affect the output of the algorithm, we can equivalently think as
the key agreement protocol consists of 𝒜 and ℬ′. Note that in this case, ℰ holds 𝑂(𝑑𝑛/𝜖2) copies
of registers that suffice the permutation invariant condition. Consider the joint state 𝜌𝐴𝐵𝐸 at the
stage before ℬ′ performing step 3, by Lemma 4.2 we have that 𝐼(𝖠 : 𝖡 | 𝖤) ≤ 𝜖2. Moreover,
applying the channel 𝒯 : 𝖤 → 𝖤 ⊗ 𝖠′ from Theorem 3.11, we can generate a state 𝜌𝐴′𝐵𝐸 such that
𝑇𝐷(𝜌𝐴𝐵𝐸 , 𝜌𝐴′𝐵𝐸) ≤ 𝜖.

For the rest of this section, we are only interested in the following registers of 𝖠,𝖡,𝖤:

• The classical internal state 𝑠𝑡𝐴 and oracle query input-output pairs 𝑅𝐴 = {(𝑥𝐴, 𝐻(𝑥𝐴))}.
This assumption can be made since the secret key 𝗌𝗄 is classical.

• The output register consists of the key 𝑘𝐵 and the message 𝑚2 of ℬ.
• The input-output pairs recorded by Eve 𝑅𝐸 = {(𝑥𝐸 , 𝐻(𝑥𝐸))}.

Without specification, we reuse 𝖠,𝖡,𝖤 for the beyond registers respectively. We denote the mea-
surement in computational basis on these registers as Π𝐴𝐵𝐸 , and the measurement outcome dis-
tribution as 𝐷𝐴𝐵𝐸 . Similarly we can define Π𝐴′𝐵𝐸 and 𝐷𝐴′𝐵𝐸 .

By perfect completeness, any sample 𝖵𝗂𝖾𝗐𝐴𝐵𝐸 = (𝑠𝑡𝐴, 𝑅𝐴, 𝑘𝐵,𝑚2, 𝑅𝐸) ← 𝐷𝐴𝐵𝐸 would be a
valid execution. That is to say, there is some oracle 𝐻 ′ that is consistent with 𝑅𝐴 and 𝑅𝐸 , and
running 𝒜2 on 𝐻 ′ would always output 𝑘𝐴 = 𝑘𝐵 . It also implies for any 𝑥 ∈ 𝐼𝑛𝐴 ∩ 𝐼𝑛𝐸 , the
corresponding input-output pair should also be consistent for 𝑅𝐴 and 𝑅𝐸 .

Since 𝑇𝐷(𝜌𝐴𝐵𝐸 , 𝜌𝐴′𝐵𝐸) ≤ 𝜖, we have that 𝑇𝑉 (𝐷𝐴𝐵𝐸 , 𝐷𝐴′𝐵𝐸) ≤ 𝜖 by the operational meaning
of trace distance. By Lemma 4.6, we have that

Pr
𝖵𝗂𝖾𝗐𝐴′𝐵𝐸←𝐷𝐴′𝐵𝐸

[𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 /∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸)] ≤ 2𝜖.
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Now we show that if we reprogram the oracle𝐻 to make it consistent with𝑅𝐴′ = {(𝑥𝐴, 𝐻 ′(𝑥𝐴))}
from the new sample 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 , with high probability the algorithm ℬ is consistent with �̃� and
output (𝑘𝐵,𝑚2). We define the reprogrammed oracle �̃� as follows:

�̃�(𝑥) =

{︃
𝐻 ′(𝑥), 𝑥 ∈ 𝐼𝑛𝐴;
𝐻(𝑥), else.

.

We have the following theorem,

Theorem 6.4. For the reprogrammed oracle �̃� defined as beyond, for any quantum algorithm ℬ making 𝑑
queries to the oracle

Pr
(𝑘𝐵 ,𝑚2)←ℬ|𝐻⟩(𝑚1)

[︁
(𝑘𝐵,𝑚2) ∈ 𝖲𝖴𝖯𝖯

(︁
ℬ|�̃�⟩(𝑚1)

)︁⃒⃒⃒
𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 ∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸)

]︁
≥ 1−𝑂(𝜖),

here we slightly abuse the notation ℬ|𝐻⟩(𝑚1) for the classical output distribution of ℬ.

Proof. Combining Theorem 3.11 and Lemma 6.3 we have that

Pr[𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 ∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸)∧𝑊𝐵 ⊆ 𝐼𝑛𝐸 ] ≥ 1−Pr[𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 /∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸)]−Pr[𝑊𝐵 ̸⊆ 𝐼𝑛𝐸 ] ≥ 1−𝑂(𝜖).

Given 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 ∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸) and 𝑊𝖡 ⊆ 𝐼𝑛𝐸 , we apply Lemma 6.2 and obtain that

𝑇𝑉
(︁
ℬ|�̃�⟩(𝑚1),ℬ|𝐻⟩(𝑚1)

)︁
≤ 4|| |𝜓𝑑⟩ − |𝜑𝑑⟩ ||

≤ 8
√
𝑑
√︃ ∑︁

𝑥 : �̃�(𝑥)̸=𝐻(𝑥)

𝑞𝑥

≤ 8
√
𝑑

√︂
𝑑 · 𝜖

2

𝑑2
= 𝑂 (𝜖) ,

where the first inequality comes from [BBBV97, Theorem 3.1], the second inequality is Lemma 6.2,
and the third inequality is by that |{𝑥 : �̃�(𝑥) ̸= 𝐻(𝑥)}| ≤ |𝐼𝑛𝐴| ≤ 𝑑. By Lemma 4.6, we have that

Pr
(𝑘𝐵 ,𝑚2)←ℬ|𝐻⟩(𝑚1)

[︁
(𝑘𝐵,𝑚2) ∈ 𝖲𝖴𝖯𝖯

(︁
ℬ|�̃�⟩(𝑚1)

)︁⃒⃒⃒
𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 ∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸) ∧𝑊𝐵 ⊆ 𝐼𝑛𝐸

]︁
≥ 1−𝑂 (𝜖) .

The final statement can be obtained by a conditional probability formula.

Now we will prove the first main theorem of the section.

Theorem 6.5. For any public key encryption scheme in the random oracle model, if it satisfies the following
conditions:

1. Perfect completeness;
2. The key generation algorithm makes at most 𝑑 classical queries to the oracle;
3. The encryption algorithm makes at most 𝑑 quantum queries to the oracle;
4. The decryption algorithm makes at most 𝐷 quantum queries to the oracle.

