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Abstract. The Learning with Errors (LWE) problem with its vari-
ants over structured lattices has been widely exploited in efficient post-
quantum cryptosystems. Recently, May [59] suggests the Meet-LWE at-
tack, which poses a significant advancement in the line of work on the
Meet-in-the-Middle approach to analyze LWE with ternary secrets.

In this work, we generalize and extend the idea of Meet-LWE by in-
troducing ternary trees, which result in diverse representations of the
secrets. More precisely, we split the secrets into three pieces with the
same dimension and expand them into a ternary tree to leverage the
increased representations to improve the overall attack complexity. We
carefully analyze and optimize the time and memory costs of our attack
algorithm exploiting ternary trees, and compare them to those of the
Meet-LWE attack. With asymptotic and non-asymptotic comparisons,
we observe that our attack provides improved estimations for all pa-
rameter settings, including those of the practical post-quantum schemes,
compared to the Meet-LWE attack. We also evaluate the security of the
Round 2 candidates of the KpqC competition which aims to standardize
post-quantum public key cryptosystems in the Republic of Korea, and re-
port that the estimated complexities for our attack applied to SMAUG-T
are lower than the claimed for some of the recommended parameters.

Keywords: Learning with Errors, Meet-LWE, Meet-in-the-Middle, KpqC Com-
petition

1 Introduction

There have been rapid advances in Post-Quantum Cryptography (PQC) since
the National Institute of Standards and Technology (NIST) launched a stan-
dardization project for post-quantum Key Encapsulation Mechanisms (KEM)
and digital signatures [60]. Remarkably, three lattice-based schemes Kyber [19],
Dilithium [35], and Falcon [39] out of 4 in total are selected as standards at
the end of the third round. Likewise, standardization efforts for PQC have been
made in South Korea, conducting a KpqC competition since 2022 [24].
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In these circumstances, the Learning with Errors (LWE) problem with its
variants over structured lattices [62,56,51,21] is currently, out of question, one of
the richest sources of efficient post-quantum cryptosystems including Kyber [19]
and Dilithium [35]. Moreover, various cryptographic primitives have been pro-
posed based on LWE due to its versatility and fast operations [22,32,55]. An

LWE instance with m samples is given as (A, b⃗) ∈ Zm×n
q ×Zm

q where A ∈ Zm×n
q

is uniformly sampled, and a small s⃗ ∈ Zn
q and a small error e⃗ ∈ Zq satisfying

A · s⃗ = b⃗ + e⃗ mod q exist. The (search) LWE problem aims to find the secret

vector s⃗ ∈ Zn
q for given an LWE instance (A, b⃗), where b⃗ − A · s⃗ is sufficiently

small.

Though the theoretical hardness of LWE for large n is grounded by the re-
duction to worst-case lattice hard problems, the parameterization for n, q, and
the error distributions remains complex to achieve practical LWE-based crypto-
graphic schemes while guaranteeing concrete security against all existing attacks.
Many recent practical constructions have opted for extremely short secrets and
errors with bounded max-norms to enhance efficiency. For instance, some popu-
lar signature schemes such as BLISS [34], GLP [40] and NTRU-type encryption
schemes such as NTRU [44], NTRU Prime [16] and NTRU+ [1] utilize binary or
ternary secrets and errors. Additionally, the state-of-the-art fully homomorphic
encryption (FHE) schemes like BGV [22] and CKKS [32] employ ternary secrets.
Moreover, several schemes [44] make use of sparse ternary or sparse binary se-
crets with fixed Hamming weights for efficiency and specific functionalities, such
as handling the decryption failure rates in NTRU-type schemes where the de-
cryption failure implies fatal attacks [47,33] and enabling the bootstrapping in
FHEs [27,30].

However, while fruitful ideas and results for tackling the LWE problem have
been suggested so far [9], the cryptanalytic hardness of LWE with sparse or
ternary secrets is less understood. Exploiting the features of small secrets, the
combinatorial attack is considered as one of the most natural strategies, and
it yields a better attack complexity when combined with the lattice reduction
techniques. Nevertheless, the Meet-in-the-Middle (MitM) approach proposed by
Odlyzko [44] has long been the best combinatorial attack, resulting in an attack
complexity of S0.5, where S is the size of the search space for the secret key.

Recently, Alexandar May introduced a pioneering MitM combinatorial attack
named Meet-LWE with an improved asymptotic complexity of S0.25 [59]. Meet-
LWE combines the Howgrave-Graham’s representation technique [46] with a
tree-based list construction for the secrets and their locality sensitive hash values.
In a high-level overview, May represents the LWE secret s⃗ ∈ {0,±1}n := s⃗1+ s⃗2
where s⃗1, s⃗2 ∈ {0,±1}n have the same dimension n, and leverage the plural
representations of s⃗ by guessing some of the coordinates of e⃗ to reduce the list
construction complexity for s⃗. Refer to Section 2.4 for more details.
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Table 1: Comparison on Time Complexity Estimations of May’s Meet-LWE At-
tack (REP-2) and Our Attack for Various Schemes

Schemes (n, q, w) May [bit] Ours [bit]

NTRU-Encrypt [44] (509, 2048, 254) 227 = 189+38 192 = 173+19
(677, 2048, 254) 273 = 231+42 214 = 190+24
(821, 4096, 510) 378 = 318+60 346 = 318+28

NTRU Prime [16] (653, 4621, 288) 272 = 229+42 232 = 213+19
(761, 4591, 286) 301 = 258+43 242 = 218+24
(857, 5167, 322) 338 = 291+47 273 = 247+26

BLISS I+II [34] (512, 12289, 154) 187 = 163+24 151 = 136+15

GLP I [40] (512, 8383489, 342) 225 = 206+20 217 = 194+23

NTRU+ [1] (576, 3457, 288) 263 = 228+36 221 = 200+21
(768, 3457, 384) 349 = 302+47 287 = 261+26
(864, 3457, 432) 392 = 339+53 319 = 288+31
(1152, 3457, 576) 519 = 448+71 433 = 397+36

SMAUG-T [2] (512, 1024, 100) 144 = 124+21 122 = 98+24
(512, 1024, 132) 167 = 147+20 147 = 132+16
(768, 2048, 151) 214 = 192+21 182 = 161+21
(1280, 2048, 160) 283 = 255+29 231 = 210+21

1.1 Our Contribution

In this paper, we concentrate on the setting of LWE with ternary secrets and
errors of which each component lies in {0,±1}, where the limited number of
samples are given (m = n). We generalize the Meet-LWE attack and suggest
an improved combinatorial attack by changing the way of constructing lists for
candidates of solutions and their locality sensitive hash values on top of the
Meet-LWE strategy.

Roughly speaking, the core idea underlying Meet-LWE is to reduce the list
sizes for secrets by introducing the representation technique, with a factor of
⌊logq R⌋ on each level of the tree where R is the number of representations
on that level. On the other side, it costs a guessing complexity on each level
multiplied by the list construction complexity, so the attack complexity, when
increasing tree levels or switching the representation strategies for larger R’s,
converges quickly in their approach.

Our attack generalizes the state-of-the-art Meet-LWE attack in a new di-
mension by extending it to operate over a ternary tree three-armed on each level
except for the tree’s top level. Looking more closely, we split the secret s⃗ on
each level of the tree into a sum of three vectors s⃗ := s⃗1 + s⃗2 + s⃗3 of the same
dimension n instead of sum of two vectors, which brings us not only a drastically
increased diversity of representations but also a decreased guessing complexity
in our analysis. This gives us an avalanche effect spreading from the bottom level
to the top level of the tree, greatly reducing the overall time complexity. Our
algorithm achieves the asymptotic complexity ranging from S0.21 to S0.22 de-
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pending on the ratio between the Hamming weights and dimension of the LWE
secrets, which defeats that of the Meet-LWE attack. Also, our attack and cost
estimation do not rely on the conservative assumptions such as Core-SVP in the
lattice reductions, or the heuristics such as Geometric Series Assumption.

We have analyzed and optimized the attack complexities and show that our
approach gives better time complexity in the regime of practical parameters
compared to the May’s attack. Our attack provides the reduced complexity es-
timation compared to Meet-LWE’s best results with an extent from 8 to 65 bits
for the parameters of schemes in [43,16,34,40] as shown in Table 1.

