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Abstract

Traceable threshold secret sharing schemes, introduced by Goyal, Song and Srinivasan (CRYPTO'21),
allow to provably trace leaked shares to the parties that leaked them. The authors give the �rst de�nition
and construction of traceable secret sharing schemes. However, the size of the shares in their construction
are quadratic in the size of the secret. Boneh, Partap and Rotem (CRYPTO'24) recently proposed a
new de�nition of traceable secret sharing and the �rst practical constructions. In their de�nition, one
considers a reconstruction box R that contains f leaked shares and, on input t − f additional shares,
outputs the secret s. A scheme is traceable if one can �nd out the leaked shares inside the box R by
only getting black-box access to R. Boneh, Partap and Rotem give constructions from Shamir's secret
sharing and Blakely's secret sharing. The constructions are e�cient as the size of the secret shares is
only twice the size of the secret.

In this work we present the �rst traceable secret sharing scheme based on the Chinese remainder
theorem. This was stated as an open problem by Boneh, Partap and Rotem, as it gives rise to traceable
secret sharing with weighted threshold access structures. The scheme is based on Mignotte's secret
sharing and increases the size of the shares of the standard Mignotte secret sharing scheme by a factor
of 2.

1 Introduction

Threshold secret sharing, introduced by Shamir [Sha79] and Blakely [Bla79], allows a dealer to split a secret
s into n shares sh1, . . . , shn such that s can be reconstructed from any t shares, while any t− 1 shares reveal
basically no information about s.

Traceable secret sharing. Goyal, Song and Srinivasan [GSS21] recently introduced the notion of traceable
secret sharing which allows one to trace back leaked shares to the parties that leaked them. They consider
the following scenario: Alice has shared a secret s, e.g., a secret key, among n servers with a threshold secret
sharing scheme. Suppose f servers collude and sell their shares, possibly in an obfuscated way such that they
can not be trivially traced back to the owners. In a traceable secret sharing scheme it should be possible to
trace at least one of the corrupted servers given the leaked information. Further, the tracer should be able
to produce a proof that implicates the corrupted servers.

Goyal, Song and Srinivasan [GSS21] gave the �rst de�nition and construction of a traceable secret sharing
scheme. Their construction, however, is not practical as the size of the secret shares is quadratic in the size
of the secret.

Boneh, Partap and Rotem [BPR24] propose a new de�nition of traceable secret sharing, which allows
them to give the �rst practical constructions from Shamir's secret sharing and Blakely's secret sharing. In
their de�nition a tracer is given black-box access to a reconstruction box R that has f < t shares hardcoded
in it. On input t− f additional shares, R outputs the secret that can be reconstructed from the t shares it
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now holds. In a traceable secret sharing scheme the dealer not only shares the secret, but also constructs a
tracing key and a veri�cation key. The scheme is called traceable if, given the tracing key, the tracer can �nd
all f parties that own one of the shares hardcoded in R and produce a proof that implicates these parties.
The proof should be veri�able given the veri�cation key. The scheme is called non-imputable if the tracer
cannot falsely accuse a party by forging a proof of their corruptness. The authors present two schemes that
satisfy traceability and non-imputability � one based on Shamir's secret sharing and one based on Blakely's
secret sharing scheme. The schemes are practical in the sense that the share size is only twice as large as
the size of the secret.

Secret sharing based on the Chinese remainder theorem. in Shamir's and Blakely's secret sharing
schemes the secret is randomly embedded into a higher dimensional space and encoded via polynomials
or hyperplanes. Di�erent examples of classic secret sharing schemes are based on the Chinese remainder
theorem (CRT). The main idea underlying these type of schemes is the following: The secret s can be seen
as a group element of ZN and the shares are of the form shi = (si, pi), where pi is a divisor of N and si := s
mod pi. Given shares shi1 , . . . , shit with pi1 · . . . · pit = N one can reconstruct the secret using the Chinese
remainder theorem. Two classic examples of such schemes are Mignotte's secret sharing scheme [Mig83] and
the Asmuth-Bloom secret sharing scheme [AB83]. In Mignotte's scheme the shares are smaller than the
secret and in the Asmuth-Bloom scheme shares are larger than the secret. While the Asmuth-Bloom does
not satis�es perfect privacy, i.e., all secrets are equally likely even given t− 1 shares, it does hold that given
t − 1 shares, all elements in the secret space could be the shared secret. In Mignotte's scheme t − 1 shares
can already rule out some of the secrets in the secret space. However, the parameters of the scheme can be
set such that given t− 1 shares, the number of possible secrets is still large enough. This is su�cient for the
application described above, where the secret is a random secret key.

