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Abstract. In this paper, we present two early stopping Byzantine agree-
ment protocols in the authenticated setting against a corrupt minority
t < n/2, where t represents the maximum number of malicious parties.
Early stopping protocols ensure termination within a number of rounds
determined solely by the actual number of malicious nodes f present
during execution, irrespective of t.
Our first protocol is deterministic and ensures early stopping termina-
tion in (d + 5) · (⌊f/d⌋ + 3) rounds, where d is a fixed constant. For
example, for all d ≥ 6, our protocol runs in at most (1 + ϵ) · f rounds
(where 0 < ϵ < 1), improving (for large f) upon the best previous early
stopping deterministic broadcast protocol by Perry and Toueg [1], which
terminates in min(2f +4, 2t+2) rounds. Additionally, our second proto-
col is randomized, ensuring termination in an expected constant number
of rounds and achieving early stopping in (d + 9) · (⌊f/d⌋ + 2) rounds
in the worst case. This marks a significant improvement over a similar
result by Goldreich and Petrank. [2], which always requires an expected
constant number of rounds and O(t) rounds in the worst case, i.e., does
not have the early stopping property.

1 Introduction

Byzantine Agreement (BA) is a fundamental problem in distributed computing.
In the BA problem, n parties start with some value in {0, 1} and wish to jointly
agree on one value while tolerating up to t < n/2 Byzantine parties (Agree-
ment.) If all honest parties start with the same value, they must output that
value (Validity.) The foundations of this field were established by the pioneering
work of Lamport, Shostak, and Pease in the 1980s [3]. One of the main metrics
of efficiency for BA protocols is their round complexity, i.e., the number of syn-
chronous interactions required for the protocol to terminate. This is the focus of
our paper.

A seminal result by Dolev and Strong [4]3 demonstrates that any BA protocol
capable of tolerating t < n/2 malicious parties necessitates at least t+1 rounds
3 [4] presents the result for Byzantine Broadcast, a variant of Byzantine Agreement

in which a designated sender sends an input value to other parties who must reach
consensus on this value. The resilience for Byzantine Broadcast is t < n. There is a
known reduction to Byzantine Agreement with optimal resilience of t < n/2.
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in some runs. However, this bound is considered loose for protocol executions
where the number of corruptions, f , is less than t. According to Dolev et al. [5],
the round complexity lower bound in this scenario is min{f + 2, t+ 1}. Thus, a
series of works studying early stopping protocols which terminate in time that de-
pends only on the actual number of corruptions f . For the information-theoretic
setting and t < n/3, this has culminated in the work of Abraham and Dolev [6]
who gave the first early stopping protocol with polynomial communication and
optimal round complexity of min{f+2, t+1}. By comparison, the authenticated
setting (where signatures can be used) with t < n/2 malicious corruptions is far
less explored. To the best of our knowledge, the only early stopping protocol in
this setting is due to Perry and Toueg [1] which has (sub-optimal) round com-
plexity min{2f + 4, 2t + 2}. This raises the following natural question: Is there
an early-stopping protocol for authenticated Byzantine agreement with t < n/2
corruptions which approaches the lower bound of min{f + 2, t+ 1}? We answer
this question affirmatively by showing the following results:

– We begin by proving a deterministic early-stopping Byzantine agreement
protocol that terminates in (d + 5) · (⌊f/d⌋ + 3) rounds, where d is a fixed
positive constant. In particular, for all d ≥ 6 and

f >
3d2 + 11d

d− 5

our protocol always outperforms Perry and Toueg’s protocol. In general, our
protocol achieves a round complexity of

(1 +O(1/d)) · f +O(d) ,

which simplifies to (1 + ϵ) · f whenever d behaves as a constant in f .
– We then show an early stopping randomized Byzantine agreement protocol

with expected constant rounds, whose worst-case round complexity is (d+9)·
(⌊f/d⌋+2), where again, d is a predefined constant. Our protocol compares
favorably with protocols obtained via the generic compiler of Goldreich and
Petrank [2]. Like our work, their compiler gives an expected constant round
protocol, but its worst-case round complexity is O(t)—therefore it does not
yield an early stopping protocol.

At the heart of our construction, we devise a novel method of eliminating
faulty parties that keep the protocol from terminating. Our construction relies
on prior work of Fitzi and Nielsen [7] to improve the ratio of eliminated parties
to protocol rounds. On average, our protocol eliminates 1 party every 1 + 5/d
rounds, whereas the protocol of Perry and Toueg’s protocol eliminates 1 party
every 2 rounds. We now explain our techniques in more detail.

1.1 Technical Overview

We give now give a more detailed overview over our techniques.
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Correct-Or-Detect Broadcast. We begin by recalling the Correct-Or-Detect
Broadcast protocol of Fitzi and Nielsen which forms the basis of our construction.
Their protocol, henceforth denoted Πd-CoD [7], is parametrized by an arbitrary
positive integer d and a designated sender Ps and runs in d+ 4 rounds. Πd-CoD
is based on the seminal broadcast protocol of Dolev and Strong, which itself
runs in t + 1 rounds and is secure against any number of t < n corrupted
parties. Rather than achieving full broadcast, parties in Πd-CoD terminate the
protocol in two possible modes C (correct) and D (detect). In case an honest
party terminates in mode C, Πd-CoD achieves the properties of broadcast, i.e.,
all parties agree on the sender’s value. Moreover, if the sender Ps is honest, all
honest parties always terminate in mode C. On the other hand, if some honest
party terminates in mode D, Πd-CoD may not achieve the properties of broadcast.
Yet, in this case, the protocol ensures that all parties identify a common set of d
corrupted parties. To this end, every party Pi among the set of honest parties H
outputs a list Fi of parties it knows to be corrupted, where the protocol ensures
that |

⋂
Pi∈H Fi| ≥ d. It is important to note that there is no agreement among

parties on what mode the protocol terminates in (otherwise, Πd-CoD would be a
full-fledged broadcast protocol). We extend the construction of Fitzi and Nielsen
for binary messages to messages of arbitrary length in the straight-forward way
by broadcasting a message bit by bit and determining the termination mode as
C iff all of the bit-wise sub-instances output C. Otherwise, we output D and
take the union of identified malicious sets output in any of these instances.

Graded Consensus with Detection. We now explain our main technical
building block, which we refer to as graded consensus with corruption. For sim-
plicity, we focus here on our basic version of this primitive in which all parties
input a binary value vi along with their current list Fi of faulty parties. We
additionally require that honest parties are never in each others list of identified
corrupted parties.

The protocol outputs a value yi ∈ {0, 1} along with a grade gi ∈ {0, 1} and
an updated list F∗

i of faulty parties. As with existing constructions of graded
consensus in the literature, our protocol uses the grade gi to indicate a party’s
confidence in its output yi. Graded consistency says that on outputting grade
gi = 1, Pi knows that all parties agree on Pi’s output yi, but they might not know
that they agree (as they have output grade 0). On the other hand, we ensure
graded validity : if all honest parties input the same value v to the protocol, then
all honest parties output yi = v and grade gi = 1.

The distinguishing feature of our new construction is to ensure that if two
honest parties Pi and Pj disagree on their respective outputs yi ̸= yj , then they
identify a common set of at least d corrupted parties and extend their faulty
lists F∗

i accordingly. Importantly, we can ensure that the intersection
⋂

Pi∈H F∗
i

contains at least d corrupt parties that are not contained in the common set
of parties’ faulty input lists

⋂
Pi∈H Fi. Because the faulty lists of honest parties

can never contain honest parties, this automatically implies that parties agree on
their output (albeit possibly with grade 0) once there are fewer than d malicious
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parties. This property will be crucially exploited in our overall construction of
Byzantine Agreement.