We also evaluate the security for the two Round 2 candidates using the
ternary LWE problem, NTRU+ [1,49] and SMAUG-T [2,29], in the on-going
KpqC competition which aims to standardize post-quantum public-key cryp-
tosystems in the Republic of Korea [24]. Both NTRU+ and SMAUG-T have
four parameter sets according to the security levels I, I, III, and V presented in
order respectively in 10-th to 17-th rows of Table 1. For SMAUG-T, by exploit-
ing the sparse ternary secrets in their scheme, we achieve the reduced complexity
estimations even lower than the claimed security (estimated without the conser-
vative core-SVP model) for {TiMER, SMAUGT192, SMAUGT256} parameter
sets corresponding to the first, third, fourth rows of SMAUG-T parameters in
Table 1, which introduces a necessity to revise the security claims. We remark
that it does not imply these parameters need to be replaced, but our complexity
results can serve as another criteria to estimate the security and set the param-
eters for achieving the claimed security accordingly. For NTRU+, our attack
yields better complexities than Meet-LWE for all parameters in a large extent.
We believe our results would be useful for the standardization process for PQC
and for future work to evaluate the security of ternary secret LWE in more
depths.

1.2 Related Work

Lattice Reductions. Lattice reduction algorithms assess the concrete difficulty
of lattice problems such as NTRU or LWE by converting them to (approximate)
Shortest Vector Problem (SVP) or Closest Vector Problem (CVP) and then
resolving them by finding the secret short vectors from the transformed bases.
The BKZ reduction algorithm and its variants [28,11] iteratively apply the LLL
reduction [52] and an enumeration algorithm with fixed or flexible block sizes.

Alternatively, sieve algorithms [5] can replace the enumeration SVP ora-
cle. Notably, Becker et al. [14] proposed a LD sieve algorithm with locality-
sensitive filter (LSF), which is capable to solve SVP in 20.292n+o(n) time for an
n-dimensional lattice. The LD Sieve algorithm shows the best asymptotic time
complexity for SVP and is popular for evaluating the security parameters of
certain lattice-based cryptosystems.

Lattice Attacks. Several lattice-based attacks on the LWE problem have
been studied by framing LWE as a particular instance of the bounded distance
decoding (BDD) problem on a q-ary lattice using Babai’s nearest plane (NP)
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algorithm [12] or Kannan’s embedding technique [48] in the attack strategies so-
called “decoding attack” and “primal attack”. BDD involves finding the closest
lattice vector As⃗ to a given target vector b⃗ within a reasonable bound of ∥e⃗∥ in a
q-ary lattice. “Dual attack” is proposed to solve the decision-LWE problem where
one is asked to distinguish whether a given sample comes from an LWE instance
of (A, b⃗) ∈ Zm×n

q × Zm
q or a uniform distribution of (U, u⃗) ∈ Zm×n

q × Zm
q [4].

The basic idea of dual attacks is to use short vectors in the dual (or say, the
orthogonal complement) of the lattice to detect the statistical distance between
a new generated sample and the uniform one.

To estimate the concrete hardness of LWE, Albrecht et al. use several time
models from fplll, enumeration, and sieve to evaluate the concrete hardness of
LWE by invoking several algorithms such as BKW, SIS, decoding attack, etc [9].
In Asiacrypt 2017, Albrecht et al. revisited the hardness of LWE using the so-
called “2016 estimate” and a BKZ time model adopting sieving as SVP oracle [8].
Some other theoretical analyses for the hardness of LWE are given as lattice-
based attack [53,54,64], and BKW type combinatorial attacks [50,41]. We remark
that the BKW type combinatorial attacks [50,41] require specific setup with large
number of samples and superpolynomial modulus, so it is not suitable for our
setting with m = n.

Recently, Ducas and Pulles have identified significant contradictions between
the underlying heuristics assumed in these dual attacks and both formal theo-
rems and well-established heuristics, as demonstrated through thorough theo-
retical analysis and extensive experiments in [36].

Conversely, Pouly and Shen have addressed these gaps by presenting a prov-
able dual attack on the LWE problem that does not rely on statistical assump-
tions [61]. Their approach utilizes a simplified yet rigorous method rooted in
geometric analysis rather than heuristic statistical models. The techniques in-
clude Monte Carlo Markov Chain discrete Gaussian sampling to estimate the
complexity of the attack on specific parameter sets, with a particular focus on
the Kyber encryption scheme. However, the cost is not yet competitive compared
to the state-of-the-art dual attack with heuristic assumptions, since they do not
cover the modulus switching in their formal analysis.

Meet-in-the-Middle Attacks. The idea of Odlyzko’s MitM attack on ternary
NTRU was initially introduced in [44], which is also a classical combinatorial
approach used to address the LWE problem, particularly with binary or ternary
LWE keys. The fundamental idea of Odlyzko’s MitM algorithm involves rewriting
the given LWE instance (A, b⃗) ∈ Zm×n

q × Zm
q as A1s⃗1 = b⃗ − A2s⃗2 + e⃗. Here,

A = (A1|A2) ∈ Zm×n/2
q × Zm×n/2

q , and s⃗ = (s⃗1|s⃗2) ∈ {0,±1}n/2 × {0,±1}n/2
with the same Hamming weight for s⃗1 and s⃗2, respectively. Then, we randomly
sample s⃗1 and s⃗2, and store them into two lists labeled by a locality sensitive
hash function that inputs A1s⃗1 and b⃗ − A2s⃗2, respectively. As there is only a
small difference e⃗ between A1s⃗1 and b⃗ − A2s⃗2, the goal is to recover the secret
s⃗ by finding a collision between the two lists. Odlyzko’s MitM algorithm runs
in time S0.5, where S represents the size of the exponential search space. This
approach has been pivotal for combinatorial attacks on LWE and has inspired
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various improvements and adaptations, including quantum variants [18,45] and
hybrid attacks that combine with lattice reduction algorithms (see Section 7).

It is notable that, in the CRYPTO 2007 paper by Howgrave and Graham [46],
they utilized a full length of s⃗1, s⃗2 ∈ {0,±1}n. This resulted in a higher computa-
tional cost compared to Odlyzko’s MitM algorithm, as indicated by May’s analy-
sis [59]. Nonetheless, Howgrave-Graham’s algorithm inspired a new MitM attack
known as the Meet-LWE algorithm [59]. The Meet-LWE algorithm shows a sig-
nificant reduction in complexity, with asymptotic runtime of S0.25 and achieving
non-asymptotic complexities of around S0.3 for certain parameter sets.

1.3 Paper Organization.

In Section 2, we introduce lattice-based hard problems, LWE, with bounded
secrets and errors, and then recall May’s Meet-LWE attack along with its useful
definition and Lemma. In Section 3, we introduce our algorithm extended on top
of the Meet-LWE attack, operating on ternary trees in a high-level idea. Then,
we instantiate our attack with various strategies, REP-0 in Section 4, REP-1-0
and REP-1-1 in Section 5, and calculate the time complexities for each of the
representation strategies. In Section 6, we present the optimized complexities
of our attack and compare them with May’s. We also estimate the security of
the Round 2 candidates of the KpqC competition using our attack in the same
section. Finally, in Section 7, we discuss the applicability of our attack with
hybrid attacks.

2 Preliminaries

2.1 Notations

For a positive integer q, Zq denotes the ring of integers mod q. We use Zn
q for Zq

in n-dimension. We denote by T n = Zn
q ∩ {−1, 0, 1}n the set of n-dimensional

ternary vectors. We use x ← S to denote the sampling x from the distribution
S. For a real number r, ⌊r⌋ is the floor function that outputs the greatest integer
less than or equal to r. We denote by ℓ(·) : Zn

q → {0, 1}n the locality sensitive
hash function used in the Odlyzko’s attack where an i-th component of ℓ(x⃗) is 0
if an i-th component of x⃗ is in a range [0, ⌊q/2⌋−1), and 1 otherwise. We denote
by πr : Zn

q → Zr
q the projection map onto the first r coordinates.

2.2 Useful Definition and Lemma

For computing the attack complexity, we use some useful definition and lemma
from [59].

Definition 1 ([59]). The Hamming weight w := Σsi ̸=01 is the number of non-
zero components in s⃗ = (s1, ..., sn) ∈ Fn

q . The set of ternary weight-w vectors in
n dimension is denoted by

T n(w/2) = {s⃗ ∈ T n | s⃗ has w/2 (±1)-entries each}.

6



Any rounding is omitted for simplicity. We define a relative weight 0 ≤ ω ≤ 1
satisfying w = ω · n. As noted in [59], ω ∈ [1/3, 2/3] yields optimal parameter
choices in NTRU-type cryptosystems, e.g., ω = 3

8 for n = 677 in NTRU.