Secret sharing with more general access structures. While most CRT based secret sharing schemes
do not satisfy perfect privacy, they have a very useful property: they can be extended to allow for more
general access structures, for example weighted threshold access structures, where each share has a weight
associated with it and the secret can be reconstructed whenever the sum of the weights of the shares exceed
the threshold [Ift06]. Shamir's and Blakely's scheme only have this property to a certain degree: One can
give certain parties more shares than others. However, they can not account for more complicated access
structures like the following example from [BL90]: The secret is shared between parties 1, 2, 3 and 4 and
the secret should only be reconstructable if either the pair (1, 2) is involved or the pair (3, 4) is involved.
Both Mignotte's secret sharing scheme and the Asmuth-Bloom secret sharing scheme can support a variety
of access structures [Ift06]. To realize the access structure above, for example, one could choose integers
p1 < p2 < p3 < p4 of which only the pairs (p1, p2) and (p3, p4) are coprime, choose the secret p4 < S < p1 ·p2
and then give share shi = (S mod pi, pi) to party i for all i ∈ {1, 2, 3, 4}.

1.1 Our Contribution

In this work we present the �rst traceable secret sharing scheme based on the Chinese remainder theorem:
a traceable version of Mignotte's secret sharing scheme. We prove its security in the random oracle model.
The scheme is e�cient since the size of the shares of the traceable scheme is only twice the size of the shares
in the original secret sharing scheme. This is because the sharing algorithm of our scheme is almost the same
as in the original Mignotte scheme.

In the original t-out-of-n Mignotte scheme, the dealer has access to a public sequence p1 < . . . < pn of
coprime integers that satis�es some special properties. The shares of the secret s < p1 · . . . · pt are of the
form shi := (pi, si := s mod pi). We sometimes call pi the identi�er of the share since it is a public value.
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To reconstruct s with t shares shi1 , . . . , shit , one only needs to solve the system
X = si1 mod pi1
...

X = sit mod pit

using the Chinese remainder theorem.
The sharing algorithm of the traceable secret sharing scheme is similar to the one of the original Mignotte

scheme, except that the pi are chosen at random from a large sequence P and are kept secret from everyone
except the party that holds the share. As was already observed by Boneh, Partap and Rotem [BPR24], for
a traceable secret sharing scheme it is necessary to choose the identi�ers of the shares from a large set, since
otherwise it is very likely that the tracer chooses a share identi�er as input that is already contained in R.
In this case the box R cannot reconstruct the secret and we have no guarantees on its behavior.

The key idea behind the tracing algorithm in our scheme is the following: Assume that the box has the
shares (p1, s1), . . . , (pt−1, st−1) hardcoded in it. To trace the shares inside R, the tracer queries R on (pt, s

∗
t )

and (pt, s
∗∗
t ) for some uniform s∗t , s

∗∗
t . For simplicity we assume that both queries yield a set of t distinct

consistent shares and the box R always behaves perfectly and outputs s∗ and s∗∗, which correspond to the
outputs of the reconstruction algorithm on those two set of shares. In this case, the constructive Chinese
remainder theorem and Bezout's identity give us a relation between the values p1, . . . , pt, the inputs s

∗
t , s

∗∗
t ,

the outputs s∗, s∗∗ and the Bezout coe�cients of p1 · . . . · pt−1 and pt. A careful analysis of this relation
yields that the following system of equations over Z with indeterminates X and Y is solvable with at least
constant probability: {

s∗ = X + s∗tY

s∗∗ = X + s∗∗t Y.

Denote the solution of the system by (x, y). We will show that the corrupted p1, . . . , pt−1 always divide x
but any other pi from the public sequence does not divide it with good probability. Hence, if only t − 1
elements from the sequence P divide x, the tracing algorithm can terminate and output those elements.

We note that the size of the sequence P has to be chosen carefully since the tracing algorithm basically
has to iterate through the entire sequence, when determining which elements divide x. On the other hand,
we need it to be big enough to avoid collisions of the pi hardcoded in R and the ones queried by the tracing
algorithm.

