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Abstract. In this paper, we study the robustness of Kyber, the Learn-
ing With Errors (LWE)-based Key Encapsulation Mechanism (KEM)
chosen for standardization by NIST, against key mismatch attacks. We
demonstrate that Kyber's security levels can be compromised with a few
mismatch queries by striking a balance between the parallelization level
and the cost of lattice reduction for post-processing. This highlights the
imperative need to strictly prohibit key reuse in CPA-secure Kyber.

We further propose an adaptive method to enhance parallel mismatch
attacks, initially proposed by Shao et al. at AsiaCCS 2024, thereby sig-
ni�cantly reducing query complexity. This method combines the adap-
tive attack with post-processing via lattice reduction to retrieve the �nal
secret key entries. Our method proves its e�cacy by reducing query com-
plexity by 14.6% for Kyber512 and 7.5% for Kyber768/Kyber1024.

Furthermore, this approach has the potential to substantially improve
multi-value Plaintext-Checking (PC) oracle-based side-channel attacks
against the CCA-secure version of Kyber KEM.

Keywords: Lattice-based cryptography · Mismatch attacks · Kyber ·

Post-quantum standardization · KEM.

1 Introduction

The rapid development of quantum computing has signi�cantly heightened the
urgency to evolve cryptographic standards that can withstand new quantum
threats. Recognizing this, the National Institute of Standards and Technology
(NIST) initiated a standardization process in 2016 to foster the development
of post-quantum cryptography (PQC). Among the various branches of PQC,
lattice-based cryptography [1,24] stands out for its e�ciency and strong provable
security. This branch has led to the selection of the Learning With Errors (LWE)-
based Key Encapsulation Mechanism (KEM) Kyber [25] for standardization,
highlighting its prominence in the �eld.



The majority of post-quantum KEMs that are resistant to chosen-ciphertext
attacks (CCA) originate from public key encryption (PKE) schemes that are
secure against chosen-plaintext attacks (CPA). These schemes are subsequently
enhanced to achieve CCA security through transformations such as the Fujisaki-
Okamoto (FO) method [10]. A growing trend (e.g., [15,16,8]) in post-quantum
KEM research involves adopting CPA-secure schemes without the FO transfor-
mation for ephemeral-key settings, tailored for protocols such as TLS 1.3, to
enhance e�ciency. However, before these schemes are practically deployed, it is
crucial to conduct comprehensive security assessments.

A particularly relevant attack type to the CPA-secure KEMs without CCA
security is keypair-reuse attacks. In 2016, Fluhrer initiated key-reuse attacks
against lattice-based encryption [9]. Later, Ding, Fluhrer, and Saraswathy ex-
tended these attacks to lattice-based key exchange and introduced the concept of
a key mismatch attack [7]. In a key mismatch attack, one communicating party's
public key is reused. An adversary impersonates the other party, and recovers the
secret key by repeatedly verifying if the two derived shared keys match. This type
of attack can be applied to many lattice-based KEMs, with subsequent improve-
ments in query complexities reported in various studies [5,4,3,20,19,11,14,21,13].

Inspired by a recent work on multi-positional key mismatch attack [13] and
recent developments in multi-value PC (Plaintext-Checking) oracle based side-
channel attacks [27,22], Shao et al. developed techniques for conducting mis-
match attacks against multiple targets in parallel [26], signi�cantly reducing the
required number of queries.

The investigation of security regarding key mismatch attacks is of signi�cant
practical interest, particularly concerning the potential commonality of key-pair
reuse. Notably, in crucial internet protocols such as TLS 1.3, static public keys
are used in certain modes, increasing the likelihood of programming errors that
lead to the reuse of ephemeral key pairs. Furthermore, the results in current
research [26] suggest that a moderate level of key pair reuse�e.g., fewer than 40
times for Kyber512�might still be acceptable in post-quantum KEMs, potentially
allowing real-world implementations to intentionally permit some degree of key
reuse for e�ciency reasons.

This study concentrates on the LWE-based KEM Kyber, which has been cho-
sen by NIST for standardization, to assess its robustness against key mismatch
attacks. We analyze how key reuse a�ects the concrete security of Kyber and
investigate whether a limited amount of reuse can be considered secure under
practical deployment scenarios.

1.1 Contributions

The primary contributions of this paper are as follows:

1. Firstly, we observe that the level of parallelization p in a parallel key mis-
match attack from [26] is limited by the adversary's computational capabil-
ities. Consequently, allowing substantial computational resources for post-
processing�such as lattice reduction�can improve the performance of the
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attack. To minimize the required number of queries, we demonstrate how to
balance the parallelization level p with the cost of using lattice reduction to
solve for the remaining parts of the secret. This balance creates a new curve
of query vs. computational complexity, which we will illustrate in Figure 3.
Our application of this optimization method shows that just two mismatch
queries can compromise the claimed security levels of various versions of Ky-
ber. Importantly, the security of the system declines sharply with the onset
of key reuse, highlighting the necessity for its strict prohibition.