Lemma 1 ([59]). Let C = {c1, ..., ch} be a set of numbers with cardinality h
and let Σh

i=1ki = 1. The number of vectors s⃗ ∈ Cn∩Zn
q with kin many ci-entries

such that Σh
i=1ki = 1 can be computed as follows.(

n

k1n, ..., khn

)
≈ 2H(k1,...,kh)n,

where H(k1, ..., kh) := Σh
i=1ki log2

(
1
ki

)
.

To prove the lemma, we use the Stirling approximation. We note that kh =
1 −

∑h−1
i=1 ki is automatically determined by ki’s for 1 ≤ i ≤ h − 1. Hence, we

define the following formula for notational convenience.(
n

k1n, ..., k(h−1)n, ·

)
:=

(
n

k1n, ..., khn

)
,

H(k1, ..., k(h−1), ·) := H(k1, ..., k(h−1), kh).

2.3 LWE with Bounded Secrets and Errors

Let m,n and q be positive integers and s ∈ Zn
q be a secret vector sampled from

the secret distribution S. Let χ be an error distribution over Z. The Learning
with Errors (LWE) distribution ALWE

m,n,q,χ(s⃗) is obtained by first sampling a⃗← Zn
q

uniformly and e ∈ Z← χ, computing b = ⟨⃗a, s⃗⟩− e mod q, and then outputting
(⃗a, b) ∈ Zn

q × Zq as a result. Given m samples {(⃗ai,bi = ⟨⃗ai, s⃗⟩ − ei)}mi=1 from

ALWE
m,n,q,χ(s⃗), the (search) LWE problem asks to recover the secret vector s⃗. We

denote the LWE instance of m samples in a form (A, b⃗) ∈ Zm×n
q × Zm

q , where

A← Zm×n
q is chosen uniformly, e⃗← χm and b⃗ = A · s⃗− e⃗ ∈ Zm

q .
In this paper, we mainly consider an LWE variant that uses ternary secrets

and errors s⃗, e⃗ ∈ T n, which is exploited in the efficient NTRU-type cryptosys-
tems [26,16,34,40]. We also assume the number of samples m is equal to n, which
is common in the algebraically structured LWE such as Ring-LWE (RLWE) [57]
or Module-LWE (MLWE) [20] setting. We remark that our technique can be
naturally extended to LWE with ternary secrets using errors e⃗’s with bounded
ℓ∞-norms.

2.4 May’s Meet-LWE Attack

The Meet-LWE attack [59] is the state-of-the-art MitM attack proposed by
Alexander May to recover the secret key s⃗ of the LWE instance with ternary
secrets and errors. In this section, we review May’s classical Meet-LWE attack
for further discussion.
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Let s⃗ ∈ T n(w/2) be a ternary weight-w vector and w(0) := w/2. Given LWE

instance (A, b⃗ = As⃗− e mod q) ∈ Zm×n
q × Zm

q , we first split s⃗ into two ternary

vectors s⃗1, s⃗2 ∈ T n(w(1)), where w(1) ≥ w(0)/2 using Howgrave-Graham’s rep-
resentation technique [46].

Then the LWE equation As⃗ = b⃗+ e⃗ mod q can be rewritten as

As⃗1 + e⃗1 = b⃗−As⃗2 + e⃗2 mod q, (1)

where e⃗1 ∈ T n/2 × 0n/2 and e⃗2 ∈ 0n/2 × T n/2 such that e⃗ = e⃗2 − e⃗1.
Afterward, let R(1) be the number of representations to represent s⃗ = s⃗1 +

s⃗1. We define πr : Zn
q → Zr

q as the projection onto the first r = ⌊logq(R(1))⌋
coordinates, i.e.,

πr : Zn
q → Zr

q, x⃗ = (x1, ..., xn) 7→ (x1, ..., xr)

Since the codomain of πr has size qr < qlogqR
(1)

= R(1), for a fixed randomly
chosen target vector t⃗ ∈ Zr

q, one can expect at least one representation (s⃗1, s⃗2)
of s⃗ satisfying

πr(As⃗1 + e⃗1) = πr (⃗b−As⃗2 + e⃗2) = t⃗ mod q

exists. We can obtain s⃗1, s⃗2 ∈ T n satisfying the equation (1) by exactly guessing
r coordinates of πr(e⃗) and matching on the remaining n− r coordinates approx-
imately. For the approximate match, it utilizes Odlyzko’s locality sensitive hash
function, constructing L1 and L2 for all candidates of s⃗1 and s⃗2 and their hash
values using the binary tree-based list constructions.

Let L(i) be the level-i list and denote binary tree depth as d. Solving the LWE
problem requires constructing the level-0 list in Meet-LWE. For i ∈ {0, 1, .., d−1}
and k ∈ {1, 2, .., 2d}, to construct each of level-i list L

(i)
k , two level-(i + 1) lists

L
(i+1)
2k−1 , L

(i+1)
2k are required. In the following, we describe the case of constructing

a depth-3 binary tree as an example. First, we define level-1 lists as follows.

L
(1)
1 = {(s⃗(1)1 ∈ T n(w(1)), ℓ(As⃗

(1)
1 )) | πr(1)(As⃗

(1)
1 + e⃗1) = t⃗ mod q}

L
(1)
2 = {(s⃗(1)2 ∈ T n(w(1)), ℓ(⃗b−As⃗

(1)
2 )) | πr(1) (⃗b−As⃗

(1)
2 + e⃗2) = t⃗ mod q}

Both L
(1)
1 and L

(1)
2 have size of L(1) = S(1)/qr ≈ S(1)/R(1), where S(1) is the

size of the search space T n(w(1)). Analogously, we define s⃗
(2)
1 , s⃗

(2)
2 , s⃗

(2)
3 , s⃗

(2)
4 ∈

T n(w(2)) such that s⃗
(1)
1 = s⃗

(2)
1 + s⃗

(2)
2 , s⃗

(1)
2 = s⃗

(2)
3 + s⃗

(2)
4 and w(2) ≥ w(1)/2,

obtaining

A(s⃗
(2)
1 + s⃗

(2)
2 ) + e⃗1 = b⃗−A(s⃗

(2)
3 + s⃗

(2)
4 ) + e⃗2 mod q. (2)

From the equation (2), all four level-2 lists are defined as

L
(2)
1 = {(s⃗(2)1 , As⃗

(2)
1 )) | πr(2)(As⃗

(2)
1 ) = t⃗′ mod q},

L
(2)
2 = {(s⃗(2)2 , As⃗

(2)
2 ) | πr(2)(As⃗

(2)
2 + e⃗

(2)
1 ) = πr(2) (⃗t)− t⃗′ mod q},

L
(2)
3 = {(s⃗(2)3 , b⃗−As⃗

(2)
3 ) | πr(2) (⃗b−As⃗

(2)
3 ) = t⃗′′ mod q},

L
(2)
4 = {(s⃗(2)4 ,−As⃗(2)4 ) | πr(2)(−As⃗

(2)
4 + e⃗

(2)
2 ) = πr(2) (⃗t)− t⃗′′ mod q},
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where t⃗′ and t⃗′′ are random target vectors, and the number of guessing coor-
dinates on level-2 is r(2) = ⌊logq(R(2))⌋, which is a subset of the r(1) fixed

coordinates. On level-3, we enumerate s⃗
(2)
i by calculating a sum of

s⃗
(3)
2i−1 ∈ T

n
2 (w(3))× 0

n
2 and s⃗

(3)
2i ∈ 0

n
2 × T n

2 (w(3)),

where 1 ≤ i ≤ 4 and w(3) ≥ w(2)/2. Once we construct L
(1)
1 , L

(1)
2 recursively from

the higher level lists, we can find a pair of (s⃗1, s⃗2) by matching the Odlyzko’s
locality sensitive hash function values and check if s⃗ := s⃗1+ s⃗2 ∈ T n(w/2), which
results in getting the final solution s⃗. The high-level algorithm of the Meet-LWE
attack is elaborated in Algorithm 1.

Algorithm 1: LWE Key Search with Meet-LWE (High-Level) [59]

1 Require: (A, b⃗) ∈ Zn×n
q × Zn

q , weight w ∈ N
2 Ensure: ternary s⃗ of Hamming weight w such that e⃗ = As⃗− b⃗ mod q ∈ T n

3 Represent s⃗ = s⃗1 + s⃗2 choosing one representation strategies among Rep-0,
Rep-1, Rep-2 described in [59] for s⃗1, s⃗2 ∈ T n(w/4).