There exists an adversary Eve that could break the public key encryption scheme w.p. 1 − 𝑂(𝜖) by making
𝑂(𝑑4𝑛(log 𝑑+ log(1/𝜖))/𝜖2 +𝐷) queries to the oracle.
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Proof. We have already described most of the adversary algorithm ℰ as we prove the beyond lem-
mata and theorems. We summarize the algorithm ℰ as follows: it first generates 𝑂(𝑑𝑛/𝜖2) copies
of 𝑚1, and repeats the ℬ′ algorithm on each of these copies without performing step 3. It applies
the channel 𝒯 to the register 𝖤(including the full workspace) and generates a state 𝜌𝐴′𝐵𝐸 . Apply-
ing Π𝐴′𝐵𝐸 to 𝜌𝐴′𝐵𝐸 to obtain a sample 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 = (𝑠𝑡𝐴′ , 𝑅𝐴′ , 𝑘𝐵,𝑚2, 𝑅𝐸). It runs the algorithm
𝒜2(𝑚2) on register 𝖠′ with the reprogrammed oracle �̃� , and obtaining the final output 𝑘𝐸 = 𝑘𝐴′ .

Now we argue the correctness of the algorithm. Assume that before performing Π𝐴′𝐵𝐸 , we
first perform Π𝐴𝐵𝐸 on the state 𝜌𝐴𝐵𝐸 . This assumption can be made since Π𝐴′𝐵𝐸 and Π𝐴𝐵𝐸

commute. By perfect completeness of the protocol, we can see that the result 𝖵𝗂𝖾𝗐𝐴𝐵𝐸 is a valid
internal state, compatible with oracle 𝐻 . Now we discuss the measurement result of Π𝐴′𝐵𝐸 . Note
that in this case, the (𝑘𝐵,𝑚2, 𝑅𝐸) in 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 is the same as in 𝖵𝗂𝖾𝗐𝐴𝐵𝐸 .

Consider the case that 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 ∈ 𝖲𝖴𝖯𝖯(𝐷𝐴𝐵𝐸), i.e. 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 is a valid execution for some
oracle 𝐻 ′, we now argue that actually 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 is also a valid execution for oracle �̃� with high
probability. From the perspective of 𝖠′, the result 𝑠𝑡𝐴′ , 𝑅𝐴′ is compatible with �̃� , and will output
message 𝑚1. From the perspective of ℬ|𝐻⟩(𝑚1), before the measurement on the output register,
it can be viewed as a distribution of key-message pairs {(𝑘𝐵,𝑚2)}. Now we imagine we are
running the algorithm ℬ|�̃�⟩(𝑚1) instead. By Theorem 6.4, we can see that with probability 1−𝑂(𝜖),
(𝑘𝐵,𝑚2)← ℬ|𝐻⟩(𝑚1) would also be in the support of ℬ|�̃�⟩(𝑚1).

Together they imply that 𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 would be a valid execution for𝒜,ℬ under oracle �̃� when ℬ
outputs key 𝑘𝐵 . Thus if we run𝒜2(𝑚2) with the reprogrammed oracle �̃� , by perfect completeness,
it would also output 𝑘′𝐴 = 𝑘𝐵 .

For each run of ℬ′, it would simulate ℬ for 𝑂(𝑑2(log(𝑑) + log(1/𝜖))) times, and each time it
makes at most 𝑑 queries. For the adversary algorithm ℰ , it would run ℬ′ for 𝑂(𝑑𝑛/𝜖2) times,
giving us the query complexity beyond.

Reviewing our proof beyond, we notice that𝑚1 may not necessarily be a classical message. As
long as |𝑚1⟩ is a pure state, and we can obtain any polynomial copies of |𝑚1⟩, the analysis in our
proof exactly applies. Recall the IND-CPA Security from Definition 3.16, if the public key is pure,
the adversary algorithm ℰ can obtain polynomial many copies of |𝗉𝗄⟩. For any message 𝑚0 ̸= 𝑚1,
we can construct a key agreement for one bit by setting the second message as the ciphertext
𝖼𝗍0/𝖼𝗍1 respectively. Thus by running our ℰ beyond, we can break the IND-CPA security game
with advantage 1−𝑂(𝜖).

Now we show that our attack would still apply when the ciphertext is also quantum. The
proof would be similar to the proof beyond. By running the same algorithm ℰ we obtained the
state 𝜌𝐴′𝐵𝐸 , we would perform the measurement Π𝐴′𝐵𝐸 , but for the 𝐵 part we do not include the
ciphertext 𝜌𝑚2 register. We can define �̃� as beyond, and prove the following statements given
𝖵𝗂𝖾𝗐𝐴′𝐵𝐸 is a valid execution:

1. From the perspective of 𝖠′, the result 𝑠𝑡𝐴′ , 𝑅𝐴′ is compatible with �̃� , and will output mes-
sage |𝑚1⟩. By definition, 𝑅𝐴′ is compatible with �̃� . Since 𝖡 is not affected by channel
𝒯 , by uncomputing ℬ on state 𝜌𝐴′𝐵 , we can see that ℬ would also receive |𝑚1⟩ from 𝖠′.
From the observation, we can see that after performing the uncomputation, 𝑇𝐷(𝜌𝐴, 𝜌𝐴′) =
𝑇𝐷(𝜌𝐴′𝐵, 𝜌𝐴𝐵) ≤ 𝜖, thus 𝑠𝑡𝐴′ , 𝑅𝐴′ is compatible with output |𝑚1⟩ under oracle �̃� w.p. 1− 𝜖.