From CoD-Broadcast to Graded Consensus with Detection. Our con-
struction is remarkably simple and builds on the multivalued CoD-Broadcast
described earlier. Once again, our construction follows the ideas of Fitzi and
Nielsen. At the onset of an iteration, we have parties issue to each other proofs
of participation (PoP), meaning that every party Pi sends a signature to every
party Pj where Pj is not in the list Fi input to the graded consensus protocol.
Since honest parties are never part of each other’s faulty lists, every honest party
obtains a PoP in this way, allowing it to participate in the rest of the protocol.
On the other hand, parties who are commonly identified as corrupt do not obtain
such a proof and are banned from participating in the protocol. To enforce this
measure, we have every party send its PoP along with its input vi via Πd-CoD to
all parties. To determine the output, we let parties take a majority over all the
instances that were received with a proper PoP attached. On the other hand, we
let parties update their faulty lists with malicious parties identified in instances
regardless of whether they had a proper PoP attached to them. To output yi = v
with grade gi = 1, a party Pi waits to observe t+1 instances terminate on value
v in mode C (and with a PoP attached). On the other hand, for grade gi = 0,
Pi simply takes the majority bit over all instances with a correct PoP attached
(regardless of what mode they terminate in). From the properties of Πd-CoD, it
immediately follows that the usual consistency and validity properties of graded
consensus. On the other hand, disagreement can only happen if at least one of
the Πd-CoD instances terminates in mode D. In this case, all parties can update
their lists F∗

i with a common set of at least d newly identified malicious parties.
Moreover, our protocol adds only 1 round (for PoPs) to the running time of
Πd-CoD, thus coming out to a total running time of d+ 5 rounds.

From GC with Detection to Deterministic Byzantine Agreement. We
run the detecting graded consensus protocol described above in iterations. In
each iteration k, parties update their input vi,Fi to the output value yi and
faulty list F∗

i of iteration k−1. A party Pi terminates after observing the graded
consensus protocol outputting grade gi = 1 in some iteration k and running for
one more subsequent iteration. By graded validity, this ensures that parties all
parties observe the same condition by iteration k + 1 and can terminate by
iteration k + 2 at the latest. The detection property of our graded consensus
module ensures that in every iteration where parties do not terminate, they all
add d common parties to their list of identified corrupted parties. If there are less
than d malicious parties left, honest parties still output the same value. Thus,
after at most ⌊f/d⌋ iterations, all remaining parties must output the same value.
By the above argument, this ensures that they terminate within at most three
more iterations; one iteration to output the same value and two more from the
above argument. Since each iteration takes d+5 rounds, our running time comes
out to (d+ 5) · (⌊f/d⌋+ 3) many rounds.
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Randomized Early Stopping Agreement. We conclude by explaining how
to randomize the protocol sketched above. In this manner, we obtain an expected
constant round protocol which also has early stopping complexity (d+9)·(⌊f/d⌋+
2). To this end, we add a few rounds on top of our detecting graded consensus
protocol so as to obtain a stronger version of graded consensus with three possible
grades 0, 1, and 2. Here grade 2 indicates the highest confidence in a binary
output yi and indicates agreement for any party who observes it. On the other
hand, grade 1 leaves open the possibility that another honest party has grade 0, in
which case its corresponding output is the default value ⊥. Our construction also
extends the properties of the detecting properties of the (0, 1) graded consensus
protocol described above in the natural way and ensures that once no corrupted
parties remain, parties always agree on their output.

Using this strengthened version of detecting graded consensus, we are able
to run a standard construction of randomized byzantine agreement from graded
consensus. As before, we iterate instances of graded consensus and input the
output from the current iteration to the next iteration. However, parties update
their input to the next iteration to a common random coin whenever it outputs
⊥ with grade 0 in some iteration of the protocol. If the coin agrees for all parties
with some constant probability p, this ensures that parties agree on what they
input to any iteration with probability at least p/2. Thus, parties terminate the
protocol in O(2/p) = O(1) expected iterations of constant round length. The
exact round complexity in expectation is ((2/p) + 2)(d+9), where d+9 are the
number of rounds in an iteration. On the other hand, we can argue along the
same lines as for the deterministic case that all parties terminate in the worst
case after ⌊f/d⌋+2 iterations, i.e., there are less than d dishonest parties left to
obstruct termination.

1.2 Related Work

Byzantine agreement has been extensively studied since the pioneering work of
Shostak, Pease, and Lamport [3]. Dolev and Strong [4] established a critical
result, showing that any broadcast protocol tolerating t < n malicious parties
requires at least t+1 rounds. However, this bound was later refined by Dolev et
al. [5], who demonstrated that when the number of corruptions, f , is much less
than t, the lower bound is min(f + 2, t+ 1). Since then, significant progress has
been made in developing early stopping protocols.

The first such protocol in the information-theoretic setting with optimal re-
silience t < n/3 was introduced by Berman et al.[8], though it suffered from
exponential communication complexity. Garay and Moses later addressed this
issue, presenting a Byzantine agreement protocol with polynomial-sized messages
but slightly suboptimal early stopping round complexity of min(f+5, t+1)[9,10].
More recently, Abraham and Dolev [6] achieved a breakthrough by developing
the first early stopping protocol with polynomial communication, optimal re-
silience, and optimal round complexity of min(f+2, t+1). While the information-
theoretic setting has seen extensive research, there has been limited work in the
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authenticated setting with optimal resilience t < n/2. To the best of our knowl-
edge, Perry and Toueg [1] provide the only authenticated early stopping protocol
with polynomial communication and a round complexity of min(2f + 4, 2t+ 2).

As for randomized protocols, it has been established that they can achieve
an expected constant number of rounds in both the information-theoretic set-
ting [11] and the authenticated setting [12,13,14]. However, these protocols have
a negligible probability of very long runs due to their failure probability. Goldre-
ich et al. [2] presented a method to eliminate the failure probability, achieving an
expected constant round complexity and worst-case round complexity of O(t)
for up to t < n/2 corruptions—therefore it does not yield an early stopping
protocol. A follow-up work further improved this, achieving expected constant
round complexity and optimal worst-case complexity of t+1 rounds for a worse
resilience of t < n/8 [15]. Achieving expected constant round complexity, t + 1
rounds worst case, and optimal resilience t < n/3 remains unresolved. Impor-
tantly, this question remains open even without considering the early stopping
worst-case round complexity. We note that it is possible to terminate randomized
protocols in round complexity that is independent of the number of corrupted
parties. However, in this case, the number of rounds always depends on the de-
sired error probability δ of the protocol. This makes such protocols difficult to
compare to early stopping protocols. In particular, early stopping protocols may
require much fewer rounds to terminate when the number f of corruptions is
low.

Other works [16,17,18] have explored early stopping protocols but in much
weaker adversary settings, such as omission and crash adversary models. A recent
of work of Loss and Nielsen [19] gives the first early stopping protocol for the
dishonest majority setting with t < n corruptions, albeit with significantly worse
round complexity O(min{f2, t}).

1.3 Paper Organization

Section 2 provides definitions for Byzantine Agreement, (0, 1), and (0, 1, 2)-
Graded d-Detecting Byzantine Agreement as well as for the cryptographic primi-
tives we use such as Signature schemes and common coin. In Section 3, we discuss
the intuition and the construction of the deterministic early-stopping protocol,
along with its correctness proof. In section 4, as well as the intuition and con-
struction of the randomized protocol. We defer some supplementary protocols
and definitions to the Appendix.

