
Zero-knowledge IOPs Approaching Witness Length

Noga Ron-Zewi
University of Haifa

noga@cs.haifa.ac.il

Mor Weiss
Bar-Ilan University

mor.weiss@biu.ac.il

Abstract

Interactive Oracle Proofs (IOPs) allow a probabilistic verifier interacting with a prover to
verify the validity of an NP statement while reading only few bits from the prover messages.
IOPs generalize standard Probabilistically-Checkable Proofs (PCPs) to the interactive setting,
and in the few years since their introduction have already exhibited major improvements in
main parameters of interest (such as the proof length and prover and verifier running times),
which in turn led to significant improvements in constructions of succinct arguments. Zero-
Knowledge (ZK) IOPs additionally guarantee that the view of any query-bounded (possibly
malicious) verifier can be efficiently simulated. ZK-IOPs are the main building block of succinct
ZK arguments which use the underlying cryptographic object (e.g., a collision-resistant hash
function) as a black box.

In this work, we construct the first ZK-IOPs approaching the witness length for a natural NP
problem. More specifically, we design constant-query and constant-round IOPs for 3SAT in
which the total communication is (1 + γ)m, where m is the number of variables and γ >
0 is an arbitrarily small constant, and ZK holds against verifiers querying mβ bits from the
prover’s messages, for a constant β > 0. This gives a ZK variant of a recent result of Ron-Zewi
and Rothblum (FOCS ‘20), who construct (non-ZK) IOPs approaching the witness length for a
large class of NP languages. Previous constructions of ZK-IOPs incurred an (unspecified) large
constant multiplicative overhead in the proof length, even when restricting to ZK against the
honest verifier.

We obtain our ZK-IOPs by improving the two main building blocks underlying most ZK-
IOP constructions, namely ZK codes and ZK-IOPs for sumcheck. More specifically, we give
the first ZK-IOPs for sumcheck that achieve both sublinear communication for sumchecking a
general tensor code, and a ZK guarantee. We also show a strong ZK preservation property for
tensors of ZK codes, which extends a recent result of Bootle, Chiesa, and Liu (EC ‘22). Given
the central role of these objects in designing ZK-IOPs, these results might be of independent
interest.

Contents

1 Introduction 1
1.1 Our Results . 3

2 Technical Overview and Additional Results 4
2.1 Zero-Knowledge Properties of Tensor Codes . 4
2.2 A Zero-knowledge Sumcheck Protocol with Sublinear Communication 7
2.3 ZK-IOPs Approaching the Witness Length . 10
2.4 Open Problems and Future Directions . 14

3 Preliminaries 15
3.1 Interactive Oracle Proofs (IOPs) and Zero-Knowledge (ZK) IOPs 15

3.1.1 IOPs with Zero-Knowledge . 17
3.2 Error-correcting codes . 20

3.2.1 Zero-Knowledge Codes . 21
3.2.2 Locally Testable Codes . 22
3.2.3 Tensor codes . 23
3.2.4 Low-degree Extensions (LDEs) and Reed-Solomon (RS) Codes 25

4 Zero-Knowledge Properties of Tensor Codes 26
4.1 ZK Against Line Queries . 27

4.1.1 ZK Against Line Queries . 27
4.1.2 ZK Against Adaptive Line Queries . 30

4.2 ZK Threshold of Tensor Product . 34
4.2.1 Limitations on the ZK Threshold . 35
4.2.2 Linear ZK Threshold . 36

4.3 Code Extension . 37

5 Sublinear length ZK-IOP for sumcheck 38
5.1 Warmup: the 2-Dimensional Case . 42
5.2 The Full Sumcheck Protocol . 43
5.3 Completeness . 44
5.4 Soundness . 44
5.5 Zero knowledge . 45

5.5.1 Zero Knowledge for General Codes . 45
5.5.2 Zero-Knowledge for Tensor Codes . 50

5.6 Distributional ZK . 53

6 ZK-IOP approaching witness length for 3SAT 54
6.1 High-Level Overview of the Protocol . 54

6.1.1 Prior Techniques in (Zero-Knowledge) PCP and IOP Design 55
6.1.2 New Techniques for ZK Proofs Approaching the Witness Length 56

6.2 The “Bare-Bones” Protocol and the Full Protocol . 58
6.3 Completeness . 59
6.4 Soundness . 60
6.5 Zero-Knowledge . 62

6.5.1 Proof of Main Technical Lemma 6.7 . 65

7 Reducing query complexity 75

A Black-Box ZK Implies ZK with Auxiliary Inputs for IOPs 85

B Related Works 86

3

1 Introduction

In this work we design short zero-knowledge Interactive Oracle Proofs (IOPs), whose length ap-
proaches the witness length. Before describing our results, we first give some background on zero-
knowledge IOPs, and the special case of (zero-knowledge) probabilistically-checkable proofs.

PCPs. Probabilistically Checkable Proofs (PCPs) allow a probabilistic verifier V with oracle ac-
cess to a purported proof π to verify claims of the form “x ∈ L” while making only a few queries
to π. The celebrated PCP theorem [ALM+92, AS92] asserts that any non-deterministic language in
NTIME(N) has a PCP that can be verified with O(1) queries to a poly(N)-length proof. Since their
introduction, PCPs have found far-reaching applications, most notably to hardness of approxi-
mation, and to constructions of succinct arguments [Kil92, Mic00], namely highly-efficient proof
systems in which the communication is sublinear in N , but soundness only holds against efficient
malicious provers.

Over the last decades, there has been a large body of work attempting to reduce the length of
PCPs, which was initially a very large polynomial. In particular, an influential line of work has
led to constant-query PCPs of quasi-linear length Õ(N) for languages in NTIME(N) [BGH+05,
Din07]. Despite this progress, determining the minimal length of constant-query PCPs, and in
particular obtaining linear length PCPs, is still an important goal. Since this goal depends on
the computational model – because transitions between different computational models typically
incur poly-logarithmic overheads – the focus is usually on a specific NP language of interest, such
as circuit SAT or related variants. While constant-query and linear-length PCPs are currently not
known for such languages, more recently [BKK+16] constructed O(n)-length PCPs for circuit SAT
over size-n circuits, albeit with a large query complexity on the order of nϵ (for an arbitrarily small
ϵ > 0).

In what follows, for a non-deterministic language L, we use n,m,N to denote the input length,
witness length, and non-deterministic verification time of L, respectively.

Zero-knowledge PCPs. Zero-Knowledge PCPs (ZK-PCPs) [KPT97], introduced soon after the
works of [AS92, ALM+92], are PCPs in which the proof is randomized, and has an additional zero-
knowledge (ZK) guarantee. Specifically, any (possibly malicious and computationally-unbounded)
verifier that is t-restricted – namely, can only query t proof bits, for an a-priori fixed bound t –
learns only the validity of the claim, i.e., that x ∈ L. This is formalized in the simulation-based
paradigm by requiring that for any such t-restricted verifier there exists a Probabilistic Polynomial
Time (PPT) simulator that is given only the input x, but does not have access to the proof or the NP
witness, and can simulate the view of the verifier, consisting of her input and answers to her oracle
queries. One motivation for the study of ZK-PCPs is that they can be used to construct succinct
arguments that are also ZK in the sense that a computationally-bounded verifier learns nothing
except the validity of the claim, and which use the underlying cryptographic building block (e.g.,
a collision-resistent hash function) as a black-box.

However, despite over two decades of research, ZK-PCP constructions are still far from match-
ing the efficiency of non-ZK PCPs, requiring for example a large polynomial proof length [KPT97,
IW14, IWY16], large query complexity [IKOS07, HVW21], exponential prover running time [GOS24],
adaptive honest verification [KPT97, IW14], or only guaranteeing non-efficient ZK simulation [IWY16].
These ZK-PCPs are obtained via generic constructions employing cryptographic building blocks
such as locking schemes [KPT97, IW14], secure multi-party computation protocols [IKOS07, HVW21],
and leakage-resilient circuits [IWY16]. Consequently, unlike standard PCPs, known ZK-PCPs do

1

not posses any “nice” algebraic structure (even when the generic construction is based on a non-
ZK PCP that does have such structure [KPT97, IW14, IWY16]). One notable exception is the recent
independent work of [GOS24] whose ZK-IOPs for #P cleverly achieve ZK while preserving the al-
gebraic structure of the underlying (non-ZK) PCP. However, the prover in their construction runs
in exponential time, and it is not clear if (and how) their results can be scaled-down to NP.

IOPs. Interactive Oracle Proofs (IOPs) [BCS16, RRR17] were recently introduced as a generaliza-
tion of the PCP model that combines also aspects of Interactive Proofs (IPs) [GMR85].1 In an IOP
system, the verifier V interacts with a prover P (similar to IPs), and has oracle access to the prover
messages (as in a PCP). The study of IOPs – which has seen rapid progress in the few years since
its inception – is motivated from both theoretical and practical perspectives.

From a theoretical perspective, a recent sequence of works resulted in IOPs whose efficiency
exceeds their PCP counterparts, as well as IOP constructions in parameter regimes that are widely
believed to be impossible in the PCP setting. For example, [BCG+17a] constructed constant-query
IOPs for circuit SAT whose length (i.e., total communication) is linear in the circuit size n, improv-
ing on the nϵ-query linear-length PCP of [BKK+16]. Moreover, while if NP ⊆ coNP/poly then there
do not exist PCPs whose length is a fixed polynomial in the length m of the NP witness [FS11],
such IOPs – of length poly(m) – exist for a large class of NP languages [KR08].

Furthermore, in a more recent work [RR20], Ron-Zewi and Rothblum obtained IOPs that im-
prove on both aforementioned constructions. Specifically, they obtained constant-query IOPs for
circuit SAT of length approaching the circuit size n (i.e., (1 + γ) · n for an arbitrarily small constant
γ > 0), improving on the IOPs of [BCG+17a] which obtained length c · n for a large unspecified
constant c > 1. Moreover, for a large class of NP languages (specifically, languages that can be
verified in polynomial time and bounded polynomial space) they managed to obtain proof length
approaching the witness length m. The technical core of the construction of [RR20] was a new code
switching technique (inspired by [Mei13]) that allows one to trade less efficient polynomial codes,
commonly used in such proof systems, with more efficient tensor codes. This technique was later
used in follow up works to obtain IOPs with linear-time provers [BCG20, RR22].

From a practical perspective, IOPs lie at the core of state-of-the-art succinct argument sys-
tems, and their improved efficiency (compared to PCPs) has been leveraged in several recent
works [BBHR18, BCR+19, BBHR19, BGKS20, Set20, GLS+23, XZS22], including practical imple-
mentations [BCR+19, Set20, GLS+23, XZS22].

Zero-knowledge IOPs. Zero-Knowledge IOPs (ZK-IOPs) [BCGV16, BCF+16] generalize stan-
dard IOPs to the ZK setting, analogously to how ZK-PCPs generalize standard PCPs. Similarly to
ZK-PCPs, ZK-IOPs can also be used to design and implement succinct black-box ZK arguments.

A large body of works have studied different aspects of ZK-IOPs, leading to ZK-IOP construc-
tions that significantly improve over the best ZK-PCP constructions to date.2 In more detail, this
line of work was initiated by Ben-Sasson et al. [BCGV16, BCF+17] who constructed a 2-round ZK-
IOP for NTIME(N) with quasi-linear length Õ(N) (and logarithmic query complexity). Follow-up

1Special cases of IOPs were considered earlier, in the Interactive PCP (IPCP) model of Kalai and Raz [KR08], and the
duplex PCPs of Ben-Sasson et al. [BCGV16].

2We note that works on ZK-IOPs have considered different ZK guarantees – ranging from Honest-Verifier ZK
(HVZK) to ZK against t-restricted verifiers for an arbitrary t – while attempting to optimize various efficiency measures.
In this overview, we focus on constructions with full-fledged ZK and short proof lengths, which are most relevant to
our work. See Section B for a more detailed discussion.

2

work focused on the Rank-1 Constraint Satisfaction (R1CS) problem,3 and obtained ZK-IOPs with
either linear length O(n) (and logarithmic query complexity) [BCR+19], or linear-time provers in
the arithmetic circuit model)over a large, super-constant, sized field) [BCL22]. Unlike the afore-
mentioned ZK-PCP constructions, these ZK-IOP constructions utilized zero-knowledge variants
of standard PCP techniques such as arithmetization, error-correcting codes, and the sumcheck
protocol [LFKN92].

1.1 Our Results

Despite the impressive progress described above, prior to this work there was still a gap between
short ZK- and non-ZK IOPs, even when restricting to the setting of honest-verifier ZK. Specifi-
cally, while for natural NP languages, IOPs whose length approaches the witness length were
known [RR20], such ZK-IOPs (and even HVZK-IOPs) were not known, and constructing them
was posed in [BCL22] as an interesting question for future research.

In this work, we answer this question affirmatively by constructing ZK-IOPs approaching the
witness length for the natural NP language of 3SAT, i.e., the language consisting of satisfiable
3CNFs. The natural NP witness for this language is the satisfying assignment w ∈ {0, 1}m, where
m denotes the number of variables, and our main result gives a constant-round and constant-
query ZK-IOP for 3SAT whose length (i.e., total communication) approachesm. We chose to focus
in this work on the language of 3SAT because it is a basic and natural NP language. However,
we believe our techniques are general and versatile enough to apply also to other related NP lan-
guages, such as k-SAT for constant k > 3, circuit SAT, and R1CS.4

The properties of our ZK-IOP are summarized in the following theorem, where a t-ZK-IOP is
an IOP which is ZK against any (possibly malicious, adaptive and computationally unbounded)
t-restricted verifier.

Theorem 1.1 (ZK-IOPs approaching witness length– Informal, see Theorem 7.1). For any constant
γ > 0 there exists a constant β > 0, so that there exists a constant-round mβ-ZK-IOP for 3SAT on m
variables with constant soundness error, communication complexity (1 + γ) ·m, and constant query and
round complexities.

The above theorem is a direct generalization of the result of [RR20] which gave an IOP for 3SAT
(as well as a larger class of NP problems) with the same properties, but without the ZK guarantee.
Note that using known reductions from 3SAT to R1CS, the results of [BCR+19, BCL22] only give
ZK-IOPs for 3SAT whose length is linear in the input length n, which may be as large as m3 (since
a 3CNF over m variables may have Ω(m3) different clauses).5

Though this is not the main focus of our work, our IOPs also achieve decent running times for
the prover and the verifier. Specifically, the verifier runs in sublinear time, on the order of mϵ for
an arbitrarily small constant ϵ > 0, after a poly(m)-time local preprocessing step; And the prover

3In the R1CS problem, the input consists of matrices A, B and C and a vector x, and the question is whether there
exists a vector z such that (Ax′) ⋆ (Bx′) = Cx′, where ⋆ represents pointwise multiplication, and x′ = (x, z). This
problem is known to admit a linear-time reduction from circuit satisfiability.

4We note that since we care about very small factors in the proof length, our results do not immediately apply to
these problems because standard NP reductions between these problems typically incur large constant overheads in
the witness length (indeed, even for the language of circuit SAT, making certain structural choices such as changing the
allowed logical gates or the fan-in may incur large constant overheads in the circuit size).

5While it is plausible that the techniques of [BCR+19, BCL22] could be used to give ZK-IOPs for 3SAT that are
linear in the witness length m, they don’t seem to provide ZK-IOPs approaching the witness length for any natural NP
languages such as R1CS, 3SAT, or circuit SAT; Indeed, obtaining such ZK-IOPs approaching the witness length was
posed as an interesting question for future research in [BCL22, page 11].

3

runs in polynomial time, given the witness, and a generator matrix for a certain code sampled at
random, see Theorem 7.1.6

Our ZK-IOPs are obtained by combining the code switching technique of [RR20] with new
zero-knowledge ingredients. Specifically, our ZK-IOPs rely on new strong zero-knowledge prop-
erties for general tensor codes, as well as a new zero-knowledge sumcheck protocol for general
tensor codes with sublinear communication. Given the ubiquity of tensor codes and the sumcheck
protocol in IOP constructions, we believe that these new zero-knowledge ingredients may be of
independent interest, and may serve as building blocks in future IOP constructions. Next we
describe these building blocks, our new constructions and how we use them to obtain our Main
Theorem 1.1.

2 Technical Overview and Additional Results

In this section, we provide an overview of our ZK-IOP approaching the witness length, and the
main new ingredients used to obtain it. Towards this, we first describe in Sections 2.1 and 2.2
below the main new ingredients used in the design of our ZK-IOP, which are new strong zero-
knowledge properties of tensor codes, and a zero-knowledge sumcheck protocol for general tensor
codes with sublinear communication. Then in Section 2.3 we explain how these new ingredients
can be used to obtain our ZK-IOP approaching the witness length, and how to solve some addi-
tional challenges that arise in the design of these IOPs. Finally, in Section 2.4 we highlight some
interesting directions for future research, based on our new ingredients.

2.1 Zero-Knowledge Properties of Tensor Codes

Our first main ingredient is establishing new strong zero-knowledge properties of tensor codes.
These properties extend recent results on zero-knowledge properties of tensor codes [BCL22], and
answer some open questions posed there. Before stating our results, we first give some back-
ground on zero-knowledge codes and tensor codes, and their importance in IOP design.

Zero-Knowledge Codes and Their Uses in IOP Constructions. Many (ZK-)IOP constructions
follow a similar template to PCP constructions, in which the witness (or the entire computation)
is encoded using an error-correcting code. At a high-level, the encoding typically serves two or-
thogonal purposes. First, it enables verification by exploiting a built-in mechanism of the code
that assists verification (e.g., supporting the sumcheck protocol, see Section 2.2 below for more de-
tails). Second, to guarantee zero-knowledge, the encoding is replaced with a randomized encoding
that is zero-knowledge in the sense that even malicious adversaries that query many codeword sym-
bols learn nothing about the encoded message. We say that a code is t-zero-knowledge (t-ZK) if it
is ZK (in the simulation-based paradigm) against malicious adversaries that can query at most t
codeword symbols.

Verification of the IOP usually also requires checking that the prover sent a valid witness en-
coding. For this, the code is taken to be locally testable, which informally means that there exists a
randomized oracle algorithm that can determine whether a given word w is a valid codeword, or
rather far from any codeword, by making few queries to w. We say that a code is q-locally testable
(q-LTC) if there exists such an algorithm (called a local tester) that makes at most q queries to w.
Naturally, it is desirable that the ZK parameter of a code would be significantly larger than the

6We note that the sampling of the generator matrix can be handled by, e.g., allowing non-uniform provers, see
Remark 6.2 for more details.

4

query complexity of the local tester, i.e., t≫ q, since even the honest verifier must at the very least
make q queries to the purported codeword. Being slightly informal, in this overview, we refer to
a code that is t-ZK and q-LTC for t≫ q as a ZK-LTC.

Tensor Codes. Traditionally, PCP constructions used polynomial-based codes such as the Low-
Degree Extension (LDE). Indeed, these codes are long-known to be locally testable [RS96], and to
also admit an efficient sumcheck protocol [LFKN92]. These codes are also known to be ZK, and
they in fact satisfy a stronger ZK property called t-uniform ZK which roughly states that any t
symbols in a random encoding of the witness are uniformly random. (This should be contrasted
with standard t-ZK, which only guarantees that the queried codeword symbols can be efficiently
simulated without knowing the encoded message.)

The LDE encoding can be viewed as a special case of tensor codes, which we now define. Let
C1 : Fk1 → Fn1 , C2 : Fk2 → Fn2 be linear codes (i.e., C1 and C2 are linear maps over a finite
field F). Then the tensor (product) code C1 ⊗ C2 is a code whose codewords are n1 × n2 matrices
with the constraint that each column is a codeword of C1 and each row is a codeword of C2. The
definition naturally extends to higher dimensions by viewing codewords in the d-dimensional
tensor (C0)

⊗d of a base code C0 as d-dimensional cubes, so that the restriction to any axis-parallel
line is a codeword of C0. Using this terminology, the LDE code corresponds to the special case of
C0 being the Reed-Solomon (RS) code.

A recent line of work, starting with [Mei13, RR20], has shown that in fact the LDE encoding
can be replaced with more general tensor codes. Indeed, tensor codes admit the sumcheck pro-
tocol [Mei13], are locally testable [BS06, Vid15], and also have certain ZK properties [ISVW13,
BCL22]. Moreover, as utilized in a recent series of works, tensor codes have several advantages
over polynomial-based codes, such as achieving higher rate (i.e., shorter encoding length), smaller
alphabet, or linear-time encoding, by picking a base code satisfying these properties.

Our Results. In a recent work, Bootle et al. [BCL22] define a “natural” randomized encoding
function for linear codes and their tensors (See Definitions 3.18 and 3.30), and show that the (uni-
form) ZK of any pair of linear codes is preserved under tensor products with respect to this ran-
domized encoding function. More accurately, they show that if C1, C2 have t1- and t2-ZK (t1- and
t2-uniform ZK, resp.), then C1 ⊗ C2 has min{t1, t2}-ZK (min{t1, t2}-uniform ZK, resp.). On the
negative side, they show an example of codes C1, C2 that have t1- and t2-uniform ZK, but C1⊗C2

does not have max{t1, t2}-uniform ZK, and pose the question of whether C1⊗C2 can have a larger
ZK-threshold (such as max{t1, t2} or even t1 · t2) for (standard, i.e., non-uniform) ZK [BCL20, Page
19].

We provide several extensions of the results of [BCL22]. These extensions answer the question
posed in [BCL22], and also imply ZK local testing procedures for tensor codes that will be useful
for obtaining our ZK-IOP of Theorem 1.1.

(1) Strong ZK properties of tensor codes. First, we strengthen the results of [BCL22] by showing
that if C1, C2 have t1- and t2-ZK, then C1⊗C2 has ZK against an adversary that reads t1 entire rows
or t2 entire columns. As a corollary, this implies that C1 ⊗ C2 has max{t1, t2}-(non-uniform)-ZK,
answering positively the open question posed in [BCL22].

We also extend the above result on ZK against row/column adversaries to adversaries that
query higher-dimensional axis-parallel subpaces in higher-dimensional tensors (C0)

⊗d. Since the
local tester for tensor codes queries a random axis-parallel subspace [BS06, Vid15], this implies as

5

a corollary that if C0 has 1-ZK, then its tensor product (C0)
⊗d has a local testing procedure that

has ZK against the honest tester.

Remark 2.1 (Connection to Secret Sharing). The fact that, for an appropriate ZK parameter, ZK holds
against adversaries reading full rows or full columns is well known for the special case of 2-dimensional
tensors of RS, which are used to design secret sharing schemes (under the name “bivariate Shamir”). More-
over, originating in [BGW88], this property of 2-dimensional tensors of RS was used extensively to de-
sign verifiable secret sharing schemes and secure multi-party computation protocols. The special case of
2-dimensional tensors of general linear codes was used in [CDM00] to design verifiable secret sharing
and secure multiparty computation protocols.

(2) Limitations on the ZK threshold of tensor codes. Second, we show an example of a code C0

that has t-uniform ZK, but C0 ⊗ C0 does not have ω(t)-(non-uniform) ZK. This answers negatively
the open question posed in [BCL22], by showing that C1 ⊗ C2 does not necessarily have (t1 · t2)-
(non-uniform)-ZK, even if C1 and C2 have t1- and t2-uniform ZK. This also implies that even if
C0 has a high zero-knowledge threshold, then (C0)

⊗d is not necessarily a ZK-LTC with respect to
the aforementioned standard local tester which queries a random axis-parallel subspace. That is,
the query complexity of this local tester may not be significantly smaller then the zero-knowledge
threshold, meaning the local testing procedure is not ZK for a large class of malicious testers. 7

To overcome the above limitation, we show that the tensor product of codes with uniform-
ZK has (standard) ZK against adaptive row/column adversaries. Specifically, we prove that if
C1, C2 have t1- and t2-uniform ZK, then the tensor product C1 ⊗ C2 is ZK against adversaries
that first make t ≤ min{t1, t2} point queries, and only then adaptively decide whether to read
t1 − t entire rows or t2 − t entire columns. As before, this result extends to higher-dimensional
axis-parallel subspaces in higher-dimensional tensors. This property of codes with uniform-ZK is
useful, because we show that it implies as a corollary that if C0 has t-uniform ZK, then there exists
a 2-round constant query ZK-IOP – with ZK against (t−1)-restricted malicious verifiers – for testing
membership in the tensor product (C0)

⊗d. 8

At a high level, the ZK-IOP verifier first executes the local tester for the tensor product, but
instead of making the queries, the verifier sends the query set to the prover, and then both parties
run a short constant-query PCPP to verify that the tester would have accepted on this query set.
These ZK-IOPs for membership testing can be viewed as a relaxation of ZK-LTCs, where the latter
correspond to the special case where there is no communication.

Proof Overview. In [BCL22], the ZK properties of tensor codes were shown using an algebraic
characterization of linear codes having ZK against point queries, based on the generator matrix
of the code and the distance of the dual code. We instead take an algorithmic / simulation-based
approach that exploits the structure and symmetry properties of tensor codes to directly design
simulators for these stronger ZK properties.

7Our negative result should be constructed with a result of [ISVW13], who showed that there exists a randomized
encoding function for tensor codes - not necessarily the natural one considered in [BCL22] – so that for any linear base
code C0 : Fk → Fn, C0 ⊗ C0 has Ω(n2)-ZK with respect to this encoding function. This implies in turn that for any
base code C0, there exists a randomized encoding function with respect to which its tensor product (C0)

⊗d is a ZK-LTC.
However, this randomized encoding function does not suffice for our purposes since it is non-explicit, and we need the
special structure of the randomized encoding function of [BCL22].

8In more detail, in the ZK-IOP the verifier first executes the local tester for the tensor product, but instead of making
the queries, the verifier sends the query set to the prover, and then both parties run a short constant-query PCPP to
verify that the tester would have accepted on this query set.

6

To show the negative result, we take the code C0 to be the punctured Reed-Solomon code PRS :
Fk → Fn, defined as follows. Let I ⊆ F be a fixed subset of field elements of size |I| = k. Given
a message m ∈ Fk, let fm(X) be the (unique) univariate polynomial of degree at most k − 1 over
F which satisfies that fm(i) = m(i) for any i ∈ I . The encoding of m is the evaluation table of
fm(X) on F \ I . It follows by definition, that in the tensor product PRS ⊗ PRS : Fk×k → Fn×n,
the message can be viewed as the evaluation table over I × I of a bivariate polynomial g(X,Y) of
individual degree at most k − 1 over F, while the codeword corresponds to the evaluation table of
g(X,Y) over (F \ I)× (F \ I).

The uniform-ZK property of the PRS code follows by the MDS property of this code which
states that the value of any k entries in the codeword determines the codeword (and the encoded
message). Our limitation result upper-bounding the ZK threshold of PRS⊗ PRS relies on the local
decodability property of bivariate polynomials. Specifically, while our results above show that the
tensor product PRS ⊗ PRS has ZK against an adversary that queries axis-parallel lines, it is not
ZK against lines in arbitrary directions! In particular, querying the line (i, i) for i ∈ F \ I reveals
the value of the bivariate polynomial on all points (i, i) for i ∈ F, which correspond to message
entries.

2.2 A Zero-knowledge Sumcheck Protocol with Sublinear Communication

The second main building block in our ZK-IOPs approaching the witness length is a zero-knowledge
sumcheck protocol with sublinear communication.

In the following, let C : Fk → Fn be an error-correcting code encoding length-k messages m
into length-n codewords C(m). The sumcheck protocol is an interactive proof that allows the veri-
fier to check the validity of claims of the form “

∑
i∈[k]m(i) = α” for some value α ∈ F, given

oracle access to the encoding c = C(m) of m. Such a protocol was initially shown for polynomial-
based codes (such as LDE) in [LFKN92], and was more recently extended to general tensor codes
in [Mei13]. Quite amazingly, these protocols allow the verifier to check the validity of the claim
“
∑

i∈[k]m(i) = α” by making only a single query to c, and with total communication that is sub-
linear in the codeword length n. As mentioned above, the sumcheck protocol is typically used
to verify claims about correctness of the encoded computation. Ron-Zewi and Rothblum [RR20]
(following Meir [Mei13]) used the sumcheck protocol also as the basis for their code switching tech-
nique.9

To obtain our ZK-IOP approaching the witness length we require a zero-knowledge version of
the sumcheck protocol described above in which, roughly speaking, any t-restricted verifier V∗
learns only few physical symbols of c, in addition to the correctness of the sumcheck claim. In prior
works [BCGV16, BCF+17, BCG+17a, BCR+19, CHM+20] this property was achieved by executing
the (non-ZK) sumcheck protocol on a random shift of the original codeword. More precisely, to test
whether

∑
i∈[k]m(i) = α, given oracle access to c, the sumcheck protocol is executed on a shifted

codeword of the form c′ := R + γ · c, where R is a random codeword provided by the prover as
an oracle, and γ is a random scalar provided by the verifier after she receives the oracle R (the
verifier also needs to locally test R to make sure it is close to a valid codeword of C).

While the above method leads to a ZK sumcheck protocol which uses the underlying (non-ZK)
sumcheck protocol as a black box, the communication becomes linear in the codeword length be-
cause of the need to send the random codeword R. Jumping ahead, applying this method in our
ZK-IOP for 3SAT with c being the encoded witness, will double the communication, and in partic-

9We note that the code switching technique actually requires an extension of the sumcheck protocol, in which the
goal is to verify claims of the form “

∑
i∈[k] λ(i) ·m(i) = α”, where the coefficients λ(i) have a certain tensor structure.

7

ular will not lead to a total communication which approaches the witness length. We remark that
sublinear-communication sumcheck protocols are known for the special case of (certain families of)
polynomial codes. Specifically, by exploiting special properties of these codes, Xie et al. [XZZ+19]
design such a protocol based on the GKR protocol [GKR15], while Bootle et al. [BCL22] design
such a protocol for sparse polynomial codes. However, these protocols do not seem to immedi-
ately apply to the setting of general tensor codes, and thus do not suffices for our purposes.

Our Results. We a design new sumcheck protocol with sublinear communication. We do so by
exploiting the structure of Meir’s protocol for general tensor codes [Mei13], instead of executing
it as a black box on a masked codeword. This in turn leads to a protocol with sublinear commu-
nication, albeit with weaker ZK guarantees that we discuss below. In a nutshell, while in our
sumcheck protocol V∗ potentially learns more symbols of c compared to prior work, we show that
this subset of symbols is highly structured. Importantly, these weaker ZK guarantees suffice for
our purposes, given the stronger ZK properties of tensor codes (discussed in the previous section)
that we are able to show. Our sumcheck protocol obtains two different flavors of zero-knowledge,
depending on the properties of the underlying base code of the tensor product. Next we discuss
these two guarantees.

(1) General LTC Base Codes. First, we show that if C0 is an arbitrary q-LTC, then the view of
any (possibly malicious and unbounded) t-restricted verifier V∗ in our sumcheck protocol for
the tensor product C := (C0)

⊗d can be perfectly simulated given only (t + q + 1) "rows" of
the given codeword c ∈ (C0)

⊗d, when viewed as a codeword in the two-dimensional tensor
C0 ⊗ (C0)

⊗(d−1) = (C0)
⊗d, namely given codewords in (C0)

⊗(d−1).

Theorem 2.2 (Sublinear-Communication ZK Sumcheck – Informal, see Theorem 5.2). For any con-
stant integer d > 1 and a q-LTC C0 : Fk → Fn, there exists a constant round IOP with constant soundness
error and communication complexityO(n) for verifying a sumcheck of (C0)

⊗d, with the following ZK guar-
antee: There exists a black-box straight-line PPT simulator Sim that can perfectly simulate the view of any
t-restricted verifier, given t+ q+1 rows of c ∈ (C0)⊗ (C0)

⊗d−1 of Sim’s choice. The verifier makes a single
query to the given codeword c and O(1) queries to the first prover’s message, and reads the other prover
messages in full.

Remark 2.3. We note that the protocol given in the above theorem also applies for verifying sums of the form
“
∑

i∈[k] λ(i) ·m(i) = α”, where the coefficients λ(i) have a certain tensor structure. As shown in [RR20],
such a generalized form of sumcheck implies a code switching protocol, in which one can simulate queries
to a codeword C(m) in a tensor code C by making a constant number of queries to the encoding C ′(m) of m
via another (unrelated) tensor code C ′. Thus, the above theorem also gives a sublinear-communication ZK
protocol for code switching.

Notice that the communication complexity of the sumcheck protocol given in the above theo-
rem is indeed sublinear in the codeword length of C = (C0)

⊗d, which is nd. We note that while the
simulator in the above theorem makes q more queries then the verifier, we show that by increasing
the honest verifier’s query complexity to q (instead of constant), we can design a simulator that
only makes t+1 row queries (see Remark 5.5). Instantiating the above Theorem 2.2 with a code C0

that is a ZK-LTC (specifically, a q-LTC that has (t+ q+1)-ZK), gives a (distributional)10 sumcheck

10Roughly, distributional ZK guarantees that for any t-restricted verifier V∗, and for any message m, the view of V∗

when given oracle access to a random encoding c of m can be efficiently and perfectly simulated without access to c (see
Definition 3.23).

8

protocol with full-fledged ZK against t-restricted verifiers (that is, V∗ learns nothing about c except
the sum α, see Corollary 5.10).

(2) Tensor Base Codes. Unfortunately, Theorem 2.2 does not lead to a sumcheck protocol with
full-fledged ZK when instantiated with a base code C0 that is not a ZK-LTC (i.e., in which the
query complexity of the local tester is not sufficiently smaller than the ZK threshold). In particular,
it does not provide a meaningful ZK guarantee for tensors of PRS, which are ubiquitous in ZK-
IOP/PCP design, and are also used in this work. To overcome this issue, we consider the case that
the base code C0 is itself a low-dimensional tensor product of another code B, say C0 = B⊗3,11

and show that for such codes the information leakage in our sumcheck protocol can be reduced.
Specifically, we show that in this case the view of any t-restricted verifier can be simulated by
a PPT simulator that first makes t′ ≤ t point queries, and then queries (t + 2 − t′) axis-parallel
hyperplanes in a certain direction from the codeword c, when viewed as a codeword in the tensor
product B⊗(3d) = (C0)

⊗d (the direction of the hyperplanes is chosen by the malicious verifier after
making the point queries; See Theorem 5.2 for a formal statement).

As we have shown in Section 2.1 above, tensor products of uniform ZK codes have ZK against
this type of queries, and consequently instantiating the above variant of our sumcheck proto-
col with a code C0 = B⊗3 for a t-uniform ZK code B (though not necessarily a ZK-LTC) gives
full-fledged ZK against (t − 2)-restricted verifiers. Jumping ahead, this variant of our sumcheck
protocol will be crucial for our ZK-IOP approaching the witness length, since the ZK-IOP includes
executing a sumcheck protocol on a tensor of PRS which has uniform-ZK but is not a ZK-LTC.

Proof Overview. Both our results (for LTC/tensor base codes C0) are obtained by utilizing the
tensor structure of C. Specifically, our main observation is that masking with a random codeword
in the base code C0 suffices to hide c. For the sake of this overview, assume for simplicity that d = 2,
i.e., our goal is to design a sumcheck protocol for the codeC := C0⊗C0. In our protocol, the prover
P samples a random r ← Fk, and setsR = C(r̄) ∈ Fn×n, where r̄ ∈ Fk×k denotes the matrix whose
first column is r, and all other entries are 0. A crucial point is that every entry R(i, j) of R can be
computed given a single entry in r̂ := C0(r) ∈ Fn. Therefore, P need not send R (whose length is
n2) to the verifier V - it suffices to only send r̂ (whose length is n, which is in particular sublinear in
the codeword length n2 of C). The protocol then roughly proceeds as before: P sends r̂ = C0(r),
and the parties execute the sumcheck protocol on the codeword c′ := R+γ ·c, where γ is a random
scalar provided by the verifier after she receives the oracle r̂.

However, one additional point that needs to be handled is that a malicious prover may send
a malformed r̂ which is not a C0-codeword. V therefore needs to check that r̂ is a codeword of
C0. Notice that to do so while preserving ZK of the sumcheck protocol, we need the base code C0

to be locally testable. Indeed, since r̂ is used to mask c then, intuitively, ZK requires that r̂ remain
(mostly) hidden. IfC0 isn’t locally testable, checking that r̂ ∈ C0 would require fully reading r̂, but
then it would not mask c at all because V would fully know r̂. Furthermore, to get constant query
complexity (independent of the query complexity of C0), we add an additional round in which V
executes the local tester, but instead of making the queries herself, she sends the query set to P ,
who responds with the answers v to the queries. V then checks that v is an accepting view of the
tester, and that it is consistent with r̂ (by making a single query to r̂).

It is important to note that since the base code C0 has no ZK guarantees, we cannot hope to
claim that V∗ learns nothing about m (except the sum α). Indeed, even a single query to c can reveal

11We use 3-dimensional tensor products because this is the smallest dimension for which the tensor product is known
to be locally testable [BS06, Vid15].

9

non-trivial information (in particular, linear dependencies) on m. Therefore, following previous
works on ZK sumcheck, we aim to quantify the amount (and type) of information which V∗ learns
during the sumcheck protocol – from the prover messages, and her queries to c and r̂. While
each of the t queries made to c and r̂ can be simulated by making just a single point query to c,
to consistently simulate P’s later messages conditioned on these values, our simulator needs to
obtain the whole row for each of these queries to c, r̂. Our simulator makes q additional queries
to c to simulate v during the local testing step described in the previous paragraph. This explains
the structure and number of queries made by the simulator of Theorem 2.2.

For the special case that C0 = B⊗3 for some code B, we use the standard local tester for tensor
codes – which queries a random axis-parallel two-dimensional plane [BS06, Vid15] – to test mem-
bership in C0 = B⊗3. In this case, the verifier queries during local testing are highly structured,
which assist the simulation. Specifically, v can be simulated by querying a single hyperplane of c,
when viewed as a codeword in B⊗3 = C⊗60 , instead of making q queries to c. More accurately,
the simulator needs access to a stronger oracle which allows the adversary (the simulator, in this
case) to first make point queries to c, and then adaptively pick the direction of the hyperplanes.
(Indeed, the honest local tester picks an axis-parallel two-dimensional plane in a random direction,
that is not known in advance. Consequently, even the honest verifier picks the direction adaptively,
and a malicious verifier can additionally pick it arbitrarily.) This reduces the total number of row
queries to t+ 2.

2.3 ZK-IOPs Approaching the Witness Length

In this section, we outline how we obtain our ZK-IOPs approaching the witness length, by combin-
ing our new sublinear-communication ZK sumcheck protocol for tensor codes from the previous
section, with our results on strong ZK properties for tensor codes discussed in Section 2.1. To this
end, we first give an overview of the IOPs approaching the witness length of Ron-Zewi and Roth-
blum [RR22], and then discuss how our new ingredients can be used to add a zero-knowledge
guarantee to this protocol. Finally, we highlight some additional challenges that arise in the de-
sign of our IOP.

IOPs for 3SAT. A main idea in PCP/IOP design – which goes back to the first PCP construc-
tions [BFL91, BFLS91, Sud00, AS98, ALM+98], and was also used in many later PCPs and IOPs
– is to encode formulas using low-degree polynomials (a.k.a, arithmetization). At a high level,
a 3CNF formula φ over m variables, with a satisfying assignment w ∈ {0, 1}m, can be encoded
using a single low-degree polynomial over a finite field F of size |F| ≫ logm. This is done by first
encoding w using a tensor of the Reed-Solomon code (i.e., the LDE encoding), where the encoding
ŵ of w is the unique s-variate polynomial of individual degree h (for appropriate s, h) such that
ŵ(i) = wi for every i ∈ {0, 1}log(m) ≡ [m]. The prover’s goal is now to convince the verifier
that ŵ is an LDE of a satisfying assignment for φ. By exploiting the algebraic structure of the LDE
encoding, this check can be carried out using the sumcheck protocol. More specifically, as pointed
out in [RR20], the sumcheck protocol can be viewed as an interactive reduction that (roughly) al-
lows a verifier interacting with a prover to reduce a claim of the form “w satisfies φ” to claims
“ŵ(ij) = vj , j = 1, 2, 3” for random and independent i1, i2, i3. Thus, combining the LDE encoding
with the sumcheck protocol results in the following blueprint for an IOP (P,V) for 3SAT:

1. P computes the LDE ŵ of w, and sends it to V .

10

2. V checks that ŵ is indeed (close to) the LDE of some assignment to the variables of φ, and
otherwise rejects. (This requires local testability, which the LDE has through a low-degree
test [RS96].)

3. The prover and verifier engage in the sumcheck protocol to reduce the claim “w satisfies φ”
to the claims “ŵ(ij) = vj , j = 1, 2, 3” for random and independent i1, i2, i3.

4. V reads ŵ(i1), ŵ(i2), ŵ(i3) and accepts if and only if ŵ(ij) = vj for every j ∈ {1, 2, 3}.

IOPs approaching the witness length. The IOP approaching the witness length of [RR20] com-
bines the blueprint described above with a new technique called code switching which they intro-
duce (inspired by [Mei13]).12 More specifically, the goal of [RR20] was to design IOPs whose total
communication approaches the witness length m. Therefore, they could not afford to send the
entire LDE encoding ŵ for two main reasons. First, Reed-Solomon codes, and consequently also
the LDE encoding, are defined over (large) super-constant alphabet size. Consequently, encoding
the binary assignment w using the LDE encoding will incur a super-constant overhead which cannot
lead to linear-length IOPs, let alone ones approaching the witness length. Second, even ignoring
the alphabet-size issue, as pointed out in [Mei13, Mei14], the encoding requires a multiplication
property which facilitates checking non-linear relations, and this property inherently requires rate
at most 1

2 [Ran13]. (In particular, the encoding will at least double the length, and consequently will
not result in a proof approaching the witness length.)

Instead, they showed how to carry out the blueprint above using an encoding of the witness
w in any binary tensor code C of high-rate, instead of the LDE encoding. More specifically, Ron-
Zewi and Rothblum replace the LDE encoding in Step 1 of the blueprint above with the encoding
C(w) of w, and replace the low-degree test executed in Step 2 with a local test for C (using the fact
that tensor codes are locally testable [BS06, Vid15]). Then, they execute the sumcheck of Step 3.
(Crucially, this can be done even though V does not have access to ŵ.) Finally, to perform Step 4,
P sends v1, v2, v3 to V (recall that V does not have ŵ and therefore cannot query these values
herself). The parties now need to engage in an interaction which will prove to V that P sent the
correct values ŵ(i1), ŵ(i2), ŵ(i3). [RR20] show that checking each claim “ŵ(ij) = vj” reduces to
running (a variant of) the sumcheck protocol on C(w).13

In summary, at a high-level the verifier in the IOP of [RR20] performs a local test on the high-
rate encoding C(w) of the witness, then engages in four executions of (variants of) the sumcheck
protocol. This blueprint is described in Figure 1.

