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Abstract. In this paper, we introduce a new probability function pa-
rameter in the instantiations of the Goldreich-Micali-Wigderson with
Fiat-Shamir and unbalanced challenges used in ALTEQ, a recent NIST
PQC candidate in the call for additional signatures.
This probability set at 100% does not bring any changes in the scheme,
but modifies the public challenge generation process when below 100%,
by injecting potential rejections in otherwise completely valid inputs.
From a theoretical point of view, this does not improve the asymptotical
hardness of the scheme and negatively affects the efficiency of the sig-
natory, and might itself seem trivial. However, from a practical point of
view, implementation-wise and performance-wise, this triviality allows
an extra degree of freedom in optimizing parameters, as the heuristic
security level is also increased against forgers: previously valid combi-
nations now can be deemed invalid. This allows us to make trade-offs
to reduce the computational load in verifiers, accelerating verifications,
marginally reduce the signature size, at the cost of making signatures
slower and unlikely to be constant-time. In particular, this extra degree
of freedom allows to make implementation choices that enable smoother
and faster executions of the aforementioned protocols, especially in the
context of parallelization using vectorized instructions. We also demon-
strate the usefulness of our proposal to ALTEQ for other options, when
slowing down the signing process is not an issue: significantly smaller
signatures but longer verifications, or lower public key sizes. The ideas
presented apply to any primitive, and can be used beyond ALTEQ.

Keywords: Post-Quantum Cryptography · Signature scheme · Alter-
nate Trilinear Forms · AVX2

1 Introduction

Most of the cryptographic research on primitives in the past few years have been
focused on building cryptosystems based quantum-resilient problems, motivated
by the threat of quantum computers. Indeed, it is unclear if practical quantum
computers will ever the light of the day, but most of the currently used cryp-
tosystems today, namely RSA [17] would be broken by quantum algorithms [20].
A call for standardization has been launched by the NIST and has met an unsat-
isfactory conclusion recently, standardizing a few schemes [15]. Unsatisfactory,
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as it seems like the currently selected portfolio is not as diverse as it expected:
an additional call for signatures has been launched as a result [16]. The intent
is clear: the NIST asked to focus on short signatures and fast verification speed,
or any form of significant advantage over the currently standardized schemes.

One of the potential advantages over any of the selected schemes, obviously,
would be to remain secure if the currently chosen schemes are completely broken.
The easiest way to construct such a scheme is to use a distinct primitive. The
most popular family of primitives are currently lattice-based, hash-based, code-
based, multivariate-based and isogeny-based. One family tends to fly under the
radar though: group action-based cryptography. Recently, this research topic
has gained some traction: new workshops have been planified this year to focus
on group action-based cryptography1, and at least three group action-based
constructions have been submitted to answer NIST’s call: ALTEQ [6], MEDS [7]
and LESS [1], the latter two being code-based groups but ALTEQ and MEDS
sharing the same class of complexity as far as theoretically hard problems are
concerned (Tensor Isomorphism Class).

In this paper, we focus on the cryptographic construction used by ALTEQ,
which framework can be used for any group action-based cryptography primitive.
The ALTEQ signature scheme, relying on the (ATFE) problem, is constructed via
a Fiat-Shamir (FS) transform [10] over a Goldreich-Micali-Wigderson (GMW)
framework [12], with unbalanced challenges. Using this framework without care-
fully checking the security conditions can lead to devastating attacks: for exam-
ple, ALTEQ requires their entries to be invertible matrices, but did not implement
a check. Because of this blunder, a forgery attack was found by Saarinen [18]
less than two days after ALTEQ’s publication, shortly followed by a quick fix
from Beullens [3] (who also provided further analysis, affecting somehow simi-
lar schemes such as [1] and [7]). The fix was implemented, leaving us with the
current version2.

Despite this update, ALTEQ did not change its parameters, and merely the
means to compute the algebraical data composing the signature. The updated
scheme could use new parameters: the current version of their code would yield
better performance from parameter changes, since the initial parameters were
also chosen to optimize performance in the first, no longer used, initial version.
Changing the parameters of their construction requires some work, but is very
customizable. The GMW-FS framework with unbalanced challenges needs to fix
three parameters to be instantiated:

– r, which decides the number of primitive computations. r determines the
verification speed, thus lowering it directly accelerates the verification.

1 https://aimath.org/workshops/upcoming/postquantgroup/,
https://www.ihp.fr/en/news-research-activities/
t3-2024-post-quantum-algebraic-cryptography-0

2 Following the update of https://eprint.iacr.org/2024/364 after the ACISP dead-
line, the ALTEQ parameters used for practical comparison in this work are no longer
relevant. This work’s contribution is however positively affected (larger trade-offs).

https://aimath.org/workshops/upcoming/postquantgroup/
https://www.ihp.fr/en/news-research-activities/t3-2024-post-quantum-algebraic-cryptography-0
https://www.ihp.fr/en/news-research-activities/t3-2024-post-quantum-algebraic-cryptography-0
https://eprint.iacr.org/2024/364
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– K, which decides the number of challenges solved using the secret key, and
is the main culprit in the signature size: lowering K directly decreases the
signature size.

– C, which decides the amount of possibilities for the challenge: it essentially
decides the size of the public key.

Thus if we want to get closer to NIST’s requests (although not guaranteeing
that we can fulfil them), we should aim to decrease both r and K. This led
ALTEQ to propose what they call “large public key” parameters alongside “fully
equilibrated” parameters, with low r and K but with incredibly large parameter
C: to achieve λ bits of security, the following formula needs to be verified:(

r

K

)
CK ≥ 2λ

While there are broad choices of parameters available for any value λ, we often
get into awkward choices where we have to pick between slightly higher values
for one parameter just to meet security requirements, but heavily complexifying
the optimizations in the process. In particular, we aim in this paper to provide
trade-offs that extend the available parameters, allowing to optimize vectorized
implementations as an example.

