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Abstract
Arma1 is a Byzantine Fault Tolerant (BFT) consensus system designed to achieve horizontal
scalability across all hardware resources: network bandwidth, CPU, and disk I/O. As opposed to
preceding BFT protocols, Arma separates the dissemination and validation of client transactions
from the consensus process, restricting the latter to totally ordering only metadata of batches of
transactions. This separation enables each party to distribute compute and storage resources for
transaction validation, dissemination and disk I/O among multiple machines, resulting in horizontal
scalability. Additionally, Arma ensures censorship resistance by imposing a maximum time limit
on the inclusion of client transactions. We built and evaluated two Arma prototypes. The first is
an independent system handling over 200,000 transactions per second, the second integrated into
Hyperledger Fabric, speeding its consensus by an order of magnitude.
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1 Introduction

Byzantine Fault Tolerant (BFT) consensus has gained attention with the advent of Distributed
Ledger Technologies and the extended use of the latter for financial asset exchange applications,
i.e. scenarios that desire the high degree of resilience that BFT consensus offers. However,
early works on BFT protocols suffered from poor performance, especially with a high number
of participants. In recent years, academic and industrial research successfully demonstrated
that BFT systems are capable of achieving significant throughput at large scale.
A prevalent characteristic among consensus protocols such as PBFT [4] or Paxos [8] is their
monolithic architecture, where each participating party consolidates all the subroutines
of the protocol within a single node. The reason for such an approach is twofold: First,
implementing and analyzing a distributed consensus protocol involving multiple parties is
inherently challenging, and having each party manage multiple nodes further exacerbates
the complexity. Second, many researchers gauge protocol efficiency based on the overall
number of messages sent during the protocol or by each party, often overlooking the significant
discrepancy in message sizes and their transmission efficiency. Indeed, the network bandwidth

1 Means “Chariot” in Greek. Similarly to a chariot that can tow more when horses are added, Arma
totally orders more client transactions the more hardware is added.
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a protocol requires from each node is often the limiting factor for the throughput and not
the total number of messages sent in the protocol.
While the monolithic architecture is relatively straightforward to implement and analyze,
it inherently constraints the performance of the system. Eventually, the machine of each
party will reach its limit in terms of CPU and storage operations per second. Only recently,
researchers have proposed a consensus protocol [6] that allows each party to distribute its
execution across multiple machines, where not all nodes are created equal. This design
enables the horizontal scaling of all resources required for consensus, including CPU, storage
I/O rate, and network bandwidth. In such systems, each party operates several nodes, and
the various subroutines of the consensus protocol are executed on nodes based on their
specific roles. However, current implementations of such systems do not enable censorship
resistance nor transaction de-duplication.

1.1 The Contribution of This Work
This paper introduces Arma, a new consensus protocol that builds on ideas from the recent
work of Danezis et al. [6], to achieve horizontal scalability. Distinguishing itself from the
previous work, Arma incorporates censorship resistance and transaction de-duplication
mechanisms, where in [6] these properties are not inherent like in Arma, and can only be
achieved with having the transaction totally ordered several times, incurring a severe impact
on performance. Once a client submits a transaction to Arma, it can be assured of its
finalization. As a result, Arma not only demonstrates high throughput but also enhances the
user experience, by eliminating the need for client applications to include logic for tracking
transaction finalization. This advancement opens up possibilities for constructing payment
systems where clients can effortlessly initiate transactions without the necessity of monitoring
their execution.
Additionally, we highlight a new technique of denial of service protection that utilizes
probabilistic verification of transaction batches which allows Arma to be resistant to denial
of service at a performance overhead considerably lower than the state of the art.

1.2 Brief Overview of the Arma Protocol
In the Arma consensus protocol, transaction dissemination and validation are entrusted
to separate groups of nodes known as shards. Each shard includes a representative from
every party (participant or member who runs the Arma protocol) and exclusively manages
a specific subset of transactions. The nodes within these shards provide attestations of
persisted batches of transactions or votes related to node misbehavior. These attestations
and votes are then submitted into a BFT consensus protocol. By totally ordering these
attestations and votes, Arma nodes gain collective knowledge regarding which batches of
transactions have been safely persisted by a sufficient number of nodes and identifies nodes
displaying faulty behavior, such as deliberate transaction censorship or a simple crash. With
the attestations and votes fully ordered through the BFT consensus protocol, an ordering
of batches from different shards is achieved, subsequently leading to an implicit total order
between all transactions.

1.3 Paper Outline
Firstly, Section 2 surveys the existing work related to this paper and provides a comparison.
Then, Section 3 presents an overview of the design of Arma, highlighting its key components
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and mechanisms, while Section 4 gives an in depth description of the Arma architecture.
Following that, Section 5 explains how to integrate Arma into Hyperledger Fabric [1], and
discusses performance evaluation in Section 6. In Section 7 we give a formal analysis of
Arma’s properties, and in Section 8 we conclude and discuss future work.

2 Related Work

In this section, we provide an overview of existing BFT protocols. We distinguish between
earlier BFT architectures and the one Arma is based on.
In contrast to permissionless blockchains like Bitcoin [12] and Ethereum [3], systems designed
for enterprise use cases often possess a well-defined membership structure and impose stringent
performance requirements. Among the various BFT protocols, PBFT [4] stands out as a
prominent choice for such settings, serving as the foundation upon which subsequent works
build. A key characteristic shared by these protocols is the establishment of a total order
by having a designated leader node broadcast a batch of client transactions. However,
this inherent asymmetry among the nodes limits the protocol’s throughput, as it becomes
constrained by the network bandwidth of the leader node. Indeed, any protocol that relies
on a sole leader to propose batches and coordinate the consensus rounds, imposes a high load
on the leader, which unavoidably becomes a bottleneck. A significant approach to mitigate
the aforementioned bottleneck is to have multiple leaders (e.g., [5, 10, 11, 13]), many nodes
who concurrently and independently propose batches.
A notable example is Mir-BFT [13], which uses multiple leaders while employing a transaction
de-duplication technique. Mir-BFT runs multiple parallel instances of PBFT [4], where each
batch sequence i is specifically reserved for the PBFT instance i % k, where k is the number
of parallel PBFT instances. By running multiple leaders, Mir-BFT effectively distributes
the network load that would typically be concentrated on a single leader. This distribution
helps alleviate the network bandwidth bottleneck associated with having a single leader.
Furthermore, in Mir-BFT every client transaction is assigned to a specific PBFT instance by
hashing it to a value within the range of {1, ..., k}. The deterministic hashing of transactions
to PBFT instances ensures that duplicate transactions are prevented. This feature is crucial
not only for preventing denial-of-service attacks but also for avoiding unnecessary duplication
of total order for the same transaction.
However, running BFT instances in parallel can indeed increase throughput, but it also
introduces a higher vulnerability to node crashes. Let’s consider a protocol like Mir-BFT,
where there are k = n

2 parallel instances of BFT, where n is the total number of nodes. In this
scenario, batch bi is assembled and broadcast by the leader of instance i % k , and similarly,
batch bi+1 is broadcast by the leader of instance (i + 1) % k. If the leader of instance i % k

crashes before broadcasting batch bi, batch bi+1 cannot be delivered until a new leader is
established in instance i % k. As a result, in such a protocol with k parallel PBFT instances,
the throughput drops to zero when any of the leaders among the k different instances faults.
If the probability of a crash is the same across all nodes and they are independent, then
the probability of a failure is higher in Mir-BFT like protocols than PBFT (with a single
leader). In a standard PBFT protocol, the throughput drops to zero only when the leader
node crashes. The increased susceptibility to crashes in Mir-BFT’s approach can have a
significant impact on the system’s up-time availability.
Moreover, nodes participating in the consensus process not only transmit batches over the
network but also perform other essential tasks. These tasks include writing the batches
to disk for crash fault tolerance, parsing the client transactions within the batches, and
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verifying their integrity. The speed at which batches are written to disk is influenced by
the underlying storage system of the node. On the other hand, transaction verification is a
computationally intensive task that relies on the CPU’s processing power. Both disk writing
and transaction verification play crucial roles in the overall performance of the consensus
process. Consequently, a protocol that is efficient at load balancing network bandwidth
across all parties may have its limiting factor shift towards CPU and disk I/O.

