
Optimal Consensus in the Presence of
Overlapping Faults and Total Omission

Julian Loss1, Kecheng Shi1,3, and Gilad Stern2

1 CISPA Helmholtz Center for Information Security
2 Tel Aviv University
3 Saarland University

Abstract. Understanding the fault tolerance of Byzantine Agreement
protocols is an important question in distributed computing. While the
setting of Byzantine faults has been thoroughly explored in the literature,
the (arguably more realistic) omission fault setting is far less studied. In
this paper, we revisit the recent work of Loss and Stern who gave the
first protocol in the mixed fault model tolerating t Byzantine faults, s
send faults, and r receive faults, when 2t+ r+ s < n and omission faults
do not overlap. We observe that their protocol makes no guarantees
when omission faults can overlap, i.e., when parties can simultaneously
have send and receive faults. We give the first protocol that overcomes
this limitation and tolerates the same number of potentially overlapping
faults. We then study, for the first time, the total omission setting where
all parties can become omission faulty. This setting is motivated by real-
world scenarios where every party may experience connectivity issues
from time to time, yet agreement should still hold for the parties who
manage to output values. We show the first agreement protocol in this
setting with parameters s < n and s+r = n. On the other hand, we prove
that there is no consensus protocol for the total omission setting which
tolerates even a single overlapping omission fault, i.e., where s+r = n+1
and s > 2, or a broadcast protocol for s+ r = n and s > 1 even without
overlapping faults.

1 Introduction

Consensus is a fundamental problem in distributed computing that asks a set of
n parties to agree on a common output. Their task is complicated by a subset of
faulty parties who interfere with the honest parties’ execution of the consensus
protocol by sending incorrect messages or simply crashing. Consensus serves as
a key building block in various applications such as verifiable secret sharing,
MPC, state-machine replication, and more. The overwhelming majority of the
literature considers protocols for the fully malicious (a.k.a. Byzantine) setting,
where nodes can exhibit arbitrary behaviour. These protocols offer a high degree
of security, which may be justified in high-stakes applications such as blockchain
systems or reliable databases. On the other hand, the fault tolerance of such
protocols is also inherently limited. Indeed, it is well-known that in the plain

model without setup, consensus can be solved if and only if the number t of
(maliciously) faulty parties satisfies t < n/3. While this can be ameliorated
by relying on cryptographic setup such as digital signatures, it can be shown
that even given these additional tools, consensus can be achieved if and only if
t < n/2. A natural question is therefore whether a higher fault tolerance can be
achieved if the faulty parties’ deviant behaviour is restricted in some manner.
One of the most important types of faults one can consider in this context are
omission faults. Omission faults are parties who run the protocol code honestly,
but for which some of the protocol messages may get lost during sending (send
omission) or during receiving (receive omission). On one hand, omission faults
model a realistic network setting where intermittent failures may occur. On the
other hand, consensus can be solved for any number of omission faults o < n
(assuming a synchronous network).Moreover, under some conditions, it is even
possible to guarantee uniformity, meaning that any omission faulty party that
does output, does so in agreement with honest parties [21,23,29].In this work, we
significantly advance our understanding of the omission fault setting by showing
the following results:

– We begin by revisiting the recent work of Loss and Stern [19] who consider
a model with mixed types of faults. More precisely, their work gives the
first protocol tolerating (simultaneously) t Byzantine faults, r receive faults
(for whom the adversary can drop arbitrary incoming messages), and s send
faults (for whom the adversary can drop arbitrary outgoing messages), s.t.
2t+r+s < n. We observe that their protocol does not work when faults can
be overlapping, i.e., when a party can become both receive and send faulty
at the same time. To overcome this limitation, we give a novel consensus
protocol which tolerates the same number of faults, but allows to count
overlapping faults twice (i.e., as both send- and receive faulty) in the above
formula.

– In the second part of our paper, we study consensus in a setting where
every party can be either send faulty or receive faulty, i.e., r + s ≤ n. This
setting is motivated by the fact that, from time to time, every party may
experience connectivity issues and lose messages. In this case, we would still
like to guarantee that for parties who successfully complete the protocol,
their output satisfies the usual requirements of a consensus protocol. On the
positive side, we give the first protocol in this setting achieving consensus. An
interesting feature of our protocol is that it runs in only O(s) many rounds
and achieves perfect security. On the negative side, we show that there is no
broadcast protocol in this setting when s > 1. Additionally, whenever s > 2
there is no protocol tolerating even a single overlapping omission fault, i.e.,
where s+ r = n+ 1.

1.1 Our Techniques

We now give a technical overview of our results.

2

Zombies and Ghosts. Our work builds on the ideas of Zikas, Hauser and
Maurer [29] and of Loss and Stern [19]. Zikas et al. constructed an information
theoretic consensus protocol resilient to t Byzantine corruptions, s send cor-
ruptions and r receive corruptions when n > 3t + r + s. At the base of their
constructions, they utilized the idea of self-detection. When a party s sends a
message m directly to some party p, p might not receive m for two possible
reasons: p might be receive faulty or s might be Byzantine or send faulty (or
both). In order to help party p self-detect as receive faulty in the above scenario,
s instead relays m to p through every other party in the network. If p is not
receive faulty, it receives messages from many other parties containing either m
or a notification that s did not send a message to p. On the other hand, if p is
receive faulty, it may receive only very few messages. In the latter scenario, p can
detect that it is receive faulty. It then becomes a zombie, and stops participating
in the protocol in order to make sure it does not harm the rest of network by
propagating messages that are inconsistent with honest parties’ protocol states.

The work of Loss and Stern generalizes these ideas to the cryptographic
setting, assuming n > 2t + r + s. The novelty of their construction is a means
for send faulty parties to detect themselves, upon which they become ghosts
and stop participating in the protocol. As before, parties in their protocol send
messages to each other through the whole network in order to allow for receive
faulty parties to detect themselves as zombies. However, in their protocol, parties
also reply to the sender, allowing it to learn whether it succeeded in sending its
message or whether it should abort by becoming a ghost. If a sender s receives
very few of these abort messages, it knows that its message was delivered to at
least one non-faulty party p, who will then be able to propagate it to the rest of
the network. These ideas are used in their most basic primitive, a weak multicast
protocol (WMC). In WMC, the sender s either successfully delivers its message
m to at least one honest party or detects itself as send-faulty.

Additional Challenges with Full-Omission Faults. We notice that the
WMC protocol of Loss and Stern (and by extension, all protocols building on
top of it) does not cover the most general type of omission fault which cause a
party to become simultaneously send- and receive faulty, i.e., full-omission faulty.
Specifically, when the sender s in their WMC protocol is full-omission faulty, it
may not receive the abort messages that honest parties send back to s when
they did not receive its message. This prevents s from detecting itself as faulty
and becoming a ghost. Dealing with this issue turns out to be very subtle. We
devise a novel WMC protocol that leverages additional communication among
the receivers, so as to help the sender s detect itself as faulty.

In more detail, parties that do not receive messages from s inform each other
of this fact in the form of “abort” messages. Now any party p that is exclusively
send faulty must have received all abort messages from all honest parties. In the
last step of our protocol parties then forward a list of all of the abort messages
they received back to s. This allows us to modify the conditions under which
s turns itself a ghost compared to the protocol of Loss and Stern. Namely, our
protocol counts the total number of abort messages received directly or indirectly

3

through the above mechanism. In this manner, we force the adversary into the
following dilemma. Either, it drops a large number of messages to s in the last
step of the protocol. This causes the sender to infer that it must be receive faulty
and turn itself a zombie. Alternatively, the adversary delivers the collection of
abort messages assembled by at least one party that received all abort messages
from all honest parties back to s. This, on the other hand, will make s detect
itself as send-faulty and turn itself a ghost. In summary, our WMC allows even
a full-omission faulty sender to either send its message to at least one honest
party, or turn detect itself as send or receive faulty by the end of the protocol.
Our new protocol can be used as a drop in replacement for calls to WMC in the
protocols of Loss and Stern. In this manner, we can easily carry over the their
consensus protocol to the full-omission setting.

Total Omission Setting. In the second technical part of our work, we initiate
the study of a setting in which all parties could be omission faulty. This is a very
realistic setting that is based on the observation that in practice, it may be very
difficult to guarantee permanent connectivity of any of the individual protocol
participants. In this case, we would still like a protocol that ensures uniformity,
i.e., that parties who output are in consensus with each other. We design a
uniform consensus protocol resilient to any s send faults and r receive faults s.t.
s + r = n and s < n. For completeness, we also show that no such protocol
exists if s = n. This slighlty strengthens a previous result of Hadzilacos [15]who
showed that no broadcast protocol exists when s = n. We remark that one could
imagine a setting where s + r > n without overlapping faults, in which the
adversary has the flexibility to choose the actual number of corrupted parties of
each kind. We do not address this setting in our paper, but believe that this is
a very interesting direction for future work.

An interesting question that arises as a consequence of studying the total
omission setting is how it relates to the work of Eldefrawy, Loss, and Turner et
al. [11]. Their work includes a lower bound showing that n > 2t + r + s is a
necessary condition for consensus. We observe that this lower bound is not tight
for (at least) the case where t = 0. Namely, their bound is stated in a model
which allows the adversary to forcibly “zombify” receive faulty parties at the
onset of the protocol, upon which they cease any subsequent participation.

This severely limits the generality of protocols covered by this lower bound,
since some protocols might have parties send messages even after detecting their
own faults. In particular, our protocol for the total omission setting heavily relies
on parties who have detected themselves as zombies to continue assisting in the
rest of the protocol.

Impossibility Results. We complement our study of the total omission setting
by proving two impossibility results. This helps us fill in some of the gaps in our
current understanding of the task of consensus.