2. Secondly, we introduce a novel methodology that leverages an adaptive ap-
proach, for improving the parallel mismatch attacks of Shao et al. [26]. This
approach signi�cantly improves query complexity compared to the origi-
nal work. The improvement stems from combining the adaptive attack with
post-processing via lattice reduction to recover the �nal secret key entries.
We demonstrate the e�ectiveness of our approach by achieving a 14.6% and
7.5% reduction in query complexity for Kyber512 and Kyber768/Kyber1024,
respectively. Such improvement has been veri�ed through an implementa-
tion5. One key limitation of the work [26] is the inability to be adapted to
all possible parallelization levels of p. We address this by strategically re-
serving a few positions within each block for post-processing. This simple
modi�cation allows for e�cient attacks with any chosen parallelization level.

3. Last, we explore additional applications of our novel method. Notably, it
has the potential to substantially improve multi-value PC-oracle-based side-
channel attacks against the CCA-secure version of Kyber KEM.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we present the nec-
essary background including CPA-secure versions of Kyber, and the model of
(parallel) mismatch attacks. In Section 3, we survey previous mismatch attacks
on Kyber. Then we introduce our new attack methodology in Section 4, includ-
ing our implementation and cost analysis of it. This is followed by a discussion
on the implications of our �ndings on side-channel attacks in Section 5, plus a
couple of more suggestions on how to improve our attack. Finally, we conclude
the paper and suggest future research directions in Section 6.

2 Background

Let us introduce a CPA-secure instantiation of Kyber. Note that in the o�cial
documents of Kyber, the CPA-secure versions are limited to ephemeral keys, but
this constraint may be ignored in practice. To assess their key reuse resilience
we create these CPA-secure instantiations. Our notations and terminology are
similar to previous work on mismatch attacks, such as [21].

5 Available at https://github.com/AdrianAstrm/Adaptive-and-Parallel-Key-Mis
match-Attack-on-Kyber.
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Alice Bob

1. Generate matrix a ∈ Rl×lq

sA, eA ←$Bl
η 2. m←$ {0, 1}256

PA ← a ◦ sA + eA Generate matrix a ∈ Rl×lq

Output: (sA,PA) PA sB ←$Bl
η, eB ←$Bl

η′ , e
′
B ←$Bη′

PB ← a ◦ sB + eB

vB ← Ptr
A ◦ sB + e′B

+Decompressq(m, 2)

3. uA ← Decompressq(c1, 2
dPB ) c1 ← Compressq(PB , 2

dPB )

vA ← Decompressq(c2, 2
dvB ) PB , c1, c2 c2 ← Compressq(vB , 2

dvB )

m′ ← Compressq(vA − strA ◦ uA, 2) KB ← H(m||(PB , (c1, c2)))

KA ← H(m′||(PB , (c1, c2)))

Fig. 1: The CPA-secure version of Kyber.

� We let x||y be the concatenation of two strings x and y H(·) be a hash
function.

� Let ←$ denote sampling from a distribution.
� The transpose of the matrix A we denote by Atr.
� The central binomial distribution whose output is computed as

∑η
i=1(ai−bi),

where ai and bi are independently and uniformly randomly sampled from
{0, 1}, we denote by Bη.

2.1 CPA-Secure Version of Kyber

Kyber [25] is the KEM part of CRYSTALS (Cryptographic Suite for Algebraic
Lattices), based on the Module Learning with Errors (MLWE) problem. In the
fourth round NIST selected Kyber as their scheme for PKE/KEM. Just like in
the work of [21], we describe a potential instantiation of a CPA-secure version of
Kyber KEM in Figure 1 by invoking the functions of Kyber.CPAPKE from [25].

By Rq we denote the polynomial ring Zq[x]/(xn + 1), for q = 3329 and
n = 256. Let ◦ (+ or −) be the corresponding multiplication (addition or sub-
traction) in the ring. Let l denote the rank of the module, which is set to be
2, 3, and 4, for the three di�erent versions, Kyber512, Kyber768 and Kyber1024
respectively. By calling a pseudorandom function from a public seed Alice and
Bob generate a matrix a. Kyber employs two central binomial distributions Bη

and Bη′ , as shown in Figure 1. Kyber512 uses (η, η′) = (3, 2) and both Kyber768
and Kyber1024 use (η, η′) = (2, 2). The Compressq(x, p) function maps x from
module q to module p by computing

Compressq(x, p) = dx · p/qc mod +p,
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where r′ = r mod +p represents the unique element r′ in the range −p2 < r′ ≤ p
2

such that r′ ≡ r (mod p). Its inverse function is de�ned as

Decompressq(x, p) = dx · q/pc.

When applyingCompressq(x, p) orDecompressq(x, p) to a vector/polynomial,
then we compute the output coe�cient by coe�cient.