The size of P is also important for the non-imputability property. Let's assume that it is of size 2κ for
some positive integer κ. To make the scheme non-imputable we give the sharing algorithm a hash function H
and let it construct the tracing key and veri�cation key as follows: Whenever it samples an element pi from
P it also samples a random string ri from {0, 1}κ. It then computes si = s mod pi and hi = H(si, pi, ri)
and adds (i, hi) to the tracing key and the veri�cation key. This can be seen as a commitment to the share of
party i. Now, if the tracing algorithm �nds one corrupted element pi it can also compute the corresponding
si and then link it to party i by taking si, pi as the �rst two inputs to H and then iterating through all
possible ri ∈ {0, 1}κ. This takes at most 2κ operations. It then sends (i, si, pi, ri) to the veri�er. The
veri�er checks if hi = H(si, pi, ri) and accepts or rejects accordingly. In order to frame an innocent party,
an adversary would need to guess the correct pi and ri for party i, which amounts to �nding a preimage of
H. If we model H as a random oracle, this corresponds to �nding the preimage of a random oracle with
min-entropy at least 22κ, even if the adversary knows the secret and therefore knows the correct si for each
pi. We therefore have a quadratic gap between the tracing complexity and the security of non-imputability.

We note that the tracing algorithm is a procedure that is only used rarely and so we do not need to
optimize its e�ciency. As long as its running time is feasible, it serves its purpose of deterring parties from
leaking their shares.

Tracing more general access structures. The original Mignotte secret sharing scheme can be extended
to allow for more general access structures by changing how to choose the elements p1, . . . , pn. To obtain
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a weighted secret sharing scheme one can make some pi signi�cantly larger than others, such that those
parties need less than t − 1 additional shares to recover the secret. To obtain an access structure in which
some t parties should not be able to recover the secret, one can give those parties integers pi that are not all
pairwise coprime.

To trace Mignotte's scheme with more general access structures one only needs to carefully adapt how the
sharing algorithm of our scheme chooses the pi, since it can not choose them uniformly from one sequence P
anymore. However, each pi should still be chosen from a large enough set such that it can not be guessed by
any adversary. We note that for very complicated access structures, it might take more tries for the tracing
algorithm to �nd a set of input queries that, together with the shares hardcoded in R, yields a set of coprime
pi with which R can reconstruct a secret.

Making the scheme publicly traceable. The traceability notion of Boneh, Partap and Rotem [BPR24]
does not assume that the parties have access to the tracing key or the veri�cation key, which means that
the tracing key is not public, i.e., the scheme is not publicly traceable. We note that this is necessary in
both schemes in [BPR24] and also in our scheme since in all cases the tracing key allows one to check if any
given input (claimed to be a share) really belongs to some party. For example, in the traceable version of
Shamir's secret sharing scheme of [BPR24], the tracing key consists of the values F (x1), . . . , F (xn), where F
is a one-way function and for all i ∈ [n], the shares are of the form (xi, yi) for random secret �eld elements
xi, yi. Now, if the tracer queries R on a random input (x∗, y∗) and R has access to the tracing key, it can
just compute F (x∗) to check if a real share contains x∗ and output ⊥ whenever it does not. To ensure
non-imputability, x1, . . . , xn need to be hidden from the tracer so the probability that the tracer chooses an
x∗ that is contained in x1, . . . , xn is very small. In our scheme the box R obtains as input pairs of the form
(s∗, p∗). Given the tracing key, the box R can �nd out if the pair is an actual share by plugging s∗ and p∗

into the �rst two arguments of the hash function H and then iterating through all ri ∈ {0, 1}κ and checking
if any H(s∗, p∗, ri) is contained in the tracing key.

There are two ways to turn our construction into a publicly veri�able scheme. The �rst one is to require
the reconstruction box R to answer queries in a timely manner such that there is not enough time for R to
iterate through all ri ∈ {0, 1}κ beforehand. Note that this would not make the traceable version of Shamir's
scheme in [BPR24] publicly traceable since here the box only needs to perform one function evaluation to
check if the input is consistent with the tracing key.

The second possibility is to remove the tracing key altogether and only let the dealer construct a private
veri�cation key containing the pairs (i, pi) in the clear and give it to a trusted authority. Then the tracer
can send all the pi it has found to the trusted authority and the trusted authority checks which pi are part of
real shares. In this case the sequence P only needs to be large enough such that the probability of guessing f
identi�ers pi that belong to real shares is negligible. This would also eliminate the need for a random oracle.
In the traceable version of Shamir's scheme in [BPR24] this is not as straightforward because the tracer
uses the tracing key to �nd a certain polynomial in a large set of polynomials. If one wanted to remove the
tracing key, the tracer would need to send this large set to the trusted authority and outsource a signi�cant
amount of work to it.