2 Preliminaries

We begin by introducing the model as well as basic definitions.

Network and Setup Assumptions. We assume a a fully connected network of
pairwise, authenticated channels between n parties {P1, ..., Pn} = P. We consider
the synchronous network model where all parties have access to a synchronized
clock and there is a known upper bound ∆ on the message delays of honest
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parties. This allows parties to run protocols in a round-by-round fashion where
rounds are of length ∆ and any message that is sent by an honest party at the
beginning of a round are delivered by the end of that round to all honest parties.
Parties are assumed to have established a public key infrastructure (PKI) of a
digital signature scheme that provides an efficient signing routine Sign and an
efficient verification routine Verify. Every party Pi is associated with a public key
pki that is known to all parties and where (only) Pi knows the corresponding
secret key ski. This allows a party Pi to create a signature ⟨m⟩i on message m
using its secret key ski via ⟨m⟩i := Sign(ski,m). ⟨m⟩i can then be efficiently
verified by running Verify(pki, ⟨m⟩i,m). We refer to a signature ⟨m⟩i as valid if
Verify(pki, ⟨m⟩i,m) = 1. For ease of notation, we use the abbreviated notation
⟨m⟩i to refer to tuples (m, sign(m, ski)) throughout the paper.

Adversary Model. We consider an adaptive Byzantine adversary that can
corrupt up to t < n/2 parties at any point of a protocol execution. We refer to
the actual number of corruptions during an execution of the protocol as f ≤ t.
A corrupt (or malicious) party Pi is under full control of the adversary and may
deviate arbitrarily from the protocol. In particular, the adversary learns Pi’s
signing key ski, which allows it to sign messages on Pi’s behalf. In addition, we
allow the adversary to delete (or replace with its own) any undelivered messages
of a newly corrupted party Pi that Pi sent while it was still honest. We denote
the set of uncorrupted (or honest) parties as H.

We assume that the adversary is computationally bounded and cannot forge
signatures of honest parties. In line with the literature in this area, we treat
signatures as idealized primitives with perfect security. When instantiating the
signature scheme with an existentially unforgeable one, we obtain protocols with
non-neglible probability of failure.

Common Coin. We assume an ideal coin-flip protocol CoinFlip that allows
parties to agree with constant probability p < 1 on a random coin in {0, 1}. This
protocol can be viewed as an ideal functionality [20] that upon receiving input
r from t + 1 parties generates a random coin ci and sends (c

(r)
i ) to each party

Pi ∈ P, where c
(r)
i = c

(r)
j with probability at least p. The value remains uniform

from the adversary’s view until the first honest party has queried CoinFlip. Such
a primitive can be achieved using verfiable random functions [21], threshold
signatures [22], or verifiable secret sharing [14].

We begin by presenting definitions of well-known primitives, such as Byzan-
tine agreement and graded consensus. Following this, we introduce new defini-
tions for our proposed protocols: graded consensus with detection.

Definition 1 (Byzantine Agreement). Let Π be protocol executed among
parties P1, ..., Pn, where each party Pi holds an input vi ∈ {0, 1} and outputs a
value yi ∈ {0, 1} upon terminating. A protocol Π achieves Byzantine Agreement,
if the following properties hold whenever at most t parties are corrupted.

– Validity: If every honest party Pi inputs vi = v, then all honest parties output
yi = v;
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– Consistency: All honest parties output the same value v.
– Termination: Every honest party terminates.

Definition 2 ((0, 1, 2)-Graded Agreement). Let Π be a protocol executed
by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1, 2} and outputs a value
yi ∈ {0, 1,⊥} and a grade gi ∈ {0, 1} upon terminating. A protocol Π achieves
(0, 1, 2)-Graded Agreement if the following properties hold whenever at most t
parties are corrupted.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 2

– Graded Consistency: Let Pi and Pj denote honest parties that output yi, gi
and yj , gj, respectively. Then (1) |gi − gj | ≤ 1 and (2) gi, gj ≥ 1 implies that
vi = vj

– Termination: Every honest party terminates.

Definition 3 (Correct or Detect Broadcast (d-CoD)). Let Π be protocol
executed by parties P1, ..., Pn where a designated sender Ps holds input v ∈ {0, 1}∗
and each party Pi outputs a value yi ∈ {0, 1}∗, a list of faulty parties Fi ⊆ P, and
a flag deti ∈ {C,D} upon terminating. Π achieves Correct or Detect Broadcast
(CoD), if the following properties hold whenever at most t parties are corrupted.

– F-soundness: If an honest party Pi outputs Fi, then Fi consists only of
corrupted parties.

– Consistency: If deti = C for some honest party Pi, then every honest party
Pj outputs yj = yi. In this case, we say that the protocol has correctness.

– Validity: If Ps is honest and inputs v, then every honest party Pi outputs
(yi = v,Fi = ∅, deti = C).

– d-Detection: If for some honest party Pi, deti = D, then |
⋂

Pj∈H Fj | ≥ d.
In this case, we say that the protocol has detection.

– Termination: Every honest party terminates.

Definition 4 ((0, 1)-Graded d-Detecting Agreement). Let Π be a protocol
executed by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1} and a list
of faulty parties Fi ⊂ P and outputs a value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and
an updated faulty list F⋆

i ⊂ P upon terminating. Π achieves (0, 1)-Graded d-
Detecting Agreement if the following properties hold whenever at most t parties
are corrupted and for all honest parties Pi, Fi contains only corrupted parties.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 1

– Graded Consistency: If two honest parties Pi and Pj output gi = gj = 1,
respectively, then yi = yj

– d-Detection: If two honest parties Pi and Pj output yi = 1 and yj = 0,
respectively, then an additional d parties are added to the faulty lists of all
honest parties; that is,

∣∣∣(⋂Pj∈H F⋆
j

)
\
(⋂

Pj∈H Fj

)∣∣∣ ≥ d.
– Soundness: If an honest party Pi outputs F⋆

i , then F⋆
i consists only of cor-

rupted parties. Furthermore, Fi ⊆ F⋆
i
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– Termination: Every honest party terminates.

Definition 5 ((0, 1, 2)-Graded d-Detecting Agreement). Let Π be a pro-
tocol executed by parties P1, ..., Pn, where each party Pi inputs vi ∈ {0, 1, 2}
and a list of faulty parties Fi ⊂ P and outputs a value yi ∈ {0, 1,⊥}, a grade
gi ∈ {0, 1}, and an updated faulty list F⋆

i ⊂ P upon terminating. A protocol
Π achieves (0, 1, 2)-Graded d-Detecting Agreement if the following properties
hold whenever at most t parties are corrupted and for all honest parties Pi, Fi

contains only corrupted parties.

– Graded Validity: If all honest parties Pi have the same input value vi = v
then all honest parties output yi = v and gi = 2

– Graded Consistency: Let Pi and Pj denote honest parties that output yi, gi
and yj , gj, respectively. Then (1) |gi − gj | ≤ 1 and (2) gi, gj ≥ 1 implies that
vi = vj

– d-Detection: If any honest party Pi outputs gi < 2, then an additional d
parties are added to the faulty lists of all honest parties; that is,∣∣∣(⋂Pj∈H F⋆

j

)
\
(⋂

Pj∈H Fj

)∣∣∣ ≥ d.
– Soundness: If an honest party Pi outputs F⋆

i , then F⋆
i consists only of cor-

rupted parties. Furthermore, Fi ⊆ F⋆
i .