2.2 The Threat Model � Parallel Mismatch Attacks

This work focuses on the key mismatch threat model against an ephemeral-
only KEM, which reuses the keypair. Alice reuses her keypair (sA,PA). The
adversary Eve takes advantage of this by impersonating Bob to recover Alice's
secret key sA through communicating with Alice. We build an oracle to simulate
the decapsulation of Alice with input including the pair (PB , c) chosen by Eve
and the corresponding shared key KB . We let (c1, c2) be denoted by c. The
oracle O calls Alice's decapsulation function and obtains the shared key KA.
It outputs 1 if the shared keys KA and KB match and 0 otherwise. The goal
of a mismatch attack is to recover Alice's key by selecting the chosen pairs of
the form (PB , c) and iteratively querying the oracle O. In a parallel mismatch
attack Eve enumerates multiple keys KB , learning multiple bits of information
about sA by observing which key matches Alice's key KA.

3 Mismatch Attacks

In this section we cover previous work on mismatch attacks against Kyber. We
give fairly detailed descriptions of how to choose the parameters for the di�erent
approaches, to make it easier to understand our suggested improved algorithm in
Section 4. Throughout the whole section we explain how to perform the attacks
on Kyber1024. Attacks against other versions of Kyber simply require changing
a few parameter values.

In a mismatch attack, Eve impersonates Bob and recovers Alice's secret key
sA step by step. Now consider Figure 1. Alice computes m′ purely as a function
of (PB , c). We see that the keys KA and KB match if and only if Alice's com-
puted message m′ matches the message m that Eve chooses. Thus, Eve sets the
parameters (PB , c) and m such that the output of the oracle tells her something
about the secret sA.

3.1 One-Positional Mismatch Attacks

The simplest works on mismatch attacks recover one position at a time. Let us
explain in some detail how this works. We focus on the position with index 0.
When the subscript A is understood we let si denote sA[i].

Eve chooses the message m = [1, 0, . . . , 0]. She sets PB = [d q32c, 0, . . . , 0].
She computes c1 = Compressq(PB , 2

dPB ) and lets c2 = [h, 0, . . . , 0]. Here h is
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a parameter that is adjusted depending on what information about the secret
Eve wants to extract. Alice calculates uA = Decompressq(c1, 2

dPB ) = PB and
vA = Decompressq(c2, 2

dvB ) = [d q32hc, 0, . . . , 0]. Finally, Alice gets

m′[0] =Compressq((vA − strAuA)[0], 2) (1)

=Compressq(vA[0]− (strAuA)[0], 2) (2)

=

⌈
2

q

(⌈ q
32
h
⌋
− sA[0]

⌈ q
32

⌋)⌋
mod 2. (3)

Now given a split of the possible values of si into two adjacent intervals. It
can be shown that by adjusting h, the value of m′[0] can teach Eve which of
these two intervals s0 belongs to. Let us now show why Alice's received message
is equal to 0 - by construction - on all positions with non-zero index. Because
vA[i] = 0, for all indexes i 6= 0, for all these indexes the value of m′ simpli�es to

m′[i] =Compressq((vA − strAuA)[i], 2) (4)

=Compressq(vA[i]− (strAuA)[i], 2) (5)

=

⌈
2

q

(
−sA[i]

⌈ q
32

⌋)⌋
mod 2. (6)

Before applying the outer rounding the expression is bounded in absolute
value by 2/3329 · 2 · 105 = 0.126 . . . < 1/2. The value is thus always equal to 0
after being rounded to the nearest integer. Therefore m′[i] = 0, for i 6= 0.

For details on how to modify the attack to recover sA[i], for i 6= 0, see for
example [13]. In [21] the authors derived the so called Hamming bound for this
type of attack and showed how to select the parameter h in each step to get
close to this limit. In [13] it was shown that for one-positional mismatch attacks
against Kyber, the attack of [21] is (most likely) optimal.

3.2 Multi-Positional Mismatch Attacks

In [13] the authors remove the constraint of recovering only one coe�cient at a
time and thereby break the Hamming bound of [21]. Let us explain their idea
for attacking two positions at a time.

Two-Positional Mismatch Attacks on Kyber We will show how to obtain
s0 and s128. We refer to [13] for details on how to recover the other entries in
sA. Eve lets m be equal to 0 on all positions, except that m[0] = 1 and/or
m[128] = 1. She lets PB be 0 on all positions, except that PB [0] = b1 · d q32c and
PB [128] = b2d q32c, for b1, b2 ∈ {−1, 0, 1}. Also, she sets c2 to 0 on all positions,
except that c2[0] = h1 and c2[128] = h2. Next, let us computem′[0] andm′[128].
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m′[0] =Compressq(vA[0]− (strAuA)[0], 2) (7)

=

⌈
2

q

(⌈ q
32
h1

⌋
−
(
sA[0]b1

⌈ q
32

⌋
− sA[128]b2

⌈ q
32

⌋))⌋
mod 2, (8)

m′[128] =Compressq(vA[128]− (strAuA)[128], 2) (9)