2. From the perspective of ℬ|𝐻⟩(|𝑚1⟩), the state before the measurement Π𝐴′𝐵𝐸 can be written
as 𝜌𝐵 =

∑︀
𝑘𝐵
𝑝𝑘𝐵 |𝑘𝐵⟩ ⟨𝑘𝐵| ⊗ 𝜌𝑘𝐵 . Similarly, we denote the state of ℬ|�̃�⟩(|𝑚1⟩) as 𝜎𝐵 =∑︀

𝑘𝐵
𝑝′𝑘𝐵 |𝑘𝐵⟩ ⟨𝑘𝐵| ⊗ 𝜎𝑘𝐵 . In the proof of Theorem 6.4, when we apply Lemma 6.2, we can
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obtain that 𝑇𝐷(𝜌𝐵, 𝜎𝐵) ≤ 𝑂(𝜖). Now we consider the classical part of 𝜌𝐵 and 𝜎𝐵 . Since
partial trace will not increase the trace distance, we have for distribution 𝐷𝐵 = {𝑝𝑘𝐵} and
𝐷′𝐵 = {𝑝′𝑘𝐵}, 𝑇𝑉 (𝐷𝐵, 𝐷

′
𝐵) ≤ 𝜖. Thus for state 𝜌′𝐴𝐵 =

∑︀
𝑘𝐵
𝑝′𝑘𝐵 |𝑘𝐵⟩ ⟨𝑘𝐵|⊗ 𝜌𝑘𝐵 , 𝑇𝐷(𝜌𝐵, 𝜌

′
𝐵) ≤

𝜖, and by triangular inequality, 𝑇𝐷(𝜌′𝐵, 𝜎𝐵) ≤ 2𝜖. Since 𝑇𝐷(𝜌′𝐵, 𝜎𝐵) = 𝔼[𝑇𝐷(𝜌𝑘𝐵 , 𝜎𝑘𝐵 )],
using Markov inequality, we can see that

Pr
(𝗌𝗄,𝑘𝐵)←𝐷𝐴′𝐵

[𝑇𝐷(𝜌𝑘𝐵 , 𝜎𝑘𝐵 ) ≤ 𝐶𝜖] ≥ 1− 2

𝐶
.

If we take 𝐶 = 1/
√
𝜖, we can obtain that w.p. 1−𝑂(

√
𝜖), 𝑇𝐷(𝜌𝑘𝐵 , 𝜎𝑘𝐵 ) ≤

√
𝜖.

We can see that |𝑚1⟩ , 𝜎𝑘𝐵 would be a valid transcript for 𝒜,ℬ under oracle �̃� . Thus when 𝜌𝑘𝐵
and 𝜎𝑘𝐵 is 𝑂(

√
𝜖) close, 𝒜�̃�(𝗌𝗄, 𝜌𝑘𝐵 ) will output 𝑘𝐴′ = 𝑘𝐵 with probability 1 − 𝑂(

√
𝜖). Thus we

obtain the following theorem:
For the clonable public key case 𝜌𝑚1 =

∑︀
𝑖 𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖|, we observe that the output of ℬ(𝜌𝑚1)

would be the convex combination of ℬ(|𝜓𝑖⟩). Thus by the perfect completeness property of the
protocol, each |𝜓𝑖⟩ would also be a valid public key. Further observing that the clonable case is a
convex combination of pure public keys, we have the following theorem:

Theorem 6.6. For any QPKE scheme with quantum public key in the random oracle model, if it satisfies
the following conditions:

1. Perfect completeness;
2. The public key 𝜌𝗉𝗄 is pure or clonable.
3. The key generation algorithm makes at most 𝑑 classical queries to the oracle;
4. The encryption algorithm makes at most 𝑑 quantum queries to the oracle;
5. The decryption algorithm makes at most 𝐷 quantum queries to the oracle.

There exists an adversary Eve that could break the public key encryption scheme w.p. 1−𝑂(
√
𝜖) by making

𝑂(𝑑4𝑛(log 𝑑+ log(1/𝜖))/𝜖2 +𝐷) queries to the oracle.

This theorem gives a tight characterization of multiple existing QPKE schemes. In [BGH+23]
and [Col23], they both provided a QPKE scheme with a pure quantum public key, but their public
key generation algorithms need to make quantum queries. Our result shows that the quantum
query is necessary for their key agreement scheme. In [KMNY23, MW23], they provided another
QPKE scheme where the quantum public key is mixed, but the key generation algorithm can only
make classical queries. Our result shows that their key must be mixed and unclonable in a strong
sense.
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A Additional Preliminaries

A.1 Compressed Oracle

The analysis of Appendix B relies on the compressed oracle techinque of Zhandry [Zha19]. Here,
We briefly introduce the ideas we needed. Zhandry shows that the standard quantum random
oracle is perfectly indistinguishable from the purified random oracle by any unbound quantum
adversary. For a standard random oracle 𝐻 : [2𝑛]→ {0, 1}, the initial state of the purified random
oracle is

∑︀
𝐻∈{0,1}2𝑛 |𝐻⟩. The oracle access to |𝐻⟩ is defined by a unitary transformation 𝑈𝐻 where

𝑈𝐻 |𝑥, 𝑦⟩ |𝐻⟩ := (−1)𝑦·𝐻(𝑥) |𝑥, 𝑦⟩ |𝐻⟩ .

Given a vector 𝑆 ∈ {0, 1}2𝑛 , define |�̂�⟩ :=
∑︀

𝐻∈{0,1}2𝑛 (−1)⟨𝐻,𝐷⟩ |𝐻⟩ where ⟨·, ·⟩ denotes inner

product. We call
{︁
|�̂�⟩
}︁

the Fourier basis of the oracle space. Then we have following lemma.

Lemma A.1. Let 𝒜 be a quantum algorithm that makes 𝑑 queries to the random oracle, the final state of 𝒜
can be written as

∑︀
|𝐷|≤𝑑 𝛼𝐷 |𝜓𝐷⟩ |�̂�⟩ where |𝐷| denotes the number of non-zero entries in 𝐷.

Proof. Prove by induction on 𝑑. When 𝑑 = 0, the initial joint state of working register 𝖠, the query
register 𝖰 and oracle register 𝖧 can be written as |𝜓⟩𝖠𝖰

∑︀
𝐻∈{0,1}2𝑛 |𝐻⟩𝖧 = |𝜓⟩𝖠𝖰 |0̂⟩𝖧. Supposing

the statement holds for 𝑑, then the current state can be written as
∑︀

𝑢,𝑥,𝑦,|𝐷|≤𝑑 𝛼𝑢,𝑥,𝑦,𝐷 |𝑢⟩𝖠 |𝑥, 𝑦⟩𝖰 |�̂�⟩𝖧.
After making one more query, the state becomes∑︁