– Although we construct a uniform consensus protocol with in the total omis-
sions setting, surprisingly, we show that it is impossible to construct a broad-
cast protocol in this setting whenever s > 1. We briefly illustrate why this

4

is the case. Our consensus protocol relies heavily on the capability of the re-
ceive faulty parties to distribute their initial inputs to the non-receive faulty
protocol parties. This approach fails completely for a broadcast protocol,
since only the sender has input.

– Our second impossibility result shows that it is generally impossible to con-
struct a uniform consensus protocol if s+ r > n and s > 2. This shows our
protocol has the optimal corruption threshold.

1.2 Related Work

The study of consensus protocols, and the related study of broadcast protocols,
has a long history [9,12,16,20]. Early results dealt with constructing protocols
for systems with a single type of failure. For example, Hadzilacos [15] showed
that broadcast is possible in a system of s send faulty parties if and only if n > s.
Following that, Perry and Toueg [22] shows that broadcast is possible in systems
with o general omission faults if n > o, while not requiring uniformity, i.e., where
omission faulty parties output the correct values. When considering protocols
that do require uniformity of outputs, works by Raynal and Parvédy [21,23]
showed that consensus is possible if and only if n > 2o. Dolev and Strong [9]
showed that a similar result holds for Byzantine authenticated broadcast (i.e.
with a PKI setup) can be solved in the presence of t Byzantine faults if n > 2t.
On the other hand, Lamport Shostak and Pease [16] showed that Byzantine
consensus can be solved if n > 3t in the unauthenticated setting and n > 2t in
the authenticated setting.

Later work also dealt with constructing such protocols in networks of mixed
faults. Garay and Perry [13] constructed a consensus protocol resilient to t
Byzantine parties and c crash faulty parties that can crash in any point in
time and stop participating in the protocol, assuming that n > 3t+ c. Siu, Chin
and Yang [26] strengthened this result and constructed a consensus protocol re-
silient to t Byzantine parties and k parties with arbitrary non-malicious faults
if n > 3t + k. Additional more specialized models dealt with t malicious par-
ties, k non-malicious parties and f parties that can act maliciously, but cannot
send different messages to different parties. Protocols such as those of Tham-
bidurai and Park [27] and of Lincoln and Rushby [18] are correct as long as
n > 3t+2f + k. The more recent work of Hauser, Maurer and Zikas [29] showed
that consensus, broadcast and MPC constructions are possible in networks with
t Byzantine parties, s send faulty parties and r receive faulty parties, assum-
ing that n > 3t + r + s. Recently, Konstantinos and Zikas [3] provided a tight
characterization of feasibility for information theoretically secure consensus and
MPC with in networks with Byzantine and full-omission faults in the general
adversary structure.

Using many of these ideas, the recent work of Eldefrawy, Loss and Terner [11]
Abraham, Dolev, Kagan and Stern [1] and Loss and Stern [19] construct mixed-
fault protocols in the authenticated setting. Abraham et al. [1] construct an
authenticated consensus protocol if n > 2t + c Eldefrawy et al. construct such
a protocol if n > 2t + 2s + r, or if n > 2t + r + s and send faulty parties

5

can either successfully send all messages in a given round, or no messages. The
followup work by Loss et al. removes this requirement on send faulty parties and
achieves consensus if n > 2t + r + s. One approach to achieving high resilience
is to limit the adversary’s actions, and only allow it to act Byzantine in certain
parts of the code. This means that in some sense, faulty parties have mixed
faults: Byzantine in some code sections, but only non-malicious in others. For
example, the works of [5,7,8,17,28] use trusted execution environments (or similar
abstractions) to enforce such behaviour from Byzantine parties. Alternatively,
some protocols only allow specific parties to be Byzantine [25] or only allow one
type of corruption at a time [2].

Similar results have been shown in partially synchronous systems that start
as asynchronous networks, and eventually stabilize and become synchronous.
For example, the Scrooge [24] protocol is secure if n > 4t + 2c. On the other
hand, theUpright [6] and SBFT [14] protocols are secure as long if n > 3t+ 2k
and n > 3t + 2c respectively. Note that like results in synchronous networks,
the latter two protocols also “naturally” combine the resilience of protocols for
a single faulty type. That is, we know that n > 3t or n > 2k is required for
partially synchronous protocols when allowing only Byzantine or non-malicious
faults respectively [10].

2 Models, Definitions and Notations

2.1 Network Model

Throughout this work we deal with a fully-connected network of n parties. This
means that each pair of parties has a direct channel between them, allowing par-
ties to send messages to each other. The channels are authenticated, meaning
that when parties receive a message they know the identity of the sender. In ad-
dition, when dealing with Byzantine corruptions, we assume a PKI setup, which
allows parties to sign messages and verify each other’s messages. We follow the
standard approach of modelling the signature scheme as perfectly unforgeable.
When replacing these signatures with existentially unforgeable signatures, the
guarantees of the protocols hold when considering computationally bounded ad-
versaries. We use the notation ⟨m⟩i to mean the message m, accompanied by
i’s signature on the message. The network is assumed to be synchronous. This
means that the parties have access to synchronized clocks and run protocol pro-
ceeds in well-defined rounds. Parties can send messages in the beginning of a
round, and all message that aren’t dropped by the adversary (see below) are de-
livered at the end of the round. Messages can be delivered within each round in
whichever order the adversary chooses. Parties can then choose which messages
to send in a certain round based on the messages received from the previous
round. Our protocols are described in steps of fixed duration (i.e., number of
rounds) that are executed in lock-step one after another.

6

2.2 Adversary Model

Our work aims to design protocols with mixed-fault networks. There are four
types of corruption in our work, and we will mention which types are included
at the beginning of each section.

– Send-Omission Faults. Send faulty parties follow the protocol description.
For any message sent from a send faulty party, the adversary can choose to
drop that message. We assume there are at most s send omission faults.

– Receive-Omission Faults. Receive faulty parties follow the protocol de-
scription. For any message sent to a receive faulty party, the adversary can
choose to drop that message. We assume that there are at most r send
omission faults.

– Full-Omission Faults. Full omission faulty parties follow the protocol de-
scription and are both send faulty and receive faulty. This means that the
adversary can drop any message sent by or to full omission faulty parties.

– Byzantine/Malicious Faults. Byzantine/Malicious parties can deviate ar-
bitrarily from the protocol. We assume there are at most t Byzantine parties.

In this work we consider a strongly adaptive adversary that can corrupt
parties at any time throughout the protocol, and can drop messages to receive
faulty parties, drop messages to send faulty parties and replace messages sent
by Byzantine parties in the same round they are corrupted. When corrupting a
party, the adversary learns its entire state. On the other hand, the lower bounds
of this paper work for a static adversary that chooses which parties to corrupt
in the beginning of the protocol.

2.3 Definitions

In this section we define the tasks to be solved in the paper. We follow the ideas
and notation presented by Loss et al. [19] in the definitions. In their protocols,
parties always receive two flags z, g as inputs, in addition to any inputs they
receive in the protocol. In all of the protocols, parties may not receive ⊥ as an
input, and indeed never receive that input in our protocols. One could allow such
inputs by having distinct ⊥ values for each protocol. The flags z and g indicate
whether the party is already a zombie or a ghost respectively in the beginning
of the protocol, and parties store these values in the beginning of each protocol.
This allows parties to exclude themselves from protocols if they already know
they are zombies or ghosts. A party that is not a zombie or a ghost is said to be
alive. Parties then output a value x along with two flags z, g. The outputs z and
g indicate whether the party is a zombie or a ghost respectively by the end of the
protocol. When dealing with mixed faults with the presence of Byzantine faults
we keep this notation in order to be consistent with previous work. However, in
protocols for the total omission setting, parties might be required to participate
even if they detect their own faults. In addition, in this setting our protocols do
not allow for parties to detect their send faults and become ghosts. This means
that inputting the flags Z,G and outputting the flag g are not meaningful in

7

this setting, and for simplicity we remove these flags. Standard definitions of the
tasks are also provided in Appendix A. The standard definitions are the same as
the undead versions, except parties do not become zombies or ghosts. The lower
bounds in this paper hold for the standard definitions, which also imply lower
bounds for the undead versions.

Undead Weak Multicast An undead weak multicast protocol, defined in
the work of Loss et al. [19], allows parties to attempt to send their values to
all other parties in the presence of Byzantine, send and receive faults. This is
done in such a way that receive faulty parties can detect that they did not
receive the message, and send faulty parties can detect that no honest parties
received the message. In their work, Loss et al., construct an undead uniform
consensus protocol in such a network by first constructing an undead multicast
protocol. They then construct a stack of protocols culminating in a consensus
protocol. In this work we adapt the undead weak multicast protocol and only
very slightly adapt the undead graded multicast protocol. Therefore, an undead
weak multicast definition is provided below, and the definition and adaptation
of the undead graded multicast protocol is provided in Appendix C.

Definition 1. Let Π be a protocol executed by parties 1, . . . , n, with a designated
sender i∗ starting with an input m ̸= ⊥. In addition, every party i has two values
zi, gi ∈ {True,False} as input. Every party outputs a triplet (x, z, g) such that x
is either a possible message or ⊥, and z, g are boolean values.

– Validity. Π is (t, s, r)-valid if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: If i∗

is non-faulty or receive faulty and is alive in the beginning of the protocol,
every non-Byzantine party j either outputs (x, z, g) such that x = m, or
such that z = True. In addition, if i∗ is send faulty, no non-Byzantine party
outputs (x, z, g) such that x /∈ {m,⊥}.

– Detection. Π is (t, s, r)-detecting if the following holds whenever at most
t parties are Byzantine, s parties are send faulty and r parties are receive
faulty: If i∗ is send faulty and it is alive at the end of the protocol, at least
one non-faulty party output (x, z, g) such that x = m.

– Termination. Π is (t, s, r)-terminating if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: All non-Byzantine parties complete the protocol and output a
value.

– No Living Undead. Π is (t, s, r)-no living undead if the following holds
whenever at most t parties are Byzantine, s parties are send faulty and r
parties are receive faulty: If a non-Byzantine party j outputs (x, z, g) such
that z = True (resp. g = True), then it is faulty (resp. send faulty).