=

⌈
2

q

(⌈ q
32
h2

⌋
−
(
sA[0]b2

⌈ q
32

⌋
+ sA[128]b1

⌈ q
32

⌋))⌋
mod 2. (10)

For an integer i, with 1 ≤ i ≤ 127 we get

m′[i] =Compressq(−(strAuA)[i], 2) (11)

=

⌈
2

q

(
−
(
sA[i]b1

⌈ q
32

⌋
− sA[128 + i]b2

⌈ q
32

⌋))⌋
mod 2, (12)

m′[128 + i] =Compressq(−(strAuA)[128 + i], 2) (13)

=

⌈
2

q

(
−
(
sA[i]b2

⌈ q
32

⌋
+ sA[128 + i]b1

⌈ q
32

⌋))⌋
mod 2. (14)

For both of these positions the expression within the outer rounding function
is bounded in absolute value by 2/3329 · 2 · 2 · 105 = 0.252 . . . < 1/2. Hence these
values are always rounded to 0 and thus m′[i] = 0, for i 6= 0, 128.

The authors of [13] go into great details on geometrical interpretations of how
to interpret di�erent possible splits you can make in two dimensions, depending
on how you set the parameters. They show how to create planar, rectangular,
triangular and intersecting triangular splits. Then they show how to optimize
mismatch attacks using these types of splits.

Hyperrectangular Cuts In [13] the authors also showed how to generalize
the one-dimensional mismatch attacks in another way. Instead of making planar
cuts in one or two dimensions at a time, they make planar cuts with respect to
an arbitrary subset of the positions, at a time. Let us explain their idea. Let
I ⊂ {0, 1, . . . , n − 1} be the set of indexes that we want to make planar splits
with respect to. Let m[i] = 1, for i ∈ I, and m[i] = 0, for i 6∈ I. Let PB [0] = d q32c
and let PB be equal to 0 on all other positions. Let c2[i] = hi, for i ∈ I and let
c2[i] = 0, for i 6∈ I. Here hi are the parameters deciding the precise planar cut
with respect to each dimension. For i ∈ I we now get

m′[i] =Compressq(vA[i]− (strAuA)[i], 2) (15)

=

⌈
2

q

(⌈ q
32
hi

⌋
− sA[i]

⌈ q
32

⌋)⌋
mod 2. (16)
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For i 6∈ I we get

m′[i] =Compressq(vA[i]− (strAuA)[i], 2) (17)

=

⌈
2

q

(
−sA[i]

⌈ q
32

⌋)⌋
mod 2, (18)

which simpli�es to 0 just like in the one-dimensional mismatch attack.

3.3 Post-Processing with Lattice Reduction

Other than the information from the mismatch queries the adversary has access
to LWE samples. Having recovered parts of the secret through mismatch queries,
solving for the remaining parts of the secret using lattice reduction was initially
studied in [13,18]. In both works it was showed that the number of queries needed
to recover the full key was signi�cantly reduced using this type of post-processing.

4 Adaptive Parallel Mismatch Attacks

Now let us introduce our adaptive mismatch attacks. To do so, let us �rst intro-
duce parallel mismatch attacks generally.

4.1 Parallel Mismatch Attacks

In a recent paper [26] Shao et al. showed how to do parallelized mismatch attacks,
packing what was previously p di�erent queries into a single query. Their strategy
is very similar to recent work on parallel PC oracle attacks in [27,22]. At the
cost of O(2p) time the authors were able to gain (up to) p bits of information
at a time instead of just (up to) 1 bit. This allowed them to trivially break the
Shannon bound6 and drastically improve upon mismatch attacks on Kyber.

Their attack is somewhat similar to the hyperrectangular cuts described in
Section 3.2. We describe it in detail for Kyber1024. Let us describe a slight
generalization of the attack of [26]. Let I ⊂ {0, 1, . . . , 127} be an index set with
p positions. Our attack targets positions i and i+128, where i ∈ I. Eve lets PB
be equal to 0 on all positions, except that PB [0] = b1d q32c and PB [128] = b2d q32c,
where |b1| + |b2| ≤ 3. Let c2[i] = 0, for i 6∈ I and c2[i] = hi, for i ∈ I. Finally
Eve computes c1 = Compressq(PB , 2

dPB ) and sends (PB , c1, c2) to Alice.
Next, Alice calculates uA = Decompressq(c1, 2

dPB ) = PB and vA =

Decompressq(c2, 2
dvB ). Here, vA[i] = d q32hic, for i ∈ I and vA[i] = 0, for

i 6∈ I. Finally, Alice gets

m′[i] =Compressq(vA[i]− (strAuA)[i], 2) (19)

=

⌈
2

q

(⌈ q
32
hi

⌋
−
(
sA[i]b1

⌈ q
32

⌋
− sA[i+ 128]b2

⌈ q
32

⌋))⌋
mod 2, (20)