𝑢,𝑥,𝑦,|𝐷|≤𝑑

𝛼𝑢,𝑥,𝑦,𝐷 |𝑢⟩𝖠 𝑈𝐻 |𝑥, 𝑦⟩𝖰 |�̂�⟩𝖧 =
∑︁

𝑢,𝑥,𝑦,|𝐷|≤𝑑

𝛼𝑢,𝑥,𝑦,𝐷 |𝑢⟩𝖠 𝑈𝐻 |𝑥, 𝑦⟩𝖰
∑︁
𝐻

(−1)⟨𝐻,𝐷⟩ |𝐻⟩𝖧

=
∑︁

𝑢,𝑥,𝑦,|𝐷|≤𝑑

𝛼𝑢,𝑥,𝑦,𝐷 |𝑢⟩𝖠 |𝑥, 𝑦⟩𝖰
∑︁
𝐻

(−1)⟨𝐻,𝐷⟩+𝑦·𝐻(𝑥) |𝐻⟩𝖧

=
∑︁

𝑢,𝑥,𝑦,|𝐷|≤𝑑

𝛼𝑢,𝑥,𝑦,𝐷 |𝑢⟩𝖠 |𝑥, 𝑦⟩𝖰
∑︁
𝐻

(−1)⟨𝐻,𝐷⊕(𝑥,𝑦)⟩ |𝐻⟩𝖧

=
∑︁

𝑢,𝑥,𝑦,|𝐷|≤𝑑

𝛼𝑢,𝑥,𝑦,𝐷 |𝑢⟩𝖠 𝑈𝐻 |𝑥, 𝑦⟩𝖰 | ̂𝐷 ⊕ (𝑥, 𝑦)⟩𝖧

where |𝐷 ⊕ (𝑥, 𝑦)| ≤ 𝑑+ 1.

B Non-Adaptive Quantum Key Agreement

Non-adaptive key agreement protocol is a special case of non-interactive protocol in Section 5.
It restricts Alice and Bob by only allowing them to make non-adaptive queries, i.e., queries can
depend on neither any previous queries nor classical communication. The famous Merkle Puzzles
and PRS-based protocols are both examples of this non-adaptive case. Formally,
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Definition B.1 (Non-adaptive Quantum Key Agreement). A QKA protocol between Alice and Bob
with access to a random oracle 𝐻 is called non-adaptive if (i) the protocol is non-interactive (see Defini-
tion 5.1), (ii) Alice’s (Bob’s) query algorithm consists of the following steps:

1. Prepare a quantum state 𝜎1 ⊗ 𝜎2 ⊗ · · · ⊗ 𝜎𝑑 where 𝜎𝑖 is the state of the input and output registers of
the 𝑖-th query.

2. Make the 𝑑 queries to 𝐻 in parallel.

We show that for this special case, the number of queries Eve needed can be improved from
𝑂(𝑑2𝑒) to ̃︀𝑂(𝑑2), which is independent of the input size of the random oracle. We remark that
unlike Theorem 5.2, this result only works for random oracle.

Theorem B.2. Given a non-adaptive QKA protocol between Alice and Bob with access to a random oracle
𝐻 , let 𝑘𝐴, 𝑘𝐵 be key of Alice and Bob respectively. If Pr[𝑘𝐴 = 𝑘𝐵] ≥ 𝛿, then there exists an eavesdropper
Eve who outputs her key 𝑘𝐸 with 𝑂

(︁
𝑑2

𝜖2
log2 𝑑

𝜖

)︁
queries such that Pr[𝑘𝐸 = 𝑘𝐴] ≥ 𝛿 − 𝜖.

The rest of this section is a proof of Theorem B.2. Similar to non-interactive case, our goal is
to show that Eve can somehow repeat Alice’s query algorithm to make CMI sufficiently small so
that she can recover the key.

B.1 Recasting It as a Classical Random Walk Problem

Since queries are non-adaptive, we assume Alice and Bob use the same query algorithm denoted
by 𝒬 without loss of generality. Let 𝐻 : [2𝑛] → {0, 1} be the random oracle. By Lemma A.1, the
state after applying 𝒬 once can be written as∑︁

𝐷∈{0,1}2𝑛 :|𝐷|≤𝑑

𝛼𝐷 |𝜓𝐷⟩ |�̂�⟩

where |𝜓𝐷⟩ are states in the working register and |�̂�⟩ are the Fourier basis states in the oracle
register (see Appendix A.1). The following lemma describes properties of the states |𝜓𝐷⟩, which
follows directly from Lemma A.1.

Lemma B.3. (a) If the query is non-adaptive, then |𝜓𝐷⟩ and |𝜓𝐷′⟩ are orthogonal if 𝐷 ̸= 𝐷′.
(b) If we repeat 𝒬 for 𝑡 times, then the joint state of working register and oracle register is∑︁

𝐷1,𝐷2,...,𝐷𝑡

𝛼𝐷1𝛼𝐷2 · · ·𝛼𝐷𝑡 |𝜓𝐷1⟩ |𝜓𝐷2⟩ · · · |𝜓𝐷𝑡⟩ |⊕̂𝑡
𝑖=1𝐷𝑖⟩ .

Let𝒟 denote the distribution on {0, 1}2𝑛 where Pr𝐷∼𝒟[𝐷 = 𝑥] = |𝛼𝑥|2. Define random variable
𝐷𝑡 := 𝐷1⊕ · · · ⊕𝐷𝑡 where 𝐷1, 𝐷2, . . . , 𝐷𝑡 are i.i.d. samples drawn from 𝒟. We remark that 𝐷𝑡 can
be viewed as a random walk with 𝑡 steps in the hypercube {0, 1}2𝑛 where each step is sampled by
distribution 𝒟.

We first consider the same attack strategy as in Section 5 where Eve repeats 𝒬 for sufficient
large times. We have the following lemma.

Lemma B.4. Let 𝖠0 and 𝖡0 denote the state of Alice and Bob right after applying𝒬 respectively, 𝖤0 be the
state of Eve repeating 𝒬 for 𝑡 times. Then 𝐼

(︀
𝖠0 : 𝖡0 | 𝖤0

)︀
= 2𝑆

(︀
𝐷𝑡+1

)︀
− 𝑆

(︀
𝐷𝑡
)︀
− 𝑆

(︀
𝐷𝑡+2

)︀
.
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Proof. By the definition of CMI, we have

𝐼
(︀
𝖠0 : 𝖡0 | 𝖤0

)︀
= 𝑆(𝖠0𝖤0) + 𝑆(𝖡0𝖤0)− 𝑆(𝖤0)− 𝑆(𝖠0𝖡0𝖤0).

Then we compute each term separately. Since Alice and Eve together run 𝒬 for 𝑡 + 1 times, by
Lemma B.3(b) the joint state of Alice 𝖠, Eve 𝖤 and Oracle 𝖧 can be viewed as pure state

|𝜑⟩𝖠𝖤𝖧 =
∑︁

𝐷1,𝐷2,...,𝐷𝑡+1

𝛼𝐷1𝛼𝐷2 · · ·𝛼𝐷𝑡+1 |𝜓𝐷1⟩𝖠
(︀
|𝜓𝐷2⟩ · · · |𝜓𝐷𝑡+1⟩

)︀
𝖤
|⊕̂𝑡+1

𝑖=1𝐷𝑖⟩𝖧 .

