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1 Introduction

The composable treatment of modern cryptosystems measures the security of a real system
relative to that of an ideal system, referred to as an ideal functionality in the popular universal
composability (UC) model [Can01]. Various composition theorems then show that if these
systems are ‘close’, the ideal system can be safely replaced by the real system in a wide
variety of contexts.

Unfortunately, to date such composable treatments of security due to their complexity
often result in complicated and less efficient protocols. This state of affairs is somewhat
dissatisfying as it is exactly the simple and efficient cryptosystems proven in less composable
models that are widely deployed and used in complex and unpredictable environments. This
necessitates the need for analyses of their composability. A notable example is that of succinct
non-interactive arguments of knowledge (SNARKs), which are seeing ever wider adoption
in practice (particularly in complex blockchain protocols). Yet, SNARKs exactly fall into
the gap between composition and practice: either they are analyzed under property-based
definitions, or else need to be modified or compiled, which increases overheads both in proof
sizes and prover/verifier complexity and prevents adoption.

SNARKs are often proven secure using some idealized resource, such as the random oracle
model or the generic group model.5 The security proofs for SNARKs are generally done in a
standalone (non-composable) manner. In particular, the knowledge extractor gets exclusive
control over the idealized resource, such as the random oracle or the generic group. As a
simple example, this exclusive control enables a SNARK simulator/extractor to program the
random oracle H(0) to some desired value (and, say, embed a trapdoor into that value).
While this enables simple and elegant security proofs, these proofs do not necessarily give
any guarantees about compositions of the SNARK with other systems. The conflict in that
scenario is that both systems’ security proofs require exclusive access to the same idealized
resource. For example, the extractors of two SNARK systems may both want to program
H(0) to different values. As another example, the extractor for one proof of knowledge may
want to observe all random oracle queries H(·) in order to help extract, while the simulator
for another zero knowledge proof system may want to keep its oracle queries/programming
secret in order to not break the simulation [CF24,LR22b]. In such scenarios, we cannot say
anything meaningful about the security of either SNARK when composed with the other.

The examples above demonstrate a need for idealized models that are compatible with
composability. For the random oracle model, this has been largely solved in the form of
the UC functionality G-roRO, the restricted observable global random oracle functionality
[CJS14, CDG+18], and by its programmable version G-rpoRO [CDG+18]. The functionality
G-roRO works like a globally accessible random oracle and is not exclusively controlled by
any UC simulator. Instead, it implements a mechanism through which each UC simulator
gets partial control over it, in the form of observability: The UC simulator for the protocol
running in session sid is able to observe all random oracle queries H(sid, ·) prefixed with
sid (that are made in protocol sessions sid ′ ̸= sid). Details are discussed in Appendix C.
With this mechanism, the single random oracle resource can be shared among multiple UC
simulators in a way that still gives simulators some power over the resource (observations,
or, in the case of G-rpoRO, programming), but in a way that composes with other protocols.
In this case, every protocol session sid gets its own hash prefix sid, and while every protocol
session is using the same resource G-roRO, they can do so with sufficient domain separation
not to interfere with each other. As a result, we can prove many proof systems and SNARK
constructions UC-secure in the presence of G-roRO [LR22b,LR22a,GKO+23,CF24].

5 Alternatively, they are proven using a knowledge assumption or in the algebraic group model (AGM). For
simplicity of exposition, we treat these as idealized resources, too. For example, we can imagine the AGM
as an ideal resource that the adversary deposits discrete logarithm representations of group elements into.
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In contrast to proof systems in the random oracle model, the situation for proof systems
whose proof of knowledge extraction strategy relies on idealized group-related resources
(meaning GGM, AGM, knowledge assumptions) is much less clear. An example for such a
proof system is the popular Groth16 SNARK [Gro16]. While these proof systems are often
“close” to UC security, in the sense they have the prerequisite simulation-extractability and
straightline extraction properties, their extraction strategy is not easily compatible with
composable frameworks such as UC. This has led to the popular strategy of applying some
transformation to the SNARK in order to change the extraction strategy towards a more
UC-compatible strategy. The cost of this, however, is overhead: The transformed SNARK is
much less efficient. One has to accept a significant loss in computational efficiency [GKO+23],
or even lose succinctness [KZM+15] (see Appendix A for a review of the state-of-the-art).

Our goal is to avoid such overhead and to prove SNARKs such as Groth16 secure in
a composable framework as-is, using their native extraction strategy. For Groth16-style
SNARKs specifically, we have standalone (non-composable) analyses in the GGM [Gro16], in
the AGM [FKL18,BKSV21], and under knowledge assumptions [GM17,BFHK23]. However,
it is unclear how these analyses apply to a composable setting. Even worse, in contrast to
the random oracle model, it is not even a settled question how to model composable versions
of group-related idealized resources. One may consider the following existing approaches:
1. Prove Groth16 secure in the F-GG hybrid model, where F-GG (e.g., [CNPR22]) is simply

an ideal functionality implementing a generic group.
2. Prove Groth16 secure in the UC-AGM [ABK+21], which is a composable version of the

algebraic group model. It is implemented as a modified UC model where adversaries are
forced to output a group element’s discrete logarithm representation in terms of input
elements whenever they output a group element.

3. Prove Groth16 secure through [KKK21], which is a composable version of knowledge
assumptions. It is implemented as a variant of the constructive cryptography framework
where all nodes are forced to register a group element’s discrete logarithm representation
in terms of input elements with a global registry whenever they output a group element.
The first option is certainly feasible and a Groth16 proof in the F-GG hybrid model

would be considered a folklore adaptation of the standalone Groth16 generic group security
proof [Gro16]. However, the interpretation of F-GG in practice is that every instance of
Groth16 (and any other protocol) needs its own independent (generic) group. Of course, this
is far from practice, where a few standard groups (such as BLS12-381) are shared among all
sessions for many protocols. It is also not desirable from a design standpoint, as the building
blocks of complex protocols usually share the same group for compatibility reasons.

The second option, using the UC-AGM [ABK+21], is more reasonable: multiple UC-AGM
protocols can share the same group. One of the central conflicts that arise when composing
multiple protocols over the same group occurs when group elements output by one protocol or
session are used as input to another protocol or session. The outputting protocol is interested
in hiding the element’s discrete logarithm representation from the environment (e.g., as part
of a simulation strategy), while the receiving protocol is interested in learning the element’s
discrete logarithm representation (e.g., for proof of knowledge extraction).

This conflict manifests in two different ways in the UC-AGM. First, the environment in
the UC-AGM is not required to output a discrete logarithm representation when it provides
input to honest parties, say an honest Groth16 verifier. For our interests, this means that the
environment can submit a Groth16 proof for verification by the ideal functionality F-NIZK
without having to provide a representation. The lack of a representation makes it impossible
for the UC simulator to extract a witness, even if the proof was computed honestly by the
environment. As a consequence, the UC-AGM is too lenient on the environment, making it
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unsuitable for our purposes. Second, the adversary in the UC-AGM is required to output
representations whenever it provides input to any functionality (e.g., sending a network mes-
sage). As discussed in [ABK+21, Section 1.1], this leads to situations where the framework is
too strict: the adversary may want to use a group element output by one protocol to attack
another protocol, but because the adversary (usually) does not know an appropriate discrete
logarithm representation, it is prohibited from using the group element. This means that
the framework effectively forbids adversaries from mounting cross-session attacks, meaning
taking a group element from one session/protocol to mount an attack against another ses-
sion/protocol. As a consequence, the UC-AGM compromises its ability to reflect arbitrary
environment/attacker behavior, which is a major downside. We discuss an example in Ap-
pendix B .

The third option [KKK21] is similar to the UC-AGM in spirit in that it models al-
gebraic behavior. While [KKK21] is highly configurable and supports a range of different
settings, the authors identify inherent conflicts when it comes to composing multiple knowl-
edge assumptions, which roughly correspond to cross-session attacks mentioned above. They
conclude that group reuse between multiple protocols is an open challenge that requires
future investigation.

This leaves open the question of a framework for a composable group-based idealized re-
source, which (1) enables the modeling of multiple protocols using the same group, which (2)
does not unnaturally restrict the environment’s/adversary’s ability to take elements output
by one protocol, optionally operate on them, and use the result to attack another protocol,
and which (3) is suitable to prove modern SNARKs based on idealized algebraic models,
such as Groth16, secure.

1.1 Our contributions.

Driven by the idea that the algebraic group model suffers from inherent composability issues,
we instead turn our attention to the generic group model. We propose a new solution, which
comes in the form of a new restricted observable global generic (bilinear) group functionality
G-oGG (Section 3). Similar to its random oracle counterpart, G-oGG works like a globally ac-
cessible generic group, but additionally models an observability mechanism based on domain
separation. G-oGG allows for group reuse among multiple protocols, and it does not restrict
the environment from using group elements output by one protocol as input to another.
Additionally, G-oGG naturally features oblivious sampling, i.e. generating a group element
in a way that its discrete logarithm is unknown (as in hashing into a group, e.g., [BLS01]).
As observed in the literature [LPS23, BFHK23], this is an important feature of real-world
(elliptic curve) groups to be reflected in an idealized model.

For protocol designers relying on G-oGG, we provide a useful security proof framework for
G-oGG-based proofs (Section 4), which simplifies the process through a series of lemmas that
enable the kind of symbolic analysis that is core to essentially all generic group proofs.

Using our security proof framework, we prove (Section 5) that Groth16 UC-realizes the
ideal (weak6) NIZK functionality F-wNIZK in the presence of G-oGG. We stress that Groth16
is proven secure as-is. In particular, we achieve UC security without the overhead associ-
ated with UC SNARK compilers (e.g., [KZM+15, ARS20, BS21, LR22b, CSW22, AGRS23,
GKO+23]). To the best of our knowledge, (simulation-)extractability of Groth16 has been
concretely analyzed only in the AGM [FKL18,BKSV21], but not in the GGM. Along the way,
our analysis (Theorem 1) explicitly provides a concrete upper-bound on the distinguishing

6 Here weak refers to the fact that proofs may be re-randomizable, but are otherwise non-malleable. As
observed by Kosba et al. [KZM+15,KMS+16] this weak version suffices for a typical UC application. As an
analogy, typical use cases of signatures only require the existential unforgeability instead of a strong one.
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advantage of any environment, depending on its query complexity, the size of the group, and
the size of the circuit.

Finally, we propose a way (Section 6) to deal with composition of protocols sharing a
generic group in cases where some protocols cannot tolerate their group operations being
observed.

1.2 Overview of our techniques.

The restricted observable global generic group functionality. Observability of
generic group operations should be sufficiently broad to allow a UC simulator to extract
useful information from the adversary and environment, but it should not allow the environ-
ment to learn secret-dependent operations performed by honest parties. This tension goes to
the core of compositional proofs: we need to strike a balance between information available
to the security proof (UC simulator) for one protocol in a way that does not reveal too
much about other protocols (UC environment) that would impact their security proofs. For
random oracles G-roRO, where observability is also used, this balance is easy to achieve via
domain separation7: hashes of (sid, x) belong to session sid, and they become observable if
computed in some session sid ′ ̸= sid.

While domain separation for random oracles is easily modeled, designing the right domain
separation mechanism for generic groups is far less obvious. A natural idea is to implement
domain separation for groups via session-specific group generators, by assigning session sid a
random generator gsid . Intuitively, all operations done on gsid or group elements derived from
it belong to session sid. Operating on elements from a foreign session is deemed “illegal” and
such operations are observable. However, compared to random oracles, there are additional
difficulties: One can take two group elements gsid and gsid′ in two different sessions and
meaningfully operate on them. This raises the question whether cross-session operations
such as gsid + gsid′ are observable, which session they belong to, and how we keep track of
the sessions each group element belongs to.

Roughly speaking, in our approach, G-oGG keeps track of the components of a group
element in a symbolic way. Every generator gsid corresponds to a formal (polynomial) variable
Xsid . A group element such as gsid + gsid′ is associated with the polynomial Xsid + Xsid′ . A
group operation in protocol session sid is illegal (and hence observable) if the polynomial
associated to the operation’s result contains any foreign-session variables Xsid′ (or a constant
term). In other words, operations that involve other sessions’ generators (as kept track of
via polynomials) are observable. The formalization with polynomials avoids subtle issues
with simpler approaches (Appendix D), where an element computed as gsid + gsid′ − gsid′ is
incorrectly associated with both sessions sid, sid ′, which causes issues with too much or too
little observability.

In the explanation above, every session sid only has a single generator gsid . In our proper
G-oGG (Section 3), a protocol can simply call the Touch operation on a random group
element to declare it an additional generator for its session. Hence every session can have
multiple generators gsid,1, gsid,2, . . . and the observability mechanism generalizes naturally
(the explanation above applies verbatim to the multiple-generator setting).
A note on cross-session group element use. Note that in the G-oGG setup, the en-
vironment/adversary is not restricted in the way it can use group elements. In contrast
to the UC-AGM, we allow the environment/adversary to take a group element output by
some protocol, and use it to attack another protocol without any restriction. The crucial
difference is how knowledge of discrete logarithms is managed in UC-AGM vs G-oGG. In

7 For the reader unfamiliar with domain separation approaches for global UC functionalities, Appendix C
offers an explanation.
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the UC-AGM, knowledge of discrete logarithms is the task of the environment/adversary.
This is unfortunate because we also need to hide certain discrete logarithm representations
from the environment/adversary, e.g., as part of a simulation strategy. Additionally, differ-
ent protocols have different AGM representation bases, and the environment is typically not
able to convert a representation from one basis to another. In the UC-AGM, this leads to
the adversary being effectively forbidden to use foreign group elements to attack another
protocol.

With G-oGG, there is no burden on the environment/adversary to keep track of repre-
sentations. The knowledge of discrete logarithm representations is effectively maintained by
G-oGG through observations: certain group operations are observable, and from those obser-
vations, anyone can compute (partial8) discrete logarithm representations. As a consequence,
the environment/adversary is allowed to take group elements from one session and use them
to attack another session. The only “restriction” here is that group operations on foreign
group elements are observable. That “restriction” makes it so protocols have to contend with
observability, which makes it harder to prove constructions secure. It does not unnaturally
impact the ability of the adversary to execute a wide range of real-world attacks.
Hashing and oblivious sampling. The encodings of group elements in our G-oGG func-
tionality belong to fixed sets that are of the same size as the group order. This is a closer
modeling of how groups are used in practice (compared to, say, random encoding sets, where
one does not even know in advance which of the encodings actually correspond to group
elements). Crucially, this choice also allows adversaries and protocols to sample group ele-
ments in arbitrary ways, and thus allows us to avoid explicit modeling of oblivious sampling
or hashing. (Such modeling is introduced for AGM in [LPS23,BFHK23], though to the best
of our knowledge not yet ported to UC-AGM.) Fixing the sets of valid group encodings also
allow hashing into groups via an independent (possibly global) random oracle functional-
ity in parallel to a group functionality. (And whether or not this hashing is extractable or
programmable is left to that functionality [CDG+18].) Conveniently, this means that we do
not have to explicitly model a “hash into group” interface for generic groups: this function-
ality can be emulated using an external random oracle hashing into the set of valid group
encodings.
Embedding generic groups into UC. Technically speaking, our G-oGG is simply a stan-
dard UC functionality. It is global, meaning that instead of being a subroutine to a single
protocol session, it accepts queries from all protocols as well as the environment in arbitrary
sessions. For the notion of composability in the presence of global functionalities such as
G-oGG, we refer to the UCGS (UC with global subroutines) framework of [BCH+20], whose
composition theorem shows how to use the original UC composition theorem in the presence
of global functionalities. (This work also points out certain gaps and shortcomings with the
traditional GUC framework [CDPW07].) One of the advantages of modeling generic groups
as a standard UC global functionality G-oGG is that we do not require any modifications to
the UC framework (we simply refer to the UCGS composition theorem for composition in the
presence of G-oGG). This is in contrast to other modeling approaches, such as the UC-AGM.
UC-SNARKs without overhead. Observable global generic groups are a practical means
to study the UC security of efficient constructions. As a concrete application of relevance,
we show that the Groth16 SNARK, without any modification, in the F-CRS-hybrid model,
UC-realizes the weak NIZK functionality F-wNIZK in the presence of G-oGG (Theorem 1).
To the best of our knowledge, this is the first result to establish the UC security of Groth16
with zero overhead.

8 “Partial” in the sense that observations are sufficient for the simulator of session sid to learn the parts of
the representation that pertain to the generators of sid. See Section 4.3 for details.
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Following [KZM+15, KMS+16], our goal is to UC-realize a slightly relaxed NIZK func-
tionality which allows an adversary to maul an existing proof string π into a new one π∗ but
for the same statement x. This relaxation is necessary for Groth16 as its proof string can be
re-randomized to obtain another valid proof [GM17]. Crucially, it still remains hard to obtain
forged proof π∗ for a new statement x∗ ̸= x. We analyze Groth16 as a canonical example due
to its popularity in a number of deployed systems, and we believe our analysis should extend
to its non-rerandomizable variants such as Groth-Maller [GM17] and Bowe-Gabizon [BG18]
to show they UC-realize the strong NIZK functionality.

As part of our analysis, we introduce a set of technical lemmas, which provide a reusable
template for formal analyses in the presence of global groups. These lemmas essentially
allow one to operate with respect to a cleaner global functionality G-oSG that is purely
symbolic. In effect, they allow using the Schwartz–Zippel lemma (and in particular extraction
of representations of group elements) in the UC setting. In a bit more detail, we introduce
a “fully symbolic” counterpart of the aforementioned G-oGG, where every encoded group
element maps to a formal polynomial instead of a Zp element. In this way, one can guarantee
perfect domain separation by ruling out exceptional events in which two group operations
occurring in different sessions accidentally output the same group element. Our general
lemma shows that one can switch to a hybrid UC experiment in the presence of the symbolic
generic group functionality G-oSG accepting a negligible loss in security.

Moreover, we provide a lemma that introduces a routine which makes a simulator fully
symbolic as well. Typically, a simulator for UC-NIZK uses secret random exponents (known
as simulation trapdoor) to simulate the CRS and proof strings. After invoking this lemma,
one can treat these random exponents as formal variables. We then apply these lemmas to
analyze UC security of Groth16. The combination of our technical lemmas allows for clean
and modular analysis of Groth16 in the UC setting. In particular, once we view all the
random exponents in the current session as formal variables, we can reuse the existing weak
simulation-extractability analysis of Groth16 [BKSV21] almost as it is.
Composition when unobservability is required. The issue with using group elements
from one protocol to attack another (as described above) in the UC-AGM is not unnatural,
but rather points to an inherent conflict for composability in algebraic/generic group settings.
G-oGG tackles this issue not by restricting the environment (and hence the space of allowed
attacks), but by making security proofs harder, essentially erring on the safe side. It does
not, on its own, solve the inherent conflict. The observation rules of G-oGG are well-suited
for applications that can largely follow domain separation, such as SNARKs, where the
prover only operates on CRS elements. However, in other protocols, when a party applies a
secret to group elements not necessarily in its session, those operations are observable and
the secret is effectively leaked. For example, a party in the ElGamal encryption scheme9

would receive a ciphertext (c1, c2) from the environment and compute the plaintext c2− sk ·
c1. If the environment supplies c1 that does not belong to the ElGamal protocol’s session
(e.g., a Groth16 CRS element), then the operation sk · c1 becomes observable, leaking the
secret key to everyone. This is an inherent conflict with composition. The ElGamal protocol
is interested in having unobservable operations on foreign elements. Conflicting with this,
Groth16 requires that operations on its CRS by ElGamal are observable. Concretely, if
decryption were afforded unobservability, then the decryption operation can effectively be
used to compute a part of a valid Groth16 proof that the Groth16 UC simulator cannot
trace, making extraction impossible.

We suggest a way to resolve this conflict by adapting a slight tweak to UC composition
proofs. On a high level, when proving the composition of ElGamal and Groth16, one would

9 ElGamal is not a UC-secure encryption scheme. We are using it here for the sake of simplicity of illustration.
The same principle applies to CCA2 secure variants of ElGamal, such as Cramer-Shoup [CS98].
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first replace F-wNIZK by the concrete Groth16 protocol. After that, observability is not
needed anymore (as it is only used by the Groth16 simulator in the ideal world, not by
the real-world protocol itself) and can be removed (conceptually). Then, one would replace
F-Enc by ElGamal. This replacement now happens in a setting where observation does not
exist anymore. We sketch this approach in Section 6, but leave details for future work.

Painting the big picture, attacks involving cross-session use of group elements in the UC-
AGM are partially disallowed, making it easy to prove a wide range of applications secure
but restricting the class of covered attacks. Cross-session attacks are fully allowed with
G-oGG, meaning that we allow for all possible attacks, but such cross-session use results in
observable operations, which rules out certain applications. However, this issue is mitigated
with the approach described in Section 6. So overall, we get the best of both worlds: We
can prove composition for a wide range of applications, in a model that does not restrict the
environment.
Paper Organization The rest of the paper is organized as follows. Section 2 summarizes
technical preliminaries. In Section 3, we formally introduce the restricted observable global
generic group functionality G-oGG. Section 4 states useful technical lemmas which provide
a reusable template for formal analyses in the presence of global groups. In Section 5, we
formally analyze UC security of the Groth16 SNARK in the presence of G-oGG. Section 6
provides a tweak to UC composition proofs when unobservability is required. We conclude
the paper with future work suggestions in Section 7. Apart from full proofs, the appendix
also discusses additional related work in Appendix A, it answers frequently asked questions
in Appendix B. Appendix C further discusses observability in global functionalities, while
Appendix D discusses failed attempts for designs of G-oGG, motivating design decisions.

1.3 Related work

Criticism and alternatives to the generic group model. The generic group model
(GGM) is not without criticism. First, similar to random oracles, one can prove (artificial)
schemes secure in the GGM that become provably insecure when instantiated with any
concrete group [Den02]. Furthermore, applying the GGM in certain (non-generic) scenarios
can lead to spurious security proofs [SPMS02].

In addition, the GGM only provides security guarantees against generic adversaries.
However, we know that the fastest attacks on the discrete logarithm problem in elliptic
curve pairing groups make use of the specific structure of Gt via index calculus methods.
As a result, the guarantees provided by the GGM are somewhat less meaningful. The semi-
generic group model [JR10] addresses this weakness by modeling Gt as non-generic (while
G1,G2 are still generic groups). In practice, even with index calculus methods, breaking the
discrete logarithm assumption (or any reasonable related assumption) is infeasible. So while
there is some speed-up between the generic and non-generic attackers, the speed up is not
meaningful for suitably chosen pairing groups.

Finally, obliviously sampling a group element (or hashing into the group) is a widely used
feature, which is often not supported by the GGM, causing issues [LPS23, BFHK23]. The
generic group modeling in our paper enables oblivious sampling as discussed above.

Overall, while there is criticism on the generic group model, it is still widely used as a
useful tool to establish security guarantees in the absence of stronger formal evidence.

The algebraic group model (AGM) [FKL18] was born out of criticism on the GGM.
Security in the AGM is established with respect to a restricted class of algebraic adversaries,
which are required to always supply the (discrete-log) representations of their output group
elements in terms of the input elements that they have seen so far. This means that intuitively,
because an AGM adversary gets to see proper group element encodings rather than random
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ones, the AGM is a weaker (less severely restricting) model than the GGM (though depending
on the AGM/GGM formalization, this intuition is not necessarily formally true [ZZK22]).
The AGM does not support oblivious hashing, but can be extended to do so [LPS23].

The UC-AGM [ABK+21] is blind to cross-session group element attacks, as explained
above. For this reason, despite the AGM usually being the better model than the GGM, the
same does not seem to hold true when it comes to questions of composability.
UC-secure proof systems. Although a number of papers study generic transformations
that lift NIZK proof systems in the stand-alone setting into a UC-secure one [KZM+15,
ARS20, BS21, LR22b, CSW22, AGRS23, GKO+23], they end up with the proof sizes linear
in the witness size, sacrificing succinctness, or else introduce significant overheads in the
proving time. To realize the ideal functionality, these UC-lifting compilers typically out-
put a proof system satisfying the so-called simulation-extractability (SE) property [Sah99,
DDO+01,Gro06,FKMV12]. While Groth16 and variants already have SE in the GGM/AGM
[BKSV21,BG18,GM17], its implications to composable security have been unclear before our
work. So far, there is little work on SNARKs being UC-secure as-is, i.e. without having to
apply a transformation, which is the state of the art. The exception to this is a recent con-
current work [CF24] that proves Micali’s SNARK [Mic00] and certain IOP-based SNARKs
obtained via the BCS transform [BCS16] UC-secure in the presence of G-rpoRO, i.e. in the
random oracle setting. We defer a more complete review of UC-secure proof systems to
Appendix A.