Contributions We propose to generalize the GMW-FS framework with unbal-
anced challenges by adding a fourth parameter p to the original triplet (r,K,C),
which simply changes the formula to achieve λ-bits of security to

p−1

(
r

K

)
CK ≥ 2λ

where p is a probability function that is almost fully customizable and is equal
to 1 in the classic case. In particular, the function is defined by

p =
x

2b
with x ∈ N, 0 < x ≤ 2b

and rather than implementing a whole new function in the ALTEQ code, this is
simple to implement by modifying the challenge generation to generate b extra
bits, by fully exploiting the fact that the Keccak family of hash functions[13],
namely SHA3, have a flexible output size with customizable security. Then a
combination will be deemed valid whenever this extra sample of b bits is lower
than x, effectively giving us a multiplicative probability p of acceptance. This
parameter p has almost no impact on the computational time of the verifica-
tion, thus we can accelerate the verification process by using p < 1 to reduce r,
which can also be used to decrease the signature size by reducing K. However,
the lower is p, the more the average signing time increases, thus for a proper
trade-off we need to carefully analyse each set of parameters and the targeted
use case. In particular, we demonstrate how the introduction of p can facilitate
the implementation of the ALTEQ verification function, by simultaneously de-
creasing its signature size and accelerating its verification: a win-win situation
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if having a non-constant time, slower signature process is not a problem. We
show other examples enabled by our technique, such as decreasing the public
key size by 34% without touching (r,K), or decreasing the signature size by
18% by reducing K while increasing r to an AVX2 friendly value. Note that this
contribution is mostly targeted towards the scope of fixing practical parameters,
when implementing a scheme with low-level languages like C or plain assembly:
there is no asymptotical change on the hardness of the constructions, nor is there
a paradigm shift in cryptanalysis.

Organization of the paper In section 2, we describe the ATFE problem and its
variants, especially the ones that are relevant to us, briefly reintroduce the AL-
TEQ cryptosystem and the associated structures, which is in short the ATFE
primitive used for a GMW-FS construction with unbalanced challenges. In sec-
tion 3, we present our change, and explain how we determine the impact on the
security and the formulas to compute both the failure rate associated with the
signatory and the potential gains implementation wise. In section 4, we apply
our suggestion to ALTEQ, and show how we can have more “friendly" parameters
implementation wise, especially for AVX2. The code used to obtain all tables is
present in the appendix 5. We finally conclude and list open questions that arise
from this paper in section 5, and discuss future research directions.

2 Background

Here we give some reminders and notations about the essential information about
ALTEQ that is necessary to understand this paper. Referring to [6] is recom-
mended, but not necessary.

2.1 Basic notations

Mathematical notations

1. q, n ∈ N∗: field orders and dimensions respectively. q is a prime power.
2. Fq: the finite field of order q.
3. Fn

q : vector space of n× 1 vectors over Fq.
4. GL(n, q): group of invertibles n× n matrices over Fq.
5. For u ∈ Fn

q and A ∈ M(n, q), ut and At denote their transposes.
6. For a, b ∈ N∗,

(
a
b

)
is the binomial coefficient.

7. For a < b ∈ N, Ja, bK = [a, b] ∩ Z
8. For m ∈ N∗, let [m] = J1,mK.
9. Given S finite, a ∈R S means a is a uniformly random sample from S.

Cryptographic scheme parameters

1. λ the desired bit-security level.
2. (n, q) the algebraic structure parameters, n, q as defined above.
3. (r,K,C) the GMW-FS framework parameters.
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Gross notation abuse To save space and to reduce repetitive clutter we denote

– any collection {Xi}i∈S by {Xi}S , it should be clear that i serves as an index
of items X and is an element of S.

– App(S, s) appends an element s to the end of an ordered list S.
– for S an ordered set of cardinal n, ||S represents a concatenation with all

its elements i.e ||s1||...||sn. This is mostly used in hash function parameters
where ordering is important, as a permutation change the hash output.

2.2 Algebraic structures in ALTEQ

A trilinear form (TF) on Fn
q is a map ϕ : Fn

q ×Fn
q ×Fn

q → Fq that is Fq-linear in
each argument. It is alternating (ATF) if and only if
∀u, v ∈ Fn

q , ϕ(u, u, v) = ϕ(u, v, u) = ϕ(v, u, u) = 0.
ATF(n, q) denotes the linear space of all ATFs on Fn

q . GL(n, q) naturally acts
on ATF(n, q): for all u, v, w ∈ Fn

q , A ∈ GL(n, q),
A sends ϕ to ϕ ◦A, defined as (ϕ ◦A)(u, v, w) := ϕ(At(u), At(v), At(w))
This action defines an equivalence relation ∼= on ATF(n, q), namely
ϕ ∼= ψ means ∃A ∈ GL(n, q) s.t ϕ = ψ ◦A.

The ALTEQ cryptosystem is based on the hardness of the following ATFE
problems:

– Search version: given ϕ ∼= ψ, find A ∈ GL(n, q) s.t ϕ = ψ ◦A
– Identification version: given ϕ, ψ ∈ ATF(n, q), is ϕ ∼= ψ true?