Let 𝜎𝖠𝖤𝖧 = |𝜑⟩𝖠𝖤𝖧 ⟨𝜑|𝖠𝖤𝖧 , 𝜎𝖠𝖤 = Tr𝖧(𝜎𝖠𝖤𝖧), 𝜎𝖧 = Tr𝖠𝖤(𝜎𝖠𝖤𝖧). By Lemma B.3(a), |𝜓𝐷⟩ are orthog-
onal states. Then we have

𝜎𝖧 = Tr𝖠𝖤(𝜎𝖠𝖤𝖧) =
∑︁

𝐷1,𝐷2,...,𝐷𝑡+1

⃒⃒
𝛼𝐷1𝛼𝐷2 · · ·𝛼𝐷𝑡+1

⃒⃒2 |⊕̂𝑡+1
𝑖=1𝐷𝑖⟩ ⟨⊕̂𝑡+1

𝑖=1𝐷𝑖| .

Since 𝜎𝖠𝖤𝖧 is a pure state, we have 𝑆(𝜎𝖠𝖤) = 𝑆(𝜎𝖧). Then 𝑆(𝖠0𝖤0) = 𝑆(𝜎𝖠𝖤) = 𝑆(𝜎𝖧) = 𝑆(𝐷𝑡+1).
Similarly, we have 𝑆(𝖡0𝖤0) = 𝑆(𝐷𝑡+1) and 𝑆(𝖤0) = 𝑆(𝐷𝑡) and 𝑆(𝖠0𝖡0𝖤0) = 𝑆(𝐷𝑡+2). Thus
𝐼
(︀
𝖠0 : 𝖡0 | 𝖤0

)︀
= 2𝑆

(︀
𝐷𝑡+1

)︀
− 𝑆

(︀
𝐷𝑡
)︀
− 𝑆

(︀
𝐷𝑡+2

)︀
.

Thus the quantum CMI can be expressed using the entropy of classical variable 𝐷𝑡. If we can
show that 2𝑆

(︀
𝐷𝑡+1

)︀
− 𝑆

(︀
𝐷𝑡
)︀
− 𝑆

(︀
𝐷𝑡+2

)︀
is small, then we can conclude Theorem B.2. Unfortu-

nately, 𝑆
(︀
𝐷𝑡
)︀

is difficult to compute, so we slightly modify Eve’s strategy using Poissonization
trick. We first define Poissonized version of Alice:

1. For each 𝑖 ∈ [𝑑], Alice samples an independent Poisson variable 𝑃𝑖 with parameter log𝜇𝑑
where 𝜇 ≥ 2, and then repeats the 𝑖-th query for 𝑃𝑖 times.

2. If Alice repeats each query at least once, then she will execute the original protocol and
output the key as before. Otherwise, she aborts and output key 0.

Poissonized version of Bob is defined similarly. We remark that Poissonized Alice and Bob will
make expected𝑂(𝑑 log 𝑑) queries. W.p.

(︀
1− 𝑒− log 𝜇𝑑

)︀2𝑑 ≥ 1−1/𝜇, Poissionized Alice and Bob will
repeat each query at least once and then agree on the same key as before. Thus if Eve can recover
Poissonized Alice and Bob’s key, she can also recover the real key w.p. at least 1 − 1/𝜇. We have
the following theorem.

Theorem B.5. Given a positive integer 𝑡, let ̃︀𝖠0 and ̃︀𝖡0 be the state of Poissonized Alice and Bob right after
querying, ̃︀𝖤0 be 𝑡 copies of ̃︀𝖠0. Then 𝐼

(︁̃︀𝖠0 : ̃︀𝖡0 | ̃︀𝖤0
)︁
= 𝑂 (𝑑 log𝜇𝑑/𝑡).

Before proving the above theorem, we first use it to conclude Theorem B.2.

Proof of Theorem B.2. Let ̃︀𝖠0 and ̃︀𝖡0 be the state of Poissonized Alice and Bob right after querying,̃︀𝖠𝑓 and ̃︀𝖡𝑓 be the states of Poissonized Alice and Bob respectively right after finishing the commu-
nication but before outputting the key, Π denote the communications. Let Eve’s attack strategy be
as follows:

1. Eve repeats ̃︀𝖠0 for 𝑂
(︁
𝑑 log 𝜇𝑑

𝜖2

)︁
times and obtains state ̃︀𝖤0.

2. Eve applies the channel in Lemma 2.3 w.r.t. system ̃︀𝖠𝑓̃︀𝖤0̃︀𝖡𝑓 and obtains a fake view ̃︀𝖠𝑓 ′
of̃︀𝖠𝑓 . Then use ̃︀𝖠𝑓 ′

to output key 𝑘𝐸 .
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By Theorem B.5, we have 𝐼
(︁̃︀𝖠0 : ̃︀𝖡0 | ̃︀𝖤0

)︁
= 𝑂(𝜖2). Since classical communication does not in-

crease CMI by Lemma 4.4 and Lemma 4.3, we have 𝐼
(︁̃︀𝖠𝑓 : ̃︀𝖡𝑓 | ̃︀𝖤0,Π

)︁
≤ 𝐼

(︁̃︀𝖠0 : ̃︀𝖡0 | ̃︀𝖤0
)︁
= 𝑂(𝜖2).

Then by Theorem 3.11, ̃︀𝖠𝑓 ′̃︀𝖡𝑓 is 𝑂(𝜖)-close to ̃︀𝖠𝑓 ̃︀𝖡𝑓 . Let ̃︀𝑘𝐴 be the key of Poissonized Alice. Then
Pr
[︁
𝑘𝐸 = ̃︀𝑘𝐴]︁ ≥ 𝛿−𝑂(𝜖). Since w.p. 1−1/𝜇 the Poissonized Alice and Bob will be the same as real

Alice and Bob, we have Pr [𝑘𝐸 = 𝑘𝐴] ≥ 𝛿−𝑂(𝜖)−1/𝜇. By setting 𝜇 = 2/𝜖 and adjusting constants,
we have Pr [𝑘𝐸 = 𝑘𝐴] ≥ 𝛿 − 𝜖 and Eve needs 𝑂

(︁
𝑑 log𝜇𝑑 · 𝑑 log 𝜇𝑑

𝜖2

)︁
= 𝑂(𝑑

2

𝜖2
log2 𝑑

𝜖 ) queries.