2 Preliminaries

2.1 Notation

Functions and pseudocode. For a (partial) function τ : A→ B, define the image im(τ) =
{y | ∃x : τ(x) = y} ⊆ B and the domain dom(τ) = {x | τ(x) ̸= ⊥} ⊆ A. We write “assert
ϕ” as a shorthand for “if ¬ϕ, then return ⊥”. List concatenation is denoted by colon (A : B).
Sets and polynomials. For subsets A, B ⊆ R of a ring R, r ∈ R, define A + B := {a + b |
a ∈ A, b ∈ B}, r · A := {r · a | a ∈ A}, and A · B := {a · b | a ∈ A, b ∈ B}. We still let
An = A×A× · · · ×A to denote the n-fold Cartesian product.

We denote scalars by lower-case letters (e.g., a ∈ Zp), and formal variables/polynomials
in sans-serif font (e.g., A ∈ Zp[X]). We also consider polynomials and variable with negative
degree, e.g. 2X + 3X−1 ∈ Zp[X, X−1]. Sets or maps involving scalars are generally written
as S, if they involve polynomials, they are written as S. For a Var a set of variables, we let
Var±1 := Var ∪ Var−1, where Var−1 is a set containing the inversion of variables in Var.

Let R be a ring of polynomials, A, B ∈ R, and L ⊆ R be a finite list of ring elements.
Then ⟨L⟩R =

∑
x∈L x · R ⊆ R is the ideal generated by the elements of L. For example, for

R = Zp[X, X′, Y], we have that ⟨X, X′, Y⟩Zp[X,X′,Y] is the set of all polynomials with no constant
term and ⟨X, X′⟩Zp[X,X′,Y] is the set of all polynomials only containing non-constant monomials
in X or X′ (e.g., 2X + 3X′ + 4XX′ + 5XY ∈ ⟨X, X′⟩Zp[X,X′,Y], but Y, X + 3 /∈ ⟨X, X′⟩Zp[X,X′,Y]).

We say that a = b mod ⟨L⟩R (or simply, a = b mod L) if a − b ∈ ⟨L⟩R. For example,
X + 5Y + 7XY + 3 = X + 3 mod Y.

Lemma 1 (Schwartz–Zippel). Let F be a finite field, let Var = (X1, . . . , Xn) be a list of
formal variables. Let f ∈ F[Var], f ̸= 0. Then

Pr[f(x1, . . . , xn) = 0] ≤ deg(f)/p ,

where the probability is over x1, . . . , xn
$← F.
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Lemma 2 (Schwartz–Zippel for Laurent polynomials). Let F be a finite field of order
p > 1, let Var = (Y1, . . . , Yn) be a list of formal variables. Let f ∈ F[Var±1] be a Laurent
polynomial, f ̸= 0. Then

Pr[f(y1, . . . , yn) = 0] ≤ 2 deg(f)/(p− 1) ,

where the degree of a Laurent polynomial is defined as the maximal absolute value of the
exponent of any term, and the probability is over y1, . . . , yn

$← F∗.

2.2 Generic bilinear groups

Philosophically, the generic group model represents an idealization of a bilinear group,
where protocols and attackers can only (meaningfully) interact with the group by exe-
cuting group operations. They cannot exploit any additional structure of the group. The
generic group model has been formulated in two majors forms: One due to Shoup and
Nachaev [Nec94, Sho97] that idealizes element encodings as random strings, and the other
due to Maurer [Mau05] that treat group elements as abstract handles. (See also [Zha22] for a
more modern perspective and comparisons.) In this work we focus on Shoup’s model adopted
to the case of bilinear groups.

The bilinear generic-group model is parameterized by (p, S1, S2, St), consisting of two
(carrier) sets of size p corresponding to source groups S1 and S2, and another, also of size p,
corresponding to the target group St. All parties, honest or otherwise, are given oracle access
to three random injections τi

$← Inj(Zp, Si) for i = 1, 2, t as well as (τ1(1), τ2(1), τt(1)).
In this model, parties also get oracle access to three compatibly defined group operation

oracles which invert a given element via τ−1
i , perform addition over Zp, and re-encode via

τi. Finally, a pairing operation allows “multiplying” two elements, one in S1 and the other
in S2, via inversions under τ1 and τ2 respectively, multiplication over Zp, and encoding via
τt.

There are three prominent types of bilinear groups that are commonly used in practice,
corresponding to whether the groups are different or if there is an isomorphism between the
groups. From a generic-group perspective, in type-I groups S1 = S2 and their corresponding
injections τ1 and τ2 are also identified. In type-II and type-III groups the injections remain in-
dependent, though for type-II groups one also provides oracle access to an isomorphism from
the second source group to the first, implemented via inversion under τ−1

2 and re-encoding
under τ1. Here we focus on type-III bilinear groups (with no isomorphism in either direc-
tion) as these are most commonly used in practice. Throughout, we use additive notations
for operations performed in all three groups.

A final distinction made in use of generic groups is whether (honest) group operations
are performed with respect to the given set of “canonical” generators (τ1(1), τ2(1), τt(1))
or whether random generators are used. This choice has security implications as shown
in [BMZ19]. As we shall see, for our UC security proofs, it is critical that protocols use
random generators.

2.3 The UC framework and its execution model

We rely on the Universal Composability (UC) framework [Can01]. However, our results could
also be expressed using the concepts of other comparable frameworks [Mau10,Küs06,HS15,
BDF+18]. Historically, the treatment of global resources required a more general and complex
compositional framework [CR03,CDPW07]. Badertscher et al. [BCH+20] show how to view
global functionalities as global subroutines, a concept that can be made precise within the
latest installment of the plain UC framework [Can20]. Here, we provide a summary of [Can20]
and refer interested readers to the original works for further details.
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Formalism. In the UC framework, protocols are modeled as a system of Interactive Turing
Machines (ITM). While ITM itself is just a static piece of code, for each session identifier
sid ∈ N, we consider a collection of ITM instances (ITI) sharing the same sid. Each ITI is
an instance of some ITM for a specific session and together they form the runtime notion of
a protocol session. Each ITI in a given protocol session is also called a party.

The execution of a protocol Π involves a set of parties P, the environment Z (which
essentially behaves like an interactive distinguisher), and the adversary A. The environment
controls the flow of execution by interacting with the adversary A and choosing inputs to
the parties involved in Π and receiving their outputs. An identity bound ξ places restrictions
on whom Z can provide input to (e.g., to ensure the environment cannot make calls to
subroutines of Π on behalf of Π). The execution terminates when the environment finally
terminates with an output 0 or 1.

During an execution of Π, the adversary A may corrupt a subset of parties as defined
by the security model in order to learn their internal states and gain control over these
parties. In this paper, we focus on static corruption meaning that A chooses which party to
be corrupted in the beginning of the execution.

We denote by EXECΠ,A,Z(λ, z) the distribution of a binary output by Z after an execution
of Π in the presence of A, where λ ∈ N is a security parameter, z ∈ {0, 1}∗ is an auxiliary
input to Z, and the randomness for all ITMs are assumed to be sampled uniformly at random.
We define the family (or ensemble) of random variables {EXECΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Recall that two binary distribution families X, Y indexed by λ ∈ N, and z ∈ {0, 1}∗ are
called indistinguishable (denoted X ≈ Y ) if for all c, d ∈ N, there exists a λ0 ∈ N such that
for all λ > λ0 and all z ∈ ∪κ≤λd{0, 1}κ, |Pr[X(λ, z) = 1− Pr[Y (λ, z) = 1]| < λ−c.

UC Security. Intuitively, we consider that a protocol Π in the presence of an adversary A
successfully UC-emulates another (typically more idealized) protocol Φ if there exists another
adversary (aka. simulator) S such that no environment Z can distinguish the execution of
Φ with S from that of Π with A.

Definition 1 (UC emulation). A protocol Π is said to UC-emulate Φ if for any PPT
adversary A there exists a PPT adversary S such that for all PPT environment Z

{EXECΠ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ ≈ {EXECΦ,S,Z(λ, z)}λ∈N,z∈{0,1}∗ .

To define the security of protocol Π in the UC framework, one describes an ideal func-
tionality F which captures the desired functionality of the task in hand in the form of an
ITM. One then defines Π UC-secure if Π UC-emulates the ideal protocol Φ = IDEALF . The
ideal protocol IDEALF models an idealized run of protocol execution: the simulator S only
interacts with Z and influences the execution through the prescribed interfaces of F , and
the parties P are replaced with the so-called dummy parties P̃ which merely forward the
inputs from Z to F and the responses back from F to Z.

Syntax for ideal functionalities and protocols. In this paper, we use the following
syntax to enable more precise (code-based) specifications of ideal functionalities. We describe
F as a collection of internal states and interfaces. As usual, upon the first invocation of
F within session sid its instance gets created with initial internal states. We model this
routine by introducing F .Initsid(), which can be called only once. Once an instance of F is
created within sid, the subsequent calls to Initsid() are ignored. If F comes with interface
Interface, the (co-)routine “F .Interfacesid(in)” defines the behavior of the interface for
session sid on input in, and returns the resulting output, potentially after interacting with
the simulator. Every invocation of Interfacesid may update the internal state of an instance
of F .
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Functionality 1: F-wNIZK

Initsid()
1: T ← [ ]

Provesid(x, w)
2: if (x, w) /∈ R then return ⊥
3: π ← S.Simulatesid(x)
4: T ← T ∪ (x, π)
5: return π

Verifysid(x, π)
6: if (x, π) ∈ T then return 1
7: w ← S.Extractsid(x, π)
8: if (x, w) ∈ R then T ← T ∪ (x, π)
9: if (w = maul ∧ (x, ∗) ∈ T ) then T ← T ∪ (x, π)

10: if (x, π) ∈ T then
11: return 1
12: else
13: return 0

UC with global functionalities. [BCH+20] model global functionalities within the basic
UC framework described above. Unlike a (local) functionality F , a single instance of a global
functionality G may take input from and provide outputs to multiple instances of protocols
and local functionalities. Moreover, the environment Z can directly interact with G without
going through spawned instances of the adversary. The definition of security can be naturally
extended in the presence of a global functionality as we define next.

Definition 2 (UC emulation with global setup). Let G be a global functionality. A
protocol Π is said to UC-emulate Φ in the presence of G, if for any PPT adversary A, there
exists a PPT simulator S such that for all PPT environment Z,

{EXECΠ,G,A,Z(λ, z)}λ∈N,z∈{0,1}∗ ≈ {EXECΦ,G,S,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Here, EXECΠ,G,A,Z(λ, z) is defined in terms of EXECµ[Π,G],A,Z(λ, z), where the so-called man-
agement protocol µ allows Π to interact with G but additionally grants access to G to Z.

In [BCH+20], the authors present a composition theorem for global subroutines (UCGS
theorem), which states the following: if a protocol Π UC-realizes F in the presence of G, then
the protocol ρΠ,G that is identical to ρF ,G except that all instances of the ideal functionality
F are replaced by instances of the real protocol Π, UC-emulates ρF ,G in the presence of G.

2.4 Weak NIZK functionality

In Functionality 1 we formalize F-wNIZK, the weak NIZK ideal functionality that we will be
realizing. F-wNIZK is parameterized by polynomial-time relation R, and runs with parties
P and an ideal process adversary S. It stores a proof table T which is initially empty.
“Weak” refers to the fact that proofs may be malleable. Our formalization slightly differs
from [KZM+15, Figure 3] in that mauling of proofs is performed by the simulator and not via
an explicit maul interface. We note that with Line 9 removed, we obtain an ideal functionality
for a standard (“strong”) NIZK.

Here we consider the case of static corruption. This is sufficiently strong to also give
adaptive corruption for F-wNIZK (where the all queried (x, w) are returned upon corruption)
assuming secure erasure (of randomness). In order to have a simpler functionality, we do not
model that a previously invalid proof must not subsequently become valid. Note, however,
that Groth16 enjoys full consistency.

3 The global observable generic group functionality

In this section, we first go over the (strict) global generic group model as a warm-up, and
then introduce the restricted observable global generic group model, which is what we are
going to use to prove UC security of Groth16.
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Functionality 2: G-GG

Init()
1: for i ∈ {1, 2, t} do
2: τi

$← Inj(Zp, Si)

Opsid(i, g1, g2, a1, a2)
3: assert (g1, g2, a1, a2) ∈ S2

i × Z2
p

4: h← τi(a1τ−1
i (g1) + a2τ−1

i (g2))
5: return h

CanonicalGensid(i)
6: return τi(1)

Pairsid(g1, g2)
7: assert (g1, g2) ∈ S1 × S2
8: h← τt(τ−1

1 (g1) · τ−1
2 (g2))

9: return h

3.1 Warm-up: The (strict) global generic group functionality

We focus on type-3 bilinear groups and Shoup’s style of generic groups with random encod-
ings (cf. Section 2.2). We can easily model such (unobservable) generic bilinear groups as a
(global) UC functionality G-GG as in Functionality 2 (similar to, for example, [CNPR22]). As
in standard generic type-III bilinear groups, G-GG is parameterized by a prime p and three
sets Si for i ∈ {1, 2, t} each of size p. G-GG starts by initializing three random injections
τi : Zp → Si for i ∈ {1, 2, t}. (This choice can be made efficient in the standard way, via lazy
sampling.)

The functionality G-GG offers three interfaces to protocols. They can use G-GG to access
the “canonical” generators τi(1) via CanonicalGen. As with standard generic groups, G-GG
also offers an Op and a Pair interface. We slightly extend Op to compute an arbitrary linear
operation a1 · g1 + a2 · g2 (rather than just g1 + g2). This is without loss of generality and is
used spare algorithms from implementing double and add.

Because the sets Si are public and of size p, protocols (and adversaries) can (obliviously)
sample group elements of their choice. This could be via an arbitrary algorithm that has an
unspecified output distribution. (Some formalizations allow Si to be a much larger set than
Zp, which prevents these powers.) Moreover this choice better conforms to practical groups
(where the carrier sets of a bilinear group are fixed and publicly known).

This feature, when combined with an external random oracle functionality, also enables
hashing into the group via random oracle. For this reason, and in contrast to, say, [CNPR22],
we do not explicitly model a “hash-into-group” interface

As such, G-GG can be seen as the generic-group equivalent of the “strict” global random-
oracle functionality [CDG+18]. It can be used, for example, to analyze the UC security
algebraic schemes like ElGamal when they share a generic group.

3.2 The (restricted) observable global generic group functionality

The ability to observe generic-group (and random-oracle) queries forms the basis of many
proofs in cryptography. Functionally, G-GG as defined has limited applicability, because
it does not offer the UC simulator any “cheating power”. This is in contrast to a local
group [CNPR22] where the simulator takes over the group.

To enable applications where simulators need to observe queries made to the group, we
augment G-GG with observation capabilities. As seen in the analogous restricted observable
global random oracle (e.g., [CDG+18]), these observation capabilities need to be appropri-
ately restricted so as to not render all applications insecure.

Our global restricted observable generic group functionality G-oGG is defined in Function-
ality 3. It contains all interfaces of G-GG, together with two additional ones, Observe and
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Functionality 3: G-oGG

G-oGG is (implicitly) parameterized with
– A prime number p

– Sets S1, S2, St ⊆ {0, 1}∗ with |Si| = p for all i ∈ {1, 2, t}.
G-oGG maintains the following state:

– τi : Zp → Si three random encoding functions, mapping discrete logs x ∈ Zp to their randomly encoded group
elements h ∈ Si.

– Vari,sid initially empty lists of formal variables. // Keeps track of the group i formal variables belonging to
session sid.

– Ri[h] for i ∈ {1, 2, t}, h ∈ Si initially empty sets of polynomials // Keep track of polynomial representations
corresponding to h ∈ Si.

– Ob initially empty list of observable actions.
Furthermore, we use the following terms derived from the current state

– We write Varsid = Var1,sid : Var2,sid : Vart,sid to refer to all variables of session sid (irrespective of which group).
– We write Var to refer to the concatenation of all Varsid (i.e. over all sid).
– Legalsid = ⟨Varsid⟩Zp[Varsid ] =

∑
X∈Varsid

X · Zp[Varsid ]. // Legalsid is the set of polynomials that contain only
this session’s variables X ∈ Varsid , and whose constant term is 0. For example, 15Xsid + 7Ysid ∈ Legalsid and
3XsidYsid ∈ Legalsid , but Xsid + 3 /∈ Legalsid and Xsid + Xsid′ /∈ Legalsid .

Init() // Invoked only upon creation
1: for i ∈ {1, 2, t} do
2: τi

$← Inj(Zp, Si)
3: Ri[τi(1)]← {1}

CanonicalGensid(i)
4: return τi(1)

Observesid()
5: return Ob

Opsid(i, g1, g2, a1, a2)
6: assert (g1, g2, a1, a2) ∈ S2

i × Z2
p

7: for j ∈ {1, 2} do
8: Touchsid(i, gj)
9: h← τi(a1τ−1

i (g1) + a2τ−1
i (g2))

10: Ri[h]← Ri[h] ∪ (a1Ri[g1] + a2Ri[g2])
11: if ∃f ∈ Ri[h] : f /∈ Legalsid then
12: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]
13: return h

Touchsid(i, g)
14: if Ri[g] = ∅ then
15: Initialize fresh variable X
16: Vari,sid ← Vari,sid : [X]
17: Ri[g]← {X}

Pairsid(g1, g2)
18: assert (g1, g2) ∈ S1 × S2
19: for i ∈ {1, 2} do
20: Touchsid(i, gi)
21: h← τt(τ−1

1 (g1) · τ−1
2 (g2))

22: Rt[h]← Rt[h] ∪ (R1[g1] · R2[g2])
23: if ∃f ∈ Rt[h] : f /∈ Legalsid then
24: Ob ← Ob : [(Pair, t, g1, g2, h)]
25: return h
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Touch. If Observe and Touch are never called, then G-oGG behaves identically to G-GG. In
particular, G-oGG.Opsid(i, g1, g2, a1, a2) still effectively returns h = τi(a1τ−1

i (g1)+a2τ−1
i (g2)),

and the only difference to its counterpart in G-GG is that the operation additionally keeps
track of the way group elements are computed, which we discuss below. Similarly, G-oGG.Pair
differs from G-GG.Pair only in maintaining some additional bookkeeping.

Our strategy to restrict observability is similar to (restricted) observable random ora-
cles [CDG+18] in that we deploy a form of “domain separation”.10 G-oGG introduces a notion
of group elements belonging to certain sessions, which informs the observation rules. This
notion, however, is somewhat nontrivial—after all, the entire group is shared equally among
all sessions, with no algebraic differentiation between any two group elements. To associate
group elements with sessions, we keep track of polynomial representations of group elements
with respect to certain generators.

Generators. To start, protocols can claim (random) generators g ∈ Si for each group in
their session by simply calling the Touchsid(i, g) procedure. Reminiscent of the Unix touch
command, if g is already in use, nothing happens. Otherwise, g becomes a generator of
the caller’s session sid. (Protocols can choose g randomly to ensure that g is unused with
overwhelming probability.) A formal variable X is associated with every touched generator g.
The functionality keeps track of each session’s generators in terms of their formal variables
using lists Vari,sid (to which X is appended). The canonical generators τi(1) do not belong to
any particular session. Looking slightly ahead, every group element h ∈ Si will be associated
with a (set of) polynomials Ri[h] that explain how the group element has been computed.
For a touched generator g with associated formal variable X, the polynomial representation
is simply Ri[h] = {X}. The canonical generators are represented with constant polynomials,
Ri[τi(1)] = {1}.

Group operations. When executing group operations, G-oGG keeps track of the polyno-
mial representations corresponding to the resulting group element. Whenever two group
elements are added, their polynomial representations are summed up to form the correspond-
ing polynomial representation (Line 10 of Functionality 3). Whenever the pairing operation
is applied, polynomial representations are multiplied (Line 22). For example, let g1, g2 be
generators associated with formal variables Ri[g1] = {X1}, Ri[g2] = {X2}. If we compute
“h = 1 · g1 + 3 · g2”, then the corresponding polynomial is Ri[h] = {X1 + 3X2}. If we further
compute “h′ = 2 · h + 50 · g1”, then Ri[h′] = {52X1 + 6X2}. Note that by design, polynomials
in R1 and R2 are of degree 1 or 0, and polynomials in Rt for the target group are of degree
at most 2.

It may happen that there are two polynomial representations f ̸= f ′ for the same group
element h. For this reason, Ri[h] is formally modeled as a set containing all known represen-
tations. However, by Schwartz–Zippel (Lemma 1), for sufficiently large groups, Ri[h] will be
a singleton set with overwhelming probability (we formally establish this in the UC setting
in the proof of Lemma 3).

Observation rules. With the above bookkeeping mechanisms, we have polynomials f ∈
Ri[h] associated to each group element h, and sessions to each polynomial variable X ∈ Varsid .
This now allows us to establish the observation rules. For this, we say that a group element
h is legal in session sid if its associated polynomial(s) f ∈ Ri[h] do not contain variables
Xsid′ ∈ Varsid′ of foreign sessions sid ′ ̸= sid (and no constant terms, which correspond to the
canonical generators). This the set Legalsid in Functionality 3 formally defines the set of legal
polynomials for session sid. A group operation or pairing operation is observable if its result is
not legal in the caller’s session. If an operation is observable, then the input to the operation

10 In Appendix C we give an overview of domain-separation approaches in global observable functionalities.
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is added to a global list Ob in Line 12 and 24. Ob can be read by anyone (environment,
simulator, adversary, even, theoretically, protocol entities) by calling Observe.

Intuitively, in order to not be observed, the protocol in session sid must only operate
with group elements that were derived from its session’s generators, with no involvement of
generators from other sessions sid ′. To comply with domain separation, protocols in session
sid must only operate with group elements that were derived from their session’s generators,
with no involvement of generators from other sessions sid ′. For example, if Ri[h] = {4Xsid +
3X′

sid}, where Xsid , X′
sid ∈ Vari,sid are associated with session sid, then clearly, h belongs to

session sid. An Opsid operation called by a party in session sid, resulting in h is an example
of an unobservable operation. However, if Ri[h] = {4Xsid + 3Ysid′}, where Ysid′ ∈ Vari,sid′

belongs to session sid ′ ̸= sid, then h does not belong to either session. An Opsid operation
called by a party in session sid (or indeed any other session), resulting in h is an example of
an observable operation. For a pairing operation Pairsid(h1, h2) = h, we naturally get that if,
say, R1[h1] = {Xsid} and R2[h2] = {3Zsid}, then for the result h, we get Rt[h] = {3XsidZsid},
which indicates that h is legal (unobservable). If, however, instead R2[h2] = {3Zsid′} with
Zsid′ ∈ Legal2,sid′ , then the result is illegal (hence observable), since Rt[h] = {3XsidZsid′} ̸⊆
Legalsid .
Using G-oGG in protocols. A protocol can set up its set of generators by sampling random
group elements g1

$← S1, g2
$← S2, and Touching them to make them part of the protocol’s

session. The protocol can then proceed naturally, performing group and pairing operations
as usual. For example, Groth16 can choose a common reference string (CRS) based on g1, g2
(see Functionality 6).

With the observation rules in place, the simulator for session sid can be sure that it
gets observation information pertaining to all group elements h whose polynomial f ∈ Ri[h]
involves any variable X ∈ Varsid .

If the protocol stays within elements derived from its generators g1, g2 (e.g., the CRS and
Groth16 proofs computed from it), those operations will, with overwhelming probability,
not be observable. See Section 4 for a discussion on unlikely error events. A protocol may
sometimes violate domain separation. For example, this is necessary in Groth16 when veri-
fying a proof π received from the environment, which can potentially contain adversarially
generated group elements belonging to other sessions. In this case, operations are observable,
hence care must be taken that they do not leak any important information (which is not an
issue for Groth16, as the verifier does not hold any secret information). We discuss handling
protocols where this is an issue in Section 6.