2.1 Distributed Multi-Instance BFT Architecture
Running PBFT in parallel enhances horizontal scalability, but it also introduces certain
limitations. In this setup, each node participates in multiple PBFT protocols, resulting in the
need to verify all transactions and write all batches to its underlying storage. Consequently,
the scalability of Mir-BFT is primarily limited to the vertical scaling of CPU and storage
I/O. Simply adding more machines to the system cannot effectively address potential CPU
or storage I/O bottlenecks that may arise.
Danezis et al. [6] offer insights into spreading the load of storage I/O and CPU across multiple
machines within the same party, thereby overcoming these limitations. The key concept
is to separate and distribute the tasks of transaction dissemination and validation across
multiple machines and subsequently establish a total order for the corresponding metadata.
By effectively separating these responsibilities and achieving a distributed consensus on the
metadata, the aforementioned work [6] enables the scalability of storage I/O and CPU by
leveraging the collective resources of multiple machines within a party.
Figure 1 depicts the architectural difference between multi-instance BFT protocols such as
Mir-BFT and distributed multi-instance BFT like Arma and [6].

(a) Each party (a,b,c,d) runs a single
machine with co-located BFT

instances

(b) Each party (a,b,c,d) runs several machines, each
executing a dedicated protocol instance

Figure 1 (a) Multi-Instance BFT vs (b) Distributed Multi-Instance BFT

In distributed multi-instance BFT the actual dissemination of transactions is not conducted
through a full consensus protocol but rather through a sub-protocol known as reliable
broadcast. In [6], once a batch is persisted by enough nodes, a certificate of availability is
formed, including signatures on the metadata of the batch. The certificate of availability
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is then subjected to a real consensus protocol to establish total order. The total order of
transactions is derived from the order of the metadata of the batches.
Similar to Mir-BFT or other multi-instance BFT protocols, there can be multiple instances
of the sub-protocol responsible for transaction dissemination. However, each instance can
execute on its own machine, and instances operated by the same party are not co-located
on the same machine. This distributed execution allows for scalability and better resource
utilization across multiple machines, contributing to the overall efficiency and performance of
the consensus protocol. Furthermore, unlike the multi-instance BFT approach, a distributed
multi-instance BFT design is less vulnerable to a crash of a party. In the event of a node
responsible for broadcasting batches experiencing a crash, other instances can still completely
order certificates of availability. This resilience is attributed to the fact that the order among
instances transmitting transactions is determined by the consensus protocol itself, rather
than relying on a predetermined sequence allocation as seen in multi-instance BFT systems
like Mir-BFT. This feature enhances the fault tolerance and availability of the system, as it
allows for continuous progress even in the presence of node failures.

2.1.1 Distributed Multi-Instance BFT Shortcomings
In the work of ’Narwhal and Tusk’ [6], once a batch creator gets enough distinct signed
acknowledgments for the batch, it combines them into a certificate of batch availability and
then sends it to the rest of the nodes. However, this design is susceptible to the batch creator
maliciously withholding the certificate of batch availability, hence delaying the transactions
in the batch from being finalized. The authors point that such a problem is resolved by
having the clients monitor their transaction inclusion and if a timeout has been reached,
re-submitting it to a different shard.
In contrast to the aforementioned design, in Arma, each batcher node be it the batch creator
(denoted as primary) or a secondary is responsible for having its signed acknowledgment to
be totally ordered via consensus. Therefore, Arma is not susceptible to such an attack as it
totally orders the signed acknowledgments in a decentralized manner.
Moreover, the approach of [6] does not incorporate censorship resistance or transaction
de-duplication mechanisms. A malicious node responsible for broadcasting batches can
selectively ignore transactions or intentionally slow down its execution, potentially leading
to delays. In such cases, the system relies on clients to resubmit their transactions if they
are not finalized within a designated timeout period. Furthermore, malicious clients can
submit their transactions to multiple instances, resulting in wasteful resource utilization and
potential duplication of finalized transactions.
In contrast, Arma builds upon the fundamental idea of [6] and thus benefits from its inherent
performance advantages, but also incorporates mechanisms to achieve censorship resistance
(as defined in [10]) and transaction de-duplication. By following the Arma protocol, clients
can be certain that their transactions will always be ordered, eliminating the need for
timeout-based resubmission.

3 Design Overview

The Arma protocol is broken down into four stages: Validation, Batching, Consensus,
and Block Assembly. In the first stage, transactions are validated against some pre-
defined static system rules (e.g., check transaction format, and client signature); once the
validation stage completes, transactions are dispatched to nodes responsible for batching,
named batchers. During batching, transactions are bundled into batches and persisted to
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disk. The batchers then create batch attestation shares (BASs), which are batch digests
and signatures over them, and submit the BASs to the consensus nodes. The latter totally
order the BASs and create signed block headers that are delivered to the block assembly
nodes, which are called assemblers. After receiving the block headers from the consensus the
assemblers fetch the corresponding transaction batches from the batchers and construct the
full block.
It is important to note that in Arma’s validation stage which takes place at the routers, only
a local transaction validation is performed to ascertain their origin and prevent denial of
service attacks. However, the global validity of the transactions is not established by Arma,
as Arma does not execute nor validate any transactions in the batches it totally orders in
parallel. Therefore, any system that wishes to incorporate Arma must retrieve the blocks
from the assemblers and then execute and validate the transactions, and potentially, some
transactions would be marked as invalid, and skipped over.

3.1 Terminology and Definitions
We use the following terms to describe the Arma protocol:

▶ Definition 1 (Nodes). Each node has a dedicated role (router, batcher, consensus node or
assembler), and it can be either a physical or a virtual machine, or a process that shares the
machine with other nodes but operates independently.

▶ Definition 2 (Parties). The Arma consensus participants. Each node in the system is
associated with a single party, that deploys and maintains the node, and each party comprises
router, batcher, consenus and assembler nodes. We denote the total number of parties in the
system as N .

▶ Definition 3 (Byzantine node/party). A node or party that is not necessarily abiding by
the protocol, but exhibits arbitrary behavior. Byzantine [9] nodes/parties not only crash but
they may deviate from the specified protocol. Byzantine nodes/parties typically represent
entities that have been compromised.
In what follows we assume that there is at most F out of N Byzantine parties and that
F < N

3 . We consider a node to be Byzantine if the party with which it associates is also
Byzantine and vice versa.

▶ Definition 4 (Quorum). Defined by the smallest subset of distinct parties which is
guaranteed to intersect with another quorum in at least one correct party. For instance, if
N = 3F + 1, a quorum is exactly 2F + 1 parties, as (2F + 1) · 2−N = F + 1 which include
at least one correct party as up to F are malicious.

▶ Definition 5 (Shard). In Arma, a shard represents a logical partition of the transaction
space, dividing it into sets of comparable sizes. For instance, one possible approach is to
assign the least significant bit of a transaction to Shard 1 if it is zero, and to Shard 2 if
it is one. Sharding enables parallelization of transaction processing, and hence increases
scalability.