Note that there are two ways in ALTEQ to represent an ATF. One is a com-
pressed form and the other is called uncompressed. Each time a group action
is computed, the ATF is first uncompressed, vectorized, and the result is com-
pressed and unvectorized. In the current implementation, it is a tedious operation
that slow the scheme. Another key algebraic structure in ALTEQ is the use of
“column matrices”, which were essential in patching Saarinen’s attack while im-
proving ALTEQ’s performance. It is also not essential in this paper to know the
details, just keep in mind that it is a convenient form for computing group ac-
tions. For every A ∈ GL(n, q), Acol is its column representation when it exists. It
is analogue to the LU decomposition: with a permutation matrix P , a decompo-
sition PLU always exist, but forcing P = Id removes the guaranteed existence
of such decomposition.

2.3 ATFs and group actions in algorithms

Algebraic operations. The following functions define the computations

– {ϕi ◦Ai}[c] ← ActATF({ϕi, Acol
i }[c])

– {ϕi ◦A−1
i }[c] ← InvAct({ϕi, Acol

i }[c])
– {Acol

i }[c] ← ColDec({Ai}[c])
If Acol does not exist for a given A, a flag is raised to indicate failure.

– {Ci}[c] ← ColMul({Acol
i , Bcol

i }[c])
Note that given A,B in column form, this return C = A×B and not Ccol.
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Randomness generation. Hashing is done using the Keccak (SHA-3) family of
functions [13]. Expanders use AES-CTR [2] and take a seed of λ-bits as an input.
Names are self-explicit:

– H is a hash function that takes an input of arbitrary length and output a
binary string from {0, 1}2λ

– expCha is used for generating “unbalanced" challenges. (r,K,C) being fixed,
it will output r indexes {bi}[r] ∈ J0, CKr such that exactly r − K indexes
have bi = 0 (and thus exactly K indexes have bi ∈ [C])3.

– expATF outputs a random ϕ ∈ ATF(n, q).
– expCols outputs a random decomposition Acol of some A ∈ GL(n, q)
– expSeeds outputs some specified number of seeds of the same size λ-bits.

2.4 The ALTEQ cryptosystem

We briefly present the generic pseudocodes of ALTEQ’s setup, signature and
verification processes in figure 1. Their description here is slightly modified com-
pared to the original document [6], to make it simpler to understand and lighter
to write without affecting the essential features of the scheme.

Current data sizes of ALTEQ Following the description, we have

pksize : C ·
(
n

3

)
· ⌈log2(q)⌉+ λ

sksize : λ

Sigsize : (r −K + 2) · λ+K · n2 · ⌈log2(q)⌉

3 The change: affecting both forgers and signatories

3.1 Attack method of the forger

Before we introduce our modification, we present the attack angle we consider
to make sure we remain safe post-modification. This attack is the only attack
that has been done in practice on ALTEQ: Saarinen’s attack [18]. Since then, it
has been patched, but the methodology is sound (even if currently ineffective).
Let us introduce the attack in the general case.

To forge a signature, an attacker has to first pick K positions among r, then
one position among the public ATF ϕi∈JCK for each of those K matrices, and
compute the group action from those chosen ATFs by those K matrices. Then,
pick one seed, and compute the ATFs corresponding to the group action of ϕ0
by the matrix expanded from one seed.

3 In the original ALTEQ specification [6] (and in the code), the role of index C and 0
are swapped. We just inverted in this paper for convenience.
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KGen

1 : sk←R {0, 1}λ

2 : {δi}J0,CK ← expSeeds(sk, C + 1)

3 : ϕ0 ← expATF(δ0)

4 : {∆col
i }[C] ← expCols({δi}[C])

5 : {ϕi}[C] ← InvAct({ϕ0,∆
col
i }[C])

6 : pk← ({ϕi}[C], δ0)

7 : return (pk, sk)

Vf(pk,M, Sig)

1 : ϕ0 ← expATF(δ0), a← 0, b← 0

2 : {ci}[r] ← expCha(Ch)

3 : for i ∈ [r] do

4 : if ci = 0 then a← a+ 1

5 : D′col
i ← expCols(sa)

6 : else b← b+ 1

7 : D′col
i ← Dcol

b

8 : {ψ′
i}[r] ← ActATF({ϕci , D

′col
i }[r])

9 : Ch′ ← H(H(M)||{ψ′
i}[r])

10 : F← (Ch ̸= Ch′) or (bad {Dcol
i })

11 : if F then return No

12 : return Y es

Sign(sk,M)

1 : {δi}J0,CK ← expSeeds(sk, C + 1)

2 : ϕ0 ← expATF(δ0)

3 : β ←R {0, 1}λ

4 : {si}[r] ← expSeeds(β, r)

5 : {Bcol
i }[r] ← expCols({si}[r])

6 : {ψi}[r] ← ActATF({ϕ0, B
col
i }[r])

7 : Ch← H(H(M)||{ψi}[r])
8 : {ci}[r] ← expCha(Ch)

9 : S← {}, I∆ ← {}
10 : for i ∈ [r] do

11 : if ci = 0 then App(S, si)

12 : else App(I∆, i)

13 : {∆col
ci }I∆ ← expCols({δci}I∆)

14 : {Di}[K] ← ColMul({∆col
ci , B

col
i }I∆)

15 : {Dcol
i }[K] ← ColDec({Di}[K])

16 : if ColDec failed then go to line 3

17 : return Sig = (Ch, S, {Dcol
i }[K])

Fig. 1: The ALTEQ cryptosystem

The forgery goes on by attempting to compute the challenge from the chosen
ATFs, then expanding the challenge and succeeding if the initial choices for the
K positions among r, and the C choices of public ATFs in each of theK positions
match. Thus, each attempt has a success chance of 1 out of

(
r
K

)
CK :

–
(
r
K

)
for the K choices among r

– CK for the C choices of public ATFs for each of the K positions.

Note that because the challenge is attached to a message, knowing a signature
for one message does not help forging for another message assuming the hashes
and the expanders are secure.