Protocols can hash into the group (similarly to what we described in Section 3) by hashing
into Si (e.g., with a random oracle) and then Touching the hash output. If there is sufficient
entropy in the hashed element, it is likely that the hash output will belong to the hasher’s
session, making it safe to perform secret operations on it.
Canonical generators. The canonical generators g1, g2, gt, available via CanonicalGen
correspond to discrete logarithms τ−1

i (gi) = 1 and the constant polynomials Ri[g] = {1}.
In principle, they can be used by any protocol (session). However, operations involving the
canonical generator will all be observable (any polynomial with a non-zero constant term
is observable). This is a somewhat arbitrary choice, but makes for nicer algebraic proper-
ties of observability (e.g., the set Legalsid = ⟨Varsid⟩Zp[Varsid ] corresponding to unobservable
polynomials can be written as an ideal).
Efficiency Similar to G-GG, the observable G-oGG is also not efficient. In addition to sampling
the random encoding functions τi at the start, the sets Ri[g] in G-oGG can also blow up to
superpoly sizes in the worst case. However, as we argue in Lemma 3, with overwhelming
probability, Ri[g] will be a singleton. To make G-oGG efficient, one can sample τi values lazily
(as sketched in Functionality 17 in Appendix F), and if any set Ri[g] ever gets larger than
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a single element (which happens only with negligible probability), one can switch to an
arbitrary error mode (e.g., stop maintaining R and instead make everything observable).

4 Switching to symbolic groups

The restricted global observable generic group functionality G-oGG faithfully models a generic
group (as in G-GG) with tacked-on observation capabilities. However, an issue of G-oGG when
doing security proofs is that the session separation in G-oGG is imperfect. It can happen
that some group element belongs to two sessions in G-oGG, and both sessions will be able
to observe operations involving it. This is not desirable and will be an error event for most
applications. In this section, we present the symbolic (restricted observable) generic group
model G-oSG, where session separation is perfect by definition and this error event cannot
happen. Lemma 3 shows that G-oGG can be securely replaced by G-oSG.

In addition to that, G-oSG will also support typical security proof techniques. Many
typical (game-based) generic group model security proofs follow roughly (at least in spirit)
this template:
1. Run the generic adversary, while the reduction answers its generic group oracle queries.
2. Argue that instead of sampling random discrete logarithm secrets α, β

$← Z∗
p, the reduc-

tion can play the role of the generic group oracle using formal variables Xα, Xβ. Applying
Schwartz–Zippel shows that this is undetectable to the generic adversary.

3. Argue that the adversary only makes linear (or pairing) operations, so whenever the ad-
versary outputs a group element h∗ corresponding to a·Xα +bXβ, the reduction algorithm
can extract the discrete logarithm representation (a, b) ∈ Z2

p of that group element by
looking at the generic group oracle queries the adversary made.

4. Argue that the group elements output by the adversary do not threaten security because
they are only linear combinations of the (polynomials corresponding to the) elements the
reduction has provided (e.g., the adversary cannot output X if we only give it X + Y, but
not Y).

The last step is highly dependent on the concrete scheme to be proven secure. For ex-
ample, it can take the form of “We only give A the public key [Xx, Xy]2 and signatures
σi = [Xri , Xri(Xx + miXy)]1, so when the adversary outputs a forgery (in the first group), it
must be of the form [

∑
ai ·Xri +

∑
bi ·Xri(Xx +miXy)]1, and hence cannot be forgery” [PS16].

These arguments are inherently symbolic, i.e. in the last step, Xx, Xy, Xri are formal variables,
and the verification equation is an equation over polynomials in those variables. There are no
concrete values anymore, and hence we are discussing the values and equations symbolically.
In particular, this guarantees that there cannot be any accidental guesses of secret keys or
randomness, meaning that proofs at this stage are usually perfect.

In this section, we extend G-oSG in Functionality 5 to enable the proof strategy above as
follows (the steps here correspond to the steps above).
1. Run the UC environment/adversary with G-oGG replaced by G-oSG.
2. Instead of choosing random secrets α, β

$← Z∗
p, have the UC simulator ask (the extended)

G-oSG for corresponding formal variables Xα, Xβ ← GetRnd(), and use ComputeSymbolicsid
to output group elements relative to the secrets. Lemma 4 shows that this switch is un-
detectable.

3. Have the UC simulator use the algorithm FindRep to extract the discrete logarithm
representation (a, b) from element h∗. In contrast to the typical generic group proofs, the
UC simulator does not see all generic group operations, but Lemma 5 shows that the
restricted observations are enough to get meaningful guarantees.
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4. Argue that the group elements output by the adversary do not threaten security. This
part is essentially the same as in standard generic group proofs. It is supported by G-oSG
(+ extensions), which automatically keeps track of the polynomial τ−1

i (h) corresponding
to each group element h.

The symbolic G-oSG with extensions (Functionality 5) will allow most security proofs to
conveniently hop to a setting where secrets are formal variables, group elements correspond
one-to-one to polynomials (enabling symbolic analysis of group elements/operations), and the
simulator can extract discrete logarithm representations. Most proofs can simply invoke our
Lemmas 3 to 5 without ever applying Schwartz–Zippel themselves. We use this framework
when proving Groth16 secure in Section 5.

4.1 The restricted observable global symbolic group model with perfect
session separation

We introduce the restricted observable global symbolic group model G-oSG in Functional-
ity 4, which, in contrast to G-oGG, has perfect separation of sessions. This separation is
modeled similarly to G-oGG, with polynomials. In contrast to G-oGG, the polynomials will
not only be some bookkeeping artifacts R alongside the actual G-GG functionality, but rather
the main driver behind group operations. More concretely, the random encoding function
τi : Zp[Var, SimVar±1] → Si

11 now injectively maps polynomials f to random encodings h,
rather than concrete discrete logarithms. In particular, this means that any group element
(encoding) h ∈ Si has a unique polynomial τ−1

i (h) associated with it, which also directly
determines its behavior w.r.t. Op, Pair. In this sense, the polynomial mapping τi serves two
purposes now: It manages the algebraic properties of group elements (managed by τi over
Zp in G-oGG) and it is used to decide observability (used to be managed by R in G-oGG).

A consequence of having τi map polynomials to Si is that there exist no injective τi :
Zp[Var, SimVar±1]→ Si. We cannot choose τi randomly at the beginning, anymore. For this
reason, images of τi are lazily sampled via Tau. Because the adversary is computationally
bounded, we will not run out of fresh unused images in Si \ im(τi) to use in Line 23.

The following lemma establishes that we can replace the procedures of G-oGG with their
idealized versions from G-oSG (ignoring the “extra” procedures that G-oSG carries).

Lemma 3. Let Oreal = G-oGG.[CanonicalGen, Observe, Touch, Op, Pair]. Let Osymb =
G-oSG.[CanonicalGen, Observe, Touch, Op, Pair].

For all algorithms B that make at most q oracle queries, it holds that
∣∣∣Pr

[
BOreal = 1

]
− Pr

[
BOsymb = 1

]∣∣∣ ≤ (3q + 1
2

)
· 2/p ≤ (9q2 + 3q)/p

When treating interfaces Interface as oracles, this means that the caller specifies session
sid and input x, then gets the result of Interfacesid(x). The oracles share state.

Proof (Sketch). Both G-oGG and G-oSG use polynomial variables X to separate sessions and
use polynomials (via τ−1

i for G-oSG and via Ri for G-oGG) to make decisions about observ-
ability. The essential difference between G-oGG and G-oSG is that G-oSG (1) keeps track of
group elements in terms of variables X via τi : Zp[Var] → Si and (2) makes decisions on
whether to output a fresh random encoding or an old one w.r.t. the polynomials in τi. G-oGG,
in contrast, (1) keeps track of group elements in terms of random session-separating dlogs x
via τi : Zp → Si and (2) makes decisions on whether to output a fresh random encoding or
11 For now, ignore the list SimVar of formal variables. It is empty and will only be used in the G-oSG extensions

(Functionality 5).
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Functionality 4: G-oSG

Differences with G-oGG are highlighted in purple. Values relevant only in the G-oSG extensions (Functionality 5) are
highlighted in yellow (can be ignored on first read).

– τi now maps polynomials (Zp[Var, SimVar±1] instead of Zp) to random encodings Si

– Vari,sid initially empty lists of polynomial variables
– SimVarsid empty lists of polynomial variables Xrnd. Only used in Functionality 5
– SimValsid empty lists of random scalars xrnd ∈ Zp corresponding to SimVarsid

– Ob initially empty list of (globally) observable actions
– Obsid initially empty lists of all actions observable in specific session sid, including actions of parties in session

sid (only read in the G-oSG extensions)
– Ci initially empty sets Ci ⊆ Si of group elements that can be the basis for extraction (only read in the G-oSG

extensions)
Furthermore, we use the following terms derived from the current state

– We write Varsid , Var as before. Similarly, SimVar is the concatenation of all SimVarsid . Var–sid is the concatenation
of all Varsid′ , where sid ′ ̸= sid.

– Legalsid = ⟨Varsid⟩Zp[Varsid ,SimVar±1
sid ] =

∑
X∈Varsid

X ·Zp[Varsid , SimVar±1
sid ]. //Legalsid is the set of (Laurent) polyno-

mials that contain only variables from Varsid and SimVarsid (with potentially negative exponents), where every
nonzero term has some factor X ∈ Varsid .

Init() // Invoked only upon creation
1: for i ∈ {1, 2, t} do
2: τi ← {}
3: Tau(i, 1)
4: Ci ← Ci ∪ {1}

CanonicalGensid(i)
5: return Tau(i, 1)

Observesid()
6: return Ob

Opsid(i, g1, g2, a1, a2)
7: assert (g1, g2, a1, a2) ∈ S2

i × Z2
p

8: for j ∈ {1, 2} do
9: Touchsid(i, gj)

10: f ← a1τ−1
i (g1) + a2τ−1

i (g2)
11: h← Tau(i, f)
12: if f /∈ Legalsid then
13: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]
14: Obsid′ ← Obsid′ : [(Op, i, g1, g2, a1, a2, h)] for all

sid ′ (incl. sid)
15: Obsid ← Obsid : [(Op, i, g1, g2, a1, a2, h)]
16: return h

Touchsid(i, g)
17: if g /∈ im(τi) then
18: Initialize a fresh variable X
19: Vari,sid ← Vari,sid : [X]
20: τi(X)← g
21: Ci ← Ci ∪ {g}

Tau(i, f) // internal
22: if τi(f) = ⊥ then
23: τi(f)

$← Si \ im(τi)
24: return τi(f)

Pairsid(g1, g2)
25: assert (g1, g2) ∈ S1 × S2
26: for i ∈ {1, 2} do
27: Touchsid(i, gi)
28: f ← τ−1

1 (g1) · τ−1
2 (g2)

29: h← Tau(t, f)
30: if f /∈ Legalsid then
31: Ob ← Ob : [(Pair, t, g1, g2, h)]
32: Obsid′ ← Obsid′ : [(Pair, t, g1, g2, h)] for all

sid ′ (incl. sid)
33: Obsid ← Obsid : [(Pair, t, g1, g2, h)]
34: return h
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Functionality 5: G-oSG extensions

This box contains interfaces in addition to the ones shown in Functionality 4. These interfaces are artifacts for
security proofs rather than publicly available interfaces. They model interaction with unknown random values/-
variables and the discrete logarithm representation extraction process via FindRep. See Lemmas 3 to 5 for how
these interfaces are used.

ComputeConcretesid(i, (hj , fj)n
j=1)

35: assert τ−1
i (hj) ∈ Legalsid // hj belongs to session

sid and fj ∈ Zp[SimVar±1
sid ] for all j ∈ [n].

36: h← Tau(i, 0) // h = 0 neutral element
37: for j ∈ [n] do
38: aj ← fj(SimValsid) //∈ Zp. Compute exponent

aj from secrets SimValsid
39: h← Opsid(i, h, hj , 1, aj) // h← h + aj · hj

40: return h

ComputeAtomicsid(i, (hj , fj)n
j=1)

41: assert τ−1
i (hj) ∈ Legalsid // hj belongs to session

sid and fj ∈ Zp[SimVar±1
sid ] for all j ∈ [n].

42: f ←
∑

j
τ−1

i (hj) · fj(SimValsid) //∈ Zp[Varsid ]
43: h← Tau(i, f)
44: return h

GetRndsid()
45: Initialize a new variable X
46: SimVarsid ← SimVarsid : [X]
47: x

$← Z∗
p

48: SimValsid ← SimValsid : [x]
49: return X

GetRepsid(i, h∗, B)
50: assert i ∈ {1, 2}, h∗ ∈ im(τi), B ∈ (Ci)n with

Bj ̸= Bℓ for j ̸= ℓ.
51: (aj)n

j=1 ← FindRep(i, h∗, Obsid , B)
52: V =

∑n

j=1 aj · τ−1
i (Bj) // Result as polynomial

V ∈ Zp[Var, SimVar±1]
53: assert ∃bj , cj ∈ Zp[SimVar±1] : V = τ−1

i (h∗) +
foreign+missing, where foreign =

∑
Xj ∈Var–sid

bjXj

and missing =
∑

j:Ci[j]/∈B cj · τ−1
i (Ci[j]), where

Ci[j] is the jth element of the set Ci according
to some canonical ordering.

54: return a1, . . . , an

ComputeSymbolicsid(i, (hj , fj)n
j=1)

55: assert τ−1
i (hj) ∈ Legalsid // hj belongs to session

sid and fj ∈ Zp[SimVar±1
sid ] for all j ∈ [n].

56: f ←
∑

j
τ−1

i (hj) · fj //∈ Zp[Varsid , SimVar±1
sid ]

57: h← Tau(i, f)
58: Ci ← Ci ∪ {h}
59: return h

an old one w.r.t. the scalars in τi. The proof establishes that if there are no collisions when
replacing the polynomial variables X in G-oSG with random scalars x, then G-oSG behaves
exactly like G-oGG. Schwartz-Zippel (Lemma 1) implies that collisions are rare because the
≤ 3(q + 1) involved polynomials are of degree at most ≤ 2 and p is large. This description
omits some subtleties in proving Lemma 3. For example, the scalars x in G-oGG are not ac-
tually uniformly independently random, as required by Schwartz–Zippel, but rather uniform
among yet-unused discrete logarithms (a set which stochastically depends on the random
choice of other x). The full proof can be found in Appendix F.

Overall, as the first step in any G-oGG proof, we expect G-oGG to be replaced by G-oSG,
which is more convenient to handle in security proofs, and will enable powerful symbolic
analysis using its extensions.

4.2 Extending G-oSG with support for symbolic analysis

As sketched at the beginning of Section 4, our goal is to support typical GGM proof tech-
niques in the G-oSG UC setting. For this, we extend G-oSG with additional interfaces in
Functionality 5.

We first direct our attention at Functionality 5’s interfaces GetRnd, ComputeConcrete,
ComputeAtomic, and ComputeSymbolic. They model interaction of an algorithm B
(usually the UC simulator) with hidden variables. They will allow us to make statements
about changes in B’s behavior as long as B does not use those hidden variables other than
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for group operations. The interfaces are to be used as follows: Whenever B generates a secret
α ← Z∗

p, this can be modeled as a call to GetRnd, which samples α for B, and returns a
handle (in the form of a formal variable) Xα. G-oSG keeps a list of these variables Xα in SimVar
and the corresponding values (hidden from B) in SimVal. In the following, B will use the han-
dle Xα to describe computations involving α using Laurent polynomials fj ∈ Zp[SimVar±1].
Whenever B would use α to compute some group element g, we can model this as a call to
ComputeConcrete. It passes the description of the sum it wants to compute in the form
of pairs (hj , fj) ∈ Si × Zp[SimVar±1] as input to ComputeConcrete, which then uses its
knowledge of the concrete values SimVal to compute “h =

∑
hj ·fj(Val)” using the Op oracle.

ComputeConcrete is indistinguishable from ComputeSymbolic. In the latter, the
computation is done both atomically in a single step, and, more importantly, symbolically,
meaning that ComputeSymbolic does not access the concrete values SimVal at all. Instead,
it simply computes the result f in terms of polynomials, and then returns Tau(i, f). This func-
tionality heavily uses the fact that the encoding functions τi already work over polynomials.
In the original G-oSG, this capability is only used for the sake of domain separation (with the
Var variables), but in the presence of ComputeSymbolic, it is also used to make computa-
tions directly over formal variables Xα corresponding to secrets of B. For example, if g is a
generator corresponding to Xg ∈ Var, and the computation is “h← α−2 ·g”, then the result h
will be internally associated with the polynomial f = X−2

α ·Xg = τ−1
i (h) ∈ Zp[Var, SimVar±1],

and it will algebraically behave like f.
As an intermediate step between interfaces ComputeConcrete and ComputeSymbolic,

the interface ComputeAtomic does the computation in ComputeConcrete, but using
only a single query to Tau.

Overall, this enables the security proof to talk about group elements h by their polynomial
representation τ−1

i (h), which is a powerful analysis tool. The following lemma establishes
indistinguishability between the three computation methods.

Lemma 4. Let O = G-oSG.[CanonicalGen, Observe, Touch, Op, Pair, GetRnd]. Let
BO,ComputeX be an algorithm that makes at most q oracle queries. For oracle queries

ComputeX(i, (hℓ,j , fℓ,j)nℓ
j=1),

let q′ ≥
∑q

ℓ=1 nℓ be (an upper bound for) the number of supplied polynomials to the last oracle.
Let d ≥ maxi,h(deg(τ−1

i (h))) be (an upper bound for) the maximum degree of (Laurent)
polynomials in the execution of BO,ComputeSymbolic If 3q + q′ + 1 ≤ p, then∣∣∣∣∣∣ Pr

[
BO,ComputeConcrete = 1

]
− Pr

[
BO,ComputeAtomic = 1

] ∣∣∣∣∣∣ ≤ (2q + q′) · q′/(p− q)

∣∣∣∣∣∣ Pr
[
BO,ComputeAtomic = 1

]
− Pr

[
BO,ComputeSymbolic = 1

] ∣∣∣∣∣∣ ≤
(

3q + 1
2

)
· 2d/(p− 1)

As a consequence of the lemma, we get this bound for applicable B:∣∣∣Pr
[
BO,ComputeConcrete = 1

]
− Pr

[
BO,ComputeSymbolic = 1

]∣∣∣ ≤ (2q+q′)·3q′

2p
+(9q2+3q)d/(p−1).

Proof. For the first part of the proof, replacing ComputeConcrete with ComputeAtomic
cannot be detected by B unless it successfully guesses an intermediate result’s random en-
coding and queries it to Touch or ComputeConcrete / ComputeAtomic. The chances
for guessing one of the less than q′ intermediate results among all possible p, of which at
most q can be ruled out a priori because they have been output of some other query, are at
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most q′/(p − q). B makes at most 2q + q′ guesses, giving us the bound in the lemma. See
Appendix G for the full proof.

For the second part, replacing the interface ComputeAtomic with ComputeSymbolic
cannot be detected unless there is a collision among Laurent polynomials with random input
SimVal, i.e. two polynomials f ̸= f ′ ∈ dom(τi) ⊂ Zp[Var, SimVar±1] such that f(Val) =
f ′(Val) ∈ Zp[Var]. Note that we are not interested in whether the session-separation variables
Var collide — those remain symbolic in both settings. This is a straightforward application
of Lemma 2. Consider any two polynomials f ̸= f ′ ∈ Zp[Var, SimVar±1] queried to Tau(i, ·)
for i ∈ {1, 2}. By virtue of generic group operations, we can write f =

∑
j Xj · tj + t0 and

f ′ =
∑

j Xj · t′
j + t′

0, where Xj ∈ Var and tj , t′
j ∈ Zp[SimVar±1]. Because f ̸= f ′, there must be

some tj ̸= t′
j . From Lemma 2, we know that Pr[tj(SimVal) = t′

j(SimVal)] ≤ 2d/(p−1). Hence
Pr[f(SimVal) = f ′(SimVal)] ≤ 2d/(p−1). For polynomials f =

∑
j,ℓ XjXℓ · tj,ℓ +

∑
j Xj · tj,0 + t0

belonging to the target group, the same argument holds, i.e. f ̸= f ′ ⇒ Pr[f(SimVal) =
f ′(SimVal)] ≤ 2d/(p− 1).

If no such collision happens, then the ComputeSymbolic setting behaves exactly like
the ComputeAtomic setting. There are at most

(3q+1
2
)

pairs f ̸= f ′ of polynomials, so by
the union bound, Pr[∃i, {f, f ′} ∈

(dom(τi)
2

)
: f(Val)] ≤

(3q+1
2
)
· 2d/(p− 1). ⊓⊔

4.3 Extracting discrete logarithm representations
Finally, in generic group model proofs, one usually wants to extract the discrete logarithm
representations of certain group elements. In the UC setting with a global generic group,
this is complicated by the fact that the UC simulator for session sid does not have access to
all GGM queries, but only to “illegal” queries made in foreign sessions sid ′ ̸= sid (Line 12
and 24 in Functionality 3), and to queries made by the adversary in session sid (by design
of UC / the default identity bound ξ). The list of observations available to the simulator
is modeled in Line 15, 14 and Line 33 and 32 of Functionality 4. Some operations are, by
design, unobservable. For example, if a protocol (embodied by the environment) in session
sid ′ computes an element f = 3X ∈ Legalsid′ , then the simulator in session sid does not get
any information about that computation, and will consequently not be able to extract the
coefficient 3.

The GetRep interface (Functionality 5), defines in Line 53 what we can expect from
the algorithm FindRep given the limited observation information: When extracting a repre-
sentation for h∗, the algorithm FindRep outputs coefficients that (together with the basis)
almost sum up to the polynomial τ−1

i (h∗). What is missing from that sum can only be (1)
foreign terms, that contain foreign variables Xj from another session (because those terms
may be subject to unobservable computations), and (2) missing terms, which contain a vari-
able X not supplied to FindRep as a basis (because FindRep has no starting point to find
coefficients for X from). When doing security proofs, one would usually argue that those
terms are not required for the simulator to successfully do its job. For example, the Groth16
simulator, when extracting a Groth16 proof, is only interested in (1) elements on the correct
basis (proofs containing another basis are rejected by the verification equation), and (2) co-
efficients of one specific term of the proof’s polynomial representation, which correspond to
the witness.

The FindRep algorithm (Function 1) itself is quite simple: it linearly scans the list of
observations and keeps track of their representations Rep in terms of the basis B supplied.

The following lemma states that FindRep works correctly. This is defined in terms of
the symbolic computation setting and the interface GetRep, which runs FindRep with the
expected input (in particular with the correct observation list Obsid) and then checks the
output.
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Function 1: FindRep

FindRep(i, h∗, Obsid , B)
1: // Finds representation of h∗ ∈ Si w.r.t. basis B ∈ Sn

i . Requires observations Obsid of globally observable
operations and the simulator’s operations (see Functionality 5)

2: // Returns a (partial) representation Rep[h∗] ∈ Zn
p in the form of coefficients for basis elements

3: assert i ∈ {1, 2} // FindRep for target group in Appendix E
4: Parse B = (B1, . . . , Bn) ∈ Sn

i // Basis elements for the representation
5: Rep[h]← 0n ∈ Zn

p initially for all h
6: for j ∈ [n] do Rep[Bj ]← (Kroneckerℓ,j)n

ℓ=1 //∈ Zn
p

7: for ob = (Op, i, g1, g2, a1, a2, h) ∈ Obsid do // Observed operations in order of Obsid (filtered by Op, i)
8: Rep[h]← a1 ·Rep[g1]+a2 ·Rep[g2] //Update representation of h w.r.t. to operation result “h = a1g1+a2g2”

return Rep[h∗] // Return representation for the h∗ we were interested in

Lemma 5. Consider O = G-oSG.[CanonicalGen, Observe, Touch, Op, Pair, GetRnd,
ComputeSymbolic, GetRep]. Let B be an algorithm that makes at most p queries. Then

Pr
[
BO has assertion in Line 53 of Functionality 5 fail

]
= 0

The proof can be found in Appendix I.

5 UC security of Groth16

Real world

Z

AΠ-G16

G-oGG F-CRS

sidsid

sid

sid ′

≈

Ideal world

Z

SG16F-wNIZK

G-oGG

sidsidsid ′

Fig. 1: An illustration of the real and ideal world settings for Theorem 1 and its proof. We
omit the dummy parties for F-wNIZK.