If Π is (t, s, r)-valid, (t, s, r)-detecting, (t, s, r)-terminating, and (t, s, r)-no liv-
ing undead we say that it is a (t, s, r)-secure undead weak multicast protocol.

8

Very Weak Multicast In order to construct a consensus protocol in the total
omission setting, we start by constructing a rudimentary multicast primitive
which we call a very weak multicast protocol. This protocol has a designated
sender that attempts to multicast its message. Informally, the multicast must
succeed if the sender is receive faulty, or if it is send faulty and there are fewer
than r receive faulty parties. Parties that do not receive the message due to
their own receive faults must become zombies. Formally, the protocol is defined
as follows:

Definition 2. Let Π be a protocol executed by parties 1, . . . , n, where i∗ is the
designated sender starting with an input m ̸= ⊥. Every party j ∈ [n] outputs
(x, Zj) at the end of the protocol, where x is either a possible message or ⊥, Zj

is a boolean value.

– Validity. Π is (s, r)-valid if the following holds whenever at most s parties
are send faulty and r parties are receive faulty: Every party outputs (x, Z)
such that x ∈ {m,⊥}. In addition, if i∗ is honest and there are at most
r− 1 receive faulty parties or if i∗ is a receive faulty party, then every party
j either outputs (m,False), or outputs (⊥,True) by the end of the protocol.

– Termination. Π is (s, r)-terminating if the following holds whenever at
most s parties are send faulty, r parties are receive faulty: All parties termi-
nate and output a value at the end of the protocol.

– No Living Undead. Π is (s, r)-no living undead if the following holds
whenever at most s parties are send faulty, r parties are receive faulty: If
some party j outputs (x,True), then j is receive faulty.

If Π is (s, r)-valid, (s, r)-terminating and (s, r)-no living undead we say that it
is a (s, r)-secure very weak multicast protocol.

Undead Uniform Consensus In a uniform consensus protocol, all parties
have an input and they are required to output the same value, or possibly out-
put ⊥ if they are receive faulty. Importantly, in “normal” consensus protocols,
the output of receive faulty parties is not required to be consistent with other
parties’ outputs. In a uniform consensus protocol, even faulty parties must out-
put the same value as all other values, unless they can detect their own faults
and output ⊥. Similarly to above, parties also output a boolean flag z, indicat-
ing whether they detected their own receive faults and became zombies. For a
definition of a uniform consensus protocol without the notion of undead parties,
see Appendix A.

Definition 3. Let Π be a protocol executed by parties 1, . . . , n, where each party
j ∈ [n] starts with input mj ̸= ⊥. Every party j outputs (xj , Zj) at the end of
the protocol.

– Validity. Π is (s, r)-valid if the following holds whenever at most s parties
are send faulty and r parties are receive faulty: If each party j starts with
the same value mj = m, all parties output (m,False) or (⊥,True) at the end
of the protocol.

9

– Consistency. Π is (s, r)-consistent if the following holds whenever at most
s parties are send faulty and r parties are receive faulty: All non-faulty parties
and send faulty parties output xj = m for the same value m at the end of
the protocol. In addition, every receive faulty party either outputs m or ⊥.

– Termination. Π is (s, r)-terminating if the following holds whenever at
most s parties are send faulty and r parties are receive faulty: Each party j
terminates and outputs (xj , Zj) at the end of the protocol.

– No Living Undead. Π is (s, r)-no living undead if the following holds
whenever at most s parties are send faulty and r parties are receive faulty:
If Zj = True at the end of the protocol, j must be a receive faulty.

If Π is (s, r)-valid, (s, r)-consistent, (s, r)-terminating and (s, r)-no living un-
dead we say that it is an (s, r)-secure undead uniform consensus protocol.

Broadcast The task of broadcast is highly related to the task of consensus, and
has been shown to be equivalent in some network settings [4,15]. In this task,
one designated sender has an input m and all parties output the same value x
in the end of the protocol. If the sender does not exhibit faults that prevent it
from sending its input (i.e. send or Byzantine faults), all parties should output
x = m as well. For a formal definition see Appendix A.

3 Byzantine Agreement with Overlapping Omission
Faults

This section deals with the construction of a Byzantine Agreement protocol
in the presence of t Byzantine faults, r receive faults and s send faults when
n > 2t + r + s and the faults can overlap. As shown in [11], this is the optimal
resilience for such protocols. The work of [19] constructs a protocol with such
resilience when disallowing overlapping omission faults. In this section we adapt
their protocol to the overlapping fault setting. Their protocol is constructed
from a stack of four protocols: undead weak multicast, undead graded multicast,
undead weak consensus and finally undead consensus.

The most basic protocol in the stack, the undead weak multicast protocol,
heavily relies on send faulty parties receiving an indication that others did not
hear their message. This allows them to become ghosts and stop participating in
the protocol. This mechanism does not work when these parties can also exhibit
receive faults. In order to remedy this, parties also send these indications to
each other, which are then forwarded back to the faulty sender. If a sender
receives enough of these messages it will be able to detect its own send faults
and become a ghost. On the other hand, if a party receives too few of these
forwarded messages (or messages indicating that no error occurred), they will
detect their receive faults and become zombies instead. The protocol is presented
in Fig. 1.

The rest of the stack is nearly identical to the original construction. Very
slight adaptations to the undead graded multicast definition and protocol are

10

presented in Appendix C. In the original construction, if a party is receive faulty,
it must succeed in sending its message. This property is actually not needed for
the rest of the constructions and the proofs, as they only rely on fully non-faulty
parties succeeding in sending their messages. In that sense, that property is “too
strong” and is used in the original work only because it is possible to achieve.
Since the rest of the constructions and proofs remain exactly the same in the
mixed-fault setting, Appendix C only contains adaptations to the undead graded
multicast protocol.

Protocol ΠWMC

Input and Initialization: Each party j ∈ [n] has inputs Zj , Gj , the des-
ignated sender i∗ inputs m additionally. Every party j initializes mj = ⊥.

Parties execute the following steps:

1. The sender i∗ ∈ [n] sends ⟨m⟩i∗ to all other parties if Zi∗ = False and
Gi∗ = False.

2. Every party j ̸= i∗ sets mj = m′, upon receiving a message m′ with a
valid signature from i∗ in Step 1. If no message was received from i∗, j
sets mj = ⊥. If mj ̸= ⊥, j sends ⟨mj⟩i∗ to all other parties. Otherwise,
it sends ⟨⊥⟩j .

3. Every party j that has mj = ⊥ and received a forwarded message
⟨m′⟩i∗ with a verifying signature from i∗ sets mj = m′ (if more than
one such message is received, choose one arbitrarily). Every party j
who did not receive any message with i∗’s signature (either directly in
Step 1 or indirectly in Step 2) does as follows.
– If j received ⟨⊥⟩p from at least n− t− s different parties p in Step

2, j sends ⟨Abort⟩j to all other parties.
– Otherwise, if party j received ⟨⊥⟩p from less than n− t− s many

parties p, it sends “Zj = True” to the sender and sets Zj = True.
4. Each party j gathers all ⟨Abort⟩j messages it received from distinct

parties j in Step 3 with verifying signatures into a report and sends
them to the sender. If j receives no such messages, it sends ⟨NoMsg⟩j
to the sender instead.

Output Determination: If the sender i∗ received ⟨Abort⟩j with verifying
signatures from at least t + 1 distinct parties (either directly in Step 3 or
through reports in step 4), it sets Gi∗ = True. If i∗ received messages from
less than n−t−s different parties in Step 4, it sets Zi∗ = True and mi∗ = ⊥.
Each party j outputs (mj , Zj , Gj) and terminates.

Fig. 1. An undead weak multicast protocol

Proofs of the following two claims are provided in Appendix B.1.

Lemma 1. No non-Byzantine party j will send ⟨Abort⟩j in step 3 of ΠWMC

unless the designated sender has Byzantine or send faults.

11

Theorem 1. Protocol ΠWMC is a (t, s, r)-secure undead weak multicast protocol
resilient to overlapping faults if n > 2t+ s+ r.

4 Undead Uniform Consensus in the Total Omission
Setting

This section deals with constructing a uniform consensus protocol in the to-
tal omission setting. That is, we construct an (s, r)-secure uniform consensus
protocol that is resilient to s send faults and r receive faults when s + r = n.
Constructing this protocol fills in a gap left by the lower bound presented in [11].
Their lower bound showed that in a setting where Byzantine failures are also
allowed, n > 2t + r + s must hold in order to solve the task. Setting t = 0,
this would seem to imply that n > r + s is required in the total omission set-
ting. However, their lower bound assumes that the adversary is also allowed to
actively “zombify” receive faulty parties throughout the protocol. This means
that it can force them to stop participating in the protocol. While in some pro-
tocols [19,29] parties do stop participating if they detect their own faults, this
assumption limits the generality of the result. In the protocol presented in this
section, parties do detect their own faults in order to be able to output ⊥ when
required, but do not necessarily stop participating in the protocol. In fact, since
this model does not consider mixed faults, a party can act upon finding out that
it is receive faulty. By that we mean that such a party knows that its message
will arrive at all parties that aren’t receive faulty, and thus it can use that power
to help push forward consensus. This work extends ideas of [22,23] to the total
omission model, while using the syntax of [29,19] regarding zombification.

4.1 Very Weak Multicast

We first construct an (s, r)-secure very weak multicast protocol in the syn-
chronous setting resilient to s send faults and r receive faults, where s < n
and s+ r = n. In the protocol, the sender sends its message to all parties. Par-
ties then forward the received message, or ⊥ if no message was received. Finally,
every party that received a large enough number of messages received a small
number of messages (fewer than n − s) becomes a zombie. Every other party
outputs the message received or forwarded from i∗ if such a message exists, and
⊥ otherwise. This protocol is described fully in Fig. 2.