– Termination: Every honest party terminates.

Definition 6 (Signature Chain). Let m ∈ {0, 1}∗, let k ∈ N, and let σ denote
a sequence k distinct numbers j1, ..., jk ∈ [n]. We write ⟨m⟩σ to denote the nested
signatures ⟨. . . ⟨m⟩j1 . . . ⟩jk and refer to σ as a signature chain of length k. ⟨m⟩σ
is said to be valid if for all k, the signature with respect to pkjk is valid.

3 Deterministic Early-Stopping Byzantine Agreement

As previously discussed, both of our early-stopping protocols are constructed
based on the (0, 1)-Graded d-Detecting Byzantine Agreement protocol, which in
turn is derived from Correct-or-Detect Broadcast protocol Πd-CoD [7] and Proof
of Participation protocol ΠPoP [7]. We adopt a bottom-up approach, initially
introducing the aforementioned subroutines and subsequently demonstrating the
construction of (0, 1)-Graded d-Detecting Agreement protocol and our early-
stopping protocols.

3.1 Correct or Detect Broadcast Protocols (Πd-CoD and Πd-MCoD)

In essence, Πd-CoD (Fig. 1) is a broadcast protocol that ensures that all parties
either agree on the sender’s value or, alternatively, all honest parties identify a
common set of d corrupted parties. The parameter d is a predefined constant that
directly impacts the protocol’s round complexity, with the protocol running for
d+4 rounds. Πd-CoD is 1-biased, meaning the designated sender Ps sends his value
in the first round only if it is vs = 1; otherwise, he refrains from sending anything
if it is vs = 0. Essentially, Πd-CoD is a modified version of Dolev-Strong [4] that’s
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1- biased and forced to terminate in d+4 rounds. In every round r > 1, if a party
Pi receives a message ⟨1⟩σ with r = |σ| valid signatures, including the sender’s
signature for the first time, it accepts the message, appends its own signature,
and forwards it to all parties in the next round. Let ri be the first round where
party pi receives such a message. Pi sets yi ∈ {0, 1} and deti ∈ {C,D} based on
the value of ri. If ri ≤ d + 1 or d + 4, Pi outputs det=C; otherwise, it outputs
det=D. If ri ≤ d + 2, it outputs yi = 1; otherwise, it outputs yi = 0. For
completeness, we show the Πd-CoD protocol in fig. 1 and state the correctness
lemma (Lemma 1) for Πd-CoD. We refer the reader to [7] for the full proof.

Protocol Πd-CoD

– Input and Initialization: If Pi = Ps, let vs denote Ps’s input. Pi sets
Fi := ∅ yi := 0, deti := C, ri := d+ 4.

– Round 1 (Pi = Ps): If the sender’s initial value is vs = 1, it sends ⟨1⟩s
to all parties. (Otherwise, it does nothing.)

– Rounds r = 2 to d+ 4 (Pi ̸= Ps):
• If Pi received a valid signature chain ⟨1⟩σ of length r − 1 in the

previous round and ri = r−2, it appends to the chain its signature,
i.e., it computes σ′ := ⟨⟨1⟩σ⟩i and sends σ′ to all parties.

• If Pi receives a valid signature chain ⟨1⟩σ of length r and ri = d+4,
it sets ri := r − 1. Furthermore, for σ = s, . . . , k, j, Pi adds every
party in Ps, . . . , Pk to Fi.

– Output Determination: If Pi = Ps, Pi sets yi := vs, deti := C and
terminates. Else if ri ≤ d+2, party Pi sets yi := 1. Else if d+2 ≤ ri ≤
d+ 3, it sets deti := D. Finally, Pi outputs yi, deti,Fi and terminates.

Fig. 1. Code of Πd-CoD for party Pi.

Lemma 1. Πd-CoD achieves d-CoD as per Definition. 3 in d+ 4 rounds.

Next, we construct a protocol, Πd-MCoD (see Fig. 2), that extends the binary
input range of Πd-CoD to a multivalued range. To achieve this, multiple Πd-CoD
protocols can be executed concurrently, allowing the sender to send each bit of
their message string. Due to the concurrent execution, the resultant protocol
still runs in d + 4 rounds; however, the communication complexity increases
proportionally with the input size.

For a party pi to output deti = C, all concurrently invoked Πd-CoD instances
must terminate with deti = C. Otherwise, the party outputs deti = D. The
output value yi is obtained by concatenating all output bits from each Πd-CoD
instance. The output faulty list Fi is the union of all faulty lists produced by
each invoked instance of Πd-CoD.

In the following lemma, we prove the correctness of Πd-MCoD per Definition 3

Lemma 2. Πd-MCoD achieves d-CoD as per Definition 3 and terminates in
d+ 4 rounds.
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Protocol Πd-MCoD

– Input and Initialization: If Pi = Ps, let vs denote Ps’s input and set
l := |vs|. Set Fi := ∅, yi :=⊥, deti := D, ri := d+ 4

– Rounds r = 1 to d+ 4:
• Party Ps invokes in parallel l instances of Πd-CoD, where the input

for the jth instance is bit vi[j], j ∈ [l]. Let (yj
CoD, detji ,F

j
i ) denote

the output of the jth instance for party Pi

– Output Determination: If detji = C for all j ∈ [l], Pi sets deti :=
C. It sets yi := y1

CoD ∥ · · · ∥ yl
CoD andFi =

⋃l
j=1 F

j
i . Pi outputs

(yi, deti,Fi) and terminates.

Fig. 2. Code of Πd-MCoD for party Pi.

Proof. F-soundness: The output faulty list Fi is the union of all faulty lists F j
i

produced by the l parallel invocations of Πd-CoD. Based on the F-soundness of
the Πd-CoD protocol, the resulting faulty list Fi contains only malicious parties.
Consistency: If an honest party Pi outputs deti = C, then for each j ∈ [l],
detji = C. Thus, by consistency of Πd-CoD, each party Pj outputs the same bits
in each of the l parallel instances of Πd-CoD as party Pi. Since the output yi is
the concatenation of all output bits ybCoDb = 1l, party Pj will output yj = yi.
Validity: If Ps is honest, it follows the same logic as discussed earlier since the
output value yi is simply the concatenation of the output values of all invoked
Πd-CoD instances and deti = C holds if for each instance j among those instances,
detji = C. Thus, validity follows directly from validity of Πd-CoD.
d-Detection: For a party to output deti = D, at least one instance j ∈ [l]
among the l parallel instances of Πd-CoD output detji = D. Thus, the d-Detection
property of Πd-CoD implies that at least d malicious parties are added to every
honest party Pi’s faulty list Fi via F j

i .
Termination: Πd-MCoD consists of concurrent instances of Πd-CoD. Based on the
assumption that Πd-CoD terminates, Πd-MCoD will also terminate.
Round Complexity. Πd-MCoD consists of concurrent execution of Πd-CoD, which
runs in d+ 4 rounds. ⊓⊔

3.2 Proof of Participation (ΠPoP)

At a high level, the Proof of Participation protocol, ΠPoP, allows each party to
obtain a proof of its honesty, (PoP). A proof of participation, PoP, is considered
valid if it is comprised of t + 1 valid signatures from distinct parties Pj ∈ P of
the form ⟨Pi⟩j . To generate such a proof, each party Pi executes ΠPoP on input
Fi, where Fi represents its view of faulty parties. In the first round of ΠPoP,
each party sends a message to all parties not in Fi, asserting their honesty. If a
party Pj receives at least t+ 1 such messages, it uses them as its proof.