In Protocol 1, we present the Groth16 protocol Π-G16 in the presence of our global
observable generic group functionality G-oGG. The protocol is described in the F-CRS-hybrid
model (Functionality 6). The crucial operation is for-loop starting at Line 1, in which F-CRS
registers uniformly random session-specific generators gsid,i. In this way, all of the group
operations performed by honest provers are confined to the domain of the current session
and thus unobservable by the environment (except if F-CRS or prover accidentally operates
on group elements that are already reserved for another session, which occurs with negligible
probability).

Theorem 1. Π-G16 UC-realizes F-wNIZK in the F-CRS-hybrid model in the presence of
G-oGG. Concretely, for any PPT adversary A, there exists a PPT simulator SG16 such that
for every Z that makes at most qZ queries to G-oGG, qP queries to the Prove interface, and
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Functionality 6: F-CRS

F-CRS has access to G-oGG.
F-CRS is parameterized by an NP-relation determined by QAP (ui, vi, wi)m

i=0 ∈ Fd−1
p [X] and t ∈ Fd

p[X], where d is
the number of multiplication gates and a0 = 1:

RQAP =
{

({ai}ℓ
i=1, {ai}m

i=ℓ+1) : (
∑m

i=0 aiui)(
∑m

i=0 aivi) ≡ (
∑m

i=0 aiwi) mod t
}

To simplify notation we denote qi(α, β, x) := βui(x) + αvi(x) + wi(x).
F-CRS stores state:

– σ, labels for common reference string
We use the following compact notation for a vector of encoded group elements with known discrete logs:

– [x, y, . . .]sid,i := (G-oGG.Opsid(i, gsid,i, gsid,i, x, 0),G-oGG.Opsid(i, gsid,i, gsid,i, y, 0), . . .)

Initsid() // Invoked only upon creation
1: for i = 1, 2 do
2: gsid,i

$← Si

3: G-oGG.Touchsid(i, gsid,i)
4: x, α, β, γ, δ

$← Zp

5: σ1 ← [α, β, δ, {xi}d−1
i=0 , {qi(α, β, x)γ−1}ℓ

i=0, {qi(α, β, x)δ−1}m
i=ℓ+1, {xit(x)δ−1}d−2

i=0 ]sid,1
6: σ2 ← [β, γ, δ, {xi}d−1

i=0 ]sid,2
7: σ ← (σ1, σ2)

GetCRSsid()
8: return σ

Protocol 1: Π-G16

The protocol has access to F-CRS and G-oGG.
Provesid(x = {ai}ℓ

i=1, w = {ai}m
i=ℓ+1)

1: if (x, w) /∈ RQAP then return ⊥
2: σ ← F-CRS[G-oGG,RQAP].GetCRSsid()
3: r, s

$← Zp

4: Compute h ∈ Fd−2[X] such that ht = (
∑m

i=0 aiui)(
∑m

i=0 aivi)− (
∑m

i=0 aiwi)
5: A := [a]sid,1 ←

[∑m

i=0 aiui(x) + α + rδ
]

sid,1
// Computed by calling G-oGG.Opsid on [xi]sid,1, [α]sid,1, [δ]sid,1

6: B := [b]sid,2 ←
[∑m

i=0 aivi(x) + β + sδ
]

sid,2
// Computed by calling G-oGG.Opsid on [xi]sid,2, [β]sid,2, [δ]sid,2

7: C := [c]sid,1 ←
[∑m

i=ℓ+1 aiqi(α, β, x)δ−1 + h(x)t(x)δ−1 + sa + rb− rsδ
]

sid,1
// Computed by calling

G-oGG.Opsid on [qi(α, β, x)δ−1]sid,1, [xit(x)δ−1]sid,1, [a]sid,1, [β]sid,1, [δ]sid,1
8: return (A, B, C)

Verifysid(x = {ai}ℓ
i=1, π = (A, B, C))

9: σ ← F-CRS[G-oGG,RQAP].GetCRSsid()
10: Cpub ←

[∑ℓ

i=0 aiqi(α, β, x)γ−1
]

sid,1
// Computed by calling G-oGG.Opsid on [qi(α, β, x)γ−1]sid,1

11: return A·B = Cpub ·[γ]sid,2+C ·[δ]sid,2+[α]sid,1 ·[β]sid,2 //Computed by calling G-oGG.Opsid and G-oGG.Pairsid
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qV queries to the Verify interface,

|Pr[EXECF-wNIZK,Z,SG16,G-oGG(λ, z) = 1]− Pr[EXECΠ-G16,Z,A,G-oGG(λ, z) = 1]|
≤ 72 · d · (m + d + qZ + (m + d)qP + ℓqV + 1)2/(p− 1)

and SG16 performs in total the following operations:
– at most 3qP + 9qV + 2qZ + 3d + m + 8 queries to G-oGG

– at most (2ℓ + 8)qP + (3qZ + 2ℓ + 2)qV + (d + 1)(3m + 11) field operations
where d, m, ℓ depend on the circuit size (see Functionality 6).

Proof. We first construct a simulator SG16 described in Simulator 1. SG16 consists of two
major components: Simulate that simulates proof (A, B, C) using G-oGG.Op and a secret
trapdoor for CRS, and Extract that extracts valid witness upon receiving a statement-
proof pair using the Observe interface of G-oGG and FindRep (Function 1). Whenever Z
queries G-oGG in the session with sid, SG16 forwards its queries to the corresponding wrapper
interfaces, and relays back the responses to Z. By simply counting the number of calls to
G-oGG interfaces and local addition, multiplicaiton, and division operations in Fp performed
by SG16, we obtain the runtime of SG16 stated in the theorem (note that we provide the overall
runtime of SG16 taking into account the number of activations through every interface: Init
is called at most once, Simulate is called at most qP times, Extract is called at most qV
times, and wrapper interfaces for G-oGG are called at most qZ times, respectively). We define
a sequence of hybrids, starting from the ideal run of Groth16 with respect to SG16, F-wNIZK
in the presence of G-oGG (see Ideal world of Fig. 1). The order of hybrids is relatively
standard and a similar strategy appeared in the literature e.g. [Gro06].
– Hybrid H0: This is equivalent to the ideal UC experiment with respect to SG16 and
F-wNIZK in the presence of G-oGG. The distribution of the output of Z in H0 is identical
to EXECF-wNIZK,Z,SG16,G-oGG.

– Hybrid H1: Same as H0 except that G-oGG is replaced with its symbolic counterpart
G-oSG.

– Hybrid H2: Same as H1 except that F-wNIZK is replaced with F-wNIZK′, described in
Functionality 20. The difference is that F-wNIZK′ returns the output of the honest ver-
ification algorithm as in Π-G16 whenever its Verify interface gets invoked, while its
Prove interface remains unchanged.

– Hybrid H3: Same as H2 except that F-wNIZK′ is replaced with F-wNIZK′′, described in
Functionality 21. The difference is that F-wNIZK′′ produces π = (A, B, C) following the
honest prover algorithm as in Π-G16 whenever its Prove interface gets invoked, instead
of asking SG16 to simulate π.

– Hybrid H4: Same as H3 except that G-oSG is replaced with its non-symbolic counterpart
G-oGG.

Note that H4 is equivalent to the real execution of Π-G16 in F-CRS-hybrid model in the
presence of G-oGG modulo minor syntactic differences. 12

We defer the proof of the following supporting claims to Appendix J. We provide a sketch
of each claim here:
– To prove H0 ≈ H1 (Claim 4) and H3 ≈ H4 (Claim 7) are indistinguishable, we can rely

on Lemma 3 which generically bounds the loss incurred by replacing G-oGG with G-oSG.
12 Concretely, to turn H4 into EXECΠ-G16,Z,A,G-oGG one can apply the following syntactic modifications: (1)

CRS generation handled by SG16 is replaced with F-CRS, (2) F-wNIZK′′ is viewed as Π-G16, and (3) SG16 is
replaced with A. Note that (3) is justified because Simulate and Extract interfaces are not used at all
in H4, and the calls to the wrapper interfaces can be directly forwarded to G-oGG.
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Now that H1, H2, H3 only use G-oSG, the discrete logs of session-specific generators gsid,1
and gsid,2 are treated as formal variables Xsid,1 and Xsid,2, respectively.

– To prove H1 ≈ H2 (Claim 5), we first observe that Z distinguishes H1 and H2 only if
the Verify interface receives accepting (x, π) such that x has never been queried to the
Prove interface. Thus, proving this exceptional event happens with negligible probability
boils down to weak simulation-extractability of Groth16, which is already analyzed in
[BKSV21]. To rely on the proof of [BKSV21] in a purely symbolic manner, we first switch
to an intermediate hybrid in which F-CRS aborts if it accidentally picks gsid,1 and gsid,2
that are already reserved for another session. As these elements are picked uniformly, this
event occurs with negligible probability. Then we syntactically change the behavior of
SG16 such that it treats randomness α, β, . . . used for CRS generation and µ, ν for proof
simulation as formal variables Xα, Xβ, . . . , Xµ, Xν , and then performs group operations
using the ComputeConcrete extension introduced in Section 4. In the next sub-hybrid,
every invocation of ComputeConcrete is replaced with ComputeSymbolic, enabled
by Lemma 4. Once every randomness is fully treated as a formal variable, by Lemma 5, we
have that the representation of π = (A, B, C) output by the environment can be extracted
without any error. Finally, we invoke the analysis of [BKSV21] to argue that extracted
representation coincides with a valid witness. Towards this end, we additionally show
that group elements from foreign sessions do not interfere with extraction of witnesses.

– To prove H2 ≈ H3 (Claim 6), we mainly rely on the perfect ZK property of Groth16.
However, a subtle issue arises in our G-GGM: a sequence of group operations performed
by the simulator is different from that of the honest prover algorithm. Since these oper-
ations are also tracked by G-oSG, there’s a small chance that Z notices such inconsistent
“styles” of group operations through the queries to G-oSG. We show that this change is
unnoticeable by invoking Lemma 7.

6 Composition when unobservability is required

The observable G-GGM is well suited for proving succinct arguments such as Groth16. In
such schemes honest parties do not execute secret-dependent computations on adversarial
group elements. As honest provers only compute on group elements originating from their
own session, observability does not pose any privacy challenges, e.g. for the proof of the
zero-knowledge property.

This situation is significantly different for other cryptographic schemes. For instance for
the PAKE proof of [CNPR22] the authors assume that no information about oracle usage
is disclosed between parties. Similar issues arise for public-key encryption and oblivious
PRFs [JKK14] when modeled with G-oGG. The security proofs of such schemes fail when using
G-oGG, because the environment can send group elements—ciphertexts or blinded evaluation
points—that originate from a foreign session. As an honest party applies their secret key to
them, this leaks the key.

Note that this is inherent for any observable model of generic groups, as long as sessions
are treated “symmetrically”. That is, the Observesid oracle can either be called by the
simulator to prove session sid secure, or by the environment to model another protocol in
session sid ′ composed in parallel, and prove overall security when reusing the same group.

Consider two cryptographic schemes: G16 in session sid and in session sid ′ a CCA2-secure
variant of ElGamal, which we refer to as EG2, e.g. ECIES [Sma01] or Cramer-Shoup [CS98].
The distinguishing environment against G16 can make calls to Opsid′ . The Observesid
oracle must include Opsid′ operations on group elements that originated in session sid, such
as those used to generate a reference string for G16. Otherwise the extractor for G16 would
fail to extract the witness. However, a distinguishing environment against EG2 (which can
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call Observesid) must not observe Opsid′ operations on group elements that originated in
session sid. Otherwise it would obtain leaked information about the EG2 secret key.

The crucial step to escape this conundrum is to observe that Observesid is only called
by the Groth16 simulator in the ideal world. Thus conceptually, we can work with a non-
observable generic group (and apply the standard UCGS composition theorem to protocols
like Π-EG2 in that setting). Only when we want to switch from the concrete protocol Π-G16
to the ideal F-wNIZK, we switch to observable groups (as required by the Groth16 ideal world
simulator). This is depicted in Fig. 2 (with details being developed in the following).

Real

Z

ρ A

Π-G16[S]Π-EG2

G-oGG[∅]

sidNIZKsidEnc

sid ′ sidρ

sidρ, sidenc, sidNIZK

≈
UCGS

F-Enc Hybrid

Z

ρ S1

Π-G16[S]F-Enc

G-oGG[∅]

sidNIZK

sid ′ sidρ

sidρ, sidenc, sidNIZK

≈
Lem

m
a

6,
ξ

bound

F-Enc Hybrid with observations

Z

ρ S1

Π-G16[S]F-Enc

G-oGG[S]

sidNIZK

sid ′ sidρ

sidρ, sidenc,sidNIZK

≈
Theorem 1
& UCGS

F-Enc,F-wNIZK Hybrid with observations

Z

ρ S2

F-wNIZK[S]F-Enc

G-oGG[S]

sid ′ sidρ

sidρ, sidenc,sidNIZK,
ObservesidNIZK

Fig. 2: An illustration of composition, to be read starting top left, clockwise. Changes are
highlighted in color. F-CRS and dummy parties are omitted for simplicity.

For this idea to work, we need a notion of evolving a global subroutine (like G-oGG)
over time, so that we can have an unobservable version of G-oGG when it comes to applying
the composition theorem to Π-EG2 and an observable version when it comes to Π-G16. To
model the observable/unobservable versions of G-oGG, we introduce G-oGG[S] (Functional-
ity 7), parameterized with a set of sessions S. This new functionality G-oGG[S] works like
G-oGG except that it allows only callers from sessions sid ∈ S to see the observation list. In
particular, G-oGG[∅] behaves like the strict (unobservable) G-GG.
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Functionality 7: G-oGG[S]

Parameterized with set S of sessions that are allowed to call Observe.

Init, CanonicalGensid , Opsid , Pairsid , Touchsid
as in G-oGG (Functionality 3).

Observesid()
1: if sid ∈ S then // Restrict caller’s session
2: return Ob

Functionality 8: F-wNIZK[S]

Parameterized with set S of allowed sessions.

Initsid , Provesid , Verifysid

1: if sid /∈ S then //Restrict functionality to ses-
sions sid ∈ S

2: return ⊥
3: continue as in F-wNIZK (Functionality 1).

Functionality 9: Π-G16[S]

Parameterized with set S of allowed sessions.

Initsid , Provesid , Verifysid

1: if sid /∈ S then // Restrict protocol to sessions
sid ∈ S

2: return ⊥
3: continue as in Π-G16 (Protocol 1).

However, note that unfortunately, we cannot weaken observability by simply replacing
G-oGG[S] with G-oGG[S\S-]. This is because the environment can easily distinguish G-oGG[S]
from G-oGG[S \S-] by trying to query Observesid using some sid ∈ S-. This query would
succeed in the first case, but not in the second. To solve this, we employ the identity bound ξ
to disallow the environment from querying Observesid on any session sid ∈ S-. We get the
following lemma, stating that with the identity bound, one can remove sessions unnoticed.

Lemma 6. Let S- ⊆ S. Let Z be an algorithm that does not query Observesid for sid ∈ S-.
Then ZG-oGG[S] ≈ ZG-oGG[S\S-].

The proof of this lemma is trivial. Note that to switch off observability completely, one can
choose S- = S. To switch off observability partially (e.g., to apply composition to additional
schemes that require observations), one would choose a smaller S- (e.g., to leave sessions of
additional schemes in S \S-).

Additionally, in order to make sure the Groth16 simulator can call Observesid on the
evolved G-oGG[S], we need to ensure that the session of any instance of Π-G16 (and, conse-
quently, F-wNIZK) is one of the allowed sessions sid ∈ S. For this, we simply restrict Π-G16
and F-wNIZK to work only when instantiated with sessions sid ∈ S. We thus consider vari-
ants F-wNIZK[S], Π-G16[S] that restrict F-wNIZK, Π-G16 to sessions in S. When queried on
other sessions they return ⊥, see Functionalities 8 and 9.13

With these restrictions set up, we show in Fig. 2 how to prove a composition ρ of Π-G16
and Π-EG2 secure, even though Π-G16 requires observability and Π-EG2 cannot tolerate
observability. The figure depicts that a real system with both Π-G16[S] and Π-Enc in the
presence of G-oGG[∅] ξ-UC-emulates an ideal system with both F-wNIZK[S] and F-PKE in
the presence of G-oGG[S] for identity bounds ξ that reject all Observesid queries for sid in
S. In more detail, the following steps are taken in the figure:
– Real to F-PKE Hybrid: We first use the UCGS composition theorem for protocol Π-EG2

emulating F-PKE, which gives us a system with Π-G16[S] and F-PKE in the presence
13 This is efficiently implementable. For instance S could be the set of strings starting with "G16".
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of G-oGG[∅]. This is possible because G-oGG[∅] behaves like G-GG, without observations,
which makes Π-EG2 secure in this setting.

– F-PKE Hybrid to F-PKE Hybrid with observations: We switch on observations by replac-
ing G-oGG[∅] with G-oGG[S], which is made possible by Lemma 6 (intuitively, this switch
cannot be detected because the environment is ξ-restricted to not test for Observe avail-
ability, as are the protocols. The simulator S1 can be assumed without loss of generality
never to call Observe).

– F-PKE Hybrid with observations to F-PKE, F-wNIZK Hybrid with observations: We apply
the UCGS composition theorem for protocol Π-G16[S] UC-emulating F-wNIZK[S] (in the
presence of G-oGG[S]), which is possible because the simulator S2 is able to ask G-oGG
for observations.

7 Conclusion and future work

In this paper, we have established the restricted observable global generic group functionality
G-oGG and, as an important application to a widespread SNARK, we have proven Groth16
UC-secure in the F-CRS hybrid model in the presence of G-oGG. We expect the functionality
G-oGG to find additional applications, in particular for proving other SNARKs UC-secure,
especially ones based on polynomial interactive oracle proofs (PIOPs) [CHM+20, BFS20,
CFF+21], such as PLONK [GWC19]. In fact, recent works show that SNARKs obtained from
PIOP and the KZG polynomial commitment [KZG10] are already simulation-extractable
without modification in the AGM and (programmable) ROM [FFK+23, KPT23, FFR24].
Thus, a natural follow-up question is whether these SNARKs are UC-secure in the presence
of G-oGG and (restricted programmable) global random oracle functionalities.

Another exciting research opportunity is to establish a “UC lifting theorem” that al-
lows practitioners to analyze the security of their constructions in the (simpler) game-based
generic-group model, and then automatically obtain UC security via lifting. Section 4 already
establishes that in spirit, standard GGM proof techniques carry over to the UC setting. Our
proof of Groth16 security is a good indicator that the protocol-specific part of the proof
mostly boils down to symbolic analysis of polynomials, which is already available from the
original paper, or from proofs in the AGM. Establishing formal requirements for a game-based
proof to carry over to UC, would be a powerful bridge between game-based “standalone”
proofs and UC proofs.

While our paper addresses reuse of the group (multiple protocols using the same group),
we leave open the question of a reusable CRS for Groth16, or more generally, the question of
reusing (parts of the) CRS across multiple sessions for NIZK in UC. Our Groth16 works in the
F-CRS-hybrid model, which means that every session of Groth16 needs its own CRS (which
can be “reused” only insofar that parties in the same session can compute multiple proofs
from it). The same limitation applies to essentially all existing results on CRS-based NIZK
in UC [Gro06, CL06, KZM+15, CsW19, ARS20, BS21, CSW22, LR22b, GKO+23, AGRS23],
which also rely on non-reusable, local CRS functionalities. There are multiple ways one can
imagine improving upon this situation. First, one could make the same instance of Groth16
available to multiple caller sessions. This means that in a composition, one can use the same
instance of Groth16 as a subroutine for multiple protocols. This would also mean that all
those subroutines get to share in the same CRS. This is a simple solution, already supported
(in spirit) by our security proof of Groth16, but there is a lack of support for this in the UC
framework (using the same Π-G16 session in multiple places is not subroutine respecting).
Second, one could attempt to exchange the local F-CRS for a global CRS functionality G-CRS.
However, as is well-known in the literature (e.g., [CDPW07, Section 3]), global CRSs cannot
be implemented naively. Third, one may want to share part of the CRS (e.g., the part which

30



does not depend on the specific circuit, like the “powers of τ”). There is some work [KMSV21]
on this for Groth16. However, it is unclear whether this enables composable analysis. Further
research is needed.

We have focused on the strict and observable versions of the global generic group func-
tionalities. Similarly to random oracles [CDG+18], one could envision various levels of pro-
grammability for generic groups. While programmability of generic groups is seldomly ex-
ploited in game-based proofs (and, to our knowledge, has not been used for NIZK construc-
tions), it is a possibility (e.g., [CDG+22]) and deserves formal UC treatment.

While the generic group model seems to have inherent advantages when it comes to
compositional proofs, as discussed in the introduction, the algebraic group model (with
oblivious sampling [LPS23]) is the more conservative model (in the sense of restricting the
adversary and protocols) in general. An interesting question is whether there is a composable
model in the spirit of the AGM that does not restrict the environment from using group
elements across sessions.

Finally, we have provided a concrete security analysis of Groth16, giving concrete bounds
in Theorem 1. It can be interesting to revisit the tightness of this analysis, especially com-
pared to the game-based setting. However, we are not aware of any GGM-based concrete
parameter treatment of Groth16 in the literature, even in the game-based setting. Another
interesting direction is to explore what this concrete guarantee means for compositions using
Groth16 since concrete security of simulation-based security and of the UC theorem is not
well-studied in the literature.

Acknowledgment

We thank Sabine Oechsner for insightful discussions on the connection between this work
and State Separating Proofs.

Pooya Farshim was supported in part by EPSRC grant EP/V034065/1. This work was
supported by Input Output (iohk.io) through their funding of the Edinburgh ZK-Lab.

References
ABK+21. M. Abdalla, M. Barbosa, J. Katz, J. Loss, and J. Xu. Algebraic adversaries in the universal

composability framework. In ASIACRYPT 2021, Part III, vol. 13092 of LNCS, pp. 311–341.
Springer, Heidelberg, 2021.

AGRS23. B. Abdolmaleki, N. Glaeser, S. Ramacher, and D. Slamanig. Universally composable NIZKs:
Circuit-succinct, non-malleable and CRS-updatable. Cryptology ePrint Archive, Report 2023/097,
2023. https://eprint.iacr.org/2023/097.

ARS20. B. Abdolmaleki, S. Ramacher, and D. Slamanig. Lift-and-shift: Obtaining simulation extractable
subversion and updatable SNARKs generically. In ACM CCS 2020, pp. 1987–2005. ACM Press,
2020.

BBHR19. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable zero knowledge with no trusted
setup. In CRYPTO 2019, Part III, vol. 11694 of LNCS, pp. 701–732. Springer, Heidelberg, 2019.

BCH+20. C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V. Zikas. Universal composition with
global subroutines: Capturing global setup within plain UC. In TCC 2020, Part III, vol. 12552
of LNCS, pp. 1–30. Springer, Heidelberg, 2020.

BCR+19. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent
succinct arguments for R1CS. In EUROCRYPT 2019, Part I, vol. 11476 of LNCS, pp. 103–128.
Springer, Heidelberg, 2019.

BCS16. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In TCC 2016-B, Part II,
vol. 9986 of LNCS, pp. 31–60. Springer, Heidelberg, 2016.

BDF+18. C. Brzuska, A. Delignat-Lavaud, C. Fournet, K. Kohbrok, and M. Kohlweiss. State separation
for code-based game-playing proofs. In ASIACRYPT 2018, Part III, vol. 11274 of LNCS, pp.
222–249. Springer, Heidelberg, 2018.

BFHK23. B. Bauer, P. Farshim, P. Harasser, and M. Kohlweiss. The uber-knowledge assumption: A bridge
to the agm. Cryptology ePrint Archive, Paper 2023/1601, 2023. https://eprint.iacr.org/
2023/1601.

31

https://iohk.io
https://eprint.iacr.org/2023/097
https://eprint.iacr.org/2023/1601
https://eprint.iacr.org/2023/1601


BFS20. B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK compilers. In EURO-
CRYPT 2020, Part I, vol. 12105 of LNCS, pp. 677–706. Springer, Heidelberg, 2020.

BG18. S. Bowe and A. Gabizon. Making groth’s zk-SNARK simulation extractable in the random oracle
model. Cryptology ePrint Archive, Report 2018/187, 2018. https://eprint.iacr.org/2018/187.