Saarinen’s attack used a zero matrix instead of K invertible matrices, which
effectively reduced the number of combinations to

(
r
K

)
since all K ATFs were
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similarly set to the zero value. Now that ALTEQ checks invertibility, Saarinen’s
attack does not apply anymore, but the general framework remain sound. There
are of course other attacks, of algebraic nature, that targeted mostly ALTEQ’s
predecessor [21,5]. Purely algebraic attacks do not concern this paper, as we do
not modify the algebraic structure.

3.2 Introducing the probability parameter p

Let us remind the objective of this paper:

– Have better control of the parameters (r,K,C), to shorten signatures and/or
accelerate verifications.

– Keep the security analysis as close as possible to the original ALTEQ.

Thus the idea in this paper comes by following this train of thought:

– The security of the verification is enforced essentially by the public, secure
function expCha, and the security of SHA3 and AES-CTR.

– expCha’s outputs decide if a signature is valid or not.
– expCha essentially gives out random positions for the challenges.
– With the secret key, every challenge can be solved4.

This is the core difference between a forger and a signatory: a signatory
can answer any challenge thanks to being able to solve the ATFE instances re-
quested. However a signatory has no control over what is the challenge going
to be: expCha, SHA3 and AES-CTR are considered almost unpredictable and
irreversible. But what if some of the ATFs input are considered invalid by those
same functions, before or at the same time a challenge is even requested? Es-
sentially, the difference between a signatory and a forger becomes essentially an
advantage factor of

(
r
K

)
CK in success chance! The signatory himself will not be

able to guarantee that any series of ATFs leads to a challenge he can answer,
since the series of r ATFs can be rejected. However, the forger is equally affected,
worsening its attack angle we presented above.

So the idea is to reject previously valid combinations, and the more we reject,
the harder it is for both signatories and forgers to produce a valid combination.
To do so, we make use of the fact that Keccak can expand any number of bits we
wish, and usually just expand enough bits to create the challenge. We use this
property to extend more than the challenge. We present two options, where in
both options H(m) must be maintained as part of the decision process to make
sure every message comes with its own “combination challenge”, i.e knowledge
of valid combinations/signatures for a message do not help learning the valid
combinations for another message. This should also help the reader visualize
how we consider security risks.

4 All theoretically, but not all of them in practice if we limit the form of matrices to
be in column form, for example.
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– First option, simultaneously with the challenge: we request the hash that
produces the challenge Ch to produce b extra bits, and then denote y ∈ N the
b-bits integer produced. If y < x ≤ 2b then we accept the challenge generated,
otherwise we reject it, giving a probability of acceptance of p = x/2b. This
affects the signatory, where every permutation is no longer valid, but the
signatory can still sign any valid permutation: thus the signatory has to
search for a valid permutation, and can sign any valid permutation with
very high probability (the same as in ALTEQ, resampling depending on the
success of column factorization). A forger on the other hand, needs to make
sure his permutation is valid before checking if his combination choice is
correct.

– Second option, post-challenge: we request that a hash of the signature choice,
i.e from data obtained after the computation of the challenge, produce b
extra bits, and proceed as above. It is not clear if this process is more or less
expensive that the latter one: we request an extra hash, but this extra hash
has lower input size and we don’t extend the output of the challenge hash
which has an extremely large input. We could even include the challenge Ch
obtained as a parameter: the point of this second option is to have the input
of H(m) influence the decision process to maintain statistical independence
between distinct messages, but use a lower size entry for the extra b-bits.

Among all those options, we chose the first one in this paper. The first one
is the simplest to implement, probably has the lowest cost for a verifier, and
also simplifies the visualization of the attack cost which we explain in the next
subsection. The second one is more or less an idea on how we could link the
rejection to both the message and the signature combination in a more efficient
manner while maintaining the security: it is not clear how to proceed and is
better left as an open question as it only affects the signatory (and the forger),
which we already assumed will be hindered.

3.3 Cost for a forger, parametrization

We previously needed to guarantee that the number of combinations
(
r
K

)
CK was

above 2λ. Now, even if a valid combination is found, there is only a chance x/2b
that the combination is part of a valid signature. So if previously, every forging
choice, i.e a choice of K positions among r and a choice of K ATFs among C,
has 1 chance out of

(
r
K

)
CK to be correct for a successful forgery, this chance has

now a factor p = x/2b ≤ 1, making the probability of success to be p ≤ 1 out of(
r
K

)
CK , i.e 1 out of p−1

(
r
K

)
CK , hence our reasoning of the security requirement

of

p−1

(
r

K

)
CK ≥ 2λ or x−1

(
r

K

)
CK ≥ 2λ−b

in particular, a perfect equality can easily be set for b = λ and x =
(
r
K

)
CK if we

aim to maximize the success probability given fixed values (r,K,C).
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Note that the failure rate is basically 1 − p, i.e (2b − x)/2b: we cannot have
values of x that are too low, i.e values

(
r
K

)
CK that are much lower than 2λ: doing

so would slow down the signatory by a significant factor, as like the forger, it
also needs to find a valid combination before answering the challenge itself. We
stress again that we assume in this paper that the only advantage a signatory
has over a forger is a factor

(
r
K

)
CK , which is the original security assumption in

ALTEQ, proven to be “EUF-CMA” [18]5. It is possible this assumption is wrong
but we have not seen any evidence suggesting the opposite.

3.4 Permuting the “valid” challenges: not a security concern

Since the signatory now has to find a valid permutation of ATFs before answering
the challenge using the secret key, we propose a smarter way than recomputing
from scratch all the ATFs, which uses expensive calls to ActATF. Instead, notice
how any permutation of the ATFs provide a new hash value through SHA3, both
the challenge and the b extra bits. Thus we just need to repermute the computed
ATFs until the combination is valid.