1.2 Other Related Work

Traitor-tracing schemes. Traitor tracing for broadcast encryption schemes, introduced by Chor, Fiat
and Naor [CFN94], allow a tracer to trace back leaked decryption keys. The techniques used in the long line
of traitor tracing schemes [BS95, KD98, NP98, BF99, FT99, SW00, KY01, NNL01, KY02, DF03, CPP05,
BSW06, BN08, GKSW10, BZ14, GKW18, CVW+18, Zha20, Wee20, GLW23], however, are di�erent from
the one used in [BPR24] and in this work. See [BPR24] for a more detailed description of the techniques.

Weighted CRT based secret sharing schemes. Zuo et al. [ZMB+11] extend CRT based secret sharing
schemes to allow for weighted multi-secret sharing. Garg et al. [GJM+23] construct a weighted ramp secret-
sharing scheme based on the CRT. A ramp secret sharing scheme is parameterized by two thresholds t and
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t′, where t is the reconstruction threshold and any collection of parties with cumulative weight less than t′

should learn nothing about the secret. Ning et al. [NMH+18] extended CRT based secret sharing over ZN

to polynomial rings over �nite �elds.

2 Preliminaries

2.1 Number Theory

We will need the following basic results from number theory.

Theorem 1 (Chinese Remainder Theorem). Let p1, . . . , pk be pairwise coprime integers and v1, . . . , vk
arbitrary integers. Then the system 

X = v1 mod p1
...

X = vk mod pk

has a unique solution modulo p1 · · · pk.

Theorem 2 (Bezout's Identity). Let x, y be coprime integers. There exist integers a, b such that ax+by = 1.

We call the integers a, b above Bezout coe�cients. They are not unique.

Theorem 3 (Constructive Chinese Remainder Theorem for 2 equations). Let p1, p2 be coprime integers and
let a, b be Bezout coe�cients of p1, p2, i.e., ap1 + bp2 = 1. Then the system{

X = v1 mod p1

X = v2 mod p2

has a solution X = v1bp2 + v2ap1.

2.2 (Traceable) Threshold Secret Sharing

We mostly follow the de�nition in [BPR24]. However, we need to weaken the required privacy notion since
Mignotte's secret sharing scheme is not perfectly private.

De�nition 1 (Traceable Threshold Secret Sharing). A t-out-of-n traceable threshold secret sharing scheme
is a tuple of e�cient algorithms (Share,Rec,Trace,Verify) de�ned as follows:

Share(1λ, n, t, s)→ (sh1, . . . , shn, tk, vk) is a randomized algorithm that takes as input the security parameter
1λ, the number of parties n, the threshold t ≤ n and the secret s ∈ S. It outputs n shares sh1, . . . , shn,
a tracing key tk and a veri�cation key vk.

Rec(shi1 , . . . , shit)→ s is a deterministic algorithm that takes as input t shares shi1 , . . . , shit and outputs a
secret s or ⊥.

TraceR(tk)→ (I, π) is a randomized algorithm that takes as input the tracing key tk. It also gets oracle
access to a reconstruction box R. It outputs a subset I ⊆ [n] of indices that identify corrupted parties
and a proof π.

Verify(vk, I, π)→ {0, 1} is a deterministic algorithm that takes as input the veri�cation key vk, a set of
indices I and a proof π that the corresponding parties are corrupted. It outputs 0 or 1 indicating
whether it accepts the proof or not.
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GTraceA,TTS,ϵ,δ(λ)

1. A(1λ, n, t) outputs (I, state), where I ⊂ [n] is the set of parties to corrupt
and |I| < t.

2. Secret s is chosen uniformly at random from S.
3. Share(1λ, n, t, s) outputs (sh1, . . . , shn, tk, vk).

4. On input all shares of parties in I, A(state, shi1 , . . . , shi|I|) outputs recon-
struction box R.

5. TraceR(tk) outputs (I ′, π).

6. A wins if R reconstructs the secret from good inputs with probability at
least ϵ and either I ̸= I ′ or Verify(vk, I ′, π) = 0.

Figure 1: The tracing game for traceable threshold secret sharing TTS.

GNon-ImputabilityA,TTS(λ)

1. A(1λ, n, t) outputs (i∗, s, state).
2. Share(1λ, n, t, s) outputs (sh1, . . . , shn, tk, vk).

3. On input all shares except for the i∗-th one and the keys tk and vk,
A(state, sh1, . . . , shi∗−1, shi∗+1, . . . , shin , tk, vk) outputs (I

∗, π).