Our ZK-IOPs approaching the witness length. Recall that in a t-ZK-IOP, a (possibly malicious)
verifier V∗ that makes up to t queries to her oracles should learn nothing about the satisfying
assignmentw. Considering the blueprint of [RR20]’s IOP, V∗ potentially obtains information about
w from: (1) querying C(w); and (2) messages which P sends in the executions of the sumcheck
protocols on ŵ and C(w). We note that while we can easily overcome (1) by taking C to be a
ZK code, and we can similarly prevent information leakage in (2) by using a sumcheck ZK-IOP,
existing constructions of sumcheck ZK-IOPs (discussed in Section 2.2 above) either do not have

12As mentioned above, the IOPs of [RR20] are for the much larger class of NP relations for which membership can be
decided in polynomial time and bounded polynomial space; however, we only describe here their IOPs for 3SAT.

13More accurately, they show that this reduces to executing a generalized version of the sumcheck protocol on C(w),
for verifying sums of the form

∑
i λ(i) · w(i) = α, where the coefficients λ(i) have a certain tensor structure. In this

overview, we mostly ignore this fact. This will not affect the rest of the overview since everything we describe for the
standard sumcheck protocol naturally extends also to the generalized version. See Section 5 for further details.

11

Blueprint of an IOP for 3SAT

The IOP is executed between a prover P that has input a 3CNF formula φ on m variables, and
a satisfying assignment w ∈ {0, 1}m for φ, and a verifier V that has input φ. The IOP uses a
high-rate binary tensor code C, and uses the sumcheck protocol as a sub-protocol.

1. P computes the high-rate encoding C(w) of w, and sends it to V .

2. V performs a local test to check that the purported codeword which P sent is close to C.

3. The prover and verifier engage in the sumcheck protocol to reduce the claim “w satisfies
φ” to claims “ŵ(ij) = vj”, j = 1, 2, 3 for random and independent i1, i2, i3.

4. P sends v1, v2, v3 to V , and for every j ∈ {1, 2, 3} the parties engage in a sumcheck protocol
over C(w) to check that ŵ(ij) = vj .

Figure 1: Blueprint of an IOP for 3SAT using Code Switching [RR20]

sublinear communication [BCGV16, BCF+17, BCG+17a, BCR+19, CHM+20], or are specialized for
polynomial codes [XZZ+19, BCL22]. The former cannot be used here because they would lead to
communication complexity of at least 2 |w| (because the prover also sends C(w) which has size
≥ |w|). The latter cannot be used because they do not readily extend to general tensor codes,
whereas we execute the sumcheck ZK-IOP on a binary tensor code C of high-rate which is not a
polynomial code.

Equipped with our results on sumcheck ZK-IOPs and on ZK codes from the previous sections,
our short ZK-IOP for 3SAT now follows along the lines of [RR20]’s IOP for 3SAT (Figure 1). More
specifically, in Step 1 the prover first generates a randomized encoding ŵ of w via a tensor product
of the PRS code (using the natural randomized encoding function for tensor codes). Then the
prover generates another encoding of w via a tensor product of a high-rate binary ZK-LTC (whose
existence is guaranteed by [ISVW13]), and only sends the latter encoding to the verifier. Then, in
Step 3 we use our specialized sumcheck ZK-IOP for tensor base codes. Finally, in Step 4 we use
our sumcheck ZK-IOP for general base codes.

Additional challenges in the design of our ZK-IOPs. Finally, we point out two additional chal-
lenges that arise in the above high-level approach.

(1) High-rate Encoding of Randomized Witness: The code switching technique of [RR20] relied
on the fact that any point on the low-degree extension ŵ is a linear combination

∑
i λ(i)w(i) of the

entries of w ∈ {0, 1}m, where the coefficients λ(i) have a certain tensor structure. As mentioned
above, the value of the sum

∑
i λ(i)w(i) can then be verified by executing (a scaled version of) the

sumcheck protocol on the encoding C(w) of the same w via another unrelated tensor code C.
In our ZK-IOP, ŵ is obtained by encoding w via a tensor product of the PRS code, using a

natural randomized encoding function for tensor codes [BCL22] (some form of randomization is
inherent to achieving ZK). To explain the issue that arises in the randomized setting, consider the
special case of 2-dimensional tensors, where we view the message w as a k×k matrix. The natural
randomized encoding function for tensor codes first extends w to a matrix w̄ of size k̄ × k̄ for
k̄ > k, by appending random and independent field elements in all entries outside of w, and then
ŵ is obtained by encoding w̄ deterministically using the tensor product of PRS codes. But now to
apply the code switching technique, the prover needs to provide the encoding C(w̄) of w̄ – whose

12

entries come from a large field – via the binary code C, which if done naively would cause a super-
constant blowup. (As mentioned above, choosing C to be a binary code is necessary to guarantee
short length in our ZK-IOP for 3SAT.)

To handle this, we choose the large field F to be an extension field of the binary field, and find
a novel way to map the message w̄ ∈ Fk̄×k̄ into a binary message w′ ∈ {0, 1}k′×k′ , for k′ not much
larger than k̄, and to map the tensor coefficients λ(i) into other tensor coefficients λ′(i) satisfying
the property that

∑
i λ(i)w̄(i) =

∑
i λ
′(i)w′(i). Consequently, the prover can provide the encoding

of the binary message w′ via the binary code C, and verifying the linear combination
∑

i λ(i)w̄(i)
reduces to executing the sumcheck protocol onC(w′) with tensor coefficients λ′(i). (See Lemma 6.5
and Claim 6.3 for the definition and properties of w′ and the coefficients λ′(i).)

(2) Proving ZK of the Combined IOP: Roughly, the ZK property of our sumcheck IOP for tensor
base codes guarantees that in Step 3, a (possibly malicious and unbounded) query-restricted ver-
ifier V∗ only learns few axis-parallel subspaces of the randomized LDE encoding ŵ. Since LDEs
have uniform ZK, this reveals no information (by our results from Section 2.1). Moreover, the ZK
property of our sumcheck IOP for general base codes guarantees that in Step 4, V∗ learns only few
rows of C(ŵ), which reveal no information since C is a tensor of a ZK code (and therefore has ZK
against row queries, by our results from Section 2.1). Slightly more accurately, a simulator Sim
for the combined system can emulate multiple executions of the simulator SimΣ for the sumcheck
IOP, using the simulators for C and the LDE to answer SimΣ’s (row/axis-parallel subspace) oracle
queries.

However, the actual proof is more intricate. Indeed, since the IOP for 3SAT described above
involves multiple sequential calls to the internal sumcheck IOPs, the formal ZK proof requires
arguing that ZK is preserved under this sequential composition. Moreover, the executions of
the sumcheck IOPs with a malicious verifier V∗ are in fact interleaved, because V∗ may access an
oracle message from an earlier sumcheck IOP execution in a later sumcheck IOP execution. Our
ZK-IOP for sumcheck of Section 2.2 possesses the stronger guarantee of black-box straight-line
simulation,14 so it might be tempting to use the black-box, straight-line nature of the simulator to
claim that ZK follows directly from [KLR06].

However, this implication is not immediate because: (1) [KLR06] require proving ZK with
auxiliary inputs; and (2) their result holds in the plain model (i.e., does not account for settings
– such as IOPs – in which parties have oracles). (1) can be handled by showing that in the IOP
setting black-box ZK implies ZK with auxiliary inputs. This implication is known for standard ZK
proofs [GO94]. The result of [GO94] does not account for oracles either, but can be extended to
the IOP setting, as we show in Appendix A. (2) however is more problematic. Indeed, the result
of [KLR06] is for the more general setting of concurrent composition of general MPC protocols, and
extending it to the setting in which parties have oracles seems more complex than proving directly
that the composed IOP for 3SAT has ZK. We therefore chose the latter route. This required careful
bookkeeping because the 3 executions of the sumcheck protocol of Step 4 all use the same encoding
C(w), and so knowledge leaked on C(w) via these executions may accumulate. This results in a
more “correlated” execution compared to composition of standard ZKPs, and consequently makes
the hybrid proof more involved (requiring a specific order in which sumcheck executions and
codewords are replaced from real to simulated). However, by exploiting the perfect ZK property
of the our sumcheck ZK-IOPs, and employing ideas from [KLR06], we were nonetheless able to
make the hybrid proof work. See Section 6.5 for further details.

14Roughly, an IOP has black-box straight-line ZK if there exists a single PPT simulator Sim that can perfectly simulate
the view of any t-restricted verifier V∗, given oracle access to V∗, and without rewinding the verifier.

13

2.4 Open Problems and Future Directions

While the focus of this work is on constructing short ZK-IOPs, we also provide new techniques for
designing ZK variants of the two main building blocks underlying (ZK-)IOP constructions: tensor
codes, and an IOP for the sumcheck problem. Since these primitives are ubiquitous in designing
PCPs and IOPs, our techniques could potentially be used to improve other efficiency measures of
these proof systems, as we now discuss.

Improved ZK-PCP Constructions. ZK incurs little to no overhead in the IOP setting, with re-
cent ZK-IOP constructions coming close to their non-ZK counterparts in most parameters of in-
terest. Unfortunately, as discussed in Section 1, this is not the case in the PCP setting, where
ZK-PCPs incur large blowups in the proof length [KPT97, IW14, IWY16], exponential prover run-
ning time [GOS24], or a large query complexity [IKOS07, HVW21] or adaptivity [KPT97, IW14] of
the honest verifier, compared to non-ZK PCPs.

Our results on tensors of ZK codes could potentially be used to construct better ZK-PCPs. More
specifically, the witness encoding is a main source of leakage in PCPs (and IOPs). As discussed
in Section 1.1, simply replacing the witness encoding with a ZK encoding does not guarantee ZK
when a malicious verifier might query many codeword symbols compared to the honest verifier.
Our results on tensors of ZK codes show that such tensors are ZK against a large set of structured
queries. Thus, one could potentially achieve ZK in IOPs and PCPs by devising a code in which
verifier queries reduce to such structured queries.

We stress that while a similar approach of “restricting” the structure of the verifier’s queries was
used before [KPT97, IW14], previous works applied a cryptographic primitive (called a “locking
scheme”) on top of the PCP, whereas the idea here would be to modify the witness encoding while
preserving the algebraic structure of the underlying PCP. Thus, our investigation of properties of
tensors of ZK codes might also lead to better ZK-PCPs whose efficiency matches the best non-ZK
PCPs.

ZK-IOPs with Linear-Time Provers. Our sublinear-communication ZK-IOPs for sumcheck can
be viewed as a derandomization of prior ZK-IOPs for sumcheck [BCGV16, BCF+16, BCF+17,
BCG+17a, BCR+19, CHM+20, ZXZS20, BCL22]. By further exploiting the structure of the sum-
check protocol, the amount of randomness used in the protocol could potentially be further re-
duced, and we may also be able to obtain a ZK sumcheck with improved prover efficiency. This
in turn can potentially be used to extend the linear-time (non-ZK) IOPs of [RR22] in the Boolean
circuit model to the ZK setting.

Paper Organization. Preliminaries are given in Section 3. Our results on ZK properties of tensor
codes are given in Section 4. Our sublinear-communication sumcheck ZK-IOPs are described
in Section 5 (Figure 3), including a version with full-fledged (distributional) ZK for ZK codes
(Section 5.6). Our main result on ZK-IOPs approaching witness length for 3SAT is described in
Section 6 (see Figures 5- 7, including a “bare-bones” version of the protocol in Figure 4), and
analyzed in Sections 6 and 7. Finally, we prove a general result on IOPs with black-box ZK in
Appendix A.

14

3 Preliminaries

We will often view a string x ∈ Σn, over an alphabet Σ, as a function x : [n]→ Σ. In particular, the
i-th entry of x is denoted x(i). Similarly, for an integer d > 1, we will view a string x ∈ Σ[n]d as a
function x : [n]d → Σ, and will denote its entries by d-tuples i = (i1, . . . , id), where i1, . . . , id ∈ [n].
For j ∈ [d], we let

(i1, . . . , ij−1, ∗, ij+1, . . . , id) := {(i1, . . . , ij−1, ℓ, ij+1, . . . , id) | ℓ ∈ [n]}

denote the axis-parallel line in direction j. For a pair of strings x, y ∈ Σn, we let x ⋆ y ∈ (Σ × Σ)n

denote their interleaving, given by (x ⋆ y)(i) = (x(i), y(i)) for any i ∈ [n].
The relative distance between strings x, y ∈ Σn, over a finite alphabet Σ, is the fraction of coor-

dinates i ∈ [n] on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : x(i) ̸= y(i)}| /n.
The relative distance of x ∈ Σn from a non-empty set S ⊆ Σn is dist(x, S) := miny∈S dist(x, y). We
say that x is ϵ-far (ϵ-close, respectively) from S if dist(x, S) > ϵ (dist(x, S) ≤ ϵ, respectively). For
random variables X,Y , X ≡ Y denotes that X,Y are identically distributed.

We will use finite fields extensively throughout this work. For the sake of efficient implemen-
tation of field operations, we need the field to be constructible:

Definition 3.1. We say that an ensemble of finite fields F = (Fn)n∈N is constructible if elements in
Fn can be represented by O(log(|Fn|)) bits, and field operations (i.e., addition, subtraction, multiplication,
inversion and sampling random elements) can all be performed in polylog(|Fn|) time given this representa-
tion.

Lemma 3.2 (see [Sho88]). For every S = S(n) ≥ 1, there exists a constructible field ensembleF = (Fn)n,
where each Fn has scharacteristic 2 and size O(S(n)).

3.1 Interactive Oracle Proofs (IOPs) and Zero-Knowledge (ZK) IOPs

We next define the notion of interactive oracle proofs, due to [BCS16, RRR21]. We will give a general
definition that applies to promise problems, which allows us to model more general settings in
which the input has some particular structure (e.g., is encoded under an error-correcting code),
and captures both P- and NP-languages as special cases. As we will often be interested in verifiers
that run in sub-linear time, we will also view the input as being separated into two parts x =
(xexp, ximp), where the verifier explicitly reads the explicit input xexp, but only has oracle access
to the implicit input ximp (we will sometimes consider languages in which either the explicit or
the implicit inputs are empty). We will also consider only public-coin IOPs (in which the verifier
does not have any private randomness that is kept hidden from the prover) since all the IOPs we
construct in this work will have this feature.

Notation 3.3. We associate (NP) languages and relations to promise problems in the natural way. Specif-
ically, for a language L we define the corresponding promise problem to be YESL := L, and NOL :=
Σ∗ \ L. Similarly, for an NP relation R = R(x,w) we define the corresponding promise problem to be
YESR := {x : ∃ w s.t.(x,w) ∈ R} and NOR := {x : ∀w s.t. |w| ≤ p(|x|), (x,w) /∈ R}, where p(n) is
the polynomial such that for every (x,w) ∈ R we have |w| ≤ p(|x|).

Definition 3.4 (Interactive Oracle Proof (IOP)). An ℓ-round (public coin) Interactive Oracle Proof
(IOP) with soundness error ϵ for a promise problem (YES,NO) is a pair (P,V) of probabilistic algo-
rithms satisfying the following properties.

• Syntax.

15

– Inputs: Prover P receives as input x = (xexp, ximp). Verifier V receives as input xexp and
1|ximp|,15 and is also given oracle access to ximp.

– Protocol Structure. The protocol consists of a Communication Phase followed by a Query
Phase. In the Communication phase, P and V interact for ℓ rounds, where V’s messages are
uniformly random strings R1, . . . , Rℓ, and each of P’s messages is either an explicit message
or an oracle message. In the Query phase, V reads P’s explicit messages in full, and makes
(non-adaptive) queries to the implicit input ximp and to P’s oracle messages. These queries are
determined solely by the explicit input xexp and V’s randomness string R = (R1, . . . , Rℓ). V
then deterministically decides whether to accept or reject based on the answers to these queries,
the explicit input xexp, and the randomness strings R1, . . . , Rl.

• Semantics. The protocol satisfies the following semantic properties:

– Completeness: If x ∈ YES, then when V interacts with P , it accepts with probability 1.

– Soundness: If x ∈ NO, then for any (possibly unbounded) prover strategy P∗, when V inter-
acts with P∗, it accepts with probability at most ϵ.

Remark 3.5 (IOPs with Pre-Processing). It will sometimes be useful to incorporate a local randomized
pre-processing phase into the IOP execution. Specifically, in the pre-processing phase the verifier uses xexp
to generate a polynomially-long string, which she can later query during the query phase. In this work, we
use a relatively weak form of pre-processing. Specifically, pre-processing is with public randomness, namely
the randomness used for pre-processing is known to the prover (this can be achieved by adding a round
in which the verifier sends this randomness to the prover, or includes it as part of her first message to the
prover), and the locations of the verifier’s queries to the pre-processed string depend solely on the randomness
of V . To distinguish IOPs with a pre-processing phase from standard IOPs (without pre-processing), we
call the former a pre-processing IOP.

Remark 3.6. While IOPs are usually defined for P or NP languages, we chose to define these using promise
prolems, as this will be useful for our construction of an IOP for the Sumcheck problem. Definition 3.4
captures the standard IOP definition for a language L or an NP relation R as a special case, by using the
corresponding promise problems (YESL,NOL) and (YESR,NOR), respectively (see Notation 3.3).

Parameters of Interest. The key parameters associated with an IOP system are:

• Round complexity: the number of rounds ℓ.

• Query Complexity: the number of bits q that the verifier reads from the implicit input ximp

and P’s messages (and the pre-processed string, in case of a pre-processing IOP).

• Communication complexity: the total length cc of P’s messages. This is also referred to as
the “proof length”.

• Alphabet size: the size of the alphabet Σ over which the IOP is defined.

• Verifier running time: the total time TV it takes for V to generate its randomness string R =
(R1, . . . , Rℓ), compute the query locations (given the explicit input xexp and the randomness

15V needs input 1|ximp| in cases where |xexp| ≪ |ximp| (for example, this is the case in our sumcheck ZK-IOP of
Section 5). In other cases, |ximp| = poly(|xexp|), in which case 1|ximp| can be omitted from V’s input (this is the case in
our ZK-IOP for SAT of Section 6).

16

stringR), and decide whether to accept or reject based on the query values, the explicit input
xexp, and the randomness string R. (We note that for pre-processing IOPs, the running time
of preprocessing is accounted for separately.)

• Preprocessing running time: the total time TPre it takes for V to generate the preprocessed
string.

• Prover running time: the total time TP it takes for P to compute its messages. In the context
of interactive oracle proofs for NP languages, we assume that the prover is also given as an
auxiliary input a witness w proving that the input x belongs to the language.

We note that the notion of a PCP corresponds to the special case of an IOP, where the round
complexity is ℓ = 1.

A particular special case of interest is that of IOPs of proximity [BCS16, RRR21], or IOPPs for
short. For a pair language L ⊆ {(xexp, ximp) ∈ Σ∗ × Σ∗} and xexp ∈ Σ∗, we use the notation
Lxexp := {ximp : (xexp, ximp) ∈ L}.

Definition 3.7 (Interactive Oracle Proof of Proximity (IOPP)). An ℓ-round IOP of α-proximity (α-
IOPP) with soundness error ϵ for a pair language L ⊆ {(xexp, ximp) ∈ Σ∗ × Σ∗} is an ℓ-round
IOP with soundness error ϵ for the promise problem (YES,NO), where YES = L and NO = {(xexp, y) :
y is α-far from Lxexp}.

We refer to α as the proximity parameter of the IOPP. If L has no explicit input, then an ℓ-round
α-IOPP with soundness error ϵ for L is an ℓ-round IOP with soundness error ϵ for the promise
problem (YES,NO), where YES = L and NO = {y : y is α-far from L}. Once more, we note that
the notion of a PCPP corresponds to the special case of an IOPP, when the round complexity is
ℓ = 1.

For reducing our query complexity via composition, we shall use the following PCPP due
to [Mie09].

Theorem 3.8 ([Mie09, Theorem 1]). LetL ⊆ Σ∗×Σ∗ be a pair language decidable in time T = T (m+n),
where m,n are the explicit and implicit input lengths, respectively. Then for any constant α > 0, there
exists an α-PCPP over Σ∗ with soundness error 1

2 for L with length Õ(T), constant query complexity,
verifier running time poly(m, log n, log(T)), and prover running time poly(m,n, T).

Remark 3.9. We remark that [Mie09, Theorem 1] does not explicitly state the prover’s running time but
it can be verified that the prover can be implemented in polynomial time. We also note that follow-up
works obtain prover running time that is quasi-linear (rather than merely polynomial) in the original
computation [BCGT13].

3.1.1 IOPs with Zero-Knowledge

We now turn to defining a special case of IOPs with a zero-knowledge guarantee (in the simulation-
based paradigm). Intuitively, these are IOPs for NP, in which query-restricted verifiers – that are
restricted in the number of queries they can make to their oracles – learn nothing about the NP
witness, and only learn few physical bits of ximp. In particular, this notion naturally scales down to
languages in P with a non-empty ximp part. We first give some necessary preliminary definitions.

Definition 3.10 (t-Restricted Adversary). We say that an algorithm A with oracle access to oracles
O1, . . . ,Oℓ is t-restricted if A makes at most t queries (in total) to O1, . . . ,Oℓ.

17

Definition 3.11 (Verifier View). Let R = R(x,w) be an NP relation with a corresponding promise
problem (YESR,NOR) (see Notation 3.3). Let (P,V) be an IOP for (YESR,NOR), and let V∗ be a (pos-
sibly malicious) verifier interacting with P in the protocol. For every ((xexp, ximp), w) ∈ R, the view
ViewV∗ (xexp, ximp, w) in the interaction with P consists of xexp, 1|ximp|, V∗’s random coins, P’s explicit
messages, and the answers to V∗’s queries to ximp andP’s oracle messages. Notice that ViewV∗ (xexp, ximp, w)
is a random variable which depends on the random coins of P and V∗.

We will distinguish between adaptive and non-adaptive verifiers. In this work, all our construc-
tions have the feature that the honest verifier is non-adaptive, and zero-knowledge holds against
adaptive malicious verifiers. We now formally define these notions:

Definition 3.12 (Adaptive and Non-Adaptive Verifiers). We say that a verifier V∗ with oracle access
to (O1, . . .Oℓ) is non-adaptive if her oracle queries are determined solely by her input and randomness (in
particular, without loss of generality V∗ makes all her oracle queries in a single round). Otherwise, we say
that V∗ is adaptive (in particular, each query of an adaptive V∗ might depend on oracle answers to previous
queries).

Remark 3.13. We note that by default, the honest IOP verifier is non-adaptive (this follows from Def-
inition 3.4), and indeed the honest verifiers in all the ZK-IOP constructions described in this work are
non-adaptive. However, the malicious verifier in the ZK properties described below might be adaptive.

In this work we use several flavors of zero-knowledge, all in the simulation-based paradigm.
The most commonly used is the following (stand-alone) ZK definition:

Definition 3.14 (Zero-Knowledge IOP (ZK-IOP)). Let t ∈ N be a ZK parameter, and let R = R(x,w)
be an NP relation with a corresponding promise problem (YESR,NOR). We say that an IOP (P,V) for
(YESR,NOR) has t-ZK if for every t-restricted verifier V∗ there exists a PPT simulator Sim such that for
every ((xexp, ximp), w) ∈ R we have

(ViewV∗ (xexp, ximp, w) , qV)rP ,rV
≡
(
rV , Sim

ximp,V∗(·;rV)
(
xexp, 1

|ximp|
)
, qS

)
rV ,rSim

(1)

where rP , rV , rSim are the random coins of P,V∗ and Sim (respectively); qV denotes the number of queries
which V∗ makes to all her oracles (i.e., ximp and P’s oracle messages); and qS denotes the number of queries
which Sim makes to ximp. In this case, we say that (P,V) is a t-ZK-IOP for (YESR,NOR).

We say that (P,V) has Honest-Verifier ZK (HVZK), denoted HVZK-IOP, if such a simulator Sim
exists only for the honest verifier V .

Remarks on Definition 3.14. A few remarks are in order. First, notice that the verifier’s random-
ness rV is not sampled by the simulator, and not even given to it as input, but rather it is prepended
to Sim’s output. This is because the (possibly computationally-unbounded) V∗ might use super-
polynomially many bits, and so these cannot be sampled by the PPT simulator. Instead, following
previous works, V∗’s randomness is sampled as in the real world and prepended to Sim’s output.
Second, Sim is given oracle access to V∗ (with randomness rV). This is inherent even though the
order of quantifiers in the definition allows the description of Sim to depend on V∗ (namely, Sim
might have V∗’s code hard-wired into it). Indeed, to simulate V∗’s view, Sim needs to generate
the messages which P sends to V∗. Since these messages might depend on V∗’s messages to P ,
then Sim needs to generate V∗’s messages on its own. While these messages are fully determined
by V∗’s code, randomness, and input, one might not be able to generate them efficiently (indeed,
V∗ might be computationally unbounded). Therefore, to enable Sim to determine the verifier’s

18

messages, we give it oracle access to V∗. We note that previous works defined ZK-IOPs without
giving Sim oracle access to V∗. However, their IOP constructions achieved a stronger ZK guaran-
tee (specifically, black-box ZK, see Definition 3.15 below) in which the simulator is anyway given
oracle access to V∗. Finally, the simulator of Definition 3.14 is allowed to make oracle queries to
ximp. This is inherent because V∗ may query ximp directly. However, we restrict Sim’s access to
ximp: it can only make as many queries as V∗ makes in total to both ximp and P’s oracle messages.
This is standard in the literature on zero-knowledge PCPPs and IOPs, e.g., in [IW14, BCF+16].

Next, we define the stronger notion of universal black-box, straight-line ZK. All ZK-IOP construc-
tions provided in this work satisfy this stronger ZK property.

Definition 3.15 (Black-Box Straight-Line ZK). Let t ∈ N be a ZK parameter, and let R = R(x,w)
be an NP relation with a corresponding promise problem (YESR,NOR). We say that an IOP (P,V) for
(YESR,NOR) has Black-Box (BB) Straight-Line t-ZK if there exists a PPT simulator Sim such that for
every t-restricted verifier V∗ and every ((xexp, ximp), w) ∈ R, the following two distributions are identical.

• (ViewV∗ (xexp, ximp, w) , qV)rP ,rV
: V∗’s view when interacting with P , where rP , rV are the random

coins of P,V∗ (respectively), and qV denotes the number of queries which V∗ makes to all her oracles
(i.e., ximp and the oracle messages which P sent).

•
(

ViewSim
V∗ (xexp, ximp, w) , qSim

)
rV ,rSim

: V∗’s view when it interacts with Sim instead of with P and

its oracles (namely, the prover messages are generated by Sim, and V∗’s oracle queries are also an-
swered by Sim), where rV , rSim are the random coins of V∗, Sim (respectively), and qS denotes the
number of queries which Sim makes to ximp.

Claim 3.16 (BB Straight-Line ZK implies ZK). If (P,V) is an IOP with black-box straight-line t-ZK,
the it has t-ZK.

Proof: The proof follows from the fact that a simulator Sim for the black-box straight-line t-ZK
property of (P,V) can generate a simulated view by interacting with V∗ (in a black-box, straight-
line manner), to generate the transcript of the interaction (which includes the verifier’s view, ex-
cept for her randomness). The simulation is perfect because Sim’s simulated answers perfectly
emulate the prover’s messages and oracle answers.

Our ZK-IOP for SAT (Section 6) will be constructed by composing several ZK-IOPs. To guar-
antee that ZK is preserved under this composition, we will need the following notion of ZK with
auxiliary inputs, which generalizes the standard definition of ZK with auxiliary inputs for interac-
tive zero-knowledge proofs (e.g., from [Gol01]) to the IOP setting.

Definition 3.17 (Zero-Knowledge with Auxiliary Inputs). Let t ∈ N, and let R = R(x,w) be
an NP relation with a corresponding promise problem (YESR,NOR). We say that an IOP (P,V) for
(YESR,NOR) has t-ZK with auxiliary inputs if for every t-restricted verifier V∗ there exist a polynomial
p(n), and a PPT simulator Sim, such that for every ((xexp, ximp), w) ∈ R, and for every auxiliary input
z ∈ {0, 1}p(|xexp|+|ximp|) we have(

View′V∗ (xexp, ximp, w, z) , qV
)
rP ,rV

≡
(
rV ,Sim

ximp,V∗(·,rV)
(
xexp, 1

|ximp|, z
)
, qS

)
rV ,rSim

where rP , rV , rSim are the random coins of P,V∗ and Sim (respectively); qV denotes the number of queries
which V∗ makes to all her oracles (i.e., ximp and the oracle messages which P sent); qS denotes the number
of queries which Sim makes to ximp; and View′V∗ (xexp, ximp, w, z) is defined similarly to Definition 3.11,
but includes also the auxiliary input z.

19

Remark on Definition 3.17. Notice that Definition 3.17 restricts the length of the auxiliary input
z to be polynomial in the total length of the (explicit and implicit) input, whereas in standard ZK
proofs with auxiliary inputs, no restriction is made on the length of z. However, such a bound
exists implicitly also in standard ZK proofs, since there ZK is defined for PPT verifiers, and so V∗
can only read a polynomial number of bits from her auxiliary input. Moreover, such a bound is
necessary for IOPs since ZK is defined with respect to unbounded verifiers V∗. Thus, if |z| is not
a-priori bounded by some polynomial, then the PPT Sim might not even be able to read all the bits
of z which the (unbounded) verifier V∗ reads.

We further note that ZK with auxiliary inputs is used (in the literature on ZK proofs, and in this
paper) to allow for composition of ZK proofs/IOPs, where the auxiliary input is used to provide
the verifier in an execution of the system with the view of verifiers in (say) previous executions of
the system. These views include the verifiers’ randomness, the messages received from the honest
P , and the oracle answers to the verifiers’ queries. The latter two are bounded (by the polynomial
time bound on the honest prover, and the query restriction on the verifiers). The former can be
eliminated by having the verifier use its own randomness to emulate the verifiers in previous
executions of the system, and then fixing an optimal choice of randomness for these emulations
(and using an averaging argument).

Finally, we note that the notion of ZK with auxiliary inputs extends to the setting of black-box,
straight-line ZK in the natural way, in which case the simulator Simaux is not given z as input,
and instead has oracle access to V∗ with auxiliary input z.This is consistent with definitions of
black-box ZK with auxiliary inputs for interactive proofs (see, e.g., [Gol01, Sec. 4.5.4.2]).16

3.2 Error-correcting codes

Let Σ be a finite alphabet, and k, n be positive integers (the message length and the block length,
respectively). An (error-correcting) code is an injective map C : Σk → Σn. The elements in the
domain of C are called messages, and the elements in the image of C are called codewords. The
rate of a code C : Σk → Σn is the ratio ρ := k

n . The relative distance dist(C) of C is the maximum
δ > 0 such that for every pair of distinct messages m,m′ ∈ Σk it holds that dist(C(m), C(m′)) ≥ δ.

We say that a code C : Σk → Σn is systematic if the message is a prefix of the corresponding
codeword, i.e., for every m ∈ Σk there exists z ∈ Σn−k such that C(m) = (m, z). If Σ = F for
some finite field F, and C is a linear map between the vector spaces Fk and Fn, then we say that
C is linear. A generating matrix for a linear code C : Fk → Fn is an n × k matrix G over F so that
C(m) = G ·m for any m ∈ Fk. A parity-check matrix for C is an (n− k)×n matrix H over F so that
H · y = 0 for y ∈ Fn if and only if y is a codeword of C.

In this work we will typically want error-correcting codes that are defined for an infinite se-
quence of message lengths I ⊆ N. Thus, a code ensemble C = {Ck : (Σk)

k → (Σk)
n}k∈I is a

countable collection of error correcting codes, one for each message length k ∈ I. We say that C
has rate ρ ∈ (0, 1) and relative distance δ ∈ (0, 1) if for any k ∈ I, the code Ck has rate at least ρ
and relative distance at least δ. We say that a code ensemble C is explicit if for any k ∈ I, Ck(m) can
be computed in time poly(k) for any m ∈ (Σk)

k. For linear codes, this is equivalent to the require-
ment that the generator matrix for Ck can be computed in time poly(k), and also implies that a

16Giving z to Sim′
aux might violate the essence of black-box simulation, as observed in [KLR06]. Indeed, think of a

“universal” verifier VU who interprets its auxiliary input as the description of a verifier, which VU then proceeds to
emulate. In this case, giving z to the simulator in essence gives the simulator the description of the verifier it needs to
simulate.

20

parity-check matrix for Ck can be computed in time poly(k). We say that a linear code ensemble C
has an efficient randomized construction if the generator matrix forCk can be found in time poly(k)
with negl(k) failure probability (which also implies that a parity-check matrix for Ck can be found
in time poly(k)). For better readability, we sometimes abuse notation and write C : Σk → Σn to
denote that C = {Ck : (Σk)

k → (Σk)
n}k∈I .

3.2.1 Zero-Knowledge Codes

We now define a special type of codes with Zero-Knowledge (ZK) guarantees. Intuitively, these
are codes associated with a randomized encoding function, in which few codeword symbols reveal
no information about the message. We will use two flavors of this property, which hold against
adaptive and non-adaptive adversaries. We first define the notion of a randomized encoding
function.

Definition 3.18 (Randomized Encoding Function). Let C : Σk → Σn be a code. A randomized
encoding function for C is a random map Enc : Σk′ → image(C), which satisfies that for any m ̸= m′ ∈
Σk′ , the distributions Enc(m) and Enc(m′) have disjoint supports.

Let k′ < k be a parameter. The k′-randomized encoding function for C is a randomized encoding
function Enc : Σk′ → Σn which on input m ∈ Σk′ , samples r ← Σk−k′ , and outputs C(m; r).

The stronger flavor of ZK – which will be the default version we will use – requires ZK to
hold against adaptive adversaries, that may make several rounds of queries to their oracle. In
particular, each oracle query might dependent on the answers to previous oracle queries. The
weaker notion of ZK holds only against non-adaptive adversaries, whose queries are determined
solely by their input and randomness (independent of the oracle answers to previous queries).
The formal definitions are similar to Definition 3.12.

Definition 3.19 (Zero-Knowledge (ZK) Code). Let C : Σk → Σn be a code ensemble, and let Enc :
Σk′ → Σn be a randomized encoding function for C. We say that C has t-ZK with respect to Enc if there
exists a PPT simulator Sim that takes as input 1k, k′,such that for every (possibly adaptive) t-restricted
adversary A, and every m ∈ Σk′ , the following distributions are identically distributed.

• The view ViewR
A (m) ofA on input 1k, k′,and given oracle access to a random encoding c← Enc(m).

• The view ViewS
A (m) of A on input 1k, k′, where A’s oracle queries are answered by Sim.17

If the above holds only against non-adaptive t-restricted adversaries A, then we say that the code has
non-adaptive t-ZK.

Remark 3.20. We note that non-adaptive ZK codes were defined slightly differently in [ISVW13], requiring
that for every I ⊆ [n] of size |I| ≤ t, and every pair m,m′ ∈ Σk′ of messages, it holds that Enc(m)|I ≡
Enc(m′)|I . (Ishai et al. [ISVW13] also considered a statistical variant of ZK, but we only define the perfect
version which we use in this work.) This was shown in [BCL22] to be equivalent to the ZK property of
Definition 3.19 (using a simulator that answers the verifier queries via Enc(0)).18

We will also need a weaker version of a ZK code, in which the code is ZK only on a subset of
messages. Formally,

17Notice that the simulator is black-box and straight-line; this is standard in the literature on ZK codes (see, e.g.,
[BCL22]).

18This equivalence holds when the code has a polynomial-time encoding function, which is the case for all codes
considered in this work.

21

Definition 3.21 (ZK on a Subset of Messages). Let C : Σk → Σn be a code ensemble, and let Enc :
Σk′ → Σn be a randomized encoding function for C. For a set S ⊆ Σk′ , we say that C has t-ZK on S with
respect to Enc if Definition 3.19 holds for C when restricting the message m to satisfy m ∈ S.

An important special case of ZK codes, is uniform ZK codes in which any t coordinates in the
randomized encoding are uniformly random.

Definition 3.22 (Uniform ZK Codes). Let C : Σk → Σn be a code, and let Enc : Σk′ → C be a
randomized encoding function for C. We say that C has t-uniform ZK with respect to Enc if for every
m ∈ Σk′ , and every I ⊆ [n] of size |I| = t, c|I is a uniformly random string in Σt, where c← Enc(m).

Distributional ZK-IOPs with Respect to ZK Codes. We also combine the notions of codes with
a randomized encoding function and ZK-IOPs, and give a distributional ZK notion for IOPs which
has an average-case flavor (compared to the worst-case definitions given in Section 3.1.1 above).
Roughly, distributional ZK is defined with respect to a code and a randomized encoding function,
and ZK is guaranteed only for implicit inputs which are random encodings of some message. The
advantage of the average-case definition is that it potentially enables us to achieve a stronger ZK
guarantee (We note that the distributional ZK definition naturally extends to black-box straight-
line simulation, as in Definition 3.15.).

We are now ready to define distributional ZK for IOPs. In the following definition, the code-
word c is the implicit input, meaning V∗ has oracle access to c. Notice that unlike the worst-case
ZK definitions on Section 3.1.1, the simulator Sim is not given access to c.

Definition 3.23 (Distributional Zero-Knowledge). Let R = R(x,w) be an NP relation with a corre-
sponding promise problem (YESR,NOR), and let C be a code with a randomized encoding function Enc.
We say that an IOP (P,V) for (YESR,NOR) has distributional t-ZK with respect to C and Enc if for
every t-restricted verifier V∗ there exists a PPT simulator Sim such that for every (xexp,m, w) so that
Supp(xexp,Enc(m), w) ⊆ YESR, the following distributions are identical:

• (ViewV∗ (xexp, c, w))c←Enc(m),rP ,rV
, where rP , rV are the random coins of P,V∗ (respectively).

•
(
rV , Sim

V∗(·;rV)
(
xexp, 1

|c|))
c←Enc(m),rV ,rSim

, where rV , rSim are the random coins of V∗ and Sim

(respectively).

3.2.2 Locally Testable Codes

Intuitively, a code is said to be locally testable if, given a string w ∈ Σn, it is possible to determine
whether w is a codeword of C, or rather far from C, by reading only a small part of w. There are
two variants of LTCs in the literature, “weak” LTCs and “strong” LTCs, where the main difference
is that weak LTCs are required to reject only words which are sufficiently far from C, while strong
LTCs are required to reject any word w not in C with probability proportional to the relative
distance of w from C. In this work, we will work exclusively with strong LTCs, since it is a simpler
notion. We shall also consider an even stronger notion of robust local testing, in which if w is far
from C, then the view of the local tester is far, on average, from an accepting view.

Definition 3.24 (Locally-Testable Code (LTC)). We say that a code C : Σk → Σn is a (non-adaptive)
q-locally testable code ((q, µ)-LTC) if there exists a randomized oracle algorithm TEST which satisfies
the following properties:

• Input: TEST gets oracle access to a string w ∈ Σn.

22

• Query phase: TEST picks a random subset I ⊆ [n] of size |I| = q, according to some distribution,
and queries w|I .

• Decision phase: TEST outputsψTEST(w|I) for some predicateψTEST : Σq → {ACCEPT,REJECT}.

• Completeness: If w is a codeword of C, then TEST accepts with probability 1.

• Soundness: If w is not a codeword of C, then TEST rejects with probability at least µ · dist(w,C).

We say thatC is a (q, µ)-robust locally testable code ((q, µ)-robust LTC) if there exists a randomized
oracle algorithm TEST which satisfies the above properties, except that the soundness condition is replaced
with the following robustness condition:

• Robustness: If w is not a codeword of C, then, in expectation, w|I is (µ · dist(w,C))-far from
ψ−1TEST(ACCEPT).

We say that the algorithm TEST is a (robust) local tester of C. We say that a code ensemble C : Σk →
Σn is an efficient (q, µ)-LTC (robust (q, µ)-LTC, resp.) if there is a randomized oracle algorithm that on
input 1k, computes a (q, µ)-local tester (robust (q, µ)-local tester, resp.) for C in time poly(k, log(|Σ|)).

3.2.3 Tensor codes

A main ingredient in our IOPs is the tensor product code, defined as follows (see, e.g., [Sud01,
DSW06]).

Definition 3.25 (Tensor Product Code). The tensor (product) code of linear codes C1 : Fk1 → Fn1

and C2 : Fk2 → Fn2 is the code C1 ⊗ C2 : Fk1×k2 → Fn1×n2 , where the encoding (C1 ⊗ C2)(M) of any
message M ∈ Fk1×k2 is obtained by first encoding each column of M with the code C1, and then encoding
each resulting row with the code C2.

Note that by linearity, the codewords of C1 ⊗ C2 are n1 × n2 matrices (over the field F) whose
columns belong to the code C1, and whose rows belong to the code C2. It is also known that
the converse is true: any n1 × n2 matrix, whose columns belong to the code C1, and whose rows
belong to the code C2, is a codeword of C1 ⊗ C2. Furthermore, swapping the order of encodings,
encoding first each row of M with the code C2, and then encoding each resulting column with the
code C1, results in the same codeword.

The following effects of the tensor product operation on the classical parameters of the code
are well known.

Fact 3.26. Suppose that C1 : Fk1 → Fn1 , C2 : Fk2 → Fn2 are linear codes of rates ρ1, ρ2 and relative
distances δ1, δ2 that can be encoded in times T1, T2, respectively. Then the tensor code C1 ⊗ C2 is a linear
code of rate ρ1 · ρ2 and relative distance δ1 · δ2 that can be encoded in time n2 · T1 + n1 · T2.

For a linear code C : Fk → Fn, let C⊗1 := C and C⊗d := C ⊗ C⊗(d−1), for any d ≥ 2. As
in the 2-dimensional case, the codewords of C⊗d : F[k]d → F[n]d can be viewed as d-dimensional
cubes, satisfying that their projection on any axis-parallel line is a codeword of C. Once more, we
have that the converse is also true. Moreover, applying Fact 3.26 inductively yields the following
corollary.

Corollary 3.27. Suppose that C : Fk → Fn is a linear code of rate ρ and relative distance δ that can be
encoded in time T . Then C⊗d : F[k]d → F[n]d is a linear code of rate ρd and relative distance δd that can be
encoded in time td · (n)d−1 · T .