A concern is now whether we lose security by doing so, or how probable that
a combination exists and can be found by permutation. Let us recall that

– The number of permutations is r!. For the lowest proposed ALTEQ parameter
r = 16 we have log2(r!) ≥ 44, and for the second lowest r = 39 we have
log2(r!) ≥ 153. If we sample them randomly, for example via a Fisher-Yates
method, until we are likely to find back a previously sample above 50%
chance, that is still the square root of the size, which is plenty of tries.
Otherwise we can systematically generate them all incrementally, but we
will lose the randomness of the order of permutations.

– Supposing we want to fix x, b to limit the number of resampling for practical
uses, we can safely assume that we will always have enough permutations
available. At least as long as we permute them by units and properly sample
among all permutations.

Using permutations rather than recomputing the ATFs is a trick a forger can
use: and since a forger can use it then there is no reason a signatory should not
use it, as the end result does not affect the algebraic security. In particular, there
is no guarantee that a “success at first-try” does not hold an invalid permuta-
tion when correctly signing either. Plus, we argue that using permutations might
improve security: imagine that giving random consecutive bit-strings with some
holes (K holes per signature) allows to have some chance to recover the initial
random seed that was expanded, then a permutation would hide the structure.
Of course, since AES-CTR is believed to be secure we have no reason to enter
such a scenario. But if the initial order is secure why would a permutation not
be? Could we even forge an attack knowing that the signature is the result of
a permutation, when the initial data is completely unknown? This seems highly
5 assuming the hardness of ATFE, SHA3 and AES-CTR.
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unlikely.

One other concern using permutations is its potential expensive cost. How-
ever, we do not need purely random permutations: since the initial data is already
random (generated via AES-CTR in ALTEQ), it should not be a worry. Thus we
could rely on completely deterministic incremental algorithms. When r is prime,
Sr can be generated by two elements: a cycle and a permutation, which lead to
simple and fast algorithms to generate all permutations. In our case we aim for
r to be a multiple of the register size, so generic deterministic algorithms such
as Heap’s algorithm [14] or Trotter’s algorithm [22] could work, removing the
necessity of any call to AES-CTR or SHA3 for this part of the procedure. Note
that the above are generative algorithms for the set of all permutations, but
they can be adapted to compute the next permutation in line and discard the
previously generated one (through any kind of order with or without a storage
of an intermediate state).

A more intensive read on the matter can be found in [19]. For the rest of this
paper, we can assume we sample “randomly”, with a Fisher-Yates method for
example [11], but in practice it might be a wiser choice to iterate through them
all. Heap’s algorithm can easily generate billions of permutations per second6 so
asking for a few hundreds permutations should not be a problem, especially that
we do not need to record them in our case. The main problem though, might
be the cost of hashing: to deem if a permutation is valid, we currently need to
re-hash the whole ATFs, but this is a problem that might be better to tackle in
further work. Nevertheless, this only concerns the signatory: a verifier preferring
AVX2 parameters, our main target in this paper, is unaffected.

3.5 Challenge from vectorized data and permuting them

One of the main objectives of this paper is to obtain parameters that are friendly
for vectorization, which affects the verification process since rejections and per-
mutations have little impact on the verification itself. The current vectorization
process in ALTEQ is done automatically by GCC detecting convenient for loops
after the data has been manually interwoven (GCC did not interweave data for
us). Vectorization works best when interweaving of data is done smoothly and
does not leave any hole: having convenient data sizes even allow to have inter-
weaving “in-place”, with lower memory requirements. For example, Dilithium’s
handwritten assembly code [9] uses specific instructions to interweave data, but
this is more complex to do in ALTEQ due to unmatching data sizes, noting
that the ALTEQ code is generic ANSI C and works for all parameters, unlike
Dilithium’s handwritten assembly per parameter set. In particular, we wish for
the similar operations to be repeated over concatenated data of size multiple of
the register size. For AVX2, this is 256-bits registers, and 512-bits registers for
6 see slide 19/21 of a 20+ years old presentation by Sedgewick himself https:
//sedgewick.io/wp-content/uploads/2022/03/2002PermGeneration.pdf.

https://sedgewick.io/wp-content/uploads/2022/03/2002PermGeneration.pdf
https://sedgewick.io/wp-content/uploads/2022/03/2002PermGeneration.pdf
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AVX512. Since ALTEQ for example uses 32-bits integer entries, this corresponds
to packs of R = 8 integers in AVX2 or R = 16 integers in AVX512, where we
denote R as a number of entries per vector.

ALTEQ’s code regarding the computation of ATFs, i.e the function ActATF,
first interweave the different ATFs (to put them into “vectorized form”), then
untangle the ATFs after the group action computation (“unvectorize” them). The
untangling is necessary to compute the challenge Ch through concatenation and
hashing. We argue that we can in fact change the technicalities of the challenge
generation, assuming that r, the number of ATFs, are a multiple of the register
size i.e r mod R = 0.
– Ch is generated from hashing ATFs concatenated with a message hash.
– This by no means use any form of algebraic structure: this process is in fact

primitive independent. The ATFs are only seen as bit-strings.
– We could then hash the interwoven data and not affect Ch’s security.
– Thus in theory, we do not need to untangle data and directly hash the

“vectorized form”: there is no loss of randomness in the bit-string shape, and
this automatically improves the verifier performance.