4. A wins if i∗ ∈ I∗ and Verify(vk, I∗, π) = 1.

Figure 2: The non-imputability game for traceable threshold secret sharing TTS.

We call an input (shi1 , . . . , shit−f
) to the reconstruction boxR good ifR contains f shares (shit−f+1

, . . . , shit)
such that (shi1 , . . . , shit) are pairwise distinct, Rec(shi1 , . . . , shit) outputs a valid secret and the distribution
of (shi1 , . . . , shit−f

) is indistinguishable from the distribution of t− f shares output by Share. We require a
traceable threshold secret sharing scheme to satisfy the following properties:

Perfect Correctness: For any T ⊆ [n] with |T | = t and any secret s ∈ S, it holds that

Pr[Rec(Share(s)T ) = s] = 1,

where the probability is taken over the random coins of Share.

ε−Privacy: For any T ∗ ⊆ [n] with |T ∗| < t, any unbounded adversary A and a uniformly random secret
s← S, it holds that

Pr[A(Share(s)T∗) = s] ≤ ε,

where the probability is taken over the random coins of Share and A. If ε = 1/|S|, we call the scheme
perfectly private.

Traceability: For every probabilistic polynomial time adversary A, the probability that it wins the game
GTraceA,TTS,ϵ,δ(λ) de�ned in Figure 1 is negligible in λ.

Non-Imputability: For every probabilistic polynomial time adversary A, the probability that it wins the
game GNon-ImputabilityA,TTS(λ) de�ned in Figure 2 is negligible in λ.
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2.3 Mignotte's Secret Sharing Scheme

Let t, n be integers such that n ≥ 2 and 2 ≤ t ≤ n. We call a sequence of pairwise coprime integers
p1 < p2 < . . . < pn, where the product of any t − 1 elements is strictly less than the product of any t
elements, i.e., pn−t+2 · . . . · pn < p1 · . . . · pt, a (t, n)-Mignotte sequence. Given a publicly known (t, n)-
Mignotte sequence, Mignotte's secret sharing scheme is de�ned as follows.

� The secret s is a random integer, such that β < s < α, where α := p1 · . . . · pt and β := pn−t+2 · . . . · pn.

� The shares si are set to si := S mod pi.

� Given t distinct shares si1 , . . . , sit the secret is recovered as the unique solution modulo pi1 · · · pit of
the system 

X = si1 mod pi1
...

X = sit mod pit

using the Chinese Remainder Theorem.

The scheme is correct because s is an integer solution of the above scheme and s < α < pi1 · · · pit . Given
only t− 1 distinct shares si1 , . . . , sit−1

, one can only tell that s = s0 mod pi1 · · · pit−1
, for some s0 < β < S.

Hence, at least (α − β)/β possible secrets remain that all have the same probability, i.e., the scheme
satis�es β/(α− β)-privacy. Next we show how to construct a Mignotte sequence such that (α− β)/β is big
enough. We need the following fact [Kra86, page 9].

Lemma 1. For any integers 2 ≤ t ≤ n, there exist arbitrarily large integers ℓ such that Pℓ is the ℓ-th prime

number and there are at least n primes in the interval (P
(t2−1)/t2

ℓ , Pℓ].

Let p1, . . . , pn be the n last primes from the interval (P
(t2−1)/t2

ℓ , Pℓ]. They form a Mignotte sequence,
since

α = p1 · · · pt ≥ P
(t2−1)/t
ℓ > P t−1

ℓ ≥ pn−t+2 · . . . · pn = β.

Further, we get that

α− β

β
≥ pt1

pt−1
n

− 1 ≥
P

(t2−1)/t
ℓ

P t−1
ℓ

− 1 =
Pℓ

P
1/t
ℓ

− 1.

This means that given t− 1 shares, there are Pℓ

P
1/t
ℓ

− 1 possible values for any other share. If we set the size

of Pℓ to 2tρ/(t−1) for some positive integer ρ, we get that the number of remaining possibilities is at least
2ρ − 1. We call the Mignotte sequence obtained with the procedure above a (t, n, ρ)-Mignotte sequence.

3 Traceable Mignotte Secret Sharing

The scheme MTTS is presented in Figure 3. For simplicity we assume that Trace obtains the number of
corruptions f as input. We later explain how we can remove this requirement. We make the following
changes to the sharing algorithm of the original secret sharing scheme: Instead of giving the algorithm a
Mignotte sequence of size n as input, we give it a larger sequence and let Share randomly sample the pi from
the larger sequence. Further, Share also constructs a tracing key tk and a veri�cation key vk using a hash
function H. The reconstruction algorithm is the same as in the original scheme.