A proof of the following claim is provided in Appendix B.2.

Lemma 2. Protocol ΠVWMC is an (s, r)-secure very weak multicast protocol for
any s, r such that s < n, s+ r ≤ n without overlapping faults.

4.2 Optimal Uniform Consensus

Now we construct an (s, r)-secure undead uniform consensus protocol ΠTOC in
the total omission setting, i.e. with n = s + r. The protocol proceeds in s +

12

Protocol ΠVWMC

Input and Initialization: Each party j ∈ [n] sets Zj := False, the desig-
nated sender i∗ has input m. Every party j sets mj = ⊥.

Parties execute the following steps:

1. The sender i∗ ∈ [n] sends its input m to all other parties.
2. Every party j that has received a message m in the first step sets

mj = m. Party j sends mj to all parties.

Output Determination: If party j has received messages from less than
n− s parties (in total) in Step 1 and 2, it sets Zj = True. If party j receives
a message m ̸= ⊥ in either round 1 or round 2 and Zj = False, it sets
mj = m. Party j outputs (mj , Zj).

Fig. 2. A Very Weak Multicast Protocol

1 rounds. Each round has a designated sender, which is rotated in a round
robin fashion. Each sender invokes the very weak multicast protocol with its
current value and zombie flags one by one. Parties simply adopt any non-⊥
value they receive and continue propagating it in the next rounds. Intuitively,
having s+1 such rounds guarantees that at least one of the rounds has a leader
that is not send faulty. Every party will either receive that leader’s message
or become a zombie. Considering the latest such leader, all following leaders are
only send faulty, and thus receive its message. This means that they will continue
propagating its message in the following rounds, and thus its message will be all
parties’ output from the protocol. The protocol is provided in Fig. 3.

Protocol ΠTOC

Input and Initialization: Each party j ∈ [n] inputs vj , Zj and sets Zj :=
False, Ij = vj .

Parties execute the following steps, for every i ∈ [s+ 1]:

– Party i becomes the leader and invokes ΠVWMC on the input (Ii, Zi). Let
(mi

j ,Z
i
j) denote the output of party j in the i’th invocation of ΠVWMC.

If Zi
j = True, j sets Zj = True. Then, if Zj = False and mi

j ̸= ⊥, j sets
Ij = mi

j .

Output Determination: If Zj = True, j terminates with output (⊥, Zj).
Otherwise, it terminates with output (Ij , Zj).

Fig. 3. A consensus protocol for s+ r ≤ n.

A proof of the following theorem is provided in Appendix B.3.

Theorem 2. Protocol ΠTOC is an (s, r)-secure undead uniform consensus pro-
tocol for any s, r such that s < n, s+ r ≤ n without overlapping faults.

13

5 Lower Bounds

This section provide several new lower bounds that show the optimality of the
presented uniform consensus protocol. We also show the impossibility of broad-
cast in the total omission conditions, despite being able to construct a uniform
consensus protocol in this setting.

5.1 Total Send Corruption

The protocol in Section 4 works when s + r ≤ n, as long as s < n. We start
by showing that s < n is a necessary condition in order to construct a uniform
consensus protocol. Intuitively, we partition the parties into 2 groups and only
allow parties to communicate within the groups. If one group receives one input
and the other receives another, they would be forced to output different values
and the protocol would not remain consistent. A proof of the following theorem
is provided in Appendix D.1

Theorem 3. There does not exist an (n, 0)-secure uniform consensus protocol.

5.2 Total Omission Broadcast

One might expect that since uniform consensus can be solved in the total omis-
sion setting, broadcast would be solvable as well. Note that the uniform consen-
sus construction in this paper uses the fact the receive faulty parties can push
their inputs to all other parties, which can then be used to achieve consensus.
However, in a broadcast protocol only one party’s input is taken into considera-
tion. If that party is send faulty, it will not be able to successfully push its value
to all other parties, making this approach fail.

We formalize this by constructing a broadcast lower bound in the total omis-
sion setting. In this lower bound, we have the designated sender i∗ communicate
with a set A of s − 1 parties freely. The rest of the parties, denoted by a set
B, do not hear anything from i∗ or from A, either due to them being receive
faulty, or due to the rest being send faulty. Parties in B must output some value,
even without hearing anything from i∗, while the rest of the parties hear all sent
messages and must be consistent with i∗’s input because the parties in B might
simply be receive faulty. Since this can be made to take place even when parties
in B are non faulty the rest are send faulty, we immediately break the consistency
of the protocol. A proof of the following theorem is provided in Appendix D.2.

Theorem 4. There is no (s, r)-secure broadcast protocol resilient to s send
faults and r receive faults for any s, r such that s ≥ 1, s + r = n without over-
lapping faults.

5.3 Consensus with Overlapping Faults

In this section, we prove that the threshold s + r ≤ n is necessary to achieve
uniform consensus as long as s > 2. This shows the optimal corruption tolerance

14

of our uniform consensus protocol. The basic idea in the proof of Theorem 4
relies on the fact that hearing one party’s messages (in that proof, the sender)
is not reliable, because it could be send faulty and thus only a subset of the
parties hear those messages. In the following proof, we use this idea to show
that one could “switch” one party’s input without changing the outputs of all
parties. After switching all of the parties’ inputs, we finally find either a validity
violation or a consistency violation.

Below we prove the lower bound for the minimal case in which s > 2 and
s ̸= n, i.e. n = 4, s = 3 and r = 2. A proof of the general case is provided
in Appendix D.3. In the lower bound for the minimal case, we have 4 parties,
R1, R2, S1, S2. In all of the executions S1, S2 are send faulty and R1, R2 are
receive faulty. R1 and R2 sometimes also exhibit overlapping send faults. In
addition, R1, R2 hear nothing in all executions, and S1, S2 only hear messages
from R1, R2, but not necessarily all of these message. We start off with all four
parties having the input 1, and use the previous intuition to show that one could
switch the inputs of R1, R2 gradually by making them send faulty as well. This is
done in a series of executions, with each pair of consecutive executions having at
least one party with the same view, forcing the same value to be output. Finally,
after switching the inputs of R1, R2, it is easy to switch the two final inputs and
reach either a consistency violation or a validity violation. Fig. 4 illustrates the
executions used in the lower bound. The proof in Appendix D.3 uses the same
strategy, simply switching all receive faulty parties’ inputs one-by-one, and then
switching the send faulty parties’ inputs.

Theorem 5. There is no (s, r)-secure uniform consensus protocol resilient to
overlapping faults for any s, r s.t. s > 2 and s+ r > n.

Proof. We prove the lower bound holds for n = 4, s = 3, r = 2, and a proof for
the general case is provided in Appendix D.3. Note that when r < 2, all parties
can be send faulty, which was already proven impossible in Theorem 3. Assume
there are four parties, R1, R2, S1 and S2. R1 and R2 are receive faulty in all
executions, and have overlapping send faults in some of the executions. S1 and
S2 are send faulty in all executions. The adversary drops all messages sent to
R1, R2 and all messages sent from S1, S2 in all executions. This means that in
all executions R1 and R2 hear no messages, and S1, S2 hear only messages from
R1 and R2, but might not hear some in executions where they have overlapping
send faults as well. In all of the following descriptions, parties S1, S2 hear all
messages sent by R1, R2, unless explicitly stated otherwise.

1. In the first execution, all parties start with input 1 and no parties has over-
lapping faults.

2. In the second execution, R1 has overlapping send faults. All parties start with
input 1. The adversary drops all message sent from R1 to S2, but delivers
messages from R1 to S1.

3. In the third execution, R1 has overlapping send faults. R1 starts with input
0 and all other parties have the input 1. The adversary drops all message
sent from R1 to S2, but delivers messages from R1 to S1.

15

R1, 1

S1, 1

R2, 1

S2, 1

Execution 1

O, 1

S1, 1

R2, 1

S2, 1

Execution 2

O, 0

S1, 1

R2, 1

S2, 1

Execution 3

R1, 0

S1, 1

R2, 1

S2, 1

Execution 4

R1, 0

S1, 1

O, 1

S2, 1

Execution 5

R1, 0

S1, 1

O, 1

S2, 1

Execution 6

R1, 0

S1, 0

O, 0

S2, 1

Execution 7

R1, 0

S1, 0

O, 0

S2, 0

Execution 8

Fig. 4. Lower Bound Executions. A node with the text P, b indicates that party P has
input b. Parties named Ri are receive faulty, parties named Si are send faulty, and
parties named O have overlapping faults. Arrows indicate messages are successfully
sent, dashed arrows indicate that message are dropped. Parties whose names are colored
red have views indistinguishable from the previous execution.

4. In the forth execution, R1 starts with input 0 and all other parties have
input 1. All messages from R1, R2 are delivered to S1, S2.

5. In the fifth execution, R2 has overlapping send faults. All messages sent from
R2 to S2 are dropped, but messages from R2 to S1 are delivered. R1 starts
with input 0, and all other parties start with input 1.

6. In the sixth execution, R2 has overlapping send faults. All messages sent
from R2 are dropped by the adversary. R1 and R2 start with input 0, while
S1 and S2 starts with input 1.

7. In the seventh execution, R2 has overlapping send faults. All messages sent
from R2 are dropped by the adversary. S2 starts with input 1 and all other
parties start with input 0.

8. In the eighth execution, R2 has overlapping send faults. All messages sent
from R2 are dropped by the adversary. All parties start with input 0.