4 Let R(1) be the number of representations s⃗ = s⃗1 + s⃗2 and r := ⌊ 1
2
logq(R

(1))⌋.
5 for all πr(e⃗1) ∈ T r/2 × 0r/2 and πr(e⃗2) ∈ 0r/2 × T r/2 do
6 Construct

7 L
(1)
1 = {(s⃗1, ℓ(As⃗1))| πr(As⃗1 + e⃗1) = t⃗ mod q},

8 L
(1)
2 = {(s⃗2, ℓ(⃗b−As⃗2))| πr (⃗b−As⃗2 + e⃗2) = t⃗ mod q} from Eq. (1), using
binary tree-based list construction.

9 for all matches of (s⃗1, l⃗1), (s⃗2, l⃗2) in L1 × L2 s.t. l⃗1 = l⃗2 do

10 if ((s⃗ := s⃗1 + s⃗2 ∈ T n(w/2)) and (As⃗− b⃗ mod q ∈ T n)) then
11 return s⃗

3 Extended Meet-LWE Attack with Ternary Trees

3.1 Our Algorithm in High-Level

In this subsection, we present a high-level overview of the improved Meet-LWE
attack. We first split the LWE secret s⃗ ∈ T n(w/2) into a sum of three n-
dimensional vectors s⃗ = s⃗1 + s⃗2 + s⃗3 for s⃗1, s⃗2, s⃗3 ∈ T n(w/6), which results
in numerous representations. As in the Meet-LWE attack, we apply (and ex-
tend) various strategies to represent s⃗ named Rep-0, Rep-1-0, and Rep-1-1 as
summarized in Table 2. We describe the Rep-0 strategy in Section 4, in which
s⃗1, s⃗2, s⃗3 are ternary vectors with the Hamming weight w/3. Also, Rep-1-0 (Rep-
1-1) strategy is dealt in Section 5, in which s⃗1, s⃗2, s⃗3 have the Hamming weights
larger than w/3. In our analysis, we observe that the attack complexity for Rep-
2 that represents s⃗ with s⃗1, s⃗2, s⃗3 ∈ {0,±1,±2}n is no better than those for
Rep-1-0 and Rep-1-1. Hence, we do not address the Rep-2 strategy.

9



Table 2: Representation Strategies

Represents -1 0 1

Rep-0 (-1)+0+0
0+(-1)+0
0+0+(-1)

0+0+0 1+0+0
0+1+0
0+0+1

Rep-1-0 (-1)+0+0
0+(-1)+0
0+0+(-1)

0+1+(-1)
0+(-1)+1
1+0+(-1)

1+(-1)+0
(-1)+0+1
(-1)+1+0

1+0+0
0+1+0
0+0+1

Rep-1-1 (-1)+0+0
0+(-1)+0
0+0+(-1)

(-1)+1+(-1)
(-1)+(-1)+1
1+(-1)+(-1)

0+1+(-1)
0+(-1)+1
1+0+(-1)

1+(-1)+0
(-1)+0+1
(-1)+1+0

1+0+0
0+1+0
0+0+1

1+1+(-1)
(-1)+1+1
1+(-1)+1

By defining s⃗ = s⃗1 + s⃗2 + s⃗3, the LWE equation is rewritten as follows.

(As⃗1 + e⃗1) + (As⃗2 + e⃗2) = b⃗−As⃗3 + e⃗3 mod q, (3)

where e⃗1 ∈ T n/3 × 02n/3, e⃗2 ∈ 0n/3 × T n/3 × 0n/3, and e⃗3 ∈ 02n/3 × T n/3 such
that e⃗ = e⃗3 − e⃗2 − e⃗1.

For a pre-fixed parameter r > 0, we apply the projection map πr : Zn
q → Zr

q

defined by πr(x1, · · · , xn) = (x1, · · · , xr) to the equation (3), achieving

πr(As⃗1 + e⃗1) + πr(As⃗2 + e⃗2) = πr (⃗b−As⃗3 + e⃗3) mod q.

Suppose that qr, the size of the range of πr, is smaller than
√
R(1), where R(1)

is the number of representations. Then, since q2r < R(1), we can expect at least
one representation of the solution matches the random target (⃗t1, t⃗2) ∈ (Zr

q)
2

satisfying πr(As⃗1 + e⃗1) = t⃗1 and πr(As⃗2 + e⃗2) = t⃗2. Note that this implies

πr (⃗b−As⃗3 + e⃗3) = t⃗1 + t⃗2.

Hence, we exhaustively search πr(e⃗i)’s to construct lists L
(1)
1 , L

(1)
2 , and L

(1)
3

defined as follows using the tree-based construction:

L
(1)
1 = {(s⃗1, ℓ(As⃗1)) | πr(As⃗1 + e⃗1) = t⃗1 mod q},

L
(1)
2 = {(s⃗2, ℓ(As⃗2)) | πr(As⃗2 + e⃗2) = t⃗2 mod q},

L
(1)
3 = {(s⃗3, ℓ(⃗b−As⃗3))| πr (⃗b−As⃗3 + e⃗3) = t⃗1 + t⃗2 mod q}.

For the tree-based list construction, we utilize the ternary trees instead of binary
trees except for the top level. With the ternary trees, the number of representa-
tions increases drastically from the bottom level, while the Hamming weights of
the secrets decrease quickly at a higher level. This leads to reduced complexity
compared to the Meet-LWE attack for both time and memory consumption. We
describe our algorithm at a high level in Algorithm 2.

10



Algorithm 2: LWEKey Search with Extended Meet-LWE (High-Level)

1 Require: (A, b⃗) ∈ Zn×n
q × Zn

q , weight w ∈ N
2 Ensure: ternary weight-w s⃗ satisfying e⃗ = As⃗− b⃗ mod q ∈ T n

3 We represent s⃗ = s⃗1 + s⃗2 + s⃗3 using different representation strategies
described in Section 4 to 5 for s⃗1, s⃗2, s⃗3 ∈ T n(w/6).

4 Let R(1) be the resulting number of representations. Let r = ⌊ 1
2
logq(R

(1))⌋
5 for all πr(e⃗1) ∈ T r/3 × 0r/3 × 0r/3 do

6 Construct L
(1)
1 = {(s⃗1, ℓ(As⃗1))| πr(As⃗1 + e⃗1) = t⃗1 mod q} from Eq. (3),

using tree-based list construction

7 for all πr(e⃗2) ∈ 0r/3 × T r/3 × 0r/3 do

8 Construct L
(1)
2 = {(s⃗2, ℓ(As⃗2))| πr(As⃗2 + e⃗2) = t⃗2 mod q} from Eq. (3),

using tree-based list construction

9 for all πr(e⃗3) ∈ 0r/3 × 0r/3 × T r/3 do

10 Construct L
(1)
3 = {(s⃗3, ℓ(⃗b−As⃗3))| πr (⃗b−As⃗3 + e⃗3) = t⃗1 + t⃗2 mod q}

from Eq. (3), using tree-based list construction

11 for all matches of (s⃗1, l⃗1), (s⃗2, l⃗2), (s⃗3, l⃗3) in L1 × L2 × L3 s.t. l⃗1 ⊕ l⃗2 = l⃗3 do

12 if ((s⃗ := s⃗1 + s⃗2 + s⃗3 ∈ T n(w/2)) and (As⃗− b⃗ mod q ∈ T n)) then
13 return s⃗

3.2 Correctness

Following the Algorithm 2, we can find a collision ℓ(As⃗1) ⊕ ℓ(As⃗2) = ℓ(⃗b −
As⃗3) by comparing the hash values of candidates where (s⃗1, s⃗2, s⃗3) satisfies the
equation (3) on r coordinates. Furthermore, we verify the correctness of our
algorithm using the so-called Match-and-filter [13,15] in line 12 of Algorithm 2,
the process of checking the consistency of solutions. It ensures that the found s⃗ is
a ternary vector with Hamming weight w and e⃗ is a ternary vector, respectively.

3.3 Attack Complexity

For the first three outer for loops in Algorithm 2, we guess r/3 coordinates of
e⃗. We denote the complexity of the guessing part of the outer for loop as Tguess

and the list construction part of the inner loop as Tlist. The time complexity of
Algorithm 2 is then T = Tguess · Tlist.