However, when r is not a multiple of the register sizes, then a problem arise
with this approach: there is a lot of trailing zeroes/random data at the end of
each data position string (i.e each position in the ATF). We would need to either
concatenate the data, adding some extra operations over non-constant data shift
sizes, or consider that the trailing zeroes are part of the challenge computations,
extending an already big entry size by a useless string of size as big as at most
R− 1 ATFs with no added security.

As the challenge generation needs to be public and used in all parties, ev-
erything we do to accelerate the verifier needs to be reflected in the signing
process: thus, the concept of permuting data to generate new challenges will be
impacted if data stays in vectorized form. We suggest a simple technique to get
around the problem: instead of permuting r ATFs, we permute packs of R ATFs.
This reduces the amount of interweaving/untangling that we need to perform
in the signature process, but this can only be done realistically when p is not
too low compared to the amount (r/R)! available (which for r = 16 for example
is only (r/R)! = 2 for AVX2). We could also resort to some partly hardcoded
attempts using AVX2 intrinsics to shuffle 32-bit integers within registers, such
as vpermilps, vperm2i128, vperm2i128, vpermd, etc... But this would require
further deeper studies into the properties of permutation generation, as a hy-
brid algorithm hardcoded/exhaustive algorithm must be researched (we have not
found any). Again, note that only the signing process would be slowed down:
the verification remains unaffected by the permutation operations.

3.6 Modified procedure

To describe the modified procedure we first define new functions/system param-
eters:
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– p is a probability p = x/2b, where x, b are system parameters.
– L is a system parameter representing how many permutations we would like

to attempt before rerolling r new ATF s. If using exhaustive permutation
generation algorithms, L can be set exactly to r!: no point doing more. For
the rest of this paper, we will arbitrarily set L to obtain 99% success chance
before resampling new ATFs, which should be several orders of magnitude
less than r!.

– Hp is exactly the same as the hash function H, but outputs an additional
boolean that is True with probability p and False otherwise. This is done by
requesting H to produce an extra integer y of b-bits and answering whether
y/2b < p. Since Keccak has flexible output this is trivial to implement in
practice (given the original function).

– permATF is a function that takes into parameter a string of r ATFs and a
random integer seed α ∈ [L], and output another string of r ATFs that are
a permutation of the input following the random seed α.

Which transform the current ALTEQ scheme to one we present in figure 2. We
stress that p, L are system parameters, and it is up to the cryptographer to
set the limits to its convenience. In section 4, we present of modifications of
(r,K,C), keeping p to the maximal value required (i.e minimizing p−1) to reach
λ-bits of security, i.e

p =

(
r
K

)
CK

2λ
so that p−1

(
r

K

)
CK = 2λ

but it is possible to use another approach: limit p and see if (r,K,C) can be
adapted accordingly. Whenever p is shown in a table, namely in section 4, we
will display an approximation instead of the rational exact value. L will also be
calculated in the tables of section 4, as the minimal number of permutations
needed to reach a 99% chance to get at least one valid permutation out of L
permutation samples for a signatory.

Note on Beullens’ attack After the ACISP deadline, a new attack by Beullens [4]
forced ALTEQ to adapt, now enforcing distinct ATF pools per position, with
seeds now appended with a salt and a round position index. This does not mean
the above technique does not strictly apply: there are other ways to counter the
attacks and allow permutations, as increasing the salt size and/or the seed size
and not using a round position index, for example.

Concerning side-channel attacks Searching for the correct permutation lowers
the chance of a constant-time implementation, however the added permutation
procedure only deal with public data: no operation using secret information
is used during the new non-constant-time part of the signing function, and is
even information that is used by the verifier in the original ALTEQ. In fact, the
signatory could even publish publicly the list of the permutations that were tried
and failed: it might be a long list, but a long list with zero secret information.
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Vf(pk,M, Sig)

1 : ϕ0 ← expATF(δ0), a← 0, b← 0

2 : {ci}[r] ← expCha(Ch)

3 : for i ∈ [r] do

4 : if ci = 0 then a← a+ 1

5 : D′col
i ← expCols(sa)

6 : else b← b+ 1

7 : D′col
i ← Dcol

b

8 : {ψ′
i}[r] ← ActATF({ϕci , D

′col
i }[r])

9 : Ch′,F← Hp(H(M)||{ψ′
i}[r])

10 : if not F then return No

11 : F← (Ch ̸= Ch′) or (bad {Dcol
i })

12 : if F then return No

13 : return Y es

Sign(sk,M)

1 : {δi}J0,CK ← expSeeds(sk, C + 1)

2 : ϕ0 ← expATF(δ0)

3 : β ←R {0, 1}λ, α← 0

4 : {si}[r] ← expSeeds(β, r)

5 : {Bcol
i }[r] ← expCols({si}[r])

6 : {ψi}[r] ← ActATF({ϕ0, B
col
i }[r])

7 : Ch′,F← Hp(H(M)||{ψ′
i}[r])

8 : while not F and α < L

9 : {ψi}[r] ← permATF({ψi}[r], α)
10 : α← α+ 1

11 : Ch′,F← Hp(H(M)||{ψ′
i}[r])

12 : if not F then go to line 3
13 : {ci}[r] ← expCha(Ch)

14 : S← {}, I∆ ← {}
15 : for i ∈ [r] do

16 : if ci = 0 then App(S, si)

17 : else App(I∆, i)

18 : {∆col
ci }I∆ ← expCols({δci}I∆)

19 : {Di}[K] ← ColMul({∆col
ci , B

col
i }I∆)

20 : {Dcol
i }[K] ← ColDec({Di}[K])

21 : if ColDec failed then go to line 3

22 : return Sig = (Ch,S, {Dcol
i }[K])

Fig. 2: ALTEQ injected with success probability p, sample limit L

4 Applying p, L to ALTEQ: parameters trade-off

4.1 ALTEQ parameters, and vectorization

The current ALTEQ parameters have not changed since their original submission.
We present the parameters below in table 17.