23

For a pair of vectors λ1 ∈ Fk1 and λ2 ∈ Fk2 , we denote by λ1 ⊗ λ2 ∈ Fk1×k2 the 2-dimensional
tensor satisfying that (λ1 ⊗ λ2)(i, j) = λ1(i) · λ2(j) for any (i, j) ∈ [k1]× [k2].

Fact 3.28. Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2 be linear codes. Then for any (i1, i2) ∈ [k1] × [k2],
there exist a pair of vectors λ1 ∈ Fk1 and λ2 ∈ Fk2 , so that for any m ∈ Fk1×k2 , ⟨λ1 ⊗ λ2,m⟩ = c(i1, i2),
where c = (C1 ⊗ C2)(m).

Proof: Fix (i1, i2) ∈ [k1] × [k2]. By linearity of C1, there exists λ1 ∈ Fk1 , so that for any m1 ∈ Fk1 ,
c1(i1) = ⟨λ1,m1⟩, where c1 = C1(m1). Similarly, by linearity of C2, there exists λ2 ∈ Fk2 , so that for
any m2 ∈ Fk2 , c2(i2) = ⟨λ2,m2⟩, where c2 = C2(m2).

Next fix m ∈ Fk1×k2 . Let c′ ∈ Fn1×k2 be the matrix obtained by encoding each column of m
with the code C1, and note that c = (C1 ⊗ C2)(m) is obtained by encoding each row of c′ with the
code C2. Thus, we have that

c(i1, i2) = ⟨λ2, c′(i1, ∗)⟩ =
k2∑
j=1

λ2(j) · c′(i1, j)

=

k2∑
j=1

λ2(j) · ⟨λ1,m(∗, j)⟩ =
k2∑
j=1

λ2(j)

k1∑
i=1

λ1(i) ·m(i, j)

=

k1∑
i=1

k2∑
j=1

λ1(i) · λ2(j) ·m(i, j) = ⟨λ1 ⊗ λ2,m⟩.

For d vectors λ1, . . . , λd ∈ Fk, we denote by λ1 ⊗ · · · ⊗ λd ∈ F[k]d the d-dimensional tensor
satisfying that (λ1⊗ · · ·⊗λd)(i) = λ1(i(1)) · · ·λd(i(d)) =

∏d
j=1 λj(i(j)) for any i ∈ [k]d. Once more,

by induction, the above fact yields the following corollary.

Corollary 3.29. Let C : Fk → Fn be a linear code. Then for any i ∈ [n]d, there exist λ1, . . . , λd ∈ Fk, so
that for any m ∈ F[k]d , ⟨λ1 ⊗ · · · ⊗ λd,m⟩ = c(i), where c = C⊗d(m).

A main property of the tensor product operation that will be useful for us is that it roughly
preserves both the zero knowledge and the local testing properties of the base code, as discussed
next.

Zero-knowledge properties of tensor codes. For the ZK-preserving property, recall that ZK
codes are associated with a specific randomized encoding function, and ZK holds with respect
to that encoding function. Therefore, when defining the tensor product of ZK codes we must also
specify how the randomized encoding function operates. We follow the definition of [BCL22].

Definition 3.30 (Randomized Encoding for Tensor Codes). Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2

be linear codes, and let k′1 ≤ k1 and k′2 ≤ k2 be parameters. The (k′1 × k′2)-randomized encoding
function for C1 ⊗C2 is a function Enc : Fk′1×k′2 → Fn1×n2 , defined as follows. On input m′ ∈ Fk′1×k′2 and
1k1×k2 , Enc first extends m′ to m ∈ Fk1×k2 , by padding m′ with random field elements, and then outputs
(C1 ⊗ C2)(m).

The definition extends to higher dimensions as follows. Let C : Fk → Fn be a linear code, and let k′ < k

be a parameter. The [k′]d-randomized encoding function for C⊗d is a function Enc : F[k′]d → F[n]d ,
defined as follows. On input m′ ∈ F[k′]d and 1k

d , Enc first extends m′ to m ∈ F[k]d , by padding m′ with
random field elements, and then outputs C⊗d(m).

24

The ZK-preservation property follows from the following theorem of [BCL22] (see also the full
version [BCL20, Thm. 6.2]).

Theorem 3.31 (Tensor Product Preserves ZK, [BCL20], Theorem 6.2). Suppose that C1 : Fk1 → Fn1

is a linear code ensemble that has t1-ZK (t1-uniform ZK, respectively) with respect to the k′1-randomized
encoding function, and that C2 : Fk1 → Fn1 is a linear code ensemble that has t2-ZK (t2-uniform ZK,
respectively) with respect to the k′2-randomized encoding function. Then C1 ⊗ C2 has min{t1, t2}-ZK
(min{t1, t2}-uniform ZK) with respect to the (k′1 × k′2)-randomized encoding function.

The above theorem in particular implies the following corollary.

Corollary 3.32 ([BCL20], Corollary 6.3). Let C : Fk → Fn be a linear code ensemble that has t-ZK (t-
uniform ZK, respectively) with respect to the k′-randomized encoding function. Then for any d > 1, C⊗d

has t-ZK (uniform t-ZK, respectively) with respect to the [k′]d-randomized encoding function.

Local testing of tensor codes. The LTC-preserving property follows from the following local
testing property of tensor codes from [Vid15].

Theorem 3.33 (Local Testing of Tensor Codes, [Vid15], Theorems 3.1 and 4.4). Suppose that C :
Fk → Fn is a linear code of relative distance δ, and let d > 1. Let TEST be a local tester for C⊗d, which
given a string w ∈ F[n]d , picks a random axis-parallel line ℓ (axis-parallel two-dimensional plane P , resp.)
in [n]d, and accepts if and only if w|ℓ is a codeword of C (w|P is a codeword of C ⊗ C, resp.). Then TEST
is an (n, δO(d))-local tester ((n2, δO(d))-robust local tester, resp.) for C⊗d.

The above lemma implies the following corollary.

Corollary 3.34 (Tensor Product Preserves Local Testing). Suppose that C : Fk → Fn is a linear code
of relative distance δ, and that C ⊗ C is a (q, µ)-LTC ((q, µ)-robust LTC, resp.). Then for any d > 1, C⊗d

is an (q, µ · δO(d))-LTC ((q, µ · δO(d))-robust LTC, resp.). Moreover, if the (robust) local tester for C ⊗ C
runs in time T , then the (robust) local tester for C⊗d runs in time O(T).

3.2.4 Low-degree Extensions (LDEs) and Reed-Solomon (RS) Codes

A special case of tensor codes that will be of particular interest to us is the low-degree extension,
defined as follows.

Lemma 3.35 (Low-Degree Extension (LDE), [AS98], Theorem 4.1.5). Let F be a finite field of size n,
and identify the elements of F with [n]. For non-negative integers k ≤ n and d, and a functionw : [k]d → F,
there exists a unique d-variate polynomial ŵ over F of individual degree k − 1 that agrees with w on [k]d.
Moreover, ŵ can be computed in time nO(d).

The polynomial ŵ is called the Low-Degree Extension (LDE) of w. It can be verified that
the evaluation table of ŵ over F is a codeword in the d-dimensional tensor product of the Reed-
Solomon code RSk,n, defined as follows.

Definition 3.36 (Reed-Solomon (RS) Codes, [RS60]). Let F be a finite field of size n, and identify the
elements of F with [n]. Let k ≤ n be a non-negative integer. The (systematic) Reed-Solomon (RS) code
RSk,n is a map RSk,n : Fk → Fn. The encoding of a message m ∈ Fk is (fm(i))i∈F, where fm(x) is the
unique univariate polynomial over F of degree at most k − 1 which satisfies that fm(i) = m(i) for any
i ∈ [k]. The punctured Reed-Solomon code PRSk,n is a map PRSk,n : Fk → Fn−k, where the encoding
of a message m ∈ Fk is (fm(i))i∈F\[k].

25

Lemma 3.37. For any non-negative integers k ≤ n, RSk,n is an explicit systematic linear code of rate k
n

and distance n− k + 1, and PRSk,n is an explicit linear code of rate k
n−k and distance n− 2k + 1.

Claim 3.38. Let F be a finite field of size n, and identify the elements of F with [n]. Let k ≤ n be a
non-negative integer, let w : [k]d → F be a function, and let ŵ be the low-degree extension of w. Then
the evaluation table (ŵ(i))i∈Fd of ŵ over F is a codeword in (RSk,n)

⊗d. Similarly, the evaluation table
(ŵ(i))i∈(F\[k])d of ŵ over F is a codeword in (PRSk,n)

⊗d.

We shall also need the following lemma which gives a family of "zero-tester polynomials" for
the low-degree extension.

Lemma 3.39 (“Zero-Tester” Polynomials, [AS98], Theorem 4.2.1.2). Let F be a finite field of size n,
and identify the elements of F with [n]. Let k, d be non-negative integers so that 8dk < n. Then there exists
a family Q of d-variate polynomials over F of individual degree at most k − 1, where |Q| ≤ nd, so that if
P : [k]d → F is not identically zero, then

Pr
Q←Q

∑
i∈[k]d

Q(i) · P (i) = 0

 ≤ 1

2
.

Moreover, the family Q is constructible in time nO(d).

4 Zero-Knowledge Properties of Tensor Codes

In this section, we show several zero-knowledge properties of tensor codes. These properties
imply in turn several different ZK local testing procedures for tensor codes that will be useful for
obtaining our zero-knowledge IOPs.

In Section 4.1, we generalize and strengthen a result of [BCL22] on zero-knowledge preserva-
tion under tensor products. More specifically, [BCL22] show that if C1 and C2 have t1- and t2-ZK,
respectively (with respect to the k′1, k

′
2-randomized encoding function, respectively), then their

tensor product C1 ⊗ C2 has min{t1, t2}-ZK (with respect to the (k′1 × k′2)-randomized encoding
function). We strengthen their result and show that C1⊗C2 in fact satisfies a stronger ZK property,
namely, it has ZK against an adversary that reads t1 entire rows or t2 entire columns. As a corollary,
this implies that the tensor product C⊗d has a local testing procedure that has ZK against the honest
tester, as well as a 2-round ZK IOPP (with ZK against malicious verifiers) for testing membership
in tensor product, assuming that the base code C has a stronger uniform ZK guarantee.

In Section 4.2, we investigate whether C1 ⊗ C2 can generally have Ω(t1 · t2)-ZK. We show an
example of a code C that has t-ZK, but its tensor product C ⊗ C does not have Ω(t2)-ZK, which
answers an open question posed by [BCL22]. On the other hand, note that the results of [ISVW13]
imply that for any linear code C : Fk → Fn, there exists a randomized encoding function (not
necessarily the (k′ × k′)-randomized encoding function) with respect to which C ⊗ C has Ω(n2)-
ZK. As a corollary, this implies in turn that for any d > 1 and any linear code C, there exists a
randomized encoding function with respect to which the tensor product C⊗d is a ZK-LTC (i.e., it is
an LTC in which the zero-knowledge parameter is significantly larger than the query complexity).

Finally, in Section 4.3 we present a transformation that extends a tensor code into a tensor code
over a larger field, while preserving its zero-knowledge properties.

26

4.1 ZK Against Line Queries

In this section, we show that the tensor product has ZK against an adversary that reads entire rows
or columns. We then use these properties to deduce that the tensor product has two different ZK
local testing procedures.

More specifically, in Section 4.1.1 below we show that if C1 and C2 have t1- and t2-ZK, respec-
tively, then their tensor product C1 ⊗ C2 has ZK against an adversary that reads t1 entire rows or t2
entire columns. As a corollary, this implies that if C has 1-ZK, then C⊗d has a local testing procedure
that has ZK against the honest tester.

Then in Section 4.1.2, we show that if C1 and C2 have uniform t1- and t2-ZK, then their tensor
product C1⊗C2 has ZK against an adversary that can adaptively choose whether it will read t1 rows
or t2 columns, after making point queries to C1⊗C2. As a corollary, this implies in turn that if C has
t-uniform ZK, then there exists a 2-round constant query ZK IOPP of sublinear length for testing
membership in C⊗d (against a malicious verifier).

4.1.1 ZK Against Line Queries

In this section, we show that if C1 and C2 are ZK codes then their tensor product C1 ⊗ C2 has ZK
against adversaries that read entire rows or columns, and use this to conclude that if C is even 1-
ZK, then C⊗d has a local testing procedure with ZK against the honest tester. We start by formally
defining the stronger notion of zero-knowledge for rows/columns.

Definition 4.1 (Row/Column Restricted Adversary). Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2 be
linear codes, and let c be a codeword of C1 ⊗ C2 : Fk1×k2 → Fn1×n2 . A row oracle for c is an oracle that
on input i ∈ [n1] outputs the i’th row c(i, ∗) of c. We say that an algorithm A with access to a row oracle
for c is t-row restricted if A makes at most t oracle queries. Similarly, a column oracle for c on input
j ∈ [n2] outputs the j’th column c(∗, j) of c, and an algorithm A with access to a column oracle for c is
t-column restricted if A makes at most t oracle queries.

Theorem 4.2 (ZK Against Row/Column-Restricted Adversaries). Let C1 : Fk1 → Fn1 and C2 :
Fk2 → Fn2 be linear code ensembles, such that C1 (C2, resp.) has t-ZK with respect to the k′1-randomized
encoding function (k′2-randomized encoding function, resp.). Then C1 ⊗ C2 has ZK against t-row restricted
adversaries (t-column restricted adversaries, resp.), with respect to the (k′1 × k′2)-randomized encoding
function.

The above theorem is an immediate consequence of the following lemma which says that if
C1 has t-ZK, then for any code C2, the tensor product C1 ⊗ C2 has ZK against t-row restricted
adversaries. By the symmetry of encoding of the encoding function of tensor codes, this also
implies that if C2 has t2-ZK then C1 ⊗ C2 has ZK against t-column restricted adversaries.

Lemma 4.3. Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2 be linear code ensembles, so that C1 has t-ZK with
respect to the k′1-randomized encoding function. Then C1 ⊗ C2 has ZK against t-row restricted adversaries
with respect to the (k′1 × k2)-randomized encoding function.

Remark 4.4. Lemma 4.3 guarantees that if C1 has ZK, then C1 ⊗ C2 has ZK against row restricted
adversaries. As will be evident in the proof below, the simulator uses only the fact that the codeword was
generated by first encoding using C1, and then encoding using C2, and does not otherwise rely on the
identity of the code used to encode the rows or columns. Put differently, had we computed the tensor by first
encoding the rows using C2, then encoding the columns using C1, the ZK of C2 would imply ZK against
column restricted adversaries. Crucially, both of these encoding procedures (first encoding the columns

27

using C1, or first encoding the rows using C2) result in the same codeword, so we conclude that ZK of C2
implies that C1 ⊗ C2 has ZK against column-restricted adversaries.

This important property of the proof – namely, that the simulator relies only on which code was applied
first – will be used in Section 4.1.2 below.

Before we prove the above lemma, we show how it implies the above Theorem 4.2.

Proof of Theorem 4.2: By symmetry of the encoding function for tensor codes (since the order of
encodings between rows and columns can be swapped), it suffices to prove the theorem for t1-row
restricted adversaries (cf. Remark 4.4).

Let Sim be the simulator given by Lemma 4.3 for t1-row restricted adversaries with respect to
the (k′1 × k2)-randomized encoding function. We shall show a black-box straight-line simulator
Sim′ for t1-row restricted adversaries with respect to the (k′1× k′2)-randomized encoding function.
On input 1k1×k2 , k′1 × k′2, and given oracle access to a t1-row restricted adversary A, the simulator
Sim′ runs the simulator Sim on input 1k1×k2 , k′1 × k2, relaying messages between A and Sim.

Let m ∈ Fk′1×k′2 , let r ∈ Fk′1×(k2−k′2), and let (m, r) ∈ Fk′1×k2 denote the matrix which equals m in
the first k′2 columns and r in the last k2−k′2 columns. For every such r, Lemma 4.3 guarantees that
the real view of A, when given oracle access to a random encoding of (m, r) generated with the
(k′1× k2)-randomized encoding function, is identically distributed toA’s simulated view when its
oracle queries are answered according to Sim. In particular, because A’s view in the simulation
with Sim′ is exactly its view in the simulation with Sim, this implies that – conditioned on r being
the randomness padded to the rows of m – the real-world view ofA, when given oracle access to a
random encoding of m generated with the (k′1 × k′2)-randomized encoding function, is identically
distributed to its view when A’s oracle queries are answered by Sim′. Using a standard condi-
tional probability argument, this implies that the real and simulated views of A are identically
distributed (even without conditioning on r).

We now turn to the proof of Lemma 4.3.

Proof of Lemma 4.3: Let Sim be the simulator for C1 whose existence follows from the t-ZK of C1.
We will describe a black-box, straight-line simulator Sim′ that uses Sim and the adversary as black
boxes.

The simulator Sim′ on input 1k1×k2 , k′1×k2, and given oracle access to a t-row restricted adver-
sary A, operates as follows.

1. Initializes k2 random and independent instantiations of the simulator Sim for the column
code C1 with input 1k1 , k′1.

2. Interacts with A, answering each row query i of A as follows. Sim′ queries each of the
executions of Sim on i, and obtains simulated codeword symbols c1i , . . . , c

k2
i . It then honestly

encodes (c1i , . . . , c
k2
i) using the code C2, to obtain a codeword c(i), which it provides to A as

the answer of the row oracle.

We claim that for every m ∈ Fk′1×k2 , the view ViewR
A(m) of A when given oracle access to an

actual encoding of m is distributed identically to its view ViewS
A(m) when A’s oracle answers are

generated by Sim′. We prove this using a hybrid argument.
For 0 ≤ ℓ ≤ k2, we define a hybrid distribution Hℓ which is obtained by answering A’s ora-

cle queries by emulating Sim′, but generating c1i , . . . , c
ℓ
i in Step 2 by honestly encoding the first ℓ

columns of m (this is done by first sampling the randomness required for the randomized encod-
ing of C1⊗C2, and then encoding the first ℓ columns via C1), and simulating the rest of the symbols

28

cℓ+1
i , . . . , ck2i using Sim. Notice thatH0 = ViewS

A(m), andHk2 = ViewR
A(m). Therefore, it suffices to

prove that Hℓ ≡ Hℓ−1 for every ℓ ∈ [k2]. We show that this follows from the t-ZK of C1, otherwise
A can be used to design an adversary A′ that distinguishes between t real and simulated symbols
in encodings of a single column of m (i.e., in a single C1-encoding).

Assume towards negation that there exists an ℓ∗ ∈ [k2] such that Hℓ∗ ̸≡ Hℓ∗−1. We describe an
(interactive) t-restricted adversaryA′ whose views – given oracle access to either real or simulated
symbols in an encoding generated by C1 – are not identically distributed, which contradicts the t-
ZK of C1. More specifically, we will show that this holds whenA′’s oracle is to a (real or simulated)
encoding of the ℓ∗th column of m.
A′ has m and ℓ∗ hard-wired into it. It samples randomness for the randomized encoding of

C1 ⊗ C2, and honestly encodes columns 1, . . . , ℓ∗ − 1 of m using C1 with the sampled randomness.
It additionally instantiates k2 − ℓ∗ random and independent executions of Sim (for columns ℓ∗ +
1, . . . , k2). Then, A′ emulates A, answering each query i of A as follows. (1) A′ queries its own
oracle on i (this emulates the ith symbol in the encoding of the ℓ∗’th column of m). (2) A′ uses the
encoded columns 1, . . . , ℓ∗ − 1 generated above to determine the ith symbols in the encodings of
columns 1, . . . , ℓ∗ − 1. (3) A′ uses the k2 − ℓ∗ executions of Sim to emulate the ith symbol in each
of the columns ℓ∗ + 1, . . . , k2. (4) A′ honestly encodes the string of ith symbols generated in Steps
(1)-(3) with C2, and provides the resultant row as the answer to A’s query.

Notice that if A′’s oracle is to an actual encoding, then the view of A is distributed according
toHℓ∗ , otherwise it is distributed according toHℓ∗−1. Therefore, sinceHℓ∗−1 ̸≡ Hℓ∗ then the views
of A′ (with oracle access to real or simulated symbols in an encoding of the ℓ∗’th column of m) are
not identically distributed. This contradicts the t-ZK of C1, because A′ is t-restricted (A′ makes a
single query to its oracle for every row query of A, and A is t-row restricted).

Honest-Tester ZK Local Testing for Tensor Codes. The results of this section can be used to
show that if C has 1-ZK, then C⊗d has a local testing procedure that has ZK against the honest
tester. To show this, we need an extension of Theorem 4.2 which says that C⊗d has ZK against an
adversary that queries axis-parallel subspaces in the same direction. To state this formally, we first
extend the notion of row/column restricted adversaries (Definition 4.1) to adversaries that query
axis-parallel subspaces in the same direction.

In what follows, for a non-empty subset J ⊊ [d] of coordinates, and values j ∈ [n]J to these
coordinates, let VJ←j denote the (axis-parallel) subspace of [n]d that is obtained by fixing the co-
ordinates in J to j, that is, VJ←j = {i ∈ [n]d | i|J = j}. Note that for the special case of d = 2,
a row (i, ∗) (column (∗, j), respectively) corresponds to the special case that J = {1} (J = {2},
respectively) and j = i (j = j, respectively).

Definition 4.5 (Subspace-Restricted Adversary). Let d > 1 be an integer, let C : Fk → Fn be a linear
code, and let c be a codeword of C⊗d : F[k]d → F[n]d . Let J ⊊ [d] be a non-empty subset of coordinates. A
subspace oracle in direction J for c is an oracle that on input j ∈ [n][d]\J outputs the restriction of c to
the subspace V([d]\J)←j. We say that an algorithm A with access to a subspace oracle in direction J for c is
(t, J)-restricted if A makes at most t oracle queries.

The following corollary is a consequence of Lemma 4.3 above.

Corollary 4.6. Let C : Fk → Fn be a linear code ensemble that has t-ZK with respect to the k′-randomized
encoding function for some k′ < k.Then for any d > 1, and for any non-empty subset J ⊊ [d], C⊗d has ZK
against (t, J)-restricted adversaries with respect to the [k′]d-randomized encoding function.

29

Proof: Let ζ := |J |. By symmetry of the encoding function for tensor codes (since the order of
encodings in different dimensions can be swapped, cf. Remark 4.4), we may assume without loss
of generality that J = {d−ζ+1, d−ζ+2, . . . , d}. By properties of tensor codes, we can further view
any codeword c ∈ C⊗d, generated using the [k′]d-randomized encoding function, as a codeword
of the two-dimensional tensor C⊗(d−ζ) ⊗ C⊗ζ , generated using the ([k′]d−ζ × [k′]ζ)-randomized
encoding function. Moreover, by Corollary 3.32, we have that C⊗(d−ζ) has t-ZK with respect to the
[k′]d−ζ-randomized encoding function. By Theorem 4.2, this implies in turn thatC⊗(d−ζ)⊗C⊗ζ has
ZK against t-row restricted adversaries with respect to the ([k′]d−ζ × [k′]ζ)-randomized encoding
function. But this is equivalent to saying that C⊗d has ZK against (t, J)-restricted adversaries with
respect to the [k′]d-randomized encoding function.

Recall that by Theorem 3.33, there exists a (robust) local tester for C⊗d which queries only a
single random axis-parallel line (two-dimensional plane, respectively). Consequently, the above
corollary implies that if the base code is 1-ZK, then this test has ZK against the honest tester.

Corollary 4.7 (Local Testing with Honest-Tester ZK for Tensor Codes.). Let C : Fk → Fn be an
explicit linear code ensemble of relative distance δ, that has 1-ZK with respect to the k′-randomized encoding
function. Then for any d > 1, C⊗d : F[k]d → F[n]d is an (n, δO(d))-LTC and (n2, δO(d))-robust LTC that
has ZK with respect to the [k′]d-randomized encoding function against the honest tester.

4.1.2 ZK Against Adaptive Line Queries

In the previous section, we showed that if C1 has t1-ZK and C2 has t2-ZK, then the tensor product
C1⊗C2 has ZK against adversaries that query either t1 rows or t2 columns. In this section, we prove
a stronger guarantee against an adversary that can adaptively choose whether its oracle will be a
row or a column oracle, after making point queries to C1 ⊗ C2. However, the results of this section
will only apply to codes C1 and C2 that satisfy the stronger uniform-ZK property. We then use this
to show that if C has t-uniform ZK, then there exists a 2-round constant query ZK IOPP of sublinear
length for testing membership in C⊗d. We start by formally defining the stronger notion of adaptive
line-restricted adversaries.

Definition 4.8 (Adaptive Line-Restricted Adversary). Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2 be
linear codes, and let c be a codeword of C1 ⊗ C2 : Fk1×k2 → Fn1×n2 . We say that a 2-phase algorithm A
with access to a point, row, and column oracle for c is adaptive t-line restricted if the following holds. In
the first phase, A makes 0 ≤ t′ ≤ t point queries to c. Then, it chooses ℓ ∈ {1, 2}, and the first phase
ends. Next, if ℓ = 1 (ℓ = 2, respectively), then A is given the entire row c(i, ∗) ∈ C2 (column c(∗, j) ∈ C1,
respectively) for each query (i, j) which A made in the first phase. In the second phase, if ℓ = 1 (ℓ = 2,
respectively), then A makes at most t− t′ queries to its row (column, respectively) oracle.

The following theorem states that the tensor product of two uniform ZK codes guarantees ZK
against adaptive line-restricted adversaries.

Theorem 4.9 (Tensor Product of Uniform ZK Codes has ZK against Adaptive Line-Restricted Ad-
versaries). Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2 be linear codes that have t1- and t2-uniform ZK
with respect to the k′1- and k′2-randomized encoding function, respectively. Then C1 ⊗ C2 has ZK against
adaptive t-line restricted adversaries with respect to the (k′1 × k′2)-randomized encoding function, where
t = min{t1, t2}.

The above theorem is an immediate consequence of Lemma 4.10 below, which shows that in
the special case that C1 and C2 have uniform ZK, one can obtain a simulator for row-restricted ad-
versaries with special properties. In more detail, in what follows, we say that a 2-phase algorithm

30

A with access to a point and row oracle for a codeword c of C1 ⊗ C2 is adaptive t-row restricted if
A always chooses ℓ = 1 in Definition 4.8.

Lemma 4.10. Let C1 : Fk1 → Fn1 and C2 : Fk2 → Fn2 be linear codes that have t1- and t2-uniform
ZK with respect to the k′1- and k′2-randomized encoding function, respectively, and let t := min{t1, t2}.
Then C1⊗C2 has ZK against adaptive t-row restricted adversaries with respect to the (k′1×k′2)-randomized
encoding function, with the following two-phase simulator Sim = (Sim′,Sim′′). Sim′ takes 1k1×k2 , k′1× k′2
as input, and answers A’s queries in the first phase uniformly at random. Let Q denote the set of queries
which A makes in the first phase, and {c′q}q∈Q denote the answers given by Sim′. Sim′′ takes as input
1k1×k2 , k′1 × k′2, Q and {c′q}q∈Q, and completes the simulation with A.

Before we prove the above lemma, we show how it implies the above Theorem 4.9.

Proof of Theorem 4.9: We describe a simulator Sim for an adaptive t-line restricted adversary.
The simulator Sim answers all point queries in the first phase uniformly and independently at
random. Then, if ℓ = 1, Sim completes the simulation using the simulator for t-adaptive row re-
stricted adversaries, guaranteed by Lemma 4.10. If ℓ = 2, then by symmetry of the encoding func-
tion for tensor codes (since the order of encodings between rows and columns can be swapped,
cf. Remark 4.4), Sim can complete the simulation using the simulator for t-adaptive row restricted
adversaries for the code obtained by first encoding the rows (using C2).

We now turn to the proof of Lemma 4.10.

Proof of Lemma 4.9: Let m ∈ Fk1×k2 and c ← Enc(m), where Enc is the (k′1 × k′2)-randomized
encoding function for C1 ⊗ C2. Let A be an adaptive t-row restricted adversary with respect to
C1 ⊗ C2. Let Sim′ be a simulator which takes 1k1×k2 , k′1 × k′2 as input, and answers A’s queries in
the first phase uniformly at random. Let Q denote the set of queries which A makes in the first
phase, and {c′q}q∈Q denote the answers given by Sim′. We describe a simulator Sim′′, which takes
as input 1k1×k2 , k′1 × k′2, Q and {c′q}q∈Q, and completes the simulation with A.

Claim: Q is identically distributed in both worlds, and c|Q is uniformly random. We will
show that c|Q is uniformly random (i.e., distributed identically to the simulated answers given by
Sim′) in two steps. First, we will show that c|Q′ is uniformly random for every Q′, |Q′| ≤ t. Then,
we will show that the queriesQwhichAmakes in the real world and the simulation are identically
distributed. Intuitively, to prove the first step we will use the t1-uniform ZK of C1 to claim that the
joint distribution of columns k′2 + 1, . . . , k2 in the (at most t1) queried rows is uniformly random.
Therefore, in each of the queried rows the row encoding in C2 was generated using independent
uniformly random field elements, and so the t2-uniform ZK of C2 guarantees that the (at most t2)
entries queried in each of these rows is uniformly random. The formal proof follows.

Recall that in the first phase of the executionAmakes at most t′ ≤ t = min{t1, t2} point queries.
Therefore, it queries at most t1 rows, and at most t2 entries in each of these rows. Recall that m
is encoded by first extending it to m′ ∈ Fk1×k2 by padding m with random field elements, then
encoding each column with C1 to obtain m′′ ∈ Fn1×k2 , and finally encoding each row of m′′ with C2.
Let I ′ := {i ∈ [n1] : ∃j ∈ [n2] , (i, j) ∈ Q′} (intuitively, these are the rows which are queried in Q′).
Since |I ′| ≤ t1, then by the t1-uniform ZK of C1, for every j ∈ [k2] we have that m′′(∗, j)|I′ – namely,
the restriction of the j’th column of m′′ to the rows in I ′ – is uniformly distributed. Moreover, since
each column is encoded randomly and independently, the joint distribution (m′′(∗, j)|I′)j∈[k2] is
also uniformly random.19 In particular, the joint distribution (m′′(∗, j)|I′)j∈{k′2+1,...,k2} is uniformly

19We note that for this part of the proof we only need to analyze the distribution of the last k2 − k′
2 columns of m′′,

31

random. Therefore, each row i ∈ I ′ of m′′ is encoded randomly and independently (with uniform
randomness (m′′(i, j))j∈{k′2+1,...,k2}), so the t2-uniform ZK of C2 guarantees that c|Q′ is uniformly
random. This completes the first step.

As for the second step, the queries which A makes are determined by A’s randomness, and
the answers to its previous queries. In particular, its first query is determined by A’s randomness
and is therefore identically distributed in the real world and the simulation. By induction over the
number t′ ≤ t of queries which A makes in the first phase, we have that the queries Q which A
makes in the real world and the simulation are identically distributed, and c′|Q ≡ c|Q. Therefore,
it suffices to prove the claim conditioned on Q and c|Q.

Simulating a Row Oracle. It remains to show how to complete the simulation by defining Sim′′.
The simulator Sim′′, on input 1k1×k2 , k′1 × k′2, Q and {c′q}q∈Q, operates as follows. Let I := {i ∈
[n1] : ∃j ∈ [n2] , (i, j) ∈ Q} (recall that these are the rows which were queried in Q), and for
every i ∈ I, let Qi := {(i, j) ∈ Q} (these are the entries which A queried from the i’th row in the
first phase). For every i ∈ I, Sim′ samples a uniformly random codeword c′i ∈ C2, conditioned
on the event that c′i|Qi = {c′q}q∈Qi . The linearity of C2 guarantees that this sampling can be done
efficiently by solving a system of linear equations, and the t2-uniformity of C2 guarantees that the
system has a solution. Sim′′ then gives c′i to A as the i’th row.

Next, Sim′′ answers adaptive row queries i ofA as follows.20 Sim samples m̃i ← Fk2 , determin-
istically encodes c′i := C2(m̃i) and provides c′i as the oracle answer.

We now claim that the distribution induced by Sim′′’s simulated answers is identical to the
real world, conditioned on c|Q and Q. We prove this claim it two steps. First, we prove that the
simulated rows (c′i)i∈I which Sim′′ provided at the onset of the second phase of the execution are
distributed identically to the real world. Then, we prove that the simulated rows Sim′′ provided
in the second phase of the execution are distributed identically to the real world, conditioned on
Q and (c′i)i∈I .

(c′i)i∈I ≡ (c(i, ∗))i∈I . Recall that we have already proven above that (m′′(∗, j)|I′)j∈{k′2+1,...,k2}
is uniformly random, meaning each row i ∈ I of m′′ was encoded independently using uniform
randomness. Therefore, it suffices to prove that c(i, ∗) ≡ c′i for every i ∈ I separately. Fix an i ∈ I.
As we have shown above, m′′(i, ∗) ∈ Fk2 (i.e., the message encoded in the i’th row) is uniformly
random. Therefore, c(i, ∗) is distributed as a random C2-encoding of a random message. Therefore,
to show that c′i ≡ c(i, ∗), it suffices to show that for every pair of messages mi,m

′
i,

|{c̃ : c̃ ∈ Supp(Enc2(mi)) ∧ c̃|Qi = c|Qi}| =
∣∣{c̃ : c̃ ∈ Supp(Enc2(m

′
i)) ∧ c̃|Qi = c|Qi

}∣∣ (2)

where Enc2 is the k′2-randomized encoding function. Indeed, if Eq. (2) holds then sampling a
random message and then sampling a random encoding of the message (conditioned on c|Qi) is
identical to directly sampling a codeword that is consistent with c|Qi . Eq. (2) follows from the t2-
uniform ZK of C2 (which guarantees that the probability of observing c|Qi in a random encoding
of mi,m

′
i is equally likely), and the injectivity of C2’s generator matrix (which implies that each

possible choice of randomness encoding for Enc2 induces a unique codeword).
The real and simulated second-phase oracle answers are identically distributed. We show that

for every t′′ ≤ t− t′, given the t′′’th query i of A in the second phase, the simulated oracle answer
of Sim′′ is distributed identically to c(i, ∗), conditioned on the oracle answers given earlier in the

but later in the proof we will use the fact that the entire rows (m′′(∗, j)|I′)j∈[k2]
are uniformly random.

20We assume without loss of generality that i /∈ I, otherwise the i’th row has already been determined and Sim′′

gives it to A as the oracle answer.

32

simulation. By induction over t′′ this will prove the claim since we have already proven that at the
onset of the second phase, the simulation is perfect.

Fix t′′ ≤ t − t′. As noted above, we can assume without loss of generality that the i’th row
has not been queried before (not even in the first phase of the execution). The t1-uniform ZK of C1
therefore guarantees that m′′(i, ∗) is uniformly random even when conditioned on the rows of m′′

that were already queried by A in the execution. Therefore, c(i, ∗) is a C2-encoding of a random
message in Fk2 , exactly as it is sampled in the simulation.

2-Round ZK IOPP for Testing Membership in Tensor Codes. The results of this section can be
used to show that if C has t-uniform ZK, then there exists a 2-round distributional ZK IOPP for
testing membership in C⊗d with sublinear length and constant query complexity. As before, to
show this we first need to extend Definition 4.8 and Theorem 4.9 to higher dimensions.

Definition 4.11 (Adaptive Subspace-Restricted Adversary). Let d > 1 be an integer, let C : Fk → Fn

be a linear code, and let c be a codeword of C⊗d. We say that a 2-phase algorithmA is adaptive t-subspace
restricted if the following holds. In the first phase,A is given oracle access to a point oracle for c, and makes
0 ≤ t′ ≤ t point queries to c. Then, it chooses a non-empty subset J ⊊ [d], and the first phase ends. Next,
A is given the restriction of c to the whole subspace V([d]\J)←j for each query i ∈ [n]d which A made in the
first phase, where j = i|[d]\J . In the second phase, A is given oracle access to a subspace oracle in direction
J for c, and makes at most t− t′ queries to the subspace oracle.

The following corollary is a consequence of Lemma 4.10 above.

Corollary 4.12. Let C : Fk → Fn be a linear code that has t-uniform ZK with respect to the k′-randomized
encoding function. Then for every d > 1, C⊗d has ZK against adaptive t-subspace restricted adversaries
with respect to the [k′]d-randomized encoding function.

Proof: We describe a 2-phase PPT simulator Sim = (Sim′, Sim′′) that can perfectly simulate the
answers to oracle queries of any adaptive t-subspace restricted adversary A to a codeword c ∈
C⊗d. Recall that Sim′, on input 1[k]

d

, [k′]d, answers A’s point queries to c in the first phase of the
execution uniformly at random. LetQ ∈ [n]d denote the set of queries whichAmade in this phase,
and let J ⊊ [d] denote the non-empty subset of coordinaes which A chose.

Let ζ := |J |.By symmetry of the encoding function for tensor codes (since the order of encod-
ings in different dimensions can be swapped, cf. Remark 4.4), we may assume without loss of
generality that J = {d− ζ +1, d− ζ +2, . . . , d}. By properties of tensor codes, we can further view
any codeword c ∈ C⊗d, generated using the [k′]d-randomized encoding function, as a codeword
of the two-dimensional tensor C⊗(d−ζ) ⊗ C⊗ζ , generated using the ([k′]d−ζ × [k′]ζ)-randomized
encoding function. Moreover, by Corollary 3.32, we have that C⊗(d−ζ), C⊗(ζ) have t-uniform ZK
with respect to the [k′]d−ζ , [k′]ζ-randomized encoding functions, respectively.

Therefore, Lemma 4.10 guarantees that there exists a PPT simulator Sim′′ that, on input
1[k]

d

, [k′]d , Q and the answers given by Sim′ in the first phase of the execution, can complete the
simulation and provide A with rows in C⊗(d−ζ) ⊗ C⊗ζ . In the second phase of the execution, Sim
uses Sim′′ to provide A with the corresponding subspaces for all point queries which A made in
the first phase, and to answer A’s subspace queries, noting that querying the restriction of c to a
subspace in direction J is equivalent to querying a row of C⊗(d−ζ) ⊗ C⊗ζ . Finally, Lemma 4.10
guarantees that the simulation induced by this process is perfect.

Next we show that the above corollary implies a 2-round ZK IOPP for checking membership
in C⊗d.

33

Corollary 4.13 (2-round Distributional ZK-IOPP for testing membership in tensor codes). The fol-
lowing holds for any constant δ, α > 0 and d > 1. Let C : Fk → Fn be an explicit linear code ensemble
of relative distance δ, that has t-uniform ZK with respect to the k′-randomized encoding function. Suppose
furthermore that membership in C⊗2 can be checked in time T = T (n).

Then there exists a 2-round α-IOPP over F with constant soundness error for the language L =
image(C⊗d) (where the input is the implicit input and there is no explicit input), that has distributional
(t − 1)-ZK with respect to C and the [k′]d-randomized encoding function. The IOP has constant query
complexity and communication complexity Õ(T).

Proof: The IOPP proceeds as follows. The verifier first runs the query phase of the (n2, µ)-robust
local tester TEST for the code C⊗d for µ := δO(d), given by Theorem 3.33, but instead of making the
queries, the verifier sends the query set I ⊆ [n]d of size |I| = n2 to the prover. The prover and the
verifier then run the α·µ

2 -PCPP over F, given by Theorem 3.8, for the language ψ−1TEST(ACCEPT) on
implicit input is c|I (and with no explicit input).

It can be verified that the round complexity, query complexity, and communication complexity
are all as stated. Completeness is also straightforward. To see that the soundness property holds,
suppose that c is α-far from C⊗d. Then by the properties of the robust local tester, with probability
at least α·µ

2 , it holds that c|I is α·µ
2 -far from ψ−1TEST(ACCEPT), in which case the PCPP verifier will

reject with probability at least 1
2 . So overall, in this case the verifier will reject with probability at

least α·µ
4 = Ω(1).

Finally, to see that the ZK property holds, let Sim be the simulator against adaptive t-subspace
restricted adversaries, guaranteed by Corollary 4.12 for the code C⊗d with respect to the [k′]d-
randomized encoding function. We describe a simulator Sim′ for the IOPP, which operates as
follows for every (t − 1)-restricted verifier V∗. Sim′ interacts with V∗, forwarding her queries to
Sim and providing the simulated codeword symbols as the answers of the oracle. At some point,
V∗ sends a query subset I , which is a two-dimensional axis-parallel subspace. Sim′ then sets I
to be the subspace of the adaptive subspace-restricted adversary for Sim, and obtains from Sim a
simulated c|I . Sim′ honestly generated the PCPP proof π for c|I , and uses π to answer any queries
of V∗ to the PCPP. Any further queries i ∈ [n]d of V∗ to c are answered by querying Sim on the
two-dimensional axis-parallel subspace in the direction of I that contains i, and forwarding the
answer to V∗. Notice that Sim′ emulates an adaptive t-subspace restricted adversary for Sim (Sim′

makes one additional query compared to V∗, to simulate c|I), and so indistinguishability of the
real and simulated views follows directly from Corollary 4.12.

4.2 ZK Threshold of Tensor Product

In this section, we investigate whether C1 ⊗ C2 can generally have Ω(t1 · t2)-ZK in the case that C1
and C2 have t1, t2-ZK, respectively.

In Section 4.2.1, we show an example of a code ensemble C that has t-ZK (with respect to the k′-
randomized encoding function), but its tensor product C ⊗C does not have Ω(t2)-ZK (with respect
to the (k′ × k′)-randomized encoding function); this answers an open question posed by [BCL22].

On the other hand, in Section 4.2.2 we note that the results of [ISVW13] imply that for any
linear code C : Fk → Fn, there exists a randomized encoding function (not necessarily the (k′ ×
k′)-randomized encoding function) with respect to which C ⊗ C has Ω(n2)-ZK. As a corollary,
this implies in turn that for any linear code C, there exists a randomized encoding function with
respect to which the tensor product C⊗d is a ZK-LTC (i.e., it is an LTC in which the zero-knowledge
parameter is significantly larger than the query complexity).

34

4.2.1 Limitations on the ZK Threshold

Recall that Theorem 3.31 (proven in [BCL22, Theorem 6.2]) says that if C1 and C2 have t1- and
t2-ZK, respectively (with respect to the k′1, k

′
2-randomized encoding function, respectively), then

their tensor product C1⊗C2 has min{t1, t2}-ZK (with respect to the (k′1×k′2)-randomized encoding
function). However, [BCL22, Page 21] remarks that one might hope to improve this theorem to
obtain Ω(t1 · t2)-ZK.