6 That bound of course assumes that the attacker can only gain up to 1 bit of in-
formation per query. The new lower bound of the mismatch attack is the Shannon
entropy divided by p, assuming that the attacker does no post-processing.
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for i ∈ I, and

m′[i] =Compressq(vA[i]− (strAuA)[i], 2) (21)

=

⌈
2

q

(
−
(
sA[i]b1

⌈ q
32

⌋
− sA[i+ 128]b2

⌈ q
32

⌋))⌋
mod 2, emptytexttt

(22)

for i 6∈ I. Next, Eve enumerates all the 2p di�erent messages of m that are non-
zero with respect to the indexes in I, until she �nds one such that m and m′

match7. On expectation it takes Eve 2p−1 steps to �nd the matching message m.
Finding a matching message will teach Eve something about all the values sA[i]
and sA[i + 128], for i ∈ I, at the same time. In non-parallel mismatch attacks,
we simply compare against a single message m, leading to a totally insigni�cant
computational e�ort. However, checking whether KA and KB match takes time.
As we step up p, while we can attack more positions at a time, we also increase
the computational cost of the attack. Thus we get a trade-o� between time and
mismatch queries.

Assume w.l.o.g. that b1 6= 0. If b2 6= 0, then we make p triangular cuts in
parallel. If b2 = 0, then we make p planar cuts in parallel. Note that for all the p
parallel cuts, either all of them must be planar or all of them must be triangular.

Notice that when doing parallel mismatch attacks, it makes no sense to try
rectangular cuts in parallel or intersecting triangular cuts in parallel8. This can
also be seen in [26] where the authors only make planar or triangular cuts in
each step9.

Parameter Selection Strategy The strategy of [27,22] - translated to our set-
ting - is to for each attacked position make one-dimensional queries to minimize
the number of queries needed to recover the least likely secret value. Among the
strategies that minimize this number, they choose the strategy that minimizes
the expected number of queries. Notice that while they do not describe their
strategy applied to mismatch attacks, their strategy can be applied to mismatch
attacks. For Kyber768/Kyber1024 their attacks correspond to those of [21], but
in parallel. For Kyber512, they modify the attack to guarantee recovering the
secret in 3 queries. Note that while the strategy of [21] is faster on expectation
for attacking one position at a time, it is slower when attacking many positions
in parallel. If p is large, then it is highly likely that at least one of the p secret

7 which in turn is tested by noting that KA and KB match.
8 Both of these types of queries correspond to making two cuts and getting the answer
to the AND of the results. If the keys match, then we get a YES answer for both
queries. If the keys do not match, then we do not learn which of the two answers
correspond to a NO. For the parallel mismatch attacks we need to match the answers
with respect to all p parallel queries.

9 even though they do not explain why they do not do the other types of splits.
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values is equal to -3 or 3, making the attack strategy of [21] take 4 queries to
fully recover all p values10.

The authors of [26] do parallel mismatch attacks where they attack p pairs
of positions in parallel, instead of just p positions. For Kyber512 they devise a
strategy that always recovers p pairs in 6 queries. This matches the performance
of [27,22]. For Kyber768/Kyber1024 their corresponding strategy recovers p pairs
in 5 queries. This improves upon the strategy of [27,22] and is considered the
state-of-the-art for parallel mismatch attacks against Kyber768/Kyber1024. In
either case, this process is repeated

d256
2p
e (23)

times to recover a full block of 256 positions. Notice that for fairly large values
of p, like p = 32, this starts to be a limitation. The smallest value larger than
32 that decreases the expression in (23) is p = 64, which leads to a very drastic
increase in computational e�ort.

To explain their strategy of making the performance optimal for the worst-
case pairs, let us compare against the strategy for Kyber768/Kyber1024, from
Figure 10 of [13]. On expectation, only around 4.1 queries are needed to recover
a secret key pair. However, for the least likely key pairs 7 queries are needed.
For somewhat large values of p, like p = 32, the limiting performance factor of a
pure mismatch attack is the number of queries needed to recover the least likely
secret key pairs, not the expected number to recover a secret key pair.

Notice that in all three works [27,22,26] the attacks are non-adaptive. In [27,22]
the attack starts recovering new positions �rst when the current p positions are
all fully recovered. The same is true for the p pairs in the attack of [26].

A trivial way of working around the problem in(23) of �ne-tuning p to �t the
computational resources is to solve a few positions using post-processing with
lattice reduction. This way we can make use of having computational resources
slightly larger than what is needed to let p = 32. If we for example leave 25
positions per 256 positions block, then we can let p = 33. We do not need to
increase p all the way up to 64 to improve.

4.2 Adaptive Parallel Mismatch Attacks

Our main improvement of [26] is to revisit the mismatch attack of [21], but to do
it in parallel in a more e�cient way. We let I = {0, 1, . . . , p− 1} and let b2 = 0.
Thus, we decide to perform planar cuts in parallel. Instead of performing queries
until everyone of the entries with indexes in I is recovered, we work adaptively.
As soon as a position is uniquely determined, we replace that position of I by
the next non-solved entry in the current block.