For vectorized implementations using the interweaving of the ATFs, such as
what the C code of ALTEQ suggests doing with strongly hinting GCC to use
vectorization, it is essential for maximal efficiency that both r and K param-
eters are a multiple of the vector size. C is not too important, as it needs to
be kept non-interweaved in their implementation. One can see in table 1, that
7 Note that the ALTEQ team recently retracted their level V parameters after noticing

some miscalculations, but this does not affect the ideas in this paper.



Faster verif/shorter sigs: trade-offs for ALTEQ with rejects 15

parameter set r K C
security level of
ALTEQ (bit)

I 84 22 7 128.1
16 14 458 130.6

III 201 28 7 192.0
39 20 229 192.7

V 119 48 8 256.0
67 25 227 256.2

Table 1: (r,K,C) per security level in the original ALTEQ

most of the times they are not too far off. In particular, r = 16 does not need
to be changed: it is already the size of two registers for AVX2 or one for AVX512.

Currently, we can see that r is not divisible by 8 in most parameters: this
in practice leads to useless computations, as the last vector will contain useless
values. In particular, it was reported in [18] that ALTEQ’s updated code has
slower setup performance for C < R = 8 in AVX2, which is not completely
unexpected since their vector-friendly code assume to compute per packs of R
elements as you can put R elements per vector. Every part of the cryptosystem
is affected. In this paper we prefer to focus on verification performance, so it
is more important to set r to a multiple of a register size: in particular, when
operations are done per vectors, the number of operations should be considered
by the value ⌈r/R⌉ rather than r: for example, r = 33 and r = 40 have the
same number ⌈r/R⌉ = 5 of AVX2 vector operations (R = 8).

4.2 Decreasing r to AVX2 friendly values, without touching (K,C)

In table 2, we attempt to decrease r to r−(r mod R) for AVX2 where R = 8, i.e
we do exactly one less vector operation and slightly decrease the signature size.
For some parameters, the success rate is not too low, which means we can still
obtain signatures somehow quickly. However some parameters have a chance of
success lower than 3%, and one has less than 1%. To obtain a 99% probability
of at least one success out of L samples, we need L = 812 for the “large public
key” parameters of 192-bits security, and L = 189 for the “fully equilibrated”
parameters of 256-bits which can be expensive whenever permutations are slow
to generate (when using AES-CTR to feed the Fisher-Yates algorithm, for ex-
ample). Even if the permutations were not slow to generate using deterministic
iterative algorithms such as Heap’s which does only one swap per permutation,
the fact that we might compute L hashes can be crippling for signing perfor-
mance: the point in this part is to accelerate the verification.

4.3 Decreasing the signature size through better r/K trade-offs

For some applications, getting a slightly slower verification is preferable if we
can get smaller signatures in return. To decrease the signature size significantly,
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security lvl new r K C r modif ≈ of p L for 99% ⌈r/R⌉ modif

I 80 22 7 -4 0.311 13 -9%
16 14 458 0 1 1 0%

III 200 28 7 -1 0.888 3 -3%
32 20 229 -7 0.005 812 -20%

V 112 48 8 -7 0.024 189 -6%
64 25 227 -3 0.275 15 -11%

Table 2: Lowering r to an AVX2-friendly value with p, no changes to (K,C)

the main parameter to target for signature size reduction is not r but K. Each
of the K matrix have n2 log2(q)-bits, while each of the r −K seeds have λ-bits.
Those sizes are entirely dependent of (r,K,C), which allows us to make “easier
trade-offs”. In particular for ALTEQ parameters, we have:

– for λ = 128, we have n = 13 and 42λ < 32× n2 < 43λ
– for λ = 192, we have n = 20 and 66λ < 32× n2 < 67λ
– for λ = 256, we have n = 25 and 78λ < 32× n2 < 79λ

which means, for example, that a decrease by one in K is approximately equiv-
alent to a decrease by 42 or 43 to r −K in the signature size, thus increasing r
by 40 but reducing K by 1 could be (marginally) worth it. However, note that
balancing is a hard task since the impact of K is much greater than r on the
security and C plays a central role in the way K impacts the signature’s security:
in particular, for low values of K such as in the “large public key” parameters
(i.e large C), decreasing K must be compensated by large increases of r. This
leads to an increase of the verification time (which is mostly r dependent) but
we are merely exploring the option in this part.

However, with the introduction of our success probability parameter p, we
can limit the impact on how much we would have to increase r to compensate
the decrease of K, without changing C. We showcase some examples in table 3,
while aiming for (r mod 8 = 0) for AVX2 to keep a simpler verification imple-
mentation (that could still be slower since r is increased), and to easily count
the number of supplementary vector operations. We can see that some param-
eters in table 3 are probably unlikely to be practical anywhere (except maybe
with some other changes, but not as it is), but the rest of the parameters seem
affordable: keep in mind that we are doing permutations to resample, we are not
exactly multiplying by 3391 the signing time, especially since the performance
bottleneck is mainly ActATF, with functions ColDec and to a lesser extent ColMul
having non-negligible computational time.