Theorem 4. Let κ be a positive integer and p1, . . . , p2κ be a (t, 2κ, ρ)-Mignotte sequence. Let H be a hash
function with input space {0, 1}3κ. For P = {p1, . . . , p2κ}, ρ ≥ 3 and t ≥ ρ + 1, we get that MTTS is a
t-out-of-n traceable threshold secret sharing scheme in the random oracle model with the following properties:

1. For any adversary A, the probability of winning GTraceA,MTTS,ϵ(λ) is at most n/2κ · 1/(2ρ − 1).
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Share(1λ, n, t, s,H,P) :

1. For all i ∈ [n] do:

(a) Sample pi ← P uniformly at random.

(b) Set si = s mod pi and shi = (si, pi).

(c) Sample ri ← {0, 1}κ uniformly at random.

(d) Set tki = (i, hi) for hi = H(si, pi, ri).

2. Set tk = vk = (tk1, . . . , tkn).

3. Output (sh1, . . . , shn, tk, vk).

Rec(shi1 , . . . , shit , α, β) :

1. Try to solve the following system of equations using the Chinese Remainder Theorem:
X = si1 mod pi1
...

X = sit mod pit .

If it is not possible, outputs ⊥. Otherwise, denote the solution of the system by x.

2. If x ∈ (β, α), output x. Otherwise, output ⊥.

TraceR(f) :

1. Set I, π = ∅.
2. Choose q1, . . . , qt−f ← P uniformly at random and independently sample zj ← [0, qj−1] uniformly

at random for all j ∈ [2, t− f ].

3. Sample z1 ← [1, q1 − 1] and z′1 ← [1, q1 − 1] \ {z1} uniformly at random.

4. Query R on ((z1, q1), (z2, q2), . . . , (zt−f , qt−f )) and on ((z′1, q1), (z2, q2), . . . , (zt−f , qt−f )). Let u
and u′ be the responses.

5. Try to solve the following system of equations with indeterminates X and Y over Z:{
u = X + z1q1Y

u′ = X + z′1q1Y.
(1)

If it is not possible, go to Step 1. Otherwise denote the solution of the system by (x, y).

6. For all pj ∈ P \{q1, . . . , qt−f} check if pj divides x. If it does, compute sj := u mod pj and check
for all r ∈ {0, 1}κ, if H(sj , pj , r) is contained in tk. If it is true that hj = H(sj , pj , rj) for some
hj ∈ tk and some rj ∈ {0, 1}κ, add the corresponding index j to I and add (sj , pj , rj) to π.

7. If |I| = f , output I and π. Otherwise, go to Step 1.

Verify(vk, I, π) :

1. For all j ∈ I, check if H(sj , pj , rj) = hj .

2. If the above holds for all j ∈ I, output 1. Otherwise, output 0.

Figure 3: MTTS: Traceable Mignotte secret sharing when f shares are corrupted.
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2. Trace runs in expected time O(ϵ−1 · f · 2κ), where ϵ is the probability that R reconstructs the secret on
a good input.

3. For any adversary A, the probability of winning GNon-ImputabilityA,MTTS(λ) is at most 1/22κ.

Proof. Correctness and 1/(2ρ − 1)-privacy of the scheme follows by correctness and privacy of the original
scheme. We begin with proving the �rst property. The proof of traceability consists of three steps:

I We �rst show that the system (1) has a unique solution with probability at least 1/2 whenever the pair
(u, u′) is good, i.e., whenever both u and u′ correspond to the output of the reconstruction algorithm
given a good input.

II We show that in this case all corrupted pj do divide x and with all but at most n/2κ probability none
of the not corrupted pj divides x. Hence, whenever (u, u

′) is good, we have that Trace �nds exactly f
corrupted shares and terminates with probability at least 1/2− n/2κ+1.

III We show that when (u, u′) is not good, the probability that Trace terminates with a false set I of size
f in Step 6 is at most n/2κ · 1/(2ρ − 1), since in this event, the adversary guesses at least one of the pi
that was chosen by the dealer (but not given to it) and the corresponding si correctly.