B.2 Proof of Theorem B.5

First observe that because non-adaptive queries do not depend on each other, the distribution 𝒟
can be viewed as the sum of 𝑑 independent distributions 𝒟[1],𝒟[2], . . . ,𝒟[𝑑], all of which are on
{0, 1}2𝑛 with Hamming weight 1. That is, 𝒟 = 𝒟[1]⊕𝒟[2]⊕ · · · ⊕ 𝒟[𝑑]. Given a positive integer 𝑡,
define a random variable ̃︀𝐷𝑡 as follows:

1. For each ℓ ∈ [𝑑], first sample ̃︀𝑡ℓ from Pois(𝑡 log𝜇𝑑) independently and then draw i.i.d. sam-
ples 𝐷1[ℓ], 𝐷2[ℓ], . . . , 𝐷̃︀𝑡ℓ [ℓ] from 𝒟[ℓ].

2. Let ̃︀𝐷𝑡 =
⨁︀𝑑

ℓ=1

⨁︀̃︀𝑡ℓ
𝑖=1𝐷𝑖[ℓ].

Then we have the following lemma, which can be proved similarly as Lemma B.4.

Lemma B.6. Given a positive integer 𝑡, let ̃︀𝖤0 be 𝑡 copies of ̃︀𝖠0. Then

𝐼
(︁̃︀𝖠0 : ̃︀𝖡0 | ̃︀𝖤0

)︁
= 2𝑆

(︁ ̃︀𝐷𝑡+1
)︁
− 𝑆

(︁ ̃︀𝐷𝑡
)︁
− 𝑆

(︁ ̃︀𝐷𝑡+2
)︁
.

Thus Theorem B.5 follows directly from the following theorem.

Theorem B.7. Given an integer 𝑡 > 1, 2𝑆
(︁ ̃︀𝐷𝑡

)︁
− 𝑆

(︁ ̃︀𝐷𝑡−1
)︁
− 𝑆

(︁ ̃︀𝐷𝑡+1
)︁
= 𝑂 (𝑑 log𝜇𝑑/𝑡).

Proof. Let 𝑝ℓ,𝑖 = Pr (𝐷[ℓ] = 𝐞𝑖) an 𝑝ℓ,0 = Pr
(︀
𝐷[ℓ] = 02

𝑛)︀
for ℓ ∈ [𝑑] where 𝐞𝑖 denotes the 𝑖-th

standard basis vector in {0, 1}2𝑛 . The crucial observation is that ̃︀𝐷𝑡 can also be generated by the
following process:

• For each ℓ ∈ [𝑑] and 𝑖 ∈ [2𝑛], sample ̃︀𝑡ℓ,𝑖 from Pois(𝑝ℓ,𝑖𝑡 log𝜇𝑑) independently.
• Let ̃︀𝐷𝑡 =

∑︀
𝑙∈[𝑑]

∑︀
𝑖∈[2𝑛] ̃︀𝑡ℓ,𝑖𝐞𝑖 mod 2.

Note that
{︀̃︀𝑡1,1, . . . ,̃︀𝑡𝑑,2𝑛}︀ are mutually independent. Then all of the 2𝑛 bits of ̃︀𝐷𝑡 are mutually

independent, so

𝑆
(︁ ̃︀𝐷𝑡

)︁
=

2𝑛∑︁
𝑖=1

𝑆
(︁

the 𝑖-th bit of ̃︀𝐷𝑡
)︁
=

2𝑛∑︁
𝑖=1

𝑆

⎛⎝parity

⎛⎝∑︁
ℓ∈[𝑑]

̃︀𝑡ℓ,𝑖
⎞⎠⎞⎠ .

Note that
∑︀

ℓ∈[𝑑] ̃︀𝑡ℓ,𝑖 ∼ Pois
(︁
𝑡 log𝜇𝑑 ·

∑︀
ℓ∈[𝑑] 𝑝ℓ,𝑖

)︁
. According to Formula (6) in [Mül92],

Pr

⎡⎣parity
⎛⎝∑︁

ℓ∈[𝑑]

̃︀𝑡ℓ,𝑖
⎞⎠ = 1

⎤⎦ =
1− 𝑒−2𝔼[

∑︀
ℓ∈[𝑑]

̃︀𝑡ℓ,𝑖]
2

=
1− 𝑒−2𝑡 log 𝜇𝑑·

∑︀
ℓ∈[𝑑] 𝑝ℓ,𝑖

2
.
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Then we have

2𝑆
(︁ ̃︀𝐷𝑡

)︁
− 𝑆

(︁ ̃︀𝐷𝑡−1
)︁
− 𝑆

(︁ ̃︀𝐷𝑡+1
)︁
=

2𝑛∑︁
𝑖=1

𝑓

⎛⎝log𝜇𝑑 ·
∑︁
ℓ∈[𝑑]

𝑝ℓ,𝑖

⎞⎠
where

𝑓(𝑝) := 2𝐻

(︂
1− 𝑒−2𝑡𝑝

2

)︂
−𝐻

(︃
1− 𝑒−2(𝑡−1)𝑝

2

)︃
−𝐻

(︃
1− 𝑒−2(𝑡+1)𝑝

2

)︃
,

𝐻(𝑝) := −𝑝 log 𝑝− (1− 𝑝) log(1− 𝑝).

By Lemma B.8 and the fact that
∑︀

ℓ,𝑖 𝑝ℓ,𝑖 ≤ 𝑑, we conclude that

2𝑆
(︁ ̃︀𝐷𝑡

)︁
− 𝑆

(︁ ̃︀𝐷𝑡−1
)︁
− 𝑆

(︁ ̃︀𝐷𝑡+1
)︁
= 𝑂

⎛⎝⎛⎝𝑒−𝑡𝑑+∑︁
ℓ,𝑖

𝑝ℓ,𝑖/𝑡

⎞⎠ log𝜇𝑑

⎞⎠ = 𝑂(𝑑 log𝜇𝑑/𝑡).

Lemma B.8. For 𝑝 ∈ [0, 1], 𝑓(𝑝) = 𝑂(𝑝/𝑡). For 𝑝 > 1, 𝑓(𝑝) = 𝑂(𝑒−𝑡).