BKSV21. K. Baghery, M. Kohlweiss, J. Siim, and M. Volkhov. Another look at extraction and randomization
of groth’s zk-SNARK. In FC 2021, Part I, vol. 12674 of LNCS, pp. 457–475. Springer, Heidelberg,
2021.

BLS01. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In ASI-
ACRYPT 2001, vol. 2248 of LNCS, pp. 514–532. Springer, Heidelberg, 2001.

BMZ19. J. Bartusek, F. Ma, and M. Zhandry. The distinction between fixed and random generators in
group-based assumptions. In CRYPTO 2019, Part II, vol. 11693 of LNCS, pp. 801–830. Springer,
Heidelberg, 2019.

BS21. K. Baghery and M. Sedaghat. Tiramisu: Black-box simulation extractable NIZKs in the updatable
CRS model. In CANS 21, vol. 13099 of LNCS, pp. 531–551. Springer, Heidelberg, 2021.

Can01. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pp. 136–145. IEEE Computer Society Press, 2001.

Can20. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryp-
tology ePrint Archive, Paper 2000/067, 2020. https://eprint.iacr.org/2000/067.

CDG+18. J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, and G. Neven. The wonderful world of
global random oracles. In EUROCRYPT 2018, Part I, vol. 10820 of LNCS, pp. 280–312. Springer,
Heidelberg, 2018.

CDG+22. B. Chen, Y. Dodis, E. Ghosh, E. Goldin, B. Kesavan, A. Marcedone, and M. E. Mou. Rotatable
zero knowledge sets - post compromise secure auditable dictionaries with application to key trans-
parency. In ASIACRYPT 2022, Part III, vol. 13793 of LNCS, pp. 547–580. Springer, Heidelberg,
2022.

CDPW07. R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global setup.
In TCC 2007, vol. 4392 of LNCS, pp. 61–85. Springer, Heidelberg, 2007.

CF24. A. Chiesa and G. Fenzi. zksnarks in the rom with unconditional uc-security. Cryptology ePrint
Archive, Paper 2024/724, 2024. https://eprint.iacr.org/2024/724.

CFF+21. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodríguez. Lunar: A toolbox for
more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In ASI-
ACRYPT 2021, Part III, vol. 13092 of LNCS, pp. 3–33. Springer, Heidelberg, 2021.

CHM+20. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin: Preprocessing
zkSNARKs with universal and updatable SRS. In EUROCRYPT 2020, Part I, vol. 12105 of
LNCS, pp. 738–768. Springer, Heidelberg, 2020.

CJS14. R. Canetti, A. Jain, and A. Scafuro. Practical UC security with a global random oracle. In ACM
CCS 2014, pp. 597–608. ACM Press, 2014.

CL06. M. Chase and A. Lysyanskaya. On signatures of knowledge. In CRYPTO 2006, vol. 4117 of
LNCS, pp. 78–96. Springer, Heidelberg, 2006.

CNPR22. C. Cremers, M. Naor, S. Paz, and E. Ronen. CHIP and CRISP: Protecting all parties against
compromise through identity-binding PAKEs. In CRYPTO 2022, Part II, vol. 13508 of LNCS,
pp. 668–698. Springer, Heidelberg, 2022.

CR03. R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO 2003, vol. 2729 of
LNCS, pp. 265–281. Springer, Heidelberg, 2003.

CS98. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In CRYPTO’98, vol. 1462 of LNCS, pp. 13–25. Springer, Heidelberg,
1998.

CsW19. R. Cohen, a. shelat, and D. Wichs. Adaptively secure MPC with sublinear communication com-
plexity. In CRYPTO 2019, Part II, vol. 11693 of LNCS, pp. 30–60. Springer, Heidelberg, 2019.

CSW22. R. Canetti, P. Sarkar, and X. Wang. Triply adaptive UC NIZK. In ASIACRYPT 2022, Part II,
vol. 13792 of LNCS, pp. 466–495. Springer, Heidelberg, 2022.

DDO+01. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In CRYPTO 2001, vol. 2139 of LNCS, pp. 566–598. Springer, Heidelberg, 2001.

Den02. A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group model.
In ASIACRYPT 2002, vol. 2501 of LNCS, pp. 100–109. Springer, Heidelberg, 2002.

FFK+23. A. Faonio, D. Fiore, M. Kohlweiss, L. Russo, and M. Zajac. From polynomial IOP and commit-
ments to non-malleable zkSNARKs. In TCC 2023, Part III, vol. 14371 of LNCS, pp. 455–485.
Springer, Heidelberg, 2023.

FFR24. A. Faonio, D. Fiore, and L. Russo. Real-world universal zksnarks are non-malleable. Cryptology
ePrint Archive, Paper 2024/721, 2024. https://eprint.iacr.org/2024/721.

Fis06. M. Fischlin. Round-optimal composable blind signatures in the common reference string model.
In CRYPTO 2006, vol. 4117 of LNCS, pp. 60–77. Springer, Heidelberg, 2006.

32

https://eprint.iacr.org/2018/187
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2024/724
https://eprint.iacr.org/2024/721


FKL18. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In
CRYPTO 2018, Part II, vol. 10992 of LNCS, pp. 33–62. Springer, Heidelberg, 2018.

FKMV12. S. Faust, M. Kohlweiss, G. A. Marson, and D. Venturi. On the non-malleability of the Fiat-Shamir
transform. In INDOCRYPT 2012, vol. 7668 of LNCS, pp. 60–79. Springer, Heidelberg, 2012.

GKO+23. C. Ganesh, Y. Kondi, C. Orlandi, M. Pancholi, A. Takahashi, and D. Tschudi. Witness-succinct
universally-composable SNARKs. In EUROCRYPT 2023, Part II, vol. 14005 of LNCS, pp. 315–
346. Springer, Heidelberg, 2023.

GM17. J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from simulation-
extractable SNARKs. In CRYPTO 2017, Part II, vol. 10402 of LNCS, pp. 581–612. Springer,
Heidelberg, 2017.

Gro06. J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signa-
tures. In ASIACRYPT 2006, vol. 4284 of LNCS, pp. 444–459. Springer, Heidelberg, 2006.

Gro16. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT 2016, Part II,
vol. 9666 of LNCS, pp. 305–326. Springer, Heidelberg, 2016.

GWC19. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953,
2019. https://eprint.iacr.org/2019/953.

HS15. D. Hofheinz and V. Shoup. GNUC: A new universal composability framework. Journal of Cryp-
tology, 28(3):423–508, 2015.

JKK14. S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected secret sharing and
T-PAKE in the password-only model. In ASIACRYPT 2014, Part II, vol. 8874 of LNCS, pp.
233–253. Springer, Heidelberg, 2014.

JR10. T. Jager and A. Rupp. The semi-generic group model and applications to pairing-based cryptog-
raphy. In ASIACRYPT 2010, vol. 6477 of LNCS, pp. 539–556. Springer, Heidelberg, 2010.

Kil92. J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In 24th
ACM STOC, pp. 723–732. ACM Press, 1992.

KKK21. T. Kerber, A. Kiayias, and M. Kohlweiss. Composition with knowledge assumptions. In
CRYPTO 2021, Part IV, vol. 12828 of LNCS, pp. 364–393, Virtual Event, 2021. Springer, Hei-
delberg.

KMS+16. A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pp. 839–858. IEEE Computer Society Press, 2016.

KMSV21. M. Kohlweiss, M. Maller, J. Siim, and M. Volkhov. Snarky ceremonies. In ASIACRYPT 2021,
Part III, vol. 13092 of LNCS, pp. 98–127. Springer, Heidelberg, 2021.

KPT23. M. Kohlweiss, M. Pancholi, and A. Takahashi. How to compile polynomial IOP into simulation-
extractable SNARKs: A modular approach. In TCC 2023, Part III, vol. 14371 of LNCS, pp.
486–512. Springer, Heidelberg, 2023.

Küs06. R. Küsters. Simulation-based security with inexhaustible interactive Turing machines. Cryptology
ePrint Archive, Report 2006/151, 2006. https://eprint.iacr.org/2006/151.

KZG10. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their
applications. In ASIACRYPT 2010, vol. 6477 of LNCS, pp. 177–194. Springer, Heidelberg, 2010.

KZM+15. A. Kosba, Z. Zhao, A. Miller, Y. Qian, H. Chan, C. Papamanthou, R. Pass, a. shelat, and E. Shi.
C∅c∅: A framework for building composable zero-knowledge proofs. Cryptology ePrint Archive,
Report 2015/1093, 2015. https://eprint.iacr.org/2015/1093.

LPS23. H. Lipmaa, R. Parisella, and J. Siim. Algebraic group model with oblivious sampling. In The-
ory of Cryptography - 21st International Conference, TCC 2023, Taipei, Taiwan, November 29
- December 2, 2023, Proceedings, Part IV, vol. 14372 of Lecture Notes in Computer Science, pp.
363–392. Springer, 2023.

LR22a. A. Lysyanskaya and L. N. Rosenbloom. Efficient and universally composable non-interactive zero-
knowledge proofs of knowledge with security against adaptive corruptions. Cryptology ePrint
Archive, Report 2022/1484, 2022. https://eprint.iacr.org/2022/1484.

LR22b. A. Lysyanskaya and L. N. Rosenbloom. Universally composable Σ-protocols in the global random-
oracle model. In TCC 2022, Part I, vol. 13747 of LNCS, pp. 203–233. Springer, Heidelberg, 2022.

Mau05. U. M. Maurer. Abstract models of computation in cryptography (invited paper). In 10th IMA
International Conference on Cryptography and Coding, vol. 3796 of LNCS, pp. 1–12. Springer,
Heidelberg, 2005.

Mau10. U. Maurer. Constructive cryptography - a primer (invited paper). In FC 2010, vol. 6052 of LNCS,
p. 1. Springer, Heidelberg, 2010.

Mic00. S. Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.
Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical

Notes, 55(2):165–172, 1994.
PS16. D. Pointcheval and O. Sanders. Short randomizable signatures. In CT-RSA 2016, vol. 9610 of

LNCS, pp. 111–126. Springer, Heidelberg, 2016.

33

https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2006/151
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2022/1484


Sah99. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security.
In 40th FOCS, pp. 543–553. IEEE Computer Society Press, 1999.

Sho97. V. Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT’97, vol.
1233 of LNCS, pp. 256–266. Springer, Heidelberg, 1997.

Sma01. N. P. Smart. The exact security of ECIES in the generic group model. In 8th IMA International
Conference on Cryptography and Coding, vol. 2260 of LNCS, pp. 73–84. Springer, Heidelberg,
2001.

SPMS02. J. Stern, D. Pointcheval, J. Malone-Lee, and N. P. Smart. Flaws in applying proof methodologies
to signature schemes. In CRYPTO 2002, vol. 2442 of LNCS, pp. 93–110. Springer, Heidelberg,
2002.

Zha22. M. Zhandry. To label, or not to label (in generic groups). In CRYPTO 2022, Part III, vol. 13509
of LNCS, pp. 66–96. Springer, Heidelberg, 2022.

ZZK22. C. Zhang, H.-S. Zhou, and J. Katz. An analysis of the algebraic group model. In ASI-
ACRYPT 2022, Part IV, vol. 13794 of LNCS, pp. 310–322. Springer, Heidelberg, 2022.

34



A Related work on UC security and SNARKs

Property-based definitions and UC-NIZK A number of works study the relation be-
tween property-based and UC definitions for NIZKs. The first key property is straightline
simulation and extraction: since an UC experiment by definition does not allow the simu-
lator to rewind the environment, one must construct a simulator that performs both ZK
simulation and witness extraction straightline. Another critical property is non-malleability,
which is often referred to as simulation-extractability (SE) in the context of NIZK proof sys-
tems [Sah99,DDO+01,Gro06,FKMV12]. The SE property can be dissected into two flavors:
1. “weak” SE in the sense that an adversary cannot forge a proof without knowing witness
for at least those statements that have never been queried to the simulation oracle, and 2.
“strong” SE that prevents an adversary from mauling proof for a statement that has already
been queried to the simulation oracle. Groth [Gro06, Theorem 20] shows that CRS-based
(straightline) strong SE NIZK UC-realizes the NIZK functionality in the CRS-hybrid model.
Chase and Lysyanskaya [CL06, Theorem 2.2] show the equivalence between strong SE and
UC security for signature of knowledge. The recent work of Chiesa and Fenzi [CF24] presents
“UC-friendly” property-based security definitions for RO-based NIZK and proves that any
NIZK satisfying these properties in the ROM is UC-secure in the presence of restricted
observable and programmable global random oracle. Their result implies that purely RO-
based SNARKs such as those of Kilian–Micali [Kil92, Mic00] and Interactive Oracle Proof
compiled with the Merkle-tree e.g. [BCS16, BCR+19, BBHR19] are already UC secure. As
observed by Kosba et al. [KZM+15,KMS+16] weak SE suffices for a typical UC application.
It is well known that Groth16 in its original form is not strong SE because its proof is re-
randomizable. Baghery et al. [BKSV21] show Groth16 still satisfies weak SE in the AGM.
Groth and Maller [GM17] presented a modified version of Groth16 which satisfies strong
SE under knowledge assumptions. Bowe and Gabizon [BG18] also showed a way to make
Groth16 strong SE in the ROM and GGM.
UC-lifting Compiler There exist several generic compilers in the literature that lift NIZK
into a UC-secure one under various assumptions. However, all these approaches incur over-
head and hence are not ideal from a practical perspective. Kosba et al. [KZM+15, Theorem 2]
give a generic compiler (the CØCØ transformation) that turns any NIZK into a scheme that
UC-realizes F-NIZK in the (F-CRS)-hybrid model using a CPA-secure PKE and a PRF. Al-
though several follow-up works appeared to reduce the overhead incurred by the CØCØ-style
transformation [ARS20, BS21, AGRS23], the transformation requires the prover to encrypt
the witness, and thus the construction loses witness succinctness. Lysyanskaya et al. [LR22b,
Theorem 3] show a generic compiler that converts any Σ-protocols into a NIZK that GUC-
realizes F-NIZK in the (G-RO,F-CRS)-hybrid model. Ganesh et al. [GKO+23, Theorem 1]
present a compiler that turns CRS-based simulation-extractable NIZK (where extraction
is non-black-box) into a scheme that UC-realizes F-NIZK the (G-RO,F-CRS)-hybrid model.
Their method preserves succinctness, but still involves “compilation” and a straightline ex-
traction enabled by additional proof-of-work reminiscent of Fischlin’s transformation [Fis06],
which seems too high for practitioners.

B FAQ

This section collects questions and answers, collected from reviews and internal discussions.
Is there a concrete example of an attack that the UC-AGM is blind to? Suppose
we have a protocol ρ with access to two communication channel functionalities F-Ch1,F-Ch2.
Now consider the following behavior of a party of ρ:
– ρ generates a random secret sk $← Zp and corresponding public key pk = gsk .
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– ρ sends pk over F-Ch1 to all other parties.
– If ρ receives pk over F-Ch2, then it reveals its secret key sk.

Clearly, ρ is insecure (assuming knowledge of sk breaks ρ) and the attack is to just send pk
via F-Ch2 to some honest party to learn their secret key.

However, in the UC-AGM, this attack is not allowed. This is because the adversary cannot
send pk over F-Ch2, since it does not know the discrete logarithm of pk w.r.t. the AGM-
basis of F-Ch2. When ρ sends pk over F-Ch1 to the adversary, the element pk is added to
the AGM-basis of F-Ch1 (which enables the adversary to send pk via F-Ch1 with the trivial
representation), but not to the AGM-basis of F-Ch2. This is a feature because otherwise,
sibling functionalities could add group elements to each others’ AGM-bases, which makes
certain security proofs impossible. However, it demonstrates how certain attacks are not
caught by the UC-AGM.

How do you model global functionalities in UC? Is it related to GUC/EUC?
In contrast to GUC/EUC [CDPW07], we work in the plain UC model, which does allow
modeling global functionalities (but does not, by itself, provide a composition theorem that
works in the presence of global functionalities). We follow the UCGS [BCH+20] formalism,
which uses plain UC but adds a composition theorem ( [BCH+20, Theorem 3.5]) that works
in the presence of global subroutines such as G-oGG. In that setting, the environment gets
direct access to the global subroutine just as described in our paper (e.g., Fig. 1). The
similarity of UCGS to EUC [CDPW07] is not accidental: UCGS solves the same issue as
EUC. On a high level, the two models are essentially the same, but EUC is based on an old
version of UC, while UCGS makes black-box use of the most recent version of UC.

In this result, can the Groth16 CRS be reused? In our current formulation, the
CRS (F-CRS) is local to each Groth16 (Π-G16) instance and cannot be accessed by other
instances or protocols (though it should be stressed that it can be accessed by the adversary).
As a consequence, the CRS cannot be reused for any purposes by other Groth16 instances or
protocols. This is standard modeling for UC-NIZK protocols [Gro06,CL06,KZM+15,CsW19,
ARS20,BS21,CSW22,LR22b,GKO+23,AGRS23].

Can I use Groth16 in UC to prove something about a commitment using the same
group? No. The issue is that if we model the group that Groth16 and the commitment uses
as a generic group, then there is no way to design an efficient circuit (or QAP) to verify the
commitment. This is because for generic groups, there is no circuit that can evaluate/check
group operations. The situation is similar to proving statements involving a hash function
modeled as the random oracle. Even in a game-based setting, the security guarantee is unclear
if the soundness of a proof system relies on GGM while the statement contains concrete group
descriptions. We believe this is more of a question about the GGM in general, but not an
issue caused by “composition” as in the UC terminology. In this regard, the AGM is the
more useful model, given that in the AGM, group operations can be done in a ZK circuit.

In G-oGG, what session does τi(0) belong to? What about τi(1)? The group’s neutral
element τi(0) is shared among all sessions in the sense that operations with it do not trigger
observability. This contributes to unobservability being “closed” in G-oSG, meaning that
computing gsid − gsid does not become observable.

In contrast to that, τi(1) is the canonical generator of the group. Whenever any protocol
uses τi(1), those operations are observable. Using τi(1) corresponds to having a constant
term in an element’s polynomial representation (e.g., computing “τi(h) = 5 · τi(1) + τi(gsid)”
results in Ri[h] = {5 + Xgsid} ̸⊆ Legalsid).
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Functionality 10: F-Setup / G-Setup

evalsid(x)
1: y ← [. . . ] // e.g., y = H(x) (ROM) or y = τ(τ−1(x1) + τ−1(x2)) (GGM)
2: return y

C An overview of observability in global functionalities

In this section, we revisit the ideas behind observable global functionalities, motivating their
general design. As an example, we consider a NIZKPoK scheme π, where the strategy for
extraction is to observe queries that a malicious prover makes. This discussion applies to both
the case where the observations are (i) random oracle queries, or (ii) generic group operation
queries. To unify both, we will generically talk about a “setup” functionality G-Setup with
some interface eval, where eval may either return random oracle images or the result of
generic group operations.

We start by looking at the situation for a local functionality F-Setup, compare it to its
global equivalent G-Setup, then discuss straw man approaches for enabling observations, and
finally look at the proper observable functionality G-oSetup.
Observation for local functionalities. When we say “local functionality”, we mean that
an instance of this functionality exists independently for every instance of a protocol using
it. This models that every protocol (session) gets its own independent random oracle or its
own independent generic group. In UC, this is formalized by proving π secure in the F-Setup
hybrid setting, as in Fig. 3. This is arguably not a faithful modeling of the world we live
in, where many protocols share the same instance of, say, the hash function SHA-3, or the
bilinear group BLS12-381.

Real (F-Setup hybrid) world

Environment

Aπ

F-Setup

≈

Ideal world

Environment

SF-NIZK

Fig. 3: An illustration of the F-Setup hybrid setting and the ideal world for proving that π
UC-realizes F-NIZK. We omit the dummy parties for F-NIZK.

For local functionalities, the situation for observability is very simple: In the real world,
F-Setup can only be accessed by the protocol π and the (local) adversary A. In the ideal
world, we can think of F-Setup as being simulated by S: if A in the real world wants to
access F-Setup, then S can simply execute this access in its head. S may even deviate from
the behavior of F-Setup (e.g., program the random oracle), as long as this is undetectable
to the real-world adversary A and the environment. Regarding observability, this situation
is quite comfortable for S. As all access to (the simulated version of) F-Setup goes through
S, it gets to observe all queries.
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The (observation) issues with the global functionality. If we switch our view from
the local F-Setup to the global G-Setup, the situation changes. G-Setup being a global
functionality means that it is (potentially) shared among multiple instances of multiple
protocols. This is modeled by allowing the environment (which represents other instances
of other protocols running concurrently with π) direct access to G-Setup (cf. Fig. 4). More
specifically, the protocol π and the adversary A get to make G-Setup queries for their session
sid (i.e. calls to evalsid), while the environment gets to make queries for all other sessions
sid ′ ̸= sid. Note that the environment can indirectly query evalsid for the protocol’s session
sid simply by asking the adversary A to make the query.

Real world

Z

Aπ

G-Setup

sidsidsid ′

≈

Ideal world

Z

SF-NIZK

G-Setup

sidsidsid ′

Fig. 4: An illustration of the real and ideal world setting for proving that π UC-realizes
F-NIZK in the presence of the global G-Setup. We omit the dummy parties for F-NIZK.

We find a similar situation in the ideal world (cf. Fig. 4). The environment still gets
direct access to G-Setup for sid ′ ̸= sid (as clearly, other protocols should not lose access to
G-Setup just because we replace our protocol by its ideal counterpart). The ideal functionality
F-NIZK and the simulator S can access G-Setup for their session sid. Note that F-NIZK, while
it technically could access G-Setup, does not actually do so.

In contrast to the local F-Setup, the simulator S does not fully control G-Setup. This
makes sense from a composability standpoint: say G-Setup is a shared random oracle between
two protocols, each of which is secure only if their respective simulator programs the random
oracle hash of 0—clearly, we would run into conflicts when proving security of the composed
protocol.

Furthermore, S does not get to see all accesses to G-Setup. While accesses made by
the adversary A for session sid in the real world are still conceptually visible to S (given
that S can internally simulate A), accesses made by the environment for sessions sid ′ happen
without involvement of S. This means that the environment can easily circumvent its queries
from being observed by S. As a consequence, for example, the environment can honestly
compute a NIZK proof p by querying the random oracle in session sid ′ and then submit it
for verification. Verification will succeed in the real world, but because the simulator was not
able to observe the environment’s queries, it cannot extract a witness from proof p, making
verification fail.

To fix this issue, we need to give S the ability to observe the queries that the environment
makes to G-Setup (at least the ones that are relevant to proofs in session sid).
Straw man 1: just make all queries observable to everyone. To make the environ-
ment’s queries observable, we could just augment G-Setup with an interface Observe that
simply outputs the list of all x ever queried to Eval. This would enable our NIZK simulator
to extract from proofs generated by the environment in other sessions. However, while full
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observability is a legitimate setting to consider, it means that everyone is able to observe all
queries. In particular, the environment can extract honest parties’ proofs in the real world
(by observing their G-Setup queries and then using the same extraction strategy the simula-
tor would). Proofs created by the simulator in the ideal world can generally not be extracted
from, which allows the environment to distinguish the two worlds.

This highlights that observability must not be absolute: for some properties, like zero-
knowledge, we want to hide some G-Setup queries, namely those made by the honest parties
in the real world and by the simulator in the ideal world.

Straw man 2: only record G-Setup queries made by the environment. As alluded
to above, for the NIZKPoK application, the dream scenario would be that
– Our simulator S sees all G-Setup queries made by the environment (this enables proof

of knowledge extraction).
– The environment does not see the queries of honest parties or the simulator (this enables

zero-knowledge simulation).
So it might be tempting to just define G-Setup exactly so that these two conditions hold.
So it would be nice if we could make Observe just output the list of all queries made by
the environment. However, in UC, there is no reasonable way for G-Setup to express an “if
the caller is the environment” check. This is for good reason: the environment is supposed to
be replaceable with arbitrary protocols, so G-Setup cannot treat the environment differently
from the honest/corrupted protocol parties that it represents.

We could look at Fig. 4 and notice that queries made by the environment are w.r.t.
sessions sid ′ ̸= sid. So we could potentially define G-Setup to make queries in sessions
sid ′ observable, but queries in session sid unobservable. This would result in, effectively,
a parameterized functionality G-Setup[sid] that gives the specific session sid preferential
treatment. This is not desirable (e.g., we would not be able to compose two protocols sharing
the same G-Setup, if they are proven secure only w.r.t. G-Setup[sid1] and G-Setup[sid2],
respectively).