The list construction complexity is Tlist = 2O(n), and we can compute

Tguess = 3r/3 ≤ 3
1
6 ·logq R(1)

= 2
1
6 (log2 3/ log2 q)·log2 R(1)

.

Since q = Ω(n) and log2 R
(1) = O(n), it follows that Tguess = 2O( n

log n ). Hence,
the asymptotic complexity is determined by Tlist as in the original Meet-LWE
attack. Tlist is calculated concretely depending on the different strategies of the
representation of s⃗, which will be computed in Section 4 and 5.
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4 Rep-0

Fig. 1: An Instantiation of Our Algorithm Equipped with REP-0 (depth 2)

For the ternary s⃗ ∈ T n(w/2) with Hamming weight w, we split s⃗ into three

vectors s⃗
(1)
1 , s⃗

(1)
2 , s⃗

(1)
3 ∈ T n(w/6) where (±1)-coordinates of s⃗ are represented as

(±1)+0+0 or 0+(±1)+0 or 0+0+(±1). In this case, the search space size for

each s⃗
(1)
i is S(1) =

(
n

w
6 ,w6 ,·

)
≈ 2H(ω

6
ω
6 ,·)n and the number of representation R(1)

is R(1) =
( w

2
w
6 ,w6 ,w6

)2
≈ 3ωn, where w = ωn.

We construct L
(1)
1 , L

(1)
2 and L

(1)
3 satisfying the equation (3) as follows.

L
(1)
1 = {(s⃗1, ℓ(As⃗1))| πr(As⃗1 + e⃗1) = t⃗1 mod q},

L
(1)
2 = {(s⃗2, ℓ(As⃗2))| πr(As⃗2 + e⃗2) = t⃗2 mod q},

L
(1)
3 = {(s⃗3, ℓ(b−As⃗3))| πr (⃗b−As⃗3 + e⃗3) = t⃗1 + t⃗2 mod q} (4)

The list L
(1)
i is of size

L
(1)
i =

S(1)

qr
≈ S(1)

√
R(1)

=

(
n

w
6 ,

w
6 , ·

)( w
2

w
6 ,

w
6 ,

w
6

)−1

≈ 2(H(ω
6

ω
6 ,·)−( log2 3

2 )·ω)n.

On the top level, which we set level-2 as in Figure 1, we split s
(1)
1 ∈ T n(w/6)

into s
(2)
1 ∈ T n

2 (w/12) × 0
n
2 and s

(2)
2 ∈ 0

n
2 × T n

2 (w/12) using Odlyzko’s MitM

algorithm, and s
(1)
2 into s⃗

(2)
3 , s⃗

(2)
4 and s

(1)
3 into s⃗

(2)
5 , s⃗

(2)
6 in the same manner. The

12



search space of s
(2)
i is of size S(2) =

( n
2

w
12 ,

w
12 ,·

)
≈ 2

1
2H(ω

6 ,ω6 ,·). Also, the size of all

six lists L
(2)
1 , ..., L

(2)
6 obtained at the top level is the same as that of the search

space L(2) = S(2) ≈ 2
1
2H(ω

6 ,ω6 ,·).
Let T (i) be the time complexity to construct each list on level-i by mapping

the lists on level-(i−1). Hence, the time complexity T (1) is T (1) = max{L(2), L(1)}.
Considering the approximate matching on n−r coordinates with Odlyzko’s hash
function, the time T (2) is T (2) = max{L(1), 2−(n−r) · (L(1))2}, which results in
L(1).

Hence, we can compute the total run time of list construction as Tlist =
max{T (1), T (0)} = max{L(2), L(1)}. The log complexity of list construction can
also be represented as follows.

log2 Tlist = max

{
1

2
H

(ω
6
,
ω

6
, ·
)
,

(
H

(ω
6
,
ω

6
, ·
)
−
(
log2 3

2

)
· ω

)
· n

}
.

Let Tguess be the time complexity to guess each r/3 coordinates of random
ternary vector e⃗1, e⃗2, e⃗3, where r = ⌊ 12 logq(R

(1))⌋ is the total number of guessing
components of e⃗. The guessing complexity can be computed as

Tguess = 3r/3 ≤ 2
1
6 (log2 3/ log2 q)·log2 R(1)

.

The total complexity is T = Tlist · Tguess.

5 REP-1

Fig. 2: An Instantiation of Our Algorithm Equipped with REP-1 (when the tree
depth is d = 3)
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Table 3: Number of cases of different level-j representations for the coordinates

of s⃗
(j)
3k−2, s⃗

(j)
3k−1, and s⃗

(j)
3k−1, where s⃗

(j)
3k−2 + s⃗

(j)
3k−1 + s⃗

(j)
3k = s⃗

(j−1)
k . The number of

each case is denoted by ϵ
(j)
10 or ϵ

(j)
11 in column ‘# of Cases’.

# of Cases s⃗
(j)
3k−2 s⃗

(j)
3k−1 s⃗

(j)
3k s⃗

(j−1)
k # of Cases s⃗

(j)
3k−2 s⃗

(j)
3k−1 s⃗

(j)
3k s⃗

(j−1)
k

ϵ
(j)
10 1 -1 0 0 ϵ

(j)
11 1 -1 1 1

ϵ
(j)
10 1 0 -1 0 ϵ

(j)
11 -1 1 1 1

ϵ
(j)
10 0 1 -1 0 ϵ

(j)
11 1 1 -1 1

ϵ
(j)
10 -1 1 0 0 ϵ

(j)
11 1 -1 -1 -1

ϵ
(j)
10 -1 0 1 0 ϵ

(j)
11 -1 1 -1 -1

ϵ
(j)
10 0 -1 1 0 ϵ

(j)
11 -1 -1 1 -1

In Section 4, Rep-0 represents (±1)-coordinates of s⃗ as (±1)+0+0, 0+(±1)+0
and 0+0+(±1), but it represents 0-coordinates as 0 = 0+0+0 only. In Rep-1,
we consider additional representations of (±1)- and 0-coordinates of s⃗, which are

elaborated in Table 3. Here, we denote additional optimization parameters ϵ
(j)
10

and ϵ
(j)
11 as the number of each representation. For a total of six representations

of 0-coordinate, we assume each representation occurs ϵ
(j)
10 times on level j. For

example, 0 is represented as 1 + (−1) + 0 for ϵ
(j)
10 0-coordinates on level j. Also,

we assume, for each (additional) representation of ±1 in Table 3, it occurs ϵ
(j)
11

times. The Rep-1 strategy is exploited in the original Meet-LWE attack as well;
however, our attack considers an additional optimization parameter because of
the new types of representations. We parse REP-1 into two representation strate-

gies: when ϵ
(j)
11 = 0, we call it REP-1-0, and otherwise, we call it REP-1-1. Hence,

we present the analysis for REP-1-1, and one can simply substitute ϵ
(j)
11 ’s with 0

to achieve those for REP-1-0. We describe how to construct the level-j lists in
the following.

On level-1, we split s⃗ ∈ T n(w(0)) into s⃗
(1)
1 , s⃗

(1)
2 , s⃗

(1)
3 ∈ T n(w(1)) using the

REP-1 representation strategy. The Hamming weight w(1) of s⃗
(1)
i is calculated

as

w(1) =
w(0) − 3 · ϵ(1)11

3
+ 2 · ϵ(1)10 + 3 · ϵ(1)11 =

w(0)

3
+ 2 · ϵ(1)10 + 2 · ϵ(1)11 ,

since we alternate 3 · ϵ(1)11 ±1’s (resp., 6 · ϵ
(1)
10 0’s) in s⃗ obtaining 3 · ϵ(1)11 ±1’s (resp.,

2 · ϵ(1)10 ±1’s) in each s⃗
(1)
i . Also, R(1) and S(1) can be computed as follows.

R(1) =

(
w(0)

ϵ
(1)
11 , ϵ

(1)
11 , ϵ

(1)
11 ,

w(0)

3
− ϵ

(1)
11 ,

w(0)

3
− ϵ

(1)
11 ,

w(0)

3
− ϵ

(1)
11

)2

·

(
n− 2w(0)

ϵ
(1)
10 , ϵ

(1)
10 , ϵ

(1)
10 , ϵ

(1)
10 , ϵ

(1)
10 , ϵ

(1)
10 , ·

)
,

S(1) =

(
n

w(1), w(1), ·

)
,
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where the second factor in R(1) is for the additional case of representations to
denote 0-components. We remark that both the number of representations R(1)

and the search space size S(1) are increased compared to those of Rep-0 due to
the additional representations.