4.4 Decreasing the public key size C without touching (r,K)

In the case of the “large public key" parameters, the parameters were crafted
to have short signatures at the cost of a large public key. Short signatures are
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security lvl new r new K C r/K modif ≈ of p L for 99% Sig modif ⌈r/R⌉ modif

I 112 18 7 +28/-4 0.001 3391 -13% +27%
24 12 458 +8/-2 0.676 5 -12% +50%

III 256 24 7 +55/-4 0.0001 45376 -10% +23%
104 16 229 +61/-4 0.024 189 -14% +160%

V 200 38 8 +71/-10 0.02 208 -18% +66%
72 24 227 +5/-1 0.024 190 -3% 0%

Table 3: Examples of +r/-K using p (no C changes), aiming AVX2-friendly r

usually good to reduce communication sizes, but many signatures must be pro-
duced to counteract the fact that an initial setup with a large key must be first
managed. In the last subsection we did not touch C and modified r/K instead.
This time, we aim to see if we can reduce just C, which should reduce the com-
munication threshold of when it starts to be beneficial to use those “large public
key” parameters rather than the “fully equilibrated” ones. This part obviously
applies mostly to the “large public key" parameters, as there is not much to
reduce when C = 7, 8: for the sake of the experiment we nevertheless present
some examples applied to the “fully equilibrated” parameters. Those examples
can be found in table 4.

security lvl r K new C ≈ of p L for 99% pk modif

I 84 22 6 0.03 125 -14%
16 14 300 0.016 271 -34%

III 201 28 6 0.01 333 -14%
39 20 180 0.013 327 -21%

V 119 48 7 0.001 2750 -12%
67 25 190 0.013 341 -16%

Table 4: Reducing C using p, no change to (r,K)

5 Conclusion

We extended the GMW-FS framework with unbalanced challenges with an ex-
tra probability parameter p. Thanks to this success probability, we are a bit
more flexible in parameter setting, which allows to obtain some more convenient
parameters especially for AVX implementations, and accelerate the verification
speed. While this does hinder the signature speed, the NIST announcement fo-
cused on signature size and verification speed for which we both improve. We
show a practical example on optimizing some ALTEQ parameters, and showcase
other uses of this parameter to obtain lower key sizes, or lower signature sizes
with more flexibility. Since the idea does not depend on the ATFE problem it-
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self, it could be used for any group-based cryptography primitive: maybe the
primitives from LESS [1] and MEDS [7] could also benefit from this.

Future works While it is clear that verification will be accelerated just from
reducing the computational cost from r alone even in non-vectorized implemen-
tations, the unique drawback here is the heavier signature process. We first need
to properly choose and implement how we are going to perform the successive
permute-then-hash-again failure management. Is there a specific secure method
that let us keep some of the data? After all, we are hashing a permutation of
a previous entry: maybe there is a more practical way to securely generate the
challenges and the rejection, that does not force us to restart the whole challenge
generation and validation process at every rejection. This could imply a deeper
rework of the GMW-FS protocol, or an ALTEQ overhaul. Obviously, the gains can
theoretically be at most polynomial, since the hardness of finding correct permu-
tations are a security guarantee against forgers, but the examples of p, L values
we showed in this paper do not reach insurmountable levels either. Furthermore,
we only modified parts of the parameters, but did not attempt to modify all
values (r,K,C) simultaneously: maybe some interesting quadruplets (p, r,K,C)
are left to be found. Once this is done, a natural following work would be to
transform the current generic code of ALTEQ that works for all parameters, to
a more efficient code of ALTEQ that works for all AVX2-optimized parameters:
we should obtain faster performance even when r is unchanged (such as r = 16).
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anybody to “play” with any parameter set and manually search for “acceptable”
compromises.

1 ListProbaSuccessPerTry:=function(pb_suc_one, aimed_prob)
2 pb_fail := 1.0 - pb_suc_one;
3 nb_tries := 1;
4 while (1-pb_fail) lt aimed_prob do
5 pb_fail *:= 1.0 - pb_suc_one;
6 nb_tries +:=1;
7 end while;
8 return nb_tries, 1-pb_fail;
9 end function;

10

11 /* Those are the original ALTEQ parameters */
12 //lbd:=128; n:=13; r:=84; K:=22; C:=7;
13 //lbd:=128; n:=13; r:=16; K:=14; C:=458;
14 //lbd:=192; n:=20; r:=201; K:=28; C:=7;
15 //lbd:=192; n:=20; r:=39; K:=20; C:=229;
16 //lbd:=256; n:=25; r:=119; K:=48; C:=8;
17 lbd:=256; n:=25; r:=67; K:=25; C:=227;
18

19 print "original:\n","n =",n,"| r =",r,"| K =",K,"| C =",C,"| lbd =",lbd;
20

21 Size1:= (r-K+2)*lbd + K*(n^2)*32;
22 print "original security:",Floor(Log(2,Binomial(r,K) *

(C^K))),"signature size:",Size1;
23

24 /* With "p" made to match lambda security, make your own modifs */
25 new_r:=r;
26 new_r:=Floor(new_r/8);new_r*:=8; /* Modif for AVX2 friendly r */
27 K:=24;
28 NewC:=C;
29 print "param try:\n","n =",n,"| r =",new_r,"| K =",K,"| C =",NewC;
30

31 p:=((Binomial(new_r,K) * (NewC^K)) / (2^lbd));
32 "success rate on one combination:",0.0 + p;
33

34 Size2:=(new_r-K+2)*lbd + K*(n^2)*32;
35 print "new security:",Floor(Log(2,(p^-1)*Binomial(r,K)*(C^K))),"new

signature size:",Size2;
36

37 AimedProb:=0.99;
38 SamplesForGoal:=ListProbaSuccessPerTry(p, AimedProb);
39 print "samples to get",AimedProb,"success rate:",SamplesForGoal;
40

41 print "Signature Size Gain:",(Size1 - Size2)/Size1 + 0.0;
42 print "Public Key Gain (without seed):",(C - NewC)/C + 0.0;
43 print "AVX2 chg:", (Ceiling(r/8) - Ceiling(new_r/8))/Ceiling(r/8) + 0.0;
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