And while the solution will indeed revolve around session IDs, its treatment of sessions
will be “symmetric”, in a manner of speaking, and not single out specific sessions. This means
that we want to set up a universal rule that applies to all session IDs equally, so that we
do not run into issues where every protocol session sid needs its own version of the global
G-Setup[sid].

Observable global functionalities with domain separation. What turned out to be the
best way to model observability is through domain separation. This is intuitively reasonable,
given that we are ultimately trying to share a resource G-Setup between multiple protocols.
Domain separation gives a way of “dividing up” the resource.

The general idea here is that honest parties and simulators are expected to respect domain
separation, i.e. they only query Evalsid(x) for inputs x that belong to their session sid.

The exact notion of an input x belonging to a session sid depends on the functionality.
For random oracles, the standard notion is that we expect the hash preimage x to carry the
session ID sid as a prefix, i.e. x = (sid, x′) for some x′ ∈ {0, 1}∗. For generic groups, roughly
speaking, every session is associated with a set of generators, and we expect the input group
elements (g1, g2) = x to be derived (only) from the generators of session sid.

As shown in Functionality 11, queries to G-oSetup that respect domain separation are
unobservable. This gives protocol parties and the simulator an easy way to avoid being
observed. Queries that violate domain separation are observable. This gives the simulator a
way to observe (some) queries made by the environment.
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Functionality 11: G-oSetup

State: Ob, an initially empty list of observations.

evalsid(x) // caller’s session: sid
1: if x does not belong to sid then
2: Ob ← Ob : [x]
3: y ← [. . . ]
4: return y

Observesid()
5: return Ob

Functionality 12: G-oRO

G-oRO is parameterized by finite set S ∈ {0, 1}∗. State: Ob, an initially empty list of observations, an initially
empty table T

Evalsid(x) // caller’s session: sid
1: if x is not of the form (sid, x′) then
2: Ob ← Ob : [x]
3: if T [x] = ⊥ then T [x] $← S

4: return T [x]

Observesid()
5: return Ob

As a concrete example for G-oSetup, see Functionality 12 for the global observable ran-
dom oracle functionality G-oRO as found in the literature [CJS14].

In Table 1, we give an overview of different kinds of queries to G-oSetup and their
observability in the NIZK use case.

Query Observability
Env queries Evalsid′ (x) Query observable (x does not belong to sid ′). Helps S extract.
Env queries Evalsid′ (x′) Query unobservable (x′ belongs to sid ′), but x′ should be irrelevant

for (extraction) task of S.
A queries Evalsid(x) Query unobservable in real world, but A is taken over/simulated by

S in the ideal world, so S sees all queries that A would make
anyway. Helps S extract.

S queries Evalsid(x) Query unobservable. Allows S to produce simulated NIZK proofs.
S queries Evalsid(x′) Query observable. Should usually be avoided by S.
A queries Evalsid(x′) Query observable. Note that Env can query for x′ without being ob-

served, which can be assumed to be the better distinguishing strategy
for Env/A.

Env queries Evalsid(·) Not allowed by UC model, environment cannot query on behalf of
target session sid. Query is implicitly rejected/ignored by G-oSetup.

A queries Evalsid′ (·) Not allowed by UC model, A has session sid. Query is implicitly
rejected/ignored by G-oSetup.

S queries Evalsid′ (·) Not allowed by UC model, S has session sid. Query is implicitly
rejected/ignored by G-oSetup.

Table 1: Overview of types of queries for G-oSetup when proving something about NIZKPoK
protocol π in session sid (as depicted in Fig. 4, but with G-Setup replaced with G-oSetup).
Notation: x belongs to sid and x′ belongs to sid ′ ̸= sid.

Note that S does not get to see all queries (which is in contrast to security proofs that
assume that the simulator gets full control over F-Setup). The simulator S can observe all
queries for x that belong to session sid (this can be checked via Table 1). But the environment
can make queries for x′ that belong to other sessions sid ′. For security proofs of protocols
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Functionality 13: G-oGG without pairing and Touch

G-oGG maintains the following state:
– τ : Zp → S a random encoding function
– R[h] for h ∈ S initially empty sets of polynomials
– Ob initially empty list of observable actions.

GetGensid()
1: if hsid = ⊥ then
2: hsid

$← S
3: Initialize fresh variable Xsid
4: R[hsid ]← R[hsid ] ∪ {Xsid}
5: return hsid

Observesid()
6: return Ob

Opsid(g1, g2, a1, a2)
7: assert (g1, g2, a1, a2) ∈ S2 × Z2

p

8: h← τ(a1τ−1(g1) + a2τ−1(g2))
9: R[h]← R[h] ∪ (a1R[g1] + a2R[g2])

10: if ∃f ∈ R[h] : f /∈ {a · Xsid | a ∈ Zp} then
11: Ob ← Ob : [(Op, g1, g2, a1, a2, h)]
12: return h

using G-oSetup, one must argue that those queries are irrelevant for S’s task of simulating
the protocol in session sid. In the random oracle case, this is quite straightforward: for a
protocol that is written to work with queries H(sid, ·), queries to H(sid ′, ·) are completely
irrelevant (indeed, this kind of domain-separation by prefixing is a folklore strategy to
duplicate a single random oracle into multiple independent ones). In the generic group case,
things are somewhat more complicated, but the general argument is that the protocol makes
checks with respect to some generator gsid , which should likely fail if the thing that is checked
contains some independent random generator gsid′ . For a concrete example, see the proof of
Claim 5.

Overall, domain separation as in G-oSetup allows us to have our cake and eat it, too, i.e.
give our simulator access to relevant observations, while still working over a shared resource.

Another (informal) way of looking at domain separation in the context of composition
is as follows. Consider a domain separation respecting protocol Π w.r.t. G-oSetup. Domain
separation basically means that we can compose Π with other protocols Π ′ that also respect
domain separation, as, intuitively, those protocols do not interfere with our protocol (e.g.,
their hashes have a different prefix, or their group uses a different generator). We then
limit the damage that a domain-separation-violating protocol Π ′ can do to our protocol
Π, by making the queries of Π ′ observable. We further limit the damage that adversaries
(or simulators) for Π ′ can do, by hiding the (domain-separation-respecting) queries that Π
makes from them.

D Failed attempts at the G-oGG functionality

In this section, we discuss earlier attempts at modeling G-oGG, motivating our final polynomial-
based observation rule of Functionality 3. To simplify this discussion, we concentrate on the
generic group model without efficient pairing. Furthermore, instead of allowing sessions to
set up multiple generators via Touch, we will simply assume that each session sid has a
single random generator hsid . Functionality 13 shows a version of Functionality 3 in this sim-
plified setting. Note that in the absence of a pairing, all the polynomials in R[h] are simply
degree 1 polynomials, and checking observability (Line 10) boils down to checking whether
the polynomial f resulting from the operation is of the form a · Xsid for some a ∈ Zp.

First attempt: Simple sid + sid = sid infection mechanism. Our first attempt (Func-
tionality 14) at G-oGG is quite a bit simpler than the final version (Functionality 13). Instead
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Functionality 14: Failed attempt 1 for G-oGG

G-oGG maintains the following state:
– τ : Zp → S a random encoding function
– Vsid ⊆ S initially empty sets of group elements belonging to session sid
– Ob initially empty list of observable actions

GetGensid()
1: if hsid = ⊥ then
2: hsid

$← S
3: Vsid ← {hsid}
4: return hsid

Observesid()
5: return Ob

Opsid(g1, g2, a1, a2)
6: assert (g1, g2, a1, a2) ∈ S2 × Z2

p

7: h← τ(a1τ−1(g1) + a2τ−1(g2))
8: if g1, g2 ∈ Vsid then
9: Vsid ← Vsid ∪ {h}

10: else
11: Ob ← Ob : [(Op, g1, g2, a1, a2, h)]
12: return h

of keeping track of polynomials for each group element, we have a set Vsid ⊆ S for each
session, which initially contains the generator hsid of session sid. When a group operation is
performed between two elements g1, g2 ∈ Vsid , we add the resulting group element to Vsid .
Operations that involve group elements not in Vsid are logged as observable actions.

At first glance, this seems like a reasonable approach. If honest parties in session sid
only do operations on elements derived from hsid , those operations are unobservable, in-
tuitively enabling properties like zero-knowledge. All other operations are observable with
overwhelming probability (e.g., when a party from another session sid ′ ̸= sid uses some
g1 ∈ Vsid), enabling properties like proof of knowledge.

The issue with Functionality 14 is subtle. As it turns out, the fact that Vsid contains
exactly all (intermediate) computation results made by honest protocol parties in session sid
is an issue. Note that the environment may learn something about the contents of Vsid by
essentially checking whether certain group operations are observable. As a result, Function-
ality 14 reveals too much information about the internal computations of session sid parties,
interfering with properties such as zero-knowledge.

As an illustration of this issue, consider the Groth16 protocol (Protocol 1). In the real
world, when computing the proof element A within Provesid(x, w), the honest prover
computes, among others, the intermediate result gintermediate =

∑m
i=0 aiui(x) · hsid , where

(ai)ℓ
i=0 = x is the public input, (ai)m

i=ℓ+1 = w is the witness, and ui(x) are (constant) QAP
polynomials. It is to be noted that this intermediate result is deterministically computed by
the honest prover exactly like this. As a result of the Functionality 14 rules, gintermediate is
added to Vsid . In the ideal world, the simulator cannot reproduce the same intermediate re-
sult, as it does not know the witness. Indeed, the simulator (Simulator 1) simply computes a
random A. As a consequence, if the environment is able to check whether gintermediate ∈ Vsid ,
it can distinguish the real world (where gintermediate ∈ Vsid) from the ideal world (where
gintermediate /∈ Vsid).

This check is indeed easily implemented: the environment would simply compute gintermediate =∑m
i=0 aiui(x) · hsid itself via G-oGG in some session sid ′ ̸= sid. The environment’s oper-

ations are observable, but do not change Vsid for the target session sid. It then queries
Verifysid(x, π = (A = hsid , B = hsid , C = gintermediate)) on some honest verifier. In the
real world, the group operations within Verify will be unobservable, as they only involve
elements A, B, C ∈ Vsid . In the ideal world, some verification operations (involving C) will
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Functionality 15: Failed attempt 2 for G-oGG

G-oGG maintains the following state:
– τ : Zp → S a random encoding function
– Vsid ⊆ S initially empty sets of group elements belonging to session sid
– Ob initially empty list of observable actions

GetGensid()
1: if hsid = ⊥ then
2: hsid

$← S
3: Vsid ← {hsid}
4: return hsid

Observesid()
5: return Ob

Opsid(g1, g2, a1, a2)
6: assert (g1, g2, a1, a2) ∈ S2 × Z2

p

7: h← τ(a1τ−1(g1) + a2τ−1(g2))
8: for all sessions sid ′ do // incl. sid ′ = sid
9: if g1, g2 ∈ Vsid′ then

10: Vsid′ ← Vsid′ ∪ {h}
11: if h /∈ Vsid then
12: Ob ← Ob : [(Op, g1, g2, a1, a2, h)]
13: return h

be observable, as C /∈ Vsid .14 As a result, the environment can distinguish the two worlds,
just using leakage of G-oGG operations via Vsid in the Functionality 14 setting.

Overall, Functionality 14 is intuitively unsatisfying because we do not want G-oGG to leak
significant information about internal intermediate computations to other sessions. With our
final polynomial-based observation rule (Functionality 13), when the environment tries to
mount the attack above, the Verify operations on C = gintermediate =

∑m
i=0 aiui(x) · hsid

will be unobservable in both the real and the ideal world, as the rules of Functionality 13 do
not care whether gintermediate has already been computed by the honest prover or whether
the environment (session sid ′) was the one to compute it for the first time. It just looks at
gintermediate symbolically, using the element’s polynomial representation

∑m
i=0 aiui(x) · Xsid ,

and determines that it belongs to session sid, no matter who computed it.
Second attempt: Decoupling Vsid maintenance from the caller session. The first
attempt suffers from an attack where the environment is able to check whether a certain
intermediate result gintermediate has been computed by the honest prover. One potential way to
fix this is by making sure that when the environment computes gintermediate for its attack, then
gintermediate is also added to Vsid (at which point the attack fails because gintermediate ∈ Vsid
in both the real and ideal world). In other words, we decouple the maintenance of Vsid from
the caller’s session, making it so that when the environment calls Opsid′ in session sid ′, the
result is still added to Vsid when appropriate.

This is formalized in Functionality 15. Op now maintains Vsid′ for all sid ′ (including
sid ′ = sid), and then uses the Vsid corresponding to the caller’s session to decide whether
the operation is observable. This approach fulfills the general requirements (honest parties’
operations only using elements derived from their hsid are unobservable, all other operations
are observable). In addition to that, it thwarts the attack from the previous section: when
the environment computes gintermediate in session sid ′, it will also be added to Vsid . However,
the environment can sidestep this mechanism quite easily: instead of computing gintermediate
as
∑m

i=0 aiui(x) ·hsid , it computes it as hsid′ +
∑m

i=0 aiui(x) ·hsid −hsid′ . The resulting group
element is the same, but because the first term hsid′ is not in Vsid , none of the operations/in-
termediate results are added to Vsid . As a result, with a minimal change to the attack above,

14 In Groth16, verification happens to only consists of pairing operations and the group operations on Gt, but
this does not meaningfully change the argument. Following Functionality 3, the pairing operations would
be observable. Furthermore, it is easy to imagine reasonable protocols that involve group operations on
input elements.
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Functionality 16: Failed attempt 3 for G-oGG

G-oGG maintains the following state:
– τ : Zp → S a random encoding function
– Vsid ⊆ S initially empty sets of group elements belonging to session sid
– Ob initially empty list of observable actions

GetGensid()
1: if hsid = ⊥ then
2: hsid

$← S
3: Vsid ← {hsid}
4: return hsid

Observesid()
5: return Ob

Opsid(g1, g2, a1, a2)
6: assert (g1, g2, a1, a2) ∈ S2 × Z2

p

7: h← τ(a1τ−1(g1) + a2τ−1(g2))
8: for all sessions sid ′ do // incl. sid ′ = sid
9: if g1 ∈ Vsid′ ∨ g2 ∈ Vsid′ then

10: Vsid′ ← Vsid′ ∪ {h}
11: if h /∈ Vsid then
12: Ob ← Ob : [(Op, g1, g2, a1, a2, h)]
13: return h

the environment can still distinguish the real world from the ideal world, using unintended
leakage exposed by Functionality 15.

This sort of sidestepping motivates the final observation rule of Functionality 13. In our
final observation rule, the polynomial corresponding to the element gintermediate computed as
hsid′ +

∑m
i=0 aiui(x) · hsid − hsid′ is the same as the polynomial when computing the same

element as
∑m

i=0 aiui(x) · hsid . In both cases, the polynomial corresponding to gintermediate
is the same, namely Xsid′ +

∑m
i=0 aiui(x) · Xsid − Xsid′ =

∑m
i=0 aiui(x) · Xsid . As a result,

Functionality 13 treats the group element gintermediate as part of session sid and exhibits
observability behavior accordingly.
Third attempt: More aggressively adding elements to sessions. The issue with the
previous Functionality 15 can be seen as a failure to keep track of group elements. When
the environment adds some other sessions’ generator hsid′ to some g ∈ Vsid , the functionality
loses track that the resulting group element has anything to do with session sid. One attempt
to fix this issue is to keep track of session associations more aggressively, i.e. instead of saying
that g1 + g2 ∈ Vsid if both g1, g2 are in Vsid , we say that g1 + g2 ∈ Vsid if g1 or g2 is in Vsid .
As a result, an element hsid′ + hsid belongs to both Vsid′ and Vsid instead of neither. This is
formalized in Functionality 16.

This approach indeed solves all issues with the environment checking whether gintermediate
is in Vsid . Whenever the environment computes gintermediate (in any way), or any element that
is losely associated with hsid , it will be added to Vsid .

This rule, however, is too eager to add elements to Vsid , which allows the environment to
evade observation. More concretely, say, the environment wants to compute 5 ·hsid in session
sid ′. Intuitively, this operation must be observable. However, the environment can escape
observability by first computing hsid′ + hsid − hsid′ , which inappropriately adds hsid to Vsid′ .
Afterwards, the computation of 5 · hsid in session sid ′ is unobservable because hsid ∈ Vsid′ .
In other words, this rule allows the environment to effectively add foreign elements to its
own session, and evade observability. In our final observation rule (Functionality 13), this is
again not an issue because the terms ±hsid′ cancel out in the polynomial representations.
Solution: The polynomial-based observation rule. Reflecting on the failed attempts,
we can distill three requirements for a good G-oGG observation rule. From the first attempt
(Functionality 14), we have learned that the fact whether or not an element is observable
must not depend on whether the element has been computed by honest parties or by the
environment.
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Function 2: FindRep for Gt

FindRep(t, h∗, Obsid , B(1), B(2), B(t))

1: Parse B(i) = (B(i)
1 , . . . , B

(i)
ni )

2: Rep1[h]← 0 ∈ Zn1
p initially for all h ∈ S1

3: for b ∈ [n1] do Rep1[B(1)
b ]← (Kroneckerk,b)n1

k=1

4: Rep2[h]← 0 ∈ Zn2
p initially for all h ∈ S2

5: for b ∈ [n2] do Rep2[B(2)
b ]← (Kroneckerℓ,b)n2

ℓ=1

6: Rept[h]← 0 ∈ Znt+n1·n2
p initially for all h ∈ St

7: for b ∈ [nt] do Rept[B
(t)
b ]← (Kroneckerj,b)nt+n1·n2

j=1

8: // We write Rept[h] = (aj)j∈[nt], (ak,ℓ)k∈[n1],ℓ∈[n2]), where ak,ℓ are the coefficients for the pairings of baseis
elements B

(1)
k and B

(2)
ℓ .

9: for ob ∈ Obsid do // In the order entries appear in Obsid
10: if ob = (Op, i, g1, g2, a1, a2, h) ∧ i ∈ {1, 2, t} then // Group operation
11: Repi[h]← a1 · Repi[g1] + a2 · Repi[g2]
12: if ob = (Pair, t, g1, g2, h) then // Pairing operation
13: Rept[h]← (0nt , Rep1[g1]⊗ Rep2[g2]) // c⊗ d := (ck · dℓ)k∈[n1],ℓ∈[n2]

return Rept[h∗]

The second and third attempts (Functionalities 15 and 16) essentially suffer from issues
related to mixing generators. The following requirements are derived from these attempts:
– The element hsid′ + 5 · hsid − hsid′ must be added to Vsid .
• This is needed to ensure the environment cannot check whether 5 · hsid has been

computed (added to Vsid) by honest parties before.
– The element hsid′ + 5 · hsid must not be added to Vsid′ .
• This is needed so that the environment cannot evade observability by simply adding

hsid′ , doing some unobservable computation in session sid ′, and removing hsid′ again
at the end.

When using a simple infection-based mechanism as in Functionalities 15 and 16, both of
these points cannot be true at the same time. Such a mechanism either assigns hsid′ + 5 ·hsid
and hsid′ +5 ·hsid−hsid′ to both Vsid , Vsid′ (Functionality 16) or to neither (Functionality 15).

With the polynomial-based observation rule of Functionality 13, we can satisfy both
requirements, by keeping track of the makeup of an element itself. The polynomial-based
rule can look at hsid′ + 5 · hsid as the polynomial Xsid′ + 5Xsid and conceptually assign it to
neither Vsid nor Vsid′ (as it is a mix of multiple generators). It looks at hsid′ + 5 · hsid − hsid′

as the polynomial 5Xsid and conceptually assigns it to Vsid (as it is not a mix of multiple
generators).

E FindRep compatible with Gt

For the sake of simplicity, the GetRep oracle and FindRep algorithm are only presented
for G1 and G2 elements in the main body. In Function 2, we show FindRep for Gt elements.
In Oracle 1, we show the corresponding GetRep oracle for Gt elements.

To accommodate pairing operations, both GetRep(t, · · · ) as well as FindRep(t, · · · )
take bases B(1), B(2), B(t) for all three groups as input. The output of FindRep is adapted
so that it can express pairing operations of basis elements. For example, if g1, g2, gt are basis
elements, we want to be able to output coefficients a1, a1,1 such that h∗ = a1 ·gt+a1,1 ·e(g1, g2)
(modulo some terms).
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Oracle 1: G-oSG extension: GetRep for Gt

GetRepsid(t, h∗, B(1), B(2), B(t))
1: assert h∗ ∈ im(τt) and B(i) ⊆ Ci for i ∈ {1, 2, t}
2: Parse B(i) = (B(i)

1 , . . . , B
(i)
ni )

3: ((aj)j∈[nt], (ak,ℓ)k∈[n1],ℓ∈[n2])← FindRep(h∗, Ob, Obsid , B(1), B(2), B(t))
4: assert

∑|Bt|
j=1 aj · τ−1

t (B(t)
j ) +

∑|B(1)|
k=1

∑|B(2)|
ℓ=1 ak,ℓ · τ−1

1 (B(1)
k ) · τ−1

2 (B(2)
ℓ ) = τ−1

t (h∗) mod ⟨Var–sid , τ−1
1 (C1 \

B(1)), τ−1
2 (C2 \ B(2)), τ−1

t (Ct \ B(t))⟩Zp[Var,SimVar]
5: return ((aj)j∈[nt], (ak,ℓ)k∈[n1],ℓ∈[n2])

Group operations are handled in FindRep as usual, adding up the representation vectors
Rep of the operands. Pairing operations are handled in the natural way, too, pairwise multi-
plying the known representation vector entries (mirroring e(

∑
k yk,

∑
ℓ zℓ) =

∑
k

∑
ℓ e(yk, zℓ)).

Similar to the proof of Lemma 5 (see Appendix I), we can also show that whenever
FindRep sets some Repi[h] value, then that value is a good representation of the element
τ−1(h) modulo ⟨Var–sid , τ−1

1 (C1\B(1)), τ−1
2 (C2\B(2)), τ−1

t (Ct\B(t))⟩Zp[Var,SimVar]. This means
that there is no correctness guarantee for terms that involve (1) variables from other sessions
(Var–sid) or (2) outputs of symbolic computations not passed as input (τ−1

i (Ci \B(i)), which
are, in a sense, “missing” basis elements). However, all other terms get correct coefficients
from FindRep, where “correct” means consistent to τt(h). In particular, if some Gt element
can be written without involvement of foreign session variables and one passes all output of
ComputeSymbolic as basis elements into FindRep, then the output encodes h∗ exactly.
These guarantees are encoded in Oracle 1.

F Proof of Lemma 3

First, note that G-oGG samples all group element encodings in the beginning (τi
$← Inj(Zp, Si)).

In contrast, G-oSG lazily samples the values for τi (this is because there are no injective func-
tions from Zp[Var, SimVar±1] to Si). To make G-oGG more like G-oSG in that regard, consider
the lazy sampling version of G-oGG in Functionality 17: Whenever τi(x) is first accessed
(x /∈ dom(τi)), a random unused image h

$← Si \ im(τi) is chosen for x. Whenever τ−1
i (h) is

first accessed (h /∈ im(τi)), a random unused preimage x
$← Zp \ dom(τi) is chosen for h. We

push the code for first-access of τi into a new internal interface Tausid . We push the code
for first-access of τ−1

i into Touchsid because it precedes all accesses of τ−1
i . Of course, this

version is perfectly indistinguishable from the original G-oGG (this is easy to see because the
τi : Zp → Si are bijections).

For the proof of Lemma 3, consider the following “hybrid” functionality G-oHG–b, which
outwardly behaves like G-oSG for b = 0 and like (the lazy sampling version of) G-oGG for
b = 1. This can be checked by inspection.

Note that the lazy sampling of τ ′
i preimages x′ in Touch first tries to use some uni-

form x
$← Zp in Line 31, but falls back to x′ $← Zp \ dom(τ ′

i) (Line 33) in case there is a
collision. This way of lazily sampling preimages is perfectly equivalent to the lazy sampling
in Functionality 17. However, the intermediate uniform preimage x will allow us to apply
Schwartz-Zippel to some meaningful uniform and independent x values.