By the validity requirements, parties S1 and S2 must output 1 in execution 1.
S1 has indistinguishable views in executions 1 and 2, so it outputs 1 in execution
2. Since the protocol is consistent, S2 does so as well. On the other hand, S2 has
indistinguishable views in executions 2 and 3 since it hears nothing from R1 in
both. Therefore, it outputs 1 in execution 3 and therefore S1 does so too. S1’s
view is identical in executions 3 and 4 and thus it outputs 1 in execution 4, and S2

16

outputs 1 as well due to consistency. Executions 4 and 5 are indistinguishable
from S1’s point of view, so it outputs 1 in execution 5. From consistency, S2

outputs 1 too in execution 5. S2 has identical views in executions 5 and 6, so
it must output 1, and so does S1 from consistency. S2’s views in execution 7 is
indistinguishable from its view in execution 6, so it outputs 1, and so does S1.
Finally, S1’s views in executions 7 and 8 are indistinguishable, and thus it outputs
1 in both. However, all parties have the input 0 in execution 8. This means that
from validity, S1 must output 0 in execution 8, reaching a contradiction.

References

1. Abraham, I., Dolev, D., Kagan, A., Stern, G.: Brief announcement: Authenticated
consensus in synchronous systems with mixed faults. In: Scheideler, C. (ed.) 36th
International Symposium on Distributed Computing, DISC 2022, October 25-27,
2022, Augusta, Georgia, USA. LIPIcs, vol. 246, pp. 38:1–38:3. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.DISC.
2022.38, https://doi.org/10.4230/LIPIcs.DISC.2022.38

2. Bessani, A.N., Sousa, J., Alchieri, E.A.P.: State machine replication for the masses
with BFT-SMART. In: 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, DSN 2014, Atlanta, GA, USA, June 23-26, 2014.
pp. 355–362. IEEE Computer Society (2014). https://doi.org/10.1109/DSN.

2014.43, https://doi.org/10.1109/DSN.2014.43
3. Brazitikos, K., Zikas, V.: General adversary structures in byzantine agreement and

multi-party computation with active and omission corruption. Cryptology ePrint
Archive (2024)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (mar 1996). https://doi.org/10.1145/226643.

226647, https://doi.org/10.1145/226643.226647
5. Chun, B., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only mem-

ory: making adversaries stick to their word. In: Bressoud, T.C., Kaashoek, M.F.
(eds.) Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007.
pp. 189–204. ACM (2007). https://doi.org/10.1145/1294261.1294280, https:
//doi.org/10.1145/1294261.1294280

6. Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., Riché, T.:
Upright cluster services. In: Matthews, J.N., Anderson, T.E. (eds.) Proceedings of
the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big
Sky, Montana, USA, October 11-14, 2009. pp. 277–290. ACM (2009). https://doi.
org/10.1145/1629575.1629602, https://doi.org/10.1145/1629575.1629602

7. Correia, M., Lung, L.C., Neves, N.F., Veŕıssimo, P.: Efficient byzantine-resilient
reliable multicast on a hybrid failure model. In: 21st Symposium on Reliable
Distributed Systems (SRDS 2002), 13-16 October 2002, Osaka, Japan. pp. 2–
11. IEEE Computer Society (2002). https://doi.org/10.1109/RELDIS.2002.

1180168, https://doi.org/10.1109/RELDIS.2002.1180168
8. Correia, M., Neves, N.F., Veŕıssimo, P.: How to tolerate half less one byzantine

nodes in practical distributed systems. In: 23rd International Symposium on Reli-
able Distributed Systems (SRDS 2004), 18-20 October 2004, Florianpolis, Brazil.
pp. 174–183. IEEE Computer Society (2004). https://doi.org/10.1109/RELDIS.
2004.1353018, https://doi.org/10.1109/RELDIS.2004.1353018

17

https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.4230/LIPIcs.DISC.2022.38
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1145/1629575.1629602
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2002.1180168
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018

9. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983). https://doi.org/10.1137/0212045, https:
//doi.org/10.1137/0212045

10. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2), 288–323 (1988)

11. Eldefrawy, K., Loss, J., Terner, B.: How byzantine is a send corruption? In: Applied
Cryptography and Network Security: 20th International Conference, ACNS 2022,
Rome, Italy, June 20–23, 2022, Proceedings. p. 684–704. Springer-Verlag, Berlin,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-09234-3_34, https://
doi.org/10.1007/978-3-031-09234-3_34

12. Fitzi, M., Maurer, U.: Efficient byzantine agreement secure against general adver-
saries. In: Distributed Computing: 12th International Symposium, DISC’98 An-
dros, Greece, September 24–26, 1998 Proceedings 12. pp. 134–148. Springer (1998)

13. Garay, J.A., Perry, K.J.: A continuum of failure models for distributed computing.
In: Segall, A., Zaks, S. (eds.) Distributed Algorithms, 6th International Workshop,
WDAG ’92, Haifa, Israel, November 2-4, 1992, Proceedings. Lecture Notes in Com-
puter Science, vol. 647, pp. 153–165. Springer (1992). https://doi.org/10.1007/
3-540-56188-9_11, https://doi.org/10.1007/3-540-56188-9_11

14. Golan-Gueta, G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter,
M.K., Seredinschi, D., Tamir, O., Tomescu, A.: SBFT: A scalable and decentral-
ized trust infrastructure. In: 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2019, Portland, OR, USA, June 24-
27, 2019. pp. 568–580. IEEE (2019). https://doi.org/10.1109/DSN.2019.00063,
https://doi.org/10.1109/DSN.2019.00063

15. Hadzilacos, V.: Issues of fault tolerance in concurrent computations (databases,
reliability, transactions, agreement protocols, distributed computing). Ph.D. thesis,
Harvard University (1985)

16. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982). https://doi.org/10.1145/
357172.357176, https://doi.org/10.1145/357172.357176

17. Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: Trinc: Small trusted hard-
ware for large distributed systems. In: Rexford, J., Sirer, E.G. (eds.) Proceedings of
the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2009, April 22-24, 2009, Boston, MA, USA. pp. 1–14. USENIX Associa-
tion (2009), http://www.usenix.org/events/nsdi09/tech/full_papers/levin/
levin.pdf

18. Lincoln, P., Rushby, J.M.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: Digest of Papers: FTCS-23, The Twenty-Third
Annual International Symposium on Fault-Tolerant Computing, Toulouse, France,
June 22-24, 1993. pp. 402–411. IEEE Computer Society (1993). https://doi.org/
10.1109/FTCS.1993.627343, https://doi.org/10.1109/FTCS.1993.627343

19. Loss, J., Stern, G.: Zombies and ghosts: Optimal byzantine agreement in the pres-
ence of omission faults. In: Theory of Cryptography Conference. pp. 395–421.
Springer (2023)

20. Micali, S., Rogaway, P.: Secure computation. Springer (1992)
21. Parvédy, P.R., Raynal, M.: Uniform agreement despite process omission failures.

In: 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), 22-26 April 2003, Nice, France, CD-ROM/Abstracts Proceedings. p. 212.
IEEE Computer Society (2003). https://doi.org/10.1109/IPDPS.2003.1213388,
https://doi.org/10.1109/IPDPS.2003.1213388

18

https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1137/0212045
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/978-3-031-09234-3_34
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1007/3-540-56188-9_11
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/FTCS.1993.627343
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/IPDPS.2003.1213388
https://doi.org/10.1109/IPDPS.2003.1213388

22. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor
and communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986).
https://doi.org/10.1109/TSE.1986.6312888, https://doi.org/10.1109/TSE.

1986.6312888

23. Raynal, M.: Consensus in synchronous systems: A concise guided tour. In: 2002 Pa-
cific Rim International Symposium on Dependable Computing, 2002. Proceedings.
pp. 221–228. IEEE (2002)

24. Serafini, M., Bokor, P., Dobre, D., Majuntke, M., Suri, N.: Scrooge: Reducing the
costs of fast byzantine replication in presence of unresponsive replicas. In: Proceed-
ings of the 2010 IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1 2010. pp. 353–362.
IEEE Computer Society (2010). https://doi.org/10.1109/DSN.2010.5544295,
https://doi.org/10.1109/DSN.2010.5544295

25. Serafini, M., Suri, N.: The fail-heterogeneous architectural model. In: 26th IEEE
Symposium on Reliable Distributed Systems (SRDS 2007), Beijing, China, October
10-12, 2007. pp. 103–113. IEEE Computer Society (2007). https://doi.org/10.
1109/SRDS.2007.33, https://doi.org/10.1109/SRDS.2007.33

26. Siu, H.S., Chin, Y.H., Yang, W.P.: Byzantine agreement in the presence of mixed
faults on processors and links. IEEE Transactions on Parallel and Distributed
Systems 9(4), 335–345 (1998). https://doi.org/10.1109/71.667895

27. Thambidurai, P.M., Park, Y.: Interactive consistency with multiple failure modes.
In: Seventh Symposium on Reliable Distributed Systems, SRDS 1988, Columbus,
Ohio, USA, October 10-12, 1988, Proceedings. pp. 93–100. IEEE Computer So-
ciety (1988). https://doi.org/10.1109/RELDIS.1988.25784, https://doi.org/
10.1109/RELDIS.1988.25784

28. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Veŕıssimo, P.: Efficient
byzantine fault-tolerance. IEEE Trans. Computers 62(1), 16–30 (2013). https:
//doi.org/10.1109/TC.2011.221, https://doi.org/10.1109/TC.2011.221

29. Zikas, V., Hauser, S., Maurer, U.M.: Realistic failures in secure multi-party compu-
tation. In: Reingold, O. (ed.) Theory of Cryptography, 6th Theory of Cryptography
Conference, TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceed-
ings. Lecture Notes in Computer Science, vol. 5444, pp. 274–293. Springer (2009).
https://doi.org/10.1007/978-3-642-00457-5_17, https://doi.org/10.1007/
978-3-642-00457-5_17

19

https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/TSE.1986.6312888
https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/DSN.2010.5544295
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/SRDS.2007.33
https://doi.org/10.1109/71.667895
https://doi.org/10.1109/71.667895
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/RELDIS.1988.25784
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.1007/978-3-642-00457-5_17
https://doi.org/10.1007/978-3-642-00457-5_17
https://doi.org/10.1007/978-3-642-00457-5_17
https://doi.org/10.1007/978-3-642-00457-5_17

A Standard Task Definitions

A.1 Uniform Consensus

Definition 4. Let Π be a protocol executed by parties 1, . . . , n, where each party
j ∈ [n] starts with input mj ̸= ⊥. Every party j outputs xj at the end of the
protocol.