Note that ΠPoP is associated with a session identifier ssid, which indicates
the session in which it is invoked. This protocol generates a proof, PoP, based
on the messages exchanged during that session. As a result, a proof PoP valid
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for ssid is not applicable to any other session identifier ssid′ ̸= ssid. Lastly, we
define two primary properties of Πk

PoP in Lemma 3 and Lemma 4.

Protocol ΠPoP

– Input and Initialization: Let Fi denote Pi’s input. Pi sets PoPi :=⊥
– Round 1:
• For each party Pj /∈ Fi , party Pi sends ⟨Pj⟩i to party Pj

– Output Determination: If Pi receives valid signatures ⟨Pi⟩j from
at least t + 1 distinct parties, Pi collects these messages into PoPi. Pi

outputs PoPi and terminates.

Fig. 3. Code of ΠPoP for party Pi.

Lemma 3. Assume no honest party Pj is in the faulty list Fi of any other
honest party Pi. Then, each honest party Pj outputs a valid PoPj.

Proof. There are at most t < n/2 malicious parties. Each honest party Pi sends
⟨Pj⟩i to every party Pj /∈ Fi. As per assumption, every honest party pi will
receive at least t+1 messages of ⟨pi⟩j . Consequently, every honest party sets its
output PoPi to the aggregation of those received messages. ⊓⊔

Lemma 4. Assume there exists some party Pj such that Pj ∈ Fi for all honest
parties Pi ∈ P. Then, Pj does not output a valid PoPj.

Proof. There are at most t < n/2 malicious parties. No honest party will send
⟨pj⟩i to Pj ∈ Fi. Thus, Pj can collect at most t < n/2 such messages, which are
not enough to form PoPj . ⊓⊔

3.3 (0, 1)-Graded d-Detecting Agreement Construction (Π1-GDA)

In summary, Π1-GDA (see Fig.4) is a variant of Graded Consensus protocols[11].
However, in Π1-GDA, honest parties also output a list of detected malicious par-
ties. Π1-GDA ensures that either every honest party outputs the same value yi, or
every honest party identifies at least d malicious parties (achieving d-detection).

In Π1-GDA, each party starts on vi ∈ {0, 1} and faulty list Fi. Each party out-
puts a value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and an updated list of identified ma-
licious parties F⋆

i ⊂ P. In the first round, each party Pi executes ΠPoP to obtain
a valid PoPi. Consequently, each party Pi invokes Πd-MCoD with input (PoPi, vi).
For simplicity, we denote in the following Πj

d-MCoD as the protocol instance in
which Pj is the sender. Each party stores the output ((PoPi,j , yi,j), det

j
i ,F

j
i )

from all terminated instances of Πj
d-MCoD for each Pj ∈ P. Consequently, party

Pi maintains a list Hi of all parties Pj that sent a valid PoPj via Πj
d-MCoD. Each

party Pi takes the union of all the faulty lists output by all Πd-MCoD instances
to form F⋆

i in addition to the parties in its initial faulty list Fi.
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To determine the output value yi and grade gi, a party Pi only considers the
output of Πj

d-MCoD from parties Pj in Hi. If there is a bit v ∈ {0, 1} such that for
at least t+ 1 of the parties Pj ∈ Hi, y

j
mCoD = v and detji = C, party Pi sets its

output to yi = v and gi = 1. Otherwise, if no such t+1 parties exist, Pi outputs
the majority value over values yi,j among parties Pj in Hi. The protocol runs
for d+ 5 rounds: one round for ΠPoP and d+ 4 for Πd-MCoD.

Protocol Π1-GDA

– Input and Initialization: Let vi and Fi denote Pi’s input. Pi sets
yi := vi, gi := 0, Hi,F⋆

i := ∅, and yi,j ,PoPi,j := ⊥ for j ∈ [n]
– Round 1:
• Party Pi runs ΠPoP on input Fi. Let PoPi denote the output.

– Rounds r = 2 to d+ 5:
• Party Pi invokes Πd-MCoD on input (PoPi, vi). Denote the instance

of Πd-MCoD in which Pj is the sender as Πj
d-MCoD.

• Party Pi stores the output of Πj
d-MCoD for Pj ∈ P;

((PoPi,j , yi,j), det
j
i ,F

j
i ) := Πj

d-MCoD

• For each party Pj such that PoPi,j is a valid PoP, Pi adds Pj to
Hi.

– Output Determination:
• Party Pi accumulates the faulty lists of all instances of Πj

d-MCoD

along with the input Fi as F⋆
i =

⋃
j∈[n] F

j
i ∪ Fi.

• If there exists v ∈ {0, 1} and at least t+ 1 instances of Πj
d-MCoD for

Pj ∈ Hi that terminate with detji = C and output yi,j = v, then
Pi sets the output value yi := v and the grade gi := 1.

• Otherwise, Pi sets yi := v, where v is the the majority bit among
values yi,j where Pj ∈ Hi.

• Party Pi outputs yi, gi,F⋆
i and terminates.

Fig. 4. Code of Π1-GDA for party Pi.

We start with proving graded validity.

Lemma 5. Π1-GDA achieves graded validity as per Definition 4.

Proof. Assume that for all honest parties Pi, vi = v. Further, assume that for
each honest party Pi, Pi /∈ Fj for any honest party Pj . In the first round, ev-
ery honest party Pi invokes ΠPoP on input Fi. From assumption, every honest
party Pi outputs a valid PoPi according to lemma 3. Consequently, each party
Pi invokes as the sender, Πd-MCoD on input (PoPi, v). According to the graded
validity of Πd-MCoD (Definition 3), if Pi is honest, each honest party Pj outputs
detij = C and yj,i = v. Furthermore, by assumption, Pi sends a valid PoPi and
thus, every honest Pi will add Pi to the list Hj . Thus, since there are at most
t < n/2 malicious parties, every honest party Pi will output (v, C,F j

i ) from at
least t + 1 instances of Πd-MCoD for parties Pj ∈ Hi. Consequently, each honest
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party sets yi = v and gi = 1.

In Lemma 6, we prove graded consistency.

Lemma 6. Π1-GDA achieves graded consistency as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party
Pj . A party Pi outputs yi = v and gi = 1 if at least t + 1 instances Πj

d-MCoD

corresponding to parties Pj ∈ Hi terminate with detji = C, and have the same
output value yi,j = v. From consistency of Πd-MCoD, every other honest party Pj

outputs yj,k = v for the same instances and adds the corresponding parties to
those instances to Hj as they receive a valid PoP. Since t < n/2, the majority
bit over all values yj,k, k ∈ Hj is also equal to v for every honest party Pj .
Consequently, each honest party sets yi = v.

We proceed to prove the d-detection property.

Lemma 7. Π1-GDA achieves d-detection as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Note, for any party Pk that is in Fi of all honest parties Pi ∈ P, Pk can not
obtain a valid PoPk after running ΠPoP according to lemma 4. Consequently,
no honest party adds Pk to its list Hi after running Πd-MCoD. Now, suppose two
honest parties Pi and Pj to output different values yi ̸= yj along with respective
grades gi = gj = 0 and faulty lists F⋆

i and F⋆
j . Pi determines yi as the majority

bit over values yi,j output from Πj
d-MCoD where Pj ∈ Hi. The majority over these

values can only differ in the view of Pj if Hi and Hj differ (e.g., a party Pk is in
Hi but not in Hj) or if an instance of Πk

d-MCoD outputs different values yi,k ̸= yj,k
for Pi and Pj . In the first case, the PoP PoPi is valid for Pi and invalid for Pj .
Thus, Πd-MCoD must have output different values PoPi ̸= PoPj . In both cases,
the d-detection property of Πd-MCoD ensures that at least d malicious parties are
added to the faulty list of every honest party when they take the union of the
faulty lists output in all instances of Πk

d-MCoD. Additionally, these d malicious
parties were not initially included in all honest parties’ faulty lists, due to the
reasons stated at the beginning of this proof.