Afterwards we compute the probability of (u, u′) being good, which determines the expected running time of
Trace. We begin with Step I. Let pi1 , . . . , pif denote the pi's corresponding to the corrupted shares. By our
de�nition of (u, u′) being good we can assume that they do not intersect with q1, . . . , qt−f . For simplicity
of notation, let us relabel pif+1 := q2, pif+2 := q3, . . . , pit−1

:= qt−f . Again, since (u, u′) are good, we know

that u is the unique solution modulo q1
∏t−1

j=1 pij of the system.{
S = u0 mod pi1 · · · pit−1

S = z1 mod q1

for some u0 ∈ Zpi1
···pit−1

. Let a, b ∈ Z be Bezout coe�cients of q1 and pi1 · · · pit−1
, i.e.,

1 = a · q1 + b · pi1 · · · pit−1 ,

where |a| < pi1 · · · pit−1
and |b| < q1. They are guaranteed to exist by the extended euclidean algorithm. By

Theorem 3 we know that

u = au0pi1 · · · pit−1 + bz1q1 mod q1

t−1∏
j=1

pij . (2)

Similarly, we have that

u′ = au0pi1 · · · pit−1
+ bz′1q1 mod q1

t−1∏
j=1

pij . (3)

Let au0 = kq1 + r for some k, r ∈ Z with |r| < q1. Note that r ̸= 0 because u ̸= 0 mod q1 by construction
of the tracing algorithm. Plugging into (2) and (3) we get

u = rpi1 · · · pit−1
+ bz1q1 mod q1

t−1∏
j=1

pij (4)

and

u′ = rpi1 · · · pit−1 + bz′1q1 mod q1

t−1∏
j=1

pij . (5)

Now we have that
∣∣rpi1 · · · pit−1

∣∣ < q1
∏t−1

j=1 pij and |bz1q1|, |bz′1q1| < 3q1 < q1
∏t−1

j=1 pij . The last inequality
follows by de�nition of Mignotte sequences and the fact that t > 3. Note that since q1 and all pi are positive,
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we have that exactly one of a and b is positive and one is negative. Hence, the same holds for rpi1 · · · pit−1

and bz1q1. It follows that over Z we have either (case 1)

u = rpi1 · · · pit−1
+ bz1q1

or (case 2)

u− q1

t−1∏
j=1

pij = rpi1 · · · pit−1
+ bz1q1

⇔u = (r + q1)pi1 · · · pit−1
+ bz1q1.

And similarly for u′ we have either (case 1)

u′ = rpi1 · · · pit−1
+ bz′1q1

or (case 2)

u′ − q1

t−1∏
j=1

pij = rpi1 · · · pit−1 + bz′1q1

⇔u′ = (r + q1)pi1 · · · pit−1
+ bz′1q1.

If the �rst case holds for both u and u′, we have that system (1){
u = X + z1q1Y

u′ = X + z′1q1Y

has the unique solution (rpi1 · · · pit−1
, b). Similarly, if the second case holds for both u and u′, the above

system has the unique solution ((r + q1)pi1 · · · pit−1
, b). If u and u′ are in di�erent cases, the system is not

solvable. In the worst case we have that for exactly half of the possible choices for share q1 case 1 holds and
for the other half case 2 holds, which means that the probability that the system is solvable for a good pair
(u, u′) is at least 1/2.

We continue with Step II of the proof of traceability. If (u, u′) is good and the system is solvable, then
either x = rpi1 · · · pit−1

or x = (r + q1)pi1 · · · pit−1
, where |r| < q1. It is obvious that all of the corrupted pi

divide x in both cases. Since |r| < q1 and the elements of P form a Mignotte sequence, we have that at most
one more element p ∈ P can divide x. The probability that this p is one of the pi chosen by the dealer is at
most n/2κ. This means that with probability at least 1−n/2κ, we have |I| = f in Step 7 of Trace, whenever
(u, u′) is good and system (1) is solvable.

Finally, in Step III, we conclude the proof of traceability with the following observation: Assume that
(u, u′) is not (necessarily) good, Trace terminates in Step 7 but some i ∈ I output by Trace is not one
of the corrupted parties. This means that one can use Trace and the adversary that plays the game
GTraceA,TTS,ϵ,δ(λ) to �nd the preimage of hi. In particular, one can �nd one of the pi that was cho-
sen by the dealer and the corresponding si. If we model H as a random oracle, the probability of this event
is at most n/2κ · 1/(2ρ − 1) because n/2κ is the probability of guessing a correct pi and 1/(2ρ − 1) is the
probability of guessing the correct si given pi and at most t− 1 shares.