– Validity. Π is (s, r)-valid if the following holds whenever at most s parties
are send faulty and r parties are receive faulty: If each party j starts with
the same value mj = m, all parties that are not receive faulty output m, and
receive faulty parties output m or ⊥ at the end of the protocol.

– Consistency. Π is (s, r)-consistent if the following holds whenever at most
s parties are send faulty and r parties are receive faulty: All non-faulty parties
and send faulty parties output xj = m for the same value m at the end of
the protocol. In addition, every receive faulty party either outputs m or ⊥.

– Termination. Π is (s, r)-terminating if the following holds whenever at
most s parties are send faulty and r parties are receive faulty: Each party j
terminates and outputs xj at the end of the protocol.

If Π is (s, r)-valid, (s, r)-consistent and (s, r)-terminating we say that it is an
(s, r)-secure uniform consensus protocol.

A.2 Broadcast

Definition 5. Let Π be a protocol executed by parties 1, . . . , n, where i∗ is the
designated sender starting with an input m ̸= ⊥. Every party j outputs xj at the
end of the protocol.

– Validity. Π is (s, r)-valid if the following holds whenever at most s parties
are send faulty and r parties are receive faulty: If the sender is non-faulty
or receive faulty, every party that isn’t receive faulty outputs m and receive
faulty parties output m or ⊥ at the end of the protocol.

– Consistency. Π is (s, r)-consistent if the following holds whenever at most
s parties are send faulty and r parties are receive faulty: Every non-faulty
or send faulty party j outputs xj = v for the same value v ∈ {m,⊥} at the
end of the protocol. In addition, every receive faulty party outputs xj = v or
xj = ⊥.

– Termination. Π is (s, r)-terminating if the following holds whenever at
most s parties are send faulty and r parties are receive faulty: Each party j
terminates and outputs xj at the end of the protocol.

If Π is (s, r)-valid, (s, r)-consistent and (s,r)-terminating we say that it is an
(s, r)-secure broadcast protocol.

20

B Proofs of Protocols

B.1 Proofs for Undead Weak Multicast

Lemma 1. No non-Byzantine party j will send ⟨Abort⟩j in step 3 of ΠWMC

unless the designated sender has Byzantine or send faults.

Proof. Assume there is a non-Byzantine party j that sends ⟨Abort⟩j . It must
have received ⟨⊥⟩ from at least n− t−s ≥ t+r+1 different parties, and at least
one of those messages is from a party without receive omission or Byzantine
faults. That party would have received the message if the designated sender is
neither send faulty nor Byzantine.

Theorem 1. Protocol ΠWMC is a (t, s, r)-secure undead weak multicast protocol
resilient to overlapping faults if n > 2t+ s+ r.

Proof. Validity. If i∗ is non-faulty or is receive faulty and alive in the beginning
of the protocol, it sends ⟨m⟩i∗ to every party and all non-faulty parties receive
it and forward it. Every party that isn’t receive faulty receives those messages.
Since i∗ is non-Byzantine, it only sends one verifying signature and thus this
is the only received value, which will then be output. In addition, if a receive
faulty party j does not output Zj = True, then it receives messages from at least
n− t− s ≥ 2t+ s+ r+1− t− s = t+ r+1 different parties, then at least one of
those messages was sent by a party that is neither Byzantine nor receive faulty
party. Those parties receive the message m from i∗ and forward it, and thus
every j ̸= i∗ that hasn’t become a zombie, outputs m. In addition, if Zi∗ ̸= True
by the end of the protocol, it outputs (m,Zi∗ , Gi∗) as well. Finally, if i

∗ is send
faulty, it only signs the message m. This means that no non-faulty party receives
another signed message from i∗, and thus output either m or ⊥.

Detection. If Zi∗ = False and Gi∗ = False at the end of the protocol, i∗

receives messages from at least n− t−s parties in step 4 with and receives Abort
messages from at most t parties. Since n− t−s ≥ t+r+1, i∗ received the report
sent by at least one party that is neither Byzantine nor receive faulty. This party
heard all Abort messages sent by all non-faulty parties. In other words, i∗ either
directly or indirectly heard all Abortmessages sent by non-faulty parties. Since in
total it received Abort messages from at most t parties, at least one non-faulty
party did not send such a message. This party received i∗’s message and will
output it in the end of the protocol.

Termination. All parties terminate after exactly 4 rounds.
No Living Undead. In the end of the protocol, every party j outputs

(mj , Zj , Gj). This means that we need to argue that only receive faulty parties
set Zj = True and only send faulty parties set Gj = True.

– NLU of the designated sender: If the sender is non-faulty, by Lemma 1, at
most t parties p send ⟨Abort⟩p messages, and thus i∗ does not set Gi∗ = True.
In addition, it will receive at least n− t− s many messages in the step 4, so
it won’t set Zi∗ = True either.

21

– NLU of all other parties: Each non-receive-faulty party j must receive at
least n− t− s messages in the step 3, so they won’t set Zj = True and they
don’t set Gj = True anywhere in the protocol.

B.2 Proofs for Very Weak Multicast

Lemma 2. Protocol ΠVWMC is an (s, r)-secure very weak multicast protocol for
any s, r such that s < n, s+ r ≤ n without overlapping faults.

Proof. Validity. For the first part of the property, note that parties only output
a value other than ⊥ if they received i∗’s message containing m, or another
party’s message forwarding m. In either case, parties only send i∗’s input. For
the second part of the property, we start by considering a non-faulty sender i∗

and assuming that there are fewer than r receive faulty parties. If some party
j output (x, Zj) with Zj = False, it must have received messages from at least
n − s > r − 1 many parties. By assumption, at most r − 1 parties are receive
faulty, so at least one of the messages comes was received from a party that is
not receive faulty. Those receive i∗’s message in round 1 and forward it, and thus
in both cases j receives the sender’s input, sets mj = m and outputs this value.

Now assume the sender is receive faulty. If some party j output (x, Zj) with
Zj = False, it must have received messages from at least n− s ≥ r many parties.
If it received messages from all receive faulty parties, then it received one from
i∗ as well and set mj = m. Otherwise, it received at least one message from a
send-faulty party. That party does not exhibit any receive faults, so it received
m from i∗ and forwarded that message to j. In either case j sets mj = m and
outputs that value.

Termination. The protocol ΠVWMC terminates in exactly 2 rounds.
No Living Undead. Assume that some party j outputs Zj = True. It only

sets Zj to True if it receives messages from a total of less than n − s many
different parties in Steps 2 and 3 of ΠVWMC. This means that j did not receive a
message from at least one party that is not send faulty. This implies that j must
be a receive faulty party, as required.

B.3 Proofs for Total Omission Consensus

Theorem 2. Protocol ΠTOC is an (s, r)-secure undead uniform consensus pro-
tocol for any s, r such that s < n, s+ r ≤ n without overlapping faults.

Proof. Validity. Assume all parties start with the same input m. This means
that they all set Ij = m in the beginning of the protocol. We will show that if
all parties have Ij = m in the beginning of a round, this will continue to hold in
the end of the round. Following a simple inductive argument, this means that all
parties have Ij = m in the end of round s+1, and thus either output (Ij ,False)
if Zj = False or (⊥,True) otherwise. Assume that all parties have Ij = m in the
beginning of round r. This means that the round’s leader sends (m,Zr) in the
ΠVWMC protocol. From the validity property of the protocol, all parties receive

22

(m′, Z) such that m′ ∈ {m,⊥}. This means that each j either updates Ij to m
if it output m′ = m, or does not update Ij at all otherwise. Therefore all parties
have Ij = m in the end of the round as well.

Consistency. First assume that at least one of the first s + 1 leaders is
receive faulty, and let l be the maximal such party. If that is not the case, then
there are no receive faulty parties among the first s + 1 leaders. Since there
are at most s send faulty parties, at least one of these parties is non-faulty. In
addition, if at least s + 1 parties are not receive faulty, then there are at most
n− (s+ 1) ≤ r− 1 receive faulty parties. Let l be the nonfaulty leader with the
maximal index such that l ≤ s+1. In either case, let m′ be the message sent by
the leader l. From the validity property of ΠVWMC, every party j either receives
the message m′ and sets Ij = m′ or sets Zj = True at the end of round l.

We will show that in every subsequent round (if such a round exists), every
party is either receive faulty with Zj = True or has Ij = m′. Note that in both of
the above cases, there are no receive faulty leaders after round l. That is, parties
l+ 1, . . . , s+ 1 are not receive faulty. First, since parties l+ 1, . . . , s+ 1 are not
receive faulty, from the Validity and No Living Undead properties of ΠVWMC,
each such j outputs m′,False from the protocol in round l and updates Ij = m′.
Therefore, in the beginning of round l+ 1, the leader sends the value Il+1 = m′

in the ΠVWMC protocol and thus from the Validity property, every party either
outputs m′ or ⊥. This means that every party that updates its Ij variable in
round l+1 updates it to m′. Following identical logic, the same holds for rounds
l + 2, . . . , s + 1, and thus parties don’t update Ij to any value other than m′

following round l. Finally, every party that has Zj = True outputs (⊥,True)
from the protocol. Every other party updated Ij = m′ in round l, and possibly
in following rounds as well, and finally output (m′,False).

Termination. The protocol terminates after s+ 1 rounds and each party j
will output (mj , Zj).

No Living Undead. Parties only set Zj = True in the protocol if they
output (x,True) in one of the invocations of ΠVWMC. From no living undead
property of ΠVWMC, only receive faulty parties do so, as required.