For the level-1 lists, we first choose random target vectors t⃗1, t⃗2 ∈ Zr(1)

q , and

define L
(1)
1 , L

(1)
2 , L

(1)
3 of size L(1) ≈ S(1)/

√
R(1) as

L
(1)
1 = {(s⃗(1)1 ∈ T n(w(1)), ℓ(As⃗

(1)
1 )) | πr(1)(As⃗

(1)
1 + e⃗1) = t⃗1 mod q},

L
(1)
2 = {(s⃗(1)2 ∈ T n(w(1)), ℓ(As⃗

(1)
2 )) | πr(1)(As⃗

(1)
2 + e⃗2) = t⃗2 mod q},

L
(1)
3 = {(s⃗(1)3 ∈ T n(w(1)), ℓ(⃗b−As⃗

(1)
3 )) | πr(1) (⃗b−As⃗

(1)
3 + e⃗3) = t⃗1 + t⃗2 mod q}.

On level 2 ≤ j < d, we construct level-j lists L
(j)
1 , · · · , L(j)

3j with s⃗
(j)
1 , · · · , s⃗(j)3j

of weight

w(j) =
w(j−1)

3
+ 2 · ϵ(j)10 + 2 · ϵ(j)11 .

Also, R(j) and S(j) on level-j can be obtained as follows.

R(j) =

(
w(j−1)

ϵ
(j)
11 , ϵ

(j)
11 , ϵ

(j)
11 ,

w(j−1)

3
− ϵ

(j)
11 ,

w(j−1)

3
− ϵ

(j)
11 ,

w(j−1)

3
− ϵ

(j)
11

)2

·

(
n− 2w(j−1)

ϵ
(j)
10 , ϵ

(j)
10 , ϵ

(j)
10 , ϵ

(j)
10 , ϵ

(j)
10 , ϵ

(j)
10 , ·

)
,

S(j) =

(
n

w(j), w(j), ·

)
.

The list size L(j) on the j-th level is estimated as L(j) ≈ S(j)/
√
R(j).

In the following, we provide a detailed description of level-2 lists while omitting
the level-j lists for 2 < j < d, which are defined in a similar manner. On level-2, we
split s⃗

(1)
1 into s⃗

(2)
1 + s⃗

(2)
2 + s⃗

(2)
3 and do the same for s⃗

(1)
2 and s⃗

(1)
3 , using the REP-1

representation strategy. After choosing six random target vectors t⃗′1, t⃗
′
2, t⃗

′′
1 , t⃗

′′
2 , t⃗

′′′
1 , t⃗′′′2 ∈

Zr(2)

q , we construct the following level-2 lists according to the equation (3).

L
(2)
1 = {(s⃗(2)1 , As⃗

(2)
1 )) | πr(2)(As⃗

(2)
1 ) = t⃗′1 mod q}

L
(2)
2 = {(s⃗(2)2 , As⃗

(2)
2 ) | πr(2)(As⃗

(2)
2 + e⃗

(2)
1 ) = t⃗′2 mod q}

L
(2)
3 = {(s⃗(2)3 , As⃗

(2)
3 ) | πr(2)(As⃗

(2)
3 ) = πr(2) (⃗t1)− (⃗t′1 + t⃗′2) mod q}

L
(2)
4 = {(s⃗(2)4 , As⃗

(2)
4 )) | πr(2)(As⃗

(2)
4 ) = t⃗′′1 mod q}

L
(2)
5 = {(s⃗(2)5 , As⃗

(2)
5 ) | πr(2)(As⃗

(2)
5 + e⃗

(2)
2 ) = t⃗′′2 mod q}

L
(2)
6 = {(s⃗(2)6 , As⃗

(2)
6 ) | πr(2)(As⃗

(2)
6 ) = πr(2) (⃗t2)− (⃗t′′1 + t⃗′′2 ) mod q}

L
(2)
7 = {(s⃗(2)7 ,−As⃗

(2)
7 )) | πr(2)(−As⃗

(2)
7 ) = t⃗′′′1 mod q}

L
(2)
8 = {(s⃗(2)8 ,−As⃗

(2)
8 ) | πr(2)(−As⃗

(2)
8 + e⃗

(2)
3 ) = t⃗′′′2 mod q}

L
(2)
9 = {(s⃗(2)9 , b⃗−As⃗

(2)
9 ) | πr(2) (⃗b−As⃗

(2)
9 ) = πr(2) (⃗t1 + t⃗2)− (⃗t′′′1 + t⃗′′′2 ) mod q}

On the top level (level-d), the lists are simply defined as

L
(d)
2k−1 = T n/2(w(d))× 0n/2, and L

(d)
2k = 0n/2 × T n/2(w(d)),

for 1 ≤ k ≤ 3d−1, where w(d) = w(d−1)/2.
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5.1 Attack Complexity

In this section, we compute the time complexity of our algorithm equipped with REP-
1, which is dominated by the maximum of the list construction complexities. We recall
that the runtime for list construction on i-th level is denoted by T (i). The runtime for
the list construction Tlist and the memory cost M are

Tlist = max{T (0), · · · , T (d)}, M = max{L(1), · · · , L(d)},

where T (i)’s are computed as follows.
On the level-d (top level), we split s⃗

(j−1)
i with two n/2-dimensional vectors using

the splitting manner in Odlyzko’s MitM. This gives us the time complexity of the
level-d list,

T (d) = L(d) =
√
S(d−1).

The construction of level-(d− 1) lists with matching level-d lists on r(d−1) coordinates
is size of

T (d−1) =

(
L(d)

)2
qr(d−1)

=

(
L(d)

)2
√
R(d−1)

.

In general, for 1 < j < d, the construction of level-(j − 1) lists with matching level-j
lists on remaining coordinates, after removing r(j) from r(j−1) coordinates, is as follows.

T (j−1) =

(
L(j)

)3
qr(j−1)−r(j)

=

(
L(j)

)3
√
R(j−1)

.

Recursively, we can obtain the level-1 lists L
(1)
1 , L

(1)
2 and L

(1)
3 . Finally, we find the

solution by matching them approximately with Odlyzko’s hash function values. At this
time, r(1) coordinates have already been matched. Hence, we construct level-0 lists by
matching on n− r(1) coordinates of locality sensitive hash values.

T (0) = (2n−r(1))2 ·
(

L(1)

2n−r(1)

)3

=

(
L(1)

)3
2n−r(1)

,

where the term 2n−r(1) represents the number of cases of different outputs (bins) of hash

values for L
(1)
1 and L

(1)
2 , and the term

(
L(1)

2n−r(1)

)
represents the number of solutions

in each bin corresponding to ℓ(s⃗
(1)
1 ), ℓ(s⃗

(1)
2 ), and ℓ(s⃗

(1)
1 ) ⊕ ℓ(s⃗

(1)
2 ) taken as an average

value for each L
(1)
1 , L

(1)
2 and L

(1)
3 .

6 Asymptotic and Non-asymptotic Comparison

In this section, we optimize the parameters in our attack with tree depth less than or
equal to d = 4 since no better result is achieved for d ≥ 5, and compare the resulting
time complexities with those of Meet-LWE. We present the optimized asymptotic and
non-asymptotic runtime with comparison in Section 6.1 and 6.2, respectively. We report
the runtime estimation for analyzing the KpqC Round 2 candidates in Section 6.3.
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6.1 Asymptotic Comparison

As analyzed in Section 3.3, the asymptotic complexity of our algorithm is determined
by Tlist, ignoring the term Tguess as in the original Meet-LWE. In Table 4, we summarize
the list construction complexity Tlist for our algorithms for different relative weights
ω and compare them with those of May’s Meet-LWE. More precisely, since we can
determine Tlist := 2c(ω)·n(1+o(1)) for some constant c(ω), we present c(ω) for each ω
in Table 4. For all relative weights ω ∈ {0.3, 0.375, 0.441, 0.5, 0.62, 0.667}, our attack
provides a better asymptotic complexity than Meet-LWE as shown in the 6-th and
10-th columns in Table 4.