The proof will establish that there is no difference between G-oHG–0 and G-oHG–1 unless
during execution of G-oHG–0, we run into two polynomials f ̸= f ′ ∈ P that collide, i.e.
f(Val) = f ′(Val). Schwartz-Zippel (Lemma 1) establishes that such collisions are unlikely.
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Functionality 17: G-oGG with lazily sampled τi

Differences to original G-oGG (Functionality 3) are marked with purple.
Init() // Invoked only upon creation
1: for i ∈ {1, 2, t} do
2: τi ← {}
3: gi ← Tausid(i, 1)
4: Ri[gi]← {1}

CanonicalGensid(i)
5: return τi(1)

Observesid()
6: return Ob

Tausid(i, a) // internal
7: if τi(a) = ⊥ then
8: τi(a) $← Si \ im(τi)
9: return τi(a)

Opsid(i, g1, g2, a1, a2)
10: assert (g1, g2, a1, a2) ∈ S2

i × Z2
p

11: for j ∈ {1, 2} do
12: Touchsid(i, gj)
13: h← Tausid(i, a1τ−1

i (g1) + a2τ−1
i (g2))

14: Ri[h]← Ri[h] ∪ (a1Ri[g1] + a2Ri[g2])
15: if ∃f ∈ Ri[h] : f /∈ Legalsid then
16: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]
17: return h

Touchsid(i, g)
18: if Ri[g] = ∅ then
19: Initialize fresh variable X
20: Vari,sid ← Vari,sid : [X]
21: Ri[g]← {X}
22: x

$← Zp \ dom(τi)
23: τi(x)← g

Pairsid(g1, g2)
24: assert (g1, g2) ∈ S1 × S2
25: for i ∈ {1, 2} do
26: Touchsid(i, gi)
27: h← Tausid(t, τ−1

1 (g1) · τ−1
2 (g2))

28: Rt[h]← Rt[h] ∪ (R1[g1] · R2[g2])
29: if ∃f ∈ Rt[h] : f /∈ Legalsid then
30: Ob ← Ob : [(Pair, t, g1, g2, h)]
31: return h

Proof (Lemma 3). Consider the event “coll” that at some point during execution of G-oHG–0,
there are f, f ′ ∈ P such that f ̸= f ′ but f(Val) = f ′(Val). Because polynomials in P are at most
of degree 2, the values in Val are chosen uniformly and independently at random, and the
set P of polynomials does not depend on Val (all responses of G-oHG–0 to B are independent
of Val), we can apply Lemma 1 pairwise to all f, f ′. This gives us that Pr[f(Val) − f ′(Val) =
0] ≤ deg(f − f ′)/p ≤ 2/p for all {f, f ′} ∈

(P
2
)
. Every query to B’s oracles adds at most three

new polynomials to P, in addition to the initial entry 1 ∈ P. With union bound over all(|P|
2
)
≤
(3q+1

2
)

pairs, we get

Pr[coll] = Pr[∃f ̸= f ′ ∈ P : f(Val) = f ′(Val)] ≤
(

3q + 1
2

)
· 2/p.

It remains to show that
∣∣∣Pr

[
BOreal = 1

]
− Pr

[
BOsymb = 1

]∣∣∣ ≤ Pr[coll]. For this, we claim
that if coll does not occur, then G-oHG–0 and G-oHG–1 behave exactly the same. This implies
the bound above via difference lemma.

To check this claim, we consider two invariants that hold before and after any G-oHG–0
oracle query, assuming that ¬coll.
Invariant 1. First, we characterize τi, τ ′

i , and Ri by putting them into one common table.
We define tables Ti : Si → Si × Zp[Var]× 2Zp × 2Zp[Var] with

Ti(h) = (h, τ−1
i (h), τ ′−1

i (h), Ri[h]).

Note that τi is injective by design of G-oHG–0, so τ−1
i is either ⊥ or some unique single value.

τ ′
i is not necessarily injective in G-oHG–0, so τ ′−1

i (h) returns the set of all preimages of h.
The first invariant is: Before and after any invocation of the oracles, it holds that for all
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Functionality 18: G-oHG–b

– τi : Zp[Var]→ Si // as in G-oSG

– τ ′
i : Zp → Si // as in G-oGG

– P set of polynomials seen during the game // bookkeeping for proof
– Ri initially empty map from representations to sets of polynomials // as in G-oGG

– Vari,sid initially empty lists of polynomial variables // as in G-oSG

– Vali,sid initially empty lists of random values corresponding to the variables of Vari,sid // Uniform version (with
potential collisions) of Val ′. Used for Schwartz-Zippel

– Val ′
i,sid initially empty lists of random values corresponding to the variables of Vari,sid //Version that potentially

deviates fromVal becauseVal ′ does not contain duplicates. Used to bridge G-oSG into G-oGG in the proof, where
polynomials f in G-oSG correspond to scalars f(Val ′) in G-oGG

– Ob initially empty list of (globally) observable actions // as in G-oGG, G-oSG

We write
– We write Varsid , Var as before. We analogously define Valsid and Val.
– Legalsid = ⟨Varsid⟩Zp[Varsid ] //As in G-oGG and G-oSG (the formulation in the latter is equivalent since SimVarsid =

() is empty in the context of Lemma 3)

Init() // Invoked only upon creation
1: for i ∈ {1, 2, t} do
2: τi ← {}
3: τ ′

i ← {}
4: gi ← Tau(i, 1, 1)
5: R[gi]← {1}

CanonicalGensid(i)
6: return Tau(i, 1, 1)

Tau(i, f, a) // internal
7: P← P ∪ {f}
8: if b = 0 ∧ τi(f) = ⊥ ∨ b = 1 ∧ τ ′

i (a) = ⊥ then
9: if b = 0 then h

$← Si \ im(τi)
10: if b = 1 then h

$← Si \ im(τ ′
i )

11: τi(f)← h
12: τ ′

i (a)← h

13: if b = 0 then return τi(f)
14: if b = 1 then return τ ′

i (a)

Opsid(i, g1, g2, a1, a2)
15: assert (g1, g2, a1, a2) ∈ S2

i × Z2
p

16: for j ∈ {1, 2} do
17: Touchsid(i, gj)
18: f ← a1τ−1

i (g1) + a2τ−1
i (g2)

19: a← a1τ ′−1
i (g1) + a2τ ′−1

i (g2)
20: h← Tau(i, f, a)
21: Ri[h]← Ri[h] ∪ (a1Ri[g1] + a2Ri[g2])
22: if b = 0 ∧ f /∈ Legalsid then
23: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]
24: if b = 1 ∧ Ri[h] ̸⊆ Legalsid then
25: Ob ← Ob : [(Op, i, g1, g2, a1, a2, h)]

return h

Touchsid(i, g)
26: if b = 0 ∧ g /∈ im(τi) ∨ b = 1 ∧ Ri[g] = ∅ then
27: Initialize a fresh variable X
28: Vari,sid ← Vari,sid : [X]
29: τi(X)← g
30: Ri[g]← {X}
31: x

$← Zp

32: if τ ′
i (x) ̸= ⊥ then

33: x′ $← Zp \ dom(τ ′
i )

34: else
35: x′ ← x
36: Vali,sid ←Vali,sid : [x]
37: Val ′

i,sid ←Val ′
i,sid : [x′]

38: τ ′
i (x′)← g

39: P← P ∪ {X}

Observesid()
40: return Ob

Pairsid(g1, g2)
41: assert (g1, g2) ∈ S1 × S2
42: for i ∈ {1, 2} do
43: Touchsid(i, gi)
44: f ← τ−1

1 (g1) · τ−1
2 (g2)

45: a← τ ′−1
1 (g1) · τ ′−1

2 (g2)
46: h← Tau(t, f, a)
47: Ri[h]← Ri[h] ∪ (R1[g1] · R2[g2])
48: if b = 0 ∧ f /∈ Legalsid then
49: Ob ← Ob : [(Pair, t, g1, g2, h)]
50: if b = 1 ∧ Ri[h] ̸⊆ Legalsid then
51: Ob ← Ob : [(Pair, t, g1, g2, h)]

return h
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i ∈ {1, 2, t}, h ∈ Si, we have

Ti(h) = (h,⊥,∅,∅)
or Ti(h) = (h, f, {f(Val ′)}, {f}) for some f ∈ P

In addition, for all input (i, f, a) ever supplied to Tau, it holds that f(Val ′) = a.
We call the first kind of entry in Ti “empty” and the second kind “non-empty”. Intuitively,

this invariant establishes a strong connection between the symbolic polynomials of τi, the
concrete discrete logarithms of τ ′

i , and the G-oGG bookkeeping polynomials Ri. Namely, Ri[h]
is essentially just τ−1

i (h), and we get from τ−1
i (h) ∈ Zp[Var] to τ ′−1

i (h) ∈ Zp by just plugging
in the concrete discrete logarithms Val ′.
Invariant 2. The second invariant is: Before and after any invocation of the oracles, it holds
that Val = Val ′. This invariant claims, essentially, that there is no disparity between the
uniformly chosen preimages Val $← Zp and the (collisionless) preimages Val ′ used for τ ′

i .
Corollaries of invariants 1,2. As a consequence of the first invariant, we immediately get
that im(τi) = im(τ ′

i) (given that any h is either in the image of none of the τi, τ ′
i functions,

or in both of them). Furthermore, because τi, τ ′
i are functions, any f ∈ Zp appears in Ti at

most once and any a ∈ Zp appears in Ti at most once.

Claim 1 (Invariants hold). Assuming ¬coll, invariant 1 and invariant 2 both hold before
and after any oracle call to G-oHG–0.

Proof: After Init. The first invariant is clearly fulfilled in the beginning, after Init, where
the Ti contain the canonical generator entries (gi, 1, {1}, {1}), and the entries for all other
h ̸= gi are of the empty kind. The second invariant is trivially fulfilled in the beginning,
given that Val =Val ′ = () is empty.

In the following, we assume that the invariants hold before any oracle call, and prove
that they are preserved, assuming ¬coll.
Preservation of invariant 1. The first invariant is preserved through Touchsid(i, g), which
either does nothing (if g ∈ im(τi), i.e. if the T entry for g is non-empty), or otherwise adds
the non-empty entry T (g) = (g, X, {x′}, {X}) where x′ = X(Val ′) by design. Touch never
overwrites any existing τi or τ ′

i values, meaning that no other entry of T changes.
The invariant is also preserved by queries to Opsid(i, g1, g2, a1, a2) and Pairsid(g1, g2):

For both interfaces, the invariant holds after the internal call to Touch (Line 17 and 43). In
particular, because of invariant 1’s guarantees for g1, g2, we get that f and a, as computed
in Line 18 and 19 and Line 44 and 45 also fulfill f(Val ′) = a. Hence Tausid(i, f, a) is called
with a = f(Val ′) in Line 20 and 46, which fulfills the “for all input (i, f, a) ever supplied to
Tau, it holds that f(Val ′) = a” part of invariant 1.

There are now two cases. (1) if T (h) is non-empty, Tau changes nothing, preserving the
invariant. (2) if T (h) is empty, then Tausid(i, f, f(Val ′)) sets the previously empty entry T (h)
to (h, f, {f(Val ′)}, ·).

For case (2), note that it might happen that the assignment τ ′
i(a) ← h in Line 12

overwrites a prior value τ ′
i(a) = h2, which would violate the invariant for T (h2). However,

assume there were some non-empty entry (h2, f2, {a}, ·) containing a before executing Tau.
Then a = f2(Val ′) by invariant 1. Hence f(Val ′) = f ′(Val ′) = a. By invariant 2, f(Val) = f ′(Val),
and by injectivity of τ ′

i , f ̸= f2, i.e. we get a collision between f(Val) and f2(Val). Overall,
Line 12 does not overwrite any prior τ ′

i(a) = h2 value unless the event coll happens.
Afte the internal call to Tau, because Ri[gℓ] = {τ−1

i (gℓ)} for the inputs g1, g2 by invariant
1, Op/Pair sets R[h] to {f} in Line 21 and 47, which gives us the entry Ti(h) of the form
(h, f, {f(Val ′)}, {f}), preserving invariant 1, as required.
Preservation of invariant 2. The second invariant is preserved by Touch assuming ¬coll:
The only way forVal ′ to deviate fromVal is if the condition τ ′

i(x) ̸= ⊥ in Line 32 becomes true.
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In the following, we argue that this can only happen if the event coll occurs. Assume, that
the condition in line Line 32 is true. That implies that there is a T (h) = (h, f, {x}, ·) entry
containing x. By invariant 1, T (h) is well-formed, i.e. f(Val ′) = x = X(Val ′, x). Furthermore,
because invariant 2 holds before Touch, we have Val ′ = Val, hence f(Val ′) = f(Val) =
f(Val, x) (the last equality holds because f does not contain X). In this scenario, Touch

would proceed to compute the new Val ←Val : [x], and X is added to P. This means that
after Touch, there is a collision between f ̸= X (inequality because X is a fresh variable)
with f(Val) = X(Val) = x, which violates the assumption that ¬coll. Overall, this shows
that whenever the condition in Line 32 becomes true, this induces the event coll (which we
assume does not happen).

The second invariant is trivially preserved by all other oracle queries (using the argument
above for when Touch is called internally). ■

Having established those two invariants, we can now argue that as long as the event coll
does not occur, G-oHG–0 behaves exactly like G-oHG–1.
Claim 2 (Equivalence until ¬coll). Assuming ¬coll, the behavior of G-oHG–0 is exactly
like that of G-oHG–1.
Proof: We go through the lines in which G-oHG–b reads b and argue that the concrete value
of b makes no difference, assuming ¬coll.
– Regarding Line 8: no difference. By invariant 1, Tau is called with input of the form

(i, f, a = f(Val ′)). Consider two cases: (1) if τi(f) ̸= ⊥, then by invariant 1, there is an
entry Ti(h) = (h, f, {a}, ·), hence τ ′

i(a) ̸= ⊥. (2) If τ ′
i(a) ̸= ⊥, then also τi(f) ̸= ⊥: In

this case, there is already an entry Ti(h2) = (h2, f2, {a}, ·) containing a. Assume, for
contradiction, that τi(f) = ⊥. Then Tau would reassign τ ′

i(a) to h ̸= h2, making the
entry Ti(h2) = (h2, f2,∅, ·) violate invariant 1 after the update. The invariant cannot
be violated, hence necessarily, im(f ′) ̸= ⊥. Overall, either both τi(f) and τ ′

i(a) are ⊥, or
neither.

– Regarding Line 9 and 10: no difference because im(τi) = im(τ ′
i) (as observed in the

invariant corollaries above)
– Regarding Line 13 and 14: no difference. By invariant 1, Tau is called with input of the

form (i, f, a = f(Val ′)). For b = 0, using invariant 1, Tau returns the unique h such that
T (h) = (h, f, a, ·). For b = 1, Tau must return the same h because a only appears once
in T (see invariant corollaries).

– Regarding Line 22, 24, 48, 50: no difference because Ri[h] = {f} by invariant 1.
– Regarding Line 26: no difference because im(τi) = {g | Ri[g] ̸= ⊥} by inspection.

■
Using the remarks and probability analysis at the beginning of this proof, Claim 2 enables

us to apply the difference lemma, concluding the overall proof. ⊓⊔

G Proof of the first part of Lemma 4

G.1 Indistinguishability of ComputeConcrete and ComputeAtomic

The difference between ComputeConcrete and ComputeAtomic is that the former calls
Tau on all intermediate results (partial sums) tj ←

∑j
ℓ=1 τ−1

i (hℓ) · fℓ(SimValsid), whereas the
latter only calls Tau on the final result. Functionality 19 encapsulates this essential differ-
ence formally: Compute (corresponding to ComputeConcrete / ComputeAtomic) calls
a procedure PhantomTau(i, tj) for the intermediate results tj , which allocates a random
encoding hj = τ(tj) if it does not exist already, but also marks that encoding hj as “interme-
diate” by adding it to the set Qi. If the normal Tau(i, tj) is called (later), hj ceases to be an
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Functionality 19: Interfaces modeling either O, ComputeConcrete (b = 0) or
O, ComputeAtomic (b = 1) for Lemma 4

Differences with O, ComputeConcrete, ComputeAtomic are highlighted in purple.
– Qi ⊆ Si initially empty set containing what would be the intermediate results of ComputeConcrete(i, . . . )
Computesid(i, (hj , fj)n

j=1)
1: if ∃j : hj ∈ Qi then
2: abort
3: assert τ−1

i (hj) ∈ Legalsid , and fj ∈ Zp[SimVar±1
sid ] for

all j ∈ [n].
4: for j ∈ [n− 1] do
5: tj ←

∑j

ℓ=1 τ−1
i (hℓ) · fℓ(SimValsid)

6: PhantomTausid(i, tj) // Query encoding for par-
tial sum

7: f ←
∑n

ℓ=1 τ−1
i (hℓ) · fℓ(SimValsid)

8: h← Tausid(i, f) // Full sum
9: return h

Op, Pair, Observe As in G-oSG.

Touchsid(i, g)
10: if g ∈ Qi then
11: abort
12: if g /∈ im(τi) then
13: Initialize a fresh variable X
14: Vari,sid ← Vari,sid : [X]
15: τi(X)← g

Tau(i, f)
16: if τi(f) = ⊥ then
17: τi(f)

$← Si \ im(τi)
18: Qi ← Qi \ {τi(f)}
19: return τi(f)

PhantomTausid(i, f)
20: if τi(f) = ⊥ then
21: τi(f)

$← Si \ im(τi)
22: Qi ← Qi ∪ {τi(f)}

intermediate result, and it is removed from Qi. Hence Qi represents the set of intermediate
results for which B has not seen the encodings.

Functionality 19 perfectly emulates both (O, ComputeConcrete) and (O, ComputeAtomic),
unless it aborts.15 This happens if B finds one of the intermediate result encodings hj ∈ Qi

and queries it to Compute or Touch. At that point, in the ComputeConcrete setting,
this encoding exists, meaning that ComputeConcrete does not refuse to work with it,
and Touch does nothing. In contrast, in the ComputeAtomic setting, this encoding does
not exist, meaning that the assertion in ComputeAtomic fails and Touch would treat
the encoding as new, giving it a fresh variable. So in this case, the two settings become
distinguishable.

To bound the probability that Functionality 19 aborts, observe the following. Let Q =
Q1 ∪Q2 ∪Qt.

– There are at most q′ ≥ |Q| elements in Q because elements are added only for intermediate
Compute results.

– B has no information about the elements of h ∈ Q except that any such h cannot have
been the output of any of the (at most q) Op, Pair queries. As a consequence, guessing
an element of Q succeeds with probability at most |Q|/(p− q) ≤ q′/(p− q)

– B can make a guess by querying some h to Compute or Touch. Hence B makes at
most 2q + q′ guesses (note that any of the ≤ q queries to Op / Pair causes two Touch
queries).

– With union bound, this gives us that B makes Functionality 19 abort with probability
at most (2q + q′) · q′/(p− q).

15 We are using here that B is restricted such that 3q + q′ + 1 ≤ p, i.e. we do not run out of unused encoding
in either of the settings. Furthermore, by the assertion in Line 35 of ComputeConcrete, none of the Op
calls are (globally) observable.
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Overall, with the difference lemma, we get that∣∣∣∣∣∣ Pr
[
BO,ComputeConcrete = 1

]
− Pr

[
BO,ComputeAtomic = 1

] ∣∣∣∣∣∣ ≤ Pr[abort] ≤ (2q + q′) · q′/(p− q)

as required.

H A technical lemma for switching computation styles in G-oSG

The next lemma (Lemma 7) alleviates a technical concern. Whenever the UC simulator S
makes a group operation query, the result of that query gets assigned a random image in τi. As
a consequence, in G-oSG, it is no longer true that it does not matter how S computes a group
elements as long as the result is (distributed) the same. We can imagine one simulator using
500 queries to compute a group element, and another simulator using only 100 queries to
compute it (e.g., because it uses a trapdoor). Even though both output the same (distribution
of) group elements, the environment can potentially distinguish the two by choosing a random
g

$← Si and querying it to Touchsid′(i, g). This Touch query fails more often in the presence
of the first than the second simulator, because the first one computes many more intermediate
results, which increases the chances that the random g is one of them. Of course, Si is large,
and the chances of mounting this distinguishing attack are negligible. The following lemma
deals with this issue, showing that, essentially as a corollary of Lemma 4, the way a group
element is computed is undetectable. The lemma is used in Claim 6 of the Groth16 proof.

Lemma 7. Let AG-oSG,Bi ,BComputeConcrete
0 ,BComputeConcrete

1 be algorithms such that both
Bi just output the list of their hj ← ComputeConcrete(ij , ·) query results in the format
((i1, h1), (i2, h2), . . . ). We say that B0,B1 are perfectly equivalent (w.r.t. A) if for any invoca-
tion B(x) that A makes, Pr[y = (τ−1

ij
(hj))n

j=1 | (ij , hj)n
j=1 ← B0(x)] = Pr[y = (τ−1

ij
(hj))n

j=1 |
(ij , hj)n

j=1 ← B1(x)] for all y.
Let q be an upper bound on the number of oracle queries that A,Bi make. Let q′ be (an

upper bound for) the number of polynomials B supplies to ComputeConcrete in total.
If B0,B1 are perfectly equivalent (with respect to A) and 3q + q′ + 1 ≤ p, then∣∣∣Pr[AG-oSG,BComputeConcrete

0 = 1]− Pr[AG-oSG,BComputeConcrete
1 = 1]

∣∣∣
≤ 2 · (2q + q′) · q′/(p− q)

Proof. From Lemma 4, we know that∣∣∣Pr[AG-oSG,BComputeConcrete
j = 1]− Pr[AG-oSG,BComputeAtomic

j = 1]
∣∣∣

≤ (2q + q′) · q′/(p− q).

Analyzing BComputeAtomic
j , notice that querying ComputeAtomic with result h amounts

to just querying h← Tau(i, f), i.e. there are no other side effects. Since the inputs (i, f) are
distributed the same between B0 and B1 by the lemma’s prerequisites, one can conclude that
there is no difference between B0 and B1 in this setting. This means that∣∣∣Pr[AG-oSG,BComputeAtomic

0 = 1]− Pr[AG-oSG,BComputeAtomic
1 = 1]

∣∣∣ = 0.

Overall, ∣∣∣Pr[AG-oSG,BComputeConcrete
0 = 1]− Pr[AG-oSG,BComputeConcrete

1 = 1]
∣∣∣

≤
∣∣∣Pr[AG-oSG,BComputeAtomic

0 = 1]− Pr[AG-oSG,BComputeAtomic
1 = 1]

∣∣∣
+ 2 · (2q + q′) · q′/(p− q)

=0 + 2 · (2q + q′) · q′/(p− q)

52



⊓⊔

I Proof of Lemma 5

Proof (Lemma 5). For a representation Rep = (aj)n
j=1, we write the corresponding poly-

nomial V(Rep) =
∑n

j=1 aj · τ−1
i (Bj) ∈ Zp[Var, SimVar±1]. Let Rep[h∗] = (a∗

j )n
j=1 be the

result of a FindRep(i, h∗, Obsid , B) call, and let V(h∗) be its corresponding polynomial. Let
I = ⟨Var–sid , τ−1

i (Ci \ B)⟩Zp[Var,SimVar±1] be the ideal of, loosely speaking, unobservable poly-
nomials, which is formed by variables of other sessions sid ′ ̸= sid and generators g ∈ Ci

not supplied as basis input via B. The assertion in Line 53 is equivalent to checking that
V(Rep[h∗]) = τ−1

i (h∗) mod I.
We now argue that this check never fails. For this, we consider the following claim.

Claim 3. Whenever Rep[h] is set to some value (other than the initial assignment in Line 5),
it holds that V(Rep[h]) = τ−1

i (h) mod I.

First, note that when assigning the representations for the basis elements in Line 6, we have
by definition V(Rep[Bj ]) = τ−1

i (Bj). The other assignment is in Line 8 when processing the
observation ob = (Op, i, g1, g2, a1, a2, h) ∈ Obsid . If we assume (for now) that V(Rep[gj ]) =
τ−1

i (gj) mod I (j ∈ {1, 2}), then the result Rep[h] ← a1 · Rep[g1] + a2 · Rep[g2] also fulfills
V(Rep[h]) = V(a1 ·Rep[g1] + a2 ·Rep[g2]) = a1 ·V(Rep[g1]) + a2 ·V(Rep[g2]) = a1 · τ−1

i (g1) +
a2 · τ−1

i (g2) = τ−1
i (h) mod I.