▶ Definition 6 (Batch). A set of transactions from a specific shard bundled together to be
sent over the network or persisted to disk.

▶ Definition 7 (Batch Attestation Share (BAS)). A message signed by a party attesting
that a specific batch (from a specific shard) has been persisted to disk by that party.
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Figure 2 Information flow among components run by a single party. Each party runs several
(R)outer nodes, (B)atcher nodes (where each batcher node is mapped to a shard), a single (C)onsensus
node and at least one (A)ssembler node. (R)outer nodes dispatches transactions submitted by clients
to the shards via their (B)atcher nodes. The (B)atcher nodes send votes on persisted batches to the
(C)onsensus nodes for ordering. The (A)ssembler node receives from the (C)onsensus node ordered
signatures over the digests of batches persisted by the (B)atcher nodes. The (A)ssembler node then
outputs the blocks which consists of the ordered batches and the signatures over their digests.

3.2 Node Roles
In the Arma system, each party operates one or multiple nodes of different types: Router,
Batcher, Consensus, and Assembler. In particular, a party’s infrastructure would typically
include one or more routers, multiple batchers (one per shard), a single consensus node, and
at least one assembler. Figure 2 depicts the components of a single party in an Arma system
with three shards. The Router nodes check transaction validity and forward the received
and validated transactions to the Batcher of the designated shard. Batchers group the
received transactions into batches and submit BASs to the Consensus nodes after persisting
the batches locally. Assemblers receive an ordered list of signed block headers from the
Consensus nodes, and retrieve the corresponding batches from Batchers.
More specifically:

1. Router: Clients submit transactions to the routers of multiple parties. The routers
operate in a stateless manner and verify that the transactions are well formed and properly
signed by the authorized clients. Each router then deterministically assigns validated
transactions to shards and forwards them to the corresponding batcher node that belongs
to the same party.

2. Batcher: A batcher receives validated transactions from the router(s) and store them in
its memory pool. For each shard, there is exactly one batcher from each party. A batcher
can be either a primary batcher or a secondary batcher :

A primary batcher persists submitted transactions to disk and bundles them into a
batch. It subsequently forwards the formed batches to the secondary batchers. Each
shard has exactly one primary batcher, for a given term.
A secondary batcher pulls batches from the primary batcher and persists them to disk.

Upon persistence of a transaction by a primary, the transaction is removed from its
memory pool. Similarly, once a transaction enters a secondary batcher node, it remains
in its memory pool until it receives a batch containing this transaction from the primary.
Eventually batchers would submit BASs to the consensus nodes to be totally ordered.

3. Consensus: The consensus nodes collectively agree on the total order of transactions by
ordering the batches of various shards. They do it by running a BFT consensus protocol
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which eventually assigns each batch a unique sequence number. The consensus nodes
output a series of batch headers, each signed by a quorum of consensus nodes.

4. Assembler: An assembler compiles the total order of transactions submitted to Arma,
by combining the output of consensus nodes, i.e., the total order of batch headers, with
batches it retrieves from the batchers to form blocks. The assemblers persist the blocks
to disk and can be seen as archivists, as the blocks contain both information from the
consensus nodes and the batchers.

4 Detailed Architecture

Now that the stages of the Arma protocol are explained, and the various roles of the nodes
are defined, we take a deep dive into each of the four stages of the protocol.

4.1 Routing and Validation

In Arma, a correct client sends her transaction to all parties. More specifically, the transaction
is submitted to the routers of each party. A router node is the simplest component among
the four, operating in a stateless manner with two roles:

Mapping transactions to shards and forwarding them to the corresponding batcher nodes
of one’s party.
Performing validity checks on the transaction and dropping it if it is found invalid.

Therefore, a router node is a stateless component and of which multiple instances can be
added as needed, making hence transaction validation and routing horizontally scalable.

4.1.1 Mapping Transactions to Shards

To ensure censorship resistance and de-duplication, it is essential that transactions are
mapped to shards in a deterministic manner. In this way, assuming a client follows the
protocol, and submits the transaction to all parties, all correct parties’ routers would forward
the received transactions to the appropriate batchers, ensuring that all correct batchers of
the shard will receive the transaction. Additionally, for effective load balancing across the
shards, the router must distribute the transactions among the known k shards in a manner
that is as close to a uniform distribution across the set {1, .., k} as possible.
While a cryptographic hash function could serve as a suitable choice, it is worth noting that
the router does not require the collision resistance and one-way properties. Instead, more
efficient alternatives like a CRC checksum are enough.

4.1.2 Transaction Verification

Besides forwarding transactions to their corresponding shards, routers also ensure that
transactions are well formed and properly signed by clients. In earlier protocols such as [13],
each party ran a single node verifying all transactions arriving from clients to that party.
However, in Arma, a party can utilize the routers to horizontally scale the CPU intensive
task of verifying signatures. Identifying invalid transactions and excluding them from the
next steps, ensure that system resources are devoted only to the processing of correctly
formed transactions.
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4.2 Transaction Batching
In the batching stage transactions are delivered to batchers and bundled together into batches,
in a way that ensures that (i) transaction batches are persisted safely into stable storage for
redundancy and retrieval, and (ii) the corresponding batch attestation shares are submitted
to the consensus stage. Recall that batchers are grouped into shards. Each party runs a
single batcher for every shard in the system and that batcher can be either a primary or
a secondary. Each shard has a single designated primary batcher node, while the rest are
secondaries.

4.2.1 Transaction Dissemination
As mentioned before, a transaction is submitted by a correct client to all the parties in
the system (i.e., their router nodes). The correct client considers the submission of the
transaction successful only if it has been successfully delivered to N −F parties. The routers
of the correct parties subsequently forward the transaction to its assigned shard via the
shard’s corresponding batcher for each party.
If the transaction is delivered to the primary batcher of the shard, then the primary batcher
includes it in a batch and persists the batch to disk. When the transaction arrives to a
secondary batcher, the batcher puts it into its memory pool. The secondary batcher then
pulls batches from the primary and after persisting them to disk, removes transactions that
appear in the received batches from its memory pool (if they have already been added).
Conversely, transactions that have been received from clients shortly after appearing in
batches pulled from the primary do not get added to the memory pool, as they have already
been processed.

(a) A transaction sent from a client is
sent to all router nodes and is then

dispatched to the batcher node of each
party

(b) In each shard, the primary batcher
node broadcasts a batch of

transactions to the secondary batcher
nodes

Figure 3 A birds eye view of router and batcher nodes of all parties (a) routing a transaction to
the appropriate shard, and (b) broadcasting transaction batches

Figure 3 shows the transaction flow from clients to batchers through the router nodes, and
also how transaction batches are broadcast among the batchers in each shard.
Once a batch is persisted to disk, each batcher be it primary or secondary, creates a BAS
by signing over a message < sequence, digest, shard, primary > where digest is a hash or a
Merkle tree root of the transactions in the batch, and totally orders the BAS by sending it
to all consensus nodes, acting as a client to the consensus nodes. It is the responsibility of
each batcher to ensure that the BAS is sent to at least N − F consensus nodes.
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Input:
Private key sk,
ledger L,
Shard ID SID,
Total Order Broadcast TO,
Transaction memory pool M

1 while I am primary do
2 b ←M.Get();
3 σ ← sign(sk, b.Seq || b.Digest ||

SID || batcherID) ;
4 L ← L || b ; // Persist batch
5 TO.Broadcast(

〈
σ, b.Seq, b.Digest,

SID, batcherID

〉
);

6 end

Algorithm 1 Primary batcher

Input:
Private key sk,
ledger L,
Shard ID SID,
Total Order Broadcast TO,
Transaction memory pool M,
Stream of batches from primary B

7 while I am not primary do
8 seq ← L.Height();
9 b ← B.RetrieveBatch(seq);

10 if invalidTxInBatch (b) then
// Complain about primary

11 σ ← sign(sk, termt || SID);
12 TO.Broadcast(

〈
σ, termt, SID

〉
)

return
13 end
14 L ← L || b ; // Persist batch
15 M.Remove(b.Requests);
16 σ ← sign(sk, b.Seq || b.Digest ||

SID || b.Primary);
17 TO.Broadcast(

〈
σ, b.Seq, b.Digest,

SID, b.Primary
〉
);

18 end
Algorithm 2 Secondary batcher

Figure 4 Pseudo-code for batchers (primary and secondary). Once a batch is appended to the
ledger (line 4), it will eventually be outputted by B.