Proof. 𝑓(𝑝) = 0 when 𝑝 = 0. When 𝑝 ∈ (0, 1], since 𝐻(𝑝) is concave,

𝑓(𝑝) =

[︃
𝐻

(︂
1

2
− 𝑒−2𝑡𝑝

2

)︂
−𝐻

(︃
1

2
− 𝑒−2(𝑡−1)𝑝

2

)︃]︃
−

[︃
𝐻

(︃
1

2
− 𝑒−2(𝑡+1)𝑝

2

)︃
−𝐻

(︂
1

2
− 𝑒−2𝑡𝑝

2

)︂]︃

≤ 𝐻 ′
(︃
1

2
− 𝑒−2(𝑡−1)𝑝

2

)︃(︃
𝑒−2(𝑡−1)𝑝

2
− 𝑒−2𝑡𝑝

2

)︃
−𝐻 ′

(︃
1

2
− 𝑒−2(𝑡+1)𝑝

2

)︃(︃
𝑒−2𝑡𝑝

2
− 𝑒−2(𝑡+1)𝑝

2

)︃
=

1

ln 2

(︀
𝑒2𝑝 − 1

)︀
𝑒−2𝑝(𝑡+1)

(︁
𝑒2𝑝 tanh−1

(︁
𝑒−2𝑝(𝑡−1)

)︁
− tanh−1

(︁
𝑒−2𝑝(𝑡+1)

)︁)︁
.

For 𝑝 ∈ (0, 1],
(︀
𝑒2𝑝 − 1

)︀
≤ 𝑒2𝑝 = 𝑂(𝑝). Then 𝑓(𝑝) ≤ 𝑒2𝑝

ln 2 · 𝑞
𝑡+1
(︁
1
𝑞 tanh

−1 (︀𝑞𝑡−1)︀− tanh−1
(︀
𝑞𝑡+1

)︀)︁
where 𝑞 = 𝑒−2𝑝 ∈ [𝑒−2, 1). By Lemma B.9, 𝑓(𝑝) = 𝑂(𝑝/𝑡).

Note that 𝐻(1/2 + 𝑥) = 1 +𝑂(𝑥2) when 𝑥 is small. Then for 𝑝 > 1,

𝑓(𝑝) = 𝐻

(︂
1− 𝑒−2𝑡𝑝

2

)︂
−𝐻

(︃
1− 𝑒−2(𝑡−1)𝑝

2

)︃
−𝐻

(︃
1− 𝑒−2(𝑡+1)𝑝

2

)︃
=
[︀
2 +𝑂

(︀
𝑒−4𝑝𝑡

)︀]︀
−
[︁
1 +𝑂

(︁
𝑒−4𝑝(𝑡−1)

)︁]︁
−
[︁
1 +𝑂

(︁
𝑒−4𝑝(𝑡+1)

)︁]︁
= 𝑂(𝑒−𝑡).

Lemma B.9. Given 𝑡 > 1, 𝑞 ∈ [0, 1), then 𝑞𝑡+1
(︁
1
𝑞 tanh

−1 (︀𝑞𝑡−1)︀− tanh−1
(︀
𝑞𝑡+1

)︀)︁
= 𝑂(1/𝑡).

Proof. Split the left-hand side of the equation into two parts:[︀
𝑞𝑡
(︀
tanh−1

(︀
𝑞𝑡−1

)︀
− tanh−1

(︀
𝑞𝑡+1

)︀)︀]︀
+
[︀
(1− 𝑞)𝑞𝑡 tanh−1

(︀
𝑞𝑡+1

)︀]︀
.
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By the fact that tanh−1(𝑥) is convex for 𝑥 ∈ [0, 1), the first part

𝑞𝑡
(︀
tanh−1

(︀
𝑞𝑡−1

)︀
− tanh−1

(︀
𝑞𝑡+1

)︀)︀
≤ 𝑞𝑡

(︀
𝑞𝑡−1 − 𝑞𝑡+1

)︀
tanh−1

′ (︀
𝑞𝑡−1

)︀
= 𝑞2𝑡−1

1− 𝑞2

1− 𝑞2(𝑡−1)

=
𝑞2𝑡−1

1 + 𝑞2 + 𝑞4 + · · ·+ 𝑞2(𝑡−2)

≤ 𝑞2𝑡−1

(𝑡− 1)𝑞2(𝑡−2)
=

𝑞3

𝑡− 1
≤ 1

𝑡− 1
.

By the inequality tanh−1(𝑥) ≤ 1
2

(︁
1+𝑥
1−𝑥 − 1

)︁
for 𝑥 ∈ [0, 1), the second part

(1− 𝑞)𝑞𝑡 tanh−1
(︀
𝑞𝑡+1

)︀
≤ (1− 𝑞)𝑞𝑡 · 1

2

(︂
1 + 𝑞𝑡+1

1− 𝑞𝑡+1
− 1

)︂
= 𝑞2𝑡+1 1− 𝑞

1− 𝑞𝑡+1

=
𝑞2𝑡+1

1 + 𝑞 + 𝑞2 + · · ·+ 𝑞𝑡

≤ 𝑞2𝑡+1

(𝑡+ 1)𝑞𝑡
=

𝑞𝑡+1

𝑡+ 1
≤ 1

𝑡+ 1
.

Thus 𝑞𝑡+1
(︁
1
𝑞 tanh

−1 (︀𝑞𝑡−1)︀− tanh−1
(︀
𝑞𝑡+1

)︀)︁
≤ 1

𝑡−1 + 1
𝑡+1 = 𝑂(1/𝑡) for 𝑞 ∈ [0, 1).

C Public Key Encryption with a Short Classical Secret Key

In this section, we consider a special case of QPKE where the secret key is classical string of loga-
rithmic length. We show that such kind of QPKE does not exist in any classical oracle model. In
the following, we use the same notations as in Definition 6.1 except that the key generation 𝖦𝖾𝗇|𝐻⟩

is also quantum. Formally,

Theorem C.1. Given a QPKE scheme (𝖦𝖾𝗇|𝐻⟩,𝖤𝗇𝖼|𝐻⟩,𝖣𝖾𝖼|𝐻⟩) with classical keys in the oracle model
where 𝐻 ← 𝒪𝜆 is any oracle whose quantum query unitary 𝑈𝐻 acts on 𝑒𝜆 qubits, if the scheme satisfies
the following conditions:

1. the secret key 𝗌𝗄 is classical string of 𝑂(log 𝜆) length;
2. it is 𝛿-complete i.e., Pr𝑟,𝐻 [𝖣𝖾𝖼|𝐻⟩(𝗌𝗄,𝖤𝗇𝖼|𝐻⟩(𝗉𝗄,𝑚)) = 𝑚 : 𝖦𝖾𝗇|𝐻⟩(1𝜆)→ (𝗉𝗄, 𝗌𝗄)] ≥ 𝛿;
3. it makes at most 𝑑𝜆 queries to 𝐻 at each stage,

then there exists an adversary Eve who outputs her guess 𝑚𝐸 of 𝑚 such that Pr[𝑚𝐸 = 𝑚] ≥ 𝛿 − 𝜖 by
making 𝑂

(︀
𝑑2𝜆𝑒𝜆𝗉𝗈𝗅𝗒(𝜆)/𝜖

2
)︀

queries.