We now compute the probability of (u, u′) being good to determine the running time of Trace, i.e., prove
the second property stated in the theorem. The pair (u, u′) is good, whenever all of the following events
occur:

A: q1, . . . , qt−f are pairwise di�erent and do not intersect pi1 , . . . , pif .

B: The shares (q1, z1), . . . , (qt−f , zt−f ), (pi1 , si1), . . . , (pif , sif ) are consistent, i.e given those shares as input
Rec recovers a secret s ∈ (β, α). The same needs to hold when replacing (q1, z1) with (q′1, z

′
1).
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C: R outputs u = Rec((q1, z1), . . . , (qt−f , zt−f ), (pi1 , si1), . . . , (pi−f , si−f )) and

u′ = Rec((q′1, z
′
1), . . . , (qt−f , zt−f ), (pi1 , si1), . . . , (pi−f , si−f )).

We start with event A. Fix pi1 , . . . , pif , q1, . . . , qt−f−1. The probability that a uniformly chosen qt−f ∈ P
is contained in that set is (t − 1)/2κ. By a union bound, we get that pi1 , . . . , pif , q1, . . . , qt−f are pairwise
distinct except with probability at most (t− f)(t− 1)/2κ.

Now consider event B. The probability that the shares are consistent is at least (2ρ−1)/2tρ/(t−1) ≥ 1/2−
2−ρ. This can be seen by the following argument: Fix the �rst t−2 shares ((si1 , pi1), (si2 , pi2), . . . , (sit−2 , pit−2)).
Those shares determine that u = ũ mod

∏
j∈[t−2] pij for some ũ <

∏
j∈[t−2] pij . Hence, the number of pos-

sibilities for the secret u are now

α− β∏
j∈[t−2] pij

≥
P

(t2−1)/t
ℓ

P t−2
ℓ

− Pℓ = Pℓ(P
1−1/t
ℓ − 1) ≥ Pℓ ≥ pn.

We follow that any choice of the �rst t − 1 shares is valid to obtain a consistent query. Now �x any

choice for the �rst t − 1 shares. We know that then there are (α − β/β) ≥ Pℓ/P
1/t
ℓ − 1 possible secrets

left. Hence, the probability that the last share (zt−f , qt−f ) is consistent with the �xed shares is at least

Pℓ/P
1+1/t
ℓ − 1/Pℓ = 1/P

1/t
ℓ − 1/Pℓ. Plugging in Pℓ = 2tρ/(t−1) and t ≥ ρ+ 1 we get that the probability is

at least 1/2− 2−ρ−1.
We now consider event C. By de�nition of the game GTraceA,TTS,ϵ,δ(λ), we know that on input t − f

real shares, R outputs the secret with probability at least ϵ. Note that, whenever the shares are consistent,

the queries to R are at statistical distance at most P
(1−t2)/t2

ℓ from a real query, since the distribution is the
same except for the fact that one query can never be 0.

The pair (u, u′) is good if all of the events A,B,C hold. That is

Pr[(u, u′) is good] = Pr[A] · Pr[B | A] · Pr[C | A ∩B] ≥
(
1− (t− f)(t− 1)

2κ

)(
1

2
− 2ρ−1

)2

ϵ.

From this and the proof of traceability, we follow that the probability that Trace in one �xed round is at
least (

1− (t− f)(t− 1)

2κ

)(
1

2
− 2ρ−1

)2 (
1

2
− n

2κ+1

)
ϵ = ϵ/c

For some constant c. In a single round Trace needs to make at most 2κ(f + 1) queries to H. We follow that
Trace runs in expected time O(ϵ−1 · f · 2κ)

It remains to prove the third property. The scheme is non-imputable in the random oracle model by
the following observation: Any adversary A that wins the game GNon-ImputabilityA,TTS(λ) �nds the
preimage of some hi for (i, hi) ∈ tk. If we model H as a random oracle, even given the secret s, it has
min-entropy 22κ, since the last two entries of H are uniform and independent. Hence, the probability of this
event is at most 1/22κ.

Remark 1 (On the input f). So far we have assumed for simplicity that the number of corruptions f
is known by the tracer, which might not be the case in practice. We note that knowing the number of
corruptions is not necessary for our tracing algorithm since we have seen in the proof of Theorem 4 that
Trace mistakes an honest party for a corrupted one with probability at most n/2κ · 1/(2ρ − 1). By setting
the parameters n, κ, ρ such that this probability is negligible, we can remove the input of f to Trace. The
tracing algorithm can then learn f by trying f = 1, 2, . . . until it terminates in Step 7.
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