Figure 4 shows the pseudo-code for batcher nodes in both primary and secondary roles,
where sending the BAS to consensus nodes is abstracted by a Total Order primitive.

4.2.2 Censorship Resistance in Byzantine Fault Tolerant Protocols

A Byzantine Fault Tolerant (BFT) consensus protocol that ensures censorship resistance
ensures that each transaction is eventually included in some finalized block. A common
approach involves non leader (follower) nodes recording the time when a transaction is
received. If a transaction is not included in a block sent by the leader within a specific
time period, the follower nodes forward the transaction to the leader. If the leader still
does not include the transaction in subsequent blocks, a leader change protocol is initiated.
Subsequently, the leader role is rotated, and one of the follower nodes becomes the new
leader. Another technique of ensuring censorship resistance is a periodical leader rotation.
By periodically switching the leader role, a transaction censored by a malicious leader node
is eventually included in a block once a correct node becomes the leader.

4.2.3 Censorship Resistance in Arma Batchers

Arma guarantees that if a client submits its transaction to all parties, it will eventually be
included in a block without the need for the client to retry the submission. In Arma, a
similar technique to the first censorship resistance method is employed to ensure that batcher
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primary nodes do not censor transactions from clients. However, instead of initiating a leader
change protocol among the batcher nodes, Arma utilizes a complaint voting mechanism.
In Arma, if a secondary batcher node receives a transaction that has not been included in
a block sent by the primary batcher node for a period of time, it sends the transaction to
the primary node itself. This is to ensure that the primary batcher received the transaction.
Otherwise, a faulty client may have not sent the transaction to the primary batcher node
and it will be falsely accused of censorship. Only if the transaction is still not received in a
batch from the primary batcher node after sending it directly, the secondary node suspects
the primary node of censorship. The secondary batcher node then sends a complaint vote to
all consensus nodes. These complaint votes are totally ordered alongside the BASs. Once
a threshold of complaint votes is gathered against a specific primary batcher, the batcher
nodes collectively designate the new primary batcher.

4.2.4 Verifying Batches Sent from Primary Batcher Nodes
As previously mentioned, part of the censorship resistance mechanism of batchers is having
the secondary batcher nodes send transactions that were not included in a batch sent from
the primary batcher. This is done by the secondary batcher sending the transaction to the
router node of the primary batcher’s party. This guarantees that the secondary batcher
nodes cannot send bogus transactions and compete with authentic ones over space in the
memory pool of correct primary batchers.
What remains is preventing malicious primary batcher nodes from sending bogus transactions
in their batches to the secondary nodes. While such transactions do not occupy space in
the memory pool of the secondary nodes, they still should be avoided as they needlessly
wastes resources and lower the effective throughput of the system when they are sent over the
network and written to disk. The overwhelmingly common mitigation approach is to have
the secondary batchers verify the transactions sent by the primary batcher. This approach
indeed prevents the inclusion of bogus transactions, however, it is very resource intensive and
does not scale horizontally as each secondary node must verify each transaction it receives
from the primary batcher2. Arma instead employs a probabilistic approach: Every secondary
batcher node chooses and verifies a random subset of transactions in each batch received
from the primary batcher node. More specifically, each correct secondary batcher picks R

transactions to verify among the M transaction in a batch. R is determined in so that if the
batch presents more than K invalid transaction, then a correct secondary batcher will detect
this with high probability.
When a secondary node finds an invalid transaction, it issues a complaint to overthrow the
primary and select a new one.

4.2.5 Complaint Threshold for Rotating the Primary Batcher
Effectively, the batcher nodes utilize the BFT consensus protocol executed by the consensus
nodes as a bulletin board that tracks, for each shard, which party runs the primary batcher
node for a given term. This approach facilitates agreement on the misbehavior of faulty
primary batcher nodes, and implicitly provides auditability on the misbehavior.
The threshold of complaint votes that induces a change in the primary batcher node is
F + 1 complaints from distinct nodes about a specific term. When F + 1 complaint votes

2 Of course, a secondary batcher may distribute the verification to several machines and then aggregate
the results, but this requires to send the batch and wait for results, which carries a latency overhead
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are collected, the term is incremented by 1 and a new batcher is then made primary. By
defining the threshold to be F + 1, we are assured that at least one correct party considers
the primary batcher node of a shard to be faulty, and that no coalition of the F faulty parties
can overthrow a correct primary batcher node.

4.3 Inducing Total Order Across Batches via BFT Consensus
Once a batcher node persists a batch, it sends its BAS to all consensus nodes, who totally
order the BASs by running a BFT consensus protocol. For simplicity, we say that the BFT
protocol advances in rounds, and in each round it totally orders some BASs. The rounds do
not refer to communication rounds or stages in the consensus protocol, but rather to the
time elapsed between a leader sending a proposal to that proposal being committed by the
consensus nodes.

4.3.1 Collecting Batch Attestation Shares
Each batcher, whether primary or secondary, sends a BAS upon successfully persisting a batch
to disk. The BASs are totally ordered by consensus in some consensus round, and during the
consensus protocol, the Arma consensus nodes determine which batch has collected enough
BASs. Once F +1 distinct shares of the same BAS, i.e., < sequence, digest, shard, primary >,
are totally ordered, the associated batch can be successfully retrieved from at least one
correct party. Therefore, the criteria for the inclusion of a batch in the total order is set to
collecting F + 1 BASs for that batch.
After F + 1 BASs for a specific batch are totally ordered, the consensus nodes collaborate
to assemble a quorum of signatures over a block header corresponding to that batch.The
signed block header contains a hash pointer to the previous block header extending thus the
chain. Each block header contains a digest of its corresponding batch, which is either a hash
or a Merkle root of that batch. In this case, a batch corresponds to a block. For efficiency
purposes, a block can contain multiple batches and the header multiple batch digests, each
corresponding to a batch in the block. This amortizes signature verification over several
batches making the verification cheaper.