Finally, we prove soundness and termination.

Lemma 8. Π1-GDA achieves soundness, and termination as per Definition 4.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Soundness. An honest party Pi adds additional parties to its initial faulty list
Fi by including the parties from the union of all the faulty lists generated by the
Πj

d-MCoD instances for each Pj ∈ P. According to the F-soundness of Πd-MCoD,
the resulting F⋆

i will only include malicious parties.
Termination. Π1-GDA is constructed from concurrent instances Πd-MCoD. Based
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on the assumption that Πd-MCoD terminates, Π1-GDA will also terminate.
Round Complexity. Π1-GDA protocol runs for d+5 rounds: one round for ΠPoP

and d+ 4 for Πd-MCoD. ⊓⊔

We summarize the previous lemmata into the main following Lemma of this
section:

Lemma 9. Π1-GDA, (Fig. 4) achieves (0, 1)-Graded d-Detecting Agreement as
per Definition 5. Furthermore, Π1-GDA terminates in d+ 5 rounds.

3.4 Deterministic Early-Stopping Byzantine Agreement Protocol
(ΠBAd)

In this subsection, we demonstrate how to construct the deterministic early-
stopping Byzantine agreement protocol, ΠBAd , using Π1-GDA. In ΠBAd , each party
starts with an input value vi ∈ {0, 1} and outputs an output value yi ∈ {0, 1}.
ΠBAd runs in iterations. In each iteration k, parties run Π1-GDA with input
(vi,Fi). Consequently, each party Pi stores the output (yi, gi,Fi) of Π1-GDA.

Based on the grade gi obtained from Π1-GDA, each party Pi determines
whether it is safe to terminate. If Pi outputs gi = 0, it indicates that it is
not safe to terminate, and more iterations are required. Pi updates its input
value for the next iteration based on the output value yi ∈ {0, 1} of Π1-GDA,
setting vi = yi. Conversely, if Pi outputs gi = 1, it is confident that all other
honest parties Pj output the same value yi = yj due to the graded consistency of
Π1-GDA. In this case, Pi runs for one more iteration to ensure that other honest
parties can also safely terminate on the same value, as proven in Lemma 13.
Note, a party can set its output value yi in iteration k, but terminates a few
iterations later. A party only terminates when halti = true.

Each iteration consists of d+ 5 rounds: d+ 5 rounds for Π1-GDA. Therefore,
the overall round complexity of ΠBAd depends on the number of iterations it
runs. We demonstrate in Lemma 14 that the number of iterations is a function
of f .

First, we establish that honest parties are never included in the faulty lists
of other honest parties in any iteration. From this point forward, we assume this
lemma holds indefinitely. Consequently, the assumption of Π1-GDA as stated in
Definition 4 is always valid, and we may omit it from proofs for simplicity.

Lemma 10. At the start of each iteration k of ΠBAd , the faulty list Fi of every
honest party Pi contains only corrupted parties.

Proof. In the first iteration k = 1, the faulty lists of all honest parties are empty,
so the lemma holds trivially. For subsequent iterations k > 1, each party updates
its Fi based on the output of Π1-GDA. According to the soundness property of
Π1-GDA, no honest party Pi is included in the Fj of any other honest party Pj

in any of these iterations. Thus the claim follows by a simple induction. ⊓⊔

Next, we prove that if all honest parties set yi to the same value in iteration
k, all honest parties terminate by at most iteration k + 2.
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Protocol ΠBAd

– Input and Initialization: Let vi denote Pi’s input. Pi sets halti :=
false, yi :=⊥,waiti :=∞ Fi := ∅

– While halti = false do
• Rounds 1 to d+ 5:

∗ Pi runs protocol Π1-GDA with input (vi,Fi) and stores output
(yi, gi,Fi) := Π1-GDA

∗ If gi = 1 and waiti = 1, Pi sets halti := true. Otherwise, if
gi = 1 and waiti > 1, Pi sets waiti = 1

∗ Each party Pi updates the input of next iteration by setting
vi := yi

– Output Determination: If halti = true, Pi outputs yi and termi-
nates.

Fig. 5. Code of ΠBAd for party Pi.

Lemma 11. If all honest parties set yi to the same value in iteration k, then
all honest parties will terminate by at most iteration k + 2.

Proof. Let all honest parties Pi set yi to the same value v in iteration k. Each
party then updates its input value vi for the subsequent iteration based on this
output value, such that vi = yi. In the next iteration (k + 1), all honest parties
invoke Π1-GDA with this updated input value vi. According to the validity of
Π1-GDA, all honest parties will set gi = 1 in iteration k+ 1 and will terminate in
iteration k + 2. ⊓⊔

Next, we proceed with proving validity and consistency for ΠBAd .

Lemma 12. ΠBAd achieves validity per Definition 1

Proof. Assume all honest parties have the same initial value (vi = v). Every party
invokes Π1-GDA with input (vi,Fi). From graded validity of Π1-GDA, every honest
party outputs yi = v and gi = 1. Consequently, every honest party terminates
by the end of iteration k+1 with yi = v. In the subsequent iteration (k+1), each
party invokes Π1-GDA with vi = v. Thus, no party updates its output variable to
v′ ̸= v due to graded validity of Π1-GDA. ⊓⊔

Lemma 13. ΠBAd achieves consistency per Definition 1

Proof. Let Pi denote the first honest party that sets waiti = 1 in the earliest
iteration, say k > 0, indicating it will wait for one more iteration before termi-
nating. This occurs when pi sets its gi to 1, determined by the output of Π1-GDA
in iteration k. According to the graded consistency of Π1-GDA, every other hon-
est party Pj outputs yj = v. Consequently, every honest party updates its input
variable for the next iteration to vi = v. Therefore, in iteration k+ 1, all honest
parties have the same input value for Π1-GDA. Due to the graded validity, all
honest parties set yi = v and gi = 1, and they all terminate by iteration k + 2
at the latest. ⊓⊔
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Finally, we prove that ΠBAd terminates in (d+ 5) · (⌈f/d⌉+ 2) rounds.

Lemma 14. ΠBAd terminates in (d+ 5) · (⌊f/d⌋+ 3) rounds.

Proof. In any iteration k, if honest parties Pi and Pj have the same output value
yi = yj based on the output of Π1-GDA, then all honest parties will terminate
by iteration k + 2, as proven in Lemma 11. If in some iteration, Pi and Pj

have different output values, i.e., yi ̸= yj from Π1-GDA, then according to the
d-detection property of Π1-GDA, at least d malicious parties are added to the
faulty list Fi of all honest parties Pi ∈ P. Thus, since there are f faulty parties,
there can be at most ⌊f/d⌋ many iterations where there are distinct honest
parties Pi and Pj that output different values yi ̸= yj from Π1-GDA. Thus, after
at most ⌊f/d⌋ + 1 many iterations, all honest parties output the same value
v ∈ {0, 1}. Hence, they all terminate by iteration ⌊f/d⌋ + 3 by Lemma 11.
Since each iteration takes d + 5 rounds, the overall complexity comes out to
(d+ 5) · (⌊f/d⌋+ 3)). ⊓⊔

We summarize Lemma 12, 13, and 14 as the following Theorem 1:

Theorem 1. Assume a PKI setup and t < n/2. ΠBAd (Fig. 5) achieves Byzan-
tine Agreement per Definition. 1. Furthermore, ΠBAd terminates in (d + 5) ·
(⌊f/d⌋ + 3) rounds, for any execution with f ≤ t corrupted parties and runs in
communication complexity O(f · n4).