In this section, we show a counter example to the above hope. Specifically, we show a code C
that has t-ZK (even t-uniform ZK), but its tensor product C⊗C does not have Ω(t2)-ZK (even against
non-adaptive adversaries). The code satisfying this property is the punctured Reed-Solomon (PRS)
code (cf. Definition 3.36).

We first show that PRS has uniform ZK.

Lemma 4.14. Let F be a finite field of size n, and identify the elements of F with [n]. Let k ≤ n
2 be a

non-negative integer, and let PRSk,n : F[k] → F[n]\[k] be the Punctured Reed-Solomon code. Then for any
non-negative integer k′ ≤ k, PRSk,n has (k − k′)-uniform ZK with respect to the k′-randomized encoding
function.

Proof: Fix m ∈ Fk′ , and let c = PRSk,n(m, r) for a uniformly random string r ∈ Fk−k′ . Let
I ⊆ [n] \ [k] be an arbitrary subset of size k − k′. We would like to show that c|I is uniformly
random. To show this, it suffices to show that for any string v ∈ Fk−k′ , there exists (a unique)
r ∈ Fk−k′ so that PRSk,n(m, r)|I = v.

To show the above, fix v ∈ Fk−k′ . Let f be the unique univariate polynomial over F of degree
at most k − 1 which satisfies that f(i) = m(i) for any i ∈ [k′] and f(i) = v(i) for any i ∈ I (such
a polynomial exists since |[k′] ∪ I| = k′ + (k − k′) = k). Let r := (f(i))i∈[k]\[k′]. By the definition
of PRSk,n, it follows that PRSk,n(m, r) = (f ′(i))i∈[n]\[k], where f ′(i) is the unique univariate poly-
nomial over F of degree at most k − 1 which satisfies that f ′(i) = f(i) for any i ∈ [k]. But since
f(i) is a univariate polynomial of degree at most k − 1 over F, we must have that f ′(i) = f(i) for
every i ∈ [n],and consequently PRSk,n(m, r)|I = (f(i))i∈I = v. We conclude that for any string
v ∈ Fk−k′ , there exists (a unique) r ∈ Fk−k′ so that PRSk,n(m, r)|I = v, which completes the proof
of the lemma.

The next Lemma bounds the ZK parameter of the tensor product of PRS codes.

Lemma 4.15. Let F be a finite field of size n, and identify the elements of F with [n]. Let k′ ≤ k be a non-
negative integer so that 3k− k′ ≤ n, and let PRSk,n : F[k] → F[n]\[k] be the punctured Reed-Solomon code.
Then PRSk,n⊗PRSk,n does not have (non-adaptive) (2k−k′)-ZK with respect to the (k′×k′)-randomized
encoding function.

Proof: By Remark 3.20, it suffices to show a subset I ⊆ ([n] \ [k])× ([n] \ [k]) of size |I| = 2k − k′,
and a pair of messages m1,m2 ∈ Fk′×k′ , so that Enc(m1)|I ̸≡ Enc(m2)|I , where Enc is the (k′ × k′)-
randomized encoding function. Let I = {(i, i) | i ∈ [3k − k′] \ [k]} (recalling our assumption that
3k−k′ ≤ n), let m1 ∈ Fk′×k′ be the all zeros message, and let m2 ∈ Fk′×k′ be the message satisfying
that m2(1, 1) = 1 and m2(i, j) = 0 otherwise. We shall show below that the distributions Enc(m1)|I
and Enc(m2)|I have disjoint support, and consequently Enc(m1)|I ̸≡ Enc(m2)|I .

To show the above, suppose on the contrary that there exist r1, r2 ∈ Fk−k′ so that c1|I = c2|I ,
where c1 = PRSk,n(m1, r1) and c2 = PRSk,n(m2, r2). By Claim 3.38, there exist bivariate poly-
nomials g1(x, y), g2(x, y) of individual degree at most k − 1 over F so that g1(i, j) = m1(i, j)
(g2(i, j) = m2(i, j), respectively) for any (i, j) ∈ [k′] × [k′], and g1(i, j) = c1(i, j) (g2(i, j) = c2(i, j),
respectively) for any (i, j) ∈ ([n] \ [k])× ([n] \ [k]).

35

Let h1(x) = g1(x, x) and h2(x) = g2(x, x). Then h1(x) and h2(x) are univariate polynomials of
degree at most 2k − 2 over F. Moreover, h1(i) = h2(i) for any i ∈ [k′] \ {1} by assumption that
m1(i, i) = m2(i, i) = 0 for any i ∈ [k′]\{1}, and h1(i) = h2(i) for any i ∈ [3k−k′]\[k] by assumption
that c1|I = c2|I . So we conclude that h1(x) and h2(x) are two univariate polynomials of degree at
most 2k − 2 over F that agree on at least 2k − 1 points, and so we must have that h1(x) = h2(x)
as polynomials in F[X]. But this implies in turn that m1(1, 1) = h1(1) = h2(1) = m2(1, 1), a
contradiction.

The above Lemmas 4.14 and 4.15 imply the following Corollary.

Corollary 4.16. Let F be a finite field of size n, and identify the elements of F with [n]. Let k′ ≤ k ≤ n
2

be non-negative integers, and let PRSk,n : F[k] → F[n]\[k] be the Punctured Reed-Solomon code. Then the
following holds for any ϵ > 0:

• (Low-rate setting, k′ = ϵk) If 3k ≤ n, then PRSk,n has ((1 − ϵ)k)-uniform ZK with respect to the
(ϵk)-randomized encoding function, but PRSk,n ⊗ PRSk,n does not have (non-adaptive) 2k-ZK with
respect to the ((ϵk)× (ϵk))-randomized encoding function.

• (High-rate setting, k′ = (1 − ϵ)k) If (2 + ϵ)k ≤ n, then PRSk,n has ϵk-uniform ZK with respect
to the ((1− ϵ)k)-randomized encoding function, but PRSk,n ⊗ PRSk,n does not have (non-adaptive)
(1 + ϵ)k-ZK with respect to the (((1− ϵ)k)× (1− ϵ)k))-randomized encoding function.

4.2.2 Linear ZK Threshold

In this section, we restate a result from [ISVW13] which says that for any linear code C : Fk → Fn,
there exists a randomized encoding function (not necessarily the (k′ × k′)-randomized encoding
function) with respect to which C ⊗ C has Ω(n2)-ZK. This result implies as a corollary that for
any linear code C, there exists a randomized encoding function with respect to which the tensor
product C⊗d is a ZK-LTC. As we shall need a more quantitative version of this result (specifically,
codes of high rate), for completeness we provide below a more quantitative statement and formal
proof.

The aforementioned result is an immediate consequence of the following theorem from [ISVW13],
which says that any linear code can be turned into a ZK code by changing the encoding function
(but not the set of codewords).

Theorem 4.17 ([ISVW13], Theorem 1). Let C : Fk → Fn be a linear code with a generator matrix G. Let
k′ and t be non-negative integers which satisfy that Hq(

t
n) <

k−k′
n , where

Hq(x) = x logq((q − 1)/x) + (1− x) logq(1/(1− x))

is the q-ary entropy function. Then there exists an invertible k × k binary matrix G′ so that the code
C ′ : Fk → Fn, given by C ′(m) = (G · G′)(m) for any m ∈ Fk, is t-ZK with respect to the k′-randomized
encoding function. Moreover, G′ can be constructed in probabilistic polynomial time except with negligible
failure probability given k′, t, and G.

Remark 4.18. The proof of [ISVW13, Thm. 1] shows that for every subset I ⊆ [n] of size t, and for any
pair of messages m,m′ ∈ Fk′ it holds that Enc(m)|I ≡ Enc(m′)|I , where Enc is the k′-randomized encoding
function for C ′. Note that this in particular implies t-ZK, as noted in Remark 3.20.

As observed in [ISVW13], it follows from the above theorem that there exists a randomized
encoding function with respect to which the tensor product C⊗d is a ZK-LTC (i.e., it is an LTC in
which the zero-knowledge parameter is significantly larger than the query complexity).

36

Corollary 4.19 (ZK-LTC Tensor Codes, [ISVW13]). Let C : Fk → Fn be an explicit linear code ensemble
of relative distance δ and rate 1 − γ. Then for any integer d > 1, there exists an efficient randomized
construction of a linear code C′ : Fkd → F[n]d so that image(C′) = image(C⊗d), and C′ is an (n, δO(d))-
LTC and (n2, δO(d))-robust LTC that has (γ′ ·nd)-ZK with respect to the ((1−γ) ·kd)-randomized encoding
function Enc, where γ′ = H−1q (γ · (1− γ)d).

In particular, C⊗d is an (n, δO(d))-LTC and (n2, δO(d))-robust LTC that has (γ′ · nd)-ZK with respect
to the randomized encoding function Enc.

Proof: Let C′ be the code given by Theorem 4.17 for the code C⊗d, k′ = (1 − γ) · kd, and t =
H−1q (γ · (1− γ)d) · nd.

Then we clearly have that image(C′) = image(C⊗d). Moreover, by Theorem 3.33, C⊗d is an
(n, δO(d))-LTC and (n2, δO(d))-robust LTC, and so the same holds for the code C′ since it has the
same set of codewords as C⊗d. Finally, our choice of parameters implies that

kd − k′

nd
=
γkd

nd
=Fact 3.26 γ · (1− γ)d = Hq

(
t

nd

)
,

and so by Theorem 4.17, C′ is t-ZK with respect to the k′-randomized encoding function.
The ’in particular’ part follows by noting that Enc is also a randomized encoding function for

C⊗d since image(C′) = image(C⊗d).

We note that it is not known how to explicitly construct the randomized encoding function
Enc for C⊗d given by the above corollary, and obtaining such an explicit randomized encoding
function is an interesting question for future research.

4.3 Code Extension

In this section we present a transformation that extends a tensor code over a field H into a tensor
code over a larger field F, while preserving its zero-knowledge properties.

We start by setting some notation. Let H ⊆ F be finite fields, and let A be a basis for F over
H. We view F as a b := log|H|(|F|) dimensional vector space over H in the natural way (e.g., A can
be the standard basis). Every element in F can be expressed as a linear combination of the basis
elements. Extending this fact to vectors, any z ∈ Fn can be expressed as z =

∑
a∈A a ·z(a), for some{

z(a)
}
a∈A, where z(a) ∈ Hn for every a ∈ A are determined by z.

Definition 4.20 (Extended Code). Let C : Hk → Hn be a code, let F be a finite extension field of H,
and let A be a basis for F over H. The A-extension of C is the code C̃ : Fk → Fn, given by C̃(m) =∑

a∈A a · C(m(a)) for any m ∈ Fk.

Lemma 4.21. Suppose that C : Hk → Hn is a linear code of relative distance δ. Let F be a finite extension
field of H, let A be a basis for F over H, and let b := |A| = log|H|(|F|). Let C̃ : Fk → Fn be the A-extension
of C. Then the following hold:

• C̃ is a linear code of relative distance at least δ.

• (C̃)⊗d = C̃⊗d.

• If 1 ∈ A, then C̃(m) = C(m) for any m ∈ Hk. In particular, if C : Hk → Hn is a linear code
ensemble that has t-ZK with respect to a randomized encoding function Enc, then C̃ has ZK on Hk

with respect to Enc (cf. Definition 3.21).

37

Proof: We prove the three bullets of the lemma.
C̃ is a linear code. We need show that for any m,m1,m2 ∈ Fk, and any λ ∈ F, we have

C̃(λ ·m) = λ · C̃(m) and C̃(m1 +m2) = C̃(m1) + C̃(m2). First note that by linearity of C we have
that:

C̃(m1 +m2) =
∑
a∈A

a · C((m1 +m2)
(a)) =

∑
a∈A

a · C(m(a)
1 +m

(a)
2)

=
∑
a∈A

a ·
(
C(m

(a)
1) + C(m

(a)
2)
)
=
∑
a∈A

a · C(m(a)
1) +

∑
a∈A

a · C(m(a)
2)

= C̃(m1) + C̃(m2).

Additionally, for any λ ∈ F and m ∈ Fk, we have that:

C̃(λ ·m) = C̃

(
λ
∑
a∈A

a ·m(a)

)
= C̃

(∑
a∈A

(λ · a) ·m(a)

)

= C̃

(∑
a∈A

(∑
a′∈A

a′ · (λ · a)(a′)
)
·m(a)

)
= C̃

(∑
a′∈A

a′

(∑
a∈A

(λ · a)(a′) ·m(a)

))

=(∗)
∑
a′∈A

a′ · C

(∑
a∈A

(λ · a)(a′) ·m(a)

)
=
∑
a′∈A

a′
∑
a∈A

(λ · a)(a′)C(m(a))

=
∑
a∈A

C(m(a))

(∑
a′∈A

a′ · (λ · a)(a′)
)

=
∑
a∈A

C(m(a)) · (λ · a)

= λ
∑
a∈A

a · C(m(a)) = λ · C̃(m).

where the equality denoted by (*) follows by the definition of C̃, noting that
∑

a∈A(λ ·a)(a
′) ·m(a) ∈

H for any a′ ∈ A.
C̃ has relative distance at least δ. Suppose that m1,m2 ∈ Fk are a pair of distinct messages,

and let c1 = C̃(m1) and c2 = C̃(m2). Then there exists an a ∈ A so that m(a)
1 ̸= m

(a)
2 . Since C has

relative distance δ, we have that C(m(a)
1) and C(m

(a)
2) differ by at least a δ-fraction of the entries.

But by the definition of C̃, this implies in turn that c(a)1 = C(m(a)) and c
(a)
2 = C(m

(a)
2) differ by at

least a δ-fraction of the entries, and so also c1 and c2 differ by at least a δ-fraction of the entries.
Finally, the last two bullets are an immediate consequence of the definition of the extended

code.

5 Sublinear length ZK-IOP for sumcheck

In this section, we present our sublinear sumcheck protocol, and analyze its properties. We first
formally define the sumcheck relation, and its corresponding promise problem.

Definition 5.1 (Sumcheck Relation). Let C : Fk → Fn be a linear code ensemble, and let d ∈ N. The
sumcheck relationRYES

SChk for C⊗d consists of all tuples of the form ((λ1, . . . , λd, α), c) such that:

• c = C⊗d(m) for some m ∈ F[k]d .

• λ1, . . . , λd ∈ Fk.

38

• ⟨λ1 ⊗ · · · ⊗ λd,m⟩ = α.

Here, (λ1, . . . , λd, α) is the explicit input, and c is the implicit input.
RNO

SChk is defined similarly to RYES
SChk except that tuples ((λ1, . . . , λd, α), c) in RNO

SChk satisfy that ⟨λ1 ⊗
· · · ⊗ λd,m⟩ ≠ α (in particular, c ∈ C⊗d).

The sumcheck promise problem for C⊗d is the pair
(
RYES

SChk,RNO
SChk

)
.

The main result of this section is the following theorem:

Theorem 5.2. The following holds for any integer d > 1 and constants δ, µ > 0. Let {Fk}k∈N be a
constructible finite field ensemble, and let C = {Ck : (Fk)

k → (Fk)
n}k∈N be an explicit linear code

ensemble of relative distance δ that is an efficient (qk, µ)-robust LTC.
Then there exists a (d + 2)-round IOP (P,V) for the sumcheck promise problem

(
RYES

SChk,RNO
SChk

)
for C⊗d, with soundness error 1 − min{ δ

2·µ2

16 , δ
d

4 } with a verifier that queries a single symbol from c
and constant number of symbols from the prover’s first message (and reads the other prover messages in
full). The communication complexity of the system is O(d · n · log(|Fk|)), the verifier’s running time is
poly(d, k, log(|Fk|)) + poly(qk, log(|Fk|)), and the prover’s running time is nd · poly(d, k, log(|Fk|)).

Furthermore, the system has the following zero-knowledge guarantees:

1. ZK (General Codes). For any natural t there exists a black-box straight-line PPT simulator Sim
which is ((t+ qk +1), {2, . . . , d})-restricted such that for every t-restricted verifier V∗, and for every
((λ1, . . . , λd, α), c) ∈ RYES

SChk,(
ViewSim

V∗ ((λ1, . . . , λd, α), c) , qS − qk − 1
)
rV ,rSim

≡ (ViewV∗ ((λ1, . . . , λd, α), c) , qV)rP ,rV

where rP , rV , rSim are the random coins of the prover, verifier V∗, and Sim, respectively; qS denotes
the number of queries which Sim makes to its row oracle; qV denotes the number of queries which V∗
makes to her oracles c and the first prover message; and ViewSim

V∗ is as defined in Definition 3.15.

2. ZK (Tensor Codes). If Ck = (Bk)
⊗3 for some code Bk, and the robust local tester is the two-

dimensional plane tester given by Theorem 3.33, then for any natural t PPT simulator Sim which is
adaptive (t + 2)-subspace restricted with respect to the code (Bk)

⊗3d such that for every t-restricted
verifier V∗, and for every ((λ1, . . . , λd, α), c) ∈ RYES

SChk,(
ViewSim

V∗ ((λ1, . . . , λd, α), c) , qS − 2
)
rV ,rSim

≡ (ViewV∗ ((λ1, . . . , λd, α), c) , qV)rP ,rV
(3)

where rP , rV , rSim are the random coins of the prover, verifier V∗, and Sim, respectively; qS denotes
the number of queries which Sim makes to its oracle; and qV denotes the number of queries which V∗
makes to her oracles c and the first prover’s message. Moreover, during the simulation, the subspaces
that Sim chooses for its oracle are in directions [3d] \ {1}, [3d] \ {2}, or [3d] \ {3}.

We note that the only difference between the ZK property of Theorem 5.2 and the notion of
black-box straight-line ZK (Definition 3.15) is that the simulator is given a line/subspace oracle for
the implicit input c of the verifier, instead of a standard (point) oracle for c.

Remark 5.3 (On the Two flavors of ZK of Our Sumcheck ZK-IOP.). Our sumcheck ZK-IOP achieves
two different flavors of zero-knowledge: a ZK guarantee for general base codes with an additive loss in the
ZK parameter, and a ZK guarantee tailored for tensor base codes with a reduced loss in the ZK parameter.
We present both flavors because they are incomparable: the former achieves a weaker ZK guarantee, but is
applicable to a wider class of codes. Both variants are used in our ZK-IOPs of Section 6. Specifically, the

39

former is applied to a high-rate code, which is chosen specifically such that it is a ZK LTC (i.e., the query
complexity of the local tester is lower than the ZK LTC parameter). The latter is applied specifically to the
LDE encoding, which is not a ZK LTC. Therefore, using the version for general codes would not provide
any ZK guarantees. Instead, we utilize the tensor structure of LDEs and use the sumcheck ZK-IOP version
for tensor codes to eliminate the loss in the ZK parameter.

Theorem 5.2 will follow as a corollary of the following, more general, theorem, which summa-
rizes the properties of our sumcheck ZK-IOP:

Theorem 5.4 (Sublinear length ZK-IOP for Sumcheck). The following holds for any integer d > 1 and
constant δ, µ > 0. Let {Fk}k∈N be a constructible finite field ensemble, and let {Ck : (Fk)

k → (Fk)
n}k∈N

be an explicit linear code ensemble of relative distance δ that is an efficient (qk, µ)-robust LTC.
Then there exists an interactive oracle proof (P,V) satisfying the following properties:

• ProverP’s Input: P receives as input d vectors λ1, . . . , λd ∈ (Fk)
k, a scalar α ∈ Fk, and a codeword

c = (Ck)
⊗d(m) ∈ (Fk)

[n]d .

• Verifier V’s Input: V receives as input λ1, . . . , λd and α, and also receives oracle access to c.

• Communication phase: P and V interact for d+2 rounds, where P’s messages are strings over F,
and V’s messages are uniformly random strings.

• Query phase: At the end of the interaction, V computes a uniformly random point (i1, . . . , id) ∈
[n]d (depending only on V’s randomness string), queries a constant number of field elements out of
P’s first message, and fully reads the rest of P’s messages. She then either accepts, rejects, or outputs
(i1, . . . , id) and a scalar α′ ∈ Fk.21

• Completeness: If ((λ1, . . . , λd, α), c) ∈ RYES
SChk then when V interacts with P , with probability 1,

V either accepts, or outputs (i1, . . . , id) and α′ such that c(i1, . . . , id) = α′.

• Soundness: If ((λ1, . . . , λd, α), c) ∈ RNO
SChk then for any prover strategy P∗, when V interacts with

P∗, then with probability at least min{ δ
2·µ2

16 , δ
d

4 }, V either rejects, or outputs (i1, . . . , id) and α′ such
that c(i1, . . . , id) ̸= α′.

• Zero knowledge: the system has the two ZK properties specified in Theorem 5.2.

The interactive oracle proof (P,V) has the same communication complexity and verifier and prover
running times as stated in Theorem 5.2.

Remark 5.5 (Tighter ZK simulation in Theorem 5.4). Notice that for general codes, the simulator in
Theorems 5.2 and 5.4 makes qk+1 more oracle queries than V∗ (because qS = qV + qk+1). This is because
the local tester for C⊗d has no ZK guarantees. Therefore, to simulate the prover messages in these internal
systems, the simulator needs to generate the tester’s/prover’s inputs in these systems, which are u|I and
γ · c(i1, ∗) +R(i1, ∗), respectively. The former can be simulated by reading |I| = qk rows of c, whereas the
latter requires a single row of c.

We note that the number of rows the simulator reads can be reduced to qV + 1 by changing the IOP
of Figure 3 as follows: the honest verifier V directly runs the local tester in Step 1b (instead of obtaining v
from P in Step 1(b)ii). This will increase the query complexity of the honest verifier by an additive qk, but
now the simulator need not fully simulate u|I , so it will only need to query qV + 1 rows of c.

21We note that V does not make any queries to c, but the malicious verifier in the ZK property might query c.

40

In the setting of general codes, we chose the former option, since it guarantees the property that the
verifier makes a constant number of queries to each prover’s oracle message, which will in turn simplify the
query reduction (composition) step. We stress however that in the case of tensor codes, it is crucial for us
that the verifier does not directly run the local tester. This is because in this setting, the query complexity
of the local tester may be larger than the zero-knowledge threshold of the code, and consequently we cannot
afford to have the verifier make these queries directly.

Proof of Theorem 5.2. An IOP (PSChk,VSChk) satisfying the properties stated in Theorem 5.2
can be obtained from the IOP (P,V) of Theorem 5.4 by having PSChk,VSChk emulate P,V , and
when V terminates, if she outputs (i1, . . . , id) and α′ then VSChk queries c(i1, . . . , id) and accepts
if c(i1, . . . , id) = α′, otherwise VSChk rejects. Then completeness and soundness, as well as the
structure and complexities stated in Theorem 5.2 follow directly from the properties stated in The-
orem 5.4. The ZK property also follows from Theorem 5.2 since the additional query of the honest
verifier does not affect the behaviour of a malicious verifier (and the increased query complexity
of the honest verifier is still within the ZK bound t).

To prove Theorem 5.4 we rely on the following (non zero-knowledge) IOP for sumcheck, given
in [RR20] (see also the full version [RR19]).

Theorem 5.6 (IOP for Sumcheck, [RR19], Lemma 6.1). The following holds for any integer d > 1 and
δ > 0. Let {Fk}k∈N be a constructible finite field ensemble, and let {Ck : (Fk)

k → (Fk)
n}k∈N be an explicit

linear code ensemble of relative distance δ.
Then there exists an interactive proof (P,V) satisfying the following properties:

• ProverP’s Input: P receives as input d vectors λ1, . . . , λd ∈ (Fk)
k, a scalar α ∈ Fk, and a codeword

c = (Ck)
⊗d(m) ∈ (Fk)

[n]d .

• Verifier V’s Input: V receives as input λ1, . . . , λd and α.22

• Communication phase: P and V interact for d rounds, where P’s messages are strings over F, and
V’s messages are uniformly random strings.

• Query phase: At the end of the interaction, V computes a uniformly random point (i1, . . . , id) ∈
[n]d (depending on V’s randomness string) and reads all of P’s messages. It then either rejects, or
outputs (i1, . . . , id) and a scalar α′ ∈ Fk.

• Completeness: If ⟨λ1 ⊗ · · · ⊗ λd,m⟩ = α, then when V interacts with P , with probability 1, V
outputs (i1, . . . , id) and α′ such that c(i1, . . . , id) = α′.

• Soundness: If ⟨λ1 ⊗ · · · ⊗ λd,m⟩ ̸= α, then for any prover strategy P∗, when V interacts with
P∗, then with probability at least δd, V either rejects, or outputs (i1, . . . , id) and α′ such that
c(i1, . . . , id) ̸= α′.

The interactive oracle proof (P,V) has communication complexity d · n · log(|Fk|), verifier running
time poly(d, k, log(|Fk|)), and prover running time nd · poly(d, k, log(|Fk|)).

Remark 5.7. We note the following changes in the above Theorem 5.6, compared to [RR19, Lemma 6.1]:

1. [RR19, Lemma 6.1] was proven for the special case where Fk is the binary field (and the vectors
λ1, . . . , λd are possibly over a larger field of characteristic 2). However, it can be verified that the
proof can be extended to any finite field.

22We note that in this protocol, V does not receive oracle access to c.

41

2. [RR19, Lemma 6.1] was proven for the special case where Ck is a systematic code. However, the
protocol can be extended to any linear code, by modifying the check in step (2a) to be that w̃ℓ = Cn(y)
for y ∈ {0, 1}n which satisfies that

∑
j∈[n] λℓ(j) · y(j) = bℓ−1. Such a y can be efficiently found by

solving a system of linear equations, given a parity-check matrix for the code.

3. In [RR19, Lemma 6.1], the verifier receives oracle access to c, and in the query phase the verifier
computes a uniformly random point (i1, . . . , id) ∈ [n]d (depending on V’s randomness string), reads
all of P’s messages, and based on these it either rejects, or computes a value α′ ∈ {0, 1}. The verifier
then queries c(i1, . . . , id) and accepts if and only if c(i1, . . . , id) = α′. In the current protocol, the
verifier does not receive oracle access to c, and in the query phase it just outputs (i1, . . . , id) and α′,
but does not make the actual query to c.

5.1 Warmup: the 2-Dimensional Case

In this section we describe a special case of our sumcheck ZK-IOP for the 2-dimensional setting
for sums of the form

∑
i∈[k]m(i) = α (i.e., with no tensor coefficients). The full protocol is given

in Section 5.2 below. We begin with a more detailed overview of the sumcheck protocol of [RR20],
then highlight the differences introduced in our protocol.

Sumcheck for Tensor Codes of [RR20]. Let C0 : Fk → Fn be a linear base code, and let C = C0⊗
C0 be its two-dimensional tensor product. Ron-Zewi and Rothblum’s sumcheck for a codeword
c = C(m) and the claim

∑
i,j∈[k]m(i, j) = α (where m(i, j) denotes the entry in row i and column

j in m, when viewed as a k × k matrix), operates as follows:

1. P computes the sum z :=
∑

j∈[k]C0(m(∗, j)) of the columns’ encodings with the code C0,
where m(∗, j) denotes the j’th column of m, when viewed as a k × k matrix.

Then, P sends z to V as an explicit message, i.e., which V reads in full.

2. V checks that z = C0(y) for some y ∈ Fk such that
∑

i∈[k] y(i) = α, and rejects otherwise.
▷ Notice that by linearity, z = C0(

∑
j∈[k]m(∗, j)), where

∑
i∈[k]

∑
j∈[k]

m(∗, j) =
∑

i,j∈[k]

m(i, j) = α.

3. V samples a random row i0 ← [n] and sends i0 to P .

4. P sends to V the i0th row z′ := c(i0, ∗) of c, where c is viewed as an n× n matrix.

5. V checks that z′ = C0(y
′) for y′ ∈ Fk such that

∑
j∈[k] y

′(j) = z(i0).
▷ Notice that by the definition of the encoding function for the tensor product, c(i0, ∗) = C0(y

′) for

y′ ∈ Fk whose jth entry is C0(m(∗, j))(i0). Consequently,∑
j∈[k]

y′(j) =
∑
j∈[k]

C0(m(∗, j))(i0) = z(i0).

6. V samples a random j0 ← [n], queries c(i0, j0), and accepts if and only if z′(j0) = c(i0, j0).

42

Our Sumcheck ZK-IOPs with Sublinear Communication. Intuitively, the IOP of [RR20] reveals
to the verifier the sum of columns in c, as well as a single row of c (when viewed as an n×nmatrix).
As discussed in Section 2.2, we obtain ZK by masking these with a random codeword in the base
code C0. This added mask requires the verifier to run an additional local test (to verify the mask is
close to the base code). Our ZK-IOP for 2-dimensional sumchecks is given in Figure 2, where we
mark modifications over the IOP of [RR20] in red.

Sublinear-Communication Sumcheck ZK-IOPs for 2-dimensional Tensor Codes

Let C0 : Fk → Fn be a q-LTC, and C = C0 ⊗ C0 : Fk×k → Fn×n. The IOP is executed between a
prover P with input c = C(m) for m ∈ Fk×k, and a verifier V that has input α :=

∑
i,j∈[k] m(i, j)

and oracle access to c. The goal is to verify that c = C(m) for a message m satisfying that∑
i,j∈[k] m(i, j) = α.

1. P samples r ← Fk, and sends the oracle message r̂ := C0(r) and the explicit message
β :=

∑
i∈[k] r(i) to V .

▷ Let r̄ ∈ Fk×k denote the matrix whose first column is r, and all other entries are 0, and
let R := C(r̄).

2. V runs the local tester of C0 to obtain a set I ⊆ [n] , |I| = q of queries, and sends I to P . P
then sends v := r̂|I to V , and V checks that the local tester accepts v, and checks consistency
of v with r̂ at a random point. If one of the tests fails then V rejects.

3. V picks γ ← F and sends γ to P .
Both parties locally set c′ := γ · c+R = C(γ ·m+ r̄).

4. P computes z :=
∑

j∈[k] C0(γ ·m(∗, j) + r̄(∗, j)). Then, P sends z to V as an explicit mes-
sage.

5. V checks that z = C0(y) for some y ∈ Fk such that
∑

i∈[k] y(i) = γ · α + β, and rejects
otherwise.

6. V samples a random row i0 ← [n] and sends i0 to P .

7. P sends to V the i0th row z′ := c′(i0, ∗).

8. V checks that z′ = C0(y
′) for y′ ∈ Fk such that

∑
j∈[k] y

′(j) = z(i0).

9. V samples a random j0 ← [n], queries c(i0, j0) and r̂(i0), and accepts if and only if z′(j0) =
γ · c(i0, j0) + C0(r̂(i0), 0, . . . , 0)(j0).

Figure 2: Sumcheck ZK-IOP for 2-Dimensional Tensor Codes (Special Case of Figure 3)

5.2 The Full Sumcheck Protocol

The IOP system (P,V) described in Theorem 5.4 is given in Figure 3 below. For simplicity, we
describe a protocol in which the communication and query phase are interleaved, but it can be
verified that all of the verifier’s queries can also be deferred to the end of the protocol. We also
omit the subscript k (when clear from the context) for better readability.

It can be verified that the protocol has the required structure, and that the communication
complexity and verifier and prover running times are as claimed (noting that R(i1, . . . , id) =
(C⊗(d−1)(w(i1), 0, . . . , 0))(i2, . . . , id) can be computed in time d · polylog(|Fk|), given w(i1) and a
generator matrix for C). Next we analyze the completeness, soundness, and zero-knowledge

43

properties of this protocol.

5.3 Completeness

Suppose that ⟨λ1 ⊗ · · · ⊗ λd,m⟩ = α. We shall show that in this case, with probability 1, V either
accepts, or outputs (i1, . . . , id) ∈ [k]d and α′′ ∈ F so that c(i1, . . . , id) = α′′.

First note that by the properties of the local tester, we clearly have that ψTEST(u|I) = ACCEPT,
and so the verifier will not reject in Steps 1(b)iii and 1(b)iv.

Next observe that by linearity of C, z = C(y) for y =
∑

j∈[k′] λ
′(j)(γ · m(∗, j) + r̄(∗, j)), which

satisfies that∑
i∈[k]

λ1(i) · y(i) =
∑

i∈[k],j∈[k′]

λ1(i) · λ′(j)(γ ·m(∗, j) + r̄(∗, j))

= γ
∑

i∈[k],j∈[k′]

λ1(i) · λ′(j) ·m(i, j) + λ′(1)
∑
i∈[k]

λ1(i) · r(i) = γ · α+ β. (4)

Consequently, the verifier does not reject in Step 2b.
Furthermore, we have that c′ = C ′(m′) for m′ ∈ Fk′ , given by m′(j) = C(γ ·m(∗, j)+ r̄(∗, j))(i1)

for j ∈ [k′], which satisfies that

⟨λ2 ⊗ · · · ⊗ λd,m′⟩ = ⟨λ′,m′⟩ =
∑
j∈[k′]

λ′(j) · C(γ ·m(∗, j) + r̄(∗, j))(i1) = z(i1). (5)

Consequently, by Theorem 5.6, with probability 1, V ′ will output (i2, . . . , id) and α′ so that γ ·
c(i1, . . . , id) +R(i1, . . . , id) = α′ (and in particular, will not reject in Step 3a).

Finally, note that by the definition of R, we have that

σ = (C ′(u(i1), 0, . . . , 0))(i2, . . . , id) = C ′((C(r))(i1), 0, . . . , 0))(i2, . . . , id) = R(i1, . . . , id). (6)

Consequently, we have that σ = α′ if γ = 0, and c(i1, . . . , id) = (α′ − σ)/γ = α′′ if γ ̸= 0, and so
with probability 1, V will either accept or output (i1, . . . , id) and α′′ so that c(i1, . . . , id) = α′′ in
Step 3c.

5.4 Soundness

Suppose that ⟨λ1⊗· · ·⊗λd,m⟩ = α∗ for some α∗ ̸= α. We shall show that in this case, for any prover
strategy P∗, with probability at least min{ δ

2·µ2

16 , δ
d

4 },V either rejects, or outputs (i1, . . . , id) ∈ [k]d

and α′′ ∈ F so that c(i1, . . . , id) ̸= α′′.
Let β∗ ∈ F and u∗ ∈ Fk denote P’s messages in Step 1a, and let v∗ denote P’s message in Step

1(b)ii. First note that we may assume that ψTEST(v
∗) = ACCEPT, since otherwise V clearly rejects

on Step 1(b)iii. Next observe that if u∗ is δ
2 -far from C, then by the properties of the robust local

tester, with probability at least δ·µ
4 , we have that u∗|I is δ·µ

4 -far from ψ−1TEST(ACCEPT). Assuming
that this event holds, our assumption that ψTEST(v

∗) = ACCEPT implies that v∗ is δ·µ
4 -far from

u∗|I . But in this case, V will reject in Step 1(b)iii with probability at least δ·µ
4 (and overall V will

reject with probability ≥ δ2µ2

16). Hence we may assume that u∗ is δ
2 -close to a codeword C(r).

Let β, r̄, and R be defined as in Step 1a with respect to the string r. Next observe that since
α∗ ̸= α, with probability at least 1− 1

|F| ≥
1
2 over the choice of γ in Step 1c, we have that γ ·(α−α∗) ̸=

β − β∗. In what follows, assume that the latter event holds, which implies in turn that

γ · α+ β∗ ̸= γ · α∗ + β. (7)

44

Let z∗ denote P’s messages in Step 2a. We may assume that z∗ = C(y∗) for y∗ ∈ Fk which
satisfies that

∑
i∈[k] λ1(i) · y∗(i) = γ · α + β∗, since otherwise V clearly rejects in Step 2b. On the

other hand, by (4), for z which is defined as in Step 2a with respect to r, we have that z = C(y) for
y ∈ Fk which satisfies that

∑
i∈[k] λ1(i) · y(i) = γ ·α∗+ β. By (7), we conclude that z and z∗ are two

distinct codewords of C, and so they differ by at least a δ-fraction of the coordinates. By this, and
by assumption that u∗ is δ

2 -close to C(r), with probability at least δ
2 over the choice of i1 in Step 2c,

it holds that z(i1) ̸= z∗(i1) and u(i1) = (C(r))(i1). Next assume that these events hold.
Next recall that by (5), we have that c′ = C ′(m′) for m′ ∈ Fk′ which satisfies that ⟨λ2 ⊗ · · · ⊗

λd,m
′⟩ = z(i1). But by assumption that z∗(i1) ̸= z(i1), and by Theorem 5.6, this implies in turn that

with probability at least δd−1, V ′ either rejects, or outputs (i2, . . . , id) and α′ so that c′(i2, . . . , id) ̸=
α′. Assume that this event holds. If V ′ rejects, then V also rejects and aborts, and so we may assume
that V ′ outputs (i2, . . . , id) and α′ so that c′(i2, . . . , id) ̸= α′, where c′(i2, . . . , id) = γ · c(i1, . . . , id) +
R(i1, . . . , id).

Finally, by (6) and by assumption that u(ii) = (C(r))(i1), we have that σ = R(i1, . . . , id), which
implies in turn that σ ̸= α′ if γ = 0, and c(i1, . . . , id) ̸= (α′ − σ)/γ if γ ̸= 0. So in this case, V will
either reject or output (i1, . . . , id) and α′′ so that c(i1, . . . , id) ̸= α′′ on Step 3c.

We conclude that in the case that ⟨λ1 ⊗ · · · ⊗ λd,m⟩ ≠ α, V rejects with probability at least
min{ δ

2·µ2

16 , δ
d

4 }.

5.5 Zero knowledge

In this section we prove the two zero-knowledge properties stated in Theorem 5.4. Specifically, in
Section 5.5.1 we provide a simulator for general codes C, whereas in Section 5.5.2 we describe a
simulator for C which is itself a tensor product C = B⊗3, where we exploit the tensor product to
reduce the query complexity of the simulator.

5.5.1 Zero Knowledge for General Codes

Proof of ZK Item (1) in Theorem 5.4: Let t such that t + q < k. We describe a ((t + q +
1), {2, . . . , d})-restricted black-box straight-line simulator Sim that perfectly simulates the view
ViewV∗(c) of any t-restricted (possibly malicious) verifier V∗. This view consists of her random-
ness, her inputs 1[k]

d

, λ1, . . . , λd and α := ⟨λ1⊗ · · ·⊗λd,m⟩, the explicit message v, z received from
the honest prover P in Steps 1(b)ii and 2a, the explicit messages received from P when executing
the internal IOP in Step 3a, and the oracle answers to V∗’s queries to c and u. (We note that while
the honest verifier does not make any queries to c, and only makes a constant number of queries
to u – to check consistency with v in Step 1(b)iv, to check z in Step 2b, and to perform Step 3b
– the malicious V∗ might make ≤ t queries to c, u.) In fact, the simulator which we design will
have a stronger property: it will perfectly simulate β = λ′(1)

∑
i∈[k] λ1(i)r(i), as well as the entire

codeword γ · c(i1, ∗)+R(i1, ∗) ∈ C⊗(d−1) from Step 3a. Since V∗’s view in Step 3a can be efficiently
generated from γ · c(i1, ∗) + R(i1, ∗) by honestly emulating the interaction between V∗ and the
honest prover P ′, this will show that V∗’s view in Step 3a can be simulated, even though (P ′,V ′)
is not ZK.

We now describe the simulator. Notice that the oracle given to Sim is a row oracle for the tensor
product C ⊗ C⊗(d−1), so in the following we refer to the oracle as a “row oracle”. Sim, on input
1[k]

d

, λ1, . . . , λd and α := ⟨λ1 ⊗ · · · ⊗ λd,m⟩, and given access to a row oracle for c ∈ C ⊗ C⊗(d−1),
and black-box access to V∗, operates as follows:

45

1. Initializes sets Qc = Qr = ∅ (intuitively, these are the sets of queries which V∗ makes to her
oracles c, u, respectively).

2. Answers any query q = (i, j) ∈ [n] × [n]d−1 of V∗ to c by querying c(i, ∗) from Sim’s row
oracle, sending c(q) to V∗, and adding q to Qc.23

3. Samples r ← Fk, generates β, u and R as the honest prover does (in Step 1a in Figure 3). If
at some point during the simulation V∗ queries β, then Sim sends β to V∗.

4. Answers queries of V∗ to c or u as follows. Queries to c are answered as in Step 2. Queries i
to u are answered by adding i to Qr, sending u(i) to V∗, and additionally querying c(i, ∗).

5. At some point, Sim receives I ⊆ [n] of size |I| = q from V∗. Then, for every i ∈ I , Sim adds i
to Qr and queries c(i, ∗) from its row oracle. Then, Sim sends v := u|I to V∗.

6. At some point, Sim receives γ ∈ F from V∗.

7. Let Q := Qr ∪
{
i : ∃j ∈ [n]d−1 , (i, j) ∈ Qc

}
. Sim Samples y′ ∈ Fk uniformly at random

subject to the following constraints:

(a) for every i ∈ Q,

C(y′)(i) = λ′(1) · u(i) + γ ·

∑
j∈[k′]

λ′(j) · C(m(∗, j))

 (i). (8)

Notice that for every i ∈ Q, Sim knows c(i, ∗). Therefore, Sim can decode c(i, ∗), which is
exactly C(m(i, ∗)). Thus, Sim can compute the right-hand side of Equation (8).

(b)
∑

i∈[k] λ1(i) · y′(i) = γ · α+ β.

Let z′ := C(y′). Sim sends z′ to V∗.

8. Answers queries of V∗ to c or u as follows. Queries to c are answered as
in Step 2. Queries i to u are answered by querying c(i, ∗), and then sending(
z′(i)− γ ·

∑
j∈[k′] λ

′(j) · C(m(i, j))
)
/λ′(1)24 to V∗ as the oracle answer. (C(m(i, j)) can be

efficiently computed from c(i, j) as explained in Step 7 above.)

9. At some point, Sim obtains from V∗ an index i1 ∈ [n]. Sim then queries its oracle to obtain
c(i1, ∗), computes u(i1) as in Step 8, computes R′(i1, ∗) = C ′(u(i1), 0, . . . , 0), and sets c′′ :=
γ · c(i1, ∗) +R′(i1, ∗) to be the codeword on which the IOP of Step 3a in Figure 3 is executed.
It then executes Step 3a in Figure 3 with V∗ by honestly emulating the prover P ′ on input c′′.
Let M denote the prover messages sent during this phase. Throughout this execution, and
after it ends, Sim continues to answer V∗’s oracle queries as in Step 8 above.

It follows directly from the description of Sim that it is straight-line and uses V∗ in a black-box
manner. Therefore, to complete the proof, we need to prove that Sim is PPT, (t+ q+1, {2, . . . , d})-
restricted, and that V∗’s view when interacting with Sim is distributed identically to its real-world
view.