4.3.2 Collecting Thresholds of Batch Attestation Shares
During the process of totally ordering BASs, a very likely scenario is one where F + 1 BASs
is totally ordered, but in different BFT rounds. To handle this situation, Arma maintains a
list of pending BASs. Once F + 1 BASs corresponding to a batch are collected, the consensus
nodes can collaborate to create a block header corresponding to that batch, sign over it
and include it in the hash chain. In Algorithm 3 we explain how thresholds of F + 1 BASs
for the same batch are grouped together and extracted even though they arrive in different
consensus rounds. The BASs agreed upon in a round of BFT are input of Algorithm 3, which
collects thresholds of BASs from both the current consensus round and previous rounds.
The leftover BASs for which a threshold was not found are then passed as input to the next
consensus round.
This approach ensures that all consensus nodes will process BASs deterministically and sign
over the same block headers. However, there is a non trivial challenge in this design: After
F + 1 distinct BASs are accumulated in the pending list, they are purged by Algorithm 3,
but additional BASs (of the same batch) may then accumulate in future rounds. This is
because more than F + 1 batcher nodes may submit their BASs, but there is no guarantee
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Input:
An ordered set of pending BASs from earlier rounds P = {bas1, bas2, ..., basm},
A set of BASs proposed by the leader consensus node B = {bas1, bas2, ..., bask}

Output:
An ordered set of pending BASs for future rounds P ,
An ordered set of sets of distinct F + 1 (threshold) BASs T

1 P ← P ∪B ;
2 T ← ∅ ;
3 C ← ∅ ;

// Aggregate BASs according to their batches and count them
4 foreach bas ∈ P do
5 k ←< bas.Seq, bas.Shard, bas.Digest, bas.Primary

〉
;

6 C[k]← C[k] + 1 ;
7 T [k]← T [k] ∪ bas ;
8 end
9 foreach k ∈ C do

10 if C[k] < F + 1 then
11 T ← T \ T [k] ; // Find batches with at least a threshold of BASs
12 end
13 end
14 P ← P \ T ; // Pending BASs are those without a threshold
15 return P, T

Algorithm 3 Pseudocode for processing batch attestation shares

that they end up being proposed in the same BFT round. For example, in a 4 node setting
with a single faulty node, the threshold is F + 1 = 2, however, 3 BASs are created. We
denote a BAS that is totally ordered by consensus in a later round after collecting F + 1
BASs, as an orphaned BAS. Clearly, in the previous scenario, the orphaned BAS will never
be purged from the pending list. It follows that as the system processes new transactions,
the pending list will include more and more orphaned BASs that will never be purged.
Another problem is that accumulating too many BASs can lead to the creation of two block
headers with the same batch digest. For example, in a system with four nodes where all
nodes are non-faulty, two thresholds of F + 1 BASs may be collected.
Due to space limitations, we discuss our solution to these problems in Appendix D.

4.4 Block Assembly

After each round of consensus in Arma, one or more block headers are persistently stored
by the consensus nodes. These block headers include digests referencing batches, and a
monotonically increasing sequence number. The assembler nodes retrieve the block headers
from the consensus nodes, while the batches are retrieved from the batcher nodes.
Each block header carries a quorum of signatures from the consensus nodes, which the
assembler nodes verify. This and the block sequence number guarantee that all assembler
nodes commit the same headers in the same order. For each block header, an assembler node
is responsible for retrieving the corresponding batches, attaching them together to form a
complete block and subsequently writing it to the ledger as depicted in Algorithm 4.
By storing the entire block, which encompasses the block header, the associated transactions,
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Input:
Streams of batches from batcher nodes {B1, ...,Bk}, one for each of the k shards.
A stream of block headers from consensus nodes H.
An index for blobs of data I.
A ledger of blocks L.

1 do in parallel
2 foreach shard ∈ {1, .., k} do
3 B ← Bshard ;
4 I.Index(B)
5 end
6 for true do
7 h← H;
8 if I.Exists(h.Digest) then
9 B ← I.Retrieve(h.Digest);

10 L.Append(
〈
h, B

〉
);

11 else
12 continue
13 end
14 end
15 end

Algorithm 4 Pseudo-code for assembling blocks from batch attestations and transaction batches

and a quorum of signatures on the block header (which contains a collision-resistant digest
of the transactions) in the ledger, the assembler node is effectively an archivist of the Arma
system.
As the shards independently generate batches at a potentially different rate from the rate that
the corresponding headers are totally ordered, it is impossible to predict the exact number
of batches that are going to be fetched before their corresponding headers are received.
Consequently, it is not practical for the assembler to keep a batch in memory until its block
header arrives. Thus, batches are promptly written to disk the moment they are fetched by
the assembler.

4.5 Primary Batcher Failover

While it is easy to see how to deal with a failure of a router, a consensus node, or an assembler,
a protocol for dealing with batcher failures must be presented. We recall that routers are
stateless components, consensus nodes already run a BFT protocol that copes with failures,
and assemblers do not interact with one another. On the other hand, primary and secondary
batchers interact with each other and the failure of a shard’s primary batcher impacts its
secondary batchers.
In BFT consensus protocols, both the view changes (changing of the leader node) and the
blocks are totally ordered. Meaning that if block b is proposed by a leader of view v and
later a view change occurs, incrementing the view to v + 1 and changing the leader will have
all (correct) nodes agree on whether block b was committed as part of view v or v + 1.
However, in the Arma protocol, the retrieval of batches by secondary batchers from the
primary is independent of the retrieval of the updates from the consensus, and specifically, from
the primary batcher changes. As a result, the progress of batches operates asynchronously
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with respect to the rotation of the primary batcher. This may introduce problems such as
the loss of transactions, due to a primary batcher change before sufficient BASs reach the
consensus, causing transaction batches not to be included in a block. If transactions are
lost then by definition the protocol is not censorship resistant. Next we discuss the different
scenarios and show that by following the Arma protocol transactions are never lost.
We take a look at batch bp sent by primary batcher p. Batcher p later crashes and a secondary
batcher q takes its place as a primary. In the simple case that q received bp, in addition to a
threshold of F + 1 batchers sending their BASs of bp, the batch is ordered by the consensus
and there is no loss of transactions.
Another simple case is when a threshold of F + 1 batchers send their BASs of bp, however the
next primary batcher q didn’t receive batch bp. This could happen for various reasons and
can lead q to include the same transactions of bp in a new batch made by q (bq). Therefore,
transactions may be included twice (in bp and in bq) but will not be lost.
If q receives batch bp and then it becomes the primary it needs to decide whether to propose
its own batch bq with the same transactions of bp. For this, q inspects the BASs totally
ordered by the consensus and sets bq to contain the transactions of bp if less than F + 1 BASs
were totally ordered for bp.
Finally, the censorship resistance technique is employed to make sure the transaction in bp

are not lost. If less than F + 1 correct batcher nodes received bp and q does not include the
transactions in bp in a new batch, q will be considered as malicious and be replaced as the
primary batcher. Indeed, since less than F + 1 correct batchers received bp, there is at least
one transaction in bp that was sent by a correct client that is still in the memory pool of
at least F + 1 correct batchers 3 which will complain after a timeout, leading to a primary
batcher failover.

5 Integration into Hyperledger Fabric

In this section, we explain how Arma can be integrated into Hyperledger Fabric. Additionally
in the next section (Section 6), we evaluate the performance of a prototype of a Fabric [1]
ordering service node with the embedded Arma components.
As previously mentioned, the Arma system comprises different types of nodes, including
routers, assemblers, batchers, and consensus nodes. Conversely, in Fabric, there are only two
types of nodes: Peers, responsible for processing transactions, and ordering service nodes,
tasked with receiving transactions from clients and totally ordering them into blocks for
retrieval by the peers. Within this structure, it is feasible to embed many of the Arma
components within a Fabric ordering node. While this topology may not fully leverage the
scalability capabilities of Arma, it still enables a substantial increase in the throughput of
the ordering service by an order of magnitude.
By integrating Arma into the Fabric ordering service node, Fabric can benefit from the
improved efficiency and performance offered by Arma’s consensus protocol. This integration
represents a significant enhancement for the ordering service in Fabric, allowing for a
substantial boost in transaction throughput.
In Fabric, ordering nodes perform two main tasks:

Verify transactions are well formed and properly signed by authorized clients.