Proof. Eve only needs to break the two-round QKA between Alice and Bob consisting of the fol-
lowing steps:

1. Alice runs 𝖦𝖾𝗇|𝐻⟩ to produce 𝗉𝗄, 𝗌𝗄 where 𝗌𝗄 is a classical string of 𝑂(log 𝜆) length, and then
sends 𝗉𝗄 as the first message 𝜋𝐴 to Bob. We call Alice’s algorithm at this stage 𝒜1.
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2. Upon receiving 𝜋𝐴 := 𝗉𝗄, Bob samples a uniformly random key 𝑘𝐵 , computes 𝖼𝗍← 𝖤𝗇𝖼|𝐻⟩(𝗉𝗄, 𝑘𝐵)
and sends 𝜋𝐵 := 𝖼𝗍 to Alice. We call Bob’s algorithm at this stage ℬ.

3. Upon receiving 𝜋𝐵 := 𝖼𝗍, Alice outputs her key 𝑘𝐴 := 𝖣𝖾𝖼|𝐻⟩(𝗌𝗄, 𝖼𝗍). We call Alice’s algo-
rithm at this stage 𝒜2.

Let 𝖡 denote the state of Bob aftering running ℬ, 𝖠 denote the state of Alice after runing 𝒜2, and
𝜋 denote (𝜋𝐴, 𝜋𝐵). Eve’s strategy is as follows:

1. Run ℬ for 𝑡 times and obtain state 𝖡1,𝖡2, . . . ,𝖡𝑡.
2. For each 𝑖 ∈ {0, 1}𝑂(log 𝜆), Run 𝒜2 with 𝗌𝗄 = 𝑖 for 𝑡 times and obtain state 𝖠

(𝑖)
1 ,𝖠

(𝑖)
2 , . . . ,𝖠

(𝑖)
𝑡 .

3. Finally, apply the recovery channel in Theorem 3.11 to generate a fake view �̂� of Bob 𝖡 and
then use �̂� to compute key 𝑘𝐸 .

By setting 𝑡 = 2 ln 2 · 𝑒𝜆𝑑𝜆/𝜖2, we have 𝖠�̂� is 𝑂(𝜖)-close to 𝖠𝖡 by Lemma C.3 and Lemma 2.3.
Thus we have Pr[𝑘𝐸 = 𝑘] ≥ 𝛿 − 𝜖 and Eve needs to make 𝑡 · 𝑂(𝑑𝜆𝗉𝗈𝗅𝗒(𝜆)) = 𝑂(𝑑2𝜆𝑒𝜆𝗉𝗈𝗅𝗒(𝜆)/𝜖

2)
queries.

Remark C.2. Similar to the generalization from Theorem 1.1 to Theorem 1.2, Theorem C.1 can be general-
ized to the case where the public key 𝗉𝗄 is quantum, but 𝗉𝗄 needs to be either pure or “efficiently clonable”.

Lemma C.3. There exists 𝑞, 𝑞1, 𝑞2, . . . , 𝑞𝗉𝗈𝗅𝗒(𝜆) ∈ [𝑡] such that

𝐼 (𝗌𝗄,𝖠 : 𝖡|𝖤, 𝜋) ≤ 2𝑒𝜆𝑑𝜆/𝑡

where 𝖤 =
(︁
𝖡1,𝖡2, . . . ,𝖡𝑞,𝖠

(1)
1 ,𝖠

(1)
2 , . . . ,𝖠

(1)
𝑞1 ,𝖠

(2)
1 ,𝖠

(2)
2 , . . . ,𝖠

(2)
𝑞2 , . . . ,𝖠

(𝗉𝗈𝗅𝗒(𝜆))
1 , . . . ,𝖠

(𝗉𝗈𝗅𝗒(𝜆))
𝑞𝗉𝗈𝗅𝗒(𝜆)

)︁
.

Proof. By chain rule and the fact that 𝗌𝗄 is classical,

𝐼(𝗌𝗄,𝖠 : 𝖡|𝖤, 𝜋) = 𝐼(𝗌𝗄 : 𝖡|𝖤, 𝜋) + 𝐼(𝖠 : 𝖡|𝖤, 𝜋, 𝗌𝗄)
= 𝐼(𝗌𝗄 : 𝖡|𝖤, 𝜋) + 𝔼𝑠𝐼(𝖠 : 𝖡|𝖤, 𝜋, 𝗌𝗄 = 𝑠).

For the first part, observe that states 𝖡,𝖡1, . . . ,𝖡𝑡 are permutation invariant w.r.t. 𝗌𝗄, 𝜋 and the rest
of Eve. Then by Lemma 4.2, there exists 𝑞 ∈ [𝑡] such that 𝐼(𝗌𝗄 : 𝖡|𝜋, . . . ,𝖡1,𝖡2 . . . ,𝖡𝑞) ≤ 𝑆(𝖡)/(𝑡+
1) ≤ 2𝑒𝜆𝑑𝜆/𝑡. For the second part, observe that conditioned on 𝗌𝗄 = 𝑠, states 𝖠,𝖠

(𝑠)
1 , . . . ,𝖠

(𝑠)
𝑡 are

permutation invariant w.r.t. 𝜋 and the rest of Eve. Then by Lemma 4.2, there exists 𝑞𝑠 ∈ [𝑡] such
that 𝐼(𝖠 : 𝖡|𝗌𝗄 = 𝑠, 𝜋, . . . ,𝖠

(𝑠)
1 ,𝖠

(𝑠)
2 , . . . ,𝖠

(𝑠)
𝑞𝑠 ) ≤ 𝑆(𝖠|𝗌𝗄 = 𝑠)/(𝑡 + 1) ≤ 2𝑒𝜆𝑑𝜆/𝑡. Thus we have

𝐼(𝗌𝗄,𝖠 : 𝖡|𝖤, 𝜋) ≤ 2𝑒𝜆𝑑𝜆/𝑡.
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