23We note that Sim could actually answer an entire row query of V∗ to c. This fact will be used in Lemma 5.9 below.
24We note that this expression is well defined because we have assumed that λ′(1) ̸= 0.

46

Sim is (t + q + 1)-restricted. Sim queries its oracle in three cases: (1) when V∗ queries c or u
(there are at most t such queries, because V∗ is t-restricted); (2) in Step 5, to generate v (Sim makes
q queries); and (3) in Step 9, where Sim makes a single query. Overall, Sim makes at most t+ q + 1
queries.

Sim is PPT. All simulation steps are clearly poly(k)-time, except for sampling y′ in Step 7. We
now explain why this too can be done in poly(k) time. Since the code is linear, each codeword sym-
bol C(y′)(i) can be written as an F-linear combination of the message symbols y′ (1) , . . . , y′ (k).
Therefore, the |Q|+1 equations in Step 1 can be replaced with |Q|+1 linear equations on the mes-
sage symbols y′ (1) , . . . , y′ (k). Moreover, since (1) r (and consequently u and β) were sampled as
in the real world, and (2) the oracle answers to c are answered using the actual codeword symbols,
such a solution y′ exists, namely the set of linear equations has a solution (since it has a solution
in the real world). Therefore, a random solution can be found efficiently by solving a system of
linear equations, and picking a random element in the subspace solution.

Simulated and Real Views are Identically Distributed. Let ViewR,ViewS denote the real and
simulated views, respectively. It follows directly from the description of Sim that qS = qV + q + 1,
where qS , qV are the actual number of queries which Sim,V∗ make to their oracles (respectively).
Therefore, it suffices to prove that ViewS ≡ ViewR. Moreover, since β and V∗’s randomness rand
are identically distributed in both worlds, we can condition both views on these values.

We claim first that the oracle queries which V∗ makes before sending γ (i.e., before Step 1c in
the real world, and before Step 6 in the simulation) are identically distributed. Indeed, each query
is a function of the randomness rand of V∗ (this is distributed identically in both worlds), and
the oracle answers to previous queries. These queries are either to u or c, which are identically
distributed in the real world and the simulation. Therefore, the oracle answers are identically
distributed in both cases, and it follows by induction over the number t′ ≤ t of queries which V∗
makes to c, u (before Steps 1c in the IOP and 6 in the simulation) that the queries are identically
distributed. Since γ is a function of rand and the oracle answers to queries made before Step 1c in
the IOP and Step 6 in the simulation, γ is also identically distributed in ViewR,ViewS , and we can
condition both views on it. Therefore, the constraints in Step 7 of the simulation are identically
distributed to the constraints induced by the real-world c, u, γ.

It remains to prove that when conditioned on γ, β, V∗’s randomness rand, and the oracle an-
swer to queries in Q (defined in Step 7 of the simulation) then: (1) z ≡ z′, (2) the simulated
messages M in Step 9 of the simulation are identically distributed to P ′’s messages in Step 3a of
Figure 3, and (3) the queries – and oracle answers to the queries – which V∗ makes after receiving
z (in the real world) or z′ (in the simulation) are identically distributed.

Lemma 5.8. It suffices to prove that z ≡ z′.

Proof: Assume that z ≡ z′, and we show that in this case items (2) and (3) above are also
identically distributed in the real world and the simulation.

We show first that the queries – and oracle answers to the queries – which V∗ makes after
receiving z (z′, respectively), but before Step 3a in Figure 3 (Step 9 in the simulation, respectively)
are identically distributed. Answers to queries made to c are clearly identical in both worlds
(because Sim answers them using its own oracle). Since c is fixed and λ′(1) ̸= 0, then (for a fixed
γ) there is a bijection between z = λ′(1) ·u+ γ ·

∑
j∈[k′] λ

′(j) · C(m(∗, j)) in the real world (z′ in the
simulation, respectively) and u, and we have assumed that z ≡ z′, then answers to oracle queries
to u are also identically distributed. V∗’s queries are determined by her randomness rand, β, z (in
the real world, or z′ in the simulation) and oracle answers to her previous queries. Since we have
conditioned on rand, β, we assume that z ≡ z′, and we have shown that the oracle answers are
identically distributed, then (by induction on the number of queries which V∗ makes) the oracle

47

queries are also identically distributed. Since all these determine i1, it is also identically distributed
in the real world and the simulation.

We are now ready to prove that the simulated messages M from Step 9 (i.e., item (2)) are
distributed identically to the real world. These messages are fully determined by c′′ (which was
defined in Step 9 of the simulation.) c′′ is fully determined by i1, u(i1), γ, and c(i1, ∗). We have
already shown above that i1 is identically distributed in both worlds. u(i1) is determined by
i1, c(i1, ∗), γ, and z (in the real world,25 or z′ in the simulation). Since we have already shown
above that all these are identically distributed, we conclude that the simulated M is distributed
identically to the real world.

Next, we prove that the oracle queries and answers made during and after Step 3a in Fig-
ure 3 (or Step 9 in the simulation) are identically distributed in both worlds, which proves item
(3). These oracle answers and queries are determined by rand, β,M (which are all identically dis-
tributed in both worlds), z (in the real world, or z′ in the simulation), and the queried locations in
c and u (in the real world) or z′ (in the simulation, since it is used to answer queries to u). Since:
(a) we have conditioned on rand, β, (b) we assume that z ≡ z′, (c) we have already shown that in
this case M is identically distributed in the real and simulated views, and (d) for a fixed γ there
is a bijection between z and u in the real world, these are all identically distributed (here again
we use the fact that answers to queries to c are identical in both views because Sim answers them
using its own oracle). This concludes the proof of Lemma 5.8.

In summary, we have shown that to complete the proof, it suffices to prove that z ≡ z′. Recall
that we have already shown that u|Q is distributed identically in ViewR,ViewS , and this holds
even if z ̸≡ z′ (because u|Q was fixed before z, z′ were determined). Therefore, it suffices to prove
that z ≡ z′ conditioned on u|Q. We do so by showing that z, z′ are identically distributed to an
alternative distribution z′′, which we now define.

Defining the alternative distribution z′′. Let V :=
{
v ∈ C : v|Q = 0⃗

}
, and notice that V is a

linear subspace. Let t′ := |Q|, and S :=
{
s ∈ Ft′ : ∃c′′ ∈ C, c′′|Q = s

}
. For every s ∈ S fix an

arbitrary cs ∈ C which satisfies cs|Q = s, and let Cs := {cs + v : v ∈ V }. Notice that {Cs : s ∈ S}
is a partition of C (here, we use the fact that C is a linear code).
z′′ is sampled as follows:

1. Set s ∈ S as follows: s = λ′(1) · u|Q +
(
γ ·
∑

j∈[k′] λ
′(j) · C (m(∗, j))

)
|Q.

2. Sample z′′ ← Cs subject to the constraint that z′′ encodes a message y′′ ∈ Fk such that∑
i∈[k] λ1(i) · y′′(i) = γ · α+ β.

We now show that z′′ is identically distributed to both z and z′.
z′, z′′ are identically distributed. Both distributions are over codewords which satisfy the fol-

lowing constraints: (1) consistent with λ′(1)·u|Q+
(
γ ·
∑

j∈[k′] λ
′(j) · C (m(∗, j))

)
|Q; and (2) encode

a message y⋆ satisfying
∑

i∈[k] λ1(i) · y⋆(i) = γ · α + β. The only difference is that z′ is sampled
by sampling directly a message y′ satisfying these two constraints, then encoding y′ to obtain z′,
whereas z′′ is sampled by first determining s, then sampling a random codeword z′′ ∈ Cs which
satisfies constraint (2). Since m is fixed (because c is fixed), and we have conditioned on u|Q and
γ, this fixes s. Therefore, sampling a random y′ which satisfy both constraints induces the same
distribution as sampling a codeword z′′ ∈ Cs which satisfies constraint (2) (since s is fixed), which
is exactly the distribution of z′′ (when s is fixed).

25This is because, as noted above, for a fixed γ there is a bijection between z and u.

48

z, z′′ are identically distributed. Recall that m is fixed, and that we have fixed u|Q and γ, and
this (as noted above) fixes s. Therefore, to prove that z ≡ z′′ it suffices to prove that z is distributed
uniformly at random over Cs, subject to the constraint that

(⋆) ∃y : z = C(y) ∧
∑
i∈[k]

λ1(i) · y(i) = γ · α+ β

(recall that β is also fixed). We proceed to prove that this is indeed the case. Notice that if s
is fixed then so is s′ :=

(
s−

(
γ ·
∑

j∈[k′] λ
′(j) · C (m(∗, j))

)
|Q
)
/λ′(1).26 Since u ∈ Cs′ and s′ is

fixed, sampling a random u in C subject to the constraints u|Q and β is exactly the distribution of
sampling a random u in Cs′ subject to the constraint that

(⋆⋆) ∃r : u = C(r) ∧ β = λ′(1)
∑
i∈[k]

λ1(i) · r(i).

Since Cs′ = {cs′ + v : v ∈ V } and C is linear, sampling u ← Cs′ subject to (⋆⋆) is equivalent to
setting u := cs′ + v, for v sampled from V uniformly at random subject to the constraint that

(⋆ ⋆ ⋆) ∃mv : v = C(mv) ∧ β = λ′(1)
∑
i∈[k]

λ1(i) · (ms′(i) +mv(i))

where ms′ is the message encoded in cs′ (i.e., cs′ = C(ms′)). Therefore, z = γ ·∑
j∈[k′] λ

′(j) · C (m(∗, j)) + λ′(1) · (cs′ + v) = s′′ + λ′(1) · v for s′′ := γ ·
∑

j∈[k′] λ
′(j) · C (m(∗, j)) +

λ′(1)·cs′ which is a fixed codeword inCs. Since v ← V subject to (⋆⋆⋆), and λ′(1) ̸= 0, we conclude
that z is also uniformly distributed over Cs subject to (⋆).

Zero-Knowledge against Row Queries to c. We note that the sumcheck ZK-IOP of Figure 3
provides a stronger ZK guarantee than stated in Theorem 5.4: it has ZK against verifiers V∗ that
make at most t queries to the prover’s first message and to a row oracle for c ∈ Ck ⊗ C

⊗(d−1)
k . This

fact will be useful when the sumcheck ZK-IOP is used to design a ZK-IOP for SAT in Section 6.

Lemma 5.9. The IOP of Figure 3 has the following guarantee. For any natural t such that t+ qk < k there
exists a black-box straight-line PPT simulator Sim which is ((t + qk + 1), {2, . . . , d})-restricted such that
the following holds. For every ((λ1, . . . , λd, α), c) ∈ RYES

SChk, and for every verifier V∗ that makes at most t
queries to c, the prover’s first message, and to a row oracle for c ∈ Ck ⊗ C

⊗(d−1)
k , we have(

ViewSim
V∗ ((λ1, . . . , λd, α), c) , qS − qk − 1

)
rV ,rSim

≡ (ViewV∗ ((λ1, . . . , λd, α), c) , qV)rP ,rV
(9)

where rP , rV , rSim are the random coins of the prover, verifier V∗, and Sim, respectively; qS denotes the
number of queries which Sim makes to its row oracle; qV denotes the number of queries which V∗ makes to
her oracles; and ViewSim

V∗ is as defined in Definition 3.15.

Proof (Sketch). We repeat the proof of the ZK property in Theorem 5.4, altering the simulator
Sim to answer row queries i of V in Steps 2, 4, and 8 with the full row c(i, ∗) which Sim queried
from its own oracle. We now need to show that the real and simulated views are identically
distributed. In the proof of Theorem 5.4, we used the fact that the answers to V∗’s queries to c are

26Notice that s′ is well defined because we have assumed λ′(1) ̸= 0.

49

identical in the real world and the simulation, because in the simulation they are answered using
a (row) oracle to c. This is still true even when V∗ makes row queries to c ∈ Ck ⊗C

⊗(d−1)
k , because

in the proof of Theorem 5.4 any (point-wise) query of V∗ to c induced a full row-query of Sim to c.
The rest of the proof holds unchanged.

5.5.2 Zero-Knowledge for Tensor Codes

In this section we prove that for codes C which are themselves a tensor product of another code
B, our Sumcheck ZK-IOP of Figure 3 can have a smaller gap in the query complexities of the
malicious verifier V∗ and the ZK simulator. At a high level, by exploiting the tensor structure of
C, we can employ a more structured local testing procedure whose “leakage” is contained in rows
of the code B. Since such rows have cost 1 in our sumcheck protocol (i.e., the simulator can access a
row oracle, so each row costs the simulator a single oracle query), we are able to reduce the query
complexity of the simulator. We now turn to the formal proof.

Proof of ZK Item (2) in Theorem 5.4: Let t such that (t+ 1) · n2/3 < k. We show how to modify
the simulator Sim of Section 5.5.1 to obtain an adaptive (t + 2)-subspace restricted (see Defini-
tion 4.11) straight-line black-box simulator Sim′ that perfectly simulates the view ViewV∗(c) of any
t-restricted (possibly malicious) verifier V∗. We note that the subspace oracle of Sim is defined with
respect to B⊗3d.

Sim′, on input 1[k]
d

, λ1, . . . , λd and α := ⟨λ1 ⊗ · · · ⊗ λd,m⟩, operates similarly to Sim, with the
following modifications:

• Revised Step 2: Answers any query q ∈ [n]d of V∗ to c by querying c(q) from Sim’s oracle
(recall that C⊗d = B⊗3d, so a point in c is a point in a codeword of B⊗3d, so Sim’s oracle can
be used to answer point queries to c), sending c(q) to V∗, and adding q to Qc.

• Revised Step 4: queries to c are answered according to the revised Step 2 described above.
Queries to u are answered by adding i to Qr and sending u(i) to V∗. (Notice that on queries
to u, Sim′ does not query its oracle for c; these queries will be made in the revised Step 5
below.)

• Revised Step 5: At some point, Sim receives from V∗ the queries of the local tester. Because
the local tester is the two-dimensional plane tester given by Theorem 3.33, this set of queries
is an axis-parallel two-dimensional plane P , namely P is parallel to the ℓ’th axis for some
ℓ ∈ {1, 2, 3}. Sim sends v′ := u|P to V∗, and adds an arbitrary point on P to Qr.

Then, Sim sets the subspace of its oracle to [3d]\{ℓ}. Recall that at this point, for every query
q = (i1, . . . , i3d) ∈

[
n1/3

]3d
which V made to c in the revised Steps 2 or 4 of the simulation,

Sim is given the restriction of c to the entire subspace c{ℓ}←iℓ . In addition, for every i ∈ Qr,
Sim queries the corresponding subspace c{ℓ}←i.

(For example, if ℓ = 1 then for every q = (i1, . . . , i3d) ∈ Qc Sim is given
(c(i1, i

′
2, . . . , i

′
3d)(i′2,...,i′3d)∈[n1/3]

3d−1 . Then, for every i = (i1, i2, i3) ∈ Qr, Sim queries its oracle

on i1 to obtain (c(i1, i
′
2, . . . , i

′
3d)(i′2,...,i′3d)∈[n1/3]

3d−1 .27)

27Notice, in particular, that Sim reads c|P .

50

• Answering queries to c or u after the revised Step 5 (but before the revised Step 7): Sim
answers queries q = (i1, . . . , i3d) ∈

[
n1/3

]3d
to c by querying the subspace oracle on iℓ,

sending c(q) to V∗, and adding q to Qc. Queries i = (i1, i2, i3) ∈
([
n1/3

])3
to u are answered

by adding i to Qr, sending u(i) to V∗, and additionally querying the subspace oracle on iℓ.

• Revised Step 7: Let

Q :=

{
iℓ ∈

[
n1/3

]
: ∃i ∈

[
n1/3

]3
s.t. iℓ it the ℓ′th coordinate in i, and i ∈ Qr

}
∪
{
iℓ ∈

[
n1/3

]
: ∃i1, . . . , iℓ−1, iℓ+1, . . . , i3d ∈ [n]1/3 , (i1, . . . , i3d) ∈ Qc

}
and Q̃ :=

{
(i1, i2, i3) ∈

([
n1/3

])3
: iℓ ∈ Q

}
.

Sim Samples y′ ∈ Fk uniformly at random subject to the following constraints:

1. for every i ∈ Q̃,

C(y′)(i) = λ′(1) · u(i) + γ ·

∑
j∈[k′]

λ′(j) · C(m((∗, j))

 (i).

(For every i ∈ Q̃, the simulator obtained from its oracle a subspace containing the ith
row c(i, ∗), so similar to the original Step 7, Sim can efficiently compute C(m(∗, j))(i)
and the right-hand side of the equation above.)

2.
∑

i∈[k] λ1(i) · y′(i) = γ · α+ β.

Let z′ := C(y′). Sim sends z′ to V∗.

• Revised Steps 8 and 9: the only difference in these steps is that Sim′ uses its subspace oracle
(instead of a row oracle) to answer queries to u and to generate u(i1).

The proof that the simulation is correct follows similarly to the proof for general codes in
Section 5.5.1, so we only sketch the differences.

Sim is adaptive (t+ 2)-subspace restricted. First, it follows directly from the definition of Sim
that it is a 2-phase algorithm (the first phase ends at the onset of revised Step 5 of the simulation).
As for the query bound, Sim queries its oracle in three cases: (1) when V∗ queries c or u (there are
at most t such queries, because V∗ is t-restricted); (2) a single query in the revised Step 5 (indeed,
Sim adds a point on P to Qr, and then reads the corresponding subspace from c); and (3) a single
query in the revised Step 9, to generate the i1’th row of c. Overall, Sim makes at most t+2 queries.

Sim is PPT. We only need to explain why sampling y′ in the revised Step 7 can be done effi-
ciently (all other steps are clearly efficient). Each codeword symbol C(y′)(i) can be written as an
F-linear combination of the message symbols y′ (1) , . . . , y′ (k) because the code is linear. There-
fore, the

∣∣∣Q̃∣∣∣+ 1 ≤ |Q| · n2/3 + 1 equations in the revised Step 7 can be replaced with |Q| · n2/3 + 1

linear equations on the message symbols y′ (1) , . . . , y′ (k). Moreover, since (1) r (and consequently
u and β) were sampled as in the real world, and (2) the oracle answers to c are answered using
the actual codeword symbols, such a solution y′ exists, namely the set of linear equations has a
solution (since it has a solution in the real world). Therefore, a random solution can be found
efficiently.

51

Simulated and Real Views are Identically Distributed. Let ViewR,ViewS denote the real and
simulated views, respectively. It follows directly from the description of Sim that qS = qV + 2,
where qS , qV are the actual number of queries which Sim,V∗ make to their oracles (respectively).
Therefore, it suffices to prove that ViewS ≡ ViewR. Moreover, since β and V∗’s randomness rand
are identically distributed in both worlds, we can condition both views on these values.

v = u|P is identically distributed in both views. Similarly to the analysis of Section 5.5.1, the
oracle queries which V∗makes before sending P (i.e., before Step 1(b)i in the real world, and before
the revised Step 5.5.2 in the simulation), are identically distributed. Similarly, P is identically
distributed in both views. Since v = u|P , and u is identically distributed in both views, then v is
also identically distributed in ViewR,ViewS . We can therefore condition both views on P, v.

γ is identically distributed in both views. Similarly to the analysis of Section 5.5.1, the oracle
queries and answers which V∗ makes before sending γ (i.e., before Step 1c in the real world, and
before Step 6 in the simulation) are identically distributed. Since γ is a function of rand, v and
the oracle answers to queries made before Step 1c in the IOP and Step 6 in the simulation, γ is
also identically distributed in ViewR,ViewS , and we can condition both views on it. Therefore,
the constraints in the revised Step 7 of the simulation are identically distributed to the constraints
induced by the real-world c, u, γ. In particular, we have that u|

Q̃
is identically distributed in the

real world and the simulation. (Q̃ was defined in the revised Step 7 of the simulation.) We will
use this observation below.

It remains to prove that when conditioned on γ, β, v, u|Q̃, V∗’s randomness rand, and the oracle
answer to queries in Q, then: (1) z ≡ z′, (2) the simulated messages M in the revised Step 9 of the
simulation are identically distributed to P ′’s messages in Step 3a of Figure 3, and (3) the queries –
and oracle answers to the queries – which V∗ makes after receiving z (in the real world) or z′ (in
the simulation) are identically distributed. We can show, similar to the analysis of Section 5.5.1,
that to prove items (2) and (3), it suffices to prove that z ≡ z′.

We now show that z ≡ z′. Recall that Q̃ =
{
(i1, i2, i3) ∈

([
n1/3

])3
: iℓ ∈ Q

}
, and that we have

already shown that u|
Q̃

is distributed identically in ViewR,ViewS , and this holds even if z ̸≡ z′

(because u|
Q̃

was fixed before z, z′ were determined). Therefore, it suffices to prove that z ≡ z′

conditioned on u|
Q̃

. We do so by showing that z, z′ are identically distributed to an alternative
distribution z′′, which is defined similarly to the alternative distribution of Section 5.5.1, except
that we use Q̃ instead of Q. Formally:

The alternative distribution z′′. Let V :=
{
v ∈ C : v|

Q̃
= 0⃗
}

. Let t′ :=
∣∣∣Q̃∣∣∣, and S :={

s ∈ Ft′ : ∃c′′ ∈ C, c′′|
Q̃
= s
}

. For every s ∈ S fix an arbitrary cs ∈ C which satisfies cs|Q̃ = s,
and let Cs := {cs + v : v ∈ V }.
z′′ is sampled as follows:

1. Set s ∈ S as follows: s = λ′(1) · u|
Q̃
+
(
γ ·
∑

j∈[k′] λ
′(j) · C (m(∗, j))

)
|
Q̃

.

2. Sample z′′ ← Cs subject to the constraint that z′′ encodes a message y′′ ∈ Fk such that∑
i∈[k] λ1(i) · y′′(i) = γ · α+ β.

The fact that z′′ is identically distributed to both z and z′ follows exactly as in Section 5.5.1, when
Q is replaced with Q̃.

52

5.6 Distributional ZK

In this section, we show that if the code C used in the sumcheck IOP of Figure 3 has (t + q + 1)-
ZK (where q is the query complexity of the local tester for C), then the resultant protocol has
distributional t-ZK with respect to C.

Corollary 5.10 (Sublinear-Length Distributional ZK-IOP for Sumcheck). Let t ∈ N be a ZK parame-
ter, let α ∈ F, and let λ1, . . . , λd ∈ Fk. If C has (t+ q + 1)-ZK with respect to the k′-randomized encoding
function Enc for some k′ < k, then the IOP of figure 3 has distributional t-ZK with respect to C and Enc.
Moreover, the ZK property holds with a black-box, straight-line simulator.

Proof: Assume that C has (t + q + 1)-ZK with respect to the k′-randomized encoding function.
By Theorem 4.2, C⊗d = C ⊗ C⊗d−1 has ZK against (t + q + 1)-row-restricted adversaries with
respect to the [k′]d-randomized encoding function Encd, and let SimC denote the corresponding
PPT simulator.

We describe a simulator Sim′, such that for every m ∈ F and λ1, . . . , λd ∈ Fk, Sim′ perfectly
simulates the view of any (possibly malicious and unbounded) t-restricted verifier V∗ in the IOP
of Figure 3, when V∗’s oracle is c← Encd(m).

Sim′, on input 1[k]
d

, λ1, . . . , λd and α := ⟨λ1 ⊗ · · · ⊗ λd,m⟩, and given black-box access to V∗,
operates as follows. It emulates the simulator Sim whose existence is guaranteed by Theorem 5.4,
where the input of Sim is 1[k]

d

, λ1, . . . , λd and α. During this emulation, Sim′ relays messages
between Sim and V∗, and answers row queries of Sim to c using SimC .

Clearly, Sim′ is PPT and straight-line (because Sim and SimC are). We now prove that the simu-
lated and real world views are identically distributed. We do so by showing that both distributions
are identical to a hybrid distributionH generated by the following “hybrid” simulator SimH. SimH
has input 1[k]

d

, λ1, . . . , λd and α, and is also given oracle access to a row oracle for c ∈ C ⊗ C⊗(d−1),
where c ← Encd(m). SimH emulates Sim as Sim′ does, but answers Sim’s row queries by querying
its row oracle. H is the distribution induced over V∗’s view by this process.
H is identically distributed to the real-world view. Since the oracles of V∗ and SimH are

identically distributed, it suffices to prove the claim conditioned on c. In this case,H is distributed
identically to the output of the (t + q + 1)-row restricted simulator of Theorem 5.4. Therefore,
Theorem 5.4 guarantees thatH is distributed identically to the real world view of V∗ (conditioned
on c).
H is identically distributed to the simulated view. We prove this by a reduction to the

ZK of C⊗d against (t + q + 1)-row-restricted adversaries. Assume towards negation that H and
ViewSim′

V∗ (λ1, . . . , λd, α, c) are not identically distributed, and let D be a distinguisher that can dis-
tinguish between then with some advantage ϵ > 0.

We define a distinguisher D′ that obtains the same advantage ϵ in distinguishing between
(t+ q + 1) real and simulated (by SimC) rows of c, where c← Encd(m). This contradicts the ZK of
C⊗d against (t+ q + 1)-row-restricted adversaries, which in turn contradicts the (t+ q + 1)-ZK of
C.
D′ has oracle access to an oracle that answers (up to) (t + q + 1) adaptive row queries, ei-

ther according to the actual rows of c, or according to the simulated answers of SimC . It sam-
ples a random string rV for V∗, and then emulates Sim by relaying messages between Sim and
V∗(1[k]

d

, λ1, . . . , λd, α; rV), and forwards Sim’s oracle queries to D′’s own oracle. When Sim termi-
nates, D′ runs D on V∗’s simulated view obtained in this process. Notice that when D′’s oracle
is to a row-oracle for c ∈ C ⊗ C⊗(d−1) then D′ runs D on a sample from H, otherwise it runs D

53

on a sample from the simulated distribution (generated by Sim′). Therefore, D′ obtains the same
distinguishing advantage ϵ as D.

6 ZK-IOP approaching witness length for 3SAT

In this section, we use the zero-knowledge properties of tensor codes shown in Section 4, and the
sumcheck ZK-IOP of Section 5, to construct a ZK-IOP for 3-SAT whose proof length approaches
the witness length.

Theorem 6.1 (ZK-IOP for 3-SAT). For any constant β, γ > 0, there exists a constant-round pre-
processing IOP (P,V) for 3-SAT on n variables of constant soundness error, which satisfies the following:

• The prover’s first message is a binary string of length (1+γ) ·n, and the rest of the prover’s messages
are strings of length nβ over some finite field F of size 2s for s = O(log n).

• The verifier queries a constant number of bits from the first prover’s message, queries a constant
number of field elements from the rest of the prover’s oracles, and reads the rest of the prover’s messages
in full.

• There exists a constant β′ > 0, so that the IOP has ZK against any malicious verifier that reads at
most nβ′ entries from each prover’s oracle, and reads the rest of the prover’s messages in full.

• The verifier’s running time is nO(β), after a local preprocessing step of running time poly(n). The
prover’s running time is poly(n), given a witness, and a generating matrix for the ZK-LTC C2

generated in Step 1c of Figure 5.

Remark 6.2. The ZK-IOP described in Theorem 6.1 above is with a non-uniform prover, where the (only)
reason for non-uniformity is that the prover is given a “good” generator matrix for C2 (i.e., a generator
matrix with respect to which C2 is ZK). The ZK-IOP of Theorem 6.1 can be made to be uniform in one of
the following ways:

• Allowing the prover to run in exponential time. This allows the prover to find a “good” generator
matrix for C2. Notice that letting the prover choose the generator matrix does not affect soundness,
since the verifier can efficiently check that the matrix provided by the prover generates the code C2.

• Alternatively, we could settle for statistical ZK instead of perfect ZK, and have the prover sample a
generator matrix forC2 (this generator matrix can be sampled efficiently by Corollary 4.19). This does
not affect completeness or soundness, but results in statistical ZK since there is a negligible probability
that the prover will sample a “bad” matrix. However, conditioned on this event not happening, ZK
will be perfect.

6.1 High-Level Overview of the Protocol

Our ZK-IOP satisfying the properties stated in Theorem 6.1 is given in Figures 5, 6, and 7 below.
Before we proceed to the full description of the protocol, we first give a high-level overview of
its structure. We first describe basic ideas that appear in many prior works on probabilistic proof
systems, specifically encoding the assignment as a polynomial, and replacing the original claim
with a sumcheck claim. We then explain the components and techniques which are new to this
work, and enable achieving ZK with proofs approaching the witness length.

54

6.1.1 Prior Techniques in (Zero-Knowledge) PCP and IOP Design

Arithmetization: Representing 3-SAT Formulas as Polynomials. Let φ be a 3-CNF formula
with n variables, and let w ∈ {0, 1}n be a satisfying assignment for φ. We follow the stan-
dard paradigm of representing φ and w as multi-variate low-degree polynomials [BFL91, BFLS91,
Sud00].

Specifically, let k, d ∈ N be such that kd = ⌈n⌉, where d is a sufficiently large constant, and
where we identify [n] with [k]d. Let F be a finite field of size |F| = Θ(k) > k, where we identify
[k] with some fixed subset of F. We interpret w as a function w : [k]d → F. Standard PCP/IOP
constructions use the LDE encoding ŵ of w (see lemma 3.35 in Section 3.2.4), which is the unique
d-variate polynomial of individual degree at most k over F that represents w. Let Iφ : [k]3d+3 →
{0, 1} be a function that represents the structure of φ, namely for every i1, i2, i3 ∈ [k]d and every
b1, b2, b3 ∈ [k], Iφ (i1, i2, i3, b1, b2, b3) = 1 if and only if the clause (xi1 = b1) ∨ (xi2 = b2) ∨ (xi3 = b3)
appears in φ. Let Îφ be the LDE of Iφ, which is the unique (3d+3)-variate polynomial of individual
degree at most k over F that represents Iφ.

Finally, we let Pφ,w be the (3d+ 3)-variate polynomial over F given by:

Pφ,w (i1, i2, i3, b1, b2, b3) = Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (ŵ (ij)− bj) .

Importantly, w satisfies φ if and only if Pφ,w vanishes on [k]3d+3. This representation is useful
because checking that Pφ,w vanishes on [k]3d+3 reduces to checking that a related (3d+ 3)-variate
polynomial P of individual degree at most 3k sums to 0 on [k]3d+3 (see Lemma 3.39).

The process of representing the satisfying assignment w as a polynomial P – known as arith-
metization – is precisely the reason that the LDE encoding is so useful in designing proof systems:
it enables to uniquely represent any string, such that verifying whether w satisfies φ reduces to
checking the sum of a polynomial on a subcube. Similar to other PCPs/IOPs, the high-level idea
is then to use a sumcheck procedure to verify that P indeed sums to 0 on [k]3d+3. The sumcheck
procedure exploits a different viewpoint of the polynomial P , as we now explain.

Polynomial View vs. Tensor View. The arithmetization described above defines the encoding
P of w in terms of polynomials. However, to verify that P indeed sums to 0 on [k]3d+3, it is more
useful to adopt a coding/tensor view of P . Specifically, notice that the truth table of P on F3d+3

can be viewed as a codeword c1 ∈ RS⊗(3d+3). This viewpoint is useful because tensor codes are
particularly amenable to local testing and sumchecking (as well as to obtaining ZK). Thus, once
we arithmetize w by “encoding” it into P , we switch from the polynomial view to the tensor view.

Viewing the truth table of P as a Reed-Solomon (RS) codeword c1, we can use the sumcheck
ZK-IOP of Theorem 5.4 (Section 5) to verify that P sums to 0 on [k]3d+3. Recall that the verifier
in the sumcheck ZK-IOP of Theorem 5.4 might output a point i on c1 and a value α, such that
it should hold that c1(i) = α. Therefore, to complete the verification, the verifier V needs oracle
access to c1. In fact, it suffices for V to have oracle access to ŵ, since V can locally compute any
point of c1 by querying 3 points of ŵ.

However, the length overhead incurred by the RS encoding is too large, because it is defined
over a large super-constant alphabet size, and because the code needs to satisfy the multiplication
property which inherently requires rate at most 1

2 . Since we are interested in designing a ZK-IOP
which approaches the witness length, we cannot afford to send the oracle ŵ to the verifier.

Using Both Low-Rate and High-Rate Encodings (a-la [RR20]). This problem was solved by
Ron-Zewi and Rothblum [RR20] (inspired by [Mei13]) using the so-called code-switching tech-
nique. Roughly, in Ron-Zewi and Rothblum’s IOPs the prover P sends to V an encoding c2 of

55

w, generated using a high-rate binary tensor code (C2)
⊗d. Since (C2)

⊗d has high rate, we can af-
ford to send w2 to the verifier. Crucially, one can verify the value of any point on ŵ by execut-
ing a sumcheck over c2. The fact that (C2)

⊗d is a tensor code guarantees that it is both locally
testable and sumcheckable. In summary, the high-level idea of [RR20] is for P,V to execute (a
scaled version of) the sumcheck over the low-rate encoding c1, which results in a point i and a
value α. Let i1, i2, i3 be such that c1(i) can be generated from ŵ(i1), ŵ(i2), ŵ(i3). Then P sends
αj := ŵ(ij), 1 ≤ j ≤ 3 to V , and the parties then engage in a sumcheck over c2 to check the
purported values of ŵ(ij), 1 ≤ j ≤ 3.

Obtaining Zero-Knowledge: Randomized (and Punctured) LDE. Another issue which arises
when designing ZK-IOPs, which is orthogonal to the efficiency issue discussed in the previous
paragraph (i.e., that we cannot afford to send the LDE to V), is the fact that the LDE encoding ŵ
itself reveals non-trivial information on w. This issue was addressed already in [BCGV16], who
replace the unique LDE encoding ŵ with a randomized version of this encoding, generated by
applying the standard LDE encoding to a randomly padded version of w. More specifically, for k1 >
k (whose value is set in Step 1a of Figure 5), let w1 : [k1]

d → F be such that w1(i) = w(i) for every
i ∈ [k]d, and the rest of the entries in w1(i) are sampled uniformly at random and independently.
Let ŵ1 be the LDE encoding of w1 (the unique d-variate polynomial of individual degree at most
k1 over F representing w1), and let c1 be the truth table on F3d+3 of

Pφ,w (i1, i2, i3, b1, b2, b3) = Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (ŵ1 (ij)− bj) .

We additionally take the base code C2 of the tensor code (C2)
⊗d to be a high-rate binary ZK code,

and let c2 be the encoding of a randomized version w2 : [k2]
d → {0, 1} of w1 via the code (C2)

⊗d,
to guarantee that c2 does not leak information about w.

It is important to notice that using a randomized LDE encoding and a ZK codeC2 still does not
prevent information leakage, even to the honest verifier. More specifically, the verifier can learn
non-trivial information about the witness w via (1) direct queries to the LDE encoding ŵ1, or (2)
from information leaked in the sumcheck protocols for c1 and c2. We explain (1) now, and discuss
(2) in Section 6.1.2 below.

To see why V can learn information from direct queries to ŵ1, recall that while ŵ1 is not given
directly to the verifier, the prover does send ŵ1(ij), 1 ≤ j ≤ 3 to her after the sumcheck protocol on
c1. If, for example, the sumcheck verifier Vin outputs a point (i1, i2, i3, b1, b2, b3) on c1 such that, e.g.,
i1, i2, i3 ∈ [k]d, then V learns a non-trivial function of w(i1), w(i2), w(i3). Similar to prior works, we
prevent this information leakage by using a punctured version of the RS code in which codewords
contain only evaluations of the (polynomial defined by the) message in F \ [k] (cf. Definition 3.36).
This guarantees that by accessing the codeword one cannot reconstruct values of P in [k]3d+3.

6.1.2 New Techniques for ZK Proofs Approaching the Witness Length

As discussed in the previous section, using a punctured and randomized version of the LDE en-
coding, as well as a ZK code C2, guarantees that direct queries into the LDE or c2 do not leak
information on w. However, the parties also execute sumcheck IOPs over c1 and c2, and so to
guarantee ZK, we must ensure that no information is leaked in this execution. As explained in
Section 2.2, prior works used a sumcheck ZK-IOP with a strong ZK guarantee that was achieved
by fully masking the checked codeword. Combining such a sumcheck ZK-IOP with a ZK code
seamlessly ensured ZK. However, since we aim for proofs approaching the witness length, we
cannot afford to fully mask the checked codeword, and consequently our sumcheck ZK-IOP of

56

Section 5 achieves a weaker ZK guarantee, i.e., there is an additive loss in the ZK parameter due
to local testing.

Specifically, to handle ZK against t-restricted verifiers, the base code of the tensor product
should have ZK against (t+q)-restricted verifiers, where q is the query complexity of the local tester
for the code. Thus, obtaining a non-trivial ZK guarantee necessitates a gap between the query
complexity of the local tester, and the ZK parameter of the underlying code. Put differently, the
underlying base code should be a ZK-LTC. This requirement of the code used in the sumcheck ZK-
IOP was not needed in prior works due to the use of a sumcehck IOP with stronger ZK guarantees
(which, however, inherently did not have sublinear communication).

To deal with the above, we choose the base codeC2 to be the ZK-LTC given in [ISVW13] (which
can be constructed probabilistically). Unfortunately, the ZK-LTC requirement turns out to be prob-
lematic for the low-rate code. Indeed, our IOP construction (as well as many works in the field
of PCPs and IOPs) crucially relies on the properties of the LDE encoding, namely its polynomial
view discussed above. This view is inherently tied to the specific encoding procedure used to map
a message w into a codeword c1. Consequently, we cannot apply the transformation of [ISVW13]
(which adds a ZK guarantee to any linear code) since it modifies the encoding procedure (while
keeping the set of codewords in tact). Thus, the only hope is that the PRS code (with the specific
encoding procedure discussed above) is a ZK-LTC. Unfortunately, this is not the case, as we show
in Lemma 4.15 (Section 4.2.1). Our solution is to take a different route altogether, designing a
specialized sumcheck ZK-IOP with a smaller loss in the ZK parameter.

Sublinear-Communication Zero-Knowledge via Specialized Sumcheck. Recall that to employ
arithmetization, we are forced to use the PRS code with a specific encoding procedure, which is not
a ZK-LTC, and consequently using the sublinear-communication sumcheck ZK-IOP of Section 5
(for general codes) might violate ZK of the full ZK-IOP for 3-SAT. Instead, our main observation in
this context is that we can obtain ZK by exploiting the highly-structured nature of the PRS encoding,
and combining it with a specialized version of our sumcheck ZK-IOP. More specifically, we take the
base code C1 for the sumcheck ZK-IOP to be a tensor code C1 = PRS⊗9 (instead of taking the base
code to be just PRS). Such tensor codes have local testers whose queries are highly structured (see
Theorem 3.33), and therefore admit a ZK sumcheck procedure with a smaller (constant) additive
loss in the ZK parameter (see Theorem 5.4, version for tensor base codes). Intuitively, the choice of
9 in the tensor power is made because executing the version of Theorem 5.4 for tensor base codes
requires that C1 = B⊗3 for some code B, and B = PRS⊗3 is required in order to correctly map ŵ1

into c1, as discussed below.

Bookkeeping Dimensions: “Correctly” Mapping ŵ1 into c1. Employing the specialized sum-
check ZK-IOP for tensor codes introduces a new problem. Indeed, the smaller loss in the ZK
parameter in the specialized sumcheck ZK-IOP comes at the price that the sumcheck verifier Vin
might now learn hyperplanes of c1, when viewed as a codeword of B⊗(d+1) = PRS⊗(3d+3). Thus, to
get ZK we must guarantee that full hyperplanes of c1 reveal no information on w. This should be
contrasted with previous works, where fully masking the sumchecked codeword guaranteed that
Vin learns only few points on c1, which translate to few points on ŵ1, regardless of how points on
ŵ1 are mapped to points on c1.

Luckily, because PRS has uniform ZK, we show in Corollary 4.12 (Section 4.2) that tensors of
PRS (in particular, ŵ1) have ZK against adversaries reading hyperplanes. Therefore, it suffices to
ensure that a hyperplane of c1 translates into few hyperplanes of ŵ1. For this, we carefully map
the dimensions of the three values of ŵ1 – used to define each value of c1 – to the dimensions of

57

c1.

Code Switching with ZK Codes. We complete the overview by discussing one technical issue
which arises when applying the code switching technique over ZK codes. The code switch-
ing technique of [RR20] relied on the fact that any point in the LDE ŵ is a linear combination∑

i λ(i)w(i) of the entries of the witness w ∈ {0, 1}[k]d , where the coefficients λ(i) have a certain
tensor structure. As mentioned above, the value of the sum

∑
i λ(i)w(i) can then be verified by

executing (a scaled version of) the sumcheck protocol on the encoding C(w) of the witness w via
another unrelated tensor code C.

However, in our ZK-IOP, ŵ1 is obtained by encoding a randomized version w1 ∈ F[k1]d of w via
the LDE. But now to apply the code switching technique, the prover needs to provide the encod-
ing (C2)

⊗d(w1) of w1, whose entries come from a large field, via the binary code (C2)
⊗d. To handle

this, we choose the large field F to be an extension field of the binary field, and find a novel way
to map the message w1 into a binary message w2, whose length is not much longer than that of
w1, and to map the tensor coefficients λ(i) into other tensor coefficients λ′(i) satisfying the prop-
erty that

∑
i λ(i)w1(i) =

∑
i λ
′(i)w2(i). Consequently, the prover can provide the encoding of the

binary message w2 via the binary code (C2)
⊗d, and verifying the linear combination

∑
i λ(i)w1(i)

reduces to executing the sumcheck protocol on (C2)
⊗d(w2) with tensor coefficients λ′(i). We fur-

ther incorporate in w2 also fresh randomness not used in the generation of w1 to guarantee that
the encoding of w2 via (C2)

⊗d would be ZK. (see Lemma 6.5 and Claim 6.3 for the definition and
properties of w2 and the coefficients λ′(i).)

6.2 The “Bare-Bones” Protocol and the Full Protocol

In Figure 4, we give a “bare-bones” description of our ZK-IOP for 3-SAT. This bare-bones protocol
captures the main steps in the ZK-IOP, while omitting many details (e.g., on how exactly the
high- and low-rate encodings are computed). The detailed (and accurate) description is given
in Figures 5-7 below. Since the full protocol includes local computations and various settings of
parameters, we emphasize interactive steps (direct messages exchanged between the parties, or
queries to prover oracle messages) in purple.