10 Unlike our adaptive attacks, described in Section 4.2, they perform queries until all
p values are fully recovered. Thus, in their attack it is not possible to take advantage
of recovering some of the positions in less than 3 queries.
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While this strategy is slow for large p when recovering every single position11,
as long as we leave at least p positions for recovery by post-processing, the per-
formance of it is greatly improved. If the size of each block is large compared to
p, then we can model the adaptive parallel mismatch attack as p one-dimensional
mismatch attacks going on in parallel. Using the performance for one position
from [21] we then need an expected 2.5625 or 2.3125 to recover p positions when
attacking Kyber512 or Kyber768/Kyber1024 respectively.

Now let us summarize the expected number of queries needed to recover 2p
positions using our work versus previous works to attack Kyber.

Table 1: The expected number of queries needed to recover 2p positions using
di�erent parallel mismatch attack strategies.

Kyber512 Kyber768/Kyber1024

Non-adaptive single [27,22] 6 6
Non-adaptive pairwise [26] 6 5
Adaptive single (this paper) 5.125 4.625

Compared to the previous state-of-the-art we reduce the expected number of
queries by roughly 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber102412

This model starts to break down for two reasons for large p, both of which
have to do with the the relative size of p compared to the block size 256.

� When p is large compared to the block size 256, then we cannot reach the
asymptotic performance of 2.3125/2.5625 queries per p positions.

� At the end of a block there might be less than p positions to solve for, at which
point we can no longer have a parallelization level of p. As discussed already,
we partly mitigate this by leaving the last positions for post-processing and
moving on to attacking the next block, as soon as less than p positions of
the block remain to be found.

The details of how well the model works as a function of p is covered in
Section 4.3. A small additional bene�t of our attack is that it allows us to use
an arbitrary number of queries, instead of a multiple of 3 or 5/6 like in [27,22]
and [26] respectively.

4.3 Implementation Results

We implemented our algorithm in C, extending the work by [21]. To better
understand the precise performance of our algorithm we ran experiments using
11 since the performance of the strategy is ultimately limited by the number of queries

needed to recover the least likely secret key values.
12 As the computational cost of the mismatch attack is proportional to the number of

queries (see Section 4.4), we actually improve slightly more than described here.
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the implementation, summarized in Figure 2. For Kyber512 and Kyber1024 we
plot the expected cost to recover p secret entries - using our adaptive approach,
the non-adaptive approach of [27,22] and for Kyber1024 the pairwise approach
of [26]13 - as a function of p14. For all algorithms we improve upon the expected
performance by leaving the last positions for post-processing and moving on to
the next block, as soon as less than p entries remain to be solved for.

For our adaptive approach each data point is computed as the average of
the result of running the attack 100 times. For p ≤ 22 we ran the whole attack.
For p > 22 we "cheated" by knowing which m matches m′. We ran the rest of
the attack like normal, but skipped the computationally heavy part of enumer-
ating to �nd the matching vector m. That way we were able to study how the
query performance of the attack for large p, without having the computational
resources to perform the whole attack15.

For Kyber512 we see that the performance of our adaptive attack roughly
matches the simple theoretical value of recovering p positions in 2.5625 queries,
for small values of p. Gradually the performance gets worse and gets beaten by
the non-adaptive approach of [27,22] for p ≥ 112. We do not care about studying
the attack for p > 128, as it is cheaper to solve the underlying LWE problem of
Kyber512 than running parallel mismatch attacks for values of p that large.

For Kyber1024, for small values of p our adaptive approach roughly matches
the simple theoretical value of recovering p positions in 2.3125 queries for small
values of p. For 76 ≤ p ≤ 128, the pairwise approach of [26] outperforms our
method. Notice however, that the pairwise approach attacks 2p positions at the
time, making it impossible to perform it for p > 128. For p > 128 our adaptive
approach performs better than or equal to the non-adaptive approach of [27,22]
for all p. As the secret distribution is the same for Kyber768 and Kyber1024, we
can omit a separate �gure for the attack performance on Kyber768.

4.4 Computational Cost of Parallel Mismatch Attacks

Each time we want to test whether KA and KB match, we need to compute a
hash value, decrypt a message and �nally compare the values of two vectors. See
Section 4.2 of [26] for some more details of the procedure. Here the decryption
operation is the dominant part of the total time. We estimate it to be 215 bit
operations.