Table 4: Asymptotics of Our Algorithm Compared to May’s Meet-LWE for the
Respective Representation Strategies

ω Odlyz.
May [59] Ours

REP-0 REP-1 REP-2 logS Tlist REP-0 REP-1-0 REP-1-1 logS Tlist

0.3 0.591 0.469 0.298 0.295 0.25 0.330 0.290 0.247 0.21
0.375 0.665 0.523 0.323 0.318 0.24 0.369 0.322 0.286 0.22
0.441 0.716 0.561 0.340 0.334 0.23 0.395 0.323 0.293 0.21
0.5 0.750 0.588 0.356 0.348 0.23 0.417 0.360 0.315 0.21
0.62 0.790 0.625 0.389 0.371 0.24 0.470 0.398 0.340 0.22
0.667 0.793 0.634 0.407 0.379 0.24 0.508 0.449 0.351 0.22

6.2 Non-asymptotic Comparison

Table 5 shows the optimized time complexities in bits of our algorithm compared
to those of Meet-LWE on the REP-0 representations. In Section 3.3, we denote by
log T = log Tlist + log Tguess the total time complexity in bits where Tlist is the time
complexity of list construction, and Tguess is the time complexity of the guessing part.
For example, the NTRU-Encrypt (509,2048,254) has log T = 231 total complexity in
bits where log Tlist and log Tguess values are 213 bit and 18 bit, respectively. Compared
to Meet-LWE, our REP-0 has approximately 20.38% to 29.15% less complexity.

Recall that in Section 5, two representation methods (REP-1-0, REP-1-1) are used

depending on the value of ϵ
(j)
11 . When ϵ

(j)
11 has a non-zero value, we call it REP-1-1. We

present the optimized complexity for REP-1-0 and REP-1-1, respectively, in Table 6. In
our algorithm, we optimized every instance with depth-3 search trees since increasing
the depth to 4 does not improve the performance.

The ‘params’ column for REP-1-0 in Table 6 is added to represent the optimized
depth of a search tree and the number of additional ±1’s to represent 0 in every
level-i list. As an example, the NTRU Prime parameter (653,4621,288) has its params
column (3:13,1) for our attack with REP-1-0, which means it optimizes the search
trees in list construction of depth 3, where level-1 and 2 lists receive amounts of 13 and
1 additional ±1’s to represent 0, respectively. In ‘params’ column (3: 8,0,0,2,0,0) for

REP-1-1 in Table 6, the first three components correspond to level-j (j = 1, 2, 3) as ϵ
(j)
10
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Table 5: Comparison on Non-asymptotic Complexity, May’s [59] vs. Ours for
REP-0

(n, q, w) May [bit] Ours [bit] Reduced (%)

NTRU-Encrypt
(509, 2048, 254) 305 = 287+18 231 = 213+18 24.26%
(677, 2048, 254) 364 = 347+18 268 = 250+18 26.37%
(821, 4096, 510) 520 = 487+33 414 = 379+34 20.38%

NTRU Prime
(653, 4621, 288) 370 = 352+18 279 = 260+19 24.59%
(761, 4591, 286) 408 = 390+18 299 = 380+19 26.72%
(857, 5167, 322) 459 = 439+20 337 = 316+21 26.58%

BLISS I+II
(512, 12289, 154) 247 = 238+9 175 = 167+9 29.15%

GLP I
(512, 8383489, 342) 325 = 314+12 257 = 246+12 20.92%

Table 6: Non-asymptotic Attack Complexity of Our Attack Instantiated with
REP-1-0 and REP-1-1

(n, q, w) REP-1-0 [bit] params REP-1-1 [bit] params

NTRU-Encrypt
(509, 2048, 254) 192 = 173+19 3: 13,1 202 = 167+35 3: 8,0,0,2,0,0
(677, 2048, 254) 214 = 190+24 3: 19,1 233 = 196+37 3: 9,0,0,1,0,0
(821, 4096, 510) 346 = 318+28 3: 14,1 351 = 280+71 3: 19,3,0,10,0,0

NTRU Prime
(653, 4621, 288) 232 = 213+19 3: 13,1 240 = 201+39 3: 11,1,0,2,0,0
(761, 4591, 286) 242 = 218+24 3: 21,1 256 = 206+50 3: 19,1,0,2,0,0
(857, 5167, 322) 273 = 247+26 3: 22,1 291 = 250+41 3: 11,0,0,1,0,0

BLISS I+II
(512, 12289, 154) 151 = 136+15 3: 17,1 157 = 137+20 3: 6,0,0,2,0,0

GLP I
(512, 8383489, 342) 230 = 220+10 3: 13,4 217 = 194+23 3: 9,3,0,10,0,0
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and the latter three correspond to level-j (j = 1, 2, 3) as ϵ
(j)
11 . We observe that while

GLP I showed better complexity compared to REP-1-0, the rest performed better with
REP-1-1.

Table 7: Comparison on Non-asymptotic Complexity, May’s [59] REP-2 vs. Ours

(n, q, w) May [bit] params Ours [bit] params Reduced

NTRU-Encrypt
(509, 2048, 254) 227 = 189+38 4: 26,2,17,3 192 = 173+19 3: 13,1 15.4%
(677, 2048, 254) 273 = 231+42 4: 32,1,15,1 214 = 190+24 3: 19,1 21.6%
(821, 4096, 510) 378 = 318+60 4: 34,5,30,6 346 = 318+28 3: 14,1 8.5%

NTRU Prime
(653, 4621, 288) 272 = 229+42 4: 36,2,22,5 232 = 213+19 3: 13,1 14.7%
(761, 4591, 286) 301 = 258+43 4: 36,1,17,2 242 = 218+24 3: 21,1 19.6%
(857, 5167, 322) 338 = 291+47 4: 37,2,19,2 273 = 247+26 3: 22,1 19.2%

BLISS I+II
(512, 12289, 154) 187 = 163+24 4: 27,0,11,1 151 = 136+15 3: 17,1 19.3%

GLP I
(512, 8383489, 342) 225 = 206+20 4: 22,3,19,4 217 = 194+23 3: 9,3,0,10,0,0 3.6%

In Table 7, we compare the best non-asymptotic time complexity of our attack to
that from [59]. For May’s Meet-LWE attack, REP-2 shows the best complexity, and
we take the complexity numbers from their paper [59]. We observe that our best time
complexity is reduced by 8 to 65-bits, proportionally by 3.6% to 21.6%, compared to
the best results from May’s Meet-LWE attack.

6.3 Evaluation for KpqC Round 2 Candidates

In this Section, we analyze the security of the ternary LWE-based schemes, a total
of 2 candidates (NTRU+, SMAUG-T), among the lattice-based algorithms submitted
to KpqC Competition Round 2 [25], using our attack. NTRU+ [1,49] is an algorithm
that improves the efficiency of the existing NTRU scheme, following the strategy to
construct NTT-friendly settings for NTRU introduced in NTTRU [58] and NTRU-
B [37] and introducing a new message encoding to efficiently achieve the negligible
worst-case correctness error. The security of NTRU+ relies on the NTRU problem and
RLWE with ternary secrets and errors. SMAUG-T [2,29] is an algorithm designed by
merging SMAUG and TiGER, which were KpqC Round 1 schemes. It is based on the
module lattice problems (MLWE and MLWR) using the sparse ternary secret keys with
fixed Hamming weights.

When estimating the security of these two schemes, we use parameter sets (n, q)
presented in their specification documents for input parameter settings. For the weight
parameter w of s, since the RLWE secret s in NTRU+ follows a centered binomial
distribution, we assume w = n/2, which is an average value of the Hamming weights.
Therefore, the attack complexity for NTRU+ is a rough estimation for lower bound,
since the secrets do not have fixed Hamming weights. For SMAUG-T, we select the
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minimum value between hr and hs as w. hr and hs are the hamming weight of a
randomness r used for encryption and of a sparse ternary s, respectively.

The security analysis results using our attack on NTRU+ and SMAUG-T are shown
in Table 8, Table 9 and Table 10.

Table 8: Security Evaluation of KpqC Round 2 Schemes (NTRU+, SMAUG-T)
with Our Attack Instantiated with REP-0

Parameters (n, q, w) May [bit] Ours [bit] Reduced (%)

NTRU+576 (576, 3457, 288) 341 = 323+18 261 = 242+20 23.46
NTRU+768 (768, 3457, 384) 455 = 430+25 349 = 322+26 23.3
NTRU+864 (864, 3457, 432) 513 = 484+29 392 = 363+30 23.59
NTRU+1152 (1152, 3457, 576) 684 = 646+38 524 = 484+40 23.59

TiMER (512, 1024, 100) 192 = 185+7 135 = 128+7 29.69
SMAUG-T128 (512, 1024, 132) 227 = 217+10 165 = 155+10 27.31
SMAUG-T192 (768, 2048, 151) 289 = 279+10 208 = 197+11 28.03
SMAUG-T256 (1280, 2048, 160) 361 = 351+10 253 = 241+11 29.92

In Table 8, we computed our attack’s complexity with REP-0 and compared them
with those of Meet-LWE. For all parameters, the estimated complexities of our attack
defeat those of Meet-LWE, ranging from 23.3% to 29.92%.