Main Differences between the Bare-Bones Protocol and the Actual ZK-IOP. The “bare bones”
protocol of Figure 4 omits several details. We now explain the missing details and where they
appear in the full protocol (Figures 5-7).

• Setting of parameters, and explicit description of encoding. The bare-bones protocol does
not explain how k1, k2, n1, n2,F are chosen. Also, it does not describe exactly how ŵ1, c2
are generated. Intuitively, ŵ1 is the low-degree extension of w padded with randomness r,
and c2 is a random C2-encoding of this padded message (w, r). However, to preserve the
relationship between ŵ1, c2 needed by the protocol (namely, that one can compute entries of
ŵ1 using a scaled sum over entries of c2), the encoding must be defined more carefully (see
steps 3a and 4a in figure 6). We also note that for ease of notation, in the final ZK-IOP we de-
scribe the encoding in a reversed order: first generating the randomized c2, then generating
ŵ1. However, as we show in Lemma 6.5 below, this is equivalent to the description provided
in the bare-bones protocol.

• Local testing of c2. Soundness of the ZK-IOP uses the fact that the purported codeword
c2 sent by P in Step 3a is indeed close to the code C2. In the bare-bones protocol, this is

58

guaranteed by having V directly performs a local test on v, by running the local tester TEST
and querying c2 at the appropriate locations (see Step 3 in Figure 4). In the full protocol, we
instead have the prover provide the queried entries of c2, and V checks consistency with c2
at a single point (See Steps 3b-3e).

• Sumcheck and code switching over randomized LDE. The bare-bones protocol does not
specify how to set the tensor coefficients such that executing the sumcheck (code switch-
ing, respectively) over a randomized LDE encoding ŵ1 (randomized encoding c2, respec-
tively) eliminates unnecessary encoding randomness. This is specified in the full protocol in
Steps 5a and 6a (Figure 7).

The Full Protocol. The formal description of the protocol is given in Figure 5. In the protocol,
we let d := ⌈d0/β⌉, where d0 ≥ 1 is a sufficiently large absolute constant, and d + 1 is divisible
by 3. For simplicity we assume that n := kd for some integer k. This can be obtained by letting
k := ⌈n1/d⌉, and replacing n with n̄ := kd = (1 + o(1)) · n.

We note that while for simplicity, we chose to describe the protocol with interleaved commu-
nication and query phase, all verifier queries can be deferred to the end of the protocol. It can
be verified that the protocol has the required properties, for a sufficiently large absolute constant
d0 ≥ 1. Next we prove completeness, soundness, and zero-knowledge properties of this protocol.

6.3 Completeness

Suppose that w is a satisfying assignment for φ, we shall show that in this case V accepts with
probability 1.

First note that by the properties of the local tester, we clearly have that ψTEST(c2|I) = ACCEPT,
and so the verifier will not reject in Steps 3d and 3e.

We now claim that ∑
i1,i2,i3∈[k]d,b1,b2,b3∈[k]

P (i1, i2, i3, b1, b2, b3) = 0. (10)

To see the above, note that by the definition of Pφ,w1 in Step 4a, and by our setting of w1(i) =
w2(i) = w(i) for any i ∈ [k]d in Steps 3a and 4a, we have that

Pφ,w1 (i1, i2, i3, b1, b2, b3) = Iφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (w(ij)− bj)

for any i1, i2, i3 ∈ [k]d and b1, b2, b3 ∈ [k]. Furthremore, by the definition of Iφ in Step 2a, and by
assumption that w is a satisfying assignment for φ, the above expression is zero for any i1, i2, i3 ∈
[k]d and b1, b2, b3 ∈ [k]. But by the definition of P = Q · Pφ,w in Step 4b, this implies in turn that
P (i1, i2, i3, b1, b2, b3) = 0 for any i1, i2, i3 ∈ [k]d and b1, b2, b3 ∈ [k], and so (10) is satisfied.

Next observe that by (10), and by the definition of w3 and λ1, . . . , λ(d+1)/3 in Steps 4b and 5a,
respectively, we have that

⟨λ1 ⊗ · · · ⊗ λ(d+1)/3, w3⟩ =
∑

i1,i2,i3∈[k]d,b1,b2,b3∈[k]

w3 (i1, i2, i3, b1, b2, b3)

=
∑

i1,i2,i3∈[k]d,b1,b2,b3∈[k]

P (i1, i2, i3, b1, b2, b3) = 0.

59

Consequently, by Theorem 5.4, with probability 1, the outcome of the protocol (Pin,Vin) in Step 5b
is either that Vin accepts, or a point (i1, i2, i3, b1, b2, b3) ∈ (F \ [3k1])3d+3 and a value α′ ∈ F so that

P (i1, i2, i3, b1, b2, b3) = α′. (11)

In the former case, V also accepts, and so we are done. Hence we may assume that (11) holds.
Claim 6.3 below shows that

⟨λ′j,1 ⊗ · · · ⊗ λ′j,d, w2⟩ = ŵ1(ij)

for any j ∈ {1, 2, 3}. Consequently, by Theorem 5.4, for any j ∈ {1, 2, 3}, with probability 1, the
outcome of the protocol (P ′in,V ′in) on Step 6c is either that V ′in accepts, or a point i′j ∈ [n2]

d and a
value α′j ∈ F so that c2(i′j) = α′j . So V does not reject in Step 6c in any of the iterations.

Finally, by the definition of P in Step 4b, and by our assumption (11), this implies in turn that

Q (i1, i2, i3, b1, b2, b3) · Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (αj − bj)

= Q (i1, i2, i3, b1, b2, b3) · Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (ŵ1(ij)− bj)

= P (i1, i2, i3, b1, b2, b3) = α′,

(the top equality holds because the honest prover P sends αj = ŵ1(ij)) and so V will accept on
Step 7.

Claim 6.3. For any j ∈ {1, 2, 3},

⟨λ′j,1 ⊗ · · · ⊗ λ′j,d, w2⟩ = ŵ1(ij).

Proof: For any j ∈ {1, 2, 3}, we have that:

⟨λ′j,1 ⊗ · · · ⊗ λ′j,d, w2⟩

=
∑
i∈[k]d

λ′j,1(i(1)) · · ·λ′j,d(i(d)) · w(i) +
∑

i∈[k1]d\[k]d

∑
h∈[s]

λ′j,1(i
(h)(1)) · · ·λ′j,d(i(h)(d)) · w2(i

(h))

+
∑

i∈[k2]d\[k̄1]d
λ′j,1(i(1)) · · ·λ′j,d(i(d)) · w2(i)

=
∑
i∈[k]d

λj,1(i(1)) · · ·λj,d(i(d)) · w(i) +
∑

i∈[k1]d\[k]d
λj,1(i(1)) · · ·λj,d(i(d))

∑
h∈[s]

ah · w2(i
(h))

=
∑

i∈[k1]d
λj,1(i(1)) · · ·λj,d(i(d)) · w1(i)

= ⟨λj,1 ⊗ · · · ⊗ λj,d, w1⟩ = ŵ1(ij),

where the first identity follows by the definition w2 in Step 3a, the second identity follows by the
definition of λ′j,1, . . . , λ

′
j,d in Step 6a (recalling our assumption that a1 = 1), and the third identity

follows by the definition of w1 in Step 4a.

6.4 Soundness

Suppose that φ is not satisfiable, we shall show that in this case V rejects with probability at least
(γd)

O(d). In what follows, let δ := (γd)
O(1) denote the relative distance of C2, and let µ := (γd)

O(1)

60

denote the robustness parameter of the
√
n2-query robust local tester for the code C2, given by

Theorem 3.33 (recalling that image(C2) = image((C0)
⊗4)).

Let z∗ ∈ {0, 1}[k2]d denote P’s message in Step 3a, and let v∗ denote P’s messages in Step 3c.
First note that we may assume that ψTEST(v

∗) = ACCEPT, since otherwise V clearly rejects on Step
3d. Next observe that if z∗ is δd·µ2

32 -far from (C2)
⊗d, then by the properties of the robust local tester

for (C2)
⊗d, with probability at least (γd)

O(d), we have that z∗|I is (γd)
O(d)-far from ψ−1TEST(ACCEPT).

Assuming that this event holds, our assumption that ψTEST(v
∗) = ACCEPT implies that v∗ is

(γd)
O(d)-far from z∗|I . But in this case, V will reject in Step 3e with probability at least (γd)

O(d) (and
overall V will reject with probability (γd)

O(d)). Hence we may assume that z∗ is δd·µ2

32 -close to a
codeword c∗2 = (C2)

⊗d(w∗2). In what follows, let w∗ ∈ {0, 1}[k]d be the restriction of w∗2 to [k]d, let
w∗1 ∈ F[k1]d be defined as in Step 4a with respect to w∗2, and let P ∗ = Q · Pφ,w∗

1
.

We now claim that with probability at least 1
2 over the choice of Q in Step 4b, it holds that∑

i1,i2,i3∈[k]d,b1,b2,b3∈[k]

P ∗ (i1, i2, i3, b1, b2, b3) ̸= 0. (12)

To see the above, note that by the definition of Pφ,w∗
1
, and by our setting of w∗1(i) = w∗2(i) = w∗(i)

for any i ∈ [k]d, we have that

Pφ,w∗
1
(i1, i2, i3, b1, b2, b3) = Iφ (i1, i2, i3, b1, b2, b3) ·Π3

j=1 (w
∗(ij)− bj)

for any i1, i2, i3 ∈ [k]d and b1, b2, b3 ∈ [k]. Furthermore, by the definition of Iφ in Step 2a, and by
assumption that w∗ is not a satisfying assignment for φ, there exist i1, i2, i3 ∈ [k]d and b1, b2, b3 ∈
[k] so that Pφ,w∗

1
(i1, i2, i3, b1, b2, b3) ̸= 0. Moreover, by our setting of parameters, we have that

8 · (3d+3) ·k = 24(d+1)k ≤ n1, and consequently Lemma 3.39 implies that P ∗ = Q ·Pφ,w∗
1

satisfies
(12) with probability at least 1

2 over the choice of Q. In what follows, assume that (12) holds.
Next observe that by our assumption (12) and the definition λ1, . . . , λ(d+1)/3 (in Step 5a), we

have that

⟨λ1 ⊗ · · · ⊗ λ(d+1)/3, w
∗
3⟩ =

∑
i1,i2,i3∈[k]d,b1,b2,b3∈[k]

w∗3 (i1, i2, i3, b1, b2, b3)

=
∑

i1,i2,i3∈[k]d,b1,b2,b3∈[k]

P ∗ (i1, i2, i3, b1, b2, b3) ̸= 0,

where w∗3 ∈ F[3k1]3d+3
is the evaluation table of P ∗ on [3k1]

3d+3. Moreover, by our setting of
parameters, we have that 3k1 = 3(1 + 1

s2
)k ≤ 6k ≤ n1

4 , and so by Lemma 3.37 and Theorem
3.33, C1 = (PRS3k1,n1)

⊗9 has relative distance at least 1
2 , and is an (n21,Ω(1))-robust LTC. Con-

sequently, applying Theorem 5.4 with implicit input c∗1 = (C1)
⊗(d+1)/3(w∗3), with probability at

least 2−O(d), the outcome of the protocol (Pin,Vin) in Step 5b is either that Vin rejects, or a point
(i1, i2, i3, b1, b2, b3) ∈ (F \ [3k1])3d+3 and a value α′ ∈ F so that

P ∗ (i1, i2, i3, b1, b2, b3) ̸= α′. (13)

In the former case, V also rejects, and so we are done. Hence we may assume that (13) holds.
Next suppose that in Step 6a, P sends α∗j ̸= ŵ∗1(ij) for some j ∈ {1, 2, 3}. We shall show that

in this case V rejects with probability at least (γd)
O(d). To this end, first recall that by Claim 6.3, we

have that
⟨λ′j,1 ⊗ · · · ⊗ λ′j,d, w∗2⟩ = ŵ∗1(ij) ̸= α∗j .

61

Moreover, by Lemma 4.21, the A-extension C̃2 of C2 also has relative distance at least δ, and

a (
√
n2, µ)-robust local tester (since image(C̃2) = image

(
(̃C0)⊗4

)
= image((C̃0)

⊗4)), and c∗2 =

(C2)
⊗d(w∗2) = (C̃2)

⊗d(w∗2) by assumption that 1 ∈ A.
Consequently, applying Theorem 5.4 with implicit input c∗2 = (C̃2)

⊗d(w∗2), with probability at
least δd·µ2

16 , the outcome of the protocol (P ′in,V ′in) in Step 6c is either that V ′in rejects, or a point i′j ∈
[n2]

d and a value α′j ∈ F so that c∗2(i
′
j) ̸= α′j . Moreover, i′j is a uniform random point (depending

on V ′in’s randomness string) that is computed by V ′in at the end of the interaction.
Let E1 be the event that V ′in either rejects, or outputs i′j ∈ [n2]

d and α′j ∈ F so that c∗2(i
′
j) ̸= α′j .

Let E2 be the event that z∗(i′j) = c∗2(i
′
j). Then by the above, we have that Pr[E1] ≥ δd·µ2

16 , and

by assumption that z∗ is δd·µ2

32 -close to c∗2, and that i′j is a uniform random point, we have that

Pr[E2] ≥ 1− δd·µ2

32 . Consequently, by a union bound, with probability at least δd·µ2

32 = (γd)
O(d), both

events E1 and E2 hold. Next assume that both events E1 and E2 hold. If V ′in rejects, then V also
rejects, and so we are done. Otherwise, our assumption implies that z∗(i′j) = c∗2(i

′
j) ̸= α′j , and so V

will reject in Step 6c. Hence we may assume that P sends α∗j = ŵ∗1(ij) for every j ∈ {1, 2, 3}.
Finally, by our assumption (13), this implies in turn that

Q (i1, i2, i3, b1, b2, b3) · Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1

(
α∗j − bj

)
= Q (i1, i2, i3, b1, b2, b3) · Îφ (i1, i2, i3, b1, b2, b3) ·Π3

j=1 (ŵ
∗
1(ij)− bj)

= P ∗ (i1, i2, i3, b1, b2, b3) ̸= α′,

and so V will reject in Step 7.
We conclude that in the case thatφ is unsatisfiable, V will reject with probability at least (γd)

O(d).

6.5 Zero-Knowledge

In this section we prove that the ZK-IOP of Figures 5-7 has t-ZK for t = nβ
′
. Since our ZK-IOP for

3-SAT runs several ZK sub-procedures and ZK codes, this requires careful analysis. In particular,
the internal ZK-IOPs should have ZK with auxiliary inputs. In the following, we first state the exact
ZK with auxiliary input property needed by the internal ZK-IOPs, then discuss the effect of their
composition on the ZK property, and the properties needed from the underlying ZK codes, and
finally prove the ZK property stated in Theorem 6.1.

The ZK with Auxiliary Inputs Requirement from the Internal ZK-IOPs. To show the zero-
knowledge property of our protocol, we shall use the following lemma which, roughly, states that
if an IOP has t-ZK with a black-box straight-line simulator, then it also has t-ZK with auxiliary
inputs. A similar result is known for standard interactive proofs [GO94]. The following lemma
shows a slightly stronger implication, which allows the simulator to access a different oracle than
ximp, and to make a different (possibly larger) number of oracle queries.28 Its proof is given in
Appendix A.

28Jumping ahead, we note that this generalization is useful because the lemma will be applied to the simulators from
Theorem 5.4 (for general and tensor codes), who receive a row/subspace oracle instead of the actual codeword given
as implicit input to the verifier, and make slightly more queries than the verifier. We also note that while for some
choices of oracles O and functions f the implication might be trivial (e.g., this might be the case if the simulator is given
oracle access to the NP witness and/or f is sufficiently small to allow the simulator to fully read its oracle), still the
implication of the lemma is meaningful for some choices of the oracle and the function f (as we show below in the
proof of Theorem 6.1).

62

Lemma 6.4. Let t ∈ N, let R be an NP relation with corresponding promise problem (YESR,NOR),
and let (P,V) be an IOP for (YESR,NOR). Assume that there exists a black-box straight-line simulator
Sim with oracle O, and a function f : N → N, such that for every t-restricted verifier V∗, and every
((xexp, ximp), w) ∈ R, we have

(ViewV∗ (xexp, ximp, w) , qV∗)rP ,rV
≡
(

ViewSimO

V∗ (xexp, ximp, w) , f(qS)
)
rV ,rSim

where rP , rV , rSim are the random coins of P,V∗ and Sim (respectively); and qV∗ (qS , resp.) denotes the
number of queries which V∗ (Sim, resp.) makes to all her oracles (O, resp.). Then for every t-restricted
verifier V∗aux with auxiliary input there exist a polynomial p(n), and a black-box straight-line simulator
Simaux, such that for every ((xexp, ximp), w) ∈ R and every auxiliary input z ∈ {0, 1}p(|xexp|+|ximp|), we
have (

View′V∗
aux

(xexp, ximp, w, z) , q
′
V

)
rP ,r′V

≡
(

ViewSimO
aux

V∗
aux(·,z)

(xexp, ximp, w) , f(q
′
S)
)
r′V ,r′Sim

(14)

where rP , r
′
V , r

′
Sim are the random coins of P,V∗aux and Simaux (respectively); q′V (q′S , resp.) de-

notes the number of queries which V∗aux (Simaux, resp.) makes to all her oracles (O, resp.), and
ViewSimO

aux

V∗
aux(·,z)

(xexp, ximp, w) is the view of V∗aux when it has auxiliary input z, and interacts with Simaux

(instead of P).29

Composition of internal ZK-IOPs. Our ZK-IOP executes 4 internal ZK-IOPs (in Steps 5a and
6b in Figure 7). We stress that while these systems are executed sequentially, this in effect induces
an interleaved (concurrent) execution of the internal systems. This is because in an execution of
an internal ZK-IOP, a malicious verifier V∗ might continue making oracle queries to prover oracle
messages sent in previous internal ZK-IOP executions. Thus, the executions of the internal ZK-
IOPs might not terminate until the end of the execution of the composed system of Figures 5-7,
and so they are executed concurrently.

ZK Codes Used by the ZK-IOP for 3-SAT. The ZK-IOP of Figures 5-7 uses several codes, and
two codewords – c1 and c2 – which encode randomized messages w1, w2, respectively, which
depend on the witness w. In proving ZK, it would be more useful to employ a different – though
equivalent – definition of w1, w2. The next lemma formally describes this alternative view.

Lemma 6.5 (Alternative View of w1, w2.). The definition of w1, w2 in Steps 4a and 3a (respectively) in
Figure 6 is equivalent to the following:

• Define w1 ∈ F[k1]
d

as follows. For any i ∈ [k]d, w1(i) = w(i). For any i ∈ [k1]
d \ [k]d, w1(i) is a

uniformly random element in F, sampled independently at random.

• Define w̄2 ∈ {0, 1}[k̄1]
d

such that w̄2 is consistent with w1. That is:

1. For every i ∈ [k]d, w̄2(i) = w1(i).
2. For every i ∈ [k̄1]

d \ [k]d, let ℓ0 ∈ [d] be the first index so that i(ℓ0) /∈ [k]. If there exists another
index ℓ ̸= ℓ0 so that i(ℓ) /∈ [k] and i(ℓ)−k ̸≡ 1 mod s, then w̄2(i) = 0. Otherwise, there exist
h ∈ [s] and j ∈ [k1]

d \ [k]d such that j(h) = i, and w̄2(i) is the projection of w1(j) on the basis
element ah.

29We remind the reader that View′
V∗
aux

(xexp, ximp, w, z) is defined similarly to Definition 3.11, but includes also the
auxiliary input z.

63

• Define w2 ∈ {0, 1}[k2]
d

as follows. For any i ∈ [k̄1]
d, w2(i) = w̄2(i). For any i ∈ [k2]

d \
[
k̄1
]d, w2(i)

is a uniformly random bit, sampled independently at random.

Proof: We first show that w1(i) is distributed as claimed. To this end, first note that w1(i) = w(i)
for any i ∈ [k]d by our setting of w1(i) = w2(i) and w2(i) = w(i) for any i ∈ [k]d in Steps 4a and 3a,
respectively.

Next assume that i /∈ [k]d, and let ℓ0 ∈ [d] be the first index so that i(ℓ0) /∈ [k]. Then for any
h ∈ [s], i(h) (defined in Step 4a) is a vector in [k̄1]

d, satisfying that ℓ0 is the first index ℓ ∈ [d] so that
i(h)(ℓ) /∈ [k], and i(ℓ)− k ≡ 1 mod s for any other index ℓ ̸= ℓ0 so that i(h)(ℓ) /∈ [k]. Consequently,
for any h ∈ [s], w2(i

(h)) is set to be a uniform random bit in Step 3a. Moreover, for any h ̸= h′ ∈ [s],
we have that i(h)(ℓ0) = k + s · (i(ℓ0) − k − 1) + h ̸= k + s · (i(ℓ0) − k − 1) + h′ = i(h

′)(ℓ0), and
so i(h) ̸= i(h

′). So w2(i
(1)), . . . , w2(i

(s)) are uniform and independent random bits, which implies
in turn that w1(i) =

∑
h∈[s] ah · w2(i

(h)) is set to be a uniform random element in F in Step 4a.
Moreover, for any i ̸= i′ /∈ [k]d and h, h′ ∈ [s], we have that i(h) ̸= (i′)(h

′), and consequently w1(i)
for i /∈ [k]d are independent. So w1 is distributed as claimed.

Next we show that w2 is distributed as claimed. For this, first note that for any i ∈ [k]d, we
clearly have that w2(i) = w̄2(i) = w1(i). Also, for any i ∈ [k2]

d \
[
k̄1
]d, w2(i) is a uniformly random

bit, sampled independently at random, by our setting of w2 in Step 3a, and since w1 only depends
on values of w2(i) for i ∈ [k̄1]

d.
Next assume that i ∈ [k̄1]

d \ [k]d, and let ℓ0 ∈ [d] be the first index so that i(ℓ0) /∈ [k]. If there
exists another index ℓ ̸= ℓ0 so that i(ℓ) /∈ [k] and i(ℓ)−k ̸≡ 1 mod s, then w2(i) = w̄2(i) = 0, by our
setting in Step 3a. Otherwise, let h ∈ [s] be such that i(ℓ0) − k ≡ h mod s, and let j ∈ [k1]

d \ [k]d

be given by j(ℓ) = i(ℓ) if i(ℓ) ∈ [k], j(ℓ0) =
i(ℓ)−k−h

s + k + 1, and j(ℓ) = i(ℓ)−k−1
s + k + 1 otherwise.

Then j(h) = i, and w1(j) =
∑

h∈[s] ah · w2(j
(h)) by our setting of w1 in Step 4a. Consequently,

w2(i) = w2(j
(h)) is indeed the projection of w1(j) on the basis element ah. So w2 is also distributed

as claimed.

In the next remark, we summarize the properties needed from the codes C1, C2.

Remark 6.6 (ZK Codes used in Theorem 6.1). The ZK-IOP of Figures 5- 7 implicitly uses two codes
C1, C2. We now explicitly describe their ZK properties.

ZK property of the high-rate encoding C2. Recall from Step 1c on Figure 5, that C2 : {0, 1}k2 →
{0, 1}n2 has t̃-ZK with respect to the k̄1-randomized encoding function for t̃ := (γd)

O(1) · n2. Then by
Corollary 4.6, (C2)

⊗d (with the
[
k̄1
]d-randomized encoding function) has ZK against t̃-row restricted ad-

versaries that have oracle access to a row oracle for c2 ∈ C2 ⊗ (C2)
⊗(d−1) (Here, we use the alternative

view of w2 given in Lemma 6.5 to view c2 as generated using the
[
k̄1
]d-randomized encoding function).

Moreover, by Lemma 4.21, the extended code (C̃2)
⊗d = C̃2⊗ (C̃2)

⊗(d−1) has ZK on {0, 1}[k2]
d

with respect
to the

[
k̄1
]d-randomized encoding function, against t̃-row restricted adversaries that have oracle access to a

row oracle for c2.
ZK property of the low-rate encoding C1. Recall from Step 4a in Figure 6, that ŵ1 ∈ (RSk1,n1)

⊗d.
In the following, we abuse notation and use ŵ1 to denote the punctured codeword in (PRSk1,n1)

⊗d obtained
by puncturing the first k1 coordinates in the codeword of the base code PRSk1,n1 . Notice that since P never
sends ŵ1 to V∗, and the values ŵ1(ij) defined in Step 6 in Figure 7 satisfy ij ∈ [[n1] \ [k1]]d (because
they are derived from w3, which is itself punctured in the first 3k1 coordinates), we can replace ŵ1 with its
punctured version without effecting the protocol.

By Lemma 4.14, PRSk1,n1 has (k1−k)-uniform ZK with respect to the k-randomized encoding function.
By Corollary 4.12, this implies in turn that the LDE encoding ŵ1 has ZK against adaptive (k1−k)-subspace

64

restricted adversaries with respect to the [k]d-randomized encoding function. (Here, we use the alternative
view of w1 given in Lemma 6.5 to view c1 as generated using the [k]d-randomized encoding function.)

Finally, recall from Step 4b in Figure 6 that c1 ∈ B⊗(d+1), and note that the restriction of c1 to any
oracle query made to a subspace oracle in direction [d+ 1] \ {ℓ} with respect ot the code B⊗(d+1) is a
codeword of B⊗d. Moreover, if ℓ ̸= d + 1, then this subspace can be generated given 3 queries to an oracle
in direction [d]\{ℓ} for ŵ1. Indeed, dimension d+1 in c1 ∈ B⊗(d+1) corresponds to the values of b1, b2, b3.
Therefore, for ℓ ̸= d + 1, a subspace oracle in direction [d+ 1] \ {ℓ} for c1 ∈ B⊗(d+1) can be generated
given the restrictions of ŵ1 to 3 subspaces in direction [d] \ {ℓ}, since these can then be used to generate the
value of P on the subspace (because b1, b2, b3 are public).

The following is our main technical lemma.

Lemma 6.7 (ZK property of IOP for 3-SAT). Let t ∈ N be a parameter, and let q :=
√
n2 denote the query

complexity of the local tester for C2 and (C2)
⊗d. (cf., remark on Step 1c in Figure 6). Suppose that C2 has

(t+ 4q + 3)-ZK with respect to the k̄1-randomized encoding function, and PRSk1,n1 has 3(t+ 3)-uniform
ZK with respect to the k-randomized encoding function. Then the ZK-IOP of Figures 5-7 has t-ZK.

Before proving the above lemma, we show how it implies the ZK property stated in Theo-
rem 6.1.

Proof of ZK Property in Theorem 6.1: Let t := n1/(2d). By Remark 6.6, C2 has t2-ZK with respect
to the k̄1-randomized encoding function for t2 = (γd)

O(1) · n2, while PRSk1,n1 has t1-uniform ZK
with respect to the k-randomized encoding function for t1 = k1 − k.

By our setting of parameters in Step 1a of Figure 5, for sufficiently large n, we have that

t2 − 4q − 3 =
(γ
d

)O(1)
· n2 − 4

√
n2 − 3 = Ω(n2) ≥ Ω(k) = Ω(n1/d) ≥ t,

and
t1
3
− 3 =

k1 − k
3
− 3 = Ω(k1 − k) = Ω

(
k

s2

)
= Ω

(
n1/d

log2 n

)
≥ t.

We conclude that for sufficiently large n, t2 ≥ t + 4q + 3 and t1 ≥ 3(t + 3), and consequently
Lemma 6.7 implies that the ZK-IOP has t-ZK for t := n1/(2d). Theorem 6.1 follows recalling that d
was chosen to be a sufficiently large constant (depending on the constant β).

6.5.1 Proof of Main Technical Lemma 6.7

We now turn to the proof of our Main Technical Lemma 6.7. In the following, we assume that
t is such that: (1) C2 has (t + 4q + 3)-ZK and (2) PRSk1,n1 has 3(t + 3)-uniform ZK. Let V∗ be a
t-restricted (possibly malicious) verifier in the IOP of Figures 5-7. We first make some necessary
remarks, then describe the simulator and prove that the simulation is perfect.

Answering queries to c2. Let SimC be the black-box straight-line simulator for adaptive (t +

4q + 3)-row restricted adversaries that have oracle access to a row oracle for c2 ∈ C̃2 ⊗ C̃⊗(d−1)2 ∩
C̃⊗d2 ({0, 1}[k2]

d

) (the existence of SimC follows from the (t + 4q + 3)-ZK of C2 by Remark 6.6). We
answer V∗’s queries to c2 using SimC , as follows.

• Initialize a set Q2 := ∅. (Throughout the simulation, Q2 ⊆ [n2] will consist of the rows of c2
– when viewed as a codeword in C̃2 ⊗ C̃⊗(d−1)2 – to which V∗ made a query.)

65

• Answer queries (l1, l2) ∈ [n2]× [n2]
d−1 of V∗ to c2 as follows:

– If l1 /∈ Q2 then add l1 toQ2. Then, use SimC to emulate c2(l1, ∗) (i.e., the l1’st row of c2),
and store c2(l1, ∗).

– Retrieve the simulated row c2(l1, ∗), and output c2(l1, l2) as the oracle answer.

We note that this procedure can also answer row queries to c2. This will be used in the simulation
below.

Answering queries to c1. 30 Let SimLDE be the black-box straight-line simulator that can perfectly
simulate the answers to queries of any adaptive 3(t + 3)-subspace restricted adversary A with
oracle access to ŵ1 (the existence of SimLDE follows from the 3(t + 3)-uniform ZK of PRS⊗dk1,n1

using Remark 6.6). Recall that the execution of A consists of two phases, where in the first phase
A makes point queries, then A picks a subset J ⊆ [d], and in the second phase A can query a
subspace oracle in direction J . In the proof below we will only need to consider adversaries A
that pick J = [d] \ {ℓ} for some ℓ. The simulation for c1 ∈ B⊗(d+1) will follow a similar 2-phase
structure. We will only support restrictions to subspaces in direction [d+1]\{ℓ} for ℓ ̸= d+1 since
these could be reduced to an axis of ŵ1, as explained in Remark 6.6. Our simulation of the ZK-IOP
for 3-SAT will obey this constraint.

We answer queries to c1 ∈
(
PRS⊗33k1,n1

)⊗(d+1)
using SimLDE, as follows.

• Initialize a set Q := ∅. (Intuitively, Q will store the point queries which the adversary made
in the first phase of the simulation.)

• Answer point-queries (l1, . . . , ld+1) (where lh = (l1h, l
2
h, l

3
h) ∈ ([n1 − 3k1]

3) for every h ∈
[d+ 1]) made in the first phase of the simulation as follows.

– Add (l1, . . . , ld+1) to Q.31

– For every 1 ≤ j ≤ 3, use SimLDE to emulate ŵ1(l
j
1, . . . , l

j
d), and use the simulated values,

together with ld+1 and Q, to generate c1(l1, . . . , ld+1) (which is the value of P at some
point).

• When the simulation enters its second phase, the simulator obtains a subspace [d] \ {ℓ}.
For every (l1, . . . , ld+1) ∈ Q and every j ∈ {1, 2, 3}, it then obtains from SimLDE the lines
(ŵ1(i

′
1, . . . , i

′
ℓ−1, l

j
ℓ , i
′
ℓ+1, . . . , i

′
d))i′1,...,i′ℓ−1,i

′
ℓ+1,...,i

′
d∈[n1−k1], and uses them to compute the sub-

space (c1(i
′
1, . . . , i

′
ℓ−1, lℓ, i

′
ℓ+1, . . . , i

′
d+1))i′1,...,i′ℓ−1,i

′
ℓ+1,...,i

′
d∈[n1−3k1]3 (as explained in Remark 6.6,

for any ℓ ≤ d, any query to a subspace oracle in direction [d+ 1]\{ℓ} for c1 can be computed
with 3 queries to a subspace oracle in direction [d] \ {ℓ} for ŵ1). The simulator then provides
these lines to the adversary.

• In the second phase of the simulation, the simulator answers any query i =
(i1, i2, i3) ∈ [n1 − 3k1]

3 of the adversary by using SimLDE to simulate the lines
(ŵ1(i

′
1, . . . , i

′
ℓ−1, i

j , i′ℓ+1, . . . , i
′
d))i′1,...,i′ℓ−1,i

′
ℓ+1,...,i

′
d∈[n1−k1], j ∈ {1, 2, 3}, and using these lines

to generate the line (c1(i1, . . . , i
′
ℓ−1, i, i

′
ℓ+1, . . . , i

′
d+1))i′1,...,i′ℓ−1,i

′
ℓ+1,...,i

′
d∈[n1−3k1]3 as described

above.
30We note that while V∗ cannot directly query c1 (since it is not given an oracle to c1), as part of the simulation

we define helper sub-procedures which might query c1. We will therefore need to handle such queries during the
simulation. This will be made clearer when we define the simulator Sim for V∗ later in the proof.

31We assume that A never makes repeated queries. This is without loss of generality since repeated queries could be
answered consistently using the previously generated simulated answers.

66

ZK Property of the Internal sumcheck ZK-IOP (P ′in,V ′in) (High-Rate Encoding). Let c ∈ C⊗d2 ,
and let k and q denote the message length, and query complexity of the local tester, of C2. Recall
from Lemma 5.9 that for any t, the sumcheck ZK-IOP (P ′in,V ′in) has black-box straight-line ZK
against t-restricted adversaries that are given a point and row oracle for c ∈ C̃2 ⊗ C̃⊗(d−1)2 , with a
(t+ q + 1)-row restricted simulator. Therefore, by Lemma 6.4, for every t, there exists a black-box
straight-line (t+q+1)-row restricted simulator Sim′in that can simulate the view of any t-restricted
verifier V∗in with auxiliary inputs in the system (P ′in,V ′in), where V∗in can make both point-wise and
row queries to c. In the simulation (described below) we will use the simulator Sim′in as a sub-
procedure.

ZK Property of the Internal sumcheck ZK-IOP (Pin,Vin) (Low-Rate Encoding). Let c1 ∈
B⊗(d+1), and let k, n denote the message and block lengths of C1, respectively. Recall from The-
orem 5.4 that for any t, the sumcheck ZK-IOP (Pin,Vin) has black-box straight-line ZK against
t-restricted adversaries with an adaptive (t + 2)-subspace restricted simulator, that only queries
subspaces in direction [d+ 1] \ {ℓ} for ℓ ∈ {1, 2, 3}. Therefore, by Lemma 6.4, for every t, there ex-
ists a black-box straight-line adaptive (t+2)-subspace restricted simulator Simin that can perfectly
simulate the view of any t-restricted verifier V∗in with auxiliary inputs in the system (Pin,Vin), and
the simulation is perfect. In the simulation (described next) we will use the simulator Simin as a
sub-procedure.

The Simulator. We are now ready to describe the simulator Sim for V∗. Sim will employ the
simulators SimC , SimLDE defined above. Sim also uses the black-box simulators Simin, Sim

′
in (in the

setting of auxiliary inputs) for (Pin,Vin) and (P ′in,V ′in), respectively, whose existence is guaranteed
by Lemma 6.4 (see above). More specifically, Sim will use 3 instantiations of Sim′in for the three
ZK-IOP executions of Step 6b. To differentiate between them, we denote the ith execution of Sim′in
in Step 6b by Simi.

Recall that V∗’s view consists of her randomness rand, the restriction v received from P (Step 3c
in Figure 6), the direct messages she received from P during the sumcheck IOP for c1 (Step 5a in
Figure 7), the codeword symbols (ŵ1(ij))1≤j≤3 received from P (Step 6a in Figure 7), the direct
messages she received from P during the sumcheck ZK-IOP executions for (ŵ1(ij))1≤j≤3 (Step 6b
in Figure 7), and the oracle answers to her (at most t) queries to c2 and the oracle messages which
P sent to her in Steps 5a and 6b in Figure 7.
Sim, on input a 3-CNF formula φ, and given oracle access to V∗(·; rand) (where rand is the random-
ness of V∗) operates as follows:

1. Generates randomness randC for SimC . Throughout the simulation, randC is used to emulate
SimC .

2. Answering queries to c2. Uses SimC (with input 1k
d
2 , k̄1) to answer V∗’s queries to c2 up to

(excluding) Step 7 of the simulation.

3. Simulating v. Obtains from V∗ a set I ⊆ [n2]
d of size q, simulates c2|I using SimC , via the

method described above, and sends the outcome to V∗.

4. Obtains from V∗ an index Q of a zero-tester polynomial. This determines a codeword c1
(though it is not known to Sim).

5. Emulating V∗’s view in the ZK-IOP of Step 5a. Runs Simin to emulate V∗’s view in the
sumcheck ZK-IOP for c1 (Step 5a in Figure 7). More specifically, Sim initializes Simin with

67

input 1(3k1)
3d+3

, α = 0, and λ1, . . . , λ(d+1)/3 as specified in Step 5a, where Simin interacts with
a verifier whose auxiliary input is randC . (We note that while we do not explicitly define
this verifier, this is not a problem because Simin is black-box.) During its emulation, Simin

interacts with its verifier in a black-box manner. Sim emulates this interaction by relaying
messages between Simin and V∗. Throughout the emulation of Simin, its oracle queries to c1
are answered by emulating SimLDE, using the method described above. (Recall that Simin is
adaptive subspace restricted.) We stress that during this step, V∗ might continue sending
queries to c2, which are answered as described in Step 2.

6. Emulating ŵ1(ij), j = 1, 2, 3. At some point, Sim obtains (i1, i2, i3, b1, b2, b3) ∈ (F \ [3k1])3d+3

and α′ from V∗. V∗ now expects to obtain from P the values ŵ1(i1), ŵ1(i2) and ŵ1(i3). Sim
uses SimLDE to simulate the corresponding subspaces. (That is, the emulation of Simin in
Step 5 determined a subspace oracle in some direction J for c1; for every 1 ≤ j ≤ 3, Sim
now queries its oracle on the subspace in direction J that contains the point ij .) Then Sim
computes simulated values ŵ′1(i1), ŵ

′
1(i2), ŵ

′
1(i3) from the simulated subspaces, and gives

these values to V∗ as the prover’s messages.

7. Simulating V∗’s view in the ZK-IOPs of Step 6b. Simulates V∗’s view in the 3 sequential
calls to the sumcheck ZK-IOP in Step 6b of Figure 7, by sequentially performing the follow-
ing for j = 1, 2, 3.32

Sim emulates Simj with input 1k
d
2 , ŵ′1(ij), and λ′j,1, . . . , λ

′
j,d (as specified in Step 6b), where

Simj interacts with a verifier whose auxiliary input consists of V∗’s view so far in the interac-
tion, except for rand. (This view consists of v, ŵ(i1), ŵ(i2), ŵ(i3), the answers to V∗’s queries
to c2, and the simulated direct messages – and answers to V∗’s queries to the simulated ora-
cle messages – generated in the emulations of Simin and (Simj′)j′<j .)33 The oracle queries of
Simj are answered using the simulator SimC as in Step 2 of the simulation.

We stress that during this step, Sim emulates up to 4 different simulators. More specifically,
throughout the emulation of Simj , Sim relays messages between Simj and V∗ (to implement
the oracle access which Simj has to its verifier). However, queries of V∗ to oracles sent before
the sumcheck ZK-IOP for ŵ1(ij) are answered using the appropriate simulator, instead of
being forwarded to Simj . For example, if during the emulation of Sim1 the verifier V∗ queries
an oracle sent in Step 5a, then the answer is simulated using Simin.

We also need to explain how V∗’s queries to c2 are answered in this step. For every 1 ≤
j ≤ 3, once the emulation of Simj has been initialized, Simj is used to answer the queries
of V∗ to c2. That is, once Sim1 has been initialized, V∗’s queries to c2 are forwarded to Sim1,
and his answers are provided to V∗ as the oracle’s answer; Once Sim2 has been initialized,
V∗’s queries to c2 are sent to Sim2 (instead of Sim1); and once Sim3 has been initialized, all
following queries to c2 are sent to it.

We now prove that for every φ ∈ 3 − SAT with a satisfying assignment w, the real-world
view in an execution of the IOP of Figures 5-7 on φ,w, and the simulated view obtained when V∗
interacts with Sim, are identically distributed. We do so through a sequence of hybrids. Since the
randomness rand of the verifier V∗ is identically distributed in the real world and the simulation,

32By “sequentially”, we mean that Sim initializes Simj only when the interactive phase in the emulation of Simj−1

has ended (i.e., after Simj−1 sent the last prover message to the verifier). However, as will become clear below, the
emulations of the Simj ’s are actually interleaved.

33Notice that we do not include rand as part of the auxiliary input. It is potentially too long to include in z, which
should be polynomially bounded.

68

we condition all hybrids on rand. To simplify the presentation, we refer to the 4 internal ZK-IOPs
used in Steps 5a and 6b as ZK-IOP’, ZK-IOP-1, ZK-IOP-2 and ZK-IOP-3. We are now ready to
define the hybrids.

H0: this is the real-world view of V∗ (conditioned on rand).

H1: in H1, we replace the real-world view of V∗ during the execution of ZK-IOP-3 (i.e., the 3rd
sumcheck ZK-IOP of Step 6b, executed for ŵ1(i3)) with the simulated view generated by
Sim3. More specifically, H1 is generated by honestly executing the ZK-IOP of Figures 5-7
with V∗ up to the execution of ZK-IOP-3, and then simulating the interaction in ZK-IOP-3
by letting V∗ interact with Sim3 (instead of P ′in), and having Sim3 answer V∗’s oracle queries
to c2. In this execution, the input to Sim3 is 1k

d
2 , ŵ1(i3) and λ′3,1, . . . , λ

′
3,d, and Sim3 has oracle

access to a row oracle for c2 ∈ C̃2 ⊗ C̃⊗(d−1)2 . We stress that oracle queries which V∗ makes
to oracle messages sent by the prover before ZK-IOP-3 are answered according to the actual
oracles that were already generated by P in this process. We also note that though we have
not explicitly defined the verifier for the internal ZK-IOP system (P ′in,V ′in) with which Sim3

is executed, this is not a problem because Sim3 is black-box.

Claim: H1 ≡ H0 by the ZK with auxiliary inputs of the sumcheck ZK-IOP (Theorem 5.4 and
Lemma 6.4).

Proof: Assume towards contradiction that the claim does not hold. Then there exists a
choice of randomness randP for the honest prover up to the execution of ZK-IOP-3, such
thatH1 ̸≡ H0, conditioned on the prover using randomness randP . We will use this to define
a verifier V3 in the execution of ZK-IOP-3, for which Sim3’s simulated answers do not induce
a perfect emulation of V3’s view.