C Undead Graded Multicast

C.1 definition

An undead graded multicast protocol has a designated sender i∗ with input m.
Every party i also has two flags zi, gi ∈ {True,False} as input indicating whether
it is already a zombie or a ghost when starting the protocol. Every party outputs
a value, as well as grade y ∈ {0, 1, 2}, indicating whether it thinks that the
sender succeeded in propagating its message. If some party thinks that a non
Byzantine sender definitely succeeded in sending its message (outputs y = 2),
then all parties actually received that message or became zombies. The protocol
is formally defined bellow.

23

Definition 6. Let Π be a protocol executed by parties 1, . . . , n, with a designated
sender i∗ starting with an input m ̸= ⊥. In addition, every party i has two values
zi, gi ∈ {True,False} as input. Every party outputs a tuple (x, y, z, g) such that x
is either a possible message or ⊥, y ∈ {0, 1, 2} and z, g are boolean values.

– Validity. Π is (t, s, r)-valid if the following holds whenever at most t parties
are Byzantine, s parties are send faulty and r parties are receive faulty: If i∗

non-faulty, every non-Byzantine party j outputs (x, y, z, g) such that either
x = m, y = 2, or such that z = True. In addition, if i∗ is send faulty, no
non-Byzantine party outputs (x, y, z, g) such that x /∈ {m,⊥}.

– Detection. Π is (t, s, r)-detecting if the following holds whenever at most
t parties are Byzantine, s parties are send faulty and r parties are receive
faulty: If i∗ is send faulty and it is alive at the end of the protocol, every
non-faulty party output (x, y, z, g) such that x = m and y ≥ 1.

– Consistency. Π is (t, s, r)-consistent if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: If i∗ is non-Byzantine, for every two non-Byzantine parties j, k
that output (xj , yj , zj , gj) and (xk, yk, zk, gk) respectively, either |yj − yk| ≤
1, or at least one of zj , zk equals True. In addition, either xj = ⊥ and yj = 0,
or xj = m.

– Termination. Π is (t, s, r)-terminating if the following holds whenever at
most t parties are Byzantine, s parties are send faulty and r parties are
receive faulty: All parties complete the protocol and output a value.

– No Living Undead. Π is (t, s, r)-no living undead if the following holds
whenever at most t parties are Byzantine, s parties are send faulty and r
parties are receive faulty: If a non-Byzantine party j outputs (x, y, z, g) such
that z = True (resp. g = True), then it is receive faulty (resp. send faulty).

If Π is (t, s, r)-valid, (t, s, r)-detecting, (t, s, r)-consistent, (t, s, r)-terminating,
and (t, s, r)-no living undead we say that it is a (t, s, r)-secure undead graded
multicast protocol.

The only difference from the original definition, provided in [19], is in the
validity property. In the original property, validity was required to hold when i∗

is either receive faulty or non-faulty. This is much harder to achieve if overlapping
faults are allowed. That is because originally, a zombie could send a message and
know that it will arrive even after finding out it is receive faulty. However, a party
with overlapping omission faults might become a zombie instead of becoming
a ghost and thus won’t know whether its future messages will arrive at their
destination. Therefore, in this definition we only require the validity to hold
when the sender is non-faulty. Thankfully this is enough, as the proofs of [19]
only rely on non-faulty parties successfully sending their messages.

C.2 Construction

In the protocol, the sender starts by sending its input to all parties in an undead
weak multicast protocol. Following that, every party that is still alive forwards

24

the received message in an undead weak multicast protocol as well. If a party
received a message from i∗ in both rounds it knows that it did not become a
ghost, and thus at least one non-faulty party received its message in the first
round. This means that it can output m, 2 and be assured that all other parties
will receive the message from that non-faulty party and be able to output m
with a grade of at least 1, or become zombies.

Protocol ΠGMC

Input and Initialization: Each party j ∈ [n] has inputs zj , gj , the desig-
nated sender i∗ also has input m. Every party j initializes mj = ⊥, Zj = zj
and Gj = gj .

Parties execute the following steps:

1. The sender i∗ sends ⟨m⟩i∗ to all other parties using ΠWMC if Zi∗ = False
and Gi∗ = False.

2. Let xj , Z
′
j , G

′
j be j’s output in the previous round. If Z′

j = True, j
sets Zj = True, and if G′

j = True, j sets Gj = True. Every party that
receives x = ⟨m′⟩i∗ (i.e. a message m′ with a verifying signature from
i∗) sets mj = ⟨m′⟩i∗ . Every party j that has Zj = Gj = False sends mj

using ΠWMC.

Output Determination: For every pair j, k, define xj,k, Zj,k, Gj,k to be
j’s output in the ΠWMC protocol with k as sender. If there exists a k such
that Zj,k = True, j sets Zj = True. In addition, if there exists a k such
that Gj,k = True, j sets Gj = True. If Zj = False, mj = ⟨m′⟩i∗ ̸= ⊥ and
xj,i∗ = mj , j outputs (m′, 2, Zj , Gj). Otherwise, if Zj = False and for some
k, xj,k = ⟨m′⟩i∗ with a verifying signature from i∗, j outputs m′, 1, Zj , Gj

(choose one arbitrarily if more than one exists). Finally, if j did not output
a value in either of the previous cases, it outputs ⊥, 0, Zj , Gj .

Fig. 5. An undead graded multicast protocol

C.3 Security Proof

Theorem 6. Protocol ΠGMC is a (t, s, r)-secure undead graded multicast protocol
resilient to overlapping faults if n > 2t+ s+ r.

Proof. Validity. If i∗ is non-faulty, then from the Validity of the ΠWMC protocol,
every non-Byzantine party j outputs ⟨m⟩i∗ in the weak multicast instances with
i∗ as sender in both rounds or outputs either Z ′

j = True or Zj,i∗ = True. In the
first case, j outputs m, 2, z, g in the end of the protocol, and in the second it
outputs ⊥, 0,True, g. Note that from the no living undead property of ΠWMC, i

∗

has Z ′
i∗ = G′

i∗ = False so it does send ⟨m⟩i∗ in the second round as well.
Detection. Assume i∗ is send faulty and is alive in the end of the protocol.

This means that it has Zi∗ = Gi∗ = False in the end of the protocol and outputs

25

these flags. It did not set Zi∗ = True or Gi∗True in the beginning of round 2, so
it output Z ′

i∗ = G′
i∗ = False. From the detection and no living undead properties

of the ΠWMC protocol, some non-faulty party k output ⟨m⟩i∗ ,False,False from
the first call to ΠWMC. Party j then sent that message in the ΠWMC protocol, and
from the validity and detection properties of the protocol every non-Byzantine
party outputs xj,k, Zj,k, Gj,k such that either xj,k = ⟨m⟩i∗ or has Zj,k = True.
If Zj,k, then j sets Zj = True and outputs ⊥, 0,True, Gj . From the no living
undead property, this only takes place if j is receive faulty. On the other hand,
if xj,k = ⟨m⟩i∗ , then j received m with a valid signature from i∗. Since i∗ only
signs one message, m is the only message j will receive with a valid signature,
and thus j outputs m, y, z, g with y = 1 if it hasn’t done so with y = 2 already.

Consistency. Assume i∗ is not Byzantine and let j, k be two non-Byzantine
parties that output (xj , yj , zj , gj) and (xk, yk, zk, gk) respectively. If either zj =
True or zk = True, then the first part of the property holds. The first part of the
property also holds if neither party outputs a grade of 2, i.e. if yj ̸= 2 and yk ̸= 2,
In order to prove the final case, assume w.l.o.g that yj = 2. If that is the case, it
received the same message ⟨m′⟩i∗ from i∗ in both calls to ΠWMC. Since i∗ is not
Byzantine and from the validity of the ΠWMC protocol, i∗ sent the message m′

in both of these calls. If i∗ is either non-faulty or receive faulty, from the validity
of the ΠWMC protocol, every nonfaulty party received that message in the first
call to ΠWMC. If i

∗ is send faulty, from the detection of the protocol, at least
one non-faulty party l receive the message. Following that, l sent the message
in the second round. By assumption, k outputs zk = False. This means that it
output Zk,l = False as well, because otherwise it would have become a zombie
and output zk = True. By validity, this means that it also output xk,l = ⟨m′⟩i∗ .
Finally, during the output determination, if k doesn’t output (m′, 2, zk, gk), it
will reach the second condition and output (m′, 1, zk, zk) instead. For the second
part of the property, if j receives some message ⟨m′⟩i∗ with a verifying signature
by i∗, it outputs xj = m′. Since i∗ is not Byzantine it only signs its input m,
so xj = m. If j does not receive such a message, then it output ⊥, 0, Zj , Gj , as
required.

Termination. The protocol after exactly two calls to ΠWMC.

No Living Undead. Party j outputs the flags Zj , Gj in the end of the
protocol. It sets Zj = True if Z ′

j = True or Zj,k = True for some k. Similarly, it
only sets Gj = True if G′

j = True or Gj,k = True for some k. The values Z ′
j , G

′
j

as well as Zj,k, Gj,k are the flags output from the ΠWMC protocol. From the no
living undead property of ΠWMC, Z

′
j or Zj,k only equal True if j is receive faulty.

Similarly, G′
j or Gj,k only equal True if j is send faulty, as required.

D Lower Bound Proofs

D.1 Total Send Corruption Uniform Consensus

Theorem 3. There does not exist an (n, 0)-secure uniform consensus protocol.

26

Proof. Assume there exists an (n, 0)-secure uniform consensus protocol. Let
A,B ⊆ [n] be an arbitrary partition of [n] to non-empty sets. That is A∪B = [n],
A∩B = ∅ and neither A nor B are empty. We build three executions as follows.

1. In the first execution, all parties start with the input 1. The parties in A
are non-faulty and the parties in B are send faulty. The adversary drops all
messages sent from parties in group B to parties in group A. By the validity
requirements, all parties in group A must output 1.

2. In the first execution, all parties start with the input 0. The parties in A
are send faulty and the parties in B are non-faulty. The adversary drops all
messages sent from parties in group A to parties in group B.