3 2F + 1 total correct batchers, out of which F or less received batch bp, leaving at least F + 1 not
receiving bp.
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Totally order the transactions and bundle them into blocks signed by the orderer nodes
themselves.

We decouple these two tasks by delegating the former task of verifying transactions to Arma
router nodes. The rest of the Arma nodes are embedded in the Fabric ordering service node,
as seen in Figure 5 .

Figure 5 Arma components blue integrated alongside Fabric components (green) in a Fabric
ordering node process. Transactions from clients are verified by router nodes and are forwarded
into the ordering service node, where the R∗ router dispatches them to the batcher instances of
appropriate shards.

As transactions arrive from the router nodes into the ordering node, they are routed to
the batcher instance corresponding to the shard computed by the R∗ router logic. Then,
transaction batches are written into the Fabric ledger as they are received from the primary
batcher node. For the consensus node, we re-use Fabric’s native BFT library [2] as-is, but
modify its configuration to order BASs instead of Fabric transactions and to produce batches
of signed Fabric block headers. More specifically, in the original Fabric implementation,
the BFT orderer embeds the SmartBFT [2] consensus library. The leader broadcasts an
unsigned block and the nodes sign the block header and piggyback their signatures during
the agreement protocol. As a result, a quorum of Fabric signatures is collected by every node
at the end of an agreement on a block. In our prototype, we made the SmartBFT leader
node broadcast a batch of BASs (and complaints on primary batcher nodes), and instead
of signing over the entire batch, they deterministically assemble Fabric block headers and
sign over them. The resulting block headers are then passed into the assembler component.
Afterwards, the transaction batches are retrieved from the Fabric ledger, and full Fabric
blocks are assembled and written to the ledger, ready for retrieval by peers.

5.1 Chaining Transaction Batches in Hyperledger Fabric
In some distributed ledgers it is not possible to associate a block header with more than one
batch. For example, in Fabric each block header contains essential information such as a
sequence number, a hash of the previous header, and a hash of the transactions associated
with the block. The transactions are concatenated and then hashed using a cryptographic
hash function. Due to the structure of a block header, which consists of a single hash, it
is not possible to associate a Fabric block header with more than one batch. Hence, When
integrated with Fabric, Arma’s consensus nodes generate a single Fabric block header for
F + 1 BASs. Within each set of block headers that is totally ordered via the BFT consensus
protocol, the Fabric block headers are linked together in a hash chain.
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6 Evaluation

In this section we evaluate the performance of two Arma implementations. First we evaluate
a prototype of Arma integrated into Fabric as described in Section 5. We then evaluate a
prototype of a fully distributed stand-alone Arma system, deployed over LAN and WAN.

6.1 Arma Embedded in Fabric
We evaluate the performance of an Arma prototype integrated into a Fabric ordering service
node (OSN). We have incorporated batchers, assemblers, and consensus nodes directly into
the OSN process. The router node is simply a function that maps transactions to the
appropriate batcher instance within the Fabric OSN process. Thus, each OSN process
includes a router, one batcher for each shard, a consensus node, and an assembler.

6.1.1 Experiment Setup
The evaluation was carried out using multiple clients situated in the UK, generating transac-
tions of two different sizes: 300 bytes in one experiment and 3.5 KB in another experiment,
the latter corresponds to the standard Fabric transaction size. Each transaction was sent to
all ordering service nodes in parallel. Subsequently, the clients retrieved blocks from these
ordering nodes and calculated both throughput and latency.
The ordering service nodes were deployed across three distinct data centers located in the
UK, Italy, and France. Latency measurements between these data centers were as follows:
10ms between England and France, 20ms between England and Italy, and 17ms between
Italy and France.
For the infrastructure, the ordering service nodes were hosted on dedicated bare-metal
Ubuntu 22.04 LTS machines. These machines were equipped with 96 Intel Xeon 8260
2.40GHz processors (comprising 48 cores with 2 threads per core) and 64GB of RAM.
Additionally, they featured a Broadcom 9460-16i RAID 0 configuration with two SSDs.
We conducted experiments with various numbers of Fabric ordering service nodes starting
from 4 nodes up until and including 16 nodes.

6.1.2 Result Analysis
The results of the evaluation can be seen in Figure 6. The right and left graphs show
evaluation with transaction sizes of 300 bytes and 3500 bytes respectively.
First, it can be clearly seen that the higher the amount of nodes the lower the throughput.
This is expected, as more data needs to be transmitted among the nodes.
An interesting fact is while in the experiment with the 3.5KB transaction size, the transactions
are 11.6 times bigger than the experiment with the 300B transaction size, the difference in
transactions per second totally ordered is only ∼ 6 times higher for the smaller transactions.
This may imply an overhead that stems from transaction batching and censorship resistance
mechanisms.
It could however be associated to the fact that parameters such as batch size and maximum
batch latency in both experiments were identical, and calls for further fine tuning of parameters
as a function of the transaction size.
It is worth mentioning that while our evaluation involved embedding all components within
a single Fabric OSN for simplicity, as we will see in the next section, this is not the most
scalable and performant deployment strategy for Arma. However, for Fabric, this represent
an order of magnitude speedup in performance (approx. 2K vs. 20K TX/sec).
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Figure 6 Performance with varying number of nodes (N) and varying TX size.

6.2 Distributed Arma
In the experiments described below we evaluated a fully distributed implementation of Arma,
in which each component is running in a separate process.
In all experiments we used 4 parties, i.e.: 4 routers, 4 consensus nodes and 4 assemblers, as
well as 4× |shards| batchers. A separate set of clients submitted 160B transactions to all
routers. The maximal batch size was 10000, and the maximum duration of filling a batch
with transactions was 500ms.

6.2.1 LAN Deployment
The LAN experiment had 14 bare metal servers, each with 40 CPUs and 64GB of RAM. All
servers were located in the same data center, with < 1ms of latency between them. In all
experiments a router and a consenter process were collocated on a server (4 servers), and the
remaining batcher and assembler processes were evenly distributes across the other 10 servers
(4+8, 4+16, 4+32, assembles+batchers, for 2,4,8 shards, respectively). Clients located in the
same data center submitted transactions.

6.2.2 WAN Deployment
In the WAN experiment we used 44 virtual machines, each with 32 CPUs and 64GB of
memory. The machines where deployed across 3 data centers in the UK, and Italy (same
latencies as reported in Sec. 6.1.1). Clients located in one of the data centers submitted
transactions. Each process was deployed on its own virtual machine.

6.2.3 Results
Figure 7 depicts the results of the LAN experiments whereas Figure 8 depicts the results of
the WAN experiments.
In these experiments we let multiple clients submit TXs to the routers at a specific rate, and
measure the end-to-end TX latency. As the rate is stepped up, latency increases. At some
point, when the latency is > 5s, we stop the experiment. The highest rate which resulted in
latency < 5s is reported in the graphs.
Figure 7 shows that in the LAN experiment, more shards result in better performance -
from 225K to 230K to 240K TX/sec, for 2,4,8 shards, respectively. This comes at a cost of
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increased latency, from 700 to 800 to 1000 ms. The modest increase in performance can be
attributed to the fact that even though we deployed more batcher nodes when increasing the
number of shards, they were deployed on the same 10 bare metal servers.
Figure 8 shows that in the WAN experiment, more shards result in a more pronounced
increase in performance - from 150K to 190K to 220K TX/sec, for 2, 4, 8 shards, respectively.
In the WAN experiment, we deployed more resources as we deploy more shards. This explains
the more pronounced increase in performance.
Note that when demand is low (e.g. 100K TX/sec) deployment with different number of
shards perform at about the same latency (700ms for LAN & 1000ms for WAN). It is only
when a deployment with a given number of shards become saturated and the latency starts
to explode that we see the benefits of adding more shards.
When compared to Arma embedded in Hyperledger Fabric, the distributed Arma architecture
shows better performance and highlights the potential gains that can be achieved with
applying the distributed Arma architecture to the Fabric ordering service.