The verifier V3 has input 1k
d
2 , α3 and λ′3,1, . . . , λ

′
3,d, and oracle access to c2. In addition, V3 has

an auxiliary input z, which consists of V∗’s view at the onset of the execution of ZK-IOP-3,
except for V∗’s randomness. (That is, the auxiliary input consists of the explicit messages V∗
received from the prover until the onset of ZK-IOP-3, as well as the answers to V∗’s oracle
queries to c2 and the oracle messages which the prover sent until then.34) V3 uses its auxiliary
input to emulate the interaction between the honest prover P and the verifier V∗ in the ZK-
IOP of Figures 5-7, up to (excluding) ZK-IOP-3 (in particular, V3 uses part of its own random
string for this emulation). We stress that during this emulation, any oracle queries of V∗ to
c2 are answered according to V3’s auxiliary input. When the emulation reaches ZK-IOP-3
(in Step 6b), V3 continues emulating V∗, but forwards V∗’s messages to the prover P to V3’s
own prover P ′in, and forwards V∗’s oracle queries to c2 to V3’s own oracle. Notice that once
the execution of ZK-IOP-3 begins, the verifier V∗ does not send any further messages to the
provers in the previous ZK-IOP executions. However, V∗ can still query the oracle messages
sent by the provers in these previous executions. V3 answers these queries at random. Let
t3 denote the number of queries which V3 makes to its oracles, and notice that t3 ≤ t. The
ZK property of (P ′in,V ′in) guarantees that in the execution with V3, Sim3 is (t3 + q + 1)-row
restricted, and the simulation is perfect.

Notice that when z is V∗’s view up to (excluding) the execution of ZK-IOP-3, then the only
differences between the real-world view of V3 and H0 are that: (1) V3’s view contains V3’s
randomness instead of V∗’s randomness (and the randomness used to emulate V∗ might not

34The explicit messages include v, α1, α2, α3, and messages sent as part of the executions of the ZK-IOP in Step 5a,
and the ZK-IOPs for ŵ1(i1) and ŵ1(i2) in Step 6b. The oracle queries are to oracles sent by the prover in these sub-
executions, as well as to c2.

69

be rand); and (2) H0 also contains the answers to queries which V∗ makes – during the ex-
ecution of ZK-IOP-3 – to oracles sent before the onset of ZK-IOP-3. However, the answers
which V3 provides to these queries are determined by its randomness, and can therefore be
computed from V3’s view (since V3’s view contains its randomness). Moreover, the portion
rand′ of V3’s randomness which is used to emulate V∗ can also be computed from V3’s view.
Let g3 denote the function that on input a view, computes from it the answers to the afore-
mentioned queries, and the portion rand′ of randomness used to emulate V∗, concatenates
these values to the view, and erases the randomness reported in the view. (We stress that g3
erases the randomness of V3, not rand′.)

To reach a contradiction, it suffices to show that there exist a c2, an auxiliary input z, and
a choice of randomness rand3 for V3, such that when V3 has input 1k

d
2 , α3 and λ′3,1, . . . , λ

′
3,d,

implicit input c2, auxiliary input z, and uses randomness rand3, the simulation of Sim3 is
not perfect. Since we have conditioned on the randomness rand of V∗, every randomness
of the prover P fully defines the emulation of V∗ up to the execution of ZK-IOP-3. We set
z to be the view of V∗ in this emulation, when the prover’s randomness is consistent with
randP . Finally, we choose the randomness rand3 at random subject to: (1) rand′ = rand,
and (2) the random oracle answers which V3 provides to V∗ once the execution of ZK-IOP-
3 begins (i.e., answers to queries to oracles provided in previous stages of the emulation)
are consistent with the oracles the prover generates when using randomness randP . Notice
that in this case, applying g3 to V3’s view gives the hybrid H0 (when conditioned on randP),
whereas applying g3 on the simulated view gives H1 (conditioned on randP). Since H0,H1

are not identically distributed (when conditioned on randP , by the negation assumption),
this implies that the real and simulated views are not identically distributed in this case,
which contradicts the ZK with auxiliary inputs of (P ′in,V ′in) against t-restricted adversaries.

H2: in H2, we replace the real-world view of V∗ during the execution of ZK-IOP-2 with the sim-
ulated view generated by Sim2. In particular, once the execution of ZK-IOP-2 begins then
Sim2 is used to answer all of V∗’s oracle queries until the execution of ZK-IOP-3 begins.
Then, as inH1, the view of V∗ during ZK-IOP-3 is generated using Sim3. In the emulation of
Sim2, its input is 1k

d
2 , ŵ1(i2) and λ′2,1, . . . , λ

′
2,d, and Sim2 has oracle access to a row oracle for

c2 ∈ C̃2 ⊗ C̃⊗(d−1)2 .

Claim: H1 ≡ H2 by the ZK with auxiliary inputs of the sumcheck ZK-IOP against adversaries with
row oracles (Lemmas 5.9 and 6.4.)

Proof: The proof is similar to the proof that H1 ≡ H0, but we need to additionally account
for how the output of Sim3 is generated from V∗’s (real or simulated) view in ZK-IOP-2. The
formal proof follows.

Assume towards contradiction that the claim does not hold. Then there exists a choice of
randomness randP for the honest prover up to the execution of ZK-IOP-2, such thatH2 ̸≡ H1,
conditioned on the prover using randomness randP . (Notice that randP , in particular, also
fixes c2.) We use this to define a verifier V2 in the execution of ZK-IOP-2, for which Sim2’s
simulated answers do not induce a perfect emulation of V2’s view. V2 has input 1k

d
2 , α2 and

λ′2,1, . . . , λ
′
2,d, auxiliary input z which consists of V∗’s view at the onset of the execution of

ZK-IOP-2 (except for V∗’s randomness), and has oracle access to c2 and to a row oracle for c2
(when c2 is interpreted as a codeword of C̃2⊗C̃⊗(d−1)2). V2 uses its auxiliary input to emulate
V∗ up to the execution of ZK-IOP-2 (similar to how V3 emulates V∗). Then, V2 emulates V∗
in ZK-IOP-2 by interacting with its own oracle c2 and prover P ′in. Once the execution of

70

ZK-IOP-2 terminates, namely once the last message is sent between the parties of ZK-IOP-2,
V2 uses Sim3 to continue the emulation of V∗. Specifically, V2 relays messages in ZK-IOP-3
between V∗ and Sim3 (this includes forwarding any c2-queries of V∗ to Sim3). Queries of V∗
to oracle messages sent in ZK-IOP-2 are forwarded to V2’s own oracles, and queries of V∗
to prover oracle messages sent before ZK-IOP-2 are answered at random. Oracle queries of
Sim3 are answered using V2’s own row oracle.

Let t2 denote the number of queries which V2 makes to its oracles (except the row oracle
for c2), and notice that V2 makes t3 + q + 1 additional queries to its row oracle during the
emulation of Sim3. The ZK property of (P ′in,V ′in) guarantees that in the execution with V2,
Sim2 is (t3 + t2 + 2q + 2)-row restricted, and the simulation is perfect.

Notice that when the auxiliary input of Sim2 consists of V∗’s view up to the execution of
ZK-IOP-2 (except for rand), then there are three difference between V2’s view and H1. The
first two are similar to the differences between the V3’s view and H0, namely Sim2’s view
contains V2’s randomness instead of the portion rand′′ used to emulate V∗ (where possibly
rand′′ ̸= rand), andH1 contains also the answers to queries which V∗ made during ZK-IOP-2
and ZK-IOP-3 to oracles sent previously in its emulation. The third difference is that H1

contains also V∗’s view in ZK-IOP-3, whereas V2’s view contains only the answers to row-
queries which V2 made during Sim3’s emulation. (Everything else generated during this
emulation was performed internally by V2 with no externally sent messages/oracle queries,
and is therefore not included in the view.) However, the simulated view of V∗ in ZK-IOP-3
can be generated from V2’s view. Indeed, we can extract from V2’s randomness (which is
included in its view) the randomness used to emulate Sim3. We can then emulate Sim3 with
this randomness, and answer Sim3’s row queries using the answers which are included in
V2’s view. Let g2 be the function that given a view first generates the simulated view of V∗
in ZK-IOP-3 as described above, erases the answers to V2’s row queries, and then applies a
function that operates similarly to g3 (defined in the proof thatH1 ≡ H0).35

We now show that there exist c2, z, and rand2 such that when V2 has input 1k
d
2 , α2 and

λ′2,1, . . . , λ
′
2,d, implicit input c2, auxiliary input z, and uses randomness rand2, the simulation

of Sim2 is not perfect. This will contradict the ZK with auxiliary inputs of (P ′in,V ′in) against
t-restricted adversaries. We set z to be the view of V∗ in this emulation, when the prover’s
randomness is randP (this also determines c2). Furthermore, we choose the randomness
rand2 at random subject to: (1) rand′′ = rand, and (2) the random oracle answers which V2
provides to V∗ once the execution of ZK-IOP-2 begins (i.e., answers to queries to oracles
provided in previous stages of the emulation) are consistent with the oracles the prover
generates when using randomness randP . Notice that in this case, applying g2 to V2’s view
(the simulated view generated when interacting with Sim2, respectively) gives the hybridH1

(H2, respectively) when conditioned on randP . Since by the negation assumption H2 ̸≡ H1

when conditioned on randP , we have reached a contradiction.

H3: inH3, we replace the real-world view of V∗ during the execution of ZK-IOP-1 with the simu-
lated view generated by Sim1. This is done similarly toH2, namely: (1) once the execution of
ZK-IOP-1 begins then Sim1 is used to answer all of V∗’s oracle queries to c2 until the execu-
tion of ZK-IOP-2 begins; (2) the views of V∗ during ZK-IOP-2 and ZK-IOP-3 are generated
using Sim2 and Sim3, respectively; and (3) in the emulation of Sim1, its input is 1k

d
2 , ŵ1(i1)

and λ′1,1, . . . , λ
′
1,d, and it has oracle access to a row oracle for c2 ∈ C̃2 ⊗ C̃⊗(d−1)2 .

35The difference from g3 is that we need to keep also the portion of V2’s randomness used to emulate V∗ in ZK-IOP-2,
and the answers to V∗’s queries – during ZK-IOP-2 – to previously-generated prover oracle messages.

71

Claim: H2 ≡ H3 by the ZK with auxiliary inputs of the sumcheck ZK-IOP against adversaries with
row oracles (Lemmas 5.9 and 6.4.)

Proof (sketch): The proof is similar to the proof that H1 ≡ H2 above, where we define
a verifier V1 in the execution of ZK-IOP-1 for which Sim1’s simulation is not perfect. We
therefore only survey the differences compared to the proof that H1 ≡ H2. First, V1’s input
is 1k

d
2 , α1 and λ′1,1, . . . , λ

′
1,d, and its auxiliary input does not contain V∗’s view in ZK-IOP-

1. Second, V1 emulates both Sim2 and Sim3, forwarding their row-queries to its own row
oracle.36 Third, if t1 denotes the number of queries which V1 makes to its oracles (except
the row oracle for c2), then it additionally makes at most (t3 + q + 1) + (t2 + q + 1) =
t3+t2+2q+2 row queries to emulate Sim2 and Sim3. The ZK property of (P ′in,V ′in) guarantees
that Sim1 makes at most t1 + t2 + t3 + 3q + 3 ≤ t + 3q + 3 row oracle queries, and the
simulation is perfect. Finally, H2,H3 can be generated from the real or simulated views
(respectively) by applying a function g1 that first emulates Sim2 (with the appropriate part
of V1’s randomness) to generate the simulated view of V∗ during ZK-IOP-2, then applies a
function which operates similarly to g2. (The difference from g2 is that we need to keep also
the portion of V1’s randomness used to emulate V∗ in ZK-IOP-1, and the answers to V∗’s
queries – during ZK-IOP-1 – to previously-generated prover oracle messages.)

H4: in H4, we replace the oracle answers to (point queries of V∗, and row queries of
Sim1, Sim2, Sim3 to) c2 with simulated codeword symbols generated by SimC .

Claim: H4 ≡ H3 by the black-box (t+ 4q + 3)-ZK of C2.

Proof: Assume towards contradiction that the claim does not hold, then there exist φ,w
for which the hybrids H3,H4 are not identically distributed. By an averaging argument,
there exists a w1 (consistent with w) such that H3,H4 are not identically distributed, even
conditioned on w1. We construct a (non uniform) (t + 4q + 3)-row restricted adversary A
that distinguishes between the real and simulated oracle answers of a row oracle for c2 ∈
C̃2 ⊗ C̃⊗d−12 . Recall that using the alternative view of w1, w2 given in Lemma 6.5, c2 can be
viewed as a random encoding of w̄2 ∈ {0, 1}∗ (which is fully determined by w1). Therefore,
by Remark 6.6, the existence of A contradicts the black-box (t+ 4q + 3)-ZK of C2.

A has φ,w1 and rand hard-wired into it, as well as the code of the honest prover P . A also
has black-box access to V∗.37 A provides rand as the randomness of V∗, and interacts with V∗,
by emulating the honest prover P on input φ,w up to (excluding) Step 6b in Figure 7. (This
can be done because w1 fully defines w.) In particular, during this emulation V∗ provides A
with a query set I ⊆ [n2]

d, and A then generates v = c1|I by querying its oracle on I (more
accurately, for every i ∈ I , A queries the row of c2 to which i belongs). A answers V∗’s
queries to c2 by querying its row oracle (which answers according to an actual codeword,
or with simulated answers), and then computing the corresponding entry of c2 (similar to
how Sim does this in Step 2 of the simulation). Once the interaction with V∗ reaches Step 6b,
A generates the prover messages during the following steps of the execution by emulating
Sim1,Sim2 and Sim3 in the same way that Sim does so in Step 7, except that oracle queries of
Sim1,Sim2, Sim3 are forwarded to A’s own oracle. (Recall that these queries are to rows of

36The interleaving of these simulators is as specified in the description of Sim. In particular, Sim2 is used only to
emulate V∗’s view in ZK-IOP-2, namely – unlike V2 defined in the proof of H2 ≡ H1 – the emulated verifier of Sim2

does not internally emulate Sim3.
37This can be thought of as having V∗ hard-wired into A. However, A does not use the code of V∗, only its input-

output behavior.

72

c2 ∈ C̃2 ⊗ C̃⊗(d−1)2 .38) We note that once the emulation reaches Step 6b, oracle queries of V∗
to c2 are answered using the appropriate simulator (according to the description in Step 7 of
the simulation.) When V∗ terminates, A outputs φ, rand, all messages which (the emulated)
P and Sim1,Sim2, Sim3 sent to V∗ in the emulation, and the answers to V∗’s queries to c2
and the oracle messages of P,Sim1,Sim2,Sim3. Notice that A is well defined, because v is
determined by c2|I , and all other messages sent by the prover P up to (excluding) Step 6b
can be computed from φ,w1 alone, and are otherwise independent of c2.

Notice that A is (t + 3q + 3)-restricted. Indeed, let t′′ denotes the number of queries which
V∗ makes to c2 before Step 6b, and notice that since V∗ is t-restricted then t′′+ t1+ t2+ t3 ≤ t.
Sim1, Sim2, Sim3 make in total (t1+ t2+ t3+3q+3)-row queries, soAmakes a total of at most
t′′+ t1+ t2+ t3+3q+3+ q ≤ t+4q+3 oracle queries to its row oracle. (That is, the number
of queries of A is q more than the total number of queries which V∗ and Sim1,Sim2,Sim3

make; this is because A also queries c2|I .) Moreover, if A is given oracle access to an actual
codeword then its output is distributed identically to H3 (conditioned on w1), otherwise its
output is distributed according to H4 (conditioned on w1). Since these distributions are not
identical, the inputs of A – namely, the answers to A’s oracle queries – cannot be identically
distributed. This contradicts the black-box (t+ 4q + 3)-ZK of C2.

H5: in H5, we replace the real-world view of V∗ during the execution of ZK-IOP’ with the sim-
ulated view generated by Simin. More specifically, Simin has input 1[3k1]

3d+3

, α = 0 and
λ1, . . . , λ(d+1)/3 as specified in Step 5a in Figure 7, and it is adaptive subspace-restricted (for
c1 ∈ B⊗(3·(d+1)/3), where B = PRS⊗33k1,n1

). This emulation is interleaved with the emula-
tions of Sim1, Sim2, Sim3 as specified in the description of Sim. (That is, once the simulation
of ZK-IOP’ terminates, namely V∗ provides α′ and (i1, i2, i3, b1, b2, b3), then we initialize an
emulation of Sim1 and so on.)

Claim: H5 ≡ H4 by the ZK with auxiliary inputs of the sumcheck ZK-IOP (Theorem 5.4 and
Lemma 6.4).

Proof: The proof is similar to the proof that H0 ≡ H1, where we also need to account for
how the outputs of Sim1, Sim2, Sim3 are generated from the (real or simulated) view of V∗ in
ZK-IOP’.

It suffices to prove the claim conditioned on the random string randP of the prover P up to
the execution of ZK-IOP’, and the random string randC used to emulate SimC . We use the
latter to define a verifier V ′ in the execution of ZK-IOP’, whose view Simin fails to perfectly
simulate.

V ′ has input 1[3k1]
3d+3

, α = 0 and λ1, . . . , λ(d+1)/3, and its auxiliary input is randC . In addition,
V ′ has oracle access to c1 (though it does not use it). V ′ emulates V∗ in the following way. V ′
uses part of its own random string to emulate the randomness of V∗, and interprets another
part of it as an LDE ŵ′1. V ′ uses SimC , with randC as the randomness for SimC , to answer V∗’s
queries to c2, similar to Step 2 in the simulation. When V∗ sends a query set I , V ′ generates v
as in Step 3 of the simulation. In the execution of ZK-IOP’, V ′ relays V∗’s queries to V ′’s own
prover. When V∗ provides α′ and (i1, i2, i3, b1, b2, b3), V ′ sends ŵ′1(i1), ŵ

′
1(i2), ŵ

′
1(i3) to V∗ as

the messages which P sent in Step 6a in Figure 7. Then, V ′ continues the emulation of V∗ by
emulating Sim1, Sim2, Sim3 as in Step 7 in the simulation. In particular, any queries which V∗

38We note that A answers repeated queries consistently. Specifically, Sim1,Sim2,Sim3 might query rows to which
V∗ has already made a query; in this case A has already obtained the row from its oracle, and uses it to answer these
queries.

73

makes to c2 are answered as described above, and V ′ answers any queries which V∗ makes
to prover oracle messages sent in ZK-IOP’ by querying V ′’s own oracles. Row queries of
Sim1, Sim2, Sim3 are answered using SimC .

Let t′ denote the number of queries which V ′ makes to its oracles (since V ′ does not query
c1, these are all to prover oracle messages sent in ZK-IOP’). The ZK property of (Pin,Vin)
guarantees that in the execution with V ′, Simin is adaptive (t′ + 2)-subspace restricted, and
the simulation is perfect.

Notice that when the auxiliary input randC of V ′ is the randomness used for SimC inH4, then
the differences between V ′’s view and H4 are: (1) V ′’s view contains its entire randomness,
as well as randC , whereas H4 only contains the randomness of V∗; (2) H4 contains also the
answers to V∗’s queries to c2, the restriction v, the values α′1, α

′
2, α
′
3, and V∗’s view in ZKIOP-

1, ZK-IOP-2, and ZK-IOP-3. However, the values in (2) can be computed from V ′’s view.
Indeed, v and the answers to V ′’s queries to c2 can be answered by emulating SimC with
randomness randC (randC is V ′’s auxiliary input, and therefore part of its view). α′1, α

′
2, α
′
3

are determined by V ′’s randomness. V∗’s views in ZK-IOP-1, ZK-IOP-2, and ZK-IOP-3 can
be computed from V ′’s view by emulating Sim1, Sim2, Sim3 (respectively) with the part of V ′’s
randomness used for these emulations (these emulations include interaction with V∗, which
can be emulated using the appropriate randomness from V ′’s view), and answering their
oracle queries using SimC (with randomness randC). Let g′ denote the function that on input
a view generates these values, and additionally erases the other parts of V ′’s randomness.
Notice that when g′ is applied to the simulated view (obtained when interacting with Simin),
concatenated with V ′’s randomness and randC , then we getH5.

To reach a contradiction, it suffices to show that there exist a c1, and a choice of randomness
rand′ for V ′, such that when V ′ has input 1[3k1]

3d+3

, α = 0 and λ1, . . . , λ(d+1)/3, implicit input
c1, auxiliary input randC , and uses randomness rand′, the simulation of Simin is not perfect.
(We note that during its simulation, Simin might query rows of c1; these are answered using
the actual codeword c1, which is fully determined by ŵ1.) Since we have conditioned on
the randomness randP of P , this fixes c1 and ŵ1. We set the randomness of V ′ such that the
portion which V ′ uses to emulate V∗ is equal to rand, and the portion which V ′ interprets
as an LDE ŵ′1 is equal to ŵ1. Notice that in this case, applying g′ to V ′’s view gives the hy-
brid H4 (when conditioned on randP , randC), whereas applying g′ on the simulated view –
prepended with rand′, randC – givesH5 (conditioned on randP , randC). IfH4,H5 are not iden-
tically distributed (when conditioned on randP , randC), then the real and simulated views
are not identically distributed, which contradicts the ZK with auxiliary inputs of (Pin,Vin)
against t′-restricted adversaries.

H6: in H6, we replace (ŵ1(ij))1≤j≤3 and the answers to Simin’s (at most t + 2) subspace queries,
with the simulated codeword symbols (ŵ′1(ij))1≤j≤3, and the simulated answers (computed
from simulated subspaces of ŵ1), generated by SimLDE in Steps 6 and 5 of the simulation
(respectively).

Claim: H6 ≡ H5 because the LDE encoding ŵ1 has black-box 3(t+ 3)-ZK.

Proof: The proof is similar to the proof thatH4 ≡ H3. H5 (respectively,H6) can be generated
by making 3(t + 3) adaptive queries to a (real or simulated) subspace oracle for ŵ1. This
can be done by executing the same process as the one used to generate H5, except that we
answer Simin’s oracle queries to c1 by querying a (real or simulated) subspace oracle for ŵ1,
and use the method described in the beginning of the proof (in the paragraph “answering

74

queries to c1”) to generate the symbols/subspaces of c1. As part of this process, we also
obtain i1, i2, i3. We then query the appropriate subspaces of ŵ1 from the row oracle (similar
to how these are generated in Step 6 of the simulation). Overall, this processes makes at most
3 subspace queries directly to ŵ1, and t + 2 subspace queries to c1, which can be answered
using 3(t + 2) subspace queries to ŵ1 (cf. Remark 6.6). Therefore, overall, we make at most
3(t + 3) subspace queries to ŵ1. Moreover, if the oracle is to ŵ1 then we obtain H5, and if it
is answered by SimLDE’s simulated answers then we obtainH6. Therefore,H5 ≡ H6 because
these hybrids can be generated by applying the same (randomized) function to the (real or
simulated) view of an adaptive 3(t+3)-subspace restricted adversary, and the LDE encoding
has ZK against such adversaries by Remark 6.6.

We conclude the proof by noting thatH6 is exactly the simulated view.

7 Reducing query complexity

In this section, we reduce the query complexity in the IOP for SAT of Theorem 6.1 to a constant.
Specifically, we prove the following theorem.

Theorem 7.1 (ZK-IOP for SAT with constant query complexity). For any constant β, γ > 0, there
exists a constant-round pre-processing IOP (P,V) for 3-SAT on n variables of constant soundness error,
communication complexity (1 + γ) · n, and constant query complexity, that has nβ′-ZK for some β′ > 0.

The verifier’s running time is nO(β), after a local preprocessing step of running time poly(n), and the
prover’s running time is poly(n) (given a witness and a generating matrix for the ZK-LTC C2 generated in
Step 1c of Figure 5, see Remark 6.2). Moreover, the first prover’s message is of length (1 + γ) · n, and the
rest of the prover’s messages are of length nβ .

The above theorem is an immediate consequence of Theorem 6.1 and the following composition
lemma which shows how to reduce the query complexity of a ZK-IOP of a certain structure to a
constant. This lemma is a ZK analogue of Lemma 7.3 from [RR19]. A more general ZK composi-
tion theorem was proven in [BCL22], but since we care about very small factors in the length we
use here a more specialized composition method that uses special properties of our protocol.

Lemma 7.2. Let ℓ = O(1), and let (P,V) be an ℓ-round pre-processing IOP with soundness error 1− ϵ for
a promise problem (YES,NO) with no implicit input, satisfying the following properties:

1. The prover’s first message is a binary string of length cc0, and the rest of the prover’s messages are
strings of length cc over some finite field F.

2. The verifier queries a constant number of bits from the first prover’s message, queries a constant
number of field elements from the rest of the prover’s oracles, and reads the rest of the prover’s explicit
messages in full.

3. The IOP has black-box straight-line ZK against any malicious verifier that reads at most t entries
from each prover’s oracle, and reads the rest of the prover’s messages in full.

4. The verifier’s running time is TV(n) ≤ poly(n), after a local preprocessing step of running time
poly(n), and the prover’s running time is poly(n).

Then there exists an (ℓ+1)-round pre-processing IOP (P ′,V ′) (over the binary alphabet) for (YES,NO)
with soundness error 1 − ϵ

2 , communication complexity cc0 + poly(TV(n)), and constant query complex-
ity, that has black-box straight-line (t − O(1))-ZK. The verifier’s running time is poly(TV(n)), after a

75

local preprocessing step of running time poly(n), and the prover’s running time is poly(n). Moreover, the
first prover’s message is a binary string of length cc0, and the rest of the prover’s messages are of length
poly(TV(n)).

We prove the above lemma in two stages: We first show in Lemma 7.3 below how to reduce
the query complexity to a constant, albeit over the alphabet F, and then in Lemma 7.4 we show
how to turn the alphabet to binary. The above Lemma 7.2 is an immediate consequence of these
two lemmas.

Lemma 7.3. Let (P,V) be as in Lemma 7.2. Then there exists an (ℓ + 1)-round pre-processing IOP
(P ′,V ′) over F for (YES,NO) with soundness error 1− ϵ

2 , communication complexity cc0 + poly(TV(n)),
and constant query complexity, that has black-box straight-line (t−O(1))-ZK. The verifier’s running time
is poly(TV(n)), after a local preprocessing step of running time poly(n), and the prover’s running time is
poly(n). Moreover, the first prover’s message is a binary string over F of length cc0, and the rest of the
prover’s messages are strings over F of length poly(TV(n)).

Proof: Notice that if all prover messages are oracles, then the lemma holds with (P ′,V ′) = (P,V).
Therefore, we can assume that the interaction includes at least one explicit message, in which case
TV(n) ≥ cc (the verifier needs to read the entire explicit message). The reminder of the proof is for
this case.

We start by setting some notation. Let ℓ = O(1) denote the round complexity of (P,V), and
let IO ⊆ [ℓ] denote the subset of all rounds in which P sends an oracle. Let q = O(1) denote the
total number of queries made to all of the oracles. Let E be any efficient code ensemble over F of
constant rate ρ > 0 and constant relative distance δ > 0. For an element a ∈ F, and an integer
d ≥ 1, let a(d) ∈ Fd denote the string which consists of the concatenation of d copies of a.

Let LV ⊆ F∗ denote the language consisting of all strings of the form (xexp, ximp),
where xexp ∈ {0, 1}∗ (xexp represents part of a view of V , see below), ximp =
((a1)

(cc/ρ), . . . , (aq)
(cc/ρ), (E(mi))i/∈IO) for aj ∈ F and mi ∈ Fcc, and V accepts, when given

mi, i /∈ IO as the explicit prover messages, (a1, . . . , aq) as the answers to her queries to P’s or-
acles, and when the rest of her view (i.e., her randomness and the answers to her queries to the
pre-processed string) is xexp.

The protocol (P ′,V ′) is obtained from (P,V) via the following modifications. Let m1, . . . ,mℓ

denote the prover messages in (P,V). In the communication phase, for i = 1, 2, . . . , ℓ, if i ∈ IO,
then P ′ sends the oralce wi = mi, and otherwise, P ′ sends the oracle wi = E(mi) ∈ Fcc/ρ. Then, in
the query phase, V ′ generates V’s queries to the pre-processed string, and queries these locations.
P ′ uses V ′’s messages to determine the queries which V makes to the pre-processed string and the
oracles sent by P . Let z ∈ {0, 1}∗ denote the messages which V ′ sent to P ′ before the query phase
(i.e., randomness used for pre-processing and the messages in the ℓ rounds of (P,V)), as well as
the answers to her queries to the pre-processed string), let a1, . . . , aq denote the answers to the
oracle queries, and let w := ((a1)

(cc/ρ), . . . , (aq)
(cc/ρ), (wi)i/∈IO). P

′ and V ′ run the δ
2(ℓ+q) -PCPP over

F for LV , given by Theorem 3.8, on explicit input z and implicit input w, and V ′ accepts if and only
if the PCPP verifier accepts. More specifically, queries of the PCPP verifier VPCPP to the proof are
answered using V ′’s PCPP oracle, queries of VPCPP to any of the wi, i /∈ IO are answered using V ′’s
oracle wi, and queries to the l’th entry in one of the (aj)

cc/ρ strings are answered by querying aj
and providing this as the oracle’s answer.

It can be verified that the round complexity, query complexity, verifier running time, and
prover running time of the protocol (P ′,V ′) are all as claimed, and that the requirements in the
’moreover’ part are satisfied. Note that TV ≥ (ℓ − |IO|) · cc, and so the communication com-

76

plexity is also as claimed. Completeness is also straightforward. Next we show soundness and
zero-knowledge.

Soundness: Assume that x ∈ NO. Letw∗1, . . . , w
∗
ℓ denote the first ℓmessages of P ′. Let z ∈ {0, 1}∗

denote the messages which V ′ sent to P ′ before the query phase (i.e., randomness used for pre-
processing and the messages in the ℓ rounds of (P,V)), as well as the answers to her queries
to the pre-processed string). Let a1, . . . , aq be the answers to the queries of V to (w∗i)i∈IO , and
let w∗ = ((a1)

(cc/ρ), . . . , (aq)
(cc/ρ), (w∗i)i/∈IO). We shall show that with probability at least ϵ, w∗ is

δ
2(ℓ+q) -far from (LV)z , and so by Theorem 3.8, the PCPP verifier, and consequently also V ′, will
reject with probability at least 1

2 (and hence the total rejection probability is at least ϵ
2).

For i /∈ IO, let ci ∈ Fcc/ρ be the codeword of E that is closest to w∗i , and let w∗∗ =
((a1)

(cc/ρ), . . . , (aq)
(cc/ρ), (ci)i/∈IO). First note that by the soundness property of the IOP (P,V),

with probability at least ϵ, we have that w∗∗ /∈ (LV)z . In what follows, assume that this event
holds. Suppose that w̃ = (u1, . . . , uq, (vi)i/∈IO) is δ

2(ℓ+q) -close to w∗, where uj , vi ∈ Fcc/ρ for all

j ∈ [q] and i /∈ IO. We shall show that w̃ /∈ (LV)z , and so w∗ is at least δ
2(ℓ+q) -far from (LV)z .

To see why w̃ /∈ (LV)z for 2̃ as above, note first that if there exists j ∈ [q] so that the entries in
uj are non-identical, then clearly w̃ /∈ (LV)z . Hence we may assume that for any j ∈ [q], all entries
in uj are identical. Moreover, by assumption that w̃ is δ

2(ℓ+q) -close to w∗, we must have that for

any j ∈ [q], uj = (aj)
(cc/ρ). Indeed, if there exists j∗ such that uj∗ = (a′)(cc/ρ) for a′ ̸= aj , then the

distance between w∗, w̃ is at least

cc/ρ

(q + (ℓ− |IO|)) · ccρ
=

1

q + (ℓ− |IO|)
>

1

q + ℓ
≥ δ

2(q + ℓ)
.

Similarly, if there exists i /∈ IO so that vi is not a codeword of E, then clearly w̃ /∈ (LV)z . Hence we
may assume that all vi are codewords of E. Moreover, by assumption that w̃ is δ

2(ℓ+q) -close to w∗,

we must have that dist(vi, w∗i) <
δ
2 for any i /∈ IO. But since E has relative distance at least δ, this

implies in turn that vi is the closest codeword to w∗i , and so vi = ci. But in this case we have that
w̃ = w∗∗ /∈ (LV)z .

Zero-knowledge: We describe a simulator Sim′ that uses (in a black-box, straight-line manner)
a simulator Sim for the IOP (P,V) (whose existence follows from the lemma’s assumptions), and
perfectly simulates the prover and oracles for any (t− q)-restricted verifier V∗.

Sim′, on input xexp, operates as follows. It runs Sim with input xexp, relaying messages between
Sim and V∗ in the first ℓ rounds of the execution (notice that V∗’s messages in these rounds define
a verifier V∗∗ for Sim in the system (P,V)). Additionally, Sim′ forwards oracle queries of V∗ to Sim,
and sends the answers back to V∗. In the final round of the execution, Sim′ uses the random mes-
sages received from V∗ in previous rounds to determine the queries which the honest verifier V ′
would have made to the pre-processed string, as well as her q oracle queries. (These are the queries
which the honest prover P ′ would have used to generate the PCPP in the last round.) Sim′ for-
wards the q oracle queries to Sim and obtains from it the simulated answers a′1, . . . , a

′
q. Let (m′i)i/∈IO

denote the simulated messages which Sim provided in this execution, and for every i /∈ IO, let
w′i := E(m′i). Then Sim′ honestly generates the PCPP π for w′ := ((a′1)

cc/ρ, . . . , (a′q)
cc/ρ, (w′i)i/∈IO),

and uses π to answer V∗’s oracle queries to the PCPP. We note that Sim′ can indeed generate π, be-
cause it fully knows w′, z. (To see why Sim′ knows z, notice that Sim′ knows the messages sent by
V∗. These, together with xexp, determine the pre-processed string which V ′ would have generated,
and the queries she would have made to it.)

77

Clearly, Sim′ is PPT (because Sim and the PCPP prover are). Moreover, Sim′ forwards at most
(t − q) + q oracle queries to Sim (the ≤ t − q queries which V∗ makes to her oracles directly, and
the q queries which Sim′ makes in the last round to generate the PCPP). Therefore, the black-box
straight-line t-ZK of (P,V) guarantees that in its emulation, Sim perfectly simulates the explicit
prover messages and oracles answers. Since all the messages which Sim′ sent to V∗ are fully
determined by the simulated values provided by Sim, the simulation is perfect.

The next lemma states that we can obtain a constant number of queries even over the binary
alphabet:

Lemma 7.4. Let ℓ = O(1), and let F be a finite field of characteristic 2. Let (P,V) be an ℓ-round pre-
processing IOP over F with soundness error 1− ϵ for a promise problem (YES,NO) with no implicit input,
with constant query complexity, black-box straight-line t-ZK, and properties (1) and (4) from Lemma 7.2.

Then there exists an (ℓ+1)-round pre-processing IOP (P ′,V ′) (over the binary alphabet) for (YES,NO)
with soundness error 1 − ϵ

2 , communication complexity cc0 + poly(TV(n)), and constant query complex-
ity, that has black-box straight-line (t − O(1))-ZK. The verifier’s running time is poly(TV(n)), after a
local preprocessing step of running time poly(n), and the prover’s running time is poly(n). Moreover, the
first prover’s message is a binary string of length cc0, and the rest of the prover’s messages are of length
poly(TV(n)).

Proof: As before, we start by setting some notation. Let s := log(|F|). Let q0 = O(1) denote the
number of queries made to the first prover message, and let q = O(1) denote the total number of
queries made to the rest of the prover messages. Let E be any efficient binary code ensemble of
constant rate ρ > 0 and constant relative distance δ > 0. For a bit b ∈ {0, 1}, and an integer d ≥ 1,
let b(d) ∈ {0, 1}d denote the string which consists of the concatenation of d copies of b. Slightly
abusing notation, we view each element of F as a binary string of length log(F|) in the natural
way.

Let LV ⊆ {0, 1}∗ denote the language consisting of all strings of the form (xexp, ximp), where
xexp ∈ {0, 1}∗, ximp = ((b1)

(s/ρ), . . . , (bq0)
(s/ρ), E(a1), . . . , E(aq)) for bj ∈ {0, 1} and ai ∈ F, and

V accepts, when given (b1, . . . , bq0) as the answers to her queries to the first prover message,
(a1, . . . , aq) as the answers to her oracle queries to the rest of the prover messages, and when
the rest of her view (i.e., her randomness and the answers to her queries to the pre-processed
string) is xexp.

The protocol (P ′,V ′) is obtained from (P,V) via the following modifications. Let m1, . . . ,mℓ

denote the prover messages in (P,V). In the communication phase, in the first round, P ′ sends
w1 = m1 ∈ {0, 1}cc0 , and in rounds i = 2, . . . , ℓ, P ′ sends wi ∈ {0, 1}cc·s/ρ that is obtained
by encoding each F-entry of mi with E. Then, in the query phase, V ′ generates V’s queries to
the pre-processed string, and queries these locations. P ′ uses V ′’s messages to determine the
queries which V makes to the pre-processed string and the oracles sent by P . Let z ∈ {0, 1}∗
denote the messages which V ′ sent to P ′ before the query phase (i.e., randomness used for pre-
processing and the messages in the ℓ rounds of (P,V)), as well as the answers to her queries
to the pre-processed string. Let b1, . . . , bq0 ∈ {0, 1} denote the answers to her queries to the
first prover message, and let e1, . . . , eq ∈ {0, 1}s/ρ denote the blocks in w2, . . . , wℓ which corre-
sponding to the encoding of the answers to V’s queries to the rest of the prover messages. Let
w := ((b1)

(s/ρ), . . . , (bq0)
(s/ρ), e1, . . . , eq). P ′ and V ′ run the δ

2(q0+q) -PCPP (over the binary alphabet)
for LV , given by Theorem 3.8, on explicit input z and implicit input w, and V ′ accepts if and only
if the PCPP verifier accepts. More specifically, queries of the PCPP verifier VPCPP to the proof
(e1, . . . , eq, respectively) are answered using V ′’s PCPP oracle (the appropriate wi, respectively),

78

and queries to the l’th entry in one of the (bj)
s/ρ strings are answered by querying bj from the first

prover message, and providing this as the oracle’s answer.

It can be verified that the round complexity, communication complexity, query complexity,
verifier running time, and prover running time of the protocol (P ′,V ′) are all as claimed, and that
the requirements in the ’moreover’ part are satisfied. Completeness is also straightforward. Next
we show soundness and zero-knowledge. The proof are similar to those given in the proof of
Lemma 7.3.

Soundness: Assume that x ∈ NO. Let w∗1, . . . , w
∗
ℓ denote the first ℓ messages of P ′. Let

z ∈ {0, 1}∗ denote the messages which V ′ sent to P ′ before the query phase, and the answers
to her queries to the pre-processed string. Let b1, . . . , bq0 be the answers to the queries of V
to the first prover message, and let e1, . . . , eq ∈ {0, 1}s/ρ be the blocks in w∗2, . . . , w

∗
ℓ corre-

sponding to the encoding of the answers to V’s queries to the rest of the prover messages. Let
w∗ = ((b1)

(s/ρ), . . . , (bq0)
(s/ρ), e1, . . . , eq). We shall show that with probability at least ϵ, w∗ is

δ
2(q0+q) -far from (LV)z , and so by Theorem 3.8, the PCPP verifier, and consequently also V ′, will
reject with probability at least 1

2 (and hence the total rejection probability is at least ϵ
2).

For i ∈ [q], let ci ∈ {0, 1}s/ρ be the codeword of E that is closest to ei, and let w∗∗ =
((b1)

(s/ρ), . . . , (bq0)
(s/ρ), c1, . . . , cq). First note that by the soundness property of the IOP (P,V),

with probability at least ϵ, we have that w∗∗ /∈ (LV)z . In what follows, assume that this event
holds. Suppose that w̃ = (u1, . . . , uq0 , v1, . . . , vq) is δ

2(q0+q) -close to w∗, where uj , vi ∈ {0, 1}s/ρ for

all j ∈ [q0] and i ∈ [q]. We shall show that w̃ /∈ (LV)z , and so w∗ is at least δ
2(q0+q) -far from (LV)z .

To see why w̃ /∈ (LV)z for 2̃ as above, note first that if there exists j ∈ [q0] so that the entries
in uj are non-identical, then clearly w̃ /∈ (LV)z . Hence we may assume that for any j ∈ [q0], all
entries in uj are identical. Moreover, by the assumption that w̃ is δ

2(q0+q) -close to w∗, we must have

that for any j ∈ [q0], uj = (bj)
(s/ρ). Similarly, if there exists i ∈ [q] so that vi is not a codeword of

E, then clearly w̃ /∈ (LV)z . Hence we may assume that all vi are codewords of E. Moreover, by
the assumption that w̃ is δ

2(q0+q) -close to w∗, we must have that dist(vi, ei) < δ
2 for any i ∈ [q]. But

since E has relative distance at least δ, this implies in turn that vi is the closest codeword to ei, and
so ci = vi. But in this case we have that w̃ = w∗∗ /∈ (LV)z .

Zero-knowledge: We describe a simulator Sim′ that uses (in a black-box, straight-line manner)
a simulator Sim for the IOP (P,V) (whose existence follows from the lemma’s assumptions), and
perfectly simulates the prover and oracles for any (t− q0 − q)-restricted verifier V∗.

Sim′, on input xexp, operates as follows. It runs Sim with input xexp, relaying messages between
Sim and V∗ in the first ℓ rounds of the execution (notice that V∗’s messages in these rounds define
a verifier V∗∗ for Sim in the system (P,V)). Additionally, Sim′ forwards oracle queries of V∗ to
Sim, and sends the answers back to V∗. In the final round of the execution, Sim′ uses the random
messages received from V∗ in previous rounds to determine the queries which the honest verifier
V ′ would have made to the pre-processed string, as well as her q0 (q, respectively) oracle queries
to the first prover message (the rest of the prover messages, respectively). Sim′ forwards the q0+ q
oracle queries to Sim and obtains from it the simulated answers b′1, . . . , b

′
q0 ∈ {0, 1} and a′1, . . . , a

′
q ∈

F. For every 1 ≤ i ≤ q, Sim′ computes e′i := E(a′i) (here, we view a′i as a length-s bitstring). Then
Sim′ honestly generates the PCPP π for w′ := ((b′1)

s/ρ, . . . , (b′q0)
s/ρ, e′1, . . . , e

′
q), and uses π to answer

V∗’s oracle queries to the PCPP. We note that Sim′ can indeed generate π, because it fully knows
w′, z.