Table 9: Security Evaluation of KpqC Round 2 Schemes (NTRU+, SMAUG-T)
with Our Attack Instantiated with REP-1-0 and REP-1-1

Parameters REP-1-0 [bit] params REP-1-1 [bit] params

NTRU+576 221 = 200+21 3: 16,1 230 = 191+39 3: 10,0,0,3,0,0
NTRU+768 287 = 261+26 3: 18,1 302 = 243+59 3: 18,1,0,5,0,0
NTRU+864 319 = 288+31 3: 22,1 338 = 272+66 3: 18,2,0,7,0,0
NTRU+1152 433 = 397+36 3: 20,1 447 = 361+86 3: 22,2,0,9,0,0

TiMER 130 = 115+15 3: 12,1 122 = 98+24 3: 8,0,0,0,0,0
SMAUG-T128 147 = 132+16 3: 11,2 149 = 128+21 3: 4,0,0,1,0,0
SMAUG-T192 182 = 161+21 3: 17,1 183 = 155+28 3: 8,0,0,0,0,0
SMAUG-T256 231 = 210+21 3: 15,1 238 = 227+11 3: 0,0,0,0,0,0

In Table 9, we compute the time complexity of REP-1-0 and REP-1-1, respectively,
and compare the two. We observe that REP-1-0 has better complexity compared to
REP-1-1, except for the TiMER parameter.

From Table 10, we can observe that our best time complexity is reduced by 20 bits
to 86 bits, proportionally by 11.98% to 18.62%, compared to May’s REP-2 which is the
best result from the Meet-LWE attack. We show that our algorithm admits improved
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Table 10: Security Evaluation of KpqC Round 2 schemes (NTRU+, SMAUG-T)
with May’s [59] REP-2 vs. Ours

Parameters May [bit] params Ours [bit] params Reduced

NTRU+576 263 = 228+36 4: 21,2,9,0 221 = 200+21 3: 16,1 15.97%
NTRU+768 349 = 302+47 4: 24,3,14,1 287 = 261+26 3: 18,1 17.77%
NTRU+864 392 = 339+53 4: 29,3,14,3 319 = 288+31 3: 22,1 18.62%
NTRU+1152 519 = 448+71 4: 35,5,19,3 433 = 397+36 3: 20,1 16.57%

TiMER 144 = 124+21 4: 14,0,4,0 122 = 98+24 3: 8,0,0,0,0,0 15.28%
SMAUG-T128 167 = 147+20 4: 10,0,2,0 147 = 132+16 3: 11,2 11.98%
SMAUG-T192 214 = 192+21 4: 12,0,1,0 182 = 161+21 3: 17,1 14.95%
SMAUG-T256 283 = 255+29 4: 15,1,3,0 231 = 210+21 3: 15,1 18.37%

attack cost than May’s attack, for NTRU+ and SMAUG-T.

In their specification document [2], SMAUG-T estimates the classical security of
parameters with two methods, denoted as ‘classical core-SVP’ and ‘beyond core-SVP’.
According to [2], the ‘classical core-SVP’ estimates the classical security via the lattice
estimator using the cost model ‘ADPS16’ which represents the conservative core-SVP
model [10,3]. The ‘beyond core-SVP’ model estimates the security via lattice estima-
tor without the core-SVP model and Meet-LWE cost estimation. They suggest four
parameter sets named TiMER, SMAUG-T128, SMAUG-T192, and SMAUG-T256, for
which the estimated time complexities of our attack are 122 bits, 147 bits, 182 bits, and
231 bits, respectively. The claimed security using the ‘beyond core-SVP’ from [2] were
135.3 bits, 144.7 bits, 202.0 bits, and 274.6 bits, respectively. For TiMER, SMAUG-
T192, and SMAUG-T256 parameters, the estimated attack complexities are lower in
security by 13.3 bits, 20 bits, and 43.6 bits than claimed.

When comparing our results with the classical security levels claimed in the pro-
posal document with the ‘classical core-SVP’, which were 120.0 bits, 120.0 bits, 181.7
bits, and 264.5 bits, respectively, we also observe that the SMAUG-T256 parameter
has a lower security estimation by 33.5 bits from the claimed one.

7 Applicability to Hybrid Attacks

In recent research, hybrid attacks have been developed by combining lattice reduction
algorithms with combinatorial guessing strategies to reduce the overall attack com-
plexities for ternary secret LWE. These attacks fall into two categories: hybrid primal
attacks and hybrid dual attacks. This section provides an overview of these two types
of attacks and explores the applicability of integrating our enhanced Meet-LWE attack
with existing hybrid approaches. However, we consider it a future work to assess the
asymptotic and non-asymptotic complexity of specific lattice-based primitives using
the hybrid algorithms in conjunction with our improved Meet-LWE attack.
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7.1 Hybrid Dual Attacks

At EUROCRYPT 2017, Albrecht introduced a “hybrid dual attack” for analyzing the
hardness of the binary or ternary decision-LWE problem [6]. The hybrid dual attack
involves two phases: the lattice-reduction phase and the guessing phase. In the first
phase, we divide A into two parts A = (A1|A2) ∈ Zm×r

q × Zm×(n−r)
q (respectively the

ternary s⃗ = (s⃗1|s⃗2) ∈ {0,±1}r × {0,±1}n−r). Then we can amputate A2 (respectively
s⃗2) by the dual attack and generate a new lower-dimensional LWE-like instance. In the
second phase, we guess the entries of part s⃗2 and detect the distribution of the error
vector in the new instance generated from the first phase. Some subsequent works are
published in [7,31,38,17].

Although hybrid dual attacks are considered feasible for evaluating the security of
current LWE-based or NTRU-based proposals, it was not fully discovered in May’s
paper. The work in [17] replaces the exhaustive search phase in traditional hybrid
dual attacks with the more efficient Meet-LWE algorithm, where the approach was
analyzed and tested against LWE instances with FHE-type parameters, comparing its
performance to existing hybrid dual attacks. In their paper, the obstacle to constructing
a hybrid dual attack with Meet-LWE is that, when reducing the LWE dimension with
the dual attack, the Hamming weight of the reduced secret is not known. Hence, they
need to exhaustively search for the weight of the secret of the LWE instance with
reduced dimension in a possible range to apply the Meet-LWE attack for it. After the
exhaustive search for the Hamming weights, the remaining analysis is similar to that in
the Meet-LWE attack. Thus, we consider that it is adaptable and possibly more efficient
to integrate our improved algorithm with a hybrid provable dual Meet-LWE [17,61].
We leave the detailed analysis and optimization for future work.

7.2 Hybrid Primal Attacks

The concept behind primal attacks involves embedding the given LWE instance (A, b⃗) ∈
Zm×n
q × Zm

q into a higher-dimensional lattice with basis B ∈ Z(m+n+1)×(m+n+1)
q . Here

some coefficient vector x⃗ ∈ Zm+n+1
q exists such that x⃗B = (s⃗, e⃗, 1). The LWE problem

is then divided into two parts based on a guessing dimension r ≤ n, with the matrix
B and the secret-error vector being split accordingly. For the first part of (m + n +
1− r)-dimensional sub-lattice, we apply a reduction algorithm to facilitate Babai’s NP
algorithm [12]. Subsequently, we utilize combinatorial guessing strategies to find the
r-dimensional partial secret key s⃗ such that its generated vector can recover e⃗ by the
NP algorithm using the reduced basis. This approach essentially constitutes a lattice
decoding attack due to the use of Babai’s NP algorithm. Related works can be found
in [46,23,63,65].

In particular, the work presented in [42] develops several key technical tools to en-
able the hybrid primal and Meet-LWE attack. These include a new property of Babai’s
nearest plane algorithm regarding projection, an approximate variant of the Meet-
LWE algorithm, and a locality-sensitive hashing-based near-collision finding method.
The analysis incorporates both lattice and representation techniques, with detailed
heuristics and experimental evidence provided. As discussed above in the hybrid dual
and Meet-LWE attack, our improved Meet-LWE attack is expected to accelerate the
hybrid primal Meet-LWE attack as well. Proving and analyzing the complexity of this
improved version is left as future work.
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