7 Protocol Analysis

We analyze the correctness and soundness of the Arma protocol explained in Section 4.
Arma batchers and assemblers use a BFT consensus as a primitive for totally ordering
batch attestation shares and complaints. Therefore, the properties of safety, liveness, and
censorship resistance hold for Arma only if they hold for the underlying consensus primitive.
We assume hereafter that up to F < N

3 parties may fail or be unreachable. Assuming that
there is a single router node per party, this translates to having up to F routers, F batchers
per shard, and F consensus nodes fail. We start by formally defining the properties that the
Arma consensus protocol must satisfy, after which we prove them one by one. Due to lack
of space, the proofs are deferred to Appendix A. For termination and censorship resistance
which are both liveness properties, we assume, similarly to [14], that there exists a Global
Stabilization Time (GST) after which there is an upper bound on network delay ∆. Note
that without such an assumption, it is impossible [7] to even achieve a crash fault tolerant
agreement. As for validity we make no such an assumption. We also assume it takes up to
δ (∆) time to totally order a message through the BFT consensus used in Arma.
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▶ Property 1 (Termination). After GST, if a correct party receives a transaction tx sent by
a correct client, every correct assembler eventually commits a block B containing tx.

▶ Property 2 (Agreement). If a correct Assembler node commits block Bi,d with sequence
i and digest d then every other correct assembler node commits block Bi,d.

▶ Property 3 (Censorship resistance). After GST, there exists a time Tmax such that if a
correct client submits a transaction tx to at least N − F parties, every correct assembler
commits a block B containing tx within Tmax time.

▶ Property 4 (α-validity). If a correct assembler commits block B containing tx, then the
probability that a client submitted tx is at least α.

Note that unlike protocols such as Mir-BFT [13] where each batch sent by the leader is
entirely verified by the correct nodes achieving 1-validity, Arma relaxes this property by
allowing a portion of transactions sent from a primary batcher to be totally ordered without
verifying them. As explained in Section 3, this method can be employed when Arma is
only used for totally ordering transactions, and there is an additional transaction processing
layer that consumes blocks produced by Arma batchers, and ignores invalid transactions. A
prominent example for such a system is Hyperledger Fabric [1] which optimistically executes
transactions on a snapshot of the world state, after which it totally orders them by a consensus
service and later on validates the transactions, only taking into account transactions their
read set are up to date.

8 Conclusions

At its essence, Arma formulates a technique for amplifying the performance of a consensus
protocol by decoupling data dissemination and validation from the actual consensus mecha-
nism. As demonstrated by the evaluation of our Arma prototypes, it exhibits considerable
potential in enhancing the scalability and performance of BFT consensus. Two key insights
that stem from this work are the ability to enhance the performance of a slow, non-pipelined
consensus like SmartBFT [2] by employing the methodologies explained, and how to add
censorship resistance and deduplication to a system that decouples data dissemination and
consensus like ’Narwhal and Tusk’ [6].
As can be seen by our performance evaluation, while components run by a party can be
integrated within the same machine similarly to popular protocols such as PBFT [4] and
HotStuff [14], the throughput is smaller than the distributed Arma deployment where each
component runs on its own machine. We recognize the need for additional evaluation of the
distributed Arma deployment, namely with more parties, and consider this future work.
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A Proofs

Before we prove property 1, we prove a lemma:

▶ Lemma 1 (Primary rotation). If F + 1 correct parties in a shard receive a transaction
tx but a primary batcher in that shard does not include it in a batch, then a different node
becomes the primary for that shard.

Proof. As written in Section 4.2, if a transaction is received by F + 1 secondary batchers, it
enters their memory pool. The only way to be removed from the memory pool is via receiving
a batch from the primary that includes it. As already mentioned, if after a configured period
of time, the transaction is not removed from a memory pool of a secondary batcher, it sends
a complaint to the BFT consensus nodes. Once complaints from F + 1 parties have been
totally ordered through the BFT consensus, the next batcher in the shard is designated as
primary, in a deterministic manner (e.g., using round-robin). ◀

▶ Theorem 2 (Termination). Arma satisfies termination (property 1).

Proof. A correct party receives a transaction via its router and then forwards it to its batcher.
Until the client gets an acknowledgement of the transaction being enqueued in the batcher, it
does not consider the transaction to be successfully submitted to that party. A correct client
sends a transaction to the routers of all parties, but the delivery of the transaction to up to F

parties can fail due to faulty behavior. As mentioned in Section 4.2, a correct client considers
a transaction as successfully submitted once it has been received by N − F routers. In this
manner, the transaction will reach at least F + 1 correct batchers. A malicious primary
batcher may not include the transaction in a batch. In such a case and since at least F + 1
correct batchers received the transaction, Lemma 1 guarantees that there exists a period of
time after which the faulty primary batcher ceases being the primary for the shard.
It remains to argue that a correct primary batcher will not be replaced due to complaints from
malicious batcher nodes. Indeed, the only way a correct primary batcher can be designated to
not be the primary is if F + 1 complaint votes against its party are collected. It follows that
F malicious nodes attempting to vote out a correct primary need a correct node to also send
a complaint vote against that primary. A correct secondary sends a complaint vote against a
primary in one of two cases: The primary does not include in a batch a transaction that
the secondary has received and dispatched to the primary or the primary includes invalid
transactions. Batches generated by a correct primary will never satisfy these cases, and
therefore, a correct secondary will never cast a complaint vote against it. A correct primary,
therefore, will never be falsely ejected by the faulty nodes.
We next show that the transaction will be included in a future block by all correct assemblers.
A correct primary batcher that receives tx inserts it into its memory pool M. Then, as
shown in Algorithm 1, a secondary batcher will eventually fetch a batch b from the primary
which will contain tx and append the batch b to its ledger. Eventually, b will be replicated to
at least F correct nodes via lines 3-4 in Algorithm 2, and the corresponding batch attestation
shares will be submitted to be totally ordered with the BFT consensus via line 5 in Algorithm
1 and line 12 in Algorithm 2. Then, following Algorithm 3, F + 1 batch attestation shares
will be collected to trigger the creation of a new block header which contains b’s digest, which
will be signed by the consensus nodes as explained in Section 4.3.1. For every block header
there are F + 1 batcher nodes from different parties that persisted the corresponding batch,
therefore at least one correct node has this batch. Both block header and the batch b are
then eventually retrieved by correct assembler nodes as per lines 7 and 9 respectively in
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Algorithm 4, and the batch b and its block header are then both committed into the ledger
in line 10. ◀

▶ Theorem 3 (Agreement). Arma satisfies Agreement (property 2).