79

Clearly, Sim′ is PPT (because Sim and the PCPP prover are). Moreover, Sim′ forwards at most
(t− q0 − q) + q0 + q oracle queries to Sim (the ≤ t− q0 − q queries which V∗ makes to her oracles
directly, and the q0+q queries which Sim′ sends in the last round to generate the PCPP). Therefore,
the black-box straight-line t-ZK of (P,V) guarantees that in its emulation, Sim perfectly simulates
the explicit prover messages and oracles answers. Since all the messages which Sim′ sent to V∗ are
fully determined by the simulated values provided by Sim, the simulation is perfect.

Acknowledgments

The first author is supported by the Milgrom family grant for Collaboration between the Tech-
nion and University of Haifa, by ISF grant 735/20, and by the European Union (ERC, ECCC,
101076663). Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them. The second au-
thor is supported by the BIU Center for Research in Applied Cryptography and Cyber Security in
conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In CCS,
pages 2087–2104, 2017.

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In FOCS, pages 14–23,
1992.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and intractability of approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characteri-
zation of NP. In FOCS, pages 2–13, 1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characteriza-
tion of NP. Journal of the ACM, 45(1):70–122, 1998.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
interactive oracle proofs of proximity. In ICALP, pages 14:1–14:17, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero
knowledge with no trusted setup. In CRYPTO, pages 701–732, 2019.

[BCF+16] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. On probabilistic checking in perfect zero knowledge.
Electron. Colloquium Comput. Complex., TR16-156, 2016.

[BCF+17] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. Zero knowledge protocols from succinct constraint
detection. In TCC, Proceedings, Part II, pages 172–206, 2017.

80

[BCG+17a] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas
Spooner. Interactive oracle proofs with constant rate and query complexity. In ICALP,
pages 40:1–40:15, 2017.

[BCG+17b] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,
and Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit sat-
isfiability. In ASIACRYPT, Proceedings, Part III, pages 336–365, 2017.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with
sublinear verification from tensor codes. In TCC, pages 19–46, 2020.

[BCGT13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In STOC, pages 585–594, 2013.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear
size zero knowledge from linear-algebraic PCPs. In TCC 2016-A, Proceedings, Part II,
pages 33–64, 2016.

[BCL20] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge IOPs with linear-
time prover and polylogarithmic-time verifier. Cryptology ePrint Archive, Report
2020/1527, 2020. https://eprint.iacr.org/2020/1527.

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge IOPs with linear-
time prover and polylogarithmic-time verifier. In EUROCRYPT, pages 275–304, 2022.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In EURO-
CRYPT, pages 103–128, 2019.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In TCC, pages 31–60, 2016.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[BFLS91] László Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In STOC, pages 21–31, 1991.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Short PCPs verifiable in polylogarithmic time. In CCC, pages 120–134, 2005.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI:
sampling outside the box improves soundness. In ITCS, pages 5:1–5:32, 2020.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[BKK+16] Eli Ben-Sasson, Yohay Kaplan, Swastik Kopparty, Or Meir, and Henning Stichtenoth.
Constant rate PCPs for circuit-SAT with sublinear query complexity. Journal of the
ACM, 63(4):32:1–32:57, 2016.

[BS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of
codes. Random Structures and Algorithms, 28(4):387–402, 2006.

81

https://eprint.iacr.org/2020/1527

[CCG+07] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikun-
tanathan. Secure computation from random error correcting codes. In EUROCRYPT,
pages 291–310, 2007.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In EUROCRYPT, pages 316–334,
2000.

[CDN15] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure Multiparty Computa-
tion and Secret Sharing. Cambridge University Press, 2015.

[CFS17] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero knowledge
sumcheck and its applications. Cryptology ePrint Archive, Report 2017/305, 2017.
http://eprint.iacr.org/2017/305.

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable
SRS. In EUROCRYPT, Proceedings, Part I, pages 738–768, 2020.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and
transparent recursive proofs from holography. In EUROCRYPT, Proceedings, Part I,
pages 769–793, 2020.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low commu-
nication 2-prover zero-knowledge proofs for NP. In CRYPTO, pages 215–227, 1992.

[DGR99] Scott E. Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity.
SIAM J. Comput., 29(3):854–879, 1999.

[DGR20] Scott E. Decatur, Oded Goldreich, and Dana Ron. A probabilistic error-correcting
scheme that provides partial secrecy. In Computational Complexity and Property Testing
- On the Interplay Between Randomness and Computation, pages 1–8. Springer, 2020.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor prod-
ucts of LDPC codes. In RANDOM, pages 304–315, 2006.

[FMSS04] Jon Feldman, Tal Malkin, Rocco A. Servedio, and Cliff Stein. Secure network coding
via filtered secret sharing. In Proceedings of the 42nd Annual Allerton Conference on
Communication, Control, and Computing, 2004.

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and suc-
cinct PCPs for NP. Journal of Computer and System Sciences, 77(1):91–106, 2011.

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: Interactive proofs for muggles. Journal of the ACM, 62(4):27:1–27:64, 2015.

[GLS+23] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S.
Wahby. Brakedown: Linear-time and field-agnostic SNARKs for R1CS. In CRYPTO,
Proceedings, Part II, pages 193–226, 2023.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In STOC, pages 291–304, 1985.

82

http://eprint.iacr.org/2017/305

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof
systems. J. Cryptol., 7(1):1–32, 1994.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, 2001.

[GOS24] Tom Gur, Jack O’Connor, and Nicholas Spooner. Perfect zero-knowledge PCPs for
#P. Cryptology ePrint Archive, Report 2024/462 (to appear at STOC‘24), 2024. http:
//eprint.iacr.org/2024/462.

[HVW21] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. ZK-PCPs
from leakage-resilient secret sharing. In ITC, pages 6:1–6:21, 2021.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In STOC, pages 21–30, 2007.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
PCPs. In TCC, pages 151–168, 2012.

[ISVW13] Yuval Ishai, Amit Sahai, Michael Viderman, and Mor Weiss. Zero knowledge LTCs
and their applications. In RANDOM, pages 607–622, 2013.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In TCC, pages 121–145, 2014.

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-
knowledge PCPs from leakage-resilient circuits. In TCC 2016-A, Proceedings, Part II,
pages 3–32, 2016.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC, pages
723–732, 1992.

[KLR06] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure
protocols and security under composition. In STOC, pages 109–118. ACM, 2006.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In STOC, pages 496–505, 1997.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive PCP. In ICALP, pages 536–547, 2008.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic meth-
ods for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992.

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM Journal on Computing,
42(1):380–403, 2013.

[Mei14] Or Meir. Combinatorial PCPs with efficient verifiers. Computational Complexity,
23(3):355–478, 2014.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–
1298, 2000.

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O(1) queries. Annals
of Mathematics and Artificial Intelligence, 56(3-4):313–338, 2009.

83

http://eprint.iacr.org/2024/462
http://eprint.iacr.org/2024/462

[Ran13] Hugues Randriambololona. An upper bound of singleton type for componentwise
products of linear codes. IEEE Transactions on Information Theory, 59(12):7936–7939,
2013.

[RR19] Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length.
Electronint Colloquium on Computational Complexity, TR19-127, Revision 2, 2019.

[RR20] Noga Ron-Zewi and Ron D. Rothblum. Local proofs approaching the witness length
[extended abstract]. In FOCS, pages 846–857, 2020.

[RR22] Noga Ron-Zewi and Ron Rothblum. Proving as fast as computing: Succinct argu-
ments with constant prover overhead. In STOC, pages 1353–1363, 2022.

[RRR17] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum, 2017. Personal Communi-
cation.

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. SIAM Journal on Computing, 50(3), 2021.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields.
SIAM Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with
applications to program testing. SIAM Journal of Computing, 25(2):252–271, 1996.

[Set20] Srinath T. V. Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In CRYPTO, Proceedings, Part III, pages 704–737, 2020.

[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields.
In FOCS, pages 283–290, 1988.

[Sud00] Madhu Sudan. Probabilistically checkable proofs - lecture notes, 2000. Available at
http://madhu.seas.harvard.edu/MIT/pcp/pcp.ps.

[Sud01] Madhu Sudan. Algorithmic introduction to coding theory (lecture notes), 2001.

[Vid15] Michael Viderman. A combination of testability and decodability by tensor products.
Random Structures and Algorithms, 46(3):572–598, 2015.

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with
linear prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology - CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO
2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV, volume 13510
of Lecture Notes in Computer Science, pages 299–328. Springer, 2022.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computa-
tion. In CRYPTO, pages 733–764. Springer, 2019.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polyno-
mial delegation and its applications to zero knowledge proof. In S&P, pages 859–876,
2020.

84

http://madhu.seas.harvard.edu/MIT/pcp/pcp.ps

A Black-Box ZK Implies ZK with Auxiliary Inputs for IOPs

In this section we prove Lemma 6.4, and use it to conclude that black-box straight-line ZK implies
ZK with auxiliary inputs for IOPs.

Proof of Lemma 6.4. The proof follows the same outline as the proof of the corresponding claim
for IPs, given in Goldreich and Oren [GO94], accounting also for oracle queries which Sim,V∗
make during the execution. However, since the original IOP system (P,V) has perfect ZK, we
are able to describe a black-box straight-line simulator for the system with auxiliary inputs (cf.
Remark A.2 below).

Let SimO be a black-box straight-line PPT simulator for (P,V) whose existence is guaranteed
from the lemma’s assumptions. We will construct a simulator Simaux for t-restricted verifiers V∗aux
with auxiliary inputs. Before describing Simaux, we first set some notation.

Let V∗aux be a t-restricted verifier with auxiliary input. For every possible choice z ∈
{0, 1}p(|xexp|+|ximp|) of auxiliary input for V∗aux, we define a t-restricted verifier V∗z (without aux-
iliary input) that has z and V∗aux’s code hard-wired into it. V∗z emulates V∗aux, giving z to V∗aux as
the auxiliary input. Crucially, even though V∗aux might be computationally unbounded, black-box
access to V∗z can be emulated efficiently given oracle access to V∗aux (who has auxiliary input z), and
this emulation is perfect conditioned on the auxiliary input of V∗aux coinciding with the hard-wired
value z of V∗z .

We now define the simulator Simaux. Simaux, on input xexp, 1|ximp|, and given oracle access toO
and to V∗aux(·, z; r′V) (where r′V is the randomness of Vaux), emulates Sim, answering oracle queries
of Sim to O and the verifier, respectively, by forwarding the queries to Simaux’s own oracle O, and
to V∗aux, respectively.

Clearly, Simaux is PPT, and makes the same number of queries toO as Sim. Moreover, since Sim
is black-box and straight-line, so is Simaux. Furthermore, notice that when Simaux has oracle access
to V∗aux with auxiliary input z, then Sim is emulated with oracle access to V∗z .

We claim that for every ((xexp, ximp), w) ∈ R and every auxiliary input z ∈ {0, 1}p(|xexp|+|ximp|),
Simaux perfectly simulates V∗aux’s view. By the black-box straight-line ZK property of (P,V) (in the
lemma’s assumption) we have, for every ((xexp, ximp), w) ∈ R, and every z ∈ {0, 1}p(|xexp|+|ximp|):(

ViewV∗
z
(xexp, ximp, w) , qV

)
rP ,rV

≡
(

ViewSim
V∗
z
(xexp, ximp, w) , f(qS)

)
rV ,rSim

where rP , rV , rSim are the random strings of P,V∗z and Sim, respectively, and qV (qS , respectively)
is the number of queries which V∗z (Sim, respectively) makes to all her oracles (to O, respectively).
This implies that for every z ∈ {0, 1}p(|xexp|+|ximp|):(

ViewV∗
z
(xexp, ximp, w) , z, qV

)
rP ,rV

≡
(

ViewSim
V∗
z
(xexp, ximp, w) , z, f(qS)

)
rV ,rSim

.

By the definition of V∗z we have, for every ((xexp, ximp), w) ∈ R, and every z ∈
{0, 1}p(|xexp|+|ximp|):(

View′V∗
aux

(xexp, ximp, w, z) , q
′
V

)
rP ,r′V

=
(
ViewV∗

z
(xexp, ximp, w) , z, qV

)
rP ,rV

where r′V is the random string of V∗aux (here, we use the fact that V∗z emulates V∗aux with V∗z ’s own
randomness), and q′V is the number of oracle queries V∗aux makes. Moreover(

ViewSimaux

V∗
aux(·,z)

(xexp, ximp, w) , f(q
′
S)
)
r′V ,r′Sim

≡
(

ViewSim
V∗
z
(xexp, ximp, w) , f(qS)

)
rSim,rV

,

85

where r′Sim is the randomness of Simaux (used also as the randomness of Sim), and q′S is the
number of queries it makes to O. Therefore, for every ((xexp, ximp), w) ∈ R, and every z ∈
{0, 1}p(|xexp|+|ximp|), we have(

View′V∗
aux

(xexp, ximp, w, z) , q
′
V

)
rP ,r′V

≡
(

ViewSimaux

V∗
aux(·,z)

(xexp, ximp, w) , f(q
′
S)
)
r′V ,r′Sim

.

Setting O = ximp, and f to the identity function, in Lemma 6.4, we immediately obtain the
following:

Corollary A.1. Let t ∈ N, let R be an NP relation with corresponding promise problem (YESR,NOR),
and let (P,V) be an IOP for (YESR,NOR). If (P,V) has black-box straight-line t-ZK, then it has t-ZK
with auxiliary inputs.

Remark A.2. Three remarks are in order. First, notice that we do not give the auxiliary input z to the
black-box simulator Sim′aux (cf. remarks on Definition 3.17).

Second, the standard definition of black-box ZK with auxiliary inputs (for interactive proofs) gives the
distinguisher oracle access to V∗aux, but does not give it the auxiliary input. However, Eq. (14) implies
black-box ZK with auxiliary inputs (when z is not provided as input to the distinguisher) by truncating z
from both sides of Eq. (14). (We do not give the distinguisher access to V∗aux.)

Third, the result of Goldreich and Oren [GO94] shows that for interactive proofs, black-box ZK implies
ZK with auxiliary inputs, but with a non-black box simulator. This is because in [GO94], V∗z cannot be
emulated with black-box access to V∗aux, and the reason is that they need Vz to have the additional feature that
she answers queries of the form “reveal your auxiliary input” by replying with the hard-wired z (this cannot
be obtained with black-box access to V∗aux). However, this additional feature is not used in the simulation,
rather it is used to prove that the simulated output of Simaux, and the real view of V∗aux, are computationally
indistinguishable. More specifically, the proof uses a PPT distinguisher Daux between the real view of V∗aux
and the output of Simaux to construct a PPT distinguisher D between the view of Vz and the output of
Sim. However, emulating Daux requires giving it the auxiliary input z of V∗aux, which D does not have.
Since D is PPT, [GO94] need to “program” Vz to provide z upon request. In our setting of perfect ZK,
distinguishers are computationally unbounded (and potentially non-uniform), so we can hard-wire z into
the distinguisher. We further note that the (interactive) distinguisher (against black-box ZK) in the proof
of [GO94] accesses V∗z only in two cases – to obtain z, and to answer queries of the distinguisher against
ZK with auxiliary inputs.

B Related Works

In the following, for a non-deterministic language, we denote by n, m, and N its input length,
witness length, and non-deterministic running time, respectively.

Probabilistically-Checkable Proofs (PCPs). As mentioned in the introduction, the celebrated
PCP theorem [ALM+92, AS92] asserts that any NP language has a constant-query PCP with con-
stant soundness error. The works of [ALM+92, AS92] obtain poly(N) proof length for languages
in NTIME(N), whereas [BGH+05, Din07] obtain much shorter proofs of length N ·poly log(N) (the
former with poly log(N) query complexity, the latter withO(1) queries). More recently, Ben-Sasson
et al [BKK+16] constructed PCPs for circuit SAT of length O(n), where n is the circuit size, albeit
with a large query complexity, on the order of nϵ for an arbitrarily small constant ϵ > 0.

86

Zero-knowledge PCPs (ZK-PCPs). Zero-Knowledge PCPs (ZK-PCPs) were introduced by Kil-
ian, Petrank and Tardos [KPT97] who construct, for any t ∈ N, a t-ZK-PCP for NP, i.e., with
ZK against t-restricted verifiers. Their ZK-PCP has proofs of length poly(N, t) and an honest
verifier that makes poly log(N, t) adaptive queries to the proof oracle (and obtains a negligible
soundness error). Their construction combines an earlier construction of a PCP with Honest-
Verifier Zero-Knowledge (HVZK) of [DFK+92], and a cryptographic building block called a lock-
ing scheme. These building blocks were later improved by [IW14] and [IMS12], respectively,
who give conceptually-simpler constructions of these objects. Ishai et al. [IWY16] design a t-
ZK-PCP with poly(N, t)-length proofs and a non-adaptive honest verifier, but the ZK simulator in
their construction is not efficient (i.e., they obtain witness indistinguishability). Ishai et al. [IKOS07]
design a t-ZK-PCP over a large alphabet (which implies an HVZK-PCP over the binary al-
phabet) with a non-adaptive honest verifier, based on secure multi-party computation protocols.
To obtain negl(t) soundness error, the honest verifier in their construction must also make Ω(t)
queries; this was reduced to

√
t in [HVW21]. The works of [IKOS07, HVW21] obtain perfect ZK,

whereas [KPT97, IW14, IWY16] obtain statistical ZK.

Interactive Oracle Proofs (IOPs). IOPs were first introduced by Reingold, Rothblum and Roth-
blum [RRR17] and Ben-Sasson, Chiesa and Spooner [BCS16], but special cases of IOPs were con-
sidered even earlier, in the Interactive PCP (IPCP) model of Kalai and Raz [KR08], and the duplex
PCPs of Ben-Sasson et al. [BCGV16]. As discussed in Section 1, the study of IOPs has seen a
rapid progress in the few years since its introduction, and is motivated from both theoretical and
practical perspectives.

In terms of proof length, the shortest known IOPs are those of [RR20] who construct, for a
large class of NP problems (concretely, any problem that can be verified in polynomial time and
bounded polynomial space), a constant round and constant query IOPs whose proof length is (1+
γ)·m (wherem is the witness length) with constant soundness error. One of the main results of this
work is a ZK variant of their result for the language 3-SAT. The technical core of the construction
of [RR20] was a new code switching technique, inspired by [Mei13], that allows one to trade less
efficient polynomial codes, commonly used in such proof systems, with more efficient tensor codes.
This technique was later used in follow up works to obtain IOPs with linear-time provers [BCG20,
RR22].

Zero-Knowledge IOPs (ZK-IOPs). Works on ZK-IOPs have considered different ZK guarantees,
ranging from HVZK to ZK against t-restricted verifiers for an arbitrary t, and various efficiency
measures. We focus here on works with full-fledged ZK or short (linear or near-linear) proof
lengths.

This line of works was initialized by Ben-Sasson et al. [BCGV16] who construct 2-round IOPs
for NTIME(N) with perfect t-ZK for any t ∈ N, with Õ(N + t)-length proofs and poly log(N + t)
query complexity. (This should be contrasted with the best ZK-PCP constructions to date, that
either obtain statistical ZK with proofs of large polynomial length [KPT97, IW14, IWY16], or have
a large query complexity [IKOS07, HVW21].) The simulator in the ZK-IOPs of [BCGV16] runs
in poly(N + t) time, so they obtain efficient ZK simulation only for NP. This was later im-
proved by [BCF+17] to ZK-IOPs for all of NEXP with the same parameters (and efficient sim-
ulation). The prover and verifier running times were further improved in subsequent work
[BBHR19, CHM+20]. Follow-up work [BCR+19] design ZK-IOPs for the related problem of
R1CS with ZK against t-restricted adversaries of proof length O(n + t) and query complexity
O(log(n + t)), where n is the instance length. This was later extended to the holographic setting

87

by [COS20].
[AHIV17] design 2-round linear-length ZK-IPCPs for arithmetic circuit SAT in which the hon-

est verifier queries O(
√
n) proof symbols. Bootle et al. [BCG+17b] give IOPs with HVZK for R1CS

(over a large super-constant size field) with an O(n)-time prover and O(
√
n) query complexity.

This was later improved in [BCL22], who construct HVZK-IOPs for R1CS with an O(n)-time
prover and a polylogarithmic-time verifier, as well as full-fledged ZK – against malicious veri-
fiers that make at most nϵ oracle queries, for some constant ϵ >0 – where the verification time
increases to nϵ.

Many of the aforementioned works also construct (and, in some cases, implement) black-box
ZK succinct (non-interactive) argument systems based on their ZK-IOP constructions.

ZK Sumcheck IOPs. A main ingredient in many of the ZK-IOP constructions mentioned above
(e.g., [BCGV16, BCF+17, BCG+17a, BCR+19, CHM+20, ZXZS20, BCL22]) is a zero-knowledge IOP
for the (univariate or multivariate) sumcheck problem. (In fact, many of these works design sum-
check ZK-IOPs for specific codes, such as RS or RM.) Such a sumcheck ZK-IOP (in fact, ZK-IPCP)
was first given in [CFS17], though sumcheck IOPs with weaker ZK guarantees were given already
in [BCGV16, BCF+16]. More specifically, [BCGV16, BCF+16] design sumcheck IOPs for polyno-
mial codes (such as RS or RM) in which the view of a query-restricted verifier (that can query both
the codeword and prover messages) can be simulated by making the same number of queries to
the codeword alone.39 This should be contrasted with our sumcheck IOP which, when applied to
general (non-ZK) tensor codes leaks rows of the codeword. While the leakage in our sumcheck IOP
is larger, it applies to general codes and has sublinear communication. We stress that the weaker
ZK guarantee of our sumcheck IOP still suffices for constructing ZK-IOPs for 3SAT.

The main idea underlying all these aforementioned works (except for [XZZ+19, BCL22], see
below) it to obtain ZK by applying a (standard, non-ZK) sumcheck IOP on a random shift of the
tested codeword. That is, to test the sum

∑
im(i) of a codeword c = C(m), the prover first sends

a uniformly random codeword r ← C, the verifier sends a random γ ∈ F, and the parties then
engage in a sumcheck IOP for the codeword c′ := γ · c + r. Intuitively, when combined with a
ZK encoding of the witness (e.g., an LDE generated from an augmented witness that was padded
with randomness), this guarantees ZK because r fully masks c. (See Further discussion in Sec-
tion 2.2.) We stress that these sumcheck ZK-IOPs do not have sublinear communication. Indeed,
the communication is at least n (where n is the length of the tested codeword) because the prover
sends the oracle message r.

We note that [XZZ+19, BCL22] follow a similar approach, but are able to obtain sublinear-
communication sumcheck ZK-IOPs for specific codes, by exploiting properties of these codes. Xie
et al. [XZZ+19] design a zero-knowledge IOP based on the GKR protocol [GKR15]. Their con-
struction includes a sublinear-communication sumcheck ZK-IOP which exploits the structure of
the LDE encoding used in [GKR15] to enable using a short random masking. Bootle et al. [BCL22]
design (as a main building block in their ZK-IOP construction) a sublinear-communication sum-
check ZK-IOP on sparse polynomial codes (i.e., ones in which the codeword corresponds to the
evaluations of a polynomial with few monomials). Both results are tailored to the structure of
polynomial codes (and the work of [BCL22] needs the further assumption that the polynomial is
sparse), and it is not clear if or how these ideas can be generalized to sumchecking a generic tensor
code, as we do in this work.

39The simulator in [BCGV16] is only efficient for codes with polynomial-size domains; this was improved in [BCF+16]
whose simulation is efficient even for codes with an exponential-size domain.

88

Zero-Knowledge Codes. Zero-Knowledge codes are often used implicity in the context of se-
cret sharing (most notably for Shamir’s secret sharing) as well as for the design of ZK-IOPs (e.g.,
in [BCGV16, BCF+16, BCF+17, CFS17, BBHR19, BCL22]).

ZK codes were first explicitly defined by [DGR20, DGR99], who construct binary ZK codes
with constant rate that are also able to correct a constant fraction of errors. Their construction
works in two steps. First, they defined a property of encoding matrices such that any generator
matrix G possessing the property induces a code that has ZK with respect to the encoding de-
fined by G. Then, they gave an explicit construction of a generator matrix satisfying the property.
Feldman et al. [FMSS04] showed that for any linear code with “sufficiently good” parameters, a
generator matrix of the code – that additionally satisfies the matrix property of [DGR20, DGR99] –
can be found probabilistically (except with negligible failure probability). This was later general-
ized by [ISVW13], who used this to show that the tensor product is a ZK-LTC with respect to some
randomized encoding function which can be found probabilistically. Ishai et al. [ISVW13] also
gave an efficient explicit transformation from any linear code to a ZK code (albeit with a statistical
ZK property). They also show that for any (not necessarily linear) code (with sufficiently good pa-
rameters), there exists a random encoding function that is ZK for the code. The codes constructed
in all these works are ZK against adversaries querying a constant fraction of codeword symbols.

Bootle et al. [BCL22] studied ZK and uniformity under general tensor products. They show
that t-ZK (t-uniform ZK, respectively) is preserved under tensor products, specifically that if
C1, C2 are codes such that Ci is ti-ZK (ti-uniform ZK, respectively) then C1 ⊗ C2 is min{t1, t2}-
ZK (min{t1, t2}-uniform ZK, respectively). (This should be contrasted with [BCGV16, BCF+16,
BCF+17, CFS17, BBHR19, BCL22]) that focused specifically on tensor products of Reed-Solomon.)
They use this property to give a probabilistic construction of Ω(k)-uniform ZK codes that are
linear-time encodable. They also give an algebraic characterization of t-ZK and t-uniform ZK
of a code C, via the generating matrix and the distance of the dual codes. This characteriza-
tion strengthens the result of [CDN15] (which was for the special case of Massey’s scheme), and
of [CCG+07, ISVW13] (who showed only one direction of these implications).

89

Sublinear-Length Sumcheck ZK-IOP

• Explicit input: λ1, . . . , λd ∈ Fk and α ∈ F.

• Implicit input: A codeword c = C⊗d(m) ∈ F[n]d , where m ∈ F[k]d .

▷ Let k′ := kd−1, n′ := nd−1, C ′ := C⊗(d−1), and λ′ := λ2⊗· · ·⊗λd. In what follows, we view c as
a codeword in C⊗C ′, where the goal is to verify that ⟨λ1⊗λ′,m⟩ = α. Without loss of generality,
assume that λ′(1) ̸= 0.

1. Masking the tested codeword c.

(a) P samples r ← Fk, and sends β := λ′(1)
∑

i∈[k] λ1(i) · r(i) ∈ F and the oracle u :=

C(r) ∈ Fn to V .
▷ Let r̄ ∈ Fk×k′

denote the matrix whose first column is r, and the rest of its entries
are all zero, and let R := (C ⊗ C ′)(r̄).

(b) Local testing of the mask.

i. V runs the query phase of the robust local tester TEST for the codeC, but instead
of making the queries, V sends the query set I ⊆ [n] of size |I| = q to P .

ii. P sends v := u|I : I → F to V .
iii. V checks that ψTEST(v) = ACCEPT; If not, then it rejects and aborts.
iv. V picks a uniform random point i ∈ I , queries u(i), and checks that u(i) = v(i);

If not, then it rejects and aborts.

(c) V samples γ ← F and sends γ to P .

2. Sumcheck over the random linear combination. The parties now engage in a protocol
whose goal is to verify that∑

i∈[k],j∈[k′]

λ1(i) · λ′(j) · (γ ·m(i, j) + r̄(i, j)) = γ · α+ β.

(a) P computes

z :=
∑
j∈[k′]

λ′(j) · C(γ ·m(∗, j) + r̄(∗, j)) = λ′(1) · u+ γ
∑
j∈[k′]

λ′(j) · C(m(∗, j)) ∈ Fn,

and sends z to V .

(b) V queries β, and checks that z = C(y) for y ∈ Fk which satisfies that
∑

i∈[k] λ1(i) ·
y(i) = γ · α+ β. If not, then V rejects and aborts.

(c) V picks a random i1 ← [n], and sends i1 to P .

3. Restricting to a row.

(a) P and V engage in the (non zero-knowledge) IOP for sumcheck (P ′,V ′) given by
Theorem 5.6 with the explicit input λ2, . . . , λd ∈ Fk and z(i1) ∈ F and the implicit
input c′ := γ · c(i1, ∗) + R(i1, ∗) ∈ C⊗(d−1). If V ′ rejects, then V rejects and aborts;
Otherwise, let (i2, . . . , id) ∈ [n]d−1 and α′ ∈ F be the output of this protocol.

(b) V queries u(i1), and computes σ := (C ′(u(i1), 0, . . . , 0))(i2, . . . , id) ∈ F.

(c) i. If γ = 0 and σ ̸= α′, then V outputs reject.
ii. Otherwise, if γ = 0 and σ = α′, then V outputs accept.

iii. Otherwise, V outputs (i1, . . . , id) and α′′ := (α′ − σ)/γ.

Figure 3: Sublinear-Length ZK-IOP for Sumcheck
90

ZK-IOP for 3SAT - Bare-Bones Protocol

• Prover P’s input: A satisfiable 3-CNF formula φ with n := kd variables for some integer
d > 1, and a satisfying assignment w ∈ {0, 1}[k]d for φ.

• Verifier V’s input: The 3-CNF φ.

1. Parameters. Let k1, k2, n1, n2 ∈ N such that k < k1 < k2 (the exact value of these param-
eters is set in Figures 5-7), and let F be a sufficiently large finite field. Let C2 : {0, 1}k2 →
{0, 1}n2 be a high-rate ZK-LTC, and let C1 : F(3k1)

9 → Fn9
1 be C1 := PRS⊗9

3k1,n1
.

2. Witness Encodings. The prover generates two randomized encodings of the witness w:

(a) Low-Rate Encoding. (This encoding is never sent to V .)

i. P generates a randomized low-degree extension ŵ1 of w.
ii. Let Îφ be the low-degree extension of the function Iφ : [k]3d+3 → {0, 1} which is

1 if and only if the clause xi1 = b1 ∨ xi2 = b2 ∨ xi3 = b3 exists in φ.
iii. Arithmetization of φ: let

Pφ,w1
(i1, i2, i3, b1, b2, b3) := Îφ (i1, i2, i3, b1, b2, b3) ·Π3

j=1 (ŵ1(ij)− bj) .

iv. Let Q be sampled uniformly at random by V , out of the family of zero-tester
polynomials given by Lemma 3.39. V sends Q to P , who computes

P (i1, i2, i3, b1, b2, b3) := Q (i1, i2, i3, b1, b2, b3) · Pφ,w1 (i1, i2, i3, b1, b2, b3) .

v. The low-rate encoding of w is the codeword c1 = C
⊗(d+1)/3
1 (w3) ∈ PRS3k1,n1

,
where w3 is the evaluation table of P on [3k1]

3d+3.

(b) High-Rate Encoding. P generates a randomized C2-encoding c2 of ŵ1, and sends c2
to V .

3. Local Testing of c2. V runs the local tester of C2 on c2.

4. Sumcheck over LDE – Checking that φ ∈ 3−SAT. P and V execute the sumcheck ZK-IOP
(Pin,Vin), given by Theorem 5.4 (version for tensor codes) on c1 with input α. If Vin accepts
or rejects, then V does the same and aborts; Otherwise, the outcome of this execution is an
evaluation point (i1, i2, i3, b1, b2, b3) ∈ (F \ [3k1])3d+3 and a value α′ ∈ F.

5. Sumcheck over High-Rate Encoding – Checking value ofP (i1, i2, i3, b1, b2, b3). Recall that
P (i1, i2, i3, b1, b2, b3) can be generated from ŵ1(i1), ŵ1(i2), and ŵ1(i3). In the next step, V
and P engage in the sumcheck ZK-IOP (P ′

in,V ′
in) given by Theorem 5.4 (version for general

codes) on c2 with input αj . If V ′
in rejects, or the outcome of this execution is i′j ∈ [n2]

d, α′
j ∈

F, such that c2(i′j) ̸= α′
j , then V rejects and aborts.

6. Output. V queries Îφ(i1, i2, i3, b1, b2, b3) and Q(i1, i2, i3, b1, b2, b3), and accepts if and only if

Q (i1, i2, i3, b1, b2, b3) · Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (αj − bj) = α′.

Figure 4: A “Bare-Bones” Description of the ZK-IOP for 3SAT

91

ZK-IOP for 3SAT – Part 1

• Prover P’s input: A satisfiable 3-CNF formula φ with n := kd variables for some integer
d > 1, and a satisfying assignment w ∈ {0, 1}[k]d for φ.

• Verifier V’s input: The 3-CNF φ.

1. Parameters and codes.

(a) Let n1 be the smallest power of 2 so that 24(d + 1)k ≤ n1. Let F be a finite field of
size n1, and identify F with [n1]. Let A = {a1, . . . , as} be a basis for F over the binary
field, where s = log n1 and a1 = 1. Let k1 = (1+ 1

s2) ·k, k̄1 = k+s · (k1−k) = (1+ 1
s)k,

k2 = k̄1/(1− γ
8d), and n2 = k2/(1− γ

8d).

(b) Let B := (PRS3k1,n1
)⊗3 (cf., Definition 3.36) and C1 = B⊗3.

(c) Let C0 : {0, 1}(k2)
1/4 → {0, 1}(n2)

1/4

be any explicit binary linear code of rate 1 − γ
8d

and relative distance (γd)
O(1), and let C2 : {0, 1}k2 → {0, 1}n2 be the binary linear

ZK-LTC so that image(C2) = image((C0)
⊗4), given by Corollary 4.19.

2. Local preprocessing.

(a) Let Iφ : [k]3d+3 → {0, 1} be the function which satisfies that Iφ(i1, i2, i3, b1, b2, b3) = 1
for i1, i2, i3 ∈ [k]d and b1, b2, b3 ∈ [k] if and only if b1, b2, b3 ∈ {0, 1} and the clause
xi1 = b1 ∨ xi2 = b2 ∨ xi3 = b3 exists in φ. V computes the low degree extension Îφ of
Iφ over F (cf., Lemma 3.35).

(b) V samples a random (3d + 3)-variate polynomial Q over F of individual degree at
most k − 1 out of the family of zero-tester polynomials, given by Lemma 3.39, and
computes the evaluation table of Q over F.

Figure 5: ZK-IOP Approaching Witness Length for 3SAT (Part 1)

92

ZK-IOP for 3SAT – Part 2

3. High-rate encoding.

(a) P generates w2 ∈ {0, 1}[k2]
d

as follows. For any i ∈ [k]d, w2(i) = w(i). For any
i ∈ [k2]

d \ [k̄1]d, w2(i) is a uniform random bit, sampled independently at random.
Next suppose that i ∈ [k̄1]

d \ [k]d, and let ℓ0 ∈ [d] be the first index so that i(ℓ0) /∈ [k].
If there exists another index ℓ ̸= ℓ0 so that i(ℓ) /∈ [k] and i(ℓ) − k ̸≡ 1 mod s, then
w2(i) = 0. Otherwise, w2(i) is a uniform random bit, sampled independently at
random.
P sends c2 := (C2)

⊗d(w2) to V .

(b) V runs the (
√
n2, (

γ
d)

O(d))-robust local tester TEST for the code (C2)
⊗d, given by The-

orem 3.33 (such a local tester exists since image((C2)
⊗d) = image((C0)

⊗(4d))), but
instead of making the queries, V sends the query set I ⊆ [n2]

d of size |I| = √n2 to P .

(c) P sends v := c2|I : I → F.

(d) V checks that ψTEST(v) = ACCEPT; If not, then it rejects and aborts.

(e) V picks a uniform random point i ∈ I , queries c2(i), and checks that c2(i) = v(i); If
not, then it rejects and aborts.

4. Arithmetization.

(a) P generates w1 ∈ F[k1]
d

as follows. For any i ∈ [k]d, w1(i) = w2(i). Next suppose
that i ∈ [k1]

d \ [k]d, and let ℓ0 ∈ [d] be the first index so that i(ℓ0) /∈ [k]. For h ∈ [s],
let i(h) ∈ [k̄1]

d be the vector which satisfies that i(h)(ℓ) = i(ℓ) if i(ℓ) ∈ [k], i(h)(ℓ0) =
k + s · (i(ℓ0) − k − 1) + h, and i(h)(ℓ) = k + s · (i(ℓ) − k − 1) + 1 otherwise. Then
w1(i) =

∑
h∈[s] ah · w2(i

(h)).

P computes the low degree extension ŵ1 of w1 over F (cf., Lemma 3.35), and the
polynomial

Pφ,w1
(i1, i2, i3, b1, b2, b3) := Îφ (i1, i2, i3, b1, b2, b3) ·Π3

j=1 (ŵ1(ij)− bj) .

(b) V sends (the index of) Q, generated in Step 2b, to P .
P computes

P (i1, i2, i3, b1, b2, b3) := Q (i1, i2, i3, b1, b2, b3) · Pφ,w1
(i1, i2, i3, b1, b2, b3) .

▷ Note that P is a (3d+3)-variate polynomial over F of individual degree at most 3k1.
In particular, the evaluation table of P on (F\ [3k1])3d+3 can be viewed as a codeword

c1 ∈ (PRS3k1,n1
)⊗(3d+3)(w3) = B⊗(d+1)(w3) = (C1)

⊗(d+1)/3(w3),

where w3 ∈ F[3k1]
3d+3

is the evaluation table of P on [3k1]
3d+3, and

P (i1, i2, i3, b1, b2, b3) = (B⊗(d+1)(w3))((i1, b1) ⋆ (i2, b2) ⋆ (i3, b3))

for any i1, i2, i3, b1, b2, b3 ∈ [3k1]
3d+3.

Figure 6: ZK-IOP Approaching Witness Length for 3SAT (Part 2)

93

ZK-IOP for 3SAT – Part 3

5. Sumcheck over LDE.
The prover and verifier now engage in the sumcheck IOP given by Theorem 5.4 to prove
that ∑

i1,i2,i3∈[k]d,b1,b2,b3∈[k]

P (i1, i2, i3, b1, b2, b3) = 0.

(a) P and V execute the sumcheck ZK-IOP (Pin,Vin), given by Theorem 5.4 (for ten-
sor codes with respect to the code B), with the explicit input being α = 0 and
λ1, . . . , λ(d+1)/3 ∈ F[3k1]

9

, where for any ℓ ∈ [(d + 1)/3], λℓ(i) = 1 for any i ∈ [k]9,
and λℓ(i) = 0 otherwise, and the implicit input being c1 = (C1)

⊗(d+1)/3(w3).

(b) If Vin accepts or rejects, then V does the same and aborts; Otherwise, the outcome of
this execution is an evaluation point (i1, i2, i3, b1, b2, b3) ∈ (F \ [3k1])3d+3 and a value
α′ ∈ F.

6. Sumcheck over high-rate code.
Recall that P (i1, i2, i3, b1, b2, b3) can be generated from ŵ1(i1), ŵ1(i2), and ŵ1(i3). In the
next step, V and P engage in the sumcheck IOP given by Theorem 5.4 with the goal of
computing the values ŵ1(i1), ŵ1(i2), and ŵ1(i3).
For j = 1, 2, 3, sequentially:

(a) P sends αj := ŵ1(ij) to V .
Let λj,1, . . . , λj,d ∈ Fk1 be the vectors satisfying that ŵ1(ij) = ⟨λj,1 ⊗ · · · ⊗ λj,d, w1⟩,
given by Corollary 3.29. For ℓ = 1, . . . , d, let λ′j,ℓ ∈ Fk2 be given by λ′j,ℓ(i) = λj,ℓ(i) for
i ∈ [k], λ′j,ℓ(i) = 0 for i ∈ [k2] \ [k̄1], and λ′j,ℓ(k + s · (i − k − 1) + h) = ah · λj,ℓ(i) for
any i ∈ [k1] \ [k] and h ∈ [s].

(b) P and V emulate the sumcheck ZK-IOP (P ′
in,V ′

in) given by Theorem 5.4 (for general
codes) with the explicit input being αj and λ′j,1, . . . , λ

′
j,d ∈ Fk2 , and the implicit input

being c2 = (C̃2)
⊗d(w2), where C̃2 is the A-extension of C2 (cf., Definition 4.20).

(c) If V ′
in rejects, then V rejects and aborts; Otherwise, if the outcome of this execution is

an evaluation point i′j ∈ [n2]
d and a value α′

j ∈ F, V queries c2(i′j), and checks that
c2(i

′
j) = α′

j . If not, then V rejects and aborts.

7. Output.

V queries Îφ(i1, i2, i3, b1, b2, b3), Q(i1, i2, i3, b1, b2, b3), generated in Steps 2a and 2b, respec-
tively, and accepts if and only if

Q (i1, i2, i3, b1, b2, b3) · Îφ (i1, i2, i3, b1, b2, b3) ·Π3
j=1 (αj − bj) = α′.

Figure 7: ZK-IOP Approaching Witness Length for 3SAT (Part 3)

94

	Introduction
	Our Results

	Technical Overview and Additional Results
	Zero-Knowledge Properties of Tensor Codes
	A Zero-knowledge Sumcheck Protocol with Sublinear Communication
	ZK-IOPs Approaching the Witness Length
	Open Problems and Future Directions

	Preliminaries
	Interactive Oracle Proofs (IOPs) and Zero-Knowledge (ZK) IOPs
	IOPs with Zero-Knowledge

	Error-correcting codes
	Zero-Knowledge Codes
	Locally Testable Codes
	Tensor codes
	Low-degree Extensions (LDEs) and Reed-Solomon (RS) Codes

	Zero-Knowledge Properties of Tensor Codes
	ZK Against Line Queries
	ZK Against Line Queries
	ZK Against Adaptive Line Queries

	ZK Threshold of Tensor Product
	Limitations on the ZK Threshold
	Linear ZK Threshold

	Code Extension

	Sublinear length ZK-IOP for sumcheck
	Warmup: the 2-Dimensional Case
	The Full Sumcheck Protocol
	Completeness
	Soundness
	Zero knowledge
	Zero Knowledge for General Codes
	Zero-Knowledge for Tensor Codes

	Distributional ZK

	ZK-IOP approaching witness length for 3SAT
	High-Level Overview of the Protocol
	Prior Techniques in (Zero-Knowledge) PCP and IOP Design
	New Techniques for ZK Proofs Approaching the Witness Length

	The ``Bare-Bones'' Protocol and the Full Protocol
	Completeness
	Soundness
	Zero-Knowledge
	Proof of Main Technical Lemma 6.7

	Reducing query complexity
	Black-Box ZK Implies ZK with Auxiliary Inputs for IOPs
	Related Works