3. In the third execution, all parties are send faulty. Parties in A start with
input 1 and parties in group B start with input 0. The adversary drop all
messages sent between parties in group A and in group B, but delivers all
messages within each of the groups.

All parties in group A have indistinguishable views in execution 1 and in execu-
tion 3, and thus must output 1 in both. On the other hand, all parties in group
B have indistinguishable views in execution 2 and execution 3 and thus must
output 0 in both. Parties in execution 3 output different values, and thus the
protocol does not have the consistency property, reaching a contradiction.

D.2 Total Omission Broadcast

Theorem 4. There is no (s, r)-secure broadcast protocol resilient to s send
faults and r receive faults for any s, r such that s ≥ 1, s + r = n without over-
lapping faults.

Proof. Assume there exists an (s, r)-secure broadcast protocol for s ≥ 1, s+ r =
n. Let i∗ be the index of the designated sender, and let A,B be an arbitrary
partition of [n] \ {i∗} such that |A| = s− 1 and |B| = r. For example, let A be
the s − 1 minimal indices that are not i∗, and let B = [n] \ (A ∪ {i∗}). In all
of the following executions i∗ and parties in A successfully communicate with
each other and within A, and hear messages sent by parties in B. On the other
hand, parties in B hear nothing from i∗ or from parties in A, but communicate
successfully among themselves. We construct four executions as follows.

1. In the first execution, i∗ has the input 0. Parties in A and i∗ are send faulty,
but parties in B are non faulty. Parties in A and i∗ communicate among
themselves, but due to their send faults all messages to B are dropped. In
addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

2. In the second execution, i∗ has the input 1. Parties in A and i∗ are send
faulty, but parties in B are non faulty. Parties in A and i∗ communicate
among themselves, but due to their send faults all messages toB are dropped.
In addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

27

3. In the third execution, i∗ has the input 0. Parties in A and i∗ are non-faulty,
but parties in B are receive faulty. Parties in A and i∗ communicate among
themselves, but all messages to B are dropped due to their receive faults.
In addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

4. In the fourth execution, i∗ has the input 1. Parties in A and i∗ are non-faulty,
but parties in B are receive faulty. Parties in A and i∗ communicate among
themselves, but all messages to B are dropped due to their receive faults.
In addition, parties in B communicate among themselves, and any messages
they send arrive at A and i∗.

Note that in the third and fourth executions, i∗ and parties in A are non-faulty.
From validity they must all output 0 and 1 in executions 3 and 4 respectively. In
addition, the view of these parties in executions 1 and 3 are indistinguishable, as
well as their views in executions 2 and 4. This means that they must also output
0 and 1 in executions 1 and 2 respectively. On the other hand, parties in B have
identical views in all 4 executions, and thus act the same in all of them. These
parties are non-faulty in executions 1 and 2 and thus must output consistent
values. If parties in B output a value v ̸= 04 in all executions, then this leads to
a consistency violation in execution 1. Similarly, if they output a value v ̸= 1 in
all executions, then this leads to a consistency violation in execution 2.

D.3 Generalizing Theorem 5

The technique in Theorem 5 showed that it is possible to take one receive faulty
party and switch its input, but all parties must still output the same value. In
order to prove the general result, one could start with all parties having the input
1, and then switching their inputs one-by-one until all of them have the input 0.
Finally, if the send faulty parties’ messages are all dropped, their inputs can also
be switched without other parties noticing. Finally, we will find that all parties
have the input 0, but output the value 1, which will contradict the validity of
the protocol. A formal proof of the general case of Theorem 5 is provided below.

Theorem 5. There is no (s, r)-secure uniform consensus protocol resilient to
overlapping faults for any s, r s.t. s > 2 and s+ r > n.

Proof. Assume there exists an (s, r)-secure uniform consensus protocol resilient
to overlapping faults for some s, r such that s > 2 and s+r > n. For every i ∈ [r]
let Ri = i and for every j ∈ [s] let Sj = r + j. In all of the executions, parties
R1, . . . , Rr will be receive faulty (and one possibly send faulty as well) and parties
S1, . . . , Ss will be send faulty. In all of the executions Parties R1, . . . , Rr will
receive no message due to their receive faults, and the messages sent by S1, . . . , Ss

will be dropped. This means that the Sj parties will hear from every party

4 Technically, in probabilistic protocols there might not be only one possible output
in this case. Since this proof deals with perfectly secure protocols, it is enough that
there is a positive probability they output v ̸= 0.

28

Ri, except for possibly those that are also send faulty in particular executions.
Messages sent from every Ri in all executions must be identical since all receive
faulty parties hear nothing in all executions. We will show inductively on i ∈
{0, . . . , r} that in the following conditions all send faulty parties must output 1:

– parties R1, . . . , Rr are receive faulty, parties S1, . . . , Ss are send faulty, and
no party has full omission faults,

– parties R1, . . . , Ri have the input 0 and all other parties have the input 1,
and

– parties R1, . . . , Rr receive no messages and parties S1, . . . , Ss receive all mes-
sages from parties R1, . . . , Rr but no messages from each other.

For i = 0, this immediately holds because all parties have input 1 and thus
the send faulty parties must output 1 due to validity. We assume this is the
case for i < r and will show that this holds for i + 1 as well. We will do so by
constructing 5 executions:

1. R1, . . . , Ri have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and receive no messages, S1, . . . , Ss are send faulty and only
receive messages sent by R1, . . . , Rr.

2. R1, . . . , Ri have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and S1, . . . , Ss are send faulty. Ri+1 also has send omissions,
i.e. it has full omission faults. R1, . . . , Rr hear no messages. Ri+1’s messages
are not delivered to S1. S1, . . . , Ss hear all other messages from R1, . . . , Rr

and hear no message sent by each other.
3. R1, . . . , Ri have input 0 and all other parties have input 1. R1, . . . Rr are

receive faulty and parties S1, . . . , Ss are send faulty. Ri+1 also has send
omissions, i.e. it has full omission faults. R1, . . . , Rr hear no messages. Ri’s
messages are not delivered to S1, . . . , Ss. S1, . . . , Ss hear all other messages
from R1, . . . , Rr and hear no message sent by each other.

4. R1, . . . , Ri+1 have input 0 and all other parties have input 1. R1, . . . Rr

are receive faulty and parties S1, . . . , Ss are send faulty. Ri also has send
omissions, i.e. it has full omission faults. R1, . . . , Rr hear no messages. Ri’s
messages are not delivered to S1, . . . , Ss. S1, . . . , Ss hear all other messages
from R1, . . . , Rr and hear no message sent by each other.

5. R1, . . . , Ri+1 have input 0 and all other parties have input 1. R1, . . . Rr are
receive faulty and receive no messages, S1, . . . , Ss are send faulty and only
receive messages sent by R1, . . . , Rr.

The first execution is the one described in the induction hypothesis, and thus
S1, . . . , Ss output 1. S2, . . . , Sn’s views in executions 1 and 2 are indistinguishable
and thus they output 1 in execution 2 as well5. From the consistency of the
protocol, S1 outputs 1 as well. S1 has an identical view in executions 2 and 3,
so it outputs 1 in execution 3. From the consistency of the protocol, S2, . . . , Ss

outputs 1 as well. S2, . . . , Ss’s views in executions 3 and 4 are indistinguishable,
so they output 1 in execution 4. From the consistency of the protocol, S1 outputs

5 The assumption that s > 2 is used here to guarantee that S2 exists.

29

1 as well. Finally, S1’s has identical views in executions 4 and 5 and thus it
outputs 1 in execution 5, and so do S2, . . . , Ss. Note that execution 5 is one
in which R1, . . . , Rr are receive faulty, S1, . . . , Ss are send faulty. In addition,
parties R1, . . . , Ri+1 have the input 0 and the rest of the parties have the input
1. In other words, we proved the claim for i+ 1.

Applying this claim to i = r, we find that if R1, . . . , Rr have the input
0 and S1, . . . , Ss have the input 1, and the only message delivered are those
from R1, . . . , Rr to S1, . . . , Ss, all parties output 1. We now construct three final
executions to show that all parties output 1 even when they all have the input
0, which would contradict the validity of the protocol.

1. R1, . . . , Rr have input 0 and S1, . . . , Ss have input 1. R1, . . . Rr are receive
faulty and receive no messages, S1, . . . , Ss are send faulty and only receive
messages sent by R1, . . . , Rr.

2. R1, . . . , Rr, S1 have input 0 and S2, . . . , Ss have input 1. R1, . . . Rr are receive
faulty and receive no messages, S1, . . . , Ss are send faulty and only receive
messages sent by R1, . . . , Rr.

3. All parties have the input 0. R1, . . . Rr are receive faulty and receive no mes-
sages, S1, . . . , Ss are send faulty and only receive messages sent byR1, . . . , Rr.

Execution 1 is the execution described in the induction above with i = r. As
shown, all parties output 1. S2, . . . , Ss have indistinguishable views in executions
1 and 2 and thus they output 1 in execution 2 as well. From the consistency of
the protocol, S1 does so as well. S1’s views in executions 2 and 3 are indis-
tinguishable, so it outputs 1 in execution 3. From consistency, S2, . . . , Ss also
output 1. However, all parties have the input 0, so this violates the validity of
the protocol, reaching a contradiction.

Note that in the definitions used in this paper, receive faulty parties are
allowed to output ⊥, but send faulty parties must output a correct value. This
proof can be adjusted to show that in execution 3 parties S1, . . . , Ss must output
non-⊥ values even if we allow send faulty parties to output ⊥. In order to show
that Si must output non-⊥ values in execution 3 above, we can construct another
execution which is identical to execution 3, except Si is non-faulty, but receives
no messages from the rest of the send faulty parties. Si’s view is identical in
execution 3 and this new execution, and thus it must output non-⊥ values in
both since it is non-faulty in one of them. Since this is true for an arbitrary Si,
this is true for all of them.

30

	Optimal Consensus in the Presence of Overlapping Faults and Total Omission