Proof. Assume by contradiction that two distinct blocks Bi,d and B′
i,d′ with sequence i were

committed by different correct assemblers. We distinguish between two cases: one where
digests d does not equal d′ and one where the digests are identical. If d ̸= d′, then according
to line 10 in Algorithm 4, two different headers were received from the consensus nodes. As
mentioned in Section 4.4, the consensus nodes assemble a quorum of signatures over each
header and a correct assembler verifies these signatures. Since two quorums intersect at at
least one correct node, this entails that a correct consensus node has signed two conflicting
headers, contradicting it being a correct consensus node. Therefore d = d′. As depicted in
lines 9-10 in Algorithm 4, blocks are created by retrieving the batches matching the digests
in the totally ordered headers. If Bi,d ̸= B′

i,d, then this implies that two different blocks map
to the same digest, breaking thus the collision resistance property of the hash function used
to compute the digest. Consequently, we conclude that correct assemblers will commit to
the same blocks in the same order. ◀

▶ Theorem 4 (Censorship resistance). Arma satisfies the censorship resistance property 3.

Proof. A correct client submits a transaction tx to all parties. It considers a transaction as
submitted once N − F parties confirmed the transaction has been enqueued into the batcher
nodes of the shard corresponding to the transaction. If the primary batcher node of the shard
is correct, then from Theorem 2 censorship resistance holds. Otherwise, the primary batcher
is faulty and therefore it does not include tx in a batch. Since tx was received by at least
F + 1 correct secondary batcher nodes, by Lemma 1, after a timeout period denoted Tcensor,
a different batcher will be the primary for the shard. The maximum number of successive
faulty primary batcher nodes is F . Thus, after at most F · Tcensor time, the primary batcher
node will be correct, and according to Theorem 2 tx will be included in a block B that each
assembler will commit. Now the time that takes to commit a transaction submitted by a
correct client is upper-bounded by Tmax = F · Tcensor + δ (∆) + 2 ·∆. 4 ◀

▶ Theorem 5 (α-validity). Arma satisfies α-validity (property 4).

Proof. For simplicity of analysis, we assume that all F faulty nodes are controlled by a
single adversary, and that the adversary has control over the primary batcher of a shard
and F − 1 secondary batchers. As the adversary already controls F batchers, in order for a
batch to be output by Arma, the adversary needs to collect an additional batch attestation
share. Therefore, it is sufficient for the adversary to send the batch to an additional correct
batcher and hope it would not detect the invalid transactions within. The value α denotes
the ratio of valid transactions in the batch. A correct secondary batcher rejects the batch
if it chooses to verify one of the remaining invalid transactions in the batch. In practice, a
batcher samples the transactions to verify without replacement. However, if we model the
sampling as one with replacement, we get a simpler model to analyze to find the number
of transactions a correct batcher must verify to meet α-validity with high probability. Let
K denote the number of transactions the correct secondary batcher chooses to verify in the

4 ∆ to pull the batch and headers by the assemblers, ∆ for the batch to be replicated by the batchers,
and δ (∆) to be ordered by BFT consensus.
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batch. Let p be a system parameter that corresponds to the acceptable probability of not
rejecting a batch where 1− α of the transactions are invalid. The correct secondary batcher
fails to detect an incorrect primary batcher if it samples K transactions among the ones
correctly submitted by the clients, as opposed to invalid transactions injected by the primary
batcher. This event occurs with probability αK . K is accordingly determined by equation
αk ≤ p, i.e., K ≥ ln(p)/ln(α). For a one in a billion (p = 2−30) chance of not rejecting a
batch where 1 − α of the transactions are invalid, we get K ≥ −30

log2(α) . For a batch with
50%, 25%, 5% invalid transactions, we get K = 30, K ≈ 72, K ≈ 405 transactions to verify
respectively. ◀

B Efficient Transaction Bundling

Given that a batcher node can function as either a primary or secondary, it is necessary to
prioritize efficiency in transaction bundling. The challenge lies in swiftly retrieving transac-
tions from the memory pool while maintaining the order of their arrival and simultaneously
allowing uninterrupted insertion of new transactions into the pool.
The Arma memory pool utilizes a mechanism where the retrieval of batches from the memory
pool has a time complexity of O(1). This is achieved by having transaction insertions and
batch retrievals not be conflicting with each other. At any given time, in the primary
batcher’s memory pool, there is a pending batch being filled and a queue of full batches
awaiting dispatch. The batches are dispatched in the order they appear in the queue and
they are deleted afterwards. If no full batch is present in the queue, the primary retrieves
the pending batch that is currently being filled. As transactions enter the memory pool, they
fill the pending batch, and once that batch reaches a certain size, it is atomically enqueued
into the queue of full batches, while a new empty batch is created instead of the now full
pending batch.

Figure 9 Transaction memory pool for primary batchers

Figure 9 depicts how transactions enter the memory pool (left side) and fill batches until
they are full to form a queue. The next batch to be proposed is the oldest one in the queue
(right side).

C Tracking Transactions by Secondary Batcher Nodes

While the primary batcher’s role is to quickly bundle a set of transactions, enabling the
secondary batchers to retrieve them efficiently, the secondary batchers are responsible for
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tracking the transactions in their memory pool and promptly detect if any transactions are
not being dispatched within the expected time frame.
In the secondary batcher’s memory pool, incoming transactions are inserted into specific
buckets. These buckets are assigned timestamps periodically and are subsequently sealed,
preventing further transaction insertions. When transactions arrive from the primary batcher
node, they are removed from the corresponding buckets where they were initially inserted. A
sealed bucket that remains non-empty for an excessively long duration indicates either the
transactions within it did not reach the primary node or that the primary node is censoring
the transactions.
Efficient detection of transaction censorship involves recording the entry time of transactions
into the secondary batcher node’s memory pool and identifying instances where transactions
remain in the pool for an extended period. The key concept in achieving efficient censorship
detection is that precision is not crucial in the case of actual censorship. Which is why
timestamps can be tracked per bucket (multiple transactions) and not per transaction.
Garbage collection occurs for sealed and emptied buckets, while sealed yet non-empty buckets
serve as indicators of potential censorship or transmission issues. Figure 10 depicts how
transactions are tracked in a secondary batcher’s memory pool.

Figure 10 Transaction memory pool for secondary batchers

D Garbage Collection and De-Duplication of Batch Attestation Shares

To limit the consensus node’s pending list from growing indefinitely and to avoid the creation
of two block headers corresponding to the same batch, the consensus nodes hold database of
digests of batches for which the number of corresponding BASs exceeded the F + 1 threshold
to create block headers.
In other words, every time F + 1 BASs are collected, the corresponding digest is added to
the database. Then, consensus nodes know for which digests they should not attempt to
create a second block header.
There are three problems to address with this design: (1) How to garbage collect the database
to prevent it from growing indefinitely; (2) How to prevent malicious nodes from re-submitting
old BASs after they have been garbage collected from the database, thus forcing creation of
prior block headers in the hash chain; and lastly (3) how to uniformly and deterministically
purge orphaned BASs from the pending list.
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To that end, Arma divides the time axis into discrete sections of equal length called epochs,
which are represented by a monotonically increasing number.

Figure 11 Purging orphaned BAS of transaction batch with digest 025...3c from the pending list

When creating a BAS, a batcher computes the current epoch and includes it in the payload
of the BAS sent to the consensus nodes. Consensus nodes prevent totally ordering BASs
with epochs too far in the past, therefore the second problem of re-submission of old BASs is
avoided. Arma addresses the first and third problems without relying on an assumption that
the time in all correct consensus nodes is synchronized. Instead, old BASs are pruned via
vote counting: Each BAS of a shard contains references to orphaned BASs of the same shard
as depicted in Figure 11 Once a BAS in the pending list has F + 1 or more votes that point
to it, it is pruned from the pending list. This ensures that at least one correct batcher node
considers this BAS too far in the past and also orphaned. A BAS can only point to a BAS
of an earlier sequence number or of an earlier term, so cycles are avoided.
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