It remains to argue that indeed, V(Rep[gj ]) = τ−1
i (gj) (j ∈ {1, 2}). For this, consider the

following case distinction about how gj first appeared in G-oSG.
– gj = τi(1) is the canonical generator. We then have two cases.
• gj ∈ B has been supplied as basis element, in which case Rep[gj ] has been set correctly

in Line 6.
• gj /∈ B was not supplied as a basis, so its zero default value is correct: We have that

gj ∈ Ci \ B and so by definition of I, we have τ−1
i (gj) = 0 mod I.

– gj was first queried to Touchsid′ (either directly or indirectly via Op, Pair). This means
that τi(gj) ∈ Varsid′ is simply a formal variable for session sid ′. There are two cases.
• sid ′ = sid is the caller’s session ID. Then as above, gj ∈ B and Rep[gj ] is correctly

set in Line 6, or gj ∈ Ci \ B, meaning the default value of zero is correct.
• sid ′ ̸= sid is a foreign session. Then by definition of I, we have τ−1

i (gj) = 0 mod I as
required.

– gj was first seen as the result of a ComputeSymbolicsid′ query. Similarly to Touch,
• if sid ′ = sid, then gj is either part of the basis B or correctly zero.
• If sid ′ ̸= sid, then gj belongs to a foreign session, meaning τ−1

i (gj) ∈ ⟨Var–sid⟩, and
hence τ−1

i (gj) = 0 mod I.
– gj was first seen as the result of a Opsid′ query. We distinguish two cases.
• During that Op query, the observation ob′ of result gj was added to the observation

list Obsid . In this case, ob′ must have been processed earlier than ob, setting Rep[gj ]
correctly in Line 8 (argued inductively).
• During that Op query, no observation was added to Obsid . This implies that sid ′ ̸= sid

(otherwise the observation is always added), and τ−1
i (gj) ∈ Legalsid′ (otherwise an

observation is added). This means that τ−1
i (gj) ∈ ⟨Varsid′⟩ ⊆ ⟨Var–sid⟩, and hence

τ−1
i (gj) = 0 mod I, i.e. the default zero is correct.
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This concludes the argument that when Line 8 is executed, Rep[g1], Rep[g2] are already
correctly set, meaning that Rep[h] is correctly set.

Finally, if Rep[h∗] was set during the execution of FindRep, then it was set correctly
(Claim 3). If Rep[h∗] was not set during the execution of FindRep, then the same arguments
above for gj apply to h∗ and show that the default zero must have been a correct value for
h∗.

J Proof of supporting claims for Theorem 1

We now prove that each transition only incurs a negligible loss.

Claim 4. Hybrids H0 and H1 are indistinguishable. Concretely,

|Pr[EXECF-wNIZK,Z,SG16,G-oGG(λ, z) = 1]− Pr[EXECF-wNIZK,Z,SG16,G-oSG(λ, z) = 1]|

≤ 9q2
1 + 3q1

p

where q1 = m + 3d + 6 + qZ + 3qP + (ℓ + 6)qV .

Proof: We count the number of queries made to G-oGG/G-oSG:
– Initial generation of CRS triggers at most m + 3d + 4 queries to Op and 2 queries to

Touch.
– Z queries G-oGG/G-oSG at most qZ times.
– Each invocation of Prove triggers at most 3 queries to Op via SG16.Simulate
– Each invocation of Verify triggers at most ℓ + 2 queries to Op and 4 queries to Pair

via SG16.Extract.
In total, at most q1 = m + 3d + 6 + qZ + 3qP + (ℓ + 6)qV are made during an execution of
each hybrid. Plugging q1 into Lemma 3, we obtain the claimed loss. ■

Claim 5. Hybrids H2 and H1 are indistinguishable. Concretely,

|Pr[EXECF-wNIZK,Z,SG16,G-oSG(λ, z) = 1]− Pr[EXECF-wNIZK′,Z,SG16,G-oSG(λ, z) = 1]|

≤(2q2 + q′
2) · 3q′

2
2p

+ (9q2
2 + 3q2)d2
p− 1 + 6qZ

p

where q2 = q1 (see Claim 4), q′
2 = m + 3d + 4 + 3qP and d2 = 2d− 1.

Proof: First, let us consider the case where the Verify interface receives as input (x, π) such
that x was previously queried to the Prove interface and Prove responded with π. In H1,
F-wNIZK.Verifysid(x, π) always returns 1 since (x, π) is guaranteed to exist in the table T .
In H2, F-wNIZK′.Verifysid(x, π) also returns 1 since (x, π) was simulated by SG16 in such a
way that it passes the verification condition. Hence, the view of Z is identical in H1 and H2.

Second, we look at the case where the Verify interface receives as input (x, π) such that
x was previously queried to the Prove interface and Prove responded with π′ ̸= π. In H1,
F-wNIZK.Verifysid(x, π) outputs 1 if and only if the verification equation is satisfied, thanks
to the additional check at Line 9 of F-wNIZK. In H2, F-wNIZK′.Verifysid(x, π) also outputs
1 if and only if the verification equation is satisfied by definition. Hence, the view of Z is
identical in H1 and H2.

We now look at the case where the Verify interface receives as input (x, π) such that
x was never queried to the Prove interface. In H1, F-wNIZK.Verifysid(x, π) outputs 1
if only if SG16.Extractsid(x, π) successfully outputs w such that (x, w) ∈ RQAP. In H2,
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F-wNIZK′.Verifysid(x, π) outputs 1 if and only if the verification equation is satisfied by
definition. Hence, the view of Z is identical in H1 and H2, except if SG16.Extractsid(x, π) in
H1 fails to extract valid witness while (x, π) passes verification. We now bound the probability
that this exceptional event occurs in H1. To this end, we introduce the following sub-hybrids:

– H ′
1: This is essentially a syntactically re-arranged version of H1 except with one abort con-

dition. In H ′
1, G-oSG is extended with additional interfaces GetRnd and ComputeConcrete

which can be accessed by a modified simulator S ′
G16 described in Simulator 2. Note that

S ′
G16 now aborts if one of the session-specific generators is already reserved for another

session.That is, Touchsid(i, gsid,i) fails to initialize a fresh variable associated with sid
if there already exists some f such that τi(f) = gsid,i. Since Z may define τi for at most
3 new group elements through each query to G-oSG, the probability that S ′

G16 aborts is
at most 6qZ/p by the union bound. The view of Z is identical in H1 and H ′

1 unless S ′
G16

aborts.
– H ′′

1 : This is identical to H ′
1 except that every invocation of ComputeConcrete is

replaced with ComputeSymbolic as in the modified simulator described in S ′′
G16 Sim-

ulator 3. This transition is justified by Lemma 4. Concretely, counting the number of
supplied polynomials to ComputeConcrete/ComputeSymbolic:
• Initial generation of CRS supplies at most m + 3d + 4 polynomials.
• Each invocation of Prove sends at most 3 polynomials via Simulate
• Each invocation of Verify does not trigger any query to ComputeX

In total, at most q′
2 = m + 3d + 4 + 3qP polynomials are supplied during an execution

of each hybrid. Moreover, the degrees of supplied polynomials are upper-bounded by
d2 = 2d − 1. The total number of queries q2 to G-oSG is the same as q1 of the previous
claim. Plugging q2, q′

2 and d2 into Lemma 4 and accounting for the loss incurred by the
abort condition of H ′

1, we obtain the claimed loss. (As we shall next, there won’t be any
more loss during the rest of the analysis.)

– H ′′′
1 : This is identical to H ′′

1 except that G-oSG is extended with an additional GetRepsid
interface and every invocation of FindRep is replaced with GetRepsid as in the modified
simulator S ′′′

G16 described in Simulator 4. This transition is justified by Lemma 5 and incurs
no loss.

We now perform weak SE analysis of Groth16 in a purely symbolic manner. Since every
random exponent x, α, β, γ, δ sampled by S ′′′

G16 is now treated as a formal symbol, the proof
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π = (A, B, C) output by Z can be expressed as:

τ−1(A) = pA(Var–sid) + Xsid,1

(
AαXα + AβXβ + AδXδ + Ax(Xx) + Ah(Xx)t(Xx)X−1

δ

+
ℓ∑

i=0

Aiqi(Xα, Xβ , Xx)X−1
γ +

m∑
i=ℓ+1

Aiqi(Xα, Xβ , Xx)X−1
δ

+
Q∑

j=1

Aµ(j) X(j)
µ +

Q∑
j=1

AC(j) (Xµ(j) Xν(j) − XαXβ −
ℓ∑

i=0

a
(j)
i qi(Xα, Xβ , Xx))X−1

δ

)
τ−1(B) = pB(Var–sid) + Xsid,2

(
BβXβ + BγXγ + BδXδ + Bx(Xx) +

Q∑
j=1

Bν(j) Xν(j)

)
τ−1(C) = pC(Var–sid) + Xsid,1

(
CαXα + CβXβ + CδXδ + Cx(Xx) + Ch(Xx)t(Xx)X−1

δ

+
ℓ∑

i=0

Ciqi(Xα, Xβ , Xx)X−1
γ +

m∑
i=ℓ+1

Ciqi(Xα, Xβ , Xx)X−1
δ

+
Q∑

j=1

Cµ(j) X(j)
µ +

Q∑
j=1

CC(j) (Xµ(j) Xν(j) − XαXβ −
ℓ∑

i=0

a
(j)
i qi(Xα, Xβ , Xx))X−1

δ

)

where Ah, Ch are univariate polynomials of degree d−2, Ax, Bx, Cx are univariate polynomials
of degree d − 1, Var–sid is a vector of foreign variables (as defined in Functionality 4), and
pA, pB, pC are multivariate polynomials, respectively. Note that {Ci}mi=ℓ+1 is the candidate
witness returned by GetRepsid . Our goal is show that (x, w) = ({ai}ℓi=1, {Ci}mi=ℓ+1) ∈ RQAP
whenever x and π = (A, B, C) pass verification.

First, the fact that A, B, C satisfy the verification condition implies:

τ−1(A) · τ−1(B)

≡ τ−1(C) · (Xsid,2Xδ) + Xsid,1Xsid,2

(
XαXβ +

ℓ∑
i=0

aiqi(Xα, Xβ , Xx)

)
Focusing on the terms containing the monomial Xsid,1Xsid,2, we have that

(AαXα + AβXβ + . . .) (BβXβ + BγXγ + . . .)

≡ Xδ (CαXα + CβXβ . . .) + XαXβ +
ℓ∑

i=0

aiqi(Xα, Xβ , Xx) (1)

This equation is identical to the one analyzed in Theorem 1 of [BKSV21], where they sym-
bolically prove weak SE of Groth16 in the stand-alone setting. Thus, we only provide a
sketch following their proof. First, [BKSV21] shows that AC(j) = 0 for all j ∈ [Q] by com-
paring LHS and RHS of (1). Then they prove that only one of the following cases holds:
(1) Aµ(j) = Bν(j) = Cµ(j) = CC(j) = 0 for all j ∈ [Q] implying that no simulated proof is
used to construct the forged proof π = (A, B, C), or (2) there exists some k ∈ [Q] such that
Aµ(k) , Bν(k) , Cµ(k) , CC(k) and Aµ(j) = Bν(j) = Cµ(j) = CC(j) = 0 for j ̸= k16, implying that
only the kth simulated proof and CRS are used to construct the forged proof. In Case (1),
one can invoke the plain knowledge soundness analysis of [Gro16, Theorem 1], guaranteeing
that {Ci}mi=ℓ+1 is valid QAP witness corresponding to the received statement x = {ai}ℓi=1.
In Case (2), [BKSV21] shows that the received statement x = {ai}ℓi=1 is identical to the kth
16 Although [BKSV21] does not explicitly mention Aµ(j) and Cµ(j) (denoted by A8,j and C8,j in their proof,

respectively) are 0, we can indeed confirm they are 0 by looking at the relevant constraints of (1). Ac-
cording to their analysis Bν(k) ̸= 0. Then looking at the term involving Xµ(i) Xν(j) for i ̸= j, we have that
Aµ(i) Bν(j) = 0, implying Aµ(i) = 0 for i ̸= k. Looking at the term involving Xµ(i) Xδ, we also have that
Aµ(i) Bδ − Cµ(i) = 0 for all i ∈ [Q]. Thus, Cµ(i) = 0 for i ̸= k.
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statement x(k) = {a(k)
i }ℓi=1, meaning that the forged proof π is merely a mauled version of

kth simulated proof π(k). In this case, the simulator does not need to extract valid witness
as we described before.

■

Claim 6. Hybrids H2 and H3 are indistinguishable. Concretely,

|Pr[EXECF-wNIZK′,Z,SG16,G-oSG(λ, z) = 1]− Pr[EXECF-wNIZK′′,Z,SG16,G-oSG(λ, z) = 1]|

≤ 6 · (2q3 + q′
3) · q′

3
p

+ 12qZ
p

where q3 = q1 (see Claim 4) and q′
3 = m + 3d + 4 + (m− ℓ + 4d + 1)qP .

Proof: As SG16 in H2 follows the perfect ZK simulation routine of [Gro16], the distribution
of each simulated (A, B, C) in H2 is identical to that in H3. Note that a sequence of group
operations associated with leading to each simulated/honestly generated proof is different
i.e. A = [µ]sid,1 in H2 whereas A = [α]sid,1 + r[δ]sid,1 + . . . in H3. To argue this change is
unnoticed by the environment, we would like to invoke Lemma 7. To this end, we introduce
the following sub-hybrids:
– H ′

2: Similar to H ′
1 in Claim 5, this is a syntactically re-arranged version of H2 except with

one abort condition: the modified version of SG16 aborts if touching the session-specific
group generators fails (by checking whether their representation is already defined or
not). Moreover, Simulate invokes ComputeConcrete to obtain simulated A, B, C.

– H ′
3: Similar to H ′

1 in Claim 5, this is a syntactically re-arranged version of H3 except
with one abort condition: the modified version of SG16 aborts if touching the session-
specific group generators fails. Moreover, Prove invokes ComputeConcrete to obtain
honestly computed A, B, C after initializing Xr and Xs via GetRnd.

The loss incurred when transitioning to H ′
2 from H2 is at most 6qZ/p. The same loss applies

when transitioning to H ′
3 from H3. Regarding Simulate of H ′

2 as B0 and Prove of H ′
3 as B1,

respectively, they indeed satisfy the perfectly equivalence condition as required by Lemma 7
because the joint distribution of (τ−1

1 (A), τ−1
2 (B), τ−1

1 (C)) output by both algorithms is
identical. To derive the concrete loss, let us count the number of supplied polynomials to
ComputeConcrete:
– Initial generation of CRS supplies at most m + 3d + 4 polynomials.
– Each invocation of Prove sends at most m − ℓ + 4d + 1 polynomials (bounded by the

number of polynomials sent in H ′
3).

– Each invocation of Verify does not trigger any query
In total, at most q3 = m + 3d + 4 + (m− ℓ + 4d + 1)qP polynomials are supplied during an
execution of each hybrid. The total number of queries q3 to G-oSG is the same as q1 of the
previous claim. Plugging q3 and q′

3 into Lemma 7 and accounting for the loss incurred by
the abort condition of H ′

2 and H ′
3, we obtain the claimed loss. ■

Claim 7. Hybrids H3 and H4 are indistinguishable. Concretely,

|Pr[EXECF-wNIZK′′,Z,SG16,G-oSG(λ, z) = 1]− Pr[EXECF-wNIZK′′,Z,SG16,G-oGG(λ, z) = 1]|

≤ 9q2
4 + 3q4

p

where q4 = m + 3d + 6 + 3qZ + (m− ℓ + 4d + 1)qP + (ℓ + 6)qV .

Proof: We count the number of queries made to G-oGG/G-oSG:
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Functionality 20: F-wNIZK′ (used in hybrid H2)

F-wNIZK′ is parameterized by RQAP, and runs with parties P1, . . . ,PN and an ideal process adversary SG16.
Moreover, it has direct access to G-oSG. The group operations happening inside Verify are carried out via the
corresponding wrapper interfaces of SG16. It stores proof table T which is initially empty.

Initsid()
1: T ← [ ] // Empty table

Provesid(x, w)
1: if (x, w) /∈ R then return ⊥
2: π ← SG16.Simulatesid(x)
3: T ← T ∪ (x, π)
4: return π

Verifysid(x = {ai}ℓ
i=1, π = (A, B, C))

1: σ ← SG16.GetCRSsid()
2: Cpub ←

[∑ℓ

i=0 aiqi(α, β, x)γ−1
]

sid,1
3: return A ·B = Cpub · [γ]sid,2 + C · [δ]sid,2 + [α]sid,1 · [β]sid,2

Functionality 21: F-wNIZK′′ (used in hybrid H3)

F-wNIZK′′ is parameterized byRQAP, and runs with parties P1, . . . ,PN and an ideal process adversary SG16. Moreover,
it has direct access to G-oSG. The group operations happening inside Prove and Verify are carried out via the
corresponding interfaces of G-oSG. It stores proof table T which is initially empty.

Initsid()
1: T ← [ ] // Empty table

Provesid(x = {ai}ℓ
i=1, w = {ai}m

i=ℓ+1)
1: if (x, w) /∈ RQAP then return ⊥
2: σ ← SG16.GetCRSsid()
3: r, s

$← Zp

4: Compute h ∈ Fd−2[X] such that ht = (
∑m

i=0 aiui)(
∑m

i=0 aivi)− (
∑m

i=0 aiwi)
5: A := [a]sid,1 ←

[∑m

i=0 aiui(x) + α + rδ
]

sid,1

6: B := [b]sid,2 ←
[∑m

i=0 aivi(x) + β + sδ
]

sid,2

7: C := [c]sid,1 ←
[∑m

i=ℓ+1 aiqi(α, β, x)δ−1 + h(x)t(x)δ−1 + sa + rb− rsδ
]

sid,1
8: return (A, B, C)

Verifysid(x = {ai}ℓ
i=1, π = (A, B, C))

1: σ ← SG16.GetCRSsid()
2: Cpub ←

[∑ℓ

i=0 aiqi(α, β, x)γ−1
]

sid,1
3: return A ·B = Cpub · [γ]sid,2 + C · [δ]sid,2 + [α]sid,1 · [β]sid,2

– Initial generation of CRS triggers at most m + 3d + 4 queries to Op and 2 queries to
Touch.

– Z queries G-oGG/G-oSG at most qZ times.
– Each invocation of Prove triggers at most m− ℓ + 4d + 1 queries to Op.
– Each invocation of Verify triggers at most ℓ + 2 queries to Op and 4 queries to Pair

via F-wNIZK′′.Extract.
In total, at most q4 = m + 3d + 6 + 3qZ + (m− ℓ + 4d + 1)qP + (ℓ + 6)qV are made during
an execution of each hybrid. Plugging q4 into Lemma 3, we obtain the claimed loss. ■
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Simulator 1: SG16

The simulator stores state:
– Obsid , Ob′ initially empty lists
– σ Labels for simulated common reference string
– td Trapdoor for σ

GetCRS, Op, Pair, Touch, CanonicalGen, Observe are to be called by the environment, while Simulate and Extract
are to be called by F-wNIZK. Note that the interfaces Op, Pair, Touch, CanonicalGen, Observe are wrappers of the
corresponding methods of G-oGG. We define these so that SG16 can keep track of all the group operations happening inside
the current session.

Initsid() // Invoked only upon creation
1: Run the code for F-CRS.Initsid(). Store σ as CRS

and td = (x, α, β, δ) as a simulation trapdoor, re-
spectively.

GetCRSsid()
2: return σ

Opsid(i, g1, g2, a1, a2)
3: h← G-oGG.Opsid(i, g1, g2, a1, a2)
4: assert h ̸= ⊥
5: UpdateObsid((Op, i, g1, g2, a1, a2, h))
6: return h

Pairsid(g1, g2)
7: h← G-oGG.Pairsid(g1, g2)
8: assert h ̸= ⊥
9: UpdateObsid((Pair, t, g1, g2, h))

10: return h

Touchsid(i, g)
11: return G-oGG.Touchsid(i, g)

CanonicalGensid(i)
12: return G-oGG.CanonicalGensid(i)

Observesid()
13: return G-oGG.Observesid()

UpdateObsid(tuple)
14: Ob∗ ← G-oGG.Observesid()
15: Obsid ← Obsid : (Ob∗ \Ob′) : tuple
16: Ob′ ← Ob∗ // Stash the current state of observation

list stored in G-oGG

Simulatesid(x = {ai}ℓ
i=1)

17: µ, ν
$← Zp

18: A← [µ]sid,1
19: B ← [ν]sid,2

20: C ← [(µν − αβ −
∑ℓ

i=0 aiqi(α, β, x))δ−1]sid,1 // This operation
requires the knowlege of td.

21: return (A, B, C)

Extractsid(x = {ai}ℓ
i=1, π = (A, B, C))

22: Cpub ← [
∑ℓ

i=0 aiqi(α, β, x)γ−1]sid,1
23: if A ·B ̸= Cpub · [γ]sid,2 + C · [δ]sid,2 + [α]sid,1 · [β]sid,2 then
24: return junk // No need to extract if (x, π) is invalid
25: UpdateObsid() // Complete the fully ordered observation list
26: g ← G-oGG.CanonicalGensid(1)
27: B ← (g, [1]sid,1, [{qi(α, β, x)δ−1}m

i=ℓ+1]sid,1)
28: (·, ·, {Cqi}m

i=ℓ+1)← FindRep(1, C, Obsid , B) // See Function 1
29: w ← {Cqi}m

i=ℓ+1
30: if (x, w) ∈ RQAP then
31: return w
32: else
33: return maul //If extraction fails but the proof verifies, mark

it mauled. The functionality will eventually return 1 if x was
previously queried.
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Simulator 2: S ′
G16

The simulator stores state:
– Obsid initially empty list
– σ Labels for simulated common reference string
– td Trapdoor for σ

GetCRS, Op, Pair, Touch, CanonicalGen, Observe, Extract are identical to those of SG16 except they call G-oSG. We
overload the bracket notations within S ′

G16 as follows, assuming that symbolic variables Xx, Xy, . . . are obtained through
GetRnd:

[f(x, y, . . .)]sid,i := G-oSG.ComputeConcrete(i, gsid,i, f(Xx, Xy, . . .))

Initsid() // Invoked only upon creation
1: for i = 1, 2 do
2: gsid,i

$← Si

3: G-oSG.Touchsid(i, gsid,i)
4: if gsid,i ∈ im(τi) then abort
5: td := (Xx, Xα, Xβ , Xγ , Xδ)← G-oSG.GetRndsid()// Abusing notation
6: σ1 ← [α, β, δ, {xi}d−1

i=0 , {qi(α, β, x)γ−1}ℓ
i=0, {qi(α, β, x)δ−1}m

i=ℓ+1, {xit(x)δ−1}d−2
i=0 ]sid,1

7: σ2 ← [β, γ, δ, {xi}d−1
i=0 ]sid,2

8: σ ← (σ1, σ2)

Simulatesid(x = {ai}ℓ
i=1)

34: Xµ, Xν ← G-oSG.GetRndsid()
35: A← [µ]sid,1
36: B ← [ν]sid,2

37: C ← [(µν − αβ −
∑ℓ

i=0 aiqi(α, β, x))δ−1]sid,1
38: return (A, B, C)

Simulator 3: S ′′
G16

Identical to S ′
G16 except that the bracket notations are overloaded as follows:

[f(x, y, . . .)]sid,i := G-oSG.ComputeSymbolic(i, gsid,i, f(Xx, Xy, . . .))

Simulator 4: S ′′′
G16

Identical to S ′′
G16 except the Extract interface

Extractsid(x = {ai}ℓ
i=1, π = (A, B, C))

1: Cpub ← [
∑ℓ

i=0 aiqi(α, β, x)γ−1]sid,1
2: if A ·B ̸= Cpub · [γ]sid,2 + C · [δ]sid,2 + [α]sid,1 · [β]sid,2 then
3: return junk
4: g ← G-oSG.CanonicalGensid(1)
5: B ← (g, [1]sid,1, [{qi(α, β, x)δ−1}m

i=ℓ+1]sid,1)
6: (·, ·, {Cqi}m

i=ℓ+1)← G-oSG.GetRepsid(1, C, B)
7: w ← {Cqi}m

i=ℓ+1
8: if (x, w) ∈ RQAP then
9: return w

10: else
11: return maul
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