Proof. The theorem follows from the preceeding lemmata. For the communica-
tion complexity, we note that the complexity of an instancce of Πd-CoD is O(n2 ·d)
and during each iteration of ΠBAd , O(n2) such instances are called to broadcast
the PoPs of length O(n) bit by bit for O(n) senders. Since the protocol has
O(f/d) iterations, the overall complexity is O(n2 · n2 · d · f/d) = O(n4 · f).

4 Byzantine Agreement with Expected Constant and
Worst-Case Early-Stopping Round Complexity

In this section, we introduce our randomized Byzantine Agreement protocol,
ΠBAr , which achieves both expected constant time and worst-case early-stopping
round complexity. Similar to our deterministic protocol, ΠBAr is built using the
(0, 1, 2)-Graded d-Detecting Agreement protocol, Π2-GDA. Therefore, we begin
by introducing Π2-GDA and then present the complete construction of ΠBAr .

4.1 (0, 1, 2)-Graded d-Detecting Agreement (Π2-GDA)

Similar to Π1-GDA protocol, Π2-GDA is a variant of Graded Consensus protocols[11],
which allows honest parties to also output a list of detected malicious parties.
In Π2-GDA, each party starts with vi ∈ {0, 1} and faulty list Fi. Each party out-
puts a value yi ∈ {0, 1,⊥}, a grade gi ∈ {0, 1}, and an updated list of identified
malicious parties F⋆

i ⊂ P. Π2-GDA is constructed from Π1-GDA and the black-box
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(0, 1, 2)-Graded Agreement protocol from [23], Π2-GA, which we include in the
Appendix. In the first round, each party Pi invokes Π1-GDA with input (vi,Fi),
storing the resulting output (y⋆i , g⋆i ,F⋆

i ). To enhance the confidence on its output
value, the parties run Π2-GA with y⋆i as its input. Finally, party Pi terminates
and outputs (yi, gi,F⋆

i ), where they are the output of Π2-GA. Note that the out-
put F⋆

i is the faulty list output from Π1-GDA and does not get updated further.
The protocol runs for d+9 rounds: d+5 for Π1-GDA and 4 additional rounds for
Π2-GA.

Protocol Π2-GDA

– Input and Initialization: Let vi and Fi denote Pi’s input. Pi sets
yi, y

⋆
i :=⊥, gi, g⋆i := 0,F⋆

i := ∅
– Rounds r = 1 to d+ 5:
• Pi invokes Π1-GDA with input (vi,Fi). Let (y⋆

i , g
⋆
i ,F⋆

i ) denote the
output.

– Rounds r = d+ 6 to r = d+ 9 :
• Pi invokes Π2-GA with input y⋆

i and let (yi, gi) denote the output.
– Output Determination: Pi outputs (yi, gi,F⋆

i ) and terminates

Fig. 6. Code of Π2-GDA for party Pi.

Lemma 15. Assume Π2-GA achieves (0, 1, 2)-Graded Agreement per Definition 2.
Π2-GDA achieves (0, 1, 2)-Graded Faulty-Detecting Byzantine Agreement per Def-
inition 5.

Proof. Assume that for each honest party Pi, Pi /∈ Fj for any honest party Pj .
Suppose that every honest party Pi inputs (vi,Fi) to Π2-GDA, where vi ∈ {0, 1}
and Fi ⊂ P.
Graded Validity. By assumption, every honest party starts with vi = v, and
invokes Π1-GDA with input (v,Fi). According to the graded validity of Π1-GDA
(Definition 4), all honest parties outputs (v, 1,F⋆

i ). Thus in round d + 6, every
honest party invokes Π2-GA with input v. From graded validity of Π2-GA, Pi

outputs yi = v and gi = 2.
Graded Consistency. A party pi sets its gi and yi based on the output of
Π2-GA. From graded consistency of Π2-GA, this holds.
d-Detection. Assume an honest party pi outputs a gi < 2. If an honest party
pi outputs a gi < 2, it follows from graded validity of Π2-GA that not all parties
input the same value to Π2-GA. Parties invoke Π2-GA with the output value they
obtained from Π1-GDA, so there must be two honest parties Pi and Pj that output
distinct values y∗i and y∗j from Π1-GDA. Thus, d-detection of Π2-GDA is directly
implied by d-detection of Π1-GDA.
Soundness. The output faulty list, denoted as F⋆

i , is based on the output
faulty list from Π1-GDA. Due to the soundness property of Π1-GDA, F⋆

i contains
only malicious parties.
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Termination: The protocol invokes Π1-GDA and Π2-GA, which terminates as per
definitions 4 and 2 respectively.

4.2 Byzantine Agreement with Expected Constant and Worst-Case
Early-Stopping Round Complexity

In this subsection, we present our randomized Byzantine agreement protocol
which has expected constant time and worst case early-stopping round complex-
ity. We demonstrate how to construct the randomized early-stopping Byzantine
agreement protocol, ΠBAr , using Π2-GDA. In ΠBAr , each party starts with an
input value vi ∈ {0, 1} and outputs an output value yi ∈ {0, 1}. ΠBAr runs
in iterations. In each iteration k, parties run Π2-GDA with input (vi,Fi). Con-
sequently, each party Pi stores the output (yi, gi,Fi) of Π2-GDA. Based on the
grade gi obtained from Π2-GDA, each party Pi determines whether it is safe to
terminate. If Pi outputs gi < 2, it indicates that it is not safe to terminate, and
more iterations are required.

Conversely, if Pi outputs gi = 2, it is confident that all other honest parties
Pj output the same value yi = yj due to the graded consistency of Π2-GDA. Party
Pi then updates its input value for the next iteration based on the output grade
gi ∈ {0, 1, 2} of Π2-GDA. If gi > 0, it updates its input value to the next iteration
based on the output value yi ∈ {0, 1} of Π2-GDA, setting vi = yi. Otherwise, if
gi = 0, it sets its input value to the next iteration based on the random coin
it receives from the CoinFlip protocol. We show in lemma 21 that ΠBAr has
expected constant time.

Each iteration consists of d+9 rounds due to Π2-GDA protocol. Therefore, the
overall round complexity of ΠBAr depends on the number of iterations it runs in
the worst case. We demonstrate in Lemma 14 that the number of iterations in
the worst case is a function of f .

Similar to Π1-GDA, we also establish that honest parties are never included
in the faulty lists of other honest parties in any iteration, which is a needed
assumption for Π2-GDA

Lemma 16. At the start of each iteration, the faulty list Fi of every honest
party Pi contains only corrupted parties.

Proof. The proof is derived from Lemma 10 and the fact that Fi in ΠBAr is
based on the faulty list produced by Π2-GDA. ⊓⊔

We proceed to prove both validity of ΠBAr .