Each query corresponds to brute-forcing all possible binary keys that are zero
everywhere except for indexes de�ned by the set I, with |I| = p. On expectation
we need to test 2p−1 keys to �nd a matching one. Assume that we manage to
recover r = r(p, qt) positions via a mismatch attack using a total of qt queries.
The number of recovered positions can be estimated as
13 For Kyber512 the pairwise approach does not improve upon the non-adaptive ap-

proach of [27,22].
14 As Kyber768 uses the same distribution for the secret entries as Kyber1024, we do

not need to also plot results for Kyber768.
15 At a parallelization level of 256 of course nobody has the computational resources

to perform the attack once, let alone do it a hundred of times.
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Fig. 2: Expected number of queries needed to recover p positions, as a function
of p, using di�erent parallel mismatch attacks against Kyber512 and Kyber1024
respectively.

r(p, qt) ≈
⌊
p
qt
re

⌉
, (24)

where re corresponds to the expected number of queries needed to recover p
positions with the chosen parallel mismatch attack algorithm, as estimated in
Figure 2. For a given p and qt we should of course choose the algorithm that
according to Figure 2 recovers the most positions of the secret.

We need to solve for the remaining 256 · l − r(p, qt) positions via lattice re-
duction. The total cost of the mismatch attack and the post-processing becomes

215 · 2p−1 · qt + L(l · 256− r(p, qt)), (25)

where L(n · l − r(p, qt)) is the cost of solving the underlying LWE problem for
the remaining l ·256−r(p, qt) positions not recovered from the mismatch attack.
The latter cost is estimated using the Lattice-Estimator16 [2].

For a given number of available queries, we should choose the parallelization
level p and the mismatch strategy that minimizes the cost according to (25).

For all versions of Kyber we perform this type of optimization17 and plot the
relationship between query and bit complexity in Figure 3. Notice that for all
versions of Kyber we drastically reduce the bit complexity below the security
level by having access to as few as two mismatch queries18! In terms of reducing
the bit security, there is a diminishing return in terms of how much each new
query simpli�es the computational e�ort.

16 https://github.com/malb/lattice-estimator.
17 The script for performing the optimization is available at https://github.com/Eri

kMaartensson/AdaptiveAndParallelMismatchAttack.. The repository also contains
a script used to generate Figure 2.

18 As we cannot recover any positions fully with a single mismatch query, we assume
that a single query does not reduce the bit security. However, partial information
about p positions from a single query does actually already make the problem easier.
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Fig. 3: Bit complexity of a parallel mismatch attack with postprocessing, as a
function of the number of mismatch queries.

For higher numbers of queries, we can compare against the results of Section
6.1 of [26]. They do not attempt to optimize the total computational cost for
a given number of queries. Instead, they �x di�erent, fairly small, values for p
and compute the remaining post-processing cost as a function of the number of
available mismatch queries.

The authors claim that when using p = 26 and 78 queries, the post-processing
cost is only 232 when attacking Kyber1024. As their attack actually requires the
number of queries to be a multiple of 5, let us study their claim according to
our model. In 80 queries with p = 26 we recover a total of 26 · 2 · 80/5 =
832 positions. According to the lattice estimator the cost of solving Kyber1024
with 192 positions remaining is roughly 255.56. The corresponding cost for the
mismatch queries is 215 · 225 · 80 = 246.32. Thus, the total cost is still roughly
255.56, as the post-processing cost dominates. Thus, by our calculation, when
using their mismatch attack strategy, they can lower the total cost by making p
a bit larger.

In comparison, we only need 58 queries to reach a total complexity cost of
255.11. It could be that our model for the cost of post-processing is too pessimistic,
but we apply it consistently to our strategy and the strategy of [26]. Thus, in an
apples-to-apples comparison, our strategy is superior.
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5 Discussion

In this section we discuss implications of the new attack methodology on side-
channel attacks. We also discuss a couple of more attempts of improving our
adaptive parallel mismatch attacks.

5.1 Improving Parallel PC Oracle-Based Side-Channel Attacks

PC oracle-based chosen-ciphertext side-channel attacks [12,23,28] against CCA-
secure KEMs are a signi�cant attack type, akin to key mismatch attacks. Both
methods select ciphertexts. While the key mismatch attack focuses on the CPA-
secure version, the PC oracle-based chosen-ciphertext side-channel attack targets
the CCA-secure version since it can exploit side-channel information to circum-
vent the protection o�ered by CCA transformations, such as the FO transform.

The high degree of similarity between these two attack categories suggests
that nearly all enhancements in key mismatch attacks can bene�t PC oracle-
based side-channel attacks. For instance, the one-positional key mismatch at-
tacks introduced in [21] and the multi-positional key mismatch attacks [13] can
enhance the query complexity of (binary) PC oracle-based side-channel attacks.

Shao et al. [26] introduced a parallel mismatch attack applicable to improving
parallel or multi-value PC oracle-based side-channel attacks [27,22]. As we re�ne
the work of Shao et al., the enhancements we propose in this paper can boost
the e�ciency of parallel or multi-value PC oracle-based side-channel attacks.
The chosen ciphertexts are generated using the same method as the ciphertext
selection approach described in Section 4.2.

In multi-value PC oracle-based side-channel attacks, a multi-class machine
learning model is trained on side-channel information to mimic the oracle used
in parallel key mismatch attacks. The number of classes required for training
is 2p, where p represents the parallelization level. However, due to constraints
imposed during training, the achievable value of p is often limited. Realistic
choices for p here lie in the range 8-16. As we see in Figure 2, for this range,
the performance of our adaptive approach is very close to the theoretical limit
covered in Table 1. Thus, we improve upon the query complexity of the state-of-
the-art by roughly 14.6 % for Kyber512 and 7.5 % for Kyber768/Kyber1024 for
this setting. By keeping the number of queries the same, our attack improvement
instead translates to a lower total computational cost of the attack.

5.2 Other Attempts at Improving Parallel Mismatch Attacks

We made a few more attempts at improving upon the parallel mismatch attack
itself, the post-processing and how to balance these two parts.

Triangular Splits Only An alternative to our strategy of planar cuts in parallel
is to let b2 6= 0 and use triangular splits only, as brie�y mention in Section 4.1. We
tried to devise a mismatch attack with this strategy. For Kyber768/Kyber1024 it
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performs slightly worse than the planar strategy. For Kyber512 it performs even
worse. We also tried scaling down Kyber to have centered Binomial entries on
{−1, 0, 1}. Here the triangular strategy performs marginally better. In summary,
it seems like the strategy of using only triangular splits is performing worse the
larger set the secret entries are taken from is.

Synchronized Splits in Three Dimensions The idea from [26] of making
two-dimensional splits in a way to guarantee the minimum number of splits in
the worst-case can be generalized to higher dimensions. Let us assume that such
a splitting strategy exists and see what can be achieved for the di�erent versions
of Kyber. A triplet of entries from Kyber512 can take 73 di�erent values. Since
dlog2(73)e = dlog2(343)e = 9, this strategy recovers 3P entries in 9 queries. This
would unfortunately be identical in performance to the strategy of [27,22].

For Kyber768/Kyber1024 we have 53 = 125 possible triplets of entries.
Since dlog2(125)e = 7, this strategy recovers 3p entries in 7 queries. This would
beat [26], but would be marginally worse than our adapted strategy, which re-
quires an expected number of 3 · 2.3125 = 6.9375 queries to recover 3p positions.

Potentially More E�cient Post-processing In a recent paper by May and
Nowakowski [17] it was shown that having access to a surprisingly low number
of so-called perfect hints about the secret vector, the LWE problem can be easily
solved with LLL. The terminology originally comes from [6] and means that the
attacker has access to information of the type strAvi = li, where vi are known
vectors and li are known scalars. In our setting the attacker has recovered a large
number of entries of sA. Each such value corresponds to a hint sA[i] = strAei = li,
where ei is a unit vector. In May's and Nowakowski's setting, the vectors vi take
uniformly random values from Zq.

Given the perfect hints, May and Nowakowski create a matrix where each
column consists of a vector vi and the corresponding value li. The larger the
absolute value of the determinant of this matrix is, the easier the LWE prob-
lem with these hints is. While uniformly random vectors vi lead to very large
determinants, the hints in our setting lead to very small determinants. In our
case, their approach boils down to reducing the dimension of the problem by the
number of hints we are given, which matches the strategy from Section 4.4.

Enumeration vs. Post-processing The key enumeration part of parallel mis-
match attack is trivial to parallelize and requires negligible amounts of memory.
The lattice reduction attack that the lattice estimator suggests requires an expo-
nential amount of memory and is highly non-trivial to parallelize. Thus, it might
in practice be faster to leave some more of the total number of secret entries for
the mismatch attack part. As the impact of the memory requirement of lattice
reduction algorithms is an active research area in itself, we consider taking this
aspect into consideration when optimizing the cost out of scope for this work.
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6 Conclusions and Future Work

In this paper, we highlight a critical vulnerability in Kyber, the chosen NIST
post-quantum KEM, against key mismatch attacks. We demonstrate that par-
allelized attacks with post-processing lattice reduction can jeopardize Kyber's
claimed security levels with a minimal number of queries. This �nding empha-
sizes the strict prohibition of key reuse in the CPA-secure version of Kyber.
Also, we improve upon the results in [26] by employing an adaptive strategy.
By reserving a minor portion of the positions for post-processing, we manage to
decrease the anticipated query count by approximately 14.6 % for Kyber512 and
7.5 % for Kyber768/Kyber1024, relative to [26]. Our advancements could like-
wise be utilized to further improve the parallel or multi-value PC oracle-based
side-channel attacks against the CCA-secure Kyber KEM as presented in [27,22].

In considering future avenues of research, we propose a real-world evaluation
of the side-channel attack enhancements enabled by our techniques (Section 5.1).
This evaluation should quantify the practical improvement in attack e�cacy us-
ing an experimental setup. Additionally, investigating the deployment of parallel
mismatch attacks coupled with post-processing on high-performance computing
resources, particularly those with extensive RAM, presents another exciting av-
enue for exploration. This research could provide insights into the practicality
of our techniques in real-world scenarios.
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