Lemma 17. ΠBAr achieves validity per Definition 1

Proof. Assume all honest parties have the same initial value (vi = v). Every
party invokes Π2-GDA in the second round with input (vi,Fi). From graded va-
lidity of Π2-GDA, every honest party outputs (yi = v, gi = 2,Fi). Consequently,
every honest party terminates by the end of iteration k + 1 with yi = v. In the
subsequent iteration (k + 1), each party invokes Π2-GDA with vi = v Thus, no
party updates its output variable to v′ ̸= v due to graded validity. ⊓⊔
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Protocol ΠBAr

– Input and Initialization: Let vi denote Pi’s input. Pi sets k := 0
halti := false, yi :=⊥,waiti :=∞ Fi := ∅

– While halti = false do
• k := k + 1
• Rounds 1 to d+ 9:

∗ Pi invokes protocol Π2-GDA with input (vi,Fi). Let (yi, gi,Fi)
denote the output.

∗ Pi updates the input for next iteration vi := yi
∗ If gi = 2 and waiti = 1, Pi sets halti := true. Otherwise, if

gi = 2 and waiti > 1, Pi sets waiti = 1
∗ If gi = 0, party Pi updates the next iteration’s input using the

common coin, c(k)i ← CoinFlip(k). It sets vi := c
(k)
i .

– Output Determination: If halti = true, Pi outputs yi and termi-
nates.

Fig. 7. Code of ΠBAr for party Pi

Next, we prove consistency.

Lemma 18. ΠBAd achieves consistency per Definition 1

Proof. Let pi be the first honest party to set waiti = 1 in the earliest iteration,
say k > 0, indicating it will wait for one more iteration before terminating. This
happens when pi sets waiti to 1, a condition met if its gi equals 2, determined by
the output of Π2-GDA. By the graded consistency of Π2-GDA, every other honest
party pj outputs yj = v and gj ≥ 1. As a result, every honest party updates its
input variable for the next iteration to vi = v. Therefore, in iteration k + 1, all
honest parties invoke Π2-GDA with input (vi = v). Due to the graded validity, all
honest parties set yi = v and gi = 2, and they all terminate in the subsequent
iteration.

Next, we show two lemmata that will help us in ultimately proving the round
complexity.

Lemma 19. If an honest party sets its gi to 2 in some iteration k, then all
honest parties will terminate by iteration k + 3 at the latest.

Proof. Let honest party Pi set its grade gi = 2 in iteration k and yi = v. From
graded consistency of Π2-GDA, every honest party Pj sets yj = v. Consequently,
every honest party updates its input variable to the next iteration vi = v. Con-
sequently, in iteration k+1, all honest parties invoke Π2-GDA with input (vi = v).
Due to the graded validity, all honest parties set yi = v and gi = 2. And, they
all terminate in the subsequent iteration.

Lemma 20. If all honest parties set yi to the same value in iteration k, then
all honest parties will terminate by at most iteration k + 2.



Early Stopping Byzantine Agreement in (1 + ϵ) · f Rounds 21

Proof. The proof follows similar logic to Lemma 11. ⊓⊔

Finally, we prove that ΠBAr terminates in expected constant time and (d +
9) · (⌊f/d⌋+ 2) rounds in the worst case.

Lemma 21. ΠBAd has expected constant time and always terminating within
(d+ 9) · (⌊f/d⌋+ 2) rounds.

Proof. The proof follows a similar approach to that used in theorem 1. First, we
demonstrate the worst-case round complexity. A party terminates one iteration
after setting its gi to 2, and all other honest parties terminate after two more
iterations from Lemma 19. The setting of gi by a party is based on the result of
Π2-GDA. If an honest party Pi sets gi < 2, then at least d parties are added to the
faulty list of all honest parties Pi according to the d-detection property of Π2-GDA.
Thus, since there are f faulty parties, there can be at most ⌊f/d⌋ many iterations
where all honest parties output gi < 2. Thus, after at most ⌊f/d⌋ + 1 many
iterations, all honest parties set gi = 2, followed by one additional iteration for
all honest parties to terminate. Therefore, the total worst-case round complexity
is (d+9) · (⌊f/d⌋+2). Next, we prove expected constant time. If an honest party
Pi has gi = 2 by the end of iteration k, all honest parties terminate by the end
of iteration k + 2. So, let’s assume every honest party has gi < 2 by iteration
k. Then, with a probability of at least 1/2 · p, the common coin value c

(k)
j of all

honest parties Pj ∈ P is equal to the yi of honest parties Pi with gi = 1. Thus,
all honest parties start the next iteration with the same value. From Lemma 20,
all honest parties terminate by iteration k+2. Thus, the exact round complexity
in expectation is ((2/p) + 2)(d+ 9)

We summarize the preceding lemmata into the main theorem of this section:

Theorem 2. Assume a PKI setup, random common coin, and t < n/2. ΠBAr

(Fig. 7) achieves Byzantine Agreement per Definition. 1. Furthermore, ΠBAr

terminates in expected constant time and worst case (d+9) · (⌊f/d⌋+2) rounds,
for any execution with f ≤ t corrupted parties and runs in communication com-
plexity O(f · n4).

Proof. The theorem follows from the preceding lemmata. For the communication
complexity, we established that the deterministic protocol runs in communica-
tion complexity O(n4 · d). The protocol ΠBAr runs four additional rounds per
iteration compared to ΠBAd due to the construction of Π2-GDA. These extra
rounds run Π2-GA, which has a communication complexity of O(n3) [23]. Thus,
the overall complexity of ΠBAr stays O(n4 · f).
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Protocol Π2-GB

– Input and Initialization: If Pi = Ps, let vs denote Ps’s input. Pi sets
yi :=⊥, gi := 0,mi =⊥

– Round 1:
• If Pi = Ps, it sends ⟨vs⟩s to all parties.

– Round 2:
• If Pi received ⟨vs⟩s in the previous round, it sets mi := ⟨vs⟩S , and

forwards mi to all parties. Otherwise, does nothing.
– Round 3:
• Let mi,j be the message received by Pi from Pj in the previous

round. If ∃mi,j such that mi,j ̸= mi, Pi sets mi :=⊥. Otherwise, it
sends mi to all parties

– Round 4:
• Let m′

j.i be the message received by Pi from Pj in the previous
round. If ∃ at least distinct l > n/2 received messages m′

j,i for
j ∈ [n], where m′

j1,i = · · · = m′
jl,i

= ⟨v⟩s, Pi sets yi := v and
gi = 2. Furthermore, Pi sends the l messages to all parties.

– Output Determination: Assume Pi has not set its output; yi =⊥,
it proceeds as follows. If in the previous round Pi receives l > n/2
distinct messages m′

j,i for j ∈ [n], where m′
j1,i = · · · = m′

jl,i
= ⟨v⟩s, Pi

sets yi := v and gi := 1. Otherwise Pi sets gi := 0 and yi :=⊥.

Fig. 8. Code of Π2-GB for party Pi.

A.2 (0, 1, 2)-Graded Agreement

Next, to achieve graded agreement from graded broadcast, each party invokes
a graded broadcast with its input vi. As a result, each party determines the
overall grade and output value based on the output values and grades from all
the invoked graded broadcast protocols. The construction is shown in Fig. 9

Protocol Π2-GA

– Input and Initialization: Let vi denote Pi’s input. Pi sets yi :=⊥,
gi := 0, and yi,j =⊥, gi,j := 0 for j ∈ [n]

– Round r = 1 to 4:
• Pi invokes Π2-GB with input vi.

– Output Determination: Let (yi,j , gi,j) denote the output for party
Pi of Πj

2-GB with party Pj as sender. If at least t + 1 instances output
yi,j = v and gi,j = 2, Pi sets yi = v and gi = 2. Else, if at least t + 1
instances output yi,j = v and gi,j ∈ {1, 2}, it sets yi = v and gi = 1.
Otherwise, it outputs gi = 0 and yi =⊥

Fig. 9. Code of Π2-GA for